1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19 #include <linux/cpuset.h>
20
21 /*
22 * Default limits for DL period; on the top end we guard against small util
23 * tasks still getting ridiculously long effective runtimes, on the bottom end we
24 * guard against timer DoS.
25 */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static struct ctl_table sched_dl_sysctls[] = {
30 {
31 .procname = "sched_deadline_period_max_us",
32 .data = &sysctl_sched_dl_period_max,
33 .maxlen = sizeof(unsigned int),
34 .mode = 0644,
35 .proc_handler = proc_douintvec_minmax,
36 .extra1 = (void *)&sysctl_sched_dl_period_min,
37 },
38 {
39 .procname = "sched_deadline_period_min_us",
40 .data = &sysctl_sched_dl_period_min,
41 .maxlen = sizeof(unsigned int),
42 .mode = 0644,
43 .proc_handler = proc_douintvec_minmax,
44 .extra2 = (void *)&sysctl_sched_dl_period_max,
45 },
46 };
47
sched_dl_sysctl_init(void)48 static int __init sched_dl_sysctl_init(void)
49 {
50 register_sysctl_init("kernel", sched_dl_sysctls);
51 return 0;
52 }
53 late_initcall(sched_dl_sysctl_init);
54 #endif
55
dl_server(struct sched_dl_entity * dl_se)56 static bool dl_server(struct sched_dl_entity *dl_se)
57 {
58 return dl_se->dl_server;
59 }
60
dl_task_of(struct sched_dl_entity * dl_se)61 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
62 {
63 BUG_ON(dl_server(dl_se));
64 return container_of(dl_se, struct task_struct, dl);
65 }
66
rq_of_dl_rq(struct dl_rq * dl_rq)67 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
68 {
69 return container_of(dl_rq, struct rq, dl);
70 }
71
rq_of_dl_se(struct sched_dl_entity * dl_se)72 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
73 {
74 struct rq *rq = dl_se->rq;
75
76 if (!dl_server(dl_se))
77 rq = task_rq(dl_task_of(dl_se));
78
79 return rq;
80 }
81
dl_rq_of_se(struct sched_dl_entity * dl_se)82 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
83 {
84 return &rq_of_dl_se(dl_se)->dl;
85 }
86
on_dl_rq(struct sched_dl_entity * dl_se)87 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
88 {
89 return !RB_EMPTY_NODE(&dl_se->rb_node);
90 }
91
92 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)93 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
94 {
95 return dl_se->pi_se;
96 }
97
is_dl_boosted(struct sched_dl_entity * dl_se)98 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
99 {
100 return pi_of(dl_se) != dl_se;
101 }
102 #else
pi_of(struct sched_dl_entity * dl_se)103 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
104 {
105 return dl_se;
106 }
107
is_dl_boosted(struct sched_dl_entity * dl_se)108 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
109 {
110 return false;
111 }
112 #endif
113
114 #ifdef CONFIG_SMP
dl_bw_of(int i)115 static inline struct dl_bw *dl_bw_of(int i)
116 {
117 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
118 "sched RCU must be held");
119 return &cpu_rq(i)->rd->dl_bw;
120 }
121
dl_bw_cpus(int i)122 static inline int dl_bw_cpus(int i)
123 {
124 struct root_domain *rd = cpu_rq(i)->rd;
125 int cpus;
126
127 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
128 "sched RCU must be held");
129
130 if (cpumask_subset(rd->span, cpu_active_mask))
131 return cpumask_weight(rd->span);
132
133 cpus = 0;
134
135 for_each_cpu_and(i, rd->span, cpu_active_mask)
136 cpus++;
137
138 return cpus;
139 }
140
__dl_bw_capacity(const struct cpumask * mask)141 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
142 {
143 unsigned long cap = 0;
144 int i;
145
146 for_each_cpu_and(i, mask, cpu_active_mask)
147 cap += arch_scale_cpu_capacity(i);
148
149 return cap;
150 }
151
152 /*
153 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
154 * of the CPU the task is running on rather rd's \Sum CPU capacity.
155 */
dl_bw_capacity(int i)156 static inline unsigned long dl_bw_capacity(int i)
157 {
158 if (!sched_asym_cpucap_active() &&
159 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
160 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
161 } else {
162 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
163 "sched RCU must be held");
164
165 return __dl_bw_capacity(cpu_rq(i)->rd->span);
166 }
167 }
168
dl_bw_visited(int cpu,u64 gen)169 static inline bool dl_bw_visited(int cpu, u64 gen)
170 {
171 struct root_domain *rd = cpu_rq(cpu)->rd;
172
173 if (rd->visit_gen == gen)
174 return true;
175
176 rd->visit_gen = gen;
177 return false;
178 }
179
180 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)181 void __dl_update(struct dl_bw *dl_b, s64 bw)
182 {
183 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
184 int i;
185
186 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
187 "sched RCU must be held");
188 for_each_cpu_and(i, rd->span, cpu_active_mask) {
189 struct rq *rq = cpu_rq(i);
190
191 rq->dl.extra_bw += bw;
192 }
193 }
194 #else
dl_bw_of(int i)195 static inline struct dl_bw *dl_bw_of(int i)
196 {
197 return &cpu_rq(i)->dl.dl_bw;
198 }
199
dl_bw_cpus(int i)200 static inline int dl_bw_cpus(int i)
201 {
202 return 1;
203 }
204
dl_bw_capacity(int i)205 static inline unsigned long dl_bw_capacity(int i)
206 {
207 return SCHED_CAPACITY_SCALE;
208 }
209
dl_bw_visited(int cpu,u64 gen)210 static inline bool dl_bw_visited(int cpu, u64 gen)
211 {
212 return false;
213 }
214
215 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)216 void __dl_update(struct dl_bw *dl_b, s64 bw)
217 {
218 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
219
220 dl->extra_bw += bw;
221 }
222 #endif
223
224 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)225 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
226 {
227 dl_b->total_bw -= tsk_bw;
228 __dl_update(dl_b, (s32)tsk_bw / cpus);
229 }
230
231 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)232 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
233 {
234 dl_b->total_bw += tsk_bw;
235 __dl_update(dl_b, -((s32)tsk_bw / cpus));
236 }
237
238 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)239 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
240 {
241 return dl_b->bw != -1 &&
242 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
243 }
244
245 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)246 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
247 {
248 u64 old = dl_rq->running_bw;
249
250 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
251 dl_rq->running_bw += dl_bw;
252 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
253 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
254 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256 }
257
258 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)259 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
260 {
261 u64 old = dl_rq->running_bw;
262
263 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264 dl_rq->running_bw -= dl_bw;
265 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
266 if (dl_rq->running_bw > old)
267 dl_rq->running_bw = 0;
268 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
269 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
270 }
271
272 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)273 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
274 {
275 u64 old = dl_rq->this_bw;
276
277 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
278 dl_rq->this_bw += dl_bw;
279 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
280 }
281
282 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)283 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
284 {
285 u64 old = dl_rq->this_bw;
286
287 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
288 dl_rq->this_bw -= dl_bw;
289 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
290 if (dl_rq->this_bw > old)
291 dl_rq->this_bw = 0;
292 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
293 }
294
295 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)296 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297 {
298 if (!dl_entity_is_special(dl_se))
299 __add_rq_bw(dl_se->dl_bw, dl_rq);
300 }
301
302 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)303 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304 {
305 if (!dl_entity_is_special(dl_se))
306 __sub_rq_bw(dl_se->dl_bw, dl_rq);
307 }
308
309 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)310 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 if (!dl_entity_is_special(dl_se))
313 __add_running_bw(dl_se->dl_bw, dl_rq);
314 }
315
316 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)317 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
318 {
319 if (!dl_entity_is_special(dl_se))
320 __sub_running_bw(dl_se->dl_bw, dl_rq);
321 }
322
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)323 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
324 {
325 if (dl_se->dl_non_contending) {
326 sub_running_bw(dl_se, &rq->dl);
327 dl_se->dl_non_contending = 0;
328
329 /*
330 * If the timer handler is currently running and the
331 * timer cannot be canceled, inactive_task_timer()
332 * will see that dl_not_contending is not set, and
333 * will not touch the rq's active utilization,
334 * so we are still safe.
335 */
336 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
337 if (!dl_server(dl_se))
338 put_task_struct(dl_task_of(dl_se));
339 }
340 }
341 __sub_rq_bw(dl_se->dl_bw, &rq->dl);
342 __add_rq_bw(new_bw, &rq->dl);
343 }
344
dl_change_utilization(struct task_struct * p,u64 new_bw)345 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
346 {
347 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
348
349 if (task_on_rq_queued(p))
350 return;
351
352 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
353 }
354
355 static void __dl_clear_params(struct sched_dl_entity *dl_se);
356
357 /*
358 * The utilization of a task cannot be immediately removed from
359 * the rq active utilization (running_bw) when the task blocks.
360 * Instead, we have to wait for the so called "0-lag time".
361 *
362 * If a task blocks before the "0-lag time", a timer (the inactive
363 * timer) is armed, and running_bw is decreased when the timer
364 * fires.
365 *
366 * If the task wakes up again before the inactive timer fires,
367 * the timer is canceled, whereas if the task wakes up after the
368 * inactive timer fired (and running_bw has been decreased) the
369 * task's utilization has to be added to running_bw again.
370 * A flag in the deadline scheduling entity (dl_non_contending)
371 * is used to avoid race conditions between the inactive timer handler
372 * and task wakeups.
373 *
374 * The following diagram shows how running_bw is updated. A task is
375 * "ACTIVE" when its utilization contributes to running_bw; an
376 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
377 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
378 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
379 * time already passed, which does not contribute to running_bw anymore.
380 * +------------------+
381 * wakeup | ACTIVE |
382 * +------------------>+ contending |
383 * | add_running_bw | |
384 * | +----+------+------+
385 * | | ^
386 * | dequeue | |
387 * +--------+-------+ | |
388 * | | t >= 0-lag | | wakeup
389 * | INACTIVE |<---------------+ |
390 * | | sub_running_bw | |
391 * +--------+-------+ | |
392 * ^ | |
393 * | t < 0-lag | |
394 * | | |
395 * | V |
396 * | +----+------+------+
397 * | sub_running_bw | ACTIVE |
398 * +-------------------+ |
399 * inactive timer | non contending |
400 * fired +------------------+
401 *
402 * The task_non_contending() function is invoked when a task
403 * blocks, and checks if the 0-lag time already passed or
404 * not (in the first case, it directly updates running_bw;
405 * in the second case, it arms the inactive timer).
406 *
407 * The task_contending() function is invoked when a task wakes
408 * up, and checks if the task is still in the "ACTIVE non contending"
409 * state or not (in the second case, it updates running_bw).
410 */
task_non_contending(struct sched_dl_entity * dl_se)411 static void task_non_contending(struct sched_dl_entity *dl_se)
412 {
413 struct hrtimer *timer = &dl_se->inactive_timer;
414 struct rq *rq = rq_of_dl_se(dl_se);
415 struct dl_rq *dl_rq = &rq->dl;
416 s64 zerolag_time;
417
418 /*
419 * If this is a non-deadline task that has been boosted,
420 * do nothing
421 */
422 if (dl_se->dl_runtime == 0)
423 return;
424
425 if (dl_entity_is_special(dl_se))
426 return;
427
428 WARN_ON(dl_se->dl_non_contending);
429
430 zerolag_time = dl_se->deadline -
431 div64_long((dl_se->runtime * dl_se->dl_period),
432 dl_se->dl_runtime);
433
434 /*
435 * Using relative times instead of the absolute "0-lag time"
436 * allows to simplify the code
437 */
438 zerolag_time -= rq_clock(rq);
439
440 /*
441 * If the "0-lag time" already passed, decrease the active
442 * utilization now, instead of starting a timer
443 */
444 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
445 if (dl_server(dl_se)) {
446 sub_running_bw(dl_se, dl_rq);
447 } else {
448 struct task_struct *p = dl_task_of(dl_se);
449
450 if (dl_task(p))
451 sub_running_bw(dl_se, dl_rq);
452
453 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
454 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
455
456 if (READ_ONCE(p->__state) == TASK_DEAD)
457 sub_rq_bw(dl_se, &rq->dl);
458 raw_spin_lock(&dl_b->lock);
459 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
460 raw_spin_unlock(&dl_b->lock);
461 __dl_clear_params(dl_se);
462 }
463 }
464
465 return;
466 }
467
468 dl_se->dl_non_contending = 1;
469 if (!dl_server(dl_se))
470 get_task_struct(dl_task_of(dl_se));
471
472 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
473 }
474
task_contending(struct sched_dl_entity * dl_se,int flags)475 static void task_contending(struct sched_dl_entity *dl_se, int flags)
476 {
477 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
478
479 /*
480 * If this is a non-deadline task that has been boosted,
481 * do nothing
482 */
483 if (dl_se->dl_runtime == 0)
484 return;
485
486 if (flags & ENQUEUE_MIGRATED)
487 add_rq_bw(dl_se, dl_rq);
488
489 if (dl_se->dl_non_contending) {
490 dl_se->dl_non_contending = 0;
491 /*
492 * If the timer handler is currently running and the
493 * timer cannot be canceled, inactive_task_timer()
494 * will see that dl_not_contending is not set, and
495 * will not touch the rq's active utilization,
496 * so we are still safe.
