1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51
52 #include <asm/switch_to.h>
53
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57
58 /*
59 * The initial- and re-scaling of tunables is configurable
60 *
61 * Options are:
62 *
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66 *
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68 */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70
71 /*
72 * Minimal preemption granularity for CPU-bound tasks:
73 *
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 */
76 unsigned int sysctl_sched_base_slice = 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
78
79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
80
setup_sched_thermal_decay_shift(char * str)81 static int __init setup_sched_thermal_decay_shift(char *str)
82 {
83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 return 1;
85 }
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87
88 #ifdef CONFIG_SMP
89 /*
90 * For asym packing, by default the lower numbered CPU has higher priority.
91 */
arch_asym_cpu_priority(int cpu)92 int __weak arch_asym_cpu_priority(int cpu)
93 {
94 return -cpu;
95 }
96
97 /*
98 * The margin used when comparing utilization with CPU capacity.
99 *
100 * (default: ~20%)
101 */
102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
103
104 /*
105 * The margin used when comparing CPU capacities.
106 * is 'cap1' noticeably greater than 'cap2'
107 *
108 * (default: ~5%)
109 */
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
112
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116 * each time a cfs_rq requests quota.
117 *
118 * Note: in the case that the slice exceeds the runtime remaining (either due
119 * to consumption or the quota being specified to be smaller than the slice)
120 * we will always only issue the remaining available time.
121 *
122 * (default: 5 msec, units: microseconds)
123 */
124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
125 #endif
126
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
131
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
135 {
136 .procname = "sched_cfs_bandwidth_slice_us",
137 .data = &sysctl_sched_cfs_bandwidth_slice,
138 .maxlen = sizeof(unsigned int),
139 .mode = 0644,
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ONE,
142 },
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
145 {
146 .procname = "numa_balancing_promote_rate_limit_MBps",
147 .data = &sysctl_numa_balancing_promote_rate_limit,
148 .maxlen = sizeof(unsigned int),
149 .mode = 0644,
150 .proc_handler = proc_dointvec_minmax,
151 .extra1 = SYSCTL_ZERO,
152 },
153 #endif /* CONFIG_NUMA_BALANCING */
154 };
155
sched_fair_sysctl_init(void)156 static int __init sched_fair_sysctl_init(void)
157 {
158 register_sysctl_init("kernel", sched_fair_sysctls);
159 return 0;
160 }
161 late_initcall(sched_fair_sysctl_init);
162 #endif
163
update_load_add(struct load_weight * lw,unsigned long inc)164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165 {
166 lw->weight += inc;
167 lw->inv_weight = 0;
168 }
169
update_load_sub(struct load_weight * lw,unsigned long dec)170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171 {
172 lw->weight -= dec;
173 lw->inv_weight = 0;
174 }
175
update_load_set(struct load_weight * lw,unsigned long w)176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
177 {
178 lw->weight = w;
179 lw->inv_weight = 0;
180 }
181
182 /*
183 * Increase the granularity value when there are more CPUs,
184 * because with more CPUs the 'effective latency' as visible
185 * to users decreases. But the relationship is not linear,
186 * so pick a second-best guess by going with the log2 of the
187 * number of CPUs.
188 *
189 * This idea comes from the SD scheduler of Con Kolivas:
190 */
get_update_sysctl_factor(void)191 static unsigned int get_update_sysctl_factor(void)
192 {
193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 unsigned int factor;
195
196 switch (sysctl_sched_tunable_scaling) {
197 case SCHED_TUNABLESCALING_NONE:
198 factor = 1;
199 break;
200 case SCHED_TUNABLESCALING_LINEAR:
201 factor = cpus;
202 break;
203 case SCHED_TUNABLESCALING_LOG:
204 default:
205 factor = 1 + ilog2(cpus);
206 break;
207 }
208
209 return factor;
210 }
211
update_sysctl(void)212 static void update_sysctl(void)
213 {
214 unsigned int factor = get_update_sysctl_factor();
215
216 #define SET_SYSCTL(name) \
217 (sysctl_##name = (factor) * normalized_sysctl_##name)
218 SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
220 }
221
sched_init_granularity(void)222 void __init sched_init_granularity(void)
223 {
224 update_sysctl();
225 }
226
227 #define WMULT_CONST (~0U)
228 #define WMULT_SHIFT 32
229
__update_inv_weight(struct load_weight * lw)230 static void __update_inv_weight(struct load_weight *lw)
231 {
232 unsigned long w;
233
234 if (likely(lw->inv_weight))
235 return;
236
237 w = scale_load_down(lw->weight);
238
239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 lw->inv_weight = 1;
241 else if (unlikely(!w))
242 lw->inv_weight = WMULT_CONST;
243 else
244 lw->inv_weight = WMULT_CONST / w;
245 }
246
247 /*
248 * delta_exec * weight / lw.weight
249 * OR
250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251 *
252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253 * we're guaranteed shift stays positive because inv_weight is guaranteed to
254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255 *
256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257 * weight/lw.weight <= 1, and therefore our shift will also be positive.
258 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260 {
261 u64 fact = scale_load_down(weight);
262 u32 fact_hi = (u32)(fact >> 32);
263 int shift = WMULT_SHIFT;
264 int fs;
265
266 __update_inv_weight(lw);
267
268 if (unlikely(fact_hi)) {
269 fs = fls(fact_hi);
270 shift -= fs;
271 fact >>= fs;
272 }
273
274 fact = mul_u32_u32(fact, lw->inv_weight);
275
276 fact_hi = (u32)(fact >> 32);
277 if (fact_hi) {
278 fs = fls(fact_hi);
279 shift -= fs;
280 fact >>= fs;
281 }
282
283 return mul_u64_u32_shr(delta_exec, fact, shift);
284 }
285
286 /*
287 * delta /= w
288 */
calc_delta_fair(u64 delta,struct sched_entity * se)289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290 {
291 if (unlikely(se->load.weight != NICE_0_LOAD))
292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293
294 return delta;
295 }
296
297 const struct sched_class fair_sched_class;
298
299 /**************************************************************
300 * CFS operations on generic schedulable entities:
301 */
302
303 #ifdef CONFIG_FAIR_GROUP_SCHED
304
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 for (; se; se = se->parent)
308
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 {
311 struct rq *rq = rq_of(cfs_rq);
312 int cpu = cpu_of(rq);
313
314 if (cfs_rq->on_list)
315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316
317 cfs_rq->on_list = 1;
318
319 /*
320 * Ensure we either appear before our parent (if already
321 * enqueued) or force our parent to appear after us when it is
322 * enqueued. The fact that we always enqueue bottom-up
323 * reduces this to two cases and a special case for the root
324 * cfs_rq. Furthermore, it also means that we will always reset
325 * tmp_alone_branch either when the branch is connected
326 * to a tree or when we reach the top of the tree
327 */
328 if (cfs_rq->tg->parent &&
329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330 /*
331 * If parent is already on the list, we add the child
332 * just before. Thanks to circular linked property of
333 * the list, this means to put the child at the tail
334 * of the list that starts by parent.
335 */
336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338 /*
339 * The branch is now connected to its tree so we can
340 * reset tmp_alone_branch to the beginning of the
341 * list.
342 */
343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 return true;
345 }
346
347 if (!cfs_rq->tg->parent) {
348 /*
349 * cfs rq without parent should be put
350 * at the tail of the list.
351 */
352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 &rq->leaf_cfs_rq_list);
354 /*
355 * We have reach the top of a tree so we can reset
356 * tmp_alone_branch to the beginning of the list.
357 */
358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 return true;
360 }
361
362 /*
363 * The parent has not already been added so we want to
364 * make sure that it will be put after us.
365 * tmp_alone_branch points to the begin of the branch
366 * where we will add parent.
367 */
368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369 /*
370 * update tmp_alone_branch to points to the new begin
371 * of the branch
372 */
373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 return false;
375 }
376
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378 {
379 if (cfs_rq->on_list) {
380 struct rq *rq = rq_of(cfs_rq);
381
382 /*
383 * With cfs_rq being unthrottled/throttled during an enqueue,
384 * it can happen the tmp_alone_branch points to the leaf that
385 * we finally want to delete. In this case, tmp_alone_branch moves
386 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 * at the end of the enqueue.
