xref: /linux/kernel/sched/clock.c (revision 505da6689305b1103e9a8ab6636c6a7cf74cd5b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sched_clock() for unstable CPU clocks
4  *
5  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
6  *
7  *  Updates and enhancements:
8  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
9  *
10  * Based on code by:
11  *   Ingo Molnar <mingo@redhat.com>
12  *   Guillaume Chazarain <guichaz@gmail.com>
13  *
14  *
15  * What this file implements:
16  *
17  * cpu_clock(i) provides a fast (execution time) high resolution
18  * clock with bounded drift between CPUs. The value of cpu_clock(i)
19  * is monotonic for constant i. The timestamp returned is in nanoseconds.
20  *
21  * ######################### BIG FAT WARNING ##########################
22  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23  * # go backwards !!                                                  #
24  * ####################################################################
25  *
26  * There is no strict promise about the base, although it tends to start
27  * at 0 on boot (but people really shouldn't rely on that).
28  *
29  * cpu_clock(i)       -- can be used from any context, including NMI.
30  * local_clock()      -- is cpu_clock() on the current CPU.
31  *
32  * sched_clock_cpu(i)
33  *
34  * How it is implemented:
35  *
36  * The implementation either uses sched_clock() when
37  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
38  * sched_clock() is assumed to provide these properties (mostly it means
39  * the architecture provides a globally synchronized highres time source).
40  *
41  * Otherwise it tries to create a semi stable clock from a mixture of other
42  * clocks, including:
43  *
44  *  - GTOD (clock monotonic)
45  *  - sched_clock()
46  *  - explicit idle events
47  *
48  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
49  * deltas are filtered to provide monotonicity and keeping it within an
50  * expected window.
51  *
52  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
53  * that is otherwise invisible (TSC gets stopped).
54  *
55  */
56 
57 #include <linux/sched/clock.h>
58 #include "sched.h"
59 
60 /*
61  * Scheduler clock - returns current time in nanosec units.
62  * This is default implementation.
63  * Architectures and sub-architectures can override this.
64  */
65 notrace unsigned long long __weak sched_clock(void)
66 {
67 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
68 					* (NSEC_PER_SEC / HZ);
69 }
70 EXPORT_SYMBOL_GPL(sched_clock);
71 
72 static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
73 
74 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
75 /*
76  * We must start with !__sched_clock_stable because the unstable -> stable
77  * transition is accurate, while the stable -> unstable transition is not.
78  *
79  * Similarly we start with __sched_clock_stable_early, thereby assuming we
80  * will become stable, such that there's only a single 1 -> 0 transition.
81  */
82 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
83 static int __sched_clock_stable_early = 1;
84 
85 /*
86  * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
87  */
88 __read_mostly u64 __sched_clock_offset;
89 static __read_mostly u64 __gtod_offset;
90 
91 struct sched_clock_data {
92 	u64			tick_raw;
93 	u64			tick_gtod;
94 	u64			clock;
95 };
96 
97 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
98 
99 static __always_inline struct sched_clock_data *this_scd(void)
100 {
101 	return this_cpu_ptr(&sched_clock_data);
102 }
103 
104 notrace static inline struct sched_clock_data *cpu_sdc(int cpu)
105 {
106 	return &per_cpu(sched_clock_data, cpu);
107 }
108 
109 notrace int sched_clock_stable(void)
110 {
111 	return static_branch_likely(&__sched_clock_stable);
112 }
113 
114 notrace static void __scd_stamp(struct sched_clock_data *scd)
115 {
116 	scd->tick_gtod = ktime_get_ns();
117 	scd->tick_raw = sched_clock();
118 }
119 
120 notrace static void __set_sched_clock_stable(void)
121 {
122 	struct sched_clock_data *scd;
123 
124 	/*
125 	 * Since we're still unstable and the tick is already running, we have
126 	 * to disable IRQs in order to get a consistent scd->tick* reading.
