1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/delayacct.h>
72
73 #include <trace/events/power.h>
74 #include <trace/events/sched.h>
75
76 #include "../workqueue_internal.h"
77
78 struct rq;
79 struct cfs_rq;
80 struct rt_rq;
81 struct sched_group;
82 struct cpuidle_state;
83
84 #ifdef CONFIG_PARAVIRT
85 # include <asm/paravirt.h>
86 # include <asm/paravirt_api_clock.h>
87 #endif
88
89 #include <asm/barrier.h>
90
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
98 #endif
99
100 /* task_struct::on_rq states: */
101 #define TASK_ON_RQ_QUEUED 1
102 #define TASK_ON_RQ_MIGRATING 2
103
104 extern __read_mostly int scheduler_running;
105
106 extern unsigned long calc_load_update;
107 extern atomic_long_t calc_load_tasks;
108
109 extern void calc_global_load_tick(struct rq *this_rq);
110 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
111
112 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
113
114 extern int sysctl_sched_rt_period;
115 extern int sysctl_sched_rt_runtime;
116 extern int sched_rr_timeslice;
117
118 /*
119 * Asymmetric CPU capacity bits
120 */
121 struct asym_cap_data {
122 struct list_head link;
123 struct rcu_head rcu;
124 unsigned long capacity;
125 unsigned long cpus[];
126 };
127
128 extern struct list_head asym_cap_list;
129
130 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
131
132 /*
133 * Helpers for converting nanosecond timing to jiffy resolution
134 */
135 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ))
136
137 /*
138 * Increase resolution of nice-level calculations for 64-bit architectures.
139 * The extra resolution improves shares distribution and load balancing of
140 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
141 * hierarchies, especially on larger systems. This is not a user-visible change
142 * and does not change the user-interface for setting shares/weights.
143 *
144 * We increase resolution only if we have enough bits to allow this increased
145 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
146 * are pretty high and the returns do not justify the increased costs.
147 *
148 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
149 * increase coverage and consistency always enable it on 64-bit platforms.
150 */
151 #ifdef CONFIG_64BIT
152 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
153 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load_down(w) \
155 ({ \
156 unsigned long __w = (w); \
157 \
158 if (__w) \
159 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
160 __w; \
161 })
162 #else
163 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
164 # define scale_load(w) (w)
165 # define scale_load_down(w) (w)
166 #endif
167
168 /*
169 * Task weight (visible to users) and its load (invisible to users) have
170 * independent resolution, but they should be well calibrated. We use
171 * scale_load() and scale_load_down(w) to convert between them. The
172 * following must be true:
173 *
174 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
175 *
176 */
177 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
178
179 /*
180 * Single value that decides SCHED_DEADLINE internal math precision.
181 * 10 -> just above 1us
182 * 9 -> just above 0.5us
183 */
184 #define DL_SCALE 10
185
186 /*
187 * Single value that denotes runtime == period, ie unlimited time.
188 */
189 #define RUNTIME_INF ((u64)~0ULL)
190
idle_policy(int policy)191 static inline int idle_policy(int policy)
192 {
193 return policy == SCHED_IDLE;
194 }
195
normal_policy(int policy)196 static inline int normal_policy(int policy)
197 {
198 #ifdef CONFIG_SCHED_CLASS_EXT
199 if (policy == SCHED_EXT)
200 return true;
201 #endif
202 return policy == SCHED_NORMAL;
203 }
204
fair_policy(int policy)205 static inline int fair_policy(int policy)
206 {
207 return normal_policy(policy) || policy == SCHED_BATCH;
208 }
209
rt_policy(int policy)210 static inline int rt_policy(int policy)
211 {
212 return policy == SCHED_FIFO || policy == SCHED_RR;
213 }
214
dl_policy(int policy)215 static inline int dl_policy(int policy)
216 {
217 return policy == SCHED_DEADLINE;
218 }
219
valid_policy(int policy)220 static inline bool valid_policy(int policy)
221 {
222 return idle_policy(policy) || fair_policy(policy) ||
223 rt_policy(policy) || dl_policy(policy);
224 }
225
task_has_idle_policy(struct task_struct * p)226 static inline int task_has_idle_policy(struct task_struct *p)
227 {
228 return idle_policy(p->policy);
229 }
230
task_has_rt_policy(struct task_struct * p)231 static inline int task_has_rt_policy(struct task_struct *p)
232 {
233 return rt_policy(p->policy);
234 }
235
task_has_dl_policy(struct task_struct * p)236 static inline int task_has_dl_policy(struct task_struct *p)
237 {
238 return dl_policy(p->policy);
239 }
240
241 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
242
update_avg(u64 * avg,u64 sample)243 static inline void update_avg(u64 *avg, u64 sample)
244 {
245 s64 diff = sample - *avg;
246
247 *avg += diff / 8;
248 }
249
250 /*
251 * Shifting a value by an exponent greater *or equal* to the size of said value
252 * is UB; cap at size-1.
253 */
254 #define shr_bound(val, shift) \
255 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
256
257 /*
258 * cgroup weight knobs should use the common MIN, DFL and MAX values which are
259 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
260 * maps pretty well onto the shares value used by scheduler and the round-trip
261 * conversions preserve the original value over the entire range.
262 */
sched_weight_from_cgroup(unsigned long cgrp_weight)263 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
264 {
265 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
266 }
267
sched_weight_to_cgroup(unsigned long weight)268 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
269 {
270 return clamp_t(unsigned long,
271 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
272 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
273 }
274
275 /*
276 * !! For sched_setattr_nocheck() (kernel) only !!
277 *
278 * This is actually gross. :(
279 *
280 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
281 * tasks, but still be able to sleep. We need this on platforms that cannot
282 * atomically change clock frequency. Remove once fast switching will be
283 * available on such platforms.
284 *
285 * SUGOV stands for SchedUtil GOVernor.
286 */
287 #define SCHED_FLAG_SUGOV 0x10000000
288
289 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
290
dl_entity_is_special(const struct sched_dl_entity * dl_se)291 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
292 {
293 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
294 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
295 #else
296 return false;
297 #endif
298 }
299
300 /*
301 * Tells if entity @a should preempt entity @b.
302 */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)303 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
304 const struct sched_dl_entity *b)
305 {
306 return dl_entity_is_special(a) ||
307 dl_time_before(a->deadline, b->deadline);
308 }
309
310 /*
311 * This is the priority-queue data structure of the RT scheduling class:
312 */
313 struct rt_prio_array {
314 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
315 struct list_head queue[MAX_RT_PRIO];
316 };
317
318 struct rt_bandwidth {
319 /* nests inside the rq lock: */
320 raw_spinlock_t rt_runtime_lock;
321 ktime_t rt_period;
322 u64 rt_runtime;
323 struct hrtimer rt_period_timer;
324 unsigned int rt_period_active;
325 };
326
dl_bandwidth_enabled(void)327 static inline int dl_bandwidth_enabled(void)
328 {
329 return sysctl_sched_rt_runtime >= 0;
330 }
331
332 /*
333 * To keep the bandwidth of -deadline tasks under control
334 * we need some place where:
335 * - store the maximum -deadline bandwidth of each cpu;
336 * - cache the fraction of bandwidth that is currently allocated in
337 * each root domain;
338 *
339 * This is all done in the data structure below. It is similar to the
340 * one used for RT-throttling (rt_bandwidth), with the main difference
341 * that, since here we are only interested in admission control, we
342 * do not decrease any runtime while the group "executes", neither we
343 * need a timer to replenish it.
344 *
345 * With respect to SMP, bandwidth is given on a per root domain basis,
346 * meaning that:
347 * - bw (< 100%) is the deadline bandwidth of each CPU;
348 * - total_bw is the currently allocated bandwidth in each root domain;
349 */
350 struct dl_bw {
351 raw_spinlock_t lock;
352 u64 bw;
353 u64 total_bw;
354 };
355
356 extern void init_dl_bw(struct dl_bw *dl_b);
357 extern int sched_dl_global_validate(void);
358 extern void sched_dl_do_global(void);
359 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
360 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
361 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
362 extern bool __checkparam_dl(const struct sched_attr *attr);
363 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
364 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
365 extern int dl_bw_check_overflow(int cpu);
366 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
367 /*
368 * SCHED_DEADLINE supports servers (nested scheduling) with the following
369 * interface:
370 *
371 * dl_se::rq -- runqueue we belong to.
372 *
373 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
374 * server when it runs out of tasks to run.
375 *
376 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
377 * returns NULL.
378 *
379 * dl_server_update() -- called from update_curr_common(), propagates runtime
380 * to the server.
381 *
382 * dl_server_start()
383 * dl_server_stop() -- start/stop the server when it has (no) tasks.
384 *
385 * dl_server_init() -- initializes the server.
386 */
387 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
388 extern void dl_server_start(struct sched_dl_entity *dl_se);
389 extern void dl_server_stop(struct sched_dl_entity *dl_se);
390 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
391 dl_server_has_tasks_f has_tasks,
392 dl_server_pick_f pick_task);
393
394 extern void dl_server_update_idle_time(struct rq *rq,
395 struct task_struct *p);
396 extern void fair_server_init(struct rq *rq);
397 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
398 extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
399 u64 runtime, u64 period, bool init);
400
dl_server_active(struct sched_dl_entity * dl_se)401 static inline bool dl_server_active(struct sched_dl_entity *dl_se)
402 {
403 return dl_se->dl_server_active;
404 }
405
406 #ifdef CONFIG_CGROUP_SCHED
407
408 extern struct list_head task_groups;
409
410 struct cfs_bandwidth {
411 #ifdef CONFIG_CFS_BANDWIDTH
412 raw_spinlock_t lock;
413 ktime_t period;
414 u64 quota;
415 u64 runtime;
416 u64 burst;
417 u64 runtime_snap;
418 s64 hierarchical_quota;
419
420 u8 idle;
421 u8 period_active;
422 u8 slack_started;
423 struct hrtimer period_timer;
424 struct hrtimer slack_timer;
425 struct list_head throttled_cfs_rq;
426
427 /* Statistics: */
428 int nr_periods;
429 int nr_throttled;
430 int nr_burst;
431 u64 throttled_time;
432 u64 burst_time;
433 #endif
434 };
435
436 /* Task group related information */
437 struct task_group {
438 struct cgroup_subsys_state css;
439
440 #ifdef CONFIG_GROUP_SCHED_WEIGHT
441 /* A positive value indicates that this is a SCHED_IDLE group. */
442 int idle;
443 #endif
444
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 /* schedulable entities of this group on each CPU */
447 struct sched_entity **se;
448 /* runqueue "owned" by this group on each CPU */
449 struct cfs_rq **cfs_rq;
450 unsigned long shares;
451 #ifdef CONFIG_SMP
452 /*
453 * load_avg can be heavily contended at clock tick time, so put
454 * it in its own cache-line separated from the fields above which
455 * will also be accessed at each tick.
456 */
457 atomic_long_t load_avg ____cacheline_aligned;
458 #endif
459 #endif
460
461 #ifdef CONFIG_RT_GROUP_SCHED
462 struct sched_rt_entity **rt_se;
463 struct rt_rq **rt_rq;
464
465 struct rt_bandwidth rt_bandwidth;
466 #endif
467
468 #ifdef CONFIG_EXT_GROUP_SCHED
469 u32 scx_flags; /* SCX_TG_* */
470 u32 scx_weight;
471 #endif
472
473 struct rcu_head rcu;
474 struct list_head list;
475
476 struct task_group *parent;
477 struct list_head siblings;
478 struct list_head children;
479
480 #ifdef CONFIG_SCHED_AUTOGROUP
481 struct autogroup *autogroup;
482 #endif
483
484 struct cfs_bandwidth cfs_bandwidth;
485
486 #ifdef CONFIG_UCLAMP_TASK_GROUP
487 /* The two decimal precision [%] value requested from user-space */
488 unsigned int uclamp_pct[UCLAMP_CNT];
489 /* Clamp values requested for a task group */
490 struct uclamp_se uclamp_req[UCLAMP_CNT];
491 /* Effective clamp values used for a task group */
492 struct uclamp_se uclamp[UCLAMP_CNT];
493 #endif
494
495 };
496
497 #ifdef CONFIG_GROUP_SCHED_WEIGHT
498 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
499
500 /*
501 * A weight of 0 or 1 can cause arithmetics problems.
502 * A weight of a cfs_rq is the sum of weights of which entities
503 * are queued on this cfs_rq, so a weight of a entity should not be
504 * too large, so as the shares value of a task group.
505 * (The default weight is 1024 - so there's no practical
506 * limitation from this.)
507 */
508 #define MIN_SHARES (1UL << 1)
509 #define MAX_SHARES (1UL << 18)
510 #endif
511
512 typedef int (*tg_visitor)(struct task_group *, void *);
513
514 extern int walk_tg_tree_from(struct task_group *from,
515 tg_visitor down, tg_visitor up, void *data);
516
517 /*
518 * Iterate the full tree, calling @down when first entering a node and @up when
519 * leaving it for the final time.
520 *
521 * Caller must hold rcu_lock or sufficient equivalent.
522 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)523 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
524 {
525 return walk_tg_tree_from(&root_task_group, down, up, data);
526 }
527
css_tg(struct cgroup_subsys_state * css)528 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
529 {
530 return css ? container_of(css, struct task_group, css) : NULL;
531 }
532
533 extern int tg_nop(struct task_group *tg, void *data);
534
535 #ifdef CONFIG_FAIR_GROUP_SCHED
536 extern void free_fair_sched_group(struct task_group *tg);
537 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
538 extern void online_fair_sched_group(struct task_group *tg);
539 extern void unregister_fair_sched_group(struct task_group *tg);
540 #else
free_fair_sched_group(struct task_group * tg)541 static inline void free_fair_sched_group(struct task_group *tg) { }
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)542 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
543 {
544 return 1;
545 }
online_fair_sched_group(struct task_group * tg)546 static inline void online_fair_sched_group(struct task_group *tg) { }
unregister_fair_sched_group(struct task_group * tg)547 static inline void unregister_fair_sched_group(struct task_group *tg) { }
548 #endif
549
550 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
551 struct sched_entity *se, int cpu,
552 struct sched_entity *parent);
553 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
554
555 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
556 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
557 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
558 extern bool cfs_task_bw_constrained(struct task_struct *p);
559
560 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
561 struct sched_rt_entity *rt_se, int cpu,
562 struct sched_rt_entity *parent);
563 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
564 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
565 extern long sched_group_rt_runtime(struct task_group *tg);
566 extern long sched_group_rt_period(struct task_group *tg);
567 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
568
569 extern struct task_group *sched_create_group(struct task_group *parent);
570 extern void sched_online_group(struct task_group *tg,
571 struct task_group *parent);
572 extern void sched_destroy_group(struct task_group *tg);
573 extern void sched_release_group(struct task_group *tg);
574
575 extern void sched_move_task(struct task_struct *tsk);
576
577 #ifdef CONFIG_FAIR_GROUP_SCHED
578 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
579
580 extern int sched_group_set_idle(struct task_group *tg, long idle);
581
582 #ifdef CONFIG_SMP
583 extern void set_task_rq_fair(struct sched_entity *se,
584 struct cfs_rq *prev, struct cfs_rq *next);
585 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)586 static inline void set_task_rq_fair(struct sched_entity *se,
587 struct cfs_rq *prev, struct cfs_rq *next) { }
588 #endif /* CONFIG_SMP */
589 #else /* !CONFIG_FAIR_GROUP_SCHED */
sched_group_set_shares(struct task_group * tg,unsigned long shares)590 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
sched_group_set_idle(struct task_group * tg,long idle)591 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
592 #endif /* CONFIG_FAIR_GROUP_SCHED */
593
594 #else /* CONFIG_CGROUP_SCHED */
595
596 struct cfs_bandwidth { };
597
cfs_task_bw_constrained(struct task_struct * p)598 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
599
600 #endif /* CONFIG_CGROUP_SCHED */
601
602 extern void unregister_rt_sched_group(struct task_group *tg);
603 extern void free_rt_sched_group(struct task_group *tg);
604 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
605
606 /*
607 * u64_u32_load/u64_u32_store
608 *
609 * Use a copy of a u64 value to protect against data race. This is only
610 * applicable for 32-bits architectures.