497 */
498 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
499 if (!dl_server(dl_se))
500 put_task_struct(dl_task_of(dl_se));
501 }
502 } else {
503 /*
504 * Since "dl_non_contending" is not set, the
505 * task's utilization has already been removed from
506 * active utilization (either when the task blocked,
507 * when the "inactive timer" fired).
508 * So, add it back.
509 */
510 add_running_bw(dl_se, dl_rq);
511 }
512 }
513
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)514 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
515 {
516 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
517 }
518
519 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
520
init_dl_bw(struct dl_bw * dl_b)521 void init_dl_bw(struct dl_bw *dl_b)
522 {
523 raw_spin_lock_init(&dl_b->lock);
524 if (global_rt_runtime() == RUNTIME_INF)
525 dl_b->bw = -1;
526 else
527 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
528 dl_b->total_bw = 0;
529 }
530
init_dl_rq(struct dl_rq * dl_rq)531 void init_dl_rq(struct dl_rq *dl_rq)
532 {
533 dl_rq->root = RB_ROOT_CACHED;
534
535 #ifdef CONFIG_SMP
536 /* zero means no -deadline tasks */
537 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
538
539 dl_rq->overloaded = 0;
540 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
541 #else
542 init_dl_bw(&dl_rq->dl_bw);
543 #endif
544
545 dl_rq->running_bw = 0;
546 dl_rq->this_bw = 0;
547 init_dl_rq_bw_ratio(dl_rq);
548 }
549
550 #ifdef CONFIG_SMP
551
dl_overloaded(struct rq * rq)552 static inline int dl_overloaded(struct rq *rq)
553 {
554 return atomic_read(&rq->rd->dlo_count);
555 }
556
dl_set_overload(struct rq * rq)557 static inline void dl_set_overload(struct rq *rq)
558 {
559 if (!rq->online)
560 return;
561
562 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
563 /*
564 * Must be visible before the overload count is
565 * set (as in sched_rt.c).
566 *
567 * Matched by the barrier in pull_dl_task().
568 */
569 smp_wmb();
570 atomic_inc(&rq->rd->dlo_count);
571 }
572
dl_clear_overload(struct rq * rq)573 static inline void dl_clear_overload(struct rq *rq)
574 {
575 if (!rq->online)
576 return;
577
578 atomic_dec(&rq->rd->dlo_count);
579 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
580 }
581
582 #define __node_2_pdl(node) \
583 rb_entry((node), struct task_struct, pushable_dl_tasks)
584
__pushable_less(struct rb_node * a,const struct rb_node * b)585 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
586 {
587 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
588 }
589
has_pushable_dl_tasks(struct rq * rq)590 static inline int has_pushable_dl_tasks(struct rq *rq)
591 {
592 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
593 }
594
595 /*
596 * The list of pushable -deadline task is not a plist, like in
597 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
598 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)599 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
600 {
601 struct rb_node *leftmost;
602
603 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
604
605 leftmost = rb_add_cached(&p->pushable_dl_tasks,
606 &rq->dl.pushable_dl_tasks_root,
607 __pushable_less);
608 if (leftmost)
609 rq->dl.earliest_dl.next = p->dl.deadline;
610
611 if (!rq->dl.overloaded) {
612 dl_set_overload(rq);
613 rq->dl.overloaded = 1;
614 }
615 }
616
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)617 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
618 {
619 struct dl_rq *dl_rq = &rq->dl;
620 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
621 struct rb_node *leftmost;
622
623 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
624 return;
625
626 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
627 if (leftmost)
628 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
629
630 RB_CLEAR_NODE(&p->pushable_dl_tasks);
631
632 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
633 dl_clear_overload(rq);
634 rq->dl.overloaded = 0;
635 }
636 }
637
638 static int push_dl_task(struct rq *rq);
639
need_pull_dl_task(struct rq * rq,struct task_struct * prev)640 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
641 {
642 return rq->online && dl_task(prev);
643 }
644
645 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
646 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
647
648 static void push_dl_tasks(struct rq *);
649 static void pull_dl_task(struct rq *);
650
deadline_queue_push_tasks(struct rq * rq)651 static inline void deadline_queue_push_tasks(struct rq *rq)
652 {
653 if (!has_pushable_dl_tasks(rq))
654 return;
655
656 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
657 }
658
deadline_queue_pull_task(struct rq * rq)659 static inline void deadline_queue_pull_task(struct rq *rq)
660 {
661 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
662 }
663
664 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
665
dl_task_offline_migration(struct rq * rq,struct task_struct * p)666 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
667 {
668 struct rq *later_rq = NULL;
669 struct dl_bw *dl_b;
670
671 later_rq = find_lock_later_rq(p, rq);
672 if (!later_rq) {
673 int cpu;
674
675 /*
676 * If we cannot preempt any rq, fall back to pick any
677 * online CPU:
678 */
679 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
680 if (cpu >= nr_cpu_ids) {
681 /*
682 * Failed to find any suitable CPU.
683 * The task will never come back!
684 */
685 WARN_ON_ONCE(dl_bandwidth_enabled());
686
687 /*
688 * If admission control is disabled we
689 * try a little harder to let the task
690 * run.
691 */
692 cpu = cpumask_any(cpu_active_mask);
693 }
694 later_rq = cpu_rq(cpu);
695 double_lock_balance(rq, later_rq);
696 }
697
698 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
699 /*
700 * Inactive timer is armed (or callback is running, but
701 * waiting for us to release rq locks). In any case, when it
702 * will fire (or continue), it will see running_bw of this
703 * task migrated to later_rq (and correctly handle it).
704 */
705 sub_running_bw(&p->dl, &rq->dl);
706 sub_rq_bw(&p->dl, &rq->dl);
707
708 add_rq_bw(&p->dl, &later_rq->dl);
709 add_running_bw(&p->dl, &later_rq->dl);
710 } else {
711 sub_rq_bw(&p->dl, &rq->dl);
712 add_rq_bw(&p->dl, &later_rq->dl);
713 }
714
715 /*
716 * And we finally need to fix up root_domain(s) bandwidth accounting,
717 * since p is still hanging out in the old (now moved to default) root
718 * domain.
719 */
720 dl_b = &rq->rd->dl_bw;
721 raw_spin_lock(&dl_b->lock);
722 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
723 raw_spin_unlock(&dl_b->lock);
724
725 dl_b = &later_rq->rd->dl_bw;
726 raw_spin_lock(&dl_b->lock);
727 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
728 raw_spin_unlock(&dl_b->lock);
729
730 set_task_cpu(p, later_rq->cpu);
731 double_unlock_balance(later_rq, rq);
732
733 return later_rq;
734 }
735
736 #else
737
738 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)739 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
740 {
741 }
742
743 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)744 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
745 {
746 }
747
748 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)749 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
750 {
751 }
752
753 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)754 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
755 {
756 }
757
deadline_queue_push_tasks(struct rq * rq)758 static inline void deadline_queue_push_tasks(struct rq *rq)
759 {
760 }
761
deadline_queue_pull_task(struct rq * rq)762 static inline void deadline_queue_pull_task(struct rq *rq)
763 {
764 }
765 #endif /* CONFIG_SMP */
766
767 static void
768 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
769 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
770 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
771 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
772
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)773 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
774 struct rq *rq)
775 {
776 /* for non-boosted task, pi_of(dl_se) == dl_se */
777 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
778 dl_se->runtime = pi_of(dl_se)->dl_runtime;
779
780 /*
781 * If it is a deferred reservation, and the server
782 * is not handling an starvation case, defer it.
783 */
784 if (dl_se->dl_defer & !dl_se->dl_defer_running) {
785 dl_se->dl_throttled = 1;
786 dl_se->dl_defer_armed = 1;
787 }
788 }
789
790 /*
791 * We are being explicitly informed that a new instance is starting,
792 * and this means that:
793 * - the absolute deadline of the entity has to be placed at
794 * current time + relative deadline;
795 * - the runtime of the entity has to be set to the maximum value.
796 *
797 * The capability of specifying such event is useful whenever a -deadline
798 * entity wants to (try to!) synchronize its behaviour with the scheduler's
799 * one, and to (try to!) reconcile itself with its own scheduling
800 * parameters.
801 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)802 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
803 {
804 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
805 struct rq *rq = rq_of_dl_rq(dl_rq);
806
807 WARN_ON(is_dl_boosted(dl_se));
808 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
809
810 /*
811 * We are racing with the deadline timer. So, do nothing because
812 * the deadline timer handler will take care of properly recharging
813 * the runtime and postponing the deadline
814 */
815 if (dl_se->dl_throttled)
816 return;
817
818 /*
819 * We use the regular wall clock time to set deadlines in the
820 * future; in fact, we must consider execution overheads (time
821 * spent on hardirq context, etc.).
822 */
823 replenish_dl_new_period(dl_se, rq);
824 }
825
826 static int start_dl_timer(struct sched_dl_entity *dl_se);
827 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
828
829 /*
830 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
831 * possibility of a entity lasting more than what it declared, and thus
832 * exhausting its runtime.
833 *
834 * Here we are interested in making runtime overrun possible, but we do
835 * not want a entity which is misbehaving to affect the scheduling of all
836 * other entities.
837 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
838 * is used, in order to confine each entity within its own bandwidth.
839 *
840 * This function deals exactly with that, and ensures that when the runtime
841 * of a entity is replenished, its deadline is also postponed. That ensures
842 * the overrunning entity can't interfere with other entity in the system and
843 * can't make them miss their deadlines. Reasons why this kind of overruns
844 * could happen are, typically, a entity voluntarily trying to overcome its
845 * runtime, or it just underestimated it during sched_setattr().
846 */
replenish_dl_entity(struct sched_dl_entity * dl_se)847 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
848 {
849 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
850 struct rq *rq = rq_of_dl_rq(dl_rq);
851
852 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
853
854 /*
855 * This could be the case for a !-dl task that is boosted.
856 * Just go with full inherited parameters.
857 *
858 * Or, it could be the case of a deferred reservation that
859 * was not able to consume its runtime in background and
860 * reached this point with current u > U.
861 *
862 * In both cases, set a new period.
863 */
864 if (dl_se->dl_deadline == 0 ||
865 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
866 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
867 dl_se->runtime = pi_of(dl_se)->dl_runtime;
868 }
869
870 if (dl_se->dl_yielded && dl_se->runtime > 0)
871 dl_se->runtime = 0;
872
873 /*
874 * We keep moving the deadline away until we get some
875 * available runtime for the entity. This ensures correct
876 * handling of situations where the runtime overrun is
877 * arbitrary large.
878 */
879 while (dl_se->runtime <= 0) {
880 dl_se->deadline += pi_of(dl_se)->dl_period;
881 dl_se->runtime += pi_of(dl_se)->dl_runtime;
882 }
883
884 /*
885 * At this point, the deadline really should be "in
886 * the future" with respect to rq->clock. If it's
887 * not, we are, for some reason, lagging too much!
888 * Anyway, after having warn userspace abut that,
889 * we still try to keep the things running by
890 * resetting the deadline and the budget of the
891 * entity.
892 */
893 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
894 printk_deferred_once("sched: DL replenish lagged too much\n");
895 replenish_dl_new_period(dl_se, rq);
896 }
897
898 if (dl_se->dl_yielded)
899 dl_se->dl_yielded = 0;
900 if (dl_se->dl_throttled)
901 dl_se->dl_throttled = 0;
902
903 /*
904 * If this is the replenishment of a deferred reservation,
905 * clear the flag and return.
906 */
907 if (dl_se->dl_defer_armed) {
908 dl_se->dl_defer_armed = 0;
909 return;
910 }
911
912 /*
913 * A this point, if the deferred server is not armed, and the deadline
914 * is in the future, if it is not running already, throttle the server
915 * and arm the defer timer.
916 */
917 if (dl_se->dl_defer && !dl_se->dl_defer_running &&
918 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
919 if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
920
921 /*
922 * Set dl_se->dl_defer_armed and dl_throttled variables to
923 * inform the start_dl_timer() that this is a deferred
924 * activation.
925 */
926 dl_se->dl_defer_armed = 1;
927 dl_se->dl_throttled = 1;
928 if (!start_dl_timer(dl_se)) {
929 /*
930 * If for whatever reason (delays), a previous timer was
931 * queued but not serviced, cancel it and clean the
932 * deferrable server variables intended for start_dl_timer().
933 */
934 hrtimer_try_to_cancel(&dl_se->dl_timer);
935 dl_se->dl_defer_armed = 0;
936 dl_se->dl_throttled = 0;
937 }
938 }
939 }
940 }
941
942 /*
943 * Here we check if --at time t-- an entity (which is probably being
944 * [re]activated or, in general, enqueued) can use its remaining runtime
945 * and its current deadline _without_ exceeding the bandwidth it is
946 * assigned (function returns true if it can't). We are in fact applying
947 * one of the CBS rules: when a task wakes up, if the residual runtime
948 * over residual deadline fits within the allocated bandwidth, then we
949 * can keep the current (absolute) deadline and residual budget without
950 * disrupting the schedulability of the system. Otherwise, we should
951 * refill the runtime and set the deadline a period in the future,
952 * because keeping the current (absolute) deadline of the task would
953 * result in breaking guarantees promised to other tasks (refer to
954 * Documentation/scheduler/sched-deadline.rst for more information).