127 	 */
128 	local_irq_disable();
129 	scd = this_scd();
130 	/*
131 	 * Attempt to make the (initial) unstable->stable transition continuous.
132 	 */
133 	__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
134 	local_irq_enable();
135 
136 	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
137 			scd->tick_gtod, __gtod_offset,
138 			scd->tick_raw,  __sched_clock_offset);
139 
140 	static_branch_enable(&__sched_clock_stable);
141 	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
142 }
143 
144 /*
145  * If we ever get here, we're screwed, because we found out -- typically after
146  * the fact -- that TSC wasn't good. This means all our clocksources (including
147  * ktime) could have reported wrong values.
148  *
149  * What we do here is an attempt to fix up and continue sort of where we left
150  * off in a coherent manner.
151  *
152  * The only way to fully avoid random clock jumps is to boot with:
153  * "tsc=unstable".
154  */
155 notrace static void __sched_clock_work(struct work_struct *work)
156 {
157 	struct sched_clock_data *scd;
158 	int cpu;
159 
160 	/* take a current timestamp and set 'now' */
161 	preempt_disable();
162 	scd = this_scd();
163 	__scd_stamp(scd);
164 	scd->clock = scd->tick_gtod + __gtod_offset;
165 	preempt_enable();
166 
167 	/* clone to all CPUs */
168 	for_each_possible_cpu(cpu)
169 		per_cpu(sched_clock_data, cpu) = *scd;
170 
171 	printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
172 	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
173 			scd->tick_gtod, __gtod_offset,
174 			scd->tick_raw,  __sched_clock_offset);
175 
176 	disable_sched_clock_irqtime();
177 	static_branch_disable(&__sched_clock_stable);
178 }
179 
180 static DECLARE_WORK(sched_clock_work, __sched_clock_work);
181 
182 notrace static void __clear_sched_clock_stable(void)
183 {
184 	if (!sched_clock_stable())
185 		return;
186 
187 	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
188 	schedule_work(&sched_clock_work);
189 }
190 
191 notrace void clear_sched_clock_stable(void)
192 {
193 	__sched_clock_stable_early = 0;
194 
195 	smp_mb(); /* matches sched_clock_init_late() */
196 
197 	if (static_key_count(&sched_clock_running.key) == 2)
198 		__clear_sched_clock_stable();
199 }
200 
201 notrace static void __sched_clock_gtod_offset(void)
202 {
203 	struct sched_clock_data *scd = this_scd();
204 
205 	__scd_stamp(scd);
206 	__gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
207 }
208 
209 void __init sched_clock_init(void)
210 {
211 	/*
212 	 * Set __gtod_offset such that once we mark sched_clock_running,
213 	 * sched_clock_tick() continues where sched_clock() left off.
214 	 *
215 	 * Even if TSC is buggered, we're still UP at this point so it
216 	 * can't really be out of sync.
217 	 */
218 	local_irq_disable();
219 	__sched_clock_gtod_offset();
220 	local_irq_enable();
221 
222 	static_branch_inc(&sched_clock_running);
223 }
224 /*
225  * We run this as late_initcall() such that it runs after all built-in drivers,
226  * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
227  */
228 static int __init sched_clock_init_late(void)
229 {
230 	static_branch_inc(&sched_clock_running);
231 	/*
232 	 * Ensure that it is impossible to not do a static_key update.
233 	 *
234 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
235 	 * and do the update, or we must see their __sched_clock_stable_early
236 	 * and do the update, or both.