611 */
612 #ifdef CONFIG_64BIT
613 # define u64_u32_load_copy(var, copy) var
614 # define u64_u32_store_copy(var, copy, val) (var = val)
615 #else
616 # define u64_u32_load_copy(var, copy) \
617 ({ \
618 u64 __val, __val_copy; \
619 do { \
620 __val_copy = copy; \
621 /* \
622 * paired with u64_u32_store_copy(), ordering access \
623 * to var and copy. \
624 */ \
625 smp_rmb(); \
626 __val = var; \
627 } while (__val != __val_copy); \
628 __val; \
629 })
630 # define u64_u32_store_copy(var, copy, val) \
631 do { \
632 typeof(val) __val = (val); \
633 var = __val; \
634 /* \
635 * paired with u64_u32_load_copy(), ordering access to var and \
636 * copy. \
637 */ \
638 smp_wmb(); \
639 copy = __val; \
640 } while (0)
641 #endif
642 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
643 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
644
645 struct balance_callback {
646 struct balance_callback *next;
647 void (*func)(struct rq *rq);
648 };
649
650 /* CFS-related fields in a runqueue */
651 struct cfs_rq {
652 struct load_weight load;
653 unsigned int nr_running;
654 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
655 unsigned int idle_nr_running; /* SCHED_IDLE */
656 unsigned int idle_h_nr_running; /* SCHED_IDLE */
657 unsigned int h_nr_delayed;
658
659 s64 avg_vruntime;
660 u64 avg_load;
661
662 u64 min_vruntime;
663 #ifdef CONFIG_SCHED_CORE
664 unsigned int forceidle_seq;
665 u64 min_vruntime_fi;
666 #endif
667
668 struct rb_root_cached tasks_timeline;
669
670 /*
671 * 'curr' points to currently running entity on this cfs_rq.
672 * It is set to NULL otherwise (i.e when none are currently running).
673 */
674 struct sched_entity *curr;
675 struct sched_entity *next;
676
677 #ifdef CONFIG_SMP
678 /*
679 * CFS load tracking
680 */
681 struct sched_avg avg;
682 #ifndef CONFIG_64BIT
683 u64 last_update_time_copy;
684 #endif
685 struct {
686 raw_spinlock_t lock ____cacheline_aligned;
687 int nr;
688 unsigned long load_avg;
689 unsigned long util_avg;
690 unsigned long runnable_avg;
691 } removed;
692
693 #ifdef CONFIG_FAIR_GROUP_SCHED
694 u64 last_update_tg_load_avg;
695 unsigned long tg_load_avg_contrib;
696 long propagate;
697 long prop_runnable_sum;
698
699 /*
700 * h_load = weight * f(tg)
701 *
702 * Where f(tg) is the recursive weight fraction assigned to
703 * this group.
704 */
705 unsigned long h_load;
706 u64 last_h_load_update;
707 struct sched_entity *h_load_next;
708 #endif /* CONFIG_FAIR_GROUP_SCHED */
709 #endif /* CONFIG_SMP */
710
711 #ifdef CONFIG_FAIR_GROUP_SCHED
712 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
713
714 /*
715 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
716 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
717 * (like users, containers etc.)
718 *
719 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
720 * This list is used during load balance.
721 */
722 int on_list;
723 struct list_head leaf_cfs_rq_list;
724 struct task_group *tg; /* group that "owns" this runqueue */
725
726 /* Locally cached copy of our task_group's idle value */
727 int idle;
728
729 #ifdef CONFIG_CFS_BANDWIDTH
730 int runtime_enabled;
731 s64 runtime_remaining;
732
733 u64 throttled_pelt_idle;
734 #ifndef CONFIG_64BIT
735 u64 throttled_pelt_idle_copy;
736 #endif
737 u64 throttled_clock;
738 u64 throttled_clock_pelt;
739 u64 throttled_clock_pelt_time;
740 u64 throttled_clock_self;
741 u64 throttled_clock_self_time;
742 int throttled;
743 int throttle_count;
744 struct list_head throttled_list;
745 struct list_head throttled_csd_list;
746 #endif /* CONFIG_CFS_BANDWIDTH */
747 #endif /* CONFIG_FAIR_GROUP_SCHED */
748 };
749
750 #ifdef CONFIG_SCHED_CLASS_EXT
751 /* scx_rq->flags, protected by the rq lock */
752 enum scx_rq_flags {
753 /*
754 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
755 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
756 * only while the BPF scheduler considers the CPU to be online.
757 */
758 SCX_RQ_ONLINE = 1 << 0,
759 SCX_RQ_CAN_STOP_TICK = 1 << 1,
760 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */
761 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */
762 SCX_RQ_BYPASSING = 1 << 4,
763
764 SCX_RQ_IN_WAKEUP = 1 << 16,
765 SCX_RQ_IN_BALANCE = 1 << 17,
766 };
767
768 struct scx_rq {
769 struct scx_dispatch_q local_dsq;
770 struct list_head runnable_list; /* runnable tasks on this rq */
771 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */
772 unsigned long ops_qseq;
773 u64 extra_enq_flags; /* see move_task_to_local_dsq() */
774 u32 nr_running;
775 u32 flags;
776 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */
777 bool cpu_released;
778 cpumask_var_t cpus_to_kick;
779 cpumask_var_t cpus_to_kick_if_idle;
780 cpumask_var_t cpus_to_preempt;
781 cpumask_var_t cpus_to_wait;
782 unsigned long pnt_seq;
783 struct balance_callback deferred_bal_cb;
784 struct irq_work deferred_irq_work;
785 struct irq_work kick_cpus_irq_work;
786 };
787 #endif /* CONFIG_SCHED_CLASS_EXT */
788
rt_bandwidth_enabled(void)789 static inline int rt_bandwidth_enabled(void)
790 {
791 return sysctl_sched_rt_runtime >= 0;
792 }
793
794 /* RT IPI pull logic requires IRQ_WORK */
795 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
796 # define HAVE_RT_PUSH_IPI
797 #endif
798
799 /* Real-Time classes' related field in a runqueue: */
800 struct rt_rq {
801 struct rt_prio_array active;
802 unsigned int rt_nr_running;
803 unsigned int rr_nr_running;
804 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
805 struct {
806 int curr; /* highest queued rt task prio */
807 #ifdef CONFIG_SMP
808 int next; /* next highest */
809 #endif
810 } highest_prio;
811 #endif
812 #ifdef CONFIG_SMP
813 bool overloaded;
814 struct plist_head pushable_tasks;
815
816 #endif /* CONFIG_SMP */
817 int rt_queued;
818
819 #ifdef CONFIG_RT_GROUP_SCHED
820 int rt_throttled;
821 u64 rt_time;
822 u64 rt_runtime;
823 /* Nests inside the rq lock: */
824 raw_spinlock_t rt_runtime_lock;
825
826 unsigned int rt_nr_boosted;
827
828 struct rq *rq;
829 struct task_group *tg;
830 #endif
831 };
832
rt_rq_is_runnable(struct rt_rq * rt_rq)833 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
834 {
835 return rt_rq->rt_queued && rt_rq->rt_nr_running;
836 }
837
838 /* Deadline class' related fields in a runqueue */
839 struct dl_rq {
840 /* runqueue is an rbtree, ordered by deadline */
841 struct rb_root_cached root;
842
843 unsigned int dl_nr_running;
844
845 #ifdef CONFIG_SMP
846 /*
847 * Deadline values of the currently executing and the
848 * earliest ready task on this rq. Caching these facilitates
849 * the decision whether or not a ready but not running task
850 * should migrate somewhere else.
851 */
852 struct {
853 u64 curr;
854 u64 next;
855 } earliest_dl;
856
857 bool overloaded;
858
859 /*
860 * Tasks on this rq that can be pushed away. They are kept in
861 * an rb-tree, ordered by tasks' deadlines, with caching
862 * of the leftmost (earliest deadline) element.
863 */
864 struct rb_root_cached pushable_dl_tasks_root;
865 #else
866 struct dl_bw dl_bw;
867 #endif
868 /*
869 * "Active utilization" for this runqueue: increased when a
870 * task wakes up (becomes TASK_RUNNING) and decreased when a
871 * task blocks
872 */
873 u64 running_bw;
874
875 /*
876 * Utilization of the tasks "assigned" to this runqueue (including
877 * the tasks that are in runqueue and the tasks that executed on this
878 * CPU and blocked). Increased when a task moves to this runqueue, and
879 * decreased when the task moves away (migrates, changes scheduling
880 * policy, or terminates).
881 * This is needed to compute the "inactive utilization" for the
882 * runqueue (inactive utilization = this_bw - running_bw).
883 */
884 u64 this_bw;
885 u64 extra_bw;
886
887 /*
888 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
889 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
890 */
891 u64 max_bw;
892
893 /*
894 * Inverse of the fraction of CPU utilization that can be reclaimed
895 * by the GRUB algorithm.
896 */
897 u64 bw_ratio;
898 };
899
900 #ifdef CONFIG_FAIR_GROUP_SCHED
901
902 /* An entity is a task if it doesn't "own" a runqueue */
903 #define entity_is_task(se) (!se->my_q)
904
se_update_runnable(struct sched_entity * se)905 static inline void se_update_runnable(struct sched_entity *se)
906 {
907 if (!entity_is_task(se)) {
908 struct cfs_rq *cfs_rq = se->my_q;
909
910 se->runnable_weight = cfs_rq->h_nr_running - cfs_rq->h_nr_delayed;
911 }
912 }
913
se_runnable(struct sched_entity * se)914 static inline long se_runnable(struct sched_entity *se)
915 {
916 if (se->sched_delayed)
917 return false;
918
919 if (entity_is_task(se))
920 return !!se->on_rq;
921 else
922 return se->runnable_weight;
923 }
924
925 #else /* !CONFIG_FAIR_GROUP_SCHED: */
926
927 #define entity_is_task(se) 1
928
se_update_runnable(struct sched_entity * se)929 static inline void se_update_runnable(struct sched_entity *se) { }
930
se_runnable(struct sched_entity * se)931 static inline long se_runnable(struct sched_entity *se)
932 {
933 if (se->sched_delayed)
934 return false;
935
936 return !!se->on_rq;
937 }
938
939 #endif /* !CONFIG_FAIR_GROUP_SCHED */
940
941 #ifdef CONFIG_SMP
942 /*
943 * XXX we want to get rid of these helpers and use the full load resolution.
944 */
se_weight(struct sched_entity * se)945 static inline long se_weight(struct sched_entity *se)
946 {
947 return scale_load_down(se->load.weight);
948 }
949
950
sched_asym_prefer(int a,int b)951 static inline bool sched_asym_prefer(int a, int b)
952 {
953 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
954 }
955
956 struct perf_domain {
957 struct em_perf_domain *em_pd;
958 struct perf_domain *next;
959 struct rcu_head rcu;
960 };
961
962 /*
963 * We add the notion of a root-domain which will be used to define per-domain
964 * variables. Each exclusive cpuset essentially defines an island domain by
965 * fully partitioning the member CPUs from any other cpuset. Whenever a new
966 * exclusive cpuset is created, we also create and attach a new root-domain
967 * object.
968 *
969 */
970 struct root_domain {
971 atomic_t refcount;
972 atomic_t rto_count;
973 struct rcu_head rcu;
974 cpumask_var_t span;
975 cpumask_var_t online;
976
977 /*
978 * Indicate pullable load on at least one CPU, e.g:
979 * - More than one runnable task
980 * - Running task is misfit
981 */
982 bool overloaded;
983
984 /* Indicate one or more CPUs over-utilized (tipping point) */
985 bool overutilized;
986
987 /*
988 * The bit corresponding to a CPU gets set here if such CPU has more
989 * than one runnable -deadline task (as it is below for RT tasks).
990 */
991 cpumask_var_t dlo_mask;
992 atomic_t dlo_count;
993 struct dl_bw dl_bw;
994 struct cpudl cpudl;
995
996 /*
997 * Indicate whether a root_domain's dl_bw has been checked or
998 * updated. It's monotonously increasing value.
999 *
1000 * Also, some corner cases, like 'wrap around' is dangerous, but given
1001 * that u64 is 'big enough'. So that shouldn't be a concern.
1002 */
1003 u64 visit_gen;
1004
1005 #ifdef HAVE_RT_PUSH_IPI
1006 /*
1007 * For IPI pull requests, loop across the rto_mask.
1008 */
1009 struct irq_work rto_push_work;
1010 raw_spinlock_t rto_lock;
1011 /* These are only updated and read within rto_lock */
1012 int rto_loop;
1013 int rto_cpu;
1014 /* These atomics are updated outside of a lock */
1015 atomic_t rto_loop_next;
1016 atomic_t rto_loop_start;
1017 #endif
1018 /*
1019 * The "RT overload" flag: it gets set if a CPU has more than
1020 * one runnable RT task.
1021 */
1022 cpumask_var_t rto_mask;
1023 struct cpupri cpupri;
1024
1025 /*
1026 * NULL-terminated list of performance domains intersecting with the
1027 * CPUs of the rd. Protected by RCU.