955 *
956 * This function returns true if:
957 *
958 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
959 *
960 * IOW we can't recycle current parameters.
961 *
962 * Notice that the bandwidth check is done against the deadline. For
963 * task with deadline equal to period this is the same of using
964 * dl_period instead of dl_deadline in the equation above.
965 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)966 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
967 {
968 u64 left, right;
969
970 /*
971 * left and right are the two sides of the equation above,
972 * after a bit of shuffling to use multiplications instead
973 * of divisions.
974 *
975 * Note that none of the time values involved in the two
976 * multiplications are absolute: dl_deadline and dl_runtime
977 * are the relative deadline and the maximum runtime of each
978 * instance, runtime is the runtime left for the last instance
979 * and (deadline - t), since t is rq->clock, is the time left
980 * to the (absolute) deadline. Even if overflowing the u64 type
981 * is very unlikely to occur in both cases, here we scale down
982 * as we want to avoid that risk at all. Scaling down by 10
983 * means that we reduce granularity to 1us. We are fine with it,
984 * since this is only a true/false check and, anyway, thinking
985 * of anything below microseconds resolution is actually fiction
986 * (but still we want to give the user that illusion >;).
987 */
988 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
989 right = ((dl_se->deadline - t) >> DL_SCALE) *
990 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
991
992 return dl_time_before(right, left);
993 }
994
995 /*
996 * Revised wakeup rule [1]: For self-suspending tasks, rather then
997 * re-initializing task's runtime and deadline, the revised wakeup
998 * rule adjusts the task's runtime to avoid the task to overrun its
999 * density.
1000 *
1001 * Reasoning: a task may overrun the density if:
1002 * runtime / (deadline - t) > dl_runtime / dl_deadline
1003 *
1004 * Therefore, runtime can be adjusted to:
1005 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
1006 *
1007 * In such way that runtime will be equal to the maximum density
1008 * the task can use without breaking any rule.
1009 *
1010 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
1011 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
1012 */
1013 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)1014 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
1015 {
1016 u64 laxity = dl_se->deadline - rq_clock(rq);
1017
1018 /*
1019 * If the task has deadline < period, and the deadline is in the past,
1020 * it should already be throttled before this check.
1021 *
1022 * See update_dl_entity() comments for further details.
1023 */
1024 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
1025
1026 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
1027 }
1028
1029 /*
1030 * Regarding the deadline, a task with implicit deadline has a relative
1031 * deadline == relative period. A task with constrained deadline has a
1032 * relative deadline <= relative period.
1033 *
1034 * We support constrained deadline tasks. However, there are some restrictions
1035 * applied only for tasks which do not have an implicit deadline. See
1036 * update_dl_entity() to know more about such restrictions.
1037 *
1038 * The dl_is_implicit() returns true if the task has an implicit deadline.
1039 */
dl_is_implicit(struct sched_dl_entity * dl_se)1040 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1041 {
1042 return dl_se->dl_deadline == dl_se->dl_period;
1043 }
1044
1045 /*
1046 * When a deadline entity is placed in the runqueue, its runtime and deadline
1047 * might need to be updated. This is done by a CBS wake up rule. There are two
1048 * different rules: 1) the original CBS; and 2) the Revisited CBS.
1049 *
1050 * When the task is starting a new period, the Original CBS is used. In this
1051 * case, the runtime is replenished and a new absolute deadline is set.
1052 *
1053 * When a task is queued before the begin of the next period, using the
1054 * remaining runtime and deadline could make the entity to overflow, see
1055 * dl_entity_overflow() to find more about runtime overflow. When such case
1056 * is detected, the runtime and deadline need to be updated.
1057 *
1058 * If the task has an implicit deadline, i.e., deadline == period, the Original
1059 * CBS is applied. The runtime is replenished and a new absolute deadline is
1060 * set, as in the previous cases.
1061 *
1062 * However, the Original CBS does not work properly for tasks with
1063 * deadline < period, which are said to have a constrained deadline. By
1064 * applying the Original CBS, a constrained deadline task would be able to run
1065 * runtime/deadline in a period. With deadline < period, the task would
1066 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1067 *
1068 * In order to prevent this misbehave, the Revisited CBS is used for
1069 * constrained deadline tasks when a runtime overflow is detected. In the
1070 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1071 * the remaining runtime of the task is reduced to avoid runtime overflow.
1072 * Please refer to the comments update_dl_revised_wakeup() function to find
1073 * more about the Revised CBS rule.
1074 */
update_dl_entity(struct sched_dl_entity * dl_se)1075 static void update_dl_entity(struct sched_dl_entity *dl_se)
1076 {
1077 struct rq *rq = rq_of_dl_se(dl_se);
1078
1079 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1080 dl_entity_overflow(dl_se, rq_clock(rq))) {
1081
1082 if (unlikely(!dl_is_implicit(dl_se) &&
1083 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084 !is_dl_boosted(dl_se))) {
1085 update_dl_revised_wakeup(dl_se, rq);
1086 return;
1087 }
1088
1089 replenish_dl_new_period(dl_se, rq);
1090 } else if (dl_server(dl_se) && dl_se->dl_defer) {
1091 /*
1092 * The server can still use its previous deadline, so check if
1093 * it left the dl_defer_running state.
1094 */
1095 if (!dl_se->dl_defer_running) {
1096 dl_se->dl_defer_armed = 1;
1097 dl_se->dl_throttled = 1;
1098 }
1099 }
1100 }
1101
dl_next_period(struct sched_dl_entity * dl_se)1102 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1103 {
1104 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1105 }
1106
1107 /*
1108 * If the entity depleted all its runtime, and if we want it to sleep
1109 * while waiting for some new execution time to become available, we
1110 * set the bandwidth replenishment timer to the replenishment instant
1111 * and try to activate it.
1112 *
1113 * Notice that it is important for the caller to know if the timer
1114 * actually started or not (i.e., the replenishment instant is in
1115 * the future or in the past).
1116 */
start_dl_timer(struct sched_dl_entity * dl_se)1117 static int start_dl_timer(struct sched_dl_entity *dl_se)
1118 {
1119 struct hrtimer *timer = &dl_se->dl_timer;
1120 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1121 struct rq *rq = rq_of_dl_rq(dl_rq);
1122 ktime_t now, act;
1123 s64 delta;
1124
1125 lockdep_assert_rq_held(rq);
1126
1127 /*
1128 * We want the timer to fire at the deadline, but considering
1129 * that it is actually coming from rq->clock and not from
1130 * hrtimer's time base reading.
1131 *
1132 * The deferred reservation will have its timer set to
1133 * (deadline - runtime). At that point, the CBS rule will decide
1134 * if the current deadline can be used, or if a replenishment is
1135 * required to avoid add too much pressure on the system
1136 * (current u > U).
1137 */
1138 if (dl_se->dl_defer_armed) {
1139 WARN_ON_ONCE(!dl_se->dl_throttled);
1140 act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1141 } else {
1142 /* act = deadline - rel-deadline + period */
1143 act = ns_to_ktime(dl_next_period(dl_se));
1144 }
1145
1146 now = hrtimer_cb_get_time(timer);
1147 delta = ktime_to_ns(now) - rq_clock(rq);
1148 act = ktime_add_ns(act, delta);
1149
1150 /*
1151 * If the expiry time already passed, e.g., because the value
1152 * chosen as the deadline is too small, don't even try to
1153 * start the timer in the past!
1154 */
1155 if (ktime_us_delta(act, now) < 0)
1156 return 0;
1157
1158 /*
1159 * !enqueued will guarantee another callback; even if one is already in
1160 * progress. This ensures a balanced {get,put}_task_struct().
1161 *
1162 * The race against __run_timer() clearing the enqueued state is
1163 * harmless because we're holding task_rq()->lock, therefore the timer
1164 * expiring after we've done the check will wait on its task_rq_lock()
1165 * and observe our state.
1166 */
1167 if (!hrtimer_is_queued(timer)) {
1168 if (!dl_server(dl_se))
1169 get_task_struct(dl_task_of(dl_se));
1170 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1171 }
1172
1173 return 1;
1174 }
1175
__push_dl_task(struct rq * rq,struct rq_flags * rf)1176 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1177 {
1178 #ifdef CONFIG_SMP
1179 /*
1180 * Queueing this task back might have overloaded rq, check if we need
1181 * to kick someone away.
1182 */
1183 if (has_pushable_dl_tasks(rq)) {
1184 /*
1185 * Nothing relies on rq->lock after this, so its safe to drop
1186 * rq->lock.
1187 */
1188 rq_unpin_lock(rq, rf);
1189 push_dl_task(rq);
1190 rq_repin_lock(rq, rf);
1191 }
1192 #endif
1193 }
1194
1195 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1196 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1197
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1198 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1199 {
1200 struct rq *rq = rq_of_dl_se(dl_se);
1201 u64 fw;
1202
1203 scoped_guard (rq_lock, rq) {
1204 struct rq_flags *rf = &scope.rf;
1205
1206 if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1207 return HRTIMER_NORESTART;
1208
1209 sched_clock_tick();
1210 update_rq_clock(rq);
1211
1212 if (!dl_se->dl_runtime)
1213 return HRTIMER_NORESTART;
1214
1215 if (!dl_se->server_has_tasks(dl_se)) {
1216 replenish_dl_entity(dl_se);
1217 return HRTIMER_NORESTART;
1218 }
1219
1220 if (dl_se->dl_defer_armed) {
1221 /*
1222 * First check if the server could consume runtime in background.
1223 * If so, it is possible to push the defer timer for this amount
1224 * of time. The dl_server_min_res serves as a limit to avoid
1225 * forwarding the timer for a too small amount of time.
1226 */
1227 if (dl_time_before(rq_clock(dl_se->rq),
1228 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1229
1230 /* reset the defer timer */
1231 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1232
1233 hrtimer_forward_now(timer, ns_to_ktime(fw));
1234 return HRTIMER_RESTART;
1235 }
1236
1237 dl_se->dl_defer_running = 1;
1238 }
1239
1240 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1241
1242 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1243 resched_curr(rq);
1244
1245 __push_dl_task(rq, rf);
1246 }
1247
1248 return HRTIMER_NORESTART;
1249 }
1250
1251 /*
1252 * This is the bandwidth enforcement timer callback. If here, we know
1253 * a task is not on its dl_rq, since the fact that the timer was running
1254 * means the task is throttled and needs a runtime replenishment.
1255 *
1256 * However, what we actually do depends on the fact the task is active,
1257 * (it is on its rq) or has been removed from there by a call to
1258 * dequeue_task_dl(). In the former case we must issue the runtime
1259 * replenishment and add the task back to the dl_rq; in the latter, we just
1260 * do nothing but clearing dl_throttled, so that runtime and deadline
1261 * updating (and the queueing back to dl_rq) will be done by the
1262 * next call to enqueue_task_dl().
1263 */
dl_task_timer(struct hrtimer * timer)1264 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1265 {
1266 struct sched_dl_entity *dl_se = container_of(timer,
1267 struct sched_dl_entity,
1268 dl_timer);
1269 struct task_struct *p;
1270 struct rq_flags rf;
1271 struct rq *rq;
1272
1273 if (dl_server(dl_se))
1274 return dl_server_timer(timer, dl_se);
1275
1276 p = dl_task_of(dl_se);
1277 rq = task_rq_lock(p, &rf);
1278
1279 /*
1280 * The task might have changed its scheduling policy to something
1281 * different than SCHED_DEADLINE (through switched_from_dl()).
1282 */
1283 if (!dl_task(p))
1284 goto unlock;
1285
1286 /*
1287 * The task might have been boosted by someone else and might be in the
1288 * boosting/deboosting path, its not throttled.
1289 */
1290 if (is_dl_boosted(dl_se))
1291 goto unlock;
1292
1293 /*
1294 * Spurious timer due to start_dl_timer() race; or we already received
1295 * a replenishment from rt_mutex_setprio().
1296 */
1297 if (!dl_se->dl_throttled)
1298 goto unlock;
1299
1300 sched_clock_tick();
1301 update_rq_clock(rq);
1302
1303 /*
1304 * If the throttle happened during sched-out; like:
1305 *
1306 * schedule()
1307 * deactivate_task()
1308 * dequeue_task_dl()
1309 * update_curr_dl()
1310 * start_dl_timer()
1311 * __dequeue_task_dl()
1312 * prev->on_rq = 0;
1313 *
1314 * We can be both throttled and !queued. Replenish the counter
1315 * but do not enqueue -- wait for our wakeup to do that.