388 */
389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391
392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 cfs_rq->on_list = 0;
394 }
395 }
396
assert_list_leaf_cfs_rq(struct rq * rq)397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398 {
399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400 }
401
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
405 leaf_cfs_rq_list)
406
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
410 {
411 if (se->cfs_rq == pse->cfs_rq)
412 return se->cfs_rq;
413
414 return NULL;
415 }
416
parent_entity(const struct sched_entity * se)417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418 {
419 return se->parent;
420 }
421
422 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 {
425 int se_depth, pse_depth;
426
427 /*
428 * preemption test can be made between sibling entities who are in the
429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 * both tasks until we find their ancestors who are siblings of common
431 * parent.
432 */
433
434 /* First walk up until both entities are at same depth */
435 se_depth = (*se)->depth;
436 pse_depth = (*pse)->depth;
437
438 while (se_depth > pse_depth) {
439 se_depth--;
440 *se = parent_entity(*se);
441 }
442
443 while (pse_depth > se_depth) {
444 pse_depth--;
445 *pse = parent_entity(*pse);
446 }
447
448 while (!is_same_group(*se, *pse)) {
449 *se = parent_entity(*se);
450 *pse = parent_entity(*pse);
451 }
452 }
453
tg_is_idle(struct task_group * tg)454 static int tg_is_idle(struct task_group *tg)
455 {
456 return tg->idle > 0;
457 }
458
cfs_rq_is_idle(struct cfs_rq * cfs_rq)459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460 {
461 return cfs_rq->idle > 0;
462 }
463
se_is_idle(struct sched_entity * se)464 static int se_is_idle(struct sched_entity *se)
465 {
466 if (entity_is_task(se))
467 return task_has_idle_policy(task_of(se));
468 return cfs_rq_is_idle(group_cfs_rq(se));
469 }
470
471 #else /* !CONFIG_FAIR_GROUP_SCHED */
472
473 #define for_each_sched_entity(se) \
474 for (; se; se = NULL)
475
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 return true;
479 }
480
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484
assert_list_leaf_cfs_rq(struct rq * rq)485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486 {
487 }
488
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491
parent_entity(struct sched_entity * se)492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
493 {
494 return NULL;
495 }
496
497 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499 {
500 }
501
tg_is_idle(struct task_group * tg)502 static inline int tg_is_idle(struct task_group *tg)
503 {
504 return 0;
505 }
506
cfs_rq_is_idle(struct cfs_rq * cfs_rq)507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508 {
509 return 0;
510 }
511
se_is_idle(struct sched_entity * se)512 static int se_is_idle(struct sched_entity *se)
513 {
514 return task_has_idle_policy(task_of(se));
515 }
516
517 #endif /* CONFIG_FAIR_GROUP_SCHED */
518
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521
522 /**************************************************************
523 * Scheduling class tree data structure manipulation methods:
524 */
525
max_vruntime(u64 max_vruntime,u64 vruntime)526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 s64 delta = (s64)(vruntime - max_vruntime);
529 if (delta > 0)
530 max_vruntime = vruntime;
531
532 return max_vruntime;
533 }
534
min_vruntime(u64 min_vruntime,u64 vruntime)535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 s64 delta = (s64)(vruntime - min_vruntime);
538 if (delta < 0)
539 min_vruntime = vruntime;
540
541 return min_vruntime;
542 }
543
entity_before(const struct sched_entity * a,const struct sched_entity * b)544 static inline bool entity_before(const struct sched_entity *a,
545 const struct sched_entity *b)
546 {
547 /*
548 * Tiebreak on vruntime seems unnecessary since it can
549 * hardly happen.
550 */
551 return (s64)(a->deadline - b->deadline) < 0;
552 }
553
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 return (s64)(se->vruntime - cfs_rq->min_vruntime);
557 }
558
559 #define __node_2_se(node) \
560 rb_entry((node), struct sched_entity, run_node)
561
562 /*
563 * Compute virtual time from the per-task service numbers:
564 *
565 * Fair schedulers conserve lag:
566 *
567 * \Sum lag_i = 0
568 *
569 * Where lag_i is given by:
570 *
571 * lag_i = S - s_i = w_i * (V - v_i)
572 *
573 * Where S is the ideal service time and V is it's virtual time counterpart.
574 * Therefore:
575 *
576 * \Sum lag_i = 0
577 * \Sum w_i * (V - v_i) = 0
578 * \Sum w_i * V - w_i * v_i = 0
579 *
580 * From which we can solve an expression for V in v_i (which we have in
581 * se->vruntime):
582 *
583 * \Sum v_i * w_i \Sum v_i * w_i
584 * V = -------------- = --------------
585 * \Sum w_i W
586 *
587 * Specifically, this is the weighted average of all entity virtual runtimes.
588 *
589 * [[ NOTE: this is only equal to the ideal scheduler under the condition
590 * that join/leave operations happen at lag_i = 0, otherwise the
591 * virtual time has non-contiguous motion equivalent to:
592 *
593 * V +-= lag_i / W
594 *
595 * Also see the comment in place_entity() that deals with this. ]]
596 *
597 * However, since v_i is u64, and the multiplication could easily overflow
598 * transform it into a relative form that uses smaller quantities:
599 *
600 * Substitute: v_i == (v_i - v0) + v0
601 *
602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
603 * V = ---------------------------- = --------------------- + v0
604 * W W
605 *
606 * Which we track using:
607 *
608 * v0 := cfs_rq->min_vruntime
609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610 * \Sum w_i := cfs_rq->avg_load
611 *
612 * Since min_vruntime is a monotonic increasing variable that closely tracks
613 * the per-task service, these deltas: (v_i - v), will be in the order of the
614 * maximal (virtual) lag induced in the system due to quantisation.
615 *
616 * Also, we use scale_load_down() to reduce the size.
617 *
618 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619 */
620 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 {
623 unsigned long weight = scale_load_down(se->load.weight);
624 s64 key = entity_key(cfs_rq, se);
625
626 cfs_rq->avg_vruntime += key * weight;
627 cfs_rq->avg_load += weight;
628 }
629
630 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 {
633 unsigned long weight = scale_load_down(se->load.weight);
634 s64 key = entity_key(cfs_rq, se);
635
636 cfs_rq->avg_vruntime -= key * weight;
637 cfs_rq->avg_load -= weight;
638 }
639
640 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642 {
643 /*
644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645 */
646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647 }
648
649 /*
650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651 * For this to be so, the result of this function must have a left bias.
652 */
avg_vruntime(struct cfs_rq * cfs_rq)653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
654 {
655 struct sched_entity *curr = cfs_rq->curr;
656 s64 avg = cfs_rq->avg_vruntime;
657 long load = cfs_rq->avg_load;
658
659 if (curr && curr->on_rq) {
660 unsigned long weight = scale_load_down(curr->load.weight);
661
662 avg += entity_key(cfs_rq, curr) * weight;
663 load += weight;
664 }
665
666 if (load) {
667 /* sign flips effective floor / ceiling */
668 if (avg < 0)
669 avg -= (load - 1);
670 avg = div_s64(avg, load);
671 }
672
673 return cfs_rq->min_vruntime + avg;
674 }
675
676 /*
677 * lag_i = S - s_i = w_i * (V - v_i)
678 *
679 * However, since V is approximated by the weighted average of all entities it
680 * is possible -- by addition/removal/reweight to the tree -- to move V around
681 * and end up with a larger lag than we started with.
682 *
683 * Limit this to either double the slice length with a minimum of TICK_NSEC
684 * since that is the timing granularity.
685 *
686 * EEVDF gives the following limit for a steady state system:
687 *
688 * -r_max < lag < max(r_max, q)
689 *
690 * XXX could add max_slice to the augmented data to track this.
691 */
entity_lag(u64 avruntime,struct sched_entity * se)692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
693 {
694 s64 vlag, limit;
695
696 vlag = avruntime - se->vruntime;
697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
698
699 return clamp(vlag, -limit, limit);
700 }
701
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 SCHED_WARN_ON(!se->on_rq);
705
706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
707 }
708
709 /*
710 * Entity is eligible once it received less service than it ought to have,
711 * eg. lag >= 0.