1028 */
1029 struct perf_domain __rcu *pd;
1030 };
1031
1032 extern void init_defrootdomain(void);
1033 extern int sched_init_domains(const struct cpumask *cpu_map);
1034 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1035 extern void sched_get_rd(struct root_domain *rd);
1036 extern void sched_put_rd(struct root_domain *rd);
1037
get_rd_overloaded(struct root_domain * rd)1038 static inline int get_rd_overloaded(struct root_domain *rd)
1039 {
1040 return READ_ONCE(rd->overloaded);
1041 }
1042
set_rd_overloaded(struct root_domain * rd,int status)1043 static inline void set_rd_overloaded(struct root_domain *rd, int status)
1044 {
1045 if (get_rd_overloaded(rd) != status)
1046 WRITE_ONCE(rd->overloaded, status);
1047 }
1048
1049 #ifdef HAVE_RT_PUSH_IPI
1050 extern void rto_push_irq_work_func(struct irq_work *work);
1051 #endif
1052 #endif /* CONFIG_SMP */
1053
1054 #ifdef CONFIG_UCLAMP_TASK
1055 /*
1056 * struct uclamp_bucket - Utilization clamp bucket
1057 * @value: utilization clamp value for tasks on this clamp bucket
1058 * @tasks: number of RUNNABLE tasks on this clamp bucket
1059 *
1060 * Keep track of how many tasks are RUNNABLE for a given utilization
1061 * clamp value.
1062 */
1063 struct uclamp_bucket {
1064 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1065 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1066 };
1067
1068 /*
1069 * struct uclamp_rq - rq's utilization clamp
1070 * @value: currently active clamp values for a rq
1071 * @bucket: utilization clamp buckets affecting a rq
1072 *
1073 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1074 * A clamp value is affecting a rq when there is at least one task RUNNABLE
1075 * (or actually running) with that value.
1076 *
1077 * There are up to UCLAMP_CNT possible different clamp values, currently there
1078 * are only two: minimum utilization and maximum utilization.
1079 *
1080 * All utilization clamping values are MAX aggregated, since:
1081 * - for util_min: we want to run the CPU at least at the max of the minimum
1082 * utilization required by its currently RUNNABLE tasks.
1083 * - for util_max: we want to allow the CPU to run up to the max of the
1084 * maximum utilization allowed by its currently RUNNABLE tasks.
1085 *
1086 * Since on each system we expect only a limited number of different
1087 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1088 * the metrics required to compute all the per-rq utilization clamp values.
1089 */
1090 struct uclamp_rq {
1091 unsigned int value;
1092 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1093 };
1094
1095 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1096 #endif /* CONFIG_UCLAMP_TASK */
1097
1098 /*
1099 * This is the main, per-CPU runqueue data structure.
1100 *
1101 * Locking rule: those places that want to lock multiple runqueues
1102 * (such as the load balancing or the thread migration code), lock
1103 * acquire operations must be ordered by ascending &runqueue.
1104 */
1105 struct rq {
1106 /* runqueue lock: */
1107 raw_spinlock_t __lock;
1108
1109 unsigned int nr_running;
1110 #ifdef CONFIG_NUMA_BALANCING
1111 unsigned int nr_numa_running;
1112 unsigned int nr_preferred_running;
1113 unsigned int numa_migrate_on;
1114 #endif
1115 #ifdef CONFIG_NO_HZ_COMMON
1116 #ifdef CONFIG_SMP
1117 unsigned long last_blocked_load_update_tick;
1118 unsigned int has_blocked_load;
1119 call_single_data_t nohz_csd;
1120 #endif /* CONFIG_SMP */
1121 unsigned int nohz_tick_stopped;
1122 atomic_t nohz_flags;
1123 #endif /* CONFIG_NO_HZ_COMMON */
1124
1125 #ifdef CONFIG_SMP
1126 unsigned int ttwu_pending;
1127 #endif
1128 u64 nr_switches;
1129
1130 #ifdef CONFIG_UCLAMP_TASK
1131 /* Utilization clamp values based on CPU's RUNNABLE tasks */
1132 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
1133 unsigned int uclamp_flags;
1134 #define UCLAMP_FLAG_IDLE 0x01
1135 #endif
1136
1137 struct cfs_rq cfs;
1138 struct rt_rq rt;
1139 struct dl_rq dl;
1140 #ifdef CONFIG_SCHED_CLASS_EXT
1141 struct scx_rq scx;
1142 #endif
1143
1144 struct sched_dl_entity fair_server;
1145
1146 #ifdef CONFIG_FAIR_GROUP_SCHED
1147 /* list of leaf cfs_rq on this CPU: */
1148 struct list_head leaf_cfs_rq_list;
1149 struct list_head *tmp_alone_branch;
1150 #endif /* CONFIG_FAIR_GROUP_SCHED */
1151
1152 /*
1153 * This is part of a global counter where only the total sum
1154 * over all CPUs matters. A task can increase this counter on
1155 * one CPU and if it got migrated afterwards it may decrease
1156 * it on another CPU. Always updated under the runqueue lock:
1157 */
1158 unsigned int nr_uninterruptible;
1159
1160 union {
1161 struct task_struct __rcu *donor; /* Scheduler context */
1162 struct task_struct __rcu *curr; /* Execution context */
1163 };
1164 struct sched_dl_entity *dl_server;
1165 struct task_struct *idle;
1166 struct task_struct *stop;
1167 unsigned long next_balance;
1168 struct mm_struct *prev_mm;
1169
1170 unsigned int clock_update_flags;
1171 u64 clock;
1172 /* Ensure that all clocks are in the same cache line */
1173 u64 clock_task ____cacheline_aligned;
1174 u64 clock_pelt;
1175 unsigned long lost_idle_time;
1176 u64 clock_pelt_idle;
1177 u64 clock_idle;
1178 #ifndef CONFIG_64BIT
1179 u64 clock_pelt_idle_copy;
1180 u64 clock_idle_copy;
1181 #endif
1182
1183 atomic_t nr_iowait;
1184
1185 #ifdef CONFIG_SCHED_DEBUG
1186 u64 last_seen_need_resched_ns;
1187 int ticks_without_resched;
1188 #endif
1189
1190 #ifdef CONFIG_MEMBARRIER
1191 int membarrier_state;
1192 #endif
1193
1194 #ifdef CONFIG_SMP
1195 struct root_domain *rd;
1196 struct sched_domain __rcu *sd;
1197
1198 unsigned long cpu_capacity;
1199
1200 struct balance_callback *balance_callback;
1201
1202 unsigned char nohz_idle_balance;
1203 unsigned char idle_balance;
1204
1205 unsigned long misfit_task_load;
1206
1207 /* For active balancing */
1208 int active_balance;
1209 int push_cpu;
1210 struct cpu_stop_work active_balance_work;
1211
1212 /* CPU of this runqueue: */
1213 int cpu;
1214 int online;
1215
1216 struct list_head cfs_tasks;
1217
1218 struct sched_avg avg_rt;
1219 struct sched_avg avg_dl;
1220 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1221 struct sched_avg avg_irq;
1222 #endif
1223 #ifdef CONFIG_SCHED_HW_PRESSURE
1224 struct sched_avg avg_hw;
1225 #endif
1226 u64 idle_stamp;
1227 u64 avg_idle;
1228
1229 /* This is used to determine avg_idle's max value */
1230 u64 max_idle_balance_cost;
1231
1232 #ifdef CONFIG_HOTPLUG_CPU
1233 struct rcuwait hotplug_wait;
1234 #endif
1235 #endif /* CONFIG_SMP */
1236
1237 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1238 u64 prev_irq_time;
1239 u64 psi_irq_time;
1240 #endif
1241 #ifdef CONFIG_PARAVIRT
1242 u64 prev_steal_time;
1243 #endif
1244 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1245 u64 prev_steal_time_rq;
1246 #endif
1247
1248 /* calc_load related fields */
1249 unsigned long calc_load_update;
1250 long calc_load_active;
1251
1252 #ifdef CONFIG_SCHED_HRTICK
1253 #ifdef CONFIG_SMP
1254 call_single_data_t hrtick_csd;
1255 #endif
1256 struct hrtimer hrtick_timer;
1257 ktime_t hrtick_time;
1258 #endif
1259
1260 #ifdef CONFIG_SCHEDSTATS
1261 /* latency stats */
1262 struct sched_info rq_sched_info;
1263 unsigned long long rq_cpu_time;
1264
1265 /* sys_sched_yield() stats */
1266 unsigned int yld_count;
1267
1268 /* schedule() stats */
1269 unsigned int sched_count;
1270 unsigned int sched_goidle;
1271
1272 /* try_to_wake_up() stats */
1273 unsigned int ttwu_count;
1274 unsigned int ttwu_local;
1275 #endif
1276
1277 #ifdef CONFIG_CPU_IDLE
1278 /* Must be inspected within a RCU lock section */
1279 struct cpuidle_state *idle_state;
1280 #endif
1281
1282 #ifdef CONFIG_SMP
1283 unsigned int nr_pinned;
1284 #endif
1285 unsigned int push_busy;
1286 struct cpu_stop_work push_work;
1287
1288 #ifdef CONFIG_SCHED_CORE
1289 /* per rq */
1290 struct rq *core;
1291 struct task_struct *core_pick;
1292 struct sched_dl_entity *core_dl_server;
1293 unsigned int core_enabled;
1294 unsigned int core_sched_seq;
1295 struct rb_root core_tree;
1296
1297 /* shared state -- careful with sched_core_cpu_deactivate() */
1298 unsigned int core_task_seq;
1299 unsigned int core_pick_seq;
1300 unsigned long core_cookie;
1301 unsigned int core_forceidle_count;
1302 unsigned int core_forceidle_seq;
1303 unsigned int core_forceidle_occupation;
1304 u64 core_forceidle_start;
1305 #endif
1306
1307 /* Scratch cpumask to be temporarily used under rq_lock */
1308 cpumask_var_t scratch_mask;
1309
1310 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1311 call_single_data_t cfsb_csd;
1312 struct list_head cfsb_csd_list;
1313 #endif
1314 };
1315
1316 #ifdef CONFIG_FAIR_GROUP_SCHED
1317
1318 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1319 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1320 {
1321 return cfs_rq->rq;
1322 }
1323
1324 #else
1325
rq_of(struct cfs_rq * cfs_rq)1326 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1327 {
1328 return container_of(cfs_rq, struct rq, cfs);
1329 }
1330 #endif
1331
cpu_of(struct rq * rq)1332 static inline int cpu_of(struct rq *rq)
1333 {
1334 #ifdef CONFIG_SMP
1335 return rq->cpu;
1336 #else
1337 return 0;
1338 #endif
1339 }
1340
1341 #define MDF_PUSH 0x01
1342
is_migration_disabled(struct task_struct * p)1343 static inline bool is_migration_disabled(struct task_struct *p)
1344 {
1345 #ifdef CONFIG_SMP
1346 return p->migration_disabled;
1347 #else
1348 return false;
1349 #endif
1350 }
1351
1352 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1353
1354 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1355 #define this_rq() this_cpu_ptr(&runqueues)
1356 #define task_rq(p) cpu_rq(task_cpu(p))
1357 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1358 #define raw_rq() raw_cpu_ptr(&runqueues)
1359
rq_set_donor(struct rq * rq,struct task_struct * t)1360 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1361 {
1362 /* Do nothing */
1363 }
1364
1365 #ifdef CONFIG_SCHED_CORE
1366 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1367
1368 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1369
sched_core_enabled(struct rq * rq)1370 static inline bool sched_core_enabled(struct rq *rq)
1371 {
1372 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1373 }
1374
sched_core_disabled(void)1375 static inline bool sched_core_disabled(void)
1376 {
1377 return !static_branch_unlikely(&__sched_core_enabled);
1378 }
1379
1380 /*
1381 * Be careful with this function; not for general use. The return value isn't
1382 * stable unless you actually hold a relevant rq->__lock.
1383 */
rq_lockp(struct rq * rq)1384 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1385 {
1386 if (sched_core_enabled(rq))
1387 return &rq->core->__lock;
1388
1389 return &rq->__lock;
1390 }
1391
__rq_lockp(struct rq * rq)1392 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1393 {
1394 if (rq->core_enabled)
1395 return &rq->core->__lock;
1396
1397 return &rq->__lock;
1398 }
1399
1400 extern bool
1401 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1402
1403 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1404
1405 /*
1406 * Helpers to check if the CPU's core cookie matches with the task's cookie
1407 * when core scheduling is enabled.
1408 * A special case is that the task's cookie always matches with CPU's core
1409 * cookie if the CPU is in an idle core.
1410 */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1411 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1412 {
1413 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1414 if (!sched_core_enabled(rq))
1415 return true;
1416
1417 return rq->core->core_cookie == p->core_cookie;
1418 }
1419
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1420 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1421 {
1422 bool idle_core = true;
1423 int cpu;
1424
1425 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1426 if (!sched_core_enabled(rq))
1427 return true;
1428
1429 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1430 if (!available_idle_cpu(cpu)) {
1431 idle_core = false;
1432 break;
1433 }
1434 }
1435
1436 /*
1437 * A CPU in an idle core is always the best choice for tasks with
1438 * cookies.