1316 */
1317 if (!task_on_rq_queued(p)) {
1318 replenish_dl_entity(dl_se);
1319 goto unlock;
1320 }
1321
1322 #ifdef CONFIG_SMP
1323 if (unlikely(!rq->online)) {
1324 /*
1325 * If the runqueue is no longer available, migrate the
1326 * task elsewhere. This necessarily changes rq.
1327 */
1328 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1329 rq = dl_task_offline_migration(rq, p);
1330 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1331 update_rq_clock(rq);
1332
1333 /*
1334 * Now that the task has been migrated to the new RQ and we
1335 * have that locked, proceed as normal and enqueue the task
1336 * there.
1337 */
1338 }
1339 #endif
1340
1341 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1342 if (dl_task(rq->curr))
1343 wakeup_preempt_dl(rq, p, 0);
1344 else
1345 resched_curr(rq);
1346
1347 __push_dl_task(rq, &rf);
1348
1349 unlock:
1350 task_rq_unlock(rq, p, &rf);
1351
1352 /*
1353 * This can free the task_struct, including this hrtimer, do not touch
1354 * anything related to that after this.
1355 */
1356 put_task_struct(p);
1357
1358 return HRTIMER_NORESTART;
1359 }
1360
init_dl_task_timer(struct sched_dl_entity * dl_se)1361 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1362 {
1363 struct hrtimer *timer = &dl_se->dl_timer;
1364
1365 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1366 timer->function = dl_task_timer;
1367 }
1368
1369 /*
1370 * During the activation, CBS checks if it can reuse the current task's
1371 * runtime and period. If the deadline of the task is in the past, CBS
1372 * cannot use the runtime, and so it replenishes the task. This rule
1373 * works fine for implicit deadline tasks (deadline == period), and the
1374 * CBS was designed for implicit deadline tasks. However, a task with
1375 * constrained deadline (deadline < period) might be awakened after the
1376 * deadline, but before the next period. In this case, replenishing the
1377 * task would allow it to run for runtime / deadline. As in this case
1378 * deadline < period, CBS enables a task to run for more than the
1379 * runtime / period. In a very loaded system, this can cause a domino
1380 * effect, making other tasks miss their deadlines.
1381 *
1382 * To avoid this problem, in the activation of a constrained deadline
1383 * task after the deadline but before the next period, throttle the
1384 * task and set the replenishing timer to the begin of the next period,
1385 * unless it is boosted.
1386 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1387 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1388 {
1389 struct rq *rq = rq_of_dl_se(dl_se);
1390
1391 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1392 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1393 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1394 return;
1395 dl_se->dl_throttled = 1;
1396 if (dl_se->runtime > 0)
1397 dl_se->runtime = 0;
1398 }
1399 }
1400
1401 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1402 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1403 {
1404 return (dl_se->runtime <= 0);
1405 }
1406
1407 /*
1408 * This function implements the GRUB accounting rule. According to the
1409 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1410 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1411 * where u is the utilization of the task, Umax is the maximum reclaimable
1412 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1413 * as the difference between the "total runqueue utilization" and the
1414 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1415 * reclaimable utilization.
1416 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1417 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1418 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1419 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1420 * Since delta is a 64 bit variable, to have an overflow its value should be
1421 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1422 * not an issue here.
1423 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1424 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1425 {
1426 u64 u_act;
1427 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1428
1429 /*
1430 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1431 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1432 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1433 * negative leading to wrong results.
1434 */
1435 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1436 u_act = dl_se->dl_bw;
1437 else
1438 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1439
1440 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1441 return (delta * u_act) >> BW_SHIFT;
1442 }
1443
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1444 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1445 {
1446 s64 scaled_delta_exec;
1447
1448 /*
1449 * For tasks that participate in GRUB, we implement GRUB-PA: the
1450 * spare reclaimed bandwidth is used to clock down frequency.
1451 *
1452 * For the others, we still need to scale reservation parameters
1453 * according to current frequency and CPU maximum capacity.
1454 */
1455 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1456 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1457 } else {
1458 int cpu = cpu_of(rq);
1459 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1460 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1461
1462 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1463 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1464 }
1465
1466 return scaled_delta_exec;
1467 }
1468
1469 static inline void
1470 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1471 int flags);
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1472 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1473 {
1474 s64 scaled_delta_exec;
1475
1476 if (unlikely(delta_exec <= 0)) {
1477 if (unlikely(dl_se->dl_yielded))
1478 goto throttle;
1479 return;
1480 }
1481
1482 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1483 return;
1484
1485 if (dl_entity_is_special(dl_se))
1486 return;
1487
1488 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1489
1490 dl_se->runtime -= scaled_delta_exec;
1491
1492 /*
1493 * The fair server can consume its runtime while throttled (not queued/
1494 * running as regular CFS).
1495 *
1496 * If the server consumes its entire runtime in this state. The server
1497 * is not required for the current period. Thus, reset the server by
1498 * starting a new period, pushing the activation.
1499 */
1500 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1501 /*
1502 * If the server was previously activated - the starving condition
1503 * took place, it this point it went away because the fair scheduler
1504 * was able to get runtime in background. So return to the initial
1505 * state.
1506 */
1507 dl_se->dl_defer_running = 0;
1508
1509 hrtimer_try_to_cancel(&dl_se->dl_timer);
1510
1511 replenish_dl_new_period(dl_se, dl_se->rq);
1512
1513 /*
1514 * Not being able to start the timer seems problematic. If it could not
1515 * be started for whatever reason, we need to "unthrottle" the DL server
1516 * and queue right away. Otherwise nothing might queue it. That's similar
1517 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1518 */
1519 WARN_ON_ONCE(!start_dl_timer(dl_se));
1520
1521 return;
1522 }
1523
1524 throttle:
1525 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1526 dl_se->dl_throttled = 1;
1527
1528 /* If requested, inform the user about runtime overruns. */
1529 if (dl_runtime_exceeded(dl_se) &&
1530 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1531 dl_se->dl_overrun = 1;
1532
1533 dequeue_dl_entity(dl_se, 0);
1534 if (!dl_server(dl_se)) {
1535 update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1536 dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1537 }
1538
1539 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1540 if (dl_server(dl_se))
1541 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1542 else
1543 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1544 }
1545
1546 if (!is_leftmost(dl_se, &rq->dl))
1547 resched_curr(rq);
1548 }
1549
1550 /*
1551 * The fair server (sole dl_server) does not account for real-time
1552 * workload because it is running fair work.
1553 */
1554 if (dl_se == &rq->fair_server)
1555 return;
1556
1557 #ifdef CONFIG_RT_GROUP_SCHED
1558 /*
1559 * Because -- for now -- we share the rt bandwidth, we need to
1560 * account our runtime there too, otherwise actual rt tasks
1561 * would be able to exceed the shared quota.
1562 *
1563 * Account to the root rt group for now.
1564 *
1565 * The solution we're working towards is having the RT groups scheduled
1566 * using deadline servers -- however there's a few nasties to figure
1567 * out before that can happen.
1568 */
1569 if (rt_bandwidth_enabled()) {
1570 struct rt_rq *rt_rq = &rq->rt;
1571
1572 raw_spin_lock(&rt_rq->rt_runtime_lock);
1573 /*
1574 * We'll let actual RT tasks worry about the overflow here, we
1575 * have our own CBS to keep us inline; only account when RT
1576 * bandwidth is relevant.
1577 */
1578 if (sched_rt_bandwidth_account(rt_rq))
1579 rt_rq->rt_time += delta_exec;
1580 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1581 }
1582 #endif
1583 }
1584
1585 /*
1586 * In the non-defer mode, the idle time is not accounted, as the
1587 * server provides a guarantee.
1588 *
1589 * If the dl_server is in defer mode, the idle time is also considered
1590 * as time available for the fair server, avoiding a penalty for the
1591 * rt scheduler that did not consumed that time.
1592 */
dl_server_update_idle_time(struct rq * rq,struct task_struct * p)1593 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1594 {
1595 s64 delta_exec, scaled_delta_exec;
1596
1597 if (!rq->fair_server.dl_defer)
1598 return;
1599
1600 /* no need to discount more */
1601 if (rq->fair_server.runtime < 0)
1602 return;
1603
1604 delta_exec = rq_clock_task(rq) - p->se.exec_start;
1605 if (delta_exec < 0)
1606 return;
1607
1608 scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
1609
1610 rq->fair_server.runtime -= scaled_delta_exec;
1611
1612 if (rq->fair_server.runtime < 0) {
1613 rq->fair_server.dl_defer_running = 0;
1614 rq->fair_server.runtime = 0;
1615 }
1616
1617 p->se.exec_start = rq_clock_task(rq);
1618 }
1619
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1620 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1621 {
1622 /* 0 runtime = fair server disabled */
1623 if (dl_se->dl_runtime)
1624 update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1625 }
1626
dl_server_start(struct sched_dl_entity * dl_se)1627 void dl_server_start(struct sched_dl_entity *dl_se)
1628 {
1629 struct rq *rq = dl_se->rq;
1630
1631 /*
1632 * XXX: the apply do not work fine at the init phase for the
1633 * fair server because things are not yet set. We need to improve
1634 * this before getting generic.
1635 */
1636 if (!dl_server(dl_se)) {
1637 u64 runtime = 50 * NSEC_PER_MSEC;
1638 u64 period = 1000 * NSEC_PER_MSEC;
1639
1640 dl_server_apply_params(dl_se, runtime, period, 1);
1641
1642 dl_se->dl_server = 1;
1643 dl_se->dl_defer = 1;
1644 setup_new_dl_entity(dl_se);
1645 }
1646
1647 if (!dl_se->dl_runtime)
1648 return;
1649
1650 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1651 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1652 resched_curr(dl_se->rq);
1653 }
1654
dl_server_stop(struct sched_dl_entity * dl_se)1655 void dl_server_stop(struct sched_dl_entity *dl_se)
1656 {
1657 if (!dl_se->dl_runtime)
1658 return;
1659
1660 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1661 hrtimer_try_to_cancel(&dl_se->dl_timer);
1662 dl_se->dl_defer_armed = 0;
1663 dl_se->dl_throttled = 0;
1664 }
1665
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_has_tasks_f has_tasks,dl_server_pick_f pick_task)1666 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1667 dl_server_has_tasks_f has_tasks,
1668 dl_server_pick_f pick_task)
1669 {
1670 dl_se->rq = rq;
1671 dl_se->server_has_tasks = has_tasks;
1672 dl_se->server_pick_task = pick_task;
1673 }
1674
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1675 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1676 {
1677 u64 new_bw = dl_se->dl_bw;
1678 int cpu = cpu_of(rq);
1679 struct dl_bw *dl_b;
1680
1681 dl_b = dl_bw_of(cpu_of(rq));
1682 guard(raw_spinlock)(&dl_b->lock);
1683
1684 if (!dl_bw_cpus(cpu))
1685 return;
1686
1687 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1688 }
1689
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1690 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1691 {
1692 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1693 u64 new_bw = to_ratio(period, runtime);
1694 struct rq *rq = dl_se->rq;
1695 int cpu = cpu_of(rq);
1696 struct dl_bw *dl_b;
1697 unsigned long cap;
1698 int retval = 0;
1699 int cpus;
1700
1701 dl_b = dl_bw_of(cpu);
1702 guard(raw_spinlock)(&dl_b->lock);
1703
1704 cpus = dl_bw_cpus(cpu);
1705 cap = dl_bw_capacity(cpu);
1706
1707 if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1708 return -EBUSY;
1709
1710 if (init) {
1711 __add_rq_bw(new_bw, &rq->dl);
1712 __dl_add(dl_b, new_bw, cpus);
1713 } else {
1714 __dl_sub(dl_b, dl_se->dl_bw, cpus);
1715 __dl_add(dl_b, new_bw, cpus);
1716
1717 dl_rq_change_utilization(rq, dl_se, new_bw);
1718 }
1719
1720 dl_se->dl_runtime = runtime;
1721 dl_se->dl_deadline = period;
1722 dl_se->dl_period = period;
1723
1724 dl_se->runtime = 0;
1725 dl_se->deadline = 0;
1726
1727 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1728 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1729
1730 return retval;
1731 }
1732
1733 /*
1734 * Update the current task's runtime statistics (provided it is still
1735 * a -deadline task and has not been removed from the dl_rq).
1736 */
update_curr_dl(struct rq * rq)1737 static void update_curr_dl(struct rq *rq)
1738 {
1739 struct task_struct *curr = rq->curr;
1740 struct sched_dl_entity *dl_se = &curr->dl;
1741 s64 delta_exec;
1742
1743 if (!dl_task(curr) || !on_dl_rq(dl_se))
1744 return;
1745
1746 /*
1747 * Consumed budget is computed considering the time as
1748 * observed by schedulable tasks (excluding time spent
1749 * in hardirq context, etc.). Deadlines are instead
1750 * computed using hard walltime. This seems to be the more
1751 * natural solution, but the full ramifications of this
1752 * approach need further study.