712 *
713 * lag_i = S - s_i = w_i*(V - v_i)
714 *
715 * lag_i >= 0 -> V >= v_i
716 *
717 * \Sum (v_i - v)*w_i
718 * V = ------------------ + v
719 * \Sum w_i
720 *
721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
722 *
723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724 * to the loss in precision caused by the division.
725 */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
727 {
728 struct sched_entity *curr = cfs_rq->curr;
729 s64 avg = cfs_rq->avg_vruntime;
730 long load = cfs_rq->avg_load;
731
732 if (curr && curr->on_rq) {
733 unsigned long weight = scale_load_down(curr->load.weight);
734
735 avg += entity_key(cfs_rq, curr) * weight;
736 load += weight;
737 }
738
739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740 }
741
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 return vruntime_eligible(cfs_rq, se->vruntime);
745 }
746
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
748 {
749 u64 min_vruntime = cfs_rq->min_vruntime;
750 /*
751 * open coded max_vruntime() to allow updating avg_vruntime
752 */
753 s64 delta = (s64)(vruntime - min_vruntime);
754 if (delta > 0) {
755 avg_vruntime_update(cfs_rq, delta);
756 min_vruntime = vruntime;
757 }
758 return min_vruntime;
759 }
760
update_min_vruntime(struct cfs_rq * cfs_rq)761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
762 {
763 struct sched_entity *se = __pick_root_entity(cfs_rq);
764 struct sched_entity *curr = cfs_rq->curr;
765 u64 vruntime = cfs_rq->min_vruntime;
766
767 if (curr) {
768 if (curr->on_rq)
769 vruntime = curr->vruntime;
770 else
771 curr = NULL;
772 }
773
774 if (se) {
775 if (!curr)
776 vruntime = se->min_vruntime;
777 else
778 vruntime = min_vruntime(vruntime, se->min_vruntime);
779 }
780
781 /* ensure we never gain time by being placed backwards. */
782 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
783 }
784
cfs_rq_min_slice(struct cfs_rq * cfs_rq)785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
786 {
787 struct sched_entity *root = __pick_root_entity(cfs_rq);
788 struct sched_entity *curr = cfs_rq->curr;
789 u64 min_slice = ~0ULL;
790
791 if (curr && curr->on_rq)
792 min_slice = curr->slice;
793
794 if (root)
795 min_slice = min(min_slice, root->min_slice);
796
797 return min_slice;
798 }
799
__entity_less(struct rb_node * a,const struct rb_node * b)800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804
805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
808 {
809 if (node) {
810 struct sched_entity *rse = __node_2_se(node);
811 if (vruntime_gt(min_vruntime, se, rse))
812 se->min_vruntime = rse->min_vruntime;
813 }
814 }
815
__min_slice_update(struct sched_entity * se,struct rb_node * node)816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
817 {
818 if (node) {
819 struct sched_entity *rse = __node_2_se(node);
820 if (rse->min_slice < se->min_slice)
821 se->min_slice = rse->min_slice;
822 }
823 }
824
825 /*
826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
827 */
min_vruntime_update(struct sched_entity * se,bool exit)828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
829 {
830 u64 old_min_vruntime = se->min_vruntime;
831 u64 old_min_slice = se->min_slice;
832 struct rb_node *node = &se->run_node;
833
834 se->min_vruntime = se->vruntime;
835 __min_vruntime_update(se, node->rb_right);
836 __min_vruntime_update(se, node->rb_left);
837
838 se->min_slice = se->slice;
839 __min_slice_update(se, node->rb_right);
840 __min_slice_update(se, node->rb_left);
841
842 return se->min_vruntime == old_min_vruntime &&
843 se->min_slice == old_min_slice;
844 }
845
846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
847 run_node, min_vruntime, min_vruntime_update);
848
849 /*
850 * Enqueue an entity into the rb-tree:
851 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
853 {
854 avg_vruntime_add(cfs_rq, se);
855 se->min_vruntime = se->vruntime;
856 se->min_slice = se->slice;
857 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858 __entity_less, &min_vruntime_cb);
859 }
860
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
864 &min_vruntime_cb);
865 avg_vruntime_sub(cfs_rq, se);
866 }
867
__pick_root_entity(struct cfs_rq * cfs_rq)868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
869 {
870 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
871
872 if (!root)
873 return NULL;
874
875 return __node_2_se(root);
876 }
877
__pick_first_entity(struct cfs_rq * cfs_rq)878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
879 {
880 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
881
882 if (!left)
883 return NULL;
884
885 return __node_2_se(left);
886 }
887
888 /*
889 * Earliest Eligible Virtual Deadline First
890 *
891 * In order to provide latency guarantees for different request sizes
892 * EEVDF selects the best runnable task from two criteria:
893 *
894 * 1) the task must be eligible (must be owed service)
895 *
896 * 2) from those tasks that meet 1), we select the one
897 * with the earliest virtual deadline.
898 *
899 * We can do this in O(log n) time due to an augmented RB-tree. The
900 * tree keeps the entries sorted on deadline, but also functions as a
901 * heap based on the vruntime by keeping:
902 *
903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
904 *
905 * Which allows tree pruning through eligibility.
906 */
pick_eevdf(struct cfs_rq * cfs_rq)907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
908 {
909 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
910 struct sched_entity *se = __pick_first_entity(cfs_rq);
911 struct sched_entity *curr = cfs_rq->curr;
912 struct sched_entity *best = NULL;
913
914 /*
915 * We can safely skip eligibility check if there is only one entity
916 * in this cfs_rq, saving some cycles.
917 */
918 if (cfs_rq->nr_running == 1)
919 return curr && curr->on_rq ? curr : se;
920
921 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
922 curr = NULL;
923
924 /*
925 * Once selected, run a task until it either becomes non-eligible or
926 * until it gets a new slice. See the HACK in set_next_entity().
927 */
928 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
929 return curr;
930
931 /* Pick the leftmost entity if it's eligible */
932 if (se && entity_eligible(cfs_rq, se)) {
933 best = se;
934 goto found;
935 }
936
937 /* Heap search for the EEVD entity */
938 while (node) {
939 struct rb_node *left = node->rb_left;
940
941 /*
942 * Eligible entities in left subtree are always better
943 * choices, since they have earlier deadlines.
944 */
945 if (left && vruntime_eligible(cfs_rq,
946 __node_2_se(left)->min_vruntime)) {
947 node = left;
948 continue;
949 }
950
951 se = __node_2_se(node);
952
953 /*
954 * The left subtree either is empty or has no eligible
955 * entity, so check the current node since it is the one
956 * with earliest deadline that might be eligible.
957 */
958 if (entity_eligible(cfs_rq, se)) {
959 best = se;
960 break;
961 }
962
963 node = node->rb_right;
964 }
965 found:
966 if (!best || (curr && entity_before(curr, best)))
967 best = curr;
968
969 return best;
970 }
971
972 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
974 {
975 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
976
977 if (!last)
978 return NULL;
979
980 return __node_2_se(last);
981 }
982
983 /**************************************************************
984 * Scheduling class statistics methods:
985 */
986 #ifdef CONFIG_SMP
sched_update_scaling(void)987 int sched_update_scaling(void)
988 {
989 unsigned int factor = get_update_sysctl_factor();
990
991 #define WRT_SYSCTL(name) \
992 (normalized_sysctl_##name = sysctl_##name / (factor))
993 WRT_SYSCTL(sched_base_slice);
994 #undef WRT_SYSCTL
995
996 return 0;
997 }
998 #endif
999 #endif
1000
1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1002
1003 /*
1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005 * this is probably good enough.
1006 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1008 {
1009 if ((s64)(se->vruntime - se->deadline) < 0)
1010 return false;
1011
1012 /*
1013 * For EEVDF the virtual time slope is determined by w_i (iow.
1014 * nice) while the request time r_i is determined by
1015 * sysctl_sched_base_slice.