1439 */
1440 return idle_core || rq->core->core_cookie == p->core_cookie;
1441 }
1442
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1443 static inline bool sched_group_cookie_match(struct rq *rq,
1444 struct task_struct *p,
1445 struct sched_group *group)
1446 {
1447 int cpu;
1448
1449 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1450 if (!sched_core_enabled(rq))
1451 return true;
1452
1453 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1454 if (sched_core_cookie_match(cpu_rq(cpu), p))
1455 return true;
1456 }
1457 return false;
1458 }
1459
sched_core_enqueued(struct task_struct * p)1460 static inline bool sched_core_enqueued(struct task_struct *p)
1461 {
1462 return !RB_EMPTY_NODE(&p->core_node);
1463 }
1464
1465 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1466 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1467
1468 extern void sched_core_get(void);
1469 extern void sched_core_put(void);
1470
1471 #else /* !CONFIG_SCHED_CORE: */
1472
sched_core_enabled(struct rq * rq)1473 static inline bool sched_core_enabled(struct rq *rq)
1474 {
1475 return false;
1476 }
1477
sched_core_disabled(void)1478 static inline bool sched_core_disabled(void)
1479 {
1480 return true;
1481 }
1482
rq_lockp(struct rq * rq)1483 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1484 {
1485 return &rq->__lock;
1486 }
1487
__rq_lockp(struct rq * rq)1488 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1489 {
1490 return &rq->__lock;
1491 }
1492
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1493 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1494 {
1495 return true;
1496 }
1497
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1498 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1499 {
1500 return true;
1501 }
1502
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1503 static inline bool sched_group_cookie_match(struct rq *rq,
1504 struct task_struct *p,
1505 struct sched_group *group)
1506 {
1507 return true;
1508 }
1509
1510 #endif /* !CONFIG_SCHED_CORE */
1511
lockdep_assert_rq_held(struct rq * rq)1512 static inline void lockdep_assert_rq_held(struct rq *rq)
1513 {
1514 lockdep_assert_held(__rq_lockp(rq));
1515 }
1516
1517 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1518 extern bool raw_spin_rq_trylock(struct rq *rq);
1519 extern void raw_spin_rq_unlock(struct rq *rq);
1520
raw_spin_rq_lock(struct rq * rq)1521 static inline void raw_spin_rq_lock(struct rq *rq)
1522 {
1523 raw_spin_rq_lock_nested(rq, 0);
1524 }
1525
raw_spin_rq_lock_irq(struct rq * rq)1526 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1527 {
1528 local_irq_disable();
1529 raw_spin_rq_lock(rq);
1530 }
1531
raw_spin_rq_unlock_irq(struct rq * rq)1532 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1533 {
1534 raw_spin_rq_unlock(rq);
1535 local_irq_enable();
1536 }
1537
_raw_spin_rq_lock_irqsave(struct rq * rq)1538 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1539 {
1540 unsigned long flags;
1541
1542 local_irq_save(flags);
1543 raw_spin_rq_lock(rq);
1544
1545 return flags;
1546 }
1547
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1548 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1549 {
1550 raw_spin_rq_unlock(rq);
1551 local_irq_restore(flags);
1552 }
1553
1554 #define raw_spin_rq_lock_irqsave(rq, flags) \
1555 do { \
1556 flags = _raw_spin_rq_lock_irqsave(rq); \
1557 } while (0)
1558
1559 #ifdef CONFIG_SCHED_SMT
1560 extern void __update_idle_core(struct rq *rq);
1561
update_idle_core(struct rq * rq)1562 static inline void update_idle_core(struct rq *rq)
1563 {
1564 if (static_branch_unlikely(&sched_smt_present))
1565 __update_idle_core(rq);
1566 }
1567
1568 #else
update_idle_core(struct rq * rq)1569 static inline void update_idle_core(struct rq *rq) { }
1570 #endif
1571
1572 #ifdef CONFIG_FAIR_GROUP_SCHED
1573
task_of(struct sched_entity * se)1574 static inline struct task_struct *task_of(struct sched_entity *se)
1575 {
1576 SCHED_WARN_ON(!entity_is_task(se));
1577 return container_of(se, struct task_struct, se);
1578 }
1579
task_cfs_rq(struct task_struct * p)1580 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1581 {
1582 return p->se.cfs_rq;
1583 }
1584
1585 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1586 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1587 {
1588 return se->cfs_rq;
1589 }
1590
1591 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1592 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1593 {
1594 return grp->my_q;
1595 }
1596
1597 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1598
1599 #define task_of(_se) container_of(_se, struct task_struct, se)
1600
task_cfs_rq(const struct task_struct * p)1601 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1602 {
1603 return &task_rq(p)->cfs;
1604 }
1605
cfs_rq_of(const struct sched_entity * se)1606 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1607 {
1608 const struct task_struct *p = task_of(se);
1609 struct rq *rq = task_rq(p);
1610
1611 return &rq->cfs;
1612 }
1613
1614 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1615 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1616 {
1617 return NULL;
1618 }
1619
1620 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1621
1622 extern void update_rq_clock(struct rq *rq);
1623
1624 /*
1625 * rq::clock_update_flags bits
1626 *
1627 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1628 * call to __schedule(). This is an optimisation to avoid
1629 * neighbouring rq clock updates.
1630 *
1631 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1632 * in effect and calls to update_rq_clock() are being ignored.
1633 *
1634 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1635 * made to update_rq_clock() since the last time rq::lock was pinned.
1636 *
1637 * If inside of __schedule(), clock_update_flags will have been
1638 * shifted left (a left shift is a cheap operation for the fast path
1639 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1640 *
1641 * if (rq-clock_update_flags >= RQCF_UPDATED)
1642 *
1643 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1644 * one position though, because the next rq_unpin_lock() will shift it
1645 * back.
1646 */
1647 #define RQCF_REQ_SKIP 0x01
1648 #define RQCF_ACT_SKIP 0x02
1649 #define RQCF_UPDATED 0x04
1650
assert_clock_updated(struct rq * rq)1651 static inline void assert_clock_updated(struct rq *rq)
1652 {
1653 /*
1654 * The only reason for not seeing a clock update since the
1655 * last rq_pin_lock() is if we're currently skipping updates.
1656 */
1657 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1658 }
1659
rq_clock(struct rq * rq)1660 static inline u64 rq_clock(struct rq *rq)
1661 {
1662 lockdep_assert_rq_held(rq);
1663 assert_clock_updated(rq);
1664
1665 return rq->clock;
1666 }
1667
rq_clock_task(struct rq * rq)1668 static inline u64 rq_clock_task(struct rq *rq)
1669 {
1670 lockdep_assert_rq_held(rq);
1671 assert_clock_updated(rq);
1672
1673 return rq->clock_task;
1674 }
1675
rq_clock_skip_update(struct rq * rq)1676 static inline void rq_clock_skip_update(struct rq *rq)
1677 {
1678 lockdep_assert_rq_held(rq);
1679 rq->clock_update_flags |= RQCF_REQ_SKIP;
1680 }
1681
1682 /*
1683 * See rt task throttling, which is the only time a skip
1684 * request is canceled.
1685 */
rq_clock_cancel_skipupdate(struct rq * rq)1686 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1687 {
1688 lockdep_assert_rq_held(rq);
1689 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1690 }
1691
1692 /*
1693 * During cpu offlining and rq wide unthrottling, we can trigger
1694 * an update_rq_clock() for several cfs and rt runqueues (Typically
1695 * when using list_for_each_entry_*)
1696 * rq_clock_start_loop_update() can be called after updating the clock
1697 * once and before iterating over the list to prevent multiple update.
1698 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1699 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1700 */
rq_clock_start_loop_update(struct rq * rq)1701 static inline void rq_clock_start_loop_update(struct rq *rq)
1702 {
1703 lockdep_assert_rq_held(rq);
1704 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1705 rq->clock_update_flags |= RQCF_ACT_SKIP;
1706 }
1707
rq_clock_stop_loop_update(struct rq * rq)1708 static inline void rq_clock_stop_loop_update(struct rq *rq)
1709 {
1710 lockdep_assert_rq_held(rq);
1711 rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1712 }
1713
1714 struct rq_flags {
1715 unsigned long flags;
1716 struct pin_cookie cookie;
1717 #ifdef CONFIG_SCHED_DEBUG
1718 /*
1719 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1720 * current pin context is stashed here in case it needs to be
1721 * restored in rq_repin_lock().
1722 */
1723 unsigned int clock_update_flags;
1724 #endif
1725 };
1726
1727 extern struct balance_callback balance_push_callback;
1728
1729 /*
1730 * Lockdep annotation that avoids accidental unlocks; it's like a
1731 * sticky/continuous lockdep_assert_held().
1732 *
1733 * This avoids code that has access to 'struct rq *rq' (basically everything in
1734 * the scheduler) from accidentally unlocking the rq if they do not also have a
1735 * copy of the (on-stack) 'struct rq_flags rf'.
1736 *
1737 * Also see Documentation/locking/lockdep-design.rst.
1738 */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1739 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1740 {
1741 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1742
1743 #ifdef CONFIG_SCHED_DEBUG
1744 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1745 rf->clock_update_flags = 0;
1746 # ifdef CONFIG_SMP
1747 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1748 # endif
1749 #endif
1750 }
1751
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1752 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1753 {
1754 #ifdef CONFIG_SCHED_DEBUG
1755 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1756 rf->clock_update_flags = RQCF_UPDATED;
1757 #endif
1758
1759 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1760 }
1761
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1762 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1763 {
1764 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1765
1766 #ifdef CONFIG_SCHED_DEBUG
1767 /*
1768 * Restore the value we stashed in @rf for this pin context.
1769 */
1770 rq->clock_update_flags |= rf->clock_update_flags;
1771 #endif
1772 }
1773
1774 extern
1775 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1776 __acquires(rq->lock);
1777
1778 extern
1779 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1780 __acquires(p->pi_lock)
1781 __acquires(rq->lock);
1782
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1783 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1784 __releases(rq->lock)
1785 {
1786 rq_unpin_lock(rq, rf);
1787 raw_spin_rq_unlock(rq);
1788 }
1789
1790 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1791 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1792 __releases(rq->lock)
1793 __releases(p->pi_lock)
1794 {
1795 rq_unpin_lock(rq, rf);
1796 raw_spin_rq_unlock(rq);
1797 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1798 }
1799
1800 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1801 _T->rq = task_rq_lock(_T->lock, &_T->rf),
1802 task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1803 struct rq *rq; struct rq_flags rf)
1804
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1805 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1806 __acquires(rq->lock)
1807 {
1808 raw_spin_rq_lock_irqsave(rq, rf->flags);
1809 rq_pin_lock(rq, rf);
1810 }
1811
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1812 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1813 __acquires(rq->lock)
1814 {
1815 raw_spin_rq_lock_irq(rq);
1816 rq_pin_lock(rq, rf);
1817 }
1818
rq_lock(struct rq * rq,struct rq_flags * rf)1819 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1820 __acquires(rq->lock)
1821 {
1822 raw_spin_rq_lock(rq);
1823 rq_pin_lock(rq, rf);
1824 }
1825
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1826 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1827 __releases(rq->lock)
1828 {
1829 rq_unpin_lock(rq, rf);
1830 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1831 }
1832
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1833 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1834 __releases(rq->lock)
1835 {
1836 rq_unpin_lock(rq, rf);
1837 raw_spin_rq_unlock_irq(rq);
1838 }
1839
rq_unlock(struct rq * rq,struct rq_flags * rf)1840 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1841 __releases(rq->lock)
1842 {
1843 rq_unpin_lock(rq, rf);
1844 raw_spin_rq_unlock(rq);
1845 }
1846
1847 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1848 rq_lock(_T->lock, &_T->rf),
1849 rq_unlock(_T->lock, &_T->rf),
1850 struct rq_flags rf)
1851
1852 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1853 rq_lock_irq(_T->lock, &_T->rf),
1854 rq_unlock_irq(_T->lock, &_T->rf),
1855 struct rq_flags rf)
1856
1857 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1858 rq_lock_irqsave(_T->lock, &_T->rf),
1859 rq_unlock_irqrestore(_T->lock, &_T->rf),
1860 struct rq_flags rf)
1861
this_rq_lock_irq(struct rq_flags * rf)1862 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1863 __acquires(rq->lock)
1864 {
1865 struct rq *rq;
1866
1867 local_irq_disable();
1868 rq = this_rq();
1869 rq_lock(rq, rf);
1870
1871 return rq;
1872 }
1873
1874 #ifdef CONFIG_NUMA
1875
1876 enum numa_topology_type {
1877 NUMA_DIRECT,
1878 NUMA_GLUELESS_MESH,
1879 NUMA_BACKPLANE,
1880 };
1881
1882 extern enum numa_topology_type sched_numa_topology_type;
1883 extern int sched_max_numa_distance;
1884 extern bool find_numa_distance(int distance);
1885 extern void sched_init_numa(int offline_node);
1886 extern void sched_update_numa(int cpu, bool online);
1887 extern void sched_domains_numa_masks_set(unsigned int cpu);
1888 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1889 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1890
1891 #else /* !CONFIG_NUMA: */
1892
sched_init_numa(int offline_node)1893 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1894 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1895 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1896 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1897
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1898 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1899 {
1900 return nr_cpu_ids;
1901 }
1902
1903 #endif /* !CONFIG_NUMA */
1904
1905 #ifdef CONFIG_NUMA_BALANCING
1906
1907 /* The regions in numa_faults array from task_struct */
1908 enum numa_faults_stats {
1909 NUMA_MEM = 0,
1910 NUMA_CPU,
1911 NUMA_MEMBUF,
1912 NUMA_CPUBUF
1913 };
1914
1915 extern void sched_setnuma(struct task_struct *p, int node);
1916 extern int migrate_task_to(struct task_struct *p, int cpu);
1917 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1918 int cpu, int scpu);
1919 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1920
1921 #else /* !CONFIG_NUMA_BALANCING: */
1922
1923 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1924 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1925 {
1926 }
1927
1928 #endif /* !CONFIG_NUMA_BALANCING */
1929
1930 #ifdef CONFIG_SMP
1931
1932 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1933 queue_balance_callback(struct rq *rq,
1934 struct balance_callback *head,
1935 void (*func)(struct rq *rq))
1936 {
1937 lockdep_assert_rq_held(rq);
1938
1939 /*
1940 * Don't (re)queue an already queued item; nor queue anything when
1941 * balance_push() is active, see the comment with
1942 * balance_push_callback.
1943 */
1944 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1945 return;
1946
1947 head->func = func;
1948 head->next = rq->balance_callback;
1949 rq->balance_callback = head;
1950 }
1951
1952 #define rcu_dereference_check_sched_domain(p) \
1953 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
1954
1955 /*
1956 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1957 * See destroy_sched_domains: call_rcu for details.
1958 *
1959 * The domain tree of any CPU may only be accessed from within
1960 * preempt-disabled sections.
1961 */
1962 #define for_each_domain(cpu, __sd) \
1963 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1964 __sd; __sd = __sd->parent)
1965
1966 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1967 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1968 static const unsigned int SD_SHARED_CHILD_MASK =
1969 #include <linux/sched/sd_flags.h>
1970 0;
1971 #undef SD_FLAG
1972
1973 /**
1974 * highest_flag_domain - Return highest sched_domain containing flag.
1975 * @cpu: The CPU whose highest level of sched domain is to
1976 * be returned.
1977 * @flag: The flag to check for the highest sched_domain
1978 * for the given CPU.
1979 *
1980 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1981 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1982 */
highest_flag_domain(int cpu,int flag)1983 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1984 {
1985 struct sched_domain *sd, *hsd = NULL;
1986
1987 for_each_domain(cpu, sd) {
1988 if (sd->flags & flag) {
1989 hsd = sd;
1990 continue;
1991 }
1992
1993 /*
1994 * Stop the search if @flag is known to be shared at lower
1995 * levels. It will not be found further up.
1996 */
1997 if (flag & SD_SHARED_CHILD_MASK)
1998 break;
1999 }
2000
2001 return hsd;
2002 }
2003
lowest_flag_domain(int cpu,int flag)2004 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2005 {
2006 struct sched_domain *sd;
2007
2008 for_each_domain(cpu, sd) {
2009 if (sd->flags & flag)
2010 break;
2011 }
2012
2013 return sd;
2014 }
2015
2016 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2017 DECLARE_PER_CPU(int, sd_llc_size);
2018 DECLARE_PER_CPU(int, sd_llc_id);
2019 DECLARE_PER_CPU(int, sd_share_id);
2020 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2021 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2022 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2023 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2024
2025 extern struct static_key_false sched_asym_cpucapacity;
2026 extern struct static_key_false sched_cluster_active;
2027
sched_asym_cpucap_active(void)2028 static __always_inline bool sched_asym_cpucap_active(void)
2029 {
2030 return static_branch_unlikely(&sched_asym_cpucapacity);
2031 }
2032
2033 struct sched_group_capacity {
2034 atomic_t ref;
2035 /*
2036 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2037 * for a single CPU.