1753 */
1754 delta_exec = update_curr_common(rq);
1755 update_curr_dl_se(rq, dl_se, delta_exec);
1756 }
1757
inactive_task_timer(struct hrtimer * timer)1758 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1759 {
1760 struct sched_dl_entity *dl_se = container_of(timer,
1761 struct sched_dl_entity,
1762 inactive_timer);
1763 struct task_struct *p = NULL;
1764 struct rq_flags rf;
1765 struct rq *rq;
1766
1767 if (!dl_server(dl_se)) {
1768 p = dl_task_of(dl_se);
1769 rq = task_rq_lock(p, &rf);
1770 } else {
1771 rq = dl_se->rq;
1772 rq_lock(rq, &rf);
1773 }
1774
1775 sched_clock_tick();
1776 update_rq_clock(rq);
1777
1778 if (dl_server(dl_se))
1779 goto no_task;
1780
1781 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1782 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1783
1784 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1785 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1786 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1787 dl_se->dl_non_contending = 0;
1788 }
1789
1790 raw_spin_lock(&dl_b->lock);
1791 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1792 raw_spin_unlock(&dl_b->lock);
1793 __dl_clear_params(dl_se);
1794
1795 goto unlock;
1796 }
1797
1798 no_task:
1799 if (dl_se->dl_non_contending == 0)
1800 goto unlock;
1801
1802 sub_running_bw(dl_se, &rq->dl);
1803 dl_se->dl_non_contending = 0;
1804 unlock:
1805
1806 if (!dl_server(dl_se)) {
1807 task_rq_unlock(rq, p, &rf);
1808 put_task_struct(p);
1809 } else {
1810 rq_unlock(rq, &rf);
1811 }
1812
1813 return HRTIMER_NORESTART;
1814 }
1815
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1816 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1817 {
1818 struct hrtimer *timer = &dl_se->inactive_timer;
1819
1820 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1821 timer->function = inactive_task_timer;
1822 }
1823
1824 #define __node_2_dle(node) \
1825 rb_entry((node), struct sched_dl_entity, rb_node)
1826
1827 #ifdef CONFIG_SMP
1828
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1829 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1830 {
1831 struct rq *rq = rq_of_dl_rq(dl_rq);
1832
1833 if (dl_rq->earliest_dl.curr == 0 ||
1834 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1835 if (dl_rq->earliest_dl.curr == 0)
1836 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1837 dl_rq->earliest_dl.curr = deadline;
1838 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1839 }
1840 }
1841
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1842 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1843 {
1844 struct rq *rq = rq_of_dl_rq(dl_rq);
1845
1846 /*
1847 * Since we may have removed our earliest (and/or next earliest)
1848 * task we must recompute them.
1849 */
1850 if (!dl_rq->dl_nr_running) {
1851 dl_rq->earliest_dl.curr = 0;
1852 dl_rq->earliest_dl.next = 0;
1853 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1854 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1855 } else {
1856 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1857 struct sched_dl_entity *entry = __node_2_dle(leftmost);
1858
1859 dl_rq->earliest_dl.curr = entry->deadline;
1860 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1861 }
1862 }
1863
1864 #else
1865
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1866 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1867 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1868
1869 #endif /* CONFIG_SMP */
1870
1871 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1872 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1873 {
1874 u64 deadline = dl_se->deadline;
1875
1876 dl_rq->dl_nr_running++;
1877 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1878
1879 inc_dl_deadline(dl_rq, deadline);
1880 }
1881
1882 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1883 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1884 {
1885 WARN_ON(!dl_rq->dl_nr_running);
1886 dl_rq->dl_nr_running--;
1887 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1888
1889 dec_dl_deadline(dl_rq, dl_se->deadline);
1890 }
1891
__dl_less(struct rb_node * a,const struct rb_node * b)1892 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1893 {
1894 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1895 }
1896
1897 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1898 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1899 {
1900 if (!schedstat_enabled())
1901 return NULL;
1902
1903 if (dl_server(dl_se))
1904 return NULL;
1905
1906 return &dl_task_of(dl_se)->stats;
1907 }
1908
1909 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1910 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1911 {
1912 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1913 if (stats)
1914 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1915 }
1916
1917 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1918 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1919 {
1920 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1921 if (stats)
1922 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1923 }
1924
1925 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1926 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1927 {
1928 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1929 if (stats)
1930 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1931 }
1932
1933 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1934 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1935 int flags)
1936 {
1937 if (!schedstat_enabled())
1938 return;
1939
1940 if (flags & ENQUEUE_WAKEUP)
1941 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1942 }
1943
1944 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1945 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1946 int flags)
1947 {
1948 struct task_struct *p = dl_task_of(dl_se);
1949
1950 if (!schedstat_enabled())
1951 return;
1952
1953 if ((flags & DEQUEUE_SLEEP)) {
1954 unsigned int state;
1955
1956 state = READ_ONCE(p->__state);
1957 if (state & TASK_INTERRUPTIBLE)
1958 __schedstat_set(p->stats.sleep_start,
1959 rq_clock(rq_of_dl_rq(dl_rq)));
1960
1961 if (state & TASK_UNINTERRUPTIBLE)
1962 __schedstat_set(p->stats.block_start,
1963 rq_clock(rq_of_dl_rq(dl_rq)));
1964 }
1965 }
1966
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1967 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1968 {
1969 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1970
1971 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1972
1973 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1974
1975 inc_dl_tasks(dl_se, dl_rq);
1976 }
1977
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1978 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1979 {
1980 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1981
1982 if (RB_EMPTY_NODE(&dl_se->rb_node))
1983 return;
1984
1985 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1986
1987 RB_CLEAR_NODE(&dl_se->rb_node);
1988
1989 dec_dl_tasks(dl_se, dl_rq);
1990 }
1991
1992 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1993 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1994 {
1995 WARN_ON_ONCE(on_dl_rq(dl_se));
1996
1997 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1998
1999 /*
2000 * Check if a constrained deadline task was activated
2001 * after the deadline but before the next period.
2002 * If that is the case, the task will be throttled and
2003 * the replenishment timer will be set to the next period.
2004 */
2005 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2006 dl_check_constrained_dl(dl_se);
2007
2008 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2009 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2010
2011 add_rq_bw(dl_se, dl_rq);
2012 add_running_bw(dl_se, dl_rq);
2013 }
2014
2015 /*
2016 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2017 * its budget it needs a replenishment and, since it now is on
2018 * its rq, the bandwidth timer callback (which clearly has not
2019 * run yet) will take care of this.
2020 * However, the active utilization does not depend on the fact
2021 * that the task is on the runqueue or not (but depends on the
2022 * task's state - in GRUB parlance, "inactive" vs "active contending").
2023 * In other words, even if a task is throttled its utilization must
2024 * be counted in the active utilization; hence, we need to call
2025 * add_running_bw().
2026 */
2027 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2028 if (flags & ENQUEUE_WAKEUP)
2029 task_contending(dl_se, flags);
2030
2031 return;
2032 }
2033
2034 /*
2035 * If this is a wakeup or a new instance, the scheduling
2036 * parameters of the task might need updating. Otherwise,
2037 * we want a replenishment of its runtime.
2038 */
2039 if (flags & ENQUEUE_WAKEUP) {
2040 task_contending(dl_se, flags);
2041 update_dl_entity(dl_se);
2042 } else if (flags & ENQUEUE_REPLENISH) {
2043 replenish_dl_entity(dl_se);
2044 } else if ((flags & ENQUEUE_RESTORE) &&
2045 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2046 setup_new_dl_entity(dl_se);
2047 }
2048
2049 /*
2050 * If the reservation is still throttled, e.g., it got replenished but is a
2051 * deferred task and still got to wait, don't enqueue.
2052 */
2053 if (dl_se->dl_throttled && start_dl_timer(dl_se))
2054 return;
2055
2056 /*
2057 * We're about to enqueue, make sure we're not ->dl_throttled!
2058 * In case the timer was not started, say because the defer time
2059 * has passed, mark as not throttled and mark unarmed.
2060 * Also cancel earlier timers, since letting those run is pointless.
2061 */
2062 if (dl_se->dl_throttled) {
2063 hrtimer_try_to_cancel(&dl_se->dl_timer);
2064 dl_se->dl_defer_armed = 0;
2065 dl_se->dl_throttled = 0;
2066 }
2067
2068 __enqueue_dl_entity(dl_se);
2069 }
2070
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2071 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2072 {
2073 __dequeue_dl_entity(dl_se);
2074
2075 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2076 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2077
2078 sub_running_bw(dl_se, dl_rq);
2079 sub_rq_bw(dl_se, dl_rq);
2080 }
2081
2082 /*
2083 * This check allows to start the inactive timer (or to immediately
2084 * decrease the active utilization, if needed) in two cases:
2085 * when the task blocks and when it is terminating
2086 * (p->state == TASK_DEAD). We can handle the two cases in the same
2087 * way, because from GRUB's point of view the same thing is happening
2088 * (the task moves from "active contending" to "active non contending"
2089 * or "inactive")
2090 */
2091 if (flags & DEQUEUE_SLEEP)
2092 task_non_contending(dl_se);
2093 }
2094
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2095 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2096 {
2097 if (is_dl_boosted(&p->dl)) {
2098 /*
2099 * Because of delays in the detection of the overrun of a
2100 * thread's runtime, it might be the case that a thread
2101 * goes to sleep in a rt mutex with negative runtime. As
2102 * a consequence, the thread will be throttled.
2103 *
2104 * While waiting for the mutex, this thread can also be
2105 * boosted via PI, resulting in a thread that is throttled
2106 * and boosted at the same time.
2107 *
2108 * In this case, the boost overrides the throttle.
2109 */
2110 if (p->dl.dl_throttled) {
2111 /*
2112 * The replenish timer needs to be canceled. No
2113 * problem if it fires concurrently: boosted threads
2114 * are ignored in dl_task_timer().
2115 *
2116 * If the timer callback was running (hrtimer_try_to_cancel == -1),
2117 * it will eventually call put_task_struct().
2118 */
2119 if (hrtimer_try_to_cancel(&p->dl.dl_timer) == 1 &&
2120 !dl_server(&p->dl))
2121 put_task_struct(p);
2122 p->dl.dl_throttled = 0;
2123 }
2124 } else if (!dl_prio(p->normal_prio)) {
2125 /*
2126 * Special case in which we have a !SCHED_DEADLINE task that is going
2127 * to be deboosted, but exceeds its runtime while doing so. No point in
2128 * replenishing it, as it's going to return back to its original
2129 * scheduling class after this. If it has been throttled, we need to
2130 * clear the flag, otherwise the task may wake up as throttled after
2131 * being boosted again with no means to replenish the runtime and clear
2132 * the throttle.
2133 */
2134 p->dl.dl_throttled = 0;
2135 if (!(flags & ENQUEUE_REPLENISH))
2136 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2137 task_pid_nr(p));
2138
2139 return;
2140 }
2141
2142 check_schedstat_required();
2143 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2144
2145 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2146 flags |= ENQUEUE_MIGRATING;
2147
2148 enqueue_dl_entity(&p->dl, flags);
2149
2150 if (dl_server(&p->dl))
2151 return;
2152
2153 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2154 enqueue_pushable_dl_task(rq, p);
2155 }
2156
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2157 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2158 {
2159 update_curr_dl(rq);
2160
2161 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2162 flags |= DEQUEUE_MIGRATING;
2163
2164 dequeue_dl_entity(&p->dl, flags);
2165 if (!p->dl.dl_throttled && !dl_server(&p->dl))
2166 dequeue_pushable_dl_task(rq, p);
2167
2168 return true;
2169 }
2170
2171 /*
2172 * Yield task semantic for -deadline tasks is:
2173 *
2174 * get off from the CPU until our next instance, with
2175 * a new runtime. This is of little use now, since we
2176 * don't have a bandwidth reclaiming mechanism. Anyway,
2177 * bandwidth reclaiming is planned for the future, and
2178 * yield_task_dl will indicate that some spare budget
2179 * is available for other task instances to use it.
2180 */
yield_task_dl(struct rq * rq)2181 static void yield_task_dl(struct rq *rq)
2182 {
2183 /*
2184 * We make the task go to sleep until its current deadline by
2185 * forcing its runtime to zero. This way, update_curr_dl() stops
2186 * it and the bandwidth timer will wake it up and will give it
2187 * new scheduling parameters (thanks to dl_yielded=1).
2188 */
2189 rq->curr->dl.dl_yielded = 1;
2190
2191 update_rq_clock(rq);
2192 update_curr_dl(rq);
2193 /*
2194 * Tell update_rq_clock() that we've just updated,
2195 * so we don't do microscopic update in schedule()
2196 * and double the fastpath cost.
2197 */
2198 rq_clock_skip_update(rq);
2199 }
2200
2201 #ifdef CONFIG_SMP
2202
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2203 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2204 struct rq *rq)
2205 {
2206 return (!rq->dl.dl_nr_running ||
2207 dl_time_before(p->dl.deadline,
2208 rq->dl.earliest_dl.curr));
2209 }
2210
2211 static int find_later_rq(struct task_struct *task);
2212
2213 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2214 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2215 {
2216 struct task_struct *curr;
2217 bool select_rq;
2218 struct rq *rq;
2219
2220 if (!(flags & WF_TTWU))
2221 goto out;
2222
2223 rq = cpu_rq(cpu);
2224
2225 rcu_read_lock();
2226 curr = READ_ONCE(rq->curr); /* unlocked access */
2227
2228 /*
2229 * If we are dealing with a -deadline task, we must
2230 * decide where to wake it up.