1016 */
1017 if (!se->custom_slice)
1018 se->slice = sysctl_sched_base_slice;
1019
1020 /*
1021 * EEVDF: vd_i = ve_i + r_i / w_i
1022 */
1023 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1024
1025 /*
1026 * The task has consumed its request, reschedule.
1027 */
1028 return true;
1029 }
1030
1031 #include "pelt.h"
1032 #ifdef CONFIG_SMP
1033
1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1035 static unsigned long task_h_load(struct task_struct *p);
1036 static unsigned long capacity_of(int cpu);
1037
1038 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1039 void init_entity_runnable_average(struct sched_entity *se)
1040 {
1041 struct sched_avg *sa = &se->avg;
1042
1043 memset(sa, 0, sizeof(*sa));
1044
1045 /*
1046 * Tasks are initialized with full load to be seen as heavy tasks until
1047 * they get a chance to stabilize to their real load level.
1048 * Group entities are initialized with zero load to reflect the fact that
1049 * nothing has been attached to the task group yet.
1050 */
1051 if (entity_is_task(se))
1052 sa->load_avg = scale_load_down(se->load.weight);
1053
1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1055 }
1056
1057 /*
1058 * With new tasks being created, their initial util_avgs are extrapolated
1059 * based on the cfs_rq's current util_avg:
1060 *
1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1062 * * se_weight(se)
1063 *
1064 * However, in many cases, the above util_avg does not give a desired
1065 * value. Moreover, the sum of the util_avgs may be divergent, such
1066 * as when the series is a harmonic series.
1067 *
1068 * To solve this problem, we also cap the util_avg of successive tasks to
1069 * only 1/2 of the left utilization budget:
1070 *
1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1072 *
1073 * where n denotes the nth task and cpu_scale the CPU capacity.
1074 *
1075 * For example, for a CPU with 1024 of capacity, a simplest series from
1076 * the beginning would be like:
1077 *
1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1080 *
1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082 * if util_avg > util_avg_cap.
1083 */
post_init_entity_util_avg(struct task_struct * p)1084 void post_init_entity_util_avg(struct task_struct *p)
1085 {
1086 struct sched_entity *se = &p->se;
1087 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1088 struct sched_avg *sa = &se->avg;
1089 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1090 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1091
1092 if (p->sched_class != &fair_sched_class) {
1093 /*
1094 * For !fair tasks do:
1095 *
1096 update_cfs_rq_load_avg(now, cfs_rq);
1097 attach_entity_load_avg(cfs_rq, se);
1098 switched_from_fair(rq, p);
1099 *
1100 * such that the next switched_to_fair() has the
1101 * expected state.
1102 */
1103 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1104 return;
1105 }
1106
1107 if (cap > 0) {
1108 if (cfs_rq->avg.util_avg != 0) {
1109 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se);
1110 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1111
1112 if (sa->util_avg > cap)
1113 sa->util_avg = cap;
1114 } else {
1115 sa->util_avg = cap;
1116 }
1117 }
1118
1119 sa->runnable_avg = sa->util_avg;
1120 }
1121
1122 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1123 void init_entity_runnable_average(struct sched_entity *se)
1124 {
1125 }
post_init_entity_util_avg(struct task_struct * p)1126 void post_init_entity_util_avg(struct task_struct *p)
1127 {
1128 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1130 {
1131 }
1132 #endif /* CONFIG_SMP */
1133
update_curr_se(struct rq * rq,struct sched_entity * curr)1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1135 {
1136 u64 now = rq_clock_task(rq);
1137 s64 delta_exec;
1138
1139 delta_exec = now - curr->exec_start;
1140 if (unlikely(delta_exec <= 0))
1141 return delta_exec;
1142
1143 curr->exec_start = now;
1144 curr->sum_exec_runtime += delta_exec;
1145
1146 if (schedstat_enabled()) {
1147 struct sched_statistics *stats;
1148
1149 stats = __schedstats_from_se(curr);
1150 __schedstat_set(stats->exec_max,
1151 max(delta_exec, stats->exec_max));
1152 }
1153
1154 return delta_exec;
1155 }
1156
update_curr_task(struct task_struct * p,s64 delta_exec)1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1158 {
1159 trace_sched_stat_runtime(p, delta_exec);
1160 account_group_exec_runtime(p, delta_exec);
1161 cgroup_account_cputime(p, delta_exec);
1162 }
1163
did_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * curr)1164 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1165 {
1166 if (!sched_feat(PREEMPT_SHORT))
1167 return false;
1168
1169 if (curr->vlag == curr->deadline)
1170 return false;
1171
1172 return !entity_eligible(cfs_rq, curr);
1173 }
1174
do_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * pse,struct sched_entity * se)1175 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1176 struct sched_entity *pse, struct sched_entity *se)
1177 {
1178 if (!sched_feat(PREEMPT_SHORT))
1179 return false;
1180
1181 if (pse->slice >= se->slice)
1182 return false;
1183
1184 if (!entity_eligible(cfs_rq, pse))
1185 return false;
1186
1187 if (entity_before(pse, se))
1188 return true;
1189
1190 if (!entity_eligible(cfs_rq, se))
1191 return true;
1192
1193 return false;
1194 }
1195
1196 /*
1197 * Used by other classes to account runtime.
1198 */
update_curr_common(struct rq * rq)1199 s64 update_curr_common(struct rq *rq)
1200 {
1201 struct task_struct *donor = rq->donor;
1202 s64 delta_exec;
1203
1204 delta_exec = update_curr_se(rq, &donor->se);
1205 if (likely(delta_exec > 0))
1206 update_curr_task(donor, delta_exec);
1207
1208 return delta_exec;
1209 }
1210
1211 /*
1212 * Update the current task's runtime statistics.
1213 */
update_curr(struct cfs_rq * cfs_rq)1214 static void update_curr(struct cfs_rq *cfs_rq)
1215 {
1216 struct sched_entity *curr = cfs_rq->curr;
1217 struct rq *rq = rq_of(cfs_rq);
1218 s64 delta_exec;
1219 bool resched;
1220
1221 if (unlikely(!curr))
1222 return;
1223
1224 delta_exec = update_curr_se(rq, curr);
1225 if (unlikely(delta_exec <= 0))
1226 return;
1227
1228 curr->vruntime += calc_delta_fair(delta_exec, curr);
1229 resched = update_deadline(cfs_rq, curr);
1230 update_min_vruntime(cfs_rq);
1231
1232 if (entity_is_task(curr)) {
1233 struct task_struct *p = task_of(curr);
1234
1235 update_curr_task(p, delta_exec);
1236
1237 /*
1238 * If the fair_server is active, we need to account for the
1239 * fair_server time whether or not the task is running on
1240 * behalf of fair_server or not:
1241 * - If the task is running on behalf of fair_server, we need
1242 * to limit its time based on the assigned runtime.
1243 * - Fair task that runs outside of fair_server should account
1244 * against fair_server such that it can account for this time
1245 * and possibly avoid running this period.
1246 */
1247 if (dl_server_active(&rq->fair_server))
1248 dl_server_update(&rq->fair_server, delta_exec);
1249 }
1250
1251 account_cfs_rq_runtime(cfs_rq, delta_exec);
1252
1253 if (cfs_rq->nr_running == 1)
1254 return;
1255
1256 if (resched || did_preempt_short(cfs_rq, curr)) {
1257 resched_curr_lazy(rq);
1258 clear_buddies(cfs_rq, curr);
1259 }
1260 }
1261
update_curr_fair(struct rq * rq)1262 static void update_curr_fair(struct rq *rq)
1263 {
1264 update_curr(cfs_rq_of(&rq->donor->se));
1265 }
1266
1267 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1268 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1269 {
1270 struct sched_statistics *stats;
1271 struct task_struct *p = NULL;
1272
1273 if (!schedstat_enabled())
1274 return;
1275
1276 stats = __schedstats_from_se(se);
1277
1278 if (entity_is_task(se))
1279 p = task_of(se);
1280
1281 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1282 }
1283
1284 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1285 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1286 {
1287 struct sched_statistics *stats;
1288 struct task_struct *p = NULL;
1289
1290 if (!schedstat_enabled())
1291 return;
1292
1293 stats = __schedstats_from_se(se);
1294
1295 /*
1296 * When the sched_schedstat changes from 0 to 1, some sched se
1297 * maybe already in the runqueue, the se->statistics.wait_start
1298 * will be 0.So it will let the delta wrong. We need to avoid this
1299 * scenario.