2038 */
2039 unsigned long capacity;
2040 unsigned long min_capacity; /* Min per-CPU capacity in group */
2041 unsigned long max_capacity; /* Max per-CPU capacity in group */
2042 unsigned long next_update;
2043 int imbalance; /* XXX unrelated to capacity but shared group state */
2044
2045 #ifdef CONFIG_SCHED_DEBUG
2046 int id;
2047 #endif
2048
2049 unsigned long cpumask[]; /* Balance mask */
2050 };
2051
2052 struct sched_group {
2053 struct sched_group *next; /* Must be a circular list */
2054 atomic_t ref;
2055
2056 unsigned int group_weight;
2057 unsigned int cores;
2058 struct sched_group_capacity *sgc;
2059 int asym_prefer_cpu; /* CPU of highest priority in group */
2060 int flags;
2061
2062 /*
2063 * The CPUs this group covers.
2064 *
2065 * NOTE: this field is variable length. (Allocated dynamically
2066 * by attaching extra space to the end of the structure,
2067 * depending on how many CPUs the kernel has booted up with)
2068 */
2069 unsigned long cpumask[];
2070 };
2071
sched_group_span(struct sched_group * sg)2072 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2073 {
2074 return to_cpumask(sg->cpumask);
2075 }
2076
2077 /*
2078 * See build_balance_mask().
2079 */
group_balance_mask(struct sched_group * sg)2080 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2081 {
2082 return to_cpumask(sg->sgc->cpumask);
2083 }
2084
2085 extern int group_balance_cpu(struct sched_group *sg);
2086
2087 #ifdef CONFIG_SCHED_DEBUG
2088 extern void update_sched_domain_debugfs(void);
2089 extern void dirty_sched_domain_sysctl(int cpu);
2090 #else
update_sched_domain_debugfs(void)2091 static inline void update_sched_domain_debugfs(void) { }
dirty_sched_domain_sysctl(int cpu)2092 static inline void dirty_sched_domain_sysctl(int cpu) { }
2093 #endif
2094
2095 extern int sched_update_scaling(void);
2096
task_user_cpus(struct task_struct * p)2097 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2098 {
2099 if (!p->user_cpus_ptr)
2100 return cpu_possible_mask; /* &init_task.cpus_mask */
2101 return p->user_cpus_ptr;
2102 }
2103
2104 #endif /* CONFIG_SMP */
2105
2106 #ifdef CONFIG_CGROUP_SCHED
2107
2108 /*
2109 * Return the group to which this tasks belongs.
2110 *
2111 * We cannot use task_css() and friends because the cgroup subsystem
2112 * changes that value before the cgroup_subsys::attach() method is called,
2113 * therefore we cannot pin it and might observe the wrong value.
2114 *
2115 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2116 * core changes this before calling sched_move_task().
2117 *
2118 * Instead we use a 'copy' which is updated from sched_move_task() while
2119 * holding both task_struct::pi_lock and rq::lock.
2120 */
task_group(struct task_struct * p)2121 static inline struct task_group *task_group(struct task_struct *p)
2122 {
2123 return p->sched_task_group;
2124 }
2125
2126 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2127 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2128 {
2129 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2130 struct task_group *tg = task_group(p);
2131 #endif
2132
2133 #ifdef CONFIG_FAIR_GROUP_SCHED
2134 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2135 p->se.cfs_rq = tg->cfs_rq[cpu];
2136 p->se.parent = tg->se[cpu];
2137 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2138 #endif
2139
2140 #ifdef CONFIG_RT_GROUP_SCHED
2141 p->rt.rt_rq = tg->rt_rq[cpu];
2142 p->rt.parent = tg->rt_se[cpu];
2143 #endif
2144 }
2145
2146 #else /* !CONFIG_CGROUP_SCHED: */
2147
set_task_rq(struct task_struct * p,unsigned int cpu)2148 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2149
task_group(struct task_struct * p)2150 static inline struct task_group *task_group(struct task_struct *p)
2151 {
2152 return NULL;
2153 }
2154
2155 #endif /* !CONFIG_CGROUP_SCHED */
2156
__set_task_cpu(struct task_struct * p,unsigned int cpu)2157 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2158 {
2159 set_task_rq(p, cpu);
2160 #ifdef CONFIG_SMP
2161 /*
2162 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2163 * successfully executed on another CPU. We must ensure that updates of
2164 * per-task data have been completed by this moment.
2165 */
2166 smp_wmb();
2167 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2168 p->wake_cpu = cpu;
2169 #endif
2170 }
2171
2172 /*
2173 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2174 */
2175 #ifdef CONFIG_SCHED_DEBUG
2176 # define const_debug __read_mostly
2177 #else
2178 # define const_debug const
2179 #endif
2180
2181 #define SCHED_FEAT(name, enabled) \
2182 __SCHED_FEAT_##name ,
2183
2184 enum {
2185 #include "features.h"
2186 __SCHED_FEAT_NR,
2187 };
2188
2189 #undef SCHED_FEAT
2190
2191 #ifdef CONFIG_SCHED_DEBUG
2192
2193 /*
2194 * To support run-time toggling of sched features, all the translation units
2195 * (but core.c) reference the sysctl_sched_features defined in core.c.
2196 */
2197 extern const_debug unsigned int sysctl_sched_features;
2198
2199 #ifdef CONFIG_JUMP_LABEL
2200
2201 #define SCHED_FEAT(name, enabled) \
2202 static __always_inline bool static_branch_##name(struct static_key *key) \
2203 { \
2204 return static_key_##enabled(key); \
2205 }
2206
2207 #include "features.h"
2208 #undef SCHED_FEAT
2209
2210 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2211 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2212
2213 #else /* !CONFIG_JUMP_LABEL: */
2214
2215 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2216
2217 #endif /* !CONFIG_JUMP_LABEL */
2218
2219 #else /* !SCHED_DEBUG: */
2220
2221 /*
2222 * Each translation unit has its own copy of sysctl_sched_features to allow
2223 * constants propagation at compile time and compiler optimization based on
2224 * features default.
2225 */
2226 #define SCHED_FEAT(name, enabled) \
2227 (1UL << __SCHED_FEAT_##name) * enabled |
2228 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2229 #include "features.h"
2230 0;
2231 #undef SCHED_FEAT
2232
2233 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2234
2235 #endif /* !SCHED_DEBUG */
2236
2237 extern struct static_key_false sched_numa_balancing;
2238 extern struct static_key_false sched_schedstats;
2239
global_rt_period(void)2240 static inline u64 global_rt_period(void)
2241 {
2242 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2243 }
2244
global_rt_runtime(void)2245 static inline u64 global_rt_runtime(void)
2246 {
2247 if (sysctl_sched_rt_runtime < 0)
2248 return RUNTIME_INF;
2249
2250 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2251 }
2252
2253 /*
2254 * Is p the current execution context?
2255 */
task_current(struct rq * rq,struct task_struct * p)2256 static inline int task_current(struct rq *rq, struct task_struct *p)
2257 {
2258 return rq->curr == p;
2259 }
2260
2261 /*
2262 * Is p the current scheduling context?
2263 *
2264 * Note that it might be the current execution context at the same time if
2265 * rq->curr == rq->donor == p.
2266 */
task_current_donor(struct rq * rq,struct task_struct * p)2267 static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2268 {
2269 return rq->donor == p;
2270 }
2271
task_on_cpu(struct rq * rq,struct task_struct * p)2272 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2273 {
2274 #ifdef CONFIG_SMP
2275 return p->on_cpu;
2276 #else
2277 return task_current(rq, p);
2278 #endif
2279 }
2280
task_on_rq_queued(struct task_struct * p)2281 static inline int task_on_rq_queued(struct task_struct *p)
2282 {
2283 return p->on_rq == TASK_ON_RQ_QUEUED;
2284 }
2285
task_on_rq_migrating(struct task_struct * p)2286 static inline int task_on_rq_migrating(struct task_struct *p)
2287 {
2288 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2289 }
2290
2291 /* Wake flags. The first three directly map to some SD flag value */
2292 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2293 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2294 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2295
2296 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2297 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2298 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */
2299 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */
2300
2301 #ifdef CONFIG_SMP
2302 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2303 static_assert(WF_FORK == SD_BALANCE_FORK);
2304 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2305 #endif
2306
2307 /*
2308 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2309 * of tasks with abnormal "nice" values across CPUs the contribution that
2310 * each task makes to its run queue's load is weighted according to its
2311 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2312 * scaled version of the new time slice allocation that they receive on time
2313 * slice expiry etc.
2314 */
2315
2316 #define WEIGHT_IDLEPRIO 3
2317 #define WMULT_IDLEPRIO 1431655765
2318
2319 extern const int sched_prio_to_weight[40];
2320 extern const u32 sched_prio_to_wmult[40];
2321
2322 /*
2323 * {de,en}queue flags:
2324 *
2325 * DEQUEUE_SLEEP - task is no longer runnable
2326 * ENQUEUE_WAKEUP - task just became runnable
2327 *
2328 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2329 * are in a known state which allows modification. Such pairs
2330 * should preserve as much state as possible.
2331 *
2332 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2333 * in the runqueue.
2334 *
2335 * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2336 *
2337 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2338 *
2339 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2340 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2341 * ENQUEUE_MIGRATED - the task was migrated during wakeup
2342 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2343 *
2344 */
2345
2346 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */
2347 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2348 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2349 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
2350 #define DEQUEUE_SPECIAL 0x10
2351 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */
2352 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */
2353
2354 #define ENQUEUE_WAKEUP 0x01
2355 #define ENQUEUE_RESTORE 0x02
2356 #define ENQUEUE_MOVE 0x04
2357 #define ENQUEUE_NOCLOCK 0x08
2358
2359 #define ENQUEUE_HEAD 0x10
2360 #define ENQUEUE_REPLENISH 0x20
2361 #ifdef CONFIG_SMP
2362 #define ENQUEUE_MIGRATED 0x40
2363 #else
2364 #define ENQUEUE_MIGRATED 0x00
2365 #endif
2366 #define ENQUEUE_INITIAL 0x80
2367 #define ENQUEUE_MIGRATING 0x100
2368 #define ENQUEUE_DELAYED 0x200
2369 #define ENQUEUE_RQ_SELECTED 0x400
2370
2371 #define RETRY_TASK ((void *)-1UL)
2372
2373 struct affinity_context {
2374 const struct cpumask *new_mask;
2375 struct cpumask *user_mask;
2376 unsigned int flags;
2377 };
2378
2379 extern s64 update_curr_common(struct rq *rq);
2380
2381 struct sched_class {
2382
2383 #ifdef CONFIG_UCLAMP_TASK
2384 int uclamp_enabled;
2385 #endif
2386
2387 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2388 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2389 void (*yield_task) (struct rq *rq);
2390 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2391
2392 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2393
2394 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2395 struct task_struct *(*pick_task)(struct rq *rq);
2396 /*
2397 * Optional! When implemented pick_next_task() should be equivalent to:
2398 *
2399 * next = pick_task();
2400 * if (next) {
2401 * put_prev_task(prev);
2402 * set_next_task_first(next);
2403 * }
2404 */
2405 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2406
2407 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2408 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2409
2410 #ifdef CONFIG_SMP
2411 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2412
2413 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2414
2415 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2416
2417 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2418
2419 void (*rq_online)(struct rq *rq);
2420 void (*rq_offline)(struct rq *rq);
2421
2422 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2423 #endif
2424
2425 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2426 void (*task_fork)(struct task_struct *p);
2427 void (*task_dead)(struct task_struct *p);
2428
2429 /*
2430 * The switched_from() call is allowed to drop rq->lock, therefore we
2431 * cannot assume the switched_from/switched_to pair is serialized by
2432 * rq->lock. They are however serialized by p->pi_lock.
2433 */
2434 void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2435 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2436 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
2437 void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2438 const struct load_weight *lw);
2439 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2440 int oldprio);
2441
2442 unsigned int (*get_rr_interval)(struct rq *rq,
2443 struct task_struct *task);
2444
2445 void (*update_curr)(struct rq *rq);
2446
2447 #ifdef CONFIG_FAIR_GROUP_SCHED
2448 void (*task_change_group)(struct task_struct *p);
2449 #endif
2450
2451 #ifdef CONFIG_SCHED_CORE
2452 int (*task_is_throttled)(struct task_struct *p, int cpu);
2453 #endif
2454 };
2455
put_prev_task(struct rq * rq,struct task_struct * prev)2456 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2457 {
2458 WARN_ON_ONCE(rq->donor != prev);
2459 prev->sched_class->put_prev_task(rq, prev, NULL);
2460 }
2461
set_next_task(struct rq * rq,struct task_struct * next)2462 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2463 {
2464 next->sched_class->set_next_task(rq, next, false);
2465 }
2466
2467 static inline void
__put_prev_set_next_dl_server(struct rq * rq,struct task_struct * prev,struct task_struct * next)2468 __put_prev_set_next_dl_server(struct rq *rq,
2469 struct task_struct *prev,
2470 struct task_struct *next)
2471 {
2472 prev->dl_server = NULL;
2473 next->dl_server = rq->dl_server;
2474 rq->dl_server = NULL;
2475 }
2476
put_prev_set_next_task(struct rq * rq,struct task_struct * prev,struct task_struct * next)2477 static inline void put_prev_set_next_task(struct rq *rq,
2478 struct task_struct *prev,
2479 struct task_struct *next)
2480 {
2481 WARN_ON_ONCE(rq->curr != prev);
2482
2483 __put_prev_set_next_dl_server(rq, prev, next);
2484
2485 if (next == prev)
2486 return;
2487
2488 prev->sched_class->put_prev_task(rq, prev, next);
2489 next->sched_class->set_next_task(rq, next, true);
2490 }
2491
2492 /*
2493 * Helper to define a sched_class instance; each one is placed in a separate
2494 * section which is ordered by the linker script:
2495 *
2496 * include/asm-generic/vmlinux.lds.h
2497 *
2498 * *CAREFUL* they are laid out in *REVERSE* order!!!
2499 *
2500 * Also enforce alignment on the instance, not the type, to guarantee layout.
