1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright (C) 2007 Google, Inc.
5 * Copyright (c) 2009-2012,2014, The Linux Foundation. All rights reserved.
6 */
7
8 #include <linux/clocksource.h>
9 #include <linux/clockchips.h>
10 #include <linux/cpu.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/irq.h>
14 #include <linux/io.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/sched_clock.h>
19
20 #include <asm/delay.h>
21
22 #define TIMER_MATCH_VAL 0x0000
23 #define TIMER_COUNT_VAL 0x0004
24 #define TIMER_ENABLE 0x0008
25 #define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1)
26 #define TIMER_ENABLE_EN BIT(0)
27 #define TIMER_CLEAR 0x000C
28 #define DGT_CLK_CTL 0x10
29 #define DGT_CLK_CTL_DIV_4 0x3
30 #define TIMER_STS_GPT0_CLR_PEND BIT(10)
31
32 #define GPT_HZ 32768
33
34 static void __iomem *event_base;
35 static void __iomem *sts_base;
36
msm_timer_interrupt(int irq,void * dev_id)37 static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
38 {
39 struct clock_event_device *evt = dev_id;
40 /* Stop the timer tick */
41 if (clockevent_state_oneshot(evt)) {
42 u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
43 ctrl &= ~TIMER_ENABLE_EN;
44 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
45 }
46 evt->event_handler(evt);
47 return IRQ_HANDLED;
48 }
49
msm_timer_set_next_event(unsigned long cycles,struct clock_event_device * evt)50 static int msm_timer_set_next_event(unsigned long cycles,
51 struct clock_event_device *evt)
52 {
53 u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
54
55 ctrl &= ~TIMER_ENABLE_EN;
56 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
57
58 writel_relaxed(ctrl, event_base + TIMER_CLEAR);
59 writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
60
61 if (sts_base)
62 while (readl_relaxed(sts_base) & TIMER_STS_GPT0_CLR_PEND)
63 cpu_relax();
64
65 writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
66 return 0;
67 }
68
msm_timer_shutdown(struct clock_event_device * evt)69 static int msm_timer_shutdown(struct clock_event_device *evt)
70 {
71 u32 ctrl;
72
73 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
74 ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
75 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
76 return 0;
77 }
78
79 static struct clock_event_device __percpu *msm_evt;
80
81 static void __iomem *source_base;
82
msm_read_timer_count(struct clocksource * cs)83 static notrace u64 msm_read_timer_count(struct clocksource *cs)
84 {
85 return readl_relaxed(source_base + TIMER_COUNT_VAL);
86 }
87
88 static struct clocksource msm_clocksource = {
89 .name = "dg_timer",
90 .rating = 300,
91 .read = msm_read_timer_count,
92 .mask = CLOCKSOURCE_MASK(32),
93 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
94 };
95
96 static int msm_timer_irq;
97 static int msm_timer_has_ppi;
98
msm_local_timer_starting_cpu(unsigned int cpu)99 static int msm_local_timer_starting_cpu(unsigned int cpu)
100 {
101 struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu);
102 int err;
103
104 evt->irq = msm_timer_irq;
105 evt->name = "msm_timer";
106 evt->features = CLOCK_EVT_FEAT_ONESHOT;
107 evt->rating = 200;
108 evt->set_state_shutdown = msm_timer_shutdown;
109 evt->set_state_oneshot = msm_timer_shutdown;
110 evt->tick_resume = msm_timer_shutdown;
111 evt->set_next_event = msm_timer_set_next_event;
112 evt->cpumask = cpumask_of(cpu);
113
114 clockevents_config_and_register(evt, GPT_HZ, 4, 0xffffffff);
115
116 if (msm_timer_has_ppi) {
117 enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
118 } else {
119 err = request_irq(evt->irq, msm_timer_interrupt,
120 IRQF_TIMER | IRQF_NOBALANCING |