1300 */
1301 if (unlikely(!schedstat_val(stats->wait_start)))
1302 return;
1303
1304 if (entity_is_task(se))
1305 p = task_of(se);
1306
1307 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1308 }
1309
1310 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1311 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1312 {
1313 struct sched_statistics *stats;
1314 struct task_struct *tsk = NULL;
1315
1316 if (!schedstat_enabled())
1317 return;
1318
1319 stats = __schedstats_from_se(se);
1320
1321 if (entity_is_task(se))
1322 tsk = task_of(se);
1323
1324 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1325 }
1326
1327 /*
1328 * Task is being enqueued - update stats:
1329 */
1330 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1331 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1332 {
1333 if (!schedstat_enabled())
1334 return;
1335
1336 /*
1337 * Are we enqueueing a waiting task? (for current tasks
1338 * a dequeue/enqueue event is a NOP)
1339 */
1340 if (se != cfs_rq->curr)
1341 update_stats_wait_start_fair(cfs_rq, se);
1342
1343 if (flags & ENQUEUE_WAKEUP)
1344 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1345 }
1346
1347 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1348 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1349 {
1350
1351 if (!schedstat_enabled())
1352 return;
1353
1354 /*
1355 * Mark the end of the wait period if dequeueing a
1356 * waiting task:
1357 */
1358 if (se != cfs_rq->curr)
1359 update_stats_wait_end_fair(cfs_rq, se);
1360
1361 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1362 struct task_struct *tsk = task_of(se);
1363 unsigned int state;
1364
1365 /* XXX racy against TTWU */
1366 state = READ_ONCE(tsk->__state);
1367 if (state & TASK_INTERRUPTIBLE)
1368 __schedstat_set(tsk->stats.sleep_start,
1369 rq_clock(rq_of(cfs_rq)));
1370 if (state & TASK_UNINTERRUPTIBLE)
1371 __schedstat_set(tsk->stats.block_start,
1372 rq_clock(rq_of(cfs_rq)));
1373 }
1374 }
1375
1376 /*
1377 * We are picking a new current task - update its stats:
1378 */
1379 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1380 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1381 {
1382 /*
1383 * We are starting a new run period:
1384 */
1385 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1386 }
1387
1388 /**************************************************
1389 * Scheduling class queueing methods:
1390 */
1391
is_core_idle(int cpu)1392 static inline bool is_core_idle(int cpu)
1393 {
1394 #ifdef CONFIG_SCHED_SMT
1395 int sibling;
1396
1397 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1398 if (cpu == sibling)
1399 continue;
1400
1401 if (!idle_cpu(sibling))
1402 return false;
1403 }
1404 #endif
1405
1406 return true;
1407 }
1408
1409 #ifdef CONFIG_NUMA
1410 #define NUMA_IMBALANCE_MIN 2
1411
1412 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1413 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1414 {
1415 /*
1416 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1417 * threshold. Above this threshold, individual tasks may be contending
1418 * for both memory bandwidth and any shared HT resources. This is an
1419 * approximation as the number of running tasks may not be related to
1420 * the number of busy CPUs due to sched_setaffinity.
1421 */
1422 if (dst_running > imb_numa_nr)
1423 return imbalance;
1424
1425 /*
1426 * Allow a small imbalance based on a simple pair of communicating
1427 * tasks that remain local when the destination is lightly loaded.
1428 */
1429 if (imbalance <= NUMA_IMBALANCE_MIN)
1430 return 0;
1431
1432 return imbalance;
1433 }
1434 #endif /* CONFIG_NUMA */
1435
1436 #ifdef CONFIG_NUMA_BALANCING
1437 /*
1438 * Approximate time to scan a full NUMA task in ms. The task scan period is
1439 * calculated based on the tasks virtual memory size and
1440 * numa_balancing_scan_size.
1441 */
1442 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1443 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1444
1445 /* Portion of address space to scan in MB */
1446 unsigned int sysctl_numa_balancing_scan_size = 256;
1447
1448 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1449 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1450
1451 /* The page with hint page fault latency < threshold in ms is considered hot */
1452 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1453
1454 struct numa_group {
1455 refcount_t refcount;
1456
1457 spinlock_t lock; /* nr_tasks, tasks */
1458 int nr_tasks;
1459 pid_t gid;
1460 int active_nodes;
1461
1462 struct rcu_head rcu;
1463 unsigned long total_faults;
1464 unsigned long max_faults_cpu;
1465 /*
1466 * faults[] array is split into two regions: faults_mem and faults_cpu.
1467 *
1468 * Faults_cpu is used to decide whether memory should move
1469 * towards the CPU. As a consequence, these stats are weighted
1470 * more by CPU use than by memory faults.
1471 */
1472 unsigned long faults[];
1473 };
1474
1475 /*
1476 * For functions that can be called in multiple contexts that permit reading
1477 * ->numa_group (see struct task_struct for locking rules).
1478 */
deref_task_numa_group(struct task_struct * p)1479 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1480 {
1481 return rcu_dereference_check(p->numa_group, p == current ||
1482 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1483 }
1484
deref_curr_numa_group(struct task_struct * p)1485 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1486 {
1487 return rcu_dereference_protected(p->numa_group, p == current);
1488 }
1489
1490 static inline unsigned long group_faults_priv(struct numa_group *ng);
1491 static inline unsigned long group_faults_shared(struct numa_group *ng);
1492
task_nr_scan_windows(struct task_struct * p)1493 static unsigned int task_nr_scan_windows(struct task_struct *p)
1494 {
1495 unsigned long rss = 0;
1496 unsigned long nr_scan_pages;
1497
1498 /*
1499 * Calculations based on RSS as non-present and empty pages are skipped
1500 * by the PTE scanner and NUMA hinting faults should be trapped based
1501 * on resident pages
1502 */
1503 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1504 rss = get_mm_rss(p->mm);
1505 if (!rss)
1506 rss = nr_scan_pages;
1507
1508 rss = round_up(rss, nr_scan_pages);
1509 return rss / nr_scan_pages;
1510 }
1511
1512 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1513 #define MAX_SCAN_WINDOW 2560
1514
task_scan_min(struct task_struct * p)1515 static unsigned int task_scan_min(struct task_struct *p)
1516 {
1517 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1518 unsigned int scan, floor;
1519 unsigned int windows = 1;
1520
1521 if (scan_size < MAX_SCAN_WINDOW)
1522 windows = MAX_SCAN_WINDOW / scan_size;
1523 floor = 1000 / windows;
1524
1525 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1526 return max_t(unsigned int, floor, scan);
1527 }
1528
task_scan_start(struct task_struct * p)1529 static unsigned int task_scan_start(struct task_struct *p)
1530 {
1531 unsigned long smin = task_scan_min(p);
1532 unsigned long period = smin;
1533 struct numa_group *ng;
1534
1535 /* Scale the maximum scan period with the amount of shared memory. */
1536 rcu_read_lock();
1537 ng = rcu_dereference(p->numa_group);
1538 if (ng) {
1539 unsigned long shared = group_faults_shared(ng);
1540 unsigned long private = group_faults_priv(ng);
1541
1542 period *= refcount_read(&ng->refcount);
1543 period *= shared + 1;
1544 period /= private + shared + 1;
1545 }
1546 rcu_read_unlock();
1547
1548 return max(smin, period);
1549 }
1550
task_scan_max(struct task_struct * p)1551 static unsigned int task_scan_max(struct task_struct *p)
1552 {
1553 unsigned long smin = task_scan_min(p);
1554 unsigned long smax;
1555 struct numa_group *ng;
1556
1557 /* Watch for min being lower than max due to floor calculations */
1558 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1559
1560 /* Scale the maximum scan period with the amount of shared memory. */
1561 ng = deref_curr_numa_group(p);
1562 if (ng) {
1563 unsigned long shared = group_faults_shared(ng);
1564 unsigned long private = group_faults_priv(ng);
1565 unsigned long period = smax;
1566
1567 period *= refcount_read(&ng->refcount);
1568 period *= shared + 1;
1569 period /= private + shared + 1;
1570
1571 smax = max(smax, period);
1572 }
1573
1574 return max(smin, smax);
1575 }
1576
account_numa_enqueue(struct rq * rq,struct task_struct * p)1577 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1578 {
1579 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1580 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1581 }
1582
account_numa_dequeue(struct rq * rq,struct task_struct * p)1583 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1584 {
1585 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1586 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1587 }
1588
1589 /* Shared or private faults. */
1590 #define NR_NUMA_HINT_FAULT_TYPES 2
1591
1592 /* Memory and CPU locality */
1593 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1594
1595 /* Averaged statistics, and temporary buffers. */
1596 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1597
task_numa_group_id(struct task_struct * p)1598 pid_t task_numa_group_id(struct task_struct *p)
1599 {
1600 struct numa_group *ng;
1601 pid_t gid = 0;
1602
1603 rcu_read_lock();
1604 ng = rcu_dereference(p->numa_group);
1605 if (ng)
1606 gid = ng->gid;
1607 rcu_read_unlock();
1608
1609 return gid;
1610 }
1611
1612 /*
1613 * The averaged statistics, shared & private, memory & CPU,
1614 * occupy the first half of the array. The second half of the
1615 * array is for current counters, which are averaged into the
1616 * first set by task_numa_placement.