2501 */
2502 #define DEFINE_SCHED_CLASS(name) \
2503 const struct sched_class name##_sched_class \
2504 __aligned(__alignof__(struct sched_class)) \
2505 __section("__" #name "_sched_class")
2506
2507 /* Defined in include/asm-generic/vmlinux.lds.h */
2508 extern struct sched_class __sched_class_highest[];
2509 extern struct sched_class __sched_class_lowest[];
2510
2511 extern const struct sched_class stop_sched_class;
2512 extern const struct sched_class dl_sched_class;
2513 extern const struct sched_class rt_sched_class;
2514 extern const struct sched_class fair_sched_class;
2515 extern const struct sched_class idle_sched_class;
2516
2517 #ifdef CONFIG_SCHED_CLASS_EXT
2518 extern const struct sched_class ext_sched_class;
2519
2520 DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled); /* SCX BPF scheduler loaded */
2521 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */
2522
2523 #define scx_enabled() static_branch_unlikely(&__scx_ops_enabled)
2524 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all)
2525 #else /* !CONFIG_SCHED_CLASS_EXT */
2526 #define scx_enabled() false
2527 #define scx_switched_all() false
2528 #endif /* !CONFIG_SCHED_CLASS_EXT */
2529
2530 /*
2531 * Iterate only active classes. SCX can take over all fair tasks or be
2532 * completely disabled. If the former, skip fair. If the latter, skip SCX.
2533 */
next_active_class(const struct sched_class * class)2534 static inline const struct sched_class *next_active_class(const struct sched_class *class)
2535 {
2536 class++;
2537 #ifdef CONFIG_SCHED_CLASS_EXT
2538 if (scx_switched_all() && class == &fair_sched_class)
2539 class++;
2540 if (!scx_enabled() && class == &ext_sched_class)
2541 class++;
2542 #endif
2543 return class;
2544 }
2545
2546 #define for_class_range(class, _from, _to) \
2547 for (class = (_from); class < (_to); class++)
2548
2549 #define for_each_class(class) \
2550 for_class_range(class, __sched_class_highest, __sched_class_lowest)
2551
2552 #define for_active_class_range(class, _from, _to) \
2553 for (class = (_from); class != (_to); class = next_active_class(class))
2554
2555 #define for_each_active_class(class) \
2556 for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2557
2558 #define sched_class_above(_a, _b) ((_a) < (_b))
2559
sched_stop_runnable(struct rq * rq)2560 static inline bool sched_stop_runnable(struct rq *rq)
2561 {
2562 return rq->stop && task_on_rq_queued(rq->stop);
2563 }
2564
sched_dl_runnable(struct rq * rq)2565 static inline bool sched_dl_runnable(struct rq *rq)
2566 {
2567 return rq->dl.dl_nr_running > 0;
2568 }
2569
sched_rt_runnable(struct rq * rq)2570 static inline bool sched_rt_runnable(struct rq *rq)
2571 {
2572 return rq->rt.rt_queued > 0;
2573 }
2574
sched_fair_runnable(struct rq * rq)2575 static inline bool sched_fair_runnable(struct rq *rq)
2576 {
2577 return rq->cfs.nr_running > 0;
2578 }
2579
2580 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2581 extern struct task_struct *pick_task_idle(struct rq *rq);
2582
2583 #define SCA_CHECK 0x01
2584 #define SCA_MIGRATE_DISABLE 0x02
2585 #define SCA_MIGRATE_ENABLE 0x04
2586 #define SCA_USER 0x08
2587
2588 #ifdef CONFIG_SMP
2589
2590 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2591
2592 extern void sched_balance_trigger(struct rq *rq);
2593
2594 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2595 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2596
task_allowed_on_cpu(struct task_struct * p,int cpu)2597 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2598 {
2599 /* When not in the task's cpumask, no point in looking further. */
2600 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2601 return false;
2602
2603 /* Can @cpu run a user thread? */
2604 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2605 return false;
2606
2607 return true;
2608 }
2609
alloc_user_cpus_ptr(int node)2610 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2611 {
2612 /*
2613 * See do_set_cpus_allowed() above for the rcu_head usage.
2614 */
2615 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2616
2617 return kmalloc_node(size, GFP_KERNEL, node);
2618 }
2619
get_push_task(struct rq * rq)2620 static inline struct task_struct *get_push_task(struct rq *rq)
2621 {
2622 struct task_struct *p = rq->donor;
2623
2624 lockdep_assert_rq_held(rq);
2625
2626 if (rq->push_busy)
2627 return NULL;
2628
2629 if (p->nr_cpus_allowed == 1)
2630 return NULL;
2631
2632 if (p->migration_disabled)
2633 return NULL;
2634
2635 rq->push_busy = true;
2636 return get_task_struct(p);
2637 }
2638
2639 extern int push_cpu_stop(void *arg);
2640
2641 #else /* !CONFIG_SMP: */
2642
task_allowed_on_cpu(struct task_struct * p,int cpu)2643 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2644 {
2645 return true;
2646 }
2647
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)2648 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2649 struct affinity_context *ctx)
2650 {
2651 return set_cpus_allowed_ptr(p, ctx->new_mask);
2652 }
2653
alloc_user_cpus_ptr(int node)2654 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2655 {
2656 return NULL;
2657 }
2658
2659 #endif /* !CONFIG_SMP */
2660
2661 #ifdef CONFIG_CPU_IDLE
2662
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2663 static inline void idle_set_state(struct rq *rq,
2664 struct cpuidle_state *idle_state)
2665 {
2666 rq->idle_state = idle_state;
2667 }
2668
idle_get_state(struct rq * rq)2669 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2670 {
2671 SCHED_WARN_ON(!rcu_read_lock_held());
2672
2673 return rq->idle_state;
2674 }
2675
2676 #else /* !CONFIG_CPU_IDLE: */
2677
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2678 static inline void idle_set_state(struct rq *rq,
2679 struct cpuidle_state *idle_state)
2680 {
2681 }
2682
idle_get_state(struct rq * rq)2683 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2684 {
2685 return NULL;
2686 }
2687
2688 #endif /* !CONFIG_CPU_IDLE */
2689
2690 extern void schedule_idle(void);
2691 asmlinkage void schedule_user(void);
2692
2693 extern void sysrq_sched_debug_show(void);
2694 extern void sched_init_granularity(void);
2695 extern void update_max_interval(void);
2696
2697 extern void init_sched_dl_class(void);
2698 extern void init_sched_rt_class(void);
2699 extern void init_sched_fair_class(void);
2700
2701 extern void resched_curr(struct rq *rq);
2702 extern void resched_curr_lazy(struct rq *rq);
2703 extern void resched_cpu(int cpu);
2704
2705 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2706 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2707
2708 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2709
2710 #define BW_SHIFT 20
2711 #define BW_UNIT (1 << BW_SHIFT)
2712 #define RATIO_SHIFT 8
2713 #define MAX_BW_BITS (64 - BW_SHIFT)
2714 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2715
2716 extern unsigned long to_ratio(u64 period, u64 runtime);
2717
2718 extern void init_entity_runnable_average(struct sched_entity *se);
2719 extern void post_init_entity_util_avg(struct task_struct *p);
2720
2721 #ifdef CONFIG_NO_HZ_FULL
2722 extern bool sched_can_stop_tick(struct rq *rq);
2723 extern int __init sched_tick_offload_init(void);
2724
2725 /*
2726 * Tick may be needed by tasks in the runqueue depending on their policy and
2727 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2728 * nohz mode if necessary.
2729 */
sched_update_tick_dependency(struct rq * rq)2730 static inline void sched_update_tick_dependency(struct rq *rq)
2731 {
2732 int cpu = cpu_of(rq);
2733
2734 if (!tick_nohz_full_cpu(cpu))
2735 return;
2736
2737 if (sched_can_stop_tick(rq))
2738 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2739 else
2740 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2741 }
2742 #else /* !CONFIG_NO_HZ_FULL: */
sched_tick_offload_init(void)2743 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2744 static inline void sched_update_tick_dependency(struct rq *rq) { }
2745 #endif /* !CONFIG_NO_HZ_FULL */
2746
add_nr_running(struct rq * rq,unsigned count)2747 static inline void add_nr_running(struct rq *rq, unsigned count)
2748 {
2749 unsigned prev_nr = rq->nr_running;
2750
2751 rq->nr_running = prev_nr + count;
2752 if (trace_sched_update_nr_running_tp_enabled()) {
2753 call_trace_sched_update_nr_running(rq, count);
2754 }
2755
2756 #ifdef CONFIG_SMP
2757 if (prev_nr < 2 && rq->nr_running >= 2)
2758 set_rd_overloaded(rq->rd, 1);
2759 #endif
2760
2761 sched_update_tick_dependency(rq);
2762 }
2763
sub_nr_running(struct rq * rq,unsigned count)2764 static inline void sub_nr_running(struct rq *rq, unsigned count)
2765 {
2766 rq->nr_running -= count;
2767 if (trace_sched_update_nr_running_tp_enabled()) {
2768 call_trace_sched_update_nr_running(rq, -count);
2769 }
2770
2771 /* Check if we still need preemption */
2772 sched_update_tick_dependency(rq);
2773 }
2774
__block_task(struct rq * rq,struct task_struct * p)2775 static inline void __block_task(struct rq *rq, struct task_struct *p)
2776 {
2777 if (p->sched_contributes_to_load)
2778 rq->nr_uninterruptible++;
2779
2780 if (p->in_iowait) {
2781 atomic_inc(&rq->nr_iowait);
2782 delayacct_blkio_start();
2783 }
2784
2785 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2786
2787 /*
2788 * The moment this write goes through, ttwu() can swoop in and migrate
2789 * this task, rendering our rq->__lock ineffective.
2790 *
2791 * __schedule() try_to_wake_up()
2792 * LOCK rq->__lock LOCK p->pi_lock
2793 * pick_next_task()
2794 * pick_next_task_fair()
2795 * pick_next_entity()
2796 * dequeue_entities()
2797 * __block_task()
2798 * RELEASE p->on_rq = 0 if (p->on_rq && ...)
2799 * break;
2800 *
2801 * ACQUIRE (after ctrl-dep)
2802 *
2803 * cpu = select_task_rq();
2804 * set_task_cpu(p, cpu);
2805 * ttwu_queue()
2806 * ttwu_do_activate()
2807 * LOCK rq->__lock
2808 * activate_task()
2809 * STORE p->on_rq = 1
2810 * UNLOCK rq->__lock
2811 *
2812 * Callers must ensure to not reference @p after this -- we no longer
2813 * own it.
2814 */
2815 smp_store_release(&p->on_rq, 0);
2816 }
2817
2818 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2819 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2820
2821 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2822
2823 #ifdef CONFIG_PREEMPT_RT
2824 # define SCHED_NR_MIGRATE_BREAK 8
2825 #else
2826 # define SCHED_NR_MIGRATE_BREAK 32
2827 #endif
2828
2829 extern const_debug unsigned int sysctl_sched_nr_migrate;
2830 extern const_debug unsigned int sysctl_sched_migration_cost;
2831
2832 extern unsigned int sysctl_sched_base_slice;
2833
2834 #ifdef CONFIG_SCHED_DEBUG
2835 extern int sysctl_resched_latency_warn_ms;
2836 extern int sysctl_resched_latency_warn_once;
2837
2838 extern unsigned int sysctl_sched_tunable_scaling;
2839
2840 extern unsigned int sysctl_numa_balancing_scan_delay;
2841 extern unsigned int sysctl_numa_balancing_scan_period_min;
2842 extern unsigned int sysctl_numa_balancing_scan_period_max;
2843 extern unsigned int sysctl_numa_balancing_scan_size;
2844 extern unsigned int sysctl_numa_balancing_hot_threshold;
2845 #endif
2846
2847 #ifdef CONFIG_SCHED_HRTICK
2848
2849 /*
2850 * Use hrtick when:
2851 * - enabled by features
2852 * - hrtimer is actually high res
2853 */
hrtick_enabled(struct rq * rq)2854 static inline int hrtick_enabled(struct rq *rq)
2855 {
2856 if (!cpu_active(cpu_of(rq)))
2857 return 0;
2858 return hrtimer_is_hres_active(&rq->hrtick_timer);
2859 }
2860
hrtick_enabled_fair(struct rq * rq)2861 static inline int hrtick_enabled_fair(struct rq *rq)
2862 {
2863 if (!sched_feat(HRTICK))
2864 return 0;
2865 return hrtick_enabled(rq);
2866 }
2867
hrtick_enabled_dl(struct rq * rq)2868 static inline int hrtick_enabled_dl(struct rq *rq)
2869 {
2870 if (!sched_feat(HRTICK_DL))
2871 return 0;
2872 return hrtick_enabled(rq);
2873 }
2874
2875 extern void hrtick_start(struct rq *rq, u64 delay);
2876
2877 #else /* !CONFIG_SCHED_HRTICK: */
2878
hrtick_enabled_fair(struct rq * rq)2879 static inline int hrtick_enabled_fair(struct rq *rq)
2880 {
2881 return 0;
2882 }
2883
hrtick_enabled_dl(struct rq * rq)2884 static inline int hrtick_enabled_dl(struct rq *rq)
2885 {
2886 return 0;
2887 }
2888
hrtick_enabled(struct rq * rq)2889 static inline int hrtick_enabled(struct rq *rq)
2890 {
2891 return 0;
2892 }
2893
2894 #endif /* !CONFIG_SCHED_HRTICK */
2895
2896 #ifndef arch_scale_freq_tick
arch_scale_freq_tick(void)2897 static __always_inline void arch_scale_freq_tick(void) { }
2898 #endif
2899
2900 #ifndef arch_scale_freq_capacity
2901 /**
2902 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2903 * @cpu: the CPU in question.
2904 *
2905 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2906 *
2907 * f_curr
2908 * ------ * SCHED_CAPACITY_SCALE
2909 * f_max
2910 */
2911 static __always_inline
arch_scale_freq_capacity(int cpu)2912 unsigned long arch_scale_freq_capacity(int cpu)
2913 {
2914 return SCHED_CAPACITY_SCALE;
2915 }
2916 #endif
2917
2918 #ifdef CONFIG_SCHED_DEBUG
2919 /*
2920 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2921 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2922 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2923 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2924 */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2925 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2926 {
2927 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2928 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2929 #ifdef CONFIG_SMP
2930 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2931 #endif
2932 }
2933 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2934 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
2935 #endif
2936
2937 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \
2938 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2939 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2940 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \
2941 _lock; return _t; }
2942
2943 #ifdef CONFIG_SMP
2944
rq_order_less(struct rq * rq1,struct rq * rq2)2945 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2946 {
2947 #ifdef CONFIG_SCHED_CORE
2948 /*
2949 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2950 * order by core-id first and cpu-id second.
2951 *
2952 * Notably:
2953 *
2954 * double_rq_lock(0,3); will take core-0, core-1 lock
2955 * double_rq_lock(1,2); will take core-1, core-0 lock
2956 *
2957 * when only cpu-id is considered.
2958 */
2959 if (rq1->core->cpu < rq2->core->cpu)
2960 return true;
2961 if (rq1->core->cpu > rq2->core->cpu)
2962 return false;
2963
2964 /*
2965 * __sched_core_flip() relies on SMT having cpu-id lock order.