121 IRQF_TRIGGER_RISING, "gp_timer", evt);
122 if (err)
123 pr_err("request_irq failed\n");
124 }
125
126 return 0;
127 }
128
msm_local_timer_dying_cpu(unsigned int cpu)129 static int msm_local_timer_dying_cpu(unsigned int cpu)
130 {
131 struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu);
132
133 evt->set_state_shutdown(evt);
134 disable_percpu_irq(evt->irq);
135 return 0;
136 }
137
msm_sched_clock_read(void)138 static u64 notrace msm_sched_clock_read(void)
139 {
140 return msm_clocksource.read(&msm_clocksource);
141 }
142
msm_read_current_timer(void)143 static unsigned long msm_read_current_timer(void)
144 {
145 return msm_clocksource.read(&msm_clocksource);
146 }
147
148 static struct delay_timer msm_delay_timer = {
149 .read_current_timer = msm_read_current_timer,
150 };
151
msm_timer_init(u32 dgt_hz,int sched_bits,int irq,bool percpu)152 static int __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
153 bool percpu)
154 {
155 struct clocksource *cs = &msm_clocksource;
156 int res = 0;
157
158 msm_timer_irq = irq;
159 msm_timer_has_ppi = percpu;
160
161 msm_evt = alloc_percpu(struct clock_event_device);
162 if (!msm_evt) {
163 pr_err("memory allocation failed for clockevents\n");
164 goto err;
165 }
166
167 if (percpu)
168 res = request_percpu_irq(irq, msm_timer_interrupt,
169 "gp_timer", msm_evt);
170
171 if (res) {
172 pr_err("request_percpu_irq failed\n");
173 } else {
174 /* Install and invoke hotplug callbacks */
175 res = cpuhp_setup_state(CPUHP_AP_QCOM_TIMER_STARTING,
176 "clockevents/qcom/timer:starting",
177 msm_local_timer_starting_cpu,
178 msm_local_timer_dying_cpu);
179 if (res) {
180 free_percpu_irq(irq, msm_evt);
181 goto err;
182 }
183 }
184
185 err:
186 writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
187 res = clocksource_register_hz(cs, dgt_hz);
188 if (res)
189 pr_err("clocksource_register failed\n");
190 sched_clock_register(msm_sched_clock_read, sched_bits, dgt_hz);
191 msm_delay_timer.freq = dgt_hz;
192 register_current_timer_delay(&msm_delay_timer);
193
194 return res;
195 }
196
msm_dt_timer_init(struct device_node * np)197 static int __init msm_dt_timer_init(struct device_node *np)
198 {
199 u32 freq;
200 int irq, ret;
201 struct resource res;
202 u32 percpu_offset;
203 void __iomem *base;
204 void __iomem *cpu0_base;
205
206 base = of_iomap(np, 0);
207 if (!base) {
208 pr_err("Failed to map event base\n");
209 return -ENXIO;
210 }
211
212 /* We use GPT0 for the clockevent */
213 irq = irq_of_parse_and_map(np, 1);
214 if (irq <= 0) {
215 pr_err("Can't get irq\n");
216 return -EINVAL;
217 }
218
219 /* We use CPU0's DGT for the clocksource */
220 if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
221 percpu_offset = 0;
222
223 ret = of_address_to_resource(np, 0, &res);
224 if (ret) {
225 pr_err("Failed to parse DGT resource\n");
226 return ret;
227 }
228
229 cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res));
230 if (!cpu0_base) {
231 pr_err("Failed to map source base\n");
232 return -EINVAL;
233 }
234
235 if (of_property_read_u32(np, "clock-frequency", &freq)) {
236 iounmap(cpu0_base);
237 pr_err("Unknown frequency\n");
238 return -EINVAL;
239 }
240
241 event_base = base + 0x4;
242 sts_base = base + 0x88;
243 source_base = cpu0_base + 0x24;
244 freq /= 4;
245 writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL);
246
247 ret = msm_timer_init(freq, 32, irq, !!percpu_offset);
248 if (ret)
249 iounmap(cpu0_base);
250
251 return ret;
252 }
253 TIMER_OF_DECLARE(kpss_timer, "qcom,kpss-timer", msm_dt_timer_init);
254 TIMER_OF_DECLARE(scss_timer, "qcom,scss-timer", msm_dt_timer_init);
255