1617 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1618 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1619 {
1620 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1621 }
1622
task_faults(struct task_struct * p,int nid)1623 static inline unsigned long task_faults(struct task_struct *p, int nid)
1624 {
1625 if (!p->numa_faults)
1626 return 0;
1627
1628 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1629 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1630 }
1631
group_faults(struct task_struct * p,int nid)1632 static inline unsigned long group_faults(struct task_struct *p, int nid)
1633 {
1634 struct numa_group *ng = deref_task_numa_group(p);
1635
1636 if (!ng)
1637 return 0;
1638
1639 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1640 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1641 }
1642
group_faults_cpu(struct numa_group * group,int nid)1643 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1644 {
1645 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1646 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1647 }
1648
group_faults_priv(struct numa_group * ng)1649 static inline unsigned long group_faults_priv(struct numa_group *ng)
1650 {
1651 unsigned long faults = 0;
1652 int node;
1653
1654 for_each_online_node(node) {
1655 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1656 }
1657
1658 return faults;
1659 }
1660
group_faults_shared(struct numa_group * ng)1661 static inline unsigned long group_faults_shared(struct numa_group *ng)
1662 {
1663 unsigned long faults = 0;
1664 int node;
1665
1666 for_each_online_node(node) {
1667 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1668 }
1669
1670 return faults;
1671 }
1672
1673 /*
1674 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1675 * considered part of a numa group's pseudo-interleaving set. Migrations
1676 * between these nodes are slowed down, to allow things to settle down.
1677 */
1678 #define ACTIVE_NODE_FRACTION 3
1679
numa_is_active_node(int nid,struct numa_group * ng)1680 static bool numa_is_active_node(int nid, struct numa_group *ng)
1681 {
1682 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1683 }
1684
1685 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1686 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1687 int lim_dist, bool task)
1688 {
1689 unsigned long score = 0;
1690 int node, max_dist;
1691
1692 /*
1693 * All nodes are directly connected, and the same distance
1694 * from each other. No need for fancy placement algorithms.
1695 */
1696 if (sched_numa_topology_type == NUMA_DIRECT)
1697 return 0;
1698
1699 /* sched_max_numa_distance may be changed in parallel. */
1700 max_dist = READ_ONCE(sched_max_numa_distance);
1701 /*
1702 * This code is called for each node, introducing N^2 complexity,
1703 * which should be OK given the number of nodes rarely exceeds 8.
1704 */
1705 for_each_online_node(node) {
1706 unsigned long faults;
1707 int dist = node_distance(nid, node);
1708
1709 /*
1710 * The furthest away nodes in the system are not interesting
1711 * for placement; nid was already counted.
1712 */
1713 if (dist >= max_dist || node == nid)
1714 continue;
1715
1716 /*
1717 * On systems with a backplane NUMA topology, compare groups
1718 * of nodes, and move tasks towards the group with the most
1719 * memory accesses. When comparing two nodes at distance
1720 * "hoplimit", only nodes closer by than "hoplimit" are part
1721 * of each group. Skip other nodes.
1722 */
1723 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1724 continue;
1725
1726 /* Add up the faults from nearby nodes. */
1727 if (task)
1728 faults = task_faults(p, node);
1729 else
1730 faults = group_faults(p, node);
1731
1732 /*
1733 * On systems with a glueless mesh NUMA topology, there are
1734 * no fixed "groups of nodes". Instead, nodes that are not
1735 * directly connected bounce traffic through intermediate
1736 * nodes; a numa_group can occupy any set of nodes.
1737 * The further away a node is, the less the faults count.
1738 * This seems to result in good task placement.
1739 */
1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 faults *= (max_dist - dist);
1742 faults /= (max_dist - LOCAL_DISTANCE);
1743 }
1744
1745 score += faults;
1746 }
1747
1748 return score;
1749 }
1750
1751 /*
1752 * These return the fraction of accesses done by a particular task, or
1753 * task group, on a particular numa node. The group weight is given a
1754 * larger multiplier, in order to group tasks together that are almost
1755 * evenly spread out between numa nodes.
1756 */
task_weight(struct task_struct * p,int nid,int dist)1757 static inline unsigned long task_weight(struct task_struct *p, int nid,
1758 int dist)
1759 {
1760 unsigned long faults, total_faults;
1761
1762 if (!p->numa_faults)
1763 return 0;
1764
1765 total_faults = p->total_numa_faults;
1766
1767 if (!total_faults)
1768 return 0;
1769
1770 faults = task_faults(p, nid);
1771 faults += score_nearby_nodes(p, nid, dist, true);
1772
1773 return 1000 * faults / total_faults;
1774 }
1775
group_weight(struct task_struct * p,int nid,int dist)1776 static inline unsigned long group_weight(struct task_struct *p, int nid,
1777 int dist)
1778 {
1779 struct numa_group *ng = deref_task_numa_group(p);
1780 unsigned long faults, total_faults;
1781
1782 if (!ng)
1783 return 0;
1784
1785 total_faults = ng->total_faults;
1786
1787 if (!total_faults)
1788 return 0;
1789
1790 faults = group_faults(p, nid);
1791 faults += score_nearby_nodes(p, nid, dist, false);
1792
1793 return 1000 * faults / total_faults;
1794 }
1795
1796 /*
1797 * If memory tiering mode is enabled, cpupid of slow memory page is
1798 * used to record scan time instead of CPU and PID. When tiering mode
1799 * is disabled at run time, the scan time (in cpupid) will be
1800 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1801 * access out of array bound.
1802 */
cpupid_valid(int cpupid)1803 static inline bool cpupid_valid(int cpupid)
1804 {
1805 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1806 }
1807
1808 /*
1809 * For memory tiering mode, if there are enough free pages (more than
1810 * enough watermark defined here) in fast memory node, to take full
1811 * advantage of fast memory capacity, all recently accessed slow
1812 * memory pages will be migrated to fast memory node without
1813 * considering hot threshold.
1814 */
pgdat_free_space_enough(struct pglist_data * pgdat)1815 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1816 {
1817 int z;
1818 unsigned long enough_wmark;
1819
1820 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1821 pgdat->node_present_pages >> 4);
1822 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1823 struct zone *zone = pgdat->node_zones + z;
1824
1825 if (!populated_zone(zone))
1826 continue;
1827
1828 if (zone_watermark_ok(zone, 0,
1829 promo_wmark_pages(zone) + enough_wmark,
1830 ZONE_MOVABLE, 0))
1831 return true;
1832 }
1833 return false;
1834 }
1835
1836 /*
1837 * For memory tiering mode, when page tables are scanned, the scan
1838 * time will be recorded in struct page in addition to make page
1839 * PROT_NONE for slow memory page. So when the page is accessed, in
1840 * hint page fault handler, the hint page fault latency is calculated
1841 * via,
1842 *
1843 * hint page fault latency = hint page fault time - scan time
1844 *
1845 * The smaller the hint page fault latency, the higher the possibility
1846 * for the page to be hot.