2966 */
2967 #endif
2968 return rq1->cpu < rq2->cpu;
2969 }
2970
2971 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2972
2973 #ifdef CONFIG_PREEMPTION
2974
2975 /*
2976 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2977 * way at the expense of forcing extra atomic operations in all
2978 * invocations. This assures that the double_lock is acquired using the
2979 * same underlying policy as the spinlock_t on this architecture, which
2980 * reduces latency compared to the unfair variant below. However, it
2981 * also adds more overhead and therefore may reduce throughput.
2982 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2983 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2984 __releases(this_rq->lock)
2985 __acquires(busiest->lock)
2986 __acquires(this_rq->lock)
2987 {
2988 raw_spin_rq_unlock(this_rq);
2989 double_rq_lock(this_rq, busiest);
2990
2991 return 1;
2992 }
2993
2994 #else /* !CONFIG_PREEMPTION: */
2995 /*
2996 * Unfair double_lock_balance: Optimizes throughput at the expense of
2997 * latency by eliminating extra atomic operations when the locks are
2998 * already in proper order on entry. This favors lower CPU-ids and will
2999 * grant the double lock to lower CPUs over higher ids under contention,
3000 * regardless of entry order into the function.
3001 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)3002 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
3003 __releases(this_rq->lock)
3004 __acquires(busiest->lock)
3005 __acquires(this_rq->lock)
3006 {
3007 if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
3008 likely(raw_spin_rq_trylock(busiest))) {
3009 double_rq_clock_clear_update(this_rq, busiest);
3010 return 0;
3011 }
3012
3013 if (rq_order_less(this_rq, busiest)) {
3014 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
3015 double_rq_clock_clear_update(this_rq, busiest);
3016 return 0;
3017 }
3018
3019 raw_spin_rq_unlock(this_rq);
3020 double_rq_lock(this_rq, busiest);
3021
3022 return 1;
3023 }
3024
3025 #endif /* !CONFIG_PREEMPTION */
3026
3027 /*
3028 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3029 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)3030 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3031 {
3032 lockdep_assert_irqs_disabled();
3033
3034 return _double_lock_balance(this_rq, busiest);
3035 }
3036
double_unlock_balance(struct rq * this_rq,struct rq * busiest)3037 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
3038 __releases(busiest->lock)
3039 {
3040 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
3041 raw_spin_rq_unlock(busiest);
3042 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
3043 }
3044
double_lock(spinlock_t * l1,spinlock_t * l2)3045 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
3046 {
3047 if (l1 > l2)
3048 swap(l1, l2);
3049
3050 spin_lock(l1);
3051 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3052 }
3053
double_lock_irq(spinlock_t * l1,spinlock_t * l2)3054 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
3055 {
3056 if (l1 > l2)
3057 swap(l1, l2);
3058
3059 spin_lock_irq(l1);
3060 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3061 }
3062
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)3063 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3064 {
3065 if (l1 > l2)
3066 swap(l1, l2);
3067
3068 raw_spin_lock(l1);
3069 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3070 }
3071
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)3072 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3073 {
3074 raw_spin_unlock(l1);
3075 raw_spin_unlock(l2);
3076 }
3077
3078 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3079 double_raw_lock(_T->lock, _T->lock2),
3080 double_raw_unlock(_T->lock, _T->lock2))
3081
3082 /*
3083 * double_rq_unlock - safely unlock two runqueues
3084 *
3085 * Note this does not restore interrupts like task_rq_unlock,
3086 * you need to do so manually after calling.
3087 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)3088 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3089 __releases(rq1->lock)
3090 __releases(rq2->lock)
3091 {
3092 if (__rq_lockp(rq1) != __rq_lockp(rq2))
3093 raw_spin_rq_unlock(rq2);
3094 else
3095 __release(rq2->lock);
3096 raw_spin_rq_unlock(rq1);
3097 }
3098
3099 extern void set_rq_online (struct rq *rq);
3100 extern void set_rq_offline(struct rq *rq);
3101
3102 extern bool sched_smp_initialized;
3103
3104 #else /* !CONFIG_SMP: */
3105
3106 /*
3107 * double_rq_lock - safely lock two runqueues
3108 *
3109 * Note this does not disable interrupts like task_rq_lock,
3110 * you need to do so manually before calling.
3111 */
double_rq_lock(struct rq * rq1,struct rq * rq2)3112 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
3113 __acquires(rq1->lock)
3114 __acquires(rq2->lock)
3115 {
3116 WARN_ON_ONCE(!irqs_disabled());
3117 WARN_ON_ONCE(rq1 != rq2);
3118 raw_spin_rq_lock(rq1);
3119 __acquire(rq2->lock); /* Fake it out ;) */
3120 double_rq_clock_clear_update(rq1, rq2);
3121 }
3122
3123 /*
3124 * double_rq_unlock - safely unlock two runqueues
3125 *
3126 * Note this does not restore interrupts like task_rq_unlock,
3127 * you need to do so manually after calling.
3128 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)3129 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3130 __releases(rq1->lock)
3131 __releases(rq2->lock)
3132 {
3133 WARN_ON_ONCE(rq1 != rq2);
3134 raw_spin_rq_unlock(rq1);
3135 __release(rq2->lock);
3136 }
3137
3138 #endif /* !CONFIG_SMP */
3139
3140 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3141 double_rq_lock(_T->lock, _T->lock2),
3142 double_rq_unlock(_T->lock, _T->lock2))
3143
3144 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3145 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3146 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3147
3148 #ifdef CONFIG_SCHED_DEBUG
3149 extern bool sched_debug_verbose;
3150
3151 extern void print_cfs_stats(struct seq_file *m, int cpu);
3152 extern void print_rt_stats(struct seq_file *m, int cpu);
3153 extern void print_dl_stats(struct seq_file *m, int cpu);
3154 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3155 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3156 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3157
3158 extern void resched_latency_warn(int cpu, u64 latency);
3159 # ifdef CONFIG_NUMA_BALANCING
3160 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3161 extern void
3162 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3163 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3164 # endif /* CONFIG_NUMA_BALANCING */
3165 #else /* !CONFIG_SCHED_DEBUG: */
resched_latency_warn(int cpu,u64 latency)3166 static inline void resched_latency_warn(int cpu, u64 latency) { }
3167 #endif /* !CONFIG_SCHED_DEBUG */
3168
3169 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3170 extern void init_rt_rq(struct rt_rq *rt_rq);
3171 extern void init_dl_rq(struct dl_rq *dl_rq);
3172
3173 extern void cfs_bandwidth_usage_inc(void);
3174 extern void cfs_bandwidth_usage_dec(void);
3175
3176 #ifdef CONFIG_NO_HZ_COMMON
3177
3178 #define NOHZ_BALANCE_KICK_BIT 0
3179 #define NOHZ_STATS_KICK_BIT 1
3180 #define NOHZ_NEWILB_KICK_BIT 2
3181 #define NOHZ_NEXT_KICK_BIT 3
3182
3183 /* Run sched_balance_domains() */
3184 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
3185 /* Update blocked load */
3186 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
3187 /* Update blocked load when entering idle */
3188 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
3189 /* Update nohz.next_balance */
3190 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
3191
3192 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3193
3194 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
3195
3196 extern void nohz_balance_exit_idle(struct rq *rq);
3197 #else /* !CONFIG_NO_HZ_COMMON: */
nohz_balance_exit_idle(struct rq * rq)3198 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3199 #endif /* !CONFIG_NO_HZ_COMMON */
3200
3201 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
3202 extern void nohz_run_idle_balance(int cpu);
3203 #else
nohz_run_idle_balance(int cpu)3204 static inline void nohz_run_idle_balance(int cpu) { }
3205 #endif
3206
3207 #include "stats.h"
3208
3209 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3210
3211 extern void __sched_core_account_forceidle(struct rq *rq);
3212
sched_core_account_forceidle(struct rq * rq)3213 static inline void sched_core_account_forceidle(struct rq *rq)
3214 {
3215 if (schedstat_enabled())
3216 __sched_core_account_forceidle(rq);
3217 }
3218
3219 extern void __sched_core_tick(struct rq *rq);
3220
sched_core_tick(struct rq * rq)3221 static inline void sched_core_tick(struct rq *rq)
3222 {
3223 if (sched_core_enabled(rq) && schedstat_enabled())
3224 __sched_core_tick(rq);
3225 }
3226
3227 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3228
sched_core_account_forceidle(struct rq * rq)3229 static inline void sched_core_account_forceidle(struct rq *rq) { }
3230
sched_core_tick(struct rq * rq)3231 static inline void sched_core_tick(struct rq *rq) { }
3232
3233 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3234
3235 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3236
3237 struct irqtime {
3238 u64 total;
3239 u64 tick_delta;
3240 u64 irq_start_time;
3241 struct u64_stats_sync sync;
3242 };
3243
3244 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3245
3246 /*
3247 * Returns the irqtime minus the softirq time computed by ksoftirqd.
3248 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3249 * and never move forward.
3250 */
irq_time_read(int cpu)3251 static inline u64 irq_time_read(int cpu)
3252 {
3253 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3254 unsigned int seq;
3255 u64 total;
3256
3257 do {
3258 seq = __u64_stats_fetch_begin(&irqtime->sync);
3259 total = irqtime->total;
3260 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3261
3262 return total;
3263 }
3264
3265 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3266
3267 #ifdef CONFIG_CPU_FREQ
3268
3269 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3270
3271 /**
3272 * cpufreq_update_util - Take a note about CPU utilization changes.
3273 * @rq: Runqueue to carry out the update for.
3274 * @flags: Update reason flags.
3275 *
3276 * This function is called by the scheduler on the CPU whose utilization is
3277 * being updated.
3278 *
3279 * It can only be called from RCU-sched read-side critical sections.
3280 *
3281 * The way cpufreq is currently arranged requires it to evaluate the CPU
3282 * performance state (frequency/voltage) on a regular basis to prevent it from
3283 * being stuck in a completely inadequate performance level for too long.
3284 * That is not guaranteed to happen if the updates are only triggered from CFS
3285 * and DL, though, because they may not be coming in if only RT tasks are
3286 * active all the time (or there are RT tasks only).
3287 *
3288 * As a workaround for that issue, this function is called periodically by the
3289 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3290 * but that really is a band-aid. Going forward it should be replaced with
3291 * solutions targeted more specifically at RT tasks.
3292 */
cpufreq_update_util(struct rq * rq,unsigned int flags)3293 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3294 {
3295 struct update_util_data *data;
3296
3297 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3298 cpu_of(rq)));
3299 if (data)
3300 data->func(data, rq_clock(rq), flags);
3301 }
3302 #else /* !CONFIG_CPU_FREQ: */
cpufreq_update_util(struct rq * rq,unsigned int flags)3303 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3304 #endif /* !CONFIG_CPU_FREQ */
3305
3306 #ifdef arch_scale_freq_capacity
3307 # ifndef arch_scale_freq_invariant
3308 # define arch_scale_freq_invariant() true
3309 # endif
3310 #else
3311 # define arch_scale_freq_invariant() false
3312 #endif
3313
3314 #ifdef CONFIG_SMP
3315
3316 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3317 unsigned long *min,
3318 unsigned long *max);
3319
3320 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3321 unsigned long min,
3322 unsigned long max);
3323
3324
3325 /*
3326 * Verify the fitness of task @p to run on @cpu taking into account the
3327 * CPU original capacity and the runtime/deadline ratio of the task.
3328 *
3329 * The function will return true if the original capacity of @cpu is
3330 * greater than or equal to task's deadline density right shifted by
3331 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3332 */
dl_task_fits_capacity(struct task_struct * p,int cpu)3333 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3334 {
3335 unsigned long cap = arch_scale_cpu_capacity(cpu);
3336
3337 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3338 }
3339
cpu_bw_dl(struct rq * rq)3340 static inline unsigned long cpu_bw_dl(struct rq *rq)
3341 {
3342 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3343 }
3344
cpu_util_dl(struct rq * rq)3345 static inline unsigned long cpu_util_dl(struct rq *rq)
3346 {
3347 return READ_ONCE(rq->avg_dl.util_avg);
3348 }
3349
3350
3351 extern unsigned long cpu_util_cfs(int cpu);
3352 extern unsigned long cpu_util_cfs_boost(int cpu);
3353
cpu_util_rt(struct rq * rq)3354 static inline unsigned long cpu_util_rt(struct rq *rq)
3355 {
3356 return READ_ONCE(rq->avg_rt.util_avg);
3357 }
3358
3359 #else /* !CONFIG_SMP */
update_other_load_avgs(struct rq * rq)3360 static inline bool update_other_load_avgs(struct rq *rq) { return false; }
3361 #endif /* CONFIG_SMP */
3362
3363 #ifdef CONFIG_UCLAMP_TASK
3364
3365 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3366
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3367 static inline unsigned long uclamp_rq_get(struct rq *rq,
3368 enum uclamp_id clamp_id)
3369 {
3370 return READ_ONCE(rq->uclamp[clamp_id].value);
3371 }
3372
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3373 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3374 unsigned int value)
3375 {
3376 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3377 }
3378
uclamp_rq_is_idle(struct rq * rq)3379 static inline bool uclamp_rq_is_idle(struct rq *rq)
3380 {
3381 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3382 }
3383
3384 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3385 static inline bool uclamp_rq_is_capped(struct rq *rq)
3386 {
3387 unsigned long rq_util;
3388 unsigned long max_util;
3389
3390 if (!static_branch_likely(&sched_uclamp_used))
3391 return false;
3392
3393 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3394 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3395
3396 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3397 }
3398
3399 /*
3400 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3401 * by default in the fast path and only gets turned on once userspace performs
3402 * an operation that requires it.
3403 *
3404 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3405 * hence is active.