237 	 */
238 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
239 
240 	if (__sched_clock_stable_early)
241 		__set_sched_clock_stable();
242 	else
243 		disable_sched_clock_irqtime();  /* disable if clock unstable. */
244 
245 	return 0;
246 }
247 late_initcall(sched_clock_init_late);
248 
249 /*
250  * min, max except they take wrapping into account
251  */
252 
253 static __always_inline u64 wrap_min(u64 x, u64 y)
254 {
255 	return (s64)(x - y) < 0 ? x : y;
256 }
257 
258 static __always_inline u64 wrap_max(u64 x, u64 y)
259 {
260 	return (s64)(x - y) > 0 ? x : y;
261 }
262 
263 /*
264  * update the percpu scd from the raw @now value
265  *
266  *  - filter out backward motion
267  *  - use the GTOD tick value to create a window to filter crazy TSC values
268  */
269 static __always_inline u64 sched_clock_local(struct sched_clock_data *scd)
270 {
271 	u64 now, clock, old_clock, min_clock, max_clock, gtod;
272 	s64 delta;
273 
274 again:
275 	now = sched_clock_noinstr();
276 	delta = now - scd->tick_raw;
277 	if (unlikely(delta < 0))
278 		delta = 0;
279 
280 	old_clock = scd->clock;
281 
282 	/*
283 	 * scd->clock = clamp(scd->tick_gtod + delta,
284 	 *		      max(scd->tick_gtod, scd->clock),
285 	 *		      scd->tick_gtod + TICK_NSEC);
286 	 */
287 
288 	gtod = scd->tick_gtod + __gtod_offset;
289 	clock = gtod + delta;
290 	min_clock = wrap_max(gtod, old_clock);
291 	max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
292 
293 	clock = wrap_max(clock, min_clock);
294 	clock = wrap_min(clock, max_clock);
295 
296 	if (!raw_try_cmpxchg64(&scd->clock, &old_clock, clock))
297 		goto again;
298 
299 	return clock;
300 }
301 
302 noinstr u64 local_clock_noinstr(void)
303 {
304 	u64 clock;
305 
306 	if (static_branch_likely(&__sched_clock_stable))
307 		return sched_clock_noinstr() + __sched_clock_offset;
308 
309 	if (!static_branch_likely(&sched_clock_running))
310 		return sched_clock_noinstr();
311 
312 	clock = sched_clock_local(this_scd());
313 
314 	return clock;
315 }
316 
317 u64 local_clock(void)
318 {
319 	u64 now;
320 	preempt_disable_notrace();
321 	now = local_clock_noinstr();
322 	preempt_enable_notrace();
323 	return now;
324 }
325 EXPORT_SYMBOL_GPL(local_clock);
326 
327 static notrace u64 sched_clock_remote(struct sched_clock_data *scd)
328 {
329 	struct sched_clock_data *my_scd = this_scd();
330 	u64 this_clock, remote_clock;
331 	u64 *ptr, old_val, val;
332 
333 #if BITS_PER_LONG != 64
334 again:
335 	/*
336 	 * Careful here: The local and the remote clock values need to
337 	 * be read out atomic as we need to compare the values and
338 	 * then update either the local or the remote side. So the
339 	 * cmpxchg64 below only protects one readout.
340 	 *
341 	 * We must reread via sched_clock_local() in the retry case on
342 	 * 32-bit kernels as an NMI could use sched_clock_local() via the
343 	 * tracer and hit between the readout of
344 	 * the low 32-bit and the high 32-bit portion.
345 	 */
346 	this_clock = sched_clock_local(my_scd);
347 	/*
348 	 * We must enforce atomic readout on 32-bit, otherwise the
349 	 * update on the remote CPU can hit in between the readout of
350 	 * the low 32-bit and the high 32-bit portion.
351 	 */
352 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
353 #else
354 	/*
355 	 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
356 	 * update, so we can avoid the above 32-bit dance.