1847 */
numa_hint_fault_latency(struct folio * folio)1848 static int numa_hint_fault_latency(struct folio *folio)
1849 {
1850 int last_time, time;
1851
1852 time = jiffies_to_msecs(jiffies);
1853 last_time = folio_xchg_access_time(folio, time);
1854
1855 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1856 }
1857
1858 /*
1859 * For memory tiering mode, too high promotion/demotion throughput may
1860 * hurt application latency. So we provide a mechanism to rate limit
1861 * the number of pages that are tried to be promoted.
1862 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1863 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1864 unsigned long rate_limit, int nr)
1865 {
1866 unsigned long nr_cand;
1867 unsigned int now, start;
1868
1869 now = jiffies_to_msecs(jiffies);
1870 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1871 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1872 start = pgdat->nbp_rl_start;
1873 if (now - start > MSEC_PER_SEC &&
1874 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1875 pgdat->nbp_rl_nr_cand = nr_cand;
1876 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1877 return true;
1878 return false;
1879 }
1880
1881 #define NUMA_MIGRATION_ADJUST_STEPS 16
1882
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1883 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1884 unsigned long rate_limit,
1885 unsigned int ref_th)
1886 {
1887 unsigned int now, start, th_period, unit_th, th;
1888 unsigned long nr_cand, ref_cand, diff_cand;
1889
1890 now = jiffies_to_msecs(jiffies);
1891 th_period = sysctl_numa_balancing_scan_period_max;
1892 start = pgdat->nbp_th_start;
1893 if (now - start > th_period &&
1894 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1895 ref_cand = rate_limit *
1896 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1897 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1898 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1899 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1900 th = pgdat->nbp_threshold ? : ref_th;
1901 if (diff_cand > ref_cand * 11 / 10)
1902 th = max(th - unit_th, unit_th);
1903 else if (diff_cand < ref_cand * 9 / 10)
1904 th = min(th + unit_th, ref_th * 2);
1905 pgdat->nbp_th_nr_cand = nr_cand;
1906 pgdat->nbp_threshold = th;
1907 }
1908 }
1909
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1910 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1911 int src_nid, int dst_cpu)
1912 {
1913 struct numa_group *ng = deref_curr_numa_group(p);
1914 int dst_nid = cpu_to_node(dst_cpu);
1915 int last_cpupid, this_cpupid;
1916
1917 /*
1918 * Cannot migrate to memoryless nodes.
1919 */
1920 if (!node_state(dst_nid, N_MEMORY))
1921 return false;
1922
1923 /*
1924 * The pages in slow memory node should be migrated according
1925 * to hot/cold instead of private/shared.
1926 */
1927 if (folio_use_access_time(folio)) {
1928 struct pglist_data *pgdat;
1929 unsigned long rate_limit;
1930 unsigned int latency, th, def_th;
1931
1932 pgdat = NODE_DATA(dst_nid);
1933 if (pgdat_free_space_enough(pgdat)) {
1934 /* workload changed, reset hot threshold */
1935 pgdat->nbp_threshold = 0;
1936 return true;
1937 }
1938
1939 def_th = sysctl_numa_balancing_hot_threshold;
1940 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1941 (20 - PAGE_SHIFT);
1942 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1943
1944 th = pgdat->nbp_threshold ? : def_th;
1945 latency = numa_hint_fault_latency(folio);
1946 if (latency >= th)
1947 return false;
1948
1949 return !numa_promotion_rate_limit(pgdat, rate_limit,
1950 folio_nr_pages(folio));
1951 }
1952
1953 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1954 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1955
1956 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1957 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1958 return false;
1959
1960 /*
1961 * Allow first faults or private faults to migrate immediately early in
1962 * the lifetime of a task. The magic number 4 is based on waiting for
1963 * two full passes of the "multi-stage node selection" test that is
1964 * executed below.
1965 */
1966 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1967 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1968 return true;
1969
1970 /*
1971 * Multi-stage node selection is used in conjunction with a periodic
1972 * migration fault to build a temporal task<->page relation. By using
1973 * a two-stage filter we remove short/unlikely relations.
1974 *
1975 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1976 * a task's usage of a particular page (n_p) per total usage of this
1977 * page (n_t) (in a given time-span) to a probability.
1978 *
1979 * Our periodic faults will sample this probability and getting the
1980 * same result twice in a row, given these samples are fully
1981 * independent, is then given by P(n)^2, provided our sample period
1982 * is sufficiently short compared to the usage pattern.
1983 *
1984 * This quadric squishes small probabilities, making it less likely we
1985 * act on an unlikely task<->page relation.
1986 */
1987 if (!cpupid_pid_unset(last_cpupid) &&
1988 cpupid_to_nid(last_cpupid) != dst_nid)
1989 return false;
1990
1991 /* Always allow migrate on private faults */
1992 if (cpupid_match_pid(p, last_cpupid))
1993 return true;
1994
1995 /* A shared fault, but p->numa_group has not been set up yet. */
1996 if (!ng)
1997 return true;
1998
1999 /*
2000 * Destination node is much more heavily used than the source
2001 * node? Allow migration.
2002 */
2003 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2004 ACTIVE_NODE_FRACTION)
2005 return true;
2006
2007 /*
2008 * Distribute memory according to CPU & memory use on each node,
2009 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2010 *
2011 * faults_cpu(dst) 3 faults_cpu(src)
2012 * --------------- * - > ---------------
2013 * faults_mem(dst) 4 faults_mem(src)
2014 */
2015 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2016 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2017 }
2018
2019 /*
2020 * 'numa_type' describes the node at the moment of load balancing.
2021 */
2022 enum numa_type {
2023 /* The node has spare capacity that can be used to run more tasks. */
2024 node_has_spare = 0,
2025 /*
2026 * The node is fully used and the tasks don't compete for more CPU
2027 * cycles. Nevertheless, some tasks might wait before running.
2028 */
2029 node_fully_busy,
2030 /*
2031 * The node is overloaded and can't provide expected CPU cycles to all
2032 * tasks.
2033 */
2034 node_overloaded
2035 };
2036
2037 /* Cached statistics for all CPUs within a node */
2038 struct numa_stats {
2039 unsigned long load;
2040 unsigned long runnable;
2041 unsigned long util;
2042 /* Total compute capacity of CPUs on a node */
2043 unsigned long compute_capacity;
2044 unsigned int nr_running;
2045 unsigned int weight;
2046 enum numa_type node_type;
2047 int idle_cpu;
2048 };
2049
2050 struct task_numa_env {
2051 struct task_struct *p;
2052
2053 int src_cpu, src_nid;
2054 int dst_cpu, dst_nid;
2055 int imb_numa_nr;
2056
2057 struct numa_stats src_stats, dst_stats;
2058
2059 int imbalance_pct;
2060 int dist;
2061
2062 struct task_struct *best_task;
2063 long best_imp;
2064 int best_cpu;
2065 };
2066
2067 static unsigned long cpu_load(struct rq *rq);
2068 static unsigned long cpu_runnable(struct rq *rq);
2069
2070 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2071 numa_type numa_classify(unsigned int imbalance_pct,
2072 struct numa_stats *ns)
2073 {
2074 if ((ns->nr_running > ns->weight) &&
2075 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2076 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2077 return node_overloaded;
2078
2079 if ((ns->nr_running < ns->weight) ||
2080 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2081 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2082 return node_has_spare;
2083
2084 return node_fully_busy;
2085 }
2086
2087 #ifdef CONFIG_SCHED_SMT
2088 /* Forward declarations of select_idle_sibling helpers */
2089 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2090 static inline int numa_idle_core(int idle_core, int cpu)
2091 {
2092 if (!static_branch_likely(&sched_smt_present) ||
2093 idle_core >= 0 || !test_idle_cores(cpu))
2094 return idle_core;
2095
2096 /*
2097 * Prefer cores instead of packing HT siblings
2098 * and triggering future load balancing.