2231 * If it has a later deadline and the current task
2232 * on this rq can't move (provided the waking task
2233 * can!) we prefer to send it somewhere else. On the
2234 * other hand, if it has a shorter deadline, we
2235 * try to make it stay here, it might be important.
2236 */
2237 select_rq = unlikely(dl_task(curr)) &&
2238 (curr->nr_cpus_allowed < 2 ||
2239 !dl_entity_preempt(&p->dl, &curr->dl)) &&
2240 p->nr_cpus_allowed > 1;
2241
2242 /*
2243 * Take the capacity of the CPU into account to
2244 * ensure it fits the requirement of the task.
2245 */
2246 if (sched_asym_cpucap_active())
2247 select_rq |= !dl_task_fits_capacity(p, cpu);
2248
2249 if (select_rq) {
2250 int target = find_later_rq(p);
2251
2252 if (target != -1 &&
2253 dl_task_is_earliest_deadline(p, cpu_rq(target)))
2254 cpu = target;
2255 }
2256 rcu_read_unlock();
2257
2258 out:
2259 return cpu;
2260 }
2261
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2262 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2263 {
2264 struct rq_flags rf;
2265 struct rq *rq;
2266
2267 if (READ_ONCE(p->__state) != TASK_WAKING)
2268 return;
2269
2270 rq = task_rq(p);
2271 /*
2272 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2273 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2274 * rq->lock is not... So, lock it
2275 */
2276 rq_lock(rq, &rf);
2277 if (p->dl.dl_non_contending) {
2278 update_rq_clock(rq);
2279 sub_running_bw(&p->dl, &rq->dl);
2280 p->dl.dl_non_contending = 0;
2281 /*
2282 * If the timer handler is currently running and the
2283 * timer cannot be canceled, inactive_task_timer()
2284 * will see that dl_not_contending is not set, and
2285 * will not touch the rq's active utilization,
2286 * so we are still safe.
2287 */
2288 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2289 put_task_struct(p);
2290 }
2291 sub_rq_bw(&p->dl, &rq->dl);
2292 rq_unlock(rq, &rf);
2293 }
2294
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2295 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2296 {
2297 /*
2298 * Current can't be migrated, useless to reschedule,
2299 * let's hope p can move out.
2300 */
2301 if (rq->curr->nr_cpus_allowed == 1 ||
2302 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
2303 return;
2304
2305 /*
2306 * p is migratable, so let's not schedule it and
2307 * see if it is pushed or pulled somewhere else.
2308 */
2309 if (p->nr_cpus_allowed != 1 &&
2310 cpudl_find(&rq->rd->cpudl, p, NULL))
2311 return;
2312
2313 resched_curr(rq);
2314 }
2315
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2316 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2317 {
2318 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2319 /*
2320 * This is OK, because current is on_cpu, which avoids it being
2321 * picked for load-balance and preemption/IRQs are still
2322 * disabled avoiding further scheduler activity on it and we've
2323 * not yet started the picking loop.
2324 */
2325 rq_unpin_lock(rq, rf);
2326 pull_dl_task(rq);
2327 rq_repin_lock(rq, rf);
2328 }
2329
2330 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2331 }
2332 #endif /* CONFIG_SMP */
2333
2334 /*
2335 * Only called when both the current and waking task are -deadline
2336 * tasks.
2337 */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2338 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2339 int flags)
2340 {
2341 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
2342 resched_curr(rq);
2343 return;
2344 }
2345
2346 #ifdef CONFIG_SMP
2347 /*
2348 * In the unlikely case current and p have the same deadline
2349 * let us try to decide what's the best thing to do...
2350 */
2351 if ((p->dl.deadline == rq->curr->dl.deadline) &&
2352 !test_tsk_need_resched(rq->curr))
2353 check_preempt_equal_dl(rq, p);
2354 #endif /* CONFIG_SMP */
2355 }
2356
2357 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2358 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2359 {
2360 hrtick_start(rq, dl_se->runtime);
2361 }
2362 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2363 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2364 {
2365 }
2366 #endif
2367
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2368 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2369 {
2370 struct sched_dl_entity *dl_se = &p->dl;
2371 struct dl_rq *dl_rq = &rq->dl;
2372
2373 p->se.exec_start = rq_clock_task(rq);
2374 if (on_dl_rq(&p->dl))
2375 update_stats_wait_end_dl(dl_rq, dl_se);
2376
2377 /* You can't push away the running task */
2378 dequeue_pushable_dl_task(rq, p);
2379
2380 if (!first)
2381 return;
2382
2383 if (rq->curr->sched_class != &dl_sched_class)
2384 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2385
2386 deadline_queue_push_tasks(rq);
2387
2388 if (hrtick_enabled_dl(rq))
2389 start_hrtick_dl(rq, &p->dl);
2390 }
2391
pick_next_dl_entity(struct dl_rq * dl_rq)2392 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2393 {
2394 struct rb_node *left = rb_first_cached(&dl_rq->root);
2395
2396 if (!left)
2397 return NULL;
2398
2399 return __node_2_dle(left);
2400 }
2401
2402 /*
2403 * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2404 * @rq: The runqueue to pick the next task from.
2405 */
__pick_task_dl(struct rq * rq)2406 static struct task_struct *__pick_task_dl(struct rq *rq)
2407 {
2408 struct sched_dl_entity *dl_se;
2409 struct dl_rq *dl_rq = &rq->dl;
2410 struct task_struct *p;
2411
2412 again:
2413 if (!sched_dl_runnable(rq))
2414 return NULL;
2415
2416 dl_se = pick_next_dl_entity(dl_rq);
2417 WARN_ON_ONCE(!dl_se);
2418
2419 if (dl_server(dl_se)) {
2420 p = dl_se->server_pick_task(dl_se);
2421 if (!p) {
2422 dl_se->dl_yielded = 1;
2423 update_curr_dl_se(rq, dl_se, 0);
2424 goto again;
2425 }
2426 rq->dl_server = dl_se;
2427 } else {
2428 p = dl_task_of(dl_se);
2429 }
2430
2431 return p;
2432 }
2433
pick_task_dl(struct rq * rq)2434 static struct task_struct *pick_task_dl(struct rq *rq)
2435 {
2436 return __pick_task_dl(rq);
2437 }
2438
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2439 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2440 {
2441 struct sched_dl_entity *dl_se = &p->dl;
2442 struct dl_rq *dl_rq = &rq->dl;
2443
2444 if (on_dl_rq(&p->dl))
2445 update_stats_wait_start_dl(dl_rq, dl_se);
2446
2447 update_curr_dl(rq);
2448
2449 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2450 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2451 enqueue_pushable_dl_task(rq, p);
2452 }
2453
2454 /*
2455 * scheduler tick hitting a task of our scheduling class.
2456 *
2457 * NOTE: This function can be called remotely by the tick offload that
2458 * goes along full dynticks. Therefore no local assumption can be made
2459 * and everything must be accessed through the @rq and @curr passed in
2460 * parameters.
2461 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2462 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2463 {
2464 update_curr_dl(rq);
2465
2466 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2467 /*
2468 * Even when we have runtime, update_curr_dl() might have resulted in us
2469 * not being the leftmost task anymore. In that case NEED_RESCHED will
2470 * be set and schedule() will start a new hrtick for the next task.
2471 */
2472 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2473 is_leftmost(&p->dl, &rq->dl))
2474 start_hrtick_dl(rq, &p->dl);
2475 }
2476
task_fork_dl(struct task_struct * p)2477 static void task_fork_dl(struct task_struct *p)
2478 {
2479 /*
2480 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2481 * sched_fork()
2482 */
2483 }
2484
2485 #ifdef CONFIG_SMP
2486
2487 /* Only try algorithms three times */
2488 #define DL_MAX_TRIES 3
2489
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)2490 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2491 {
2492 if (!task_on_cpu(rq, p) &&
2493 cpumask_test_cpu(cpu, &p->cpus_mask))
2494 return 1;
2495 return 0;
2496 }
2497
2498 /*
2499 * Return the earliest pushable rq's task, which is suitable to be executed
2500 * on the CPU, NULL otherwise:
2501 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2502 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2503 {
2504 struct task_struct *p = NULL;
2505 struct rb_node *next_node;
2506
2507 if (!has_pushable_dl_tasks(rq))
2508 return NULL;
2509
2510 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2511
2512 next_node:
2513 if (next_node) {
2514 p = __node_2_pdl(next_node);
2515
2516 if (pick_dl_task(rq, p, cpu))
2517 return p;
2518
2519 next_node = rb_next(next_node);
2520 goto next_node;
2521 }
2522
2523 return NULL;
2524 }
2525
2526 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2527
find_later_rq(struct task_struct * task)2528 static int find_later_rq(struct task_struct *task)
2529 {
2530 struct sched_domain *sd;
2531 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2532 int this_cpu = smp_processor_id();
2533 int cpu = task_cpu(task);
2534
2535 /* Make sure the mask is initialized first */
2536 if (unlikely(!later_mask))
2537 return -1;
2538
2539 if (task->nr_cpus_allowed == 1)
2540 return -1;
2541
2542 /*
2543 * We have to consider system topology and task affinity
2544 * first, then we can look for a suitable CPU.
2545 */
2546 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2547 return -1;
2548
2549 /*
2550 * If we are here, some targets have been found, including
2551 * the most suitable which is, among the runqueues where the
2552 * current tasks have later deadlines than the task's one, the
2553 * rq with the latest possible one.
2554 *
2555 * Now we check how well this matches with task's
2556 * affinity and system topology.
2557 *
2558 * The last CPU where the task run is our first
2559 * guess, since it is most likely cache-hot there.
2560 */
2561 if (cpumask_test_cpu(cpu, later_mask))
2562 return cpu;
2563 /*
2564 * Check if this_cpu is to be skipped (i.e., it is
2565 * not in the mask) or not.
2566 */
2567 if (!cpumask_test_cpu(this_cpu, later_mask))
2568 this_cpu = -1;
2569
2570 rcu_read_lock();
2571 for_each_domain(cpu, sd) {
2572 if (sd->flags & SD_WAKE_AFFINE) {
2573 int best_cpu;
2574
2575 /*
2576 * If possible, preempting this_cpu is
2577 * cheaper than migrating.
2578 */
2579 if (this_cpu != -1 &&
2580 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2581 rcu_read_unlock();
2582 return this_cpu;
2583 }
2584
2585 best_cpu = cpumask_any_and_distribute(later_mask,
2586 sched_domain_span(sd));
2587 /*
2588 * Last chance: if a CPU being in both later_mask
2589 * and current sd span is valid, that becomes our
2590 * choice. Of course, the latest possible CPU is
2591 * already under consideration through later_mask.
2592 */
2593 if (best_cpu < nr_cpu_ids) {
2594 rcu_read_unlock();
2595 return best_cpu;
2596 }
2597 }
2598 }
2599 rcu_read_unlock();
2600
2601 /*
2602 * At this point, all our guesses failed, we just return
2603 * 'something', and let the caller sort the things out.
2604 */
2605 if (this_cpu != -1)
2606 return this_cpu;
2607
2608 cpu = cpumask_any_distribute(later_mask);
2609 if (cpu < nr_cpu_ids)
2610 return cpu;
2611
2612 return -1;
2613 }
2614
2615 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2616 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2617 {
2618 struct rq *later_rq = NULL;
2619 int tries;
2620 int cpu;
2621
2622 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2623 cpu = find_later_rq(task);
2624
2625 if ((cpu == -1) || (cpu == rq->cpu))
2626 break;
2627
2628 later_rq = cpu_rq(cpu);
2629
2630 if (!dl_task_is_earliest_deadline(task, later_rq)) {
2631 /*
2632 * Target rq has tasks of equal or earlier deadline,
2633 * retrying does not release any lock and is unlikely
2634 * to yield a different result.
2635 */
2636 later_rq = NULL;
2637 break;
2638 }
2639
2640 /* Retry if something changed. */
2641 if (double_lock_balance(rq, later_rq)) {
2642 if (unlikely(task_rq(task) != rq ||
2643 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2644 task_on_cpu(rq, task) ||
2645 !dl_task(task) ||
2646 is_migration_disabled(task) ||
2647 !task_on_rq_queued(task))) {
2648 double_unlock_balance(rq, later_rq);
2649 later_rq = NULL;
2650 break;
2651 }
2652 }
2653
2654 /*
2655 * If the rq we found has no -deadline task, or
2656 * its earliest one has a later deadline than our
2657 * task, the rq is a good one.