3406 */
uclamp_is_used(void)3407 static inline bool uclamp_is_used(void)
3408 {
3409 return static_branch_likely(&sched_uclamp_used);
3410 }
3411
3412 #define for_each_clamp_id(clamp_id) \
3413 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3414
3415 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3416
3417
uclamp_none(enum uclamp_id clamp_id)3418 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3419 {
3420 if (clamp_id == UCLAMP_MIN)
3421 return 0;
3422 return SCHED_CAPACITY_SCALE;
3423 }
3424
3425 /* Integer rounded range for each bucket */
3426 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3427
uclamp_bucket_id(unsigned int clamp_value)3428 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3429 {
3430 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3431 }
3432
3433 static inline void
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)3434 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3435 {
3436 uc_se->value = value;
3437 uc_se->bucket_id = uclamp_bucket_id(value);
3438 uc_se->user_defined = user_defined;
3439 }
3440
3441 #else /* !CONFIG_UCLAMP_TASK: */
3442
3443 static inline unsigned long
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3444 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3445 {
3446 if (clamp_id == UCLAMP_MIN)
3447 return 0;
3448
3449 return SCHED_CAPACITY_SCALE;
3450 }
3451
uclamp_rq_is_capped(struct rq * rq)3452 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3453
uclamp_is_used(void)3454 static inline bool uclamp_is_used(void)
3455 {
3456 return false;
3457 }
3458
3459 static inline unsigned long
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3460 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3461 {
3462 if (clamp_id == UCLAMP_MIN)
3463 return 0;
3464
3465 return SCHED_CAPACITY_SCALE;
3466 }
3467
3468 static inline void
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3469 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3470 {
3471 }
3472
uclamp_rq_is_idle(struct rq * rq)3473 static inline bool uclamp_rq_is_idle(struct rq *rq)
3474 {
3475 return false;
3476 }
3477
3478 #endif /* !CONFIG_UCLAMP_TASK */
3479
3480 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3481
cpu_util_irq(struct rq * rq)3482 static inline unsigned long cpu_util_irq(struct rq *rq)
3483 {
3484 return READ_ONCE(rq->avg_irq.util_avg);
3485 }
3486
3487 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3488 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3489 {
3490 util *= (max - irq);
3491 util /= max;
3492
3493 return util;
3494
3495 }
3496
3497 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3498
cpu_util_irq(struct rq * rq)3499 static inline unsigned long cpu_util_irq(struct rq *rq)
3500 {
3501 return 0;
3502 }
3503
3504 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3505 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3506 {
3507 return util;
3508 }
3509
3510 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3511
3512 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3513
3514 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3515
3516 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3517
sched_energy_enabled(void)3518 static inline bool sched_energy_enabled(void)
3519 {
3520 return static_branch_unlikely(&sched_energy_present);
3521 }
3522
3523 extern struct cpufreq_governor schedutil_gov;
3524
3525 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3526
3527 #define perf_domain_span(pd) NULL
3528
sched_energy_enabled(void)3529 static inline bool sched_energy_enabled(void) { return false; }
3530
3531 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3532
3533 #ifdef CONFIG_MEMBARRIER
3534
3535 /*
3536 * The scheduler provides memory barriers required by membarrier between:
3537 * - prior user-space memory accesses and store to rq->membarrier_state,
3538 * - store to rq->membarrier_state and following user-space memory accesses.
3539 * In the same way it provides those guarantees around store to rq->curr.
3540 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3541 static inline void membarrier_switch_mm(struct rq *rq,
3542 struct mm_struct *prev_mm,
3543 struct mm_struct *next_mm)
3544 {
3545 int membarrier_state;
3546
3547 if (prev_mm == next_mm)
3548 return;
3549
3550 membarrier_state = atomic_read(&next_mm->membarrier_state);
3551 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3552 return;
3553
3554 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3555 }
3556
3557 #else /* !CONFIG_MEMBARRIER :*/
3558
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3559 static inline void membarrier_switch_mm(struct rq *rq,
3560 struct mm_struct *prev_mm,
3561 struct mm_struct *next_mm)
3562 {
3563 }
3564
3565 #endif /* !CONFIG_MEMBARRIER */
3566
3567 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3568 static inline bool is_per_cpu_kthread(struct task_struct *p)
3569 {
3570 if (!(p->flags & PF_KTHREAD))
3571 return false;
3572
3573 if (p->nr_cpus_allowed != 1)
3574 return false;
3575
3576 return true;
3577 }
3578 #endif
3579
3580 extern void swake_up_all_locked(struct swait_queue_head *q);
3581 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3582
3583 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3584
3585 #ifdef CONFIG_PREEMPT_DYNAMIC
3586 extern int preempt_dynamic_mode;
3587 extern int sched_dynamic_mode(const char *str);
3588 extern void sched_dynamic_update(int mode);
3589 #endif
3590
3591 #ifdef CONFIG_SCHED_MM_CID
3592
3593 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */
3594 #define MM_CID_SCAN_DELAY 100 /* 100ms */
3595
3596 extern raw_spinlock_t cid_lock;
3597 extern int use_cid_lock;
3598
3599 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3600 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3601 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3602 extern void init_sched_mm_cid(struct task_struct *t);
3603
__mm_cid_put(struct mm_struct * mm,int cid)3604 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3605 {
3606 if (cid < 0)
3607 return;
3608 cpumask_clear_cpu(cid, mm_cidmask(mm));
3609 }
3610
3611 /*
3612 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3613 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3614 * be held to transition to other states.
3615 *
3616 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3617 * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3618 */
mm_cid_put_lazy(struct task_struct * t)3619 static inline void mm_cid_put_lazy(struct task_struct *t)
3620 {
3621 struct mm_struct *mm = t->mm;
3622 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3623 int cid;
3624
3625 lockdep_assert_irqs_disabled();
3626 cid = __this_cpu_read(pcpu_cid->cid);
3627 if (!mm_cid_is_lazy_put(cid) ||
3628 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3629 return;
3630 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3631 }
3632
mm_cid_pcpu_unset(struct mm_struct * mm)3633 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3634 {
3635 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3636 int cid, res;
3637
3638 lockdep_assert_irqs_disabled();
3639 cid = __this_cpu_read(pcpu_cid->cid);
3640 for (;;) {
3641 if (mm_cid_is_unset(cid))
3642 return MM_CID_UNSET;
3643 /*
3644 * Attempt transition from valid or lazy-put to unset.
3645 */
3646 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3647 if (res == cid)
3648 break;
3649 cid = res;
3650 }
3651 return cid;
3652 }
3653
mm_cid_put(struct mm_struct * mm)3654 static inline void mm_cid_put(struct mm_struct *mm)
3655 {
3656 int cid;
3657
3658 lockdep_assert_irqs_disabled();
3659 cid = mm_cid_pcpu_unset(mm);
3660 if (cid == MM_CID_UNSET)
3661 return;
3662 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3663 }
3664
__mm_cid_try_get(struct task_struct * t,struct mm_struct * mm)3665 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
3666 {
3667 struct cpumask *cidmask = mm_cidmask(mm);
3668 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3669 int cid = __this_cpu_read(pcpu_cid->recent_cid);
3670
3671 /* Try to re-use recent cid. This improves cache locality. */
3672 if (!mm_cid_is_unset(cid) && !cpumask_test_and_set_cpu(cid, cidmask))
3673 return cid;
3674 /*
3675 * Expand cid allocation if the maximum number of concurrency
3676 * IDs allocated (max_nr_cid) is below the number cpus allowed
3677 * and number of threads. Expanding cid allocation as much as
3678 * possible improves cache locality.
3679 */
3680 cid = atomic_read(&mm->max_nr_cid);
3681 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
3682 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
3683 continue;
3684 if (!cpumask_test_and_set_cpu(cid, cidmask))
3685 return cid;
3686 }
3687 /*
3688 * Find the first available concurrency id.
3689 * Retry finding first zero bit if the mask is temporarily
3690 * filled. This only happens during concurrent remote-clear
3691 * which owns a cid without holding a rq lock.
3692 */
3693 for (;;) {
3694 cid = cpumask_first_zero(cidmask);
3695 if (cid < READ_ONCE(mm->nr_cpus_allowed))
3696 break;
3697 cpu_relax();
3698 }
3699 if (cpumask_test_and_set_cpu(cid, cidmask))
3700 return -1;
3701
3702 return cid;
3703 }
3704
3705 /*
3706 * Save a snapshot of the current runqueue time of this cpu
3707 * with the per-cpu cid value, allowing to estimate how recently it was used.
3708 */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3709 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3710 {
3711 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3712
3713 lockdep_assert_rq_held(rq);
3714 WRITE_ONCE(pcpu_cid->time, rq->clock);
3715 }
3716
__mm_cid_get(struct rq * rq,struct task_struct * t,struct mm_struct * mm)3717 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
3718 struct mm_struct *mm)
3719 {
3720 int cid;
3721
3722 /*
3723 * All allocations (even those using the cid_lock) are lock-free. If
3724 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3725 * guarantee forward progress.
3726 */
3727 if (!READ_ONCE(use_cid_lock)) {
3728 cid = __mm_cid_try_get(t, mm);
3729 if (cid >= 0)
3730 goto end;
3731 raw_spin_lock(&cid_lock);
3732 } else {
3733 raw_spin_lock(&cid_lock);
3734 cid = __mm_cid_try_get(t, mm);
3735 if (cid >= 0)
3736 goto unlock;
3737 }
3738
3739 /*
3740 * cid concurrently allocated. Retry while forcing following
3741 * allocations to use the cid_lock to ensure forward progress.
3742 */
3743 WRITE_ONCE(use_cid_lock, 1);
3744 /*
3745 * Set use_cid_lock before allocation. Only care about program order
3746 * because this is only required for forward progress.
3747 */
3748 barrier();
3749 /*
3750 * Retry until it succeeds. It is guaranteed to eventually succeed once
3751 * all newcoming allocations observe the use_cid_lock flag set.
3752 */
3753 do {
3754 cid = __mm_cid_try_get(t, mm);
3755 cpu_relax();
3756 } while (cid < 0);
3757 /*
3758 * Allocate before clearing use_cid_lock. Only care about
3759 * program order because this is for forward progress.
3760 */
3761 barrier();
3762 WRITE_ONCE(use_cid_lock, 0);
3763 unlock:
3764 raw_spin_unlock(&cid_lock);
3765 end:
3766 mm_cid_snapshot_time(rq, mm);
3767
3768 return cid;
3769 }
3770
mm_cid_get(struct rq * rq,struct task_struct * t,struct mm_struct * mm)3771 static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
3772 struct mm_struct *mm)
3773 {
3774 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3775 struct cpumask *cpumask;
3776 int cid;
3777
3778 lockdep_assert_rq_held(rq);
3779 cpumask = mm_cidmask(mm);
3780 cid = __this_cpu_read(pcpu_cid->cid);
3781 if (mm_cid_is_valid(cid)) {
3782 mm_cid_snapshot_time(rq, mm);
3783 return cid;
3784 }
3785 if (mm_cid_is_lazy_put(cid)) {
3786 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3787 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3788 }
3789 cid = __mm_cid_get(rq, t, mm);
3790 __this_cpu_write(pcpu_cid->cid, cid);
3791 __this_cpu_write(pcpu_cid->recent_cid, cid);
3792
3793 return cid;
3794 }
3795
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3796 static inline void switch_mm_cid(struct rq *rq,
3797 struct task_struct *prev,
3798 struct task_struct *next)
3799 {
3800 /*
3801 * Provide a memory barrier between rq->curr store and load of
3802 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3803 *
3804 * Should be adapted if context_switch() is modified.
3805 */
3806 if (!next->mm) { // to kernel
3807 /*
3808 * user -> kernel transition does not guarantee a barrier, but
3809 * we can use the fact that it performs an atomic operation in
3810 * mmgrab().
3811 */
3812 if (prev->mm) // from user
3813 smp_mb__after_mmgrab();
3814 /*
3815 * kernel -> kernel transition does not change rq->curr->mm
3816 * state. It stays NULL.
3817 */
3818 } else { // to user
3819 /*
3820 * kernel -> user transition does not provide a barrier
3821 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3822 * Provide it here.
3823 */
3824 if (!prev->mm) { // from kernel
3825 smp_mb();
3826 } else { // from user
3827 /*
3828 * user->user transition relies on an implicit
3829 * memory barrier in switch_mm() when
3830 * current->mm changes. If the architecture
3831 * switch_mm() does not have an implicit memory
3832 * barrier, it is emitted here. If current->mm
3833 * is unchanged, no barrier is needed.
3834 */
3835 smp_mb__after_switch_mm();
3836 }
3837 }
3838 if (prev->mm_cid_active) {
3839 mm_cid_snapshot_time(rq, prev->mm);
3840 mm_cid_put_lazy(prev);
3841 prev->mm_cid = -1;
3842 }
3843 if (next->mm_cid_active)
3844 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
3845 }
3846
3847 #else /* !CONFIG_SCHED_MM_CID: */
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3848 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3849 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3850 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3851 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3852 static inline void init_sched_mm_cid(struct task_struct *t) { }
3853 #endif /* !CONFIG_SCHED_MM_CID */
3854
3855 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3856 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3857 #ifdef CONFIG_SMP
3858 static inline
move_queued_task_locked(struct rq * src_rq,struct rq * dst_rq,struct task_struct * task)3859 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3860 {
3861 lockdep_assert_rq_held(src_rq);
3862 lockdep_assert_rq_held(dst_rq);
3863
3864 deactivate_task(src_rq, task, 0);
3865 set_task_cpu(task, dst_rq->cpu);
3866 activate_task(dst_rq, task, 0);
3867 }
3868
3869 static inline
task_is_pushable(struct rq * rq,struct task_struct * p,int cpu)3870 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3871 {
3872 if (!task_on_cpu(rq, p) &&
3873 cpumask_test_cpu(cpu, &p->cpus_mask))
3874 return true;
3875
3876 return false;
3877 }
3878 #endif
3879
3880 #ifdef CONFIG_RT_MUTEXES
3881
__rt_effective_prio(struct task_struct * pi_task,int prio)3882 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3883 {
3884 if (pi_task)
3885 prio = min(prio, pi_task->prio);
3886
3887 return prio;
3888 }
3889
rt_effective_prio(struct task_struct * p,int prio)3890 static inline int rt_effective_prio(struct task_struct *p, int prio)
3891 {
3892 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3893
3894 return __rt_effective_prio(pi_task, prio);
3895 }
3896
3897 #else /* !CONFIG_RT_MUTEXES: */
3898
rt_effective_prio(struct task_struct * p,int prio)3899 static inline int rt_effective_prio(struct task_struct *p, int prio)
3900 {
3901 return prio;
3902 }
3903
3904 #endif /* !CONFIG_RT_MUTEXES */
3905
3906 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3907 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3908 extern const struct sched_class *__setscheduler_class(int policy, int prio);
3909 extern void set_load_weight(struct task_struct *p, bool update_load);
3910 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3911 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3912
3913 extern void check_class_changing(struct rq *rq, struct task_struct *p,
3914 const struct sched_class *prev_class);
3915 extern void check_class_changed(struct rq *rq, struct task_struct *p,
3916 const struct sched_class *prev_class,
3917 int oldprio);
3918
3919 #ifdef CONFIG_SMP
3920 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3921 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3922 #else
3923
splice_balance_callbacks(struct rq * rq)3924 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
3925 {
3926 return NULL;
3927 }
3928
balance_callbacks(struct rq * rq,struct balance_callback * head)3929 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
3930 {
3931 }
3932
3933 #endif
3934
3935 #ifdef CONFIG_SCHED_CLASS_EXT
3936 /*
3937 * Used by SCX in the enable/disable paths to move tasks between sched_classes
3938 * and establish invariants.
3939 */
3940 struct sched_enq_and_set_ctx {
3941 struct task_struct *p;
3942 int queue_flags;
3943 bool queued;
3944 bool running;
3945 };
3946
3947 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
3948 struct sched_enq_and_set_ctx *ctx);
3949 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
3950
3951 #endif /* CONFIG_SCHED_CLASS_EXT */
3952
3953 #include "ext.h"
3954
3955 #endif /* _KERNEL_SCHED_SCHED_H */
3956