2099 */
2100 if (is_core_idle(cpu))
2101 idle_core = cpu;
2102
2103 return idle_core;
2104 }
2105 #else
numa_idle_core(int idle_core,int cpu)2106 static inline int numa_idle_core(int idle_core, int cpu)
2107 {
2108 return idle_core;
2109 }
2110 #endif
2111
2112 /*
2113 * Gather all necessary information to make NUMA balancing placement
2114 * decisions that are compatible with standard load balancer. This
2115 * borrows code and logic from update_sg_lb_stats but sharing a
2116 * common implementation is impractical.
2117 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2118 static void update_numa_stats(struct task_numa_env *env,
2119 struct numa_stats *ns, int nid,
2120 bool find_idle)
2121 {
2122 int cpu, idle_core = -1;
2123
2124 memset(ns, 0, sizeof(*ns));
2125 ns->idle_cpu = -1;
2126
2127 rcu_read_lock();
2128 for_each_cpu(cpu, cpumask_of_node(nid)) {
2129 struct rq *rq = cpu_rq(cpu);
2130
2131 ns->load += cpu_load(rq);
2132 ns->runnable += cpu_runnable(rq);
2133 ns->util += cpu_util_cfs(cpu);
2134 ns->nr_running += rq->cfs.h_nr_running;
2135 ns->compute_capacity += capacity_of(cpu);
2136
2137 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2138 if (READ_ONCE(rq->numa_migrate_on) ||
2139 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2140 continue;
2141
2142 if (ns->idle_cpu == -1)
2143 ns->idle_cpu = cpu;
2144
2145 idle_core = numa_idle_core(idle_core, cpu);
2146 }
2147 }
2148 rcu_read_unlock();
2149
2150 ns->weight = cpumask_weight(cpumask_of_node(nid));
2151
2152 ns->node_type = numa_classify(env->imbalance_pct, ns);
2153
2154 if (idle_core >= 0)
2155 ns->idle_cpu = idle_core;
2156 }
2157
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2158 static void task_numa_assign(struct task_numa_env *env,
2159 struct task_struct *p, long imp)
2160 {
2161 struct rq *rq = cpu_rq(env->dst_cpu);
2162
2163 /* Check if run-queue part of active NUMA balance. */
2164 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2165 int cpu;
2166 int start = env->dst_cpu;
2167
2168 /* Find alternative idle CPU. */
2169 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2170 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2171 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2172 continue;
2173 }
2174
2175 env->dst_cpu = cpu;
2176 rq = cpu_rq(env->dst_cpu);
2177 if (!xchg(&rq->numa_migrate_on, 1))
2178 goto assign;
2179 }
2180
2181 /* Failed to find an alternative idle CPU */
2182 return;
2183 }
2184
2185 assign:
2186 /*
2187 * Clear previous best_cpu/rq numa-migrate flag, since task now
2188 * found a better CPU to move/swap.
2189 */
2190 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2191 rq = cpu_rq(env->best_cpu);
2192 WRITE_ONCE(rq->numa_migrate_on, 0);
2193 }
2194
2195 if (env->best_task)
2196 put_task_struct(env->best_task);
2197 if (p)
2198 get_task_struct(p);
2199
2200 env->best_task = p;
2201 env->best_imp = imp;
2202 env->best_cpu = env->dst_cpu;
2203 }
2204
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2205 static bool load_too_imbalanced(long src_load, long dst_load,
2206 struct task_numa_env *env)
2207 {
2208 long imb, old_imb;
2209 long orig_src_load, orig_dst_load;
2210 long src_capacity, dst_capacity;
2211
2212 /*
2213 * The load is corrected for the CPU capacity available on each node.
2214 *
2215 * src_load dst_load
2216 * ------------ vs ---------
2217 * src_capacity dst_capacity
2218 */
2219 src_capacity = env->src_stats.compute_capacity;
2220 dst_capacity = env->dst_stats.compute_capacity;
2221
2222 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2223
2224 orig_src_load = env->src_stats.load;
2225 orig_dst_load = env->dst_stats.load;
2226
2227 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2228
2229 /* Would this change make things worse? */
2230 return (imb > old_imb);
2231 }
2232
2233 /*
2234 * Maximum NUMA importance can be 1998 (2*999);
2235 * SMALLIMP @ 30 would be close to 1998/64.
2236 * Used to deter task migration.
2237 */
2238 #define SMALLIMP 30
2239
2240 /*
2241 * This checks if the overall compute and NUMA accesses of the system would
2242 * be improved if the source tasks was migrated to the target dst_cpu taking
2243 * into account that it might be best if task running on the dst_cpu should
2244 * be exchanged with the source task
2245 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2246 static bool task_numa_compare(struct task_numa_env *env,
2247 long taskimp, long groupimp, bool maymove)
2248 {
2249 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2250 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2251 long imp = p_ng ? groupimp : taskimp;
2252 struct task_struct *cur;
2253 long src_load, dst_load;
2254 int dist = env->dist;
2255 long moveimp = imp;
2256 long load;
2257 bool stopsearch = false;
2258
2259 if (READ_ONCE(dst_rq->numa_migrate_on))
2260 return false;
2261
2262 rcu_read_lock();
2263 cur = rcu_dereference(dst_rq->curr);
2264 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2265 cur = NULL;
2266
2267 /*
2268 * Because we have preemption enabled we can get migrated around and
2269 * end try selecting ourselves (current == env->p) as a swap candidate.
2270 */
2271 if (cur == env->p) {
2272 stopsearch = true;
2273 goto unlock;
2274 }
2275
2276 if (!cur) {
2277 if (maymove && moveimp >= env->best_imp)
2278 goto assign;
2279 else
2280 goto unlock;
2281 }
2282
2283 /* Skip this swap candidate if cannot move to the source cpu. */
2284 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2285 goto unlock;
2286
2287 /*
2288 * Skip this swap candidate if it is not moving to its preferred
2289 * node and the best task is.
2290 */
2291 if (env->best_task &&
2292 env->best_task->numa_preferred_nid == env->src_nid &&
2293 cur->numa_preferred_nid != env->src_nid) {
2294 goto unlock;
2295 }
2296
2297 /*
2298 * "imp" is the fault differential for the source task between the
2299 * source and destination node. Calculate the total differential for
2300 * the source task and potential destination task. The more negative
2301 * the value is, the more remote accesses that would be expected to
2302 * be incurred if the tasks were swapped.
2303 *
2304 * If dst and source tasks are in the same NUMA group, or not
2305 * in any group then look only at task weights.
2306 */
2307 cur_ng = rcu_dereference(cur->numa_group);
2308 if (cur_ng == p_ng) {
2309 /*
2310 * Do not swap within a group or between tasks that have
2311 * no group if there is spare capacity. Swapping does
2312 * not address the load imbalance and helps one task at
2313 * the cost of punishing another.
2314 */
2315 if (env->dst_stats.node_type == node_has_spare)
2316 goto unlock;
2317
2318 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2319 task_weight(cur, env->dst_nid, dist);
2320 /*
2321 * Add some hysteresis to prevent swapping the
2322 * tasks within a group over tiny differences.
2323 */
2324 if (cur_ng)
2325 imp -= imp / 16;
2326 } else {
2327 /*
2328 * Compare the group weights. If a task is all by itself
2329 * (not part of a group), use the task weight instead.
2330 */
2331 if (cur_ng && p_ng)
2332 imp += group_weight(cur, env->src_nid, dist) -
2333 group_weight(cur, env->dst_nid, dist);
2334 else
2335 imp += task_weight(cur, env->src_nid, dist) -
2336 task_weight(cur, env->dst_nid, dist);
2337 }
2338
2339 /* Discourage picking a task already on its preferred node */
2340 if (cur->numa_preferred_nid == env->dst_nid)
2341 imp -= imp / 16;
2342
2343 /*
2344 * Encourage picking a task that moves to its preferred node.
2345 * This potentially makes imp larger than it's maximum of
2346 * 1998 (see SMALLIMP and task