357 	 */
358 	sched_clock_local(my_scd);
359 again:
360 	this_clock = my_scd->clock;
361 	remote_clock = scd->clock;
362 #endif
363 
364 	/*
365 	 * Use the opportunity that we have both locks
366 	 * taken to couple the two clocks: we take the
367 	 * larger time as the latest time for both
368 	 * runqueues. (this creates monotonic movement)
369 	 */
370 	if (likely((s64)(remote_clock - this_clock) < 0)) {
371 		ptr = &scd->clock;
372 		old_val = remote_clock;
373 		val = this_clock;
374 	} else {
375 		/*
376 		 * Should be rare, but possible:
377 		 */
378 		ptr = &my_scd->clock;
379 		old_val = this_clock;
380 		val = remote_clock;
381 	}
382 
383 	if (!try_cmpxchg64(ptr, &old_val, val))
384 		goto again;
385 
386 	return val;
387 }
388 
389 /*
390  * Similar to cpu_clock(), but requires local IRQs to be disabled.
391  *
392  * See cpu_clock().
393  */
394 notrace u64 sched_clock_cpu(int cpu)
395 {
396 	struct sched_clock_data *scd;
397 	u64 clock;
398 
399 	if (sched_clock_stable())
400 		return sched_clock() + __sched_clock_offset;
401 
402 	if (!static_branch_likely(&sched_clock_running))
403 		return sched_clock();
404 
405 	preempt_disable_notrace();
406 	scd = cpu_sdc(cpu);
407 
408 	if (cpu != smp_processor_id())
409 		clock = sched_clock_remote(scd);
410 	else
411 		clock = sched_clock_local(scd);
412 	preempt_enable_notrace();
413 
414 	return clock;
415 }
416 EXPORT_SYMBOL_GPL(sched_clock_cpu);
417 
418 notrace void sched_clock_tick(void)
419 {
420 	struct sched_clock_data *scd;
421 
422 	if (sched_clock_stable())
423 		return;
424 
425 	if (!static_branch_likely(&sched_clock_running))
426 		return;
427 
428 	lockdep_assert_irqs_disabled();
429 
430 	scd = this_scd();
431 	__scd_stamp(scd);
432 	sched_clock_local(scd);
433 }
434 
435 notrace void sched_clock_tick_stable(void)
436 {
437 	if (!sched_clock_stable())
438 		return;
439 
440 	/*
441 	 * Called under watchdog_lock.
442 	 *
443 	 * The watchdog just found this TSC to (still) be stable, so now is a
444 	 * good moment to update our __gtod_offset. Because once we find the
445 	 * TSC to be unstable, any computation will be computing crap.
446 	 */
447 	local_irq_disable();
448 	__sched_clock_gtod_offset();
449 	local_irq_enable();
450 }
451 
452 /*
453  * We are going deep-idle (IRQs are disabled):
454  */
455 notrace void sched_clock_idle_sleep_event(void)
456 {
457 	sched_clock_cpu(smp_processor_id());
458 }
459 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
460 
461 /*
462  * We just idled; resync with ktime.
463  */
464 notrace void sched_clock_idle_wakeup_event(void)
465 {
466 	unsigned long flags;
467 
468 	if (sched_clock_stable())
469 		return;
470 
471 	if (unlikely(timekeeping_suspended))
472 		return;
473 
474 	local_irq_save(flags);
475 	sched_clock_tick();
476 	local_irq_restore(flags);
477 }
478 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
479 
480 #else /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK: */
481 
482 void __init sched_clock_init(void)
483 {
484 	static_branch_inc(&sched_clock_running);
485 	local_irq_disable();
486 	generic_sched_clock_init();
487 	local_irq_enable();
488 }
489 
490 notrace u64 sched_clock_cpu(int cpu)
491 {
492 	if (!static_branch_likely(&sched_clock_running))
493 		return 0;
494 
495 	return sched_clock();
496 }
497 
498 #endif /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
499 
500 /*
501  * Running clock - returns the time that has elapsed while a guest has been
502  * running.
503  * On a guest this value should be local_clock minus the time the guest was
504  * suspended by the hypervisor (for any reason).
505  * On bare metal this function should return the same as local_clock.
506  * Architectures and sub-architectures can override this.
507  */
508 notrace u64 __weak running_clock(void)
509 {
510 	return local_clock();
511 }
512