2658 */
2659 if (dl_task_is_earliest_deadline(task, later_rq))
2660 break;
2661
2662 /* Otherwise we try again. */
2663 double_unlock_balance(rq, later_rq);
2664 later_rq = NULL;
2665 }
2666
2667 return later_rq;
2668 }
2669
pick_next_pushable_dl_task(struct rq * rq)2670 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2671 {
2672 struct task_struct *p;
2673
2674 if (!has_pushable_dl_tasks(rq))
2675 return NULL;
2676
2677 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2678
2679 WARN_ON_ONCE(rq->cpu != task_cpu(p));
2680 WARN_ON_ONCE(task_current(rq, p));
2681 WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2682
2683 WARN_ON_ONCE(!task_on_rq_queued(p));
2684 WARN_ON_ONCE(!dl_task(p));
2685
2686 return p;
2687 }
2688
2689 /*
2690 * See if the non running -deadline tasks on this rq
2691 * can be sent to some other CPU where they can preempt
2692 * and start executing.
2693 */
push_dl_task(struct rq * rq)2694 static int push_dl_task(struct rq *rq)
2695 {
2696 struct task_struct *next_task;
2697 struct rq *later_rq;
2698 int ret = 0;
2699
2700 next_task = pick_next_pushable_dl_task(rq);
2701 if (!next_task)
2702 return 0;
2703
2704 retry:
2705 /*
2706 * If next_task preempts rq->curr, and rq->curr
2707 * can move away, it makes sense to just reschedule
2708 * without going further in pushing next_task.
2709 */
2710 if (dl_task(rq->curr) &&
2711 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2712 rq->curr->nr_cpus_allowed > 1) {
2713 resched_curr(rq);
2714 return 0;
2715 }
2716
2717 if (is_migration_disabled(next_task))
2718 return 0;
2719
2720 if (WARN_ON(next_task == rq->curr))
2721 return 0;
2722
2723 /* We might release rq lock */
2724 get_task_struct(next_task);
2725
2726 /* Will lock the rq it'll find */
2727 later_rq = find_lock_later_rq(next_task, rq);
2728 if (!later_rq) {
2729 struct task_struct *task;
2730
2731 /*
2732 * We must check all this again, since
2733 * find_lock_later_rq releases rq->lock and it is
2734 * then possible that next_task has migrated.
2735 */
2736 task = pick_next_pushable_dl_task(rq);
2737 if (task == next_task) {
2738 /*
2739 * The task is still there. We don't try
2740 * again, some other CPU will pull it when ready.
2741 */
2742 goto out;
2743 }
2744
2745 if (!task)
2746 /* No more tasks */
2747 goto out;
2748
2749 put_task_struct(next_task);
2750 next_task = task;
2751 goto retry;
2752 }
2753
2754 deactivate_task(rq, next_task, 0);
2755 set_task_cpu(next_task, later_rq->cpu);
2756 activate_task(later_rq, next_task, 0);
2757 ret = 1;
2758
2759 resched_curr(later_rq);
2760
2761 double_unlock_balance(rq, later_rq);
2762
2763 out:
2764 put_task_struct(next_task);
2765
2766 return ret;
2767 }
2768
push_dl_tasks(struct rq * rq)2769 static void push_dl_tasks(struct rq *rq)
2770 {
2771 /* push_dl_task() will return true if it moved a -deadline task */
2772 while (push_dl_task(rq))
2773 ;
2774 }
2775
pull_dl_task(struct rq * this_rq)2776 static void pull_dl_task(struct rq *this_rq)
2777 {
2778 int this_cpu = this_rq->cpu, cpu;
2779 struct task_struct *p, *push_task;
2780 bool resched = false;
2781 struct rq *src_rq;
2782 u64 dmin = LONG_MAX;
2783
2784 if (likely(!dl_overloaded(this_rq)))
2785 return;
2786
2787 /*
2788 * Match the barrier from dl_set_overloaded; this guarantees that if we
2789 * see overloaded we must also see the dlo_mask bit.
2790 */
2791 smp_rmb();
2792
2793 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2794 if (this_cpu == cpu)
2795 continue;
2796
2797 src_rq = cpu_rq(cpu);
2798
2799 /*
2800 * It looks racy, and it is! However, as in sched_rt.c,
2801 * we are fine with this.
2802 */
2803 if (this_rq->dl.dl_nr_running &&
2804 dl_time_before(this_rq->dl.earliest_dl.curr,
2805 src_rq->dl.earliest_dl.next))
2806 continue;
2807
2808 /* Might drop this_rq->lock */
2809 push_task = NULL;
2810 double_lock_balance(this_rq, src_rq);
2811
2812 /*
2813 * If there are no more pullable tasks on the
2814 * rq, we're done with it.
2815 */
2816 if (src_rq->dl.dl_nr_running <= 1)
2817 goto skip;
2818
2819 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2820
2821 /*
2822 * We found a task to be pulled if:
2823 * - it preempts our current (if there's one),
2824 * - it will preempt the last one we pulled (if any).
2825 */
2826 if (p && dl_time_before(p->dl.deadline, dmin) &&
2827 dl_task_is_earliest_deadline(p, this_rq)) {
2828 WARN_ON(p == src_rq->curr);
2829 WARN_ON(!task_on_rq_queued(p));
2830
2831 /*
2832 * Then we pull iff p has actually an earlier
2833 * deadline than the current task of its runqueue.
2834 */
2835 if (dl_time_before(p->dl.deadline,
2836 src_rq->curr->dl.deadline))
2837 goto skip;
2838
2839 if (is_migration_disabled(p)) {
2840 push_task = get_push_task(src_rq);
2841 } else {
2842 deactivate_task(src_rq, p, 0);
2843 set_task_cpu(p, this_cpu);
2844 activate_task(this_rq, p, 0);
2845 dmin = p->dl.deadline;
2846 resched = true;
2847 }
2848
2849 /* Is there any other task even earlier? */
2850 }
2851 skip:
2852 double_unlock_balance(this_rq, src_rq);
2853
2854 if (push_task) {
2855 preempt_disable();
2856 raw_spin_rq_unlock(this_rq);
2857 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2858 push_task, &src_rq->push_work);
2859 preempt_enable();
2860 raw_spin_rq_lock(this_rq);
2861 }
2862 }
2863
2864 if (resched)
2865 resched_curr(this_rq);
2866 }
2867
2868 /*
2869 * Since the task is not running and a reschedule is not going to happen
2870 * anytime soon on its runqueue, we try pushing it away now.
2871 */
task_woken_dl(struct rq * rq,struct task_struct * p)2872 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2873 {
2874 if (!task_on_cpu(rq, p) &&
2875 !test_tsk_need_resched(rq->curr) &&
2876 p->nr_cpus_allowed > 1 &&
2877 dl_task(rq->curr) &&
2878 (rq->curr->nr_cpus_allowed < 2 ||
2879 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2880 push_dl_tasks(rq);
2881 }
2882 }
2883
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2884 static void set_cpus_allowed_dl(struct task_struct *p,
2885 struct affinity_context *ctx)
2886 {
2887 struct root_domain *src_rd;
2888 struct rq *rq;
2889
2890 WARN_ON_ONCE(!dl_task(p));
2891
2892 rq = task_rq(p);
2893 src_rd = rq->rd;
2894 /*
2895 * Migrating a SCHED_DEADLINE task between exclusive
2896 * cpusets (different root_domains) entails a bandwidth
2897 * update. We already made space for us in the destination
2898 * domain (see cpuset_can_attach()).
2899 */
2900 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2901 struct dl_bw *src_dl_b;
2902
2903 src_dl_b = dl_bw_of(cpu_of(rq));
2904 /*
2905 * We now free resources of the root_domain we are migrating
2906 * off. In the worst case, sched_setattr() may temporary fail
2907 * until we complete the update.
2908 */
2909 raw_spin_lock(&src_dl_b->lock);
2910 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2911 raw_spin_unlock(&src_dl_b->lock);
2912 }
2913
2914 set_cpus_allowed_common(p, ctx);
2915 }
2916
2917 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2918 static void rq_online_dl(struct rq *rq)
2919 {
2920 if (rq->dl.overloaded)
2921 dl_set_overload(rq);
2922
2923 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2924 if (rq->dl.dl_nr_running > 0)
2925 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2926 }
2927
2928 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2929 static void rq_offline_dl(struct rq *rq)
2930 {
2931 if (rq->dl.overloaded)
2932 dl_clear_overload(rq);
2933
2934 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2935 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2936 }
2937
init_sched_dl_class(void)2938 void __init init_sched_dl_class(void)
2939 {
2940 unsigned int i;
2941
2942 for_each_possible_cpu(i)
2943 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2944 GFP_KERNEL, cpu_to_node(i));
2945 }
2946
dl_add_task_root_domain(struct task_struct * p)2947 void dl_add_task_root_domain(struct task_struct *p)
2948 {
2949 struct rq_flags rf;
2950 struct rq *rq;
2951 struct dl_bw *dl_b;
2952
2953 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2954 if (!dl_task(p)) {
2955 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2956 return;
2957 }
2958
2959 rq = __task_rq_lock(p, &rf);
2960
2961 dl_b = &rq->rd->dl_bw;
2962 raw_spin_lock(&dl_b->lock);
2963
2964 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2965
2966 raw_spin_unlock(&dl_b->lock);
2967
2968 task_rq_unlock(rq, p, &rf);
2969 }
2970
dl_clear_root_domain(struct root_domain * rd)2971 void dl_clear_root_domain(struct root_domain *rd)
2972 {
2973 unsigned long flags;
2974
2975 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2976 rd->dl_bw.total_bw = 0;
2977 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2978 }
2979
2980 #endif /* CONFIG_SMP */
2981
switched_from_dl(struct rq * rq,struct task_struct * p)2982 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2983 {
2984 /*
2985 * task_non_contending() can start the "inactive timer" (if the 0-lag
2986 * time is in the future). If the task switches back to dl before
2987 * the "inactive timer" fires, it can continue to consume its current
2988 * runtime using its current deadline. If it stays outside of
2989 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2990 * will reset the task parameters.
2991 */
2992 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2993 task_non_contending(&p->dl);
2994
2995 /*
2996 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2997 * keep track of that on its cpuset (for correct bandwidth tracking).
2998 */
2999 dec_dl_tasks_cs(p);
3000
3001 if (!task_on_rq_queued(p)) {
3002 /*
3003 * Inactive timer is armed. However, p is leaving DEADLINE and
3004 * might migrate away from this rq while continuing to run on
3005 * some other class. We need to remove its contribution from
3006 * this rq running_bw now, or sub_rq_bw (below) will complain.
3007 */
3008 if (p->dl.dl_non_contending)
3009 sub_running_bw(&p->dl, &rq->dl);
3010 sub_rq_bw(&p->dl, &rq->dl);
3011 }
3012
3013 /*
3014 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3015 * at the 0-lag time, because the task could have been migrated
3016 * while SCHED_OTHER in the meanwhile.
3017 */
3018 if (p->dl.dl_non_contending)
3019 p->dl.dl_non_contending = 0;
3020
3021 /*
3022 * Since this might be the only -deadline task on the rq,
3023 * this is the right place to try to pull some other one
3024 * from an overloaded CPU, if any.
3025 */
3026 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3027 return;
3028
3029 deadline_queue_pull_task(rq);
3030 }
3031
3032 /*
3033 * When switching to -deadline, we may overload the rq, then
3034 * we try to push someone off, if possible.
3035 */
switched_to_dl(struct rq * rq,struct task_struct * p)3036 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3037 {
3038 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
3039 put_task_struct(p);
3040
3041 /*
3042 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3043 * track of that on its cpuset (for correct bandwidth tracking).
3044 */
3045 inc_dl_tasks_cs(p);
3046
3047 /* If p is not queued we will update its parameters at next wakeup. */
3048 if (!task_on_rq_queued(p)) {
3049 add_rq_bw(&p->dl, &rq->dl);
3050
3051 return;
3052 }
3053
3054 if (rq->curr != p) {
3055 #ifdef CONFIG_SMP
3056 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3057 deadline_queue_push_tasks(rq);
3058 #endif
3059 if (dl_task(rq->curr))
3060 wakeup_preempt_dl(rq, p, 0);
3061 else
3062 resched_curr(rq);
3063 } else {
3064 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3065 }
3066 }
3067
3068 /*
3069 * If the scheduling parameters of a -deadline task changed,
3070 * a push or pull operation might be needed.
3071 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)3072 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3073 int oldprio)
3074 {
3075 if (!task_on_rq_queued(p))
3076 return;
3077
3078 #ifdef CONFIG_SMP
3079 /*
3080 * This might be too much, but unfortunately
3081 * we don't have the old deadline value, and
3082 * we can't argue if the task is increasing
3083 * or lowering its prio, so...
3084 */
3085 if (!rq->dl.overloaded)
3086 deadline_queue_pull_task(rq);
3087
3088 if (task_current(rq, p)) {
3089 /*
3090 * If we now have a earlier deadline task than p,
3091 * then reschedule, provided p is still on this
3092 * runqueue.
3093 */
3094 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3095 resched_curr(rq);
3096 } else {
3097 /*
3098 * Current may not be deadline in case p was throttled but we
3099 * have just replenished it (e.g. rt_mutex_setprio()).
3100 *
3101 * Otherwise, if p was given an earlier deadline, reschedule.
3102 */
3103 if (!dl_task(rq->curr) ||
3104 dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3105 resched_curr(rq);
3106 }
3107 #else
3108 /*
3109 * We don't know if p has a earlier or later deadline, so let's blindly
3110 * set a (maybe not needed) rescheduling point.
3111 */
3112 resched_curr(rq);
3113 #endif
3114 }
3115
3116 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3117 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3118 {
3119 return p->dl.dl_throttled;
3120 }
3121 #endif
3122
3123 DEFINE_SCHED_CLASS(dl) = {
3124
3125 .enqueue_task = enqueue_task_dl,
3126 .dequeue_task = dequeue_task_dl,
3127 .yield_task = yield_task_dl,
3128
3129 .wakeup_preempt = wakeup_preempt_dl,
3130
3131 .pick_task = pick_task_dl,
3132 .put_prev_task = put_prev_task_dl,
3133 .set_next_task = set_next_task_dl,
3134
3135 #ifdef CONFIG_SMP
3136 .balance = balance_dl,
3137 .select_task_rq = select_task_rq_dl,
3138 .migrate_task_rq = migrate_task_rq_dl,
3139 .set_cpus_allowed = set_cpus_allowed_dl,
3140 .rq_online = rq_online_dl,
3141 .rq_offline = rq_offline_dl,
3142 .task_woken = task_woken_dl,
3143 .find_lock_rq = find_lock_later_rq,
3144 #endif
3145
3146 .task_tick = task_tick_dl,
3147 .task_fork = task_fork_dl,
3148
3149 .prio_changed = prio_changed_dl,
3150 .switched_from = switched_from_dl,
3151 .switched_to = switched_to_dl,
3152
3153 .update_curr = update_curr_dl,
3154 #ifdef CONFIG_SCHED_CORE
3155 .task_is_throttled = task_is_throttled_dl,
3156 #endif
3157 };
3158
3159 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
3160 static u64 dl_generation;
3161
sched_dl_global_validate(void)3162 int sched_dl_global_validate(void)
3163 {
3164 u64 runtime = global_rt_runtime();
3165 u64 period = global_rt_period();
3166 u64 new_bw = to_ratio(period, runtime);
3167 u64 gen = ++dl_generation;
3168 struct dl_bw *dl_b;
3169 int cpu, cpus, ret = 0;
3170 unsigned long flags;
3171
3172 /*
3173 * Here we want to check the bandwidth not being set to some
3174 * value smaller than the currently allocated bandwidth in
3175 * any of the root_domains.
3176 */
3177 for_each_possible_cpu(cpu) {
3178 rcu_read_lock_sched();
3179
3180 if (dl_bw_visited(cpu, gen))
3181 goto next;
3182
3183 dl_b = dl_bw_of(cpu);
3184 cpus = dl_bw_cpus(cpu);
3185
3186 raw_spin_lock_irqsave(&dl_b->lock, flags);
3187 if (new_bw * cpus < dl_b->total_bw)
3188 ret = -EBUSY;
3189 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3190
3191 next:
3192 rcu_read_unlock_sched();
3193
3194 if (ret)
3195 break;
3196 }
3197
3198 return ret;
3199 }
3200
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3201 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3202 {
3203 if (global_rt_runtime() == RUNTIME_INF) {
3204 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3205 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3206 } else {
3207 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3208 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3209 dl_rq->max_bw = dl_rq->extra_bw =
3210 to_ratio(global_rt_period(), global_rt_runtime());
3211 }
3212 }
3213
sched_dl_do_global(void)3214 void sched_dl_do_global(void)
3215 {
3216 u64 new_bw = -1;
3217 u64 gen = ++dl_generation;
3218 struct dl_bw *dl_b;
3219 int cpu;
3220 unsigned long flags;
3221
3222 if (global_rt_runtime() != RUNTIME_INF)
3223 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3224
3225 for_each_possible_cpu(cpu) {
3226 rcu_read_lock_sched();
3227
3228 if (dl_bw_visited(cpu, gen)) {
3229 rcu_read_unlock_sched();
3230 continue;
3231 }
3232
3233 dl_b = dl_bw_of(cpu);
3234
3235 raw_spin_lock_irqsave(&dl_b->lock, flags);
3236 dl_b->bw = new_bw;
3237 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3238
3239 rcu_read_unlock_sched();
3240 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3241 }
3242 }
3243
3244 /*
3245 * We must be sure that accepting a new task (or allowing changing the
3246 * parameters of an existing one) is consistent with the bandwidth
3247 * constraints. If yes, this function also accordingly updates the currently
3248 * allocated bandwidth to reflect the new situation.
3249 *
3250 * This function is called while holding p's rq->lock.
3251 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3252 int sched_dl_overflow(struct task_struct *p, int policy,
3253 const struct sched_attr *attr)
3254 {
3255 u64 period = attr->sched_period ?: attr->sched_deadline;
3256 u64 runtime = attr->sched_runtime;
3257 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3258 int cpus, err = -1, cpu = task_cpu(p);
3259 struct dl_bw *dl_b = dl_bw_of(cpu);
3260 unsigned long cap;
3261
3262 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3263 return 0;
3264
3265 /* !deadline task may carry old deadline bandwidth */
3266 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3267 return 0;
3268
3269 /*
3270 * Either if a task, enters, leave, or stays -deadline but changes
3271 * its parameters, we may need to update accordingly the total
3272 * allocated bandwidth of the container.
3273 */
3274 raw_spin_lock(&dl_b->lock);
3275 cpus = dl_bw_cpus(cpu);
3276 cap = dl_bw_capacity(cpu);
3277
3278 if (dl_policy(policy) && !task_has_dl_policy(p) &&
3279 !__dl_overflow(dl_b, cap, 0, new_bw)) {
3280 if (hrtimer_active(&p->dl.inactive_timer))
3281 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3282 __dl_add(dl_b, new_bw, cpus);
3283 err = 0;
3284 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
3285 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3286 /*
3287 * XXX this is slightly incorrect: when the task
3288 * utilization decreases, we should delay the total
3289 * utilization change until the task's 0-lag point.
3290 * But this would require to set the task's "inactive
3291 * timer" when the task is not inactive.
3292 */
3293 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3294 __dl_add(dl_b, new_bw, cpus);
3295 dl_change_utilization(p, new_bw);
3296 err = 0;
3297 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3298 /*
3299 * Do not decrease the total deadline utilization here,
3300 * switched_from_dl() will take care to do it at the correct
3301 * (0-lag) time.
3302 */
3303 err = 0;
3304 }
3305 raw_spin_unlock(&dl_b->lock);
3306
3307 return err;
3308 }
3309
3310 /*
3311 * This function initializes the sched_dl_entity of a newly becoming
3312 * SCHED_DEADLINE task.
3313 *
3314 * Only the static values are considered here, the actual runtime and the
3315 * absolute deadline will be properly calculated when the task is enqueued
3316 * for the first time with its new policy.
3317 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3318 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3319 {
3320 struct sched_dl_entity *dl_se = &p->dl;
3321
3322 dl_se->dl_runtime = attr->sched_runtime;
3323 dl_se->dl_deadline = attr->sched_deadline;
3324 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3325 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3326 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3327 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3328 }
3329
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3330 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3331 {
3332 struct sched_dl_entity *dl_se = &p->dl;
3333
3334 attr->sched_priority = p->rt_priority;
3335 attr->sched_runtime = dl_se->dl_runtime;
3336 attr->sched_deadline = dl_se->dl_deadline;
3337 attr->sched_period = dl_se->dl_period;
3338 attr->sched_flags &= ~SCHED_DL_FLAGS;
3339 attr->sched_flags |= dl_se->flags;
3340 }
3341
3342 /*
3343 * This function validates the new parameters of a -deadline task.
3344 * We ask for the deadline not being zero, and greater or equal
3345 * than the runtime, as well as the period of being zero or
3346 * greater than deadline. Furthermore, we have to be sure that
3347 * user parameters are above the internal resolution of 1us (we
3348 * check sched_runtime only since it is always the smaller one) and
3349 * below 2^63 ns (we have to check both sched_deadline and
3350 * sched_period, as the latter can be zero).
3351 */
__checkparam_dl(const struct sched_attr * attr)3352 bool __checkparam_dl(const struct sched_attr *attr)
3353 {
3354 u64 period, max, min;
3355
3356 /* special dl tasks don't actually use any parameter */
3357 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3358 return true;
3359
3360 /* deadline != 0 */
3361 if (attr->sched_deadline == 0)
3362 return false;
3363
3364 /*
3365 * Since we truncate DL_SCALE bits, make sure we're at least
3366 * that big.
3367 */
3368 if (attr->sched_runtime < (1ULL << DL_SCALE))
3369 return false;
3370
3371 /*
3372 * Since we use the MSB for wrap-around and sign issues, make
3373 * sure it's not set (mind that period can be equal to zero).
3374 */
3375 if (attr->sched_deadline & (1ULL << 63) ||
3376 attr->sched_period & (1ULL << 63))
3377 return false;
3378
3379 period = attr->sched_period;
3380 if (!period)
3381 period = attr->sched_deadline;
3382
3383 /* runtime <= deadline <= period (if period != 0) */
3384 if (period < attr->sched_deadline ||
3385 attr->sched_deadline < attr->sched_runtime)
3386 return false;
3387
3388 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3389 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3390
3391 if (period < min || period > max)
3392 return false;
3393
3394 return true;
3395 }
3396
3397 /*
3398 * This function clears the sched_dl_entity static params.
3399 */
__dl_clear_params(struct sched_dl_entity * dl_se)3400 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3401 {
3402 dl_se->dl_runtime = 0;
3403 dl_se->dl_deadline = 0;
3404 dl_se->dl_period = 0;
3405 dl_se->flags = 0;
3406 dl_se->dl_bw = 0;
3407 dl_se->dl_density = 0;
3408
3409 dl_se->dl_throttled = 0;
3410 dl_se->dl_yielded = 0;
3411 dl_se->dl_non_contending = 0;
3412 dl_se->dl_overrun = 0;
3413 dl_se->dl_server = 0;
3414
3415 #ifdef CONFIG_RT_MUTEXES
3416 dl_se->pi_se = dl_se;
3417 #endif
3418 }
3419
init_dl_entity(struct sched_dl_entity * dl_se)3420 void init_dl_entity(struct sched_dl_entity *dl_se)
3421 {
3422 RB_CLEAR_NODE(&dl_se->rb_node);
3423 init_dl_task_timer(dl_se);
3424 init_dl_inactive_task_timer(dl_se);
3425 __dl_clear_params(dl_se);
3426 }
3427
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3428 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3429 {
3430 struct sched_dl_entity *dl_se = &p->dl;
3431
3432 if (dl_se->dl_runtime != attr->sched_runtime ||
3433 dl_se->dl_deadline != attr->sched_deadline ||
3434 dl_se->dl_period != attr->sched_period ||
3435 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3436 return true;
3437
3438 return false;
3439 }
3440
3441 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3442 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3443 const struct cpumask *trial)
3444 {
3445 unsigned long flags, cap;
3446 struct dl_bw *cur_dl_b;
3447 int ret = 1;
3448
3449 rcu_read_lock_sched();
3450 cur_dl_b = dl_bw_of(cpumask_any(cur));
3451 cap = __dl_bw_capacity(trial);
3452 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3453 if (__dl_overflow(cur_dl_b, cap, 0, 0))
3454 ret = 0;
3455 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3456 rcu_read_unlock_sched();
3457
3458 return ret;
3459 }
3460
3461 enum dl_bw_request {
3462 dl_bw_req_check_overflow = 0,
3463 dl_bw_req_alloc,
3464 dl_bw_req_free
3465 };
3466
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3467 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3468 {
3469 unsigned long flags;
3470 struct dl_bw *dl_b;
3471 bool overflow = 0;
3472
3473 rcu_read_lock_sched();
3474 dl_b = dl_bw_of(cpu);
3475 raw_spin_lock_irqsave(&dl_b->lock, flags);
3476
3477 if (req == dl_bw_req_free) {
3478 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3479 } else {
3480 unsigned long cap = dl_bw_capacity(cpu);
3481
3482 overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3483
3484 if (req == dl_bw_req_alloc && !overflow) {
3485 /*
3486 * We reserve space in the destination
3487 * root_domain, as we can't fail after this point.
3488 * We will free resources in the source root_domain
3489 * later on (see set_cpus_allowed_dl()).
3490 */
3491 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3492 }
3493 }
3494
3495 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3496 rcu_read_unlock_sched();
3497
3498 return overflow ? -EBUSY : 0;
3499 }
3500
dl_bw_check_overflow(int cpu)3501 int dl_bw_check_overflow(int cpu)
3502 {
3503 return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3504 }
3505
dl_bw_alloc(int cpu,u64 dl_bw)3506 int dl_bw_alloc(int cpu, u64 dl_bw)
3507 {
3508 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3509 }
3510
dl_bw_free(int cpu,u64 dl_bw)3511 void dl_bw_free(int cpu, u64 dl_bw)
3512 {
3513 dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3514 }
3515 #endif
3516
3517 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)3518 void print_dl_stats(struct seq_file *m, int cpu)
3519 {
3520 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3521 }
3522 #endif /* CONFIG_SCHED_DEBUG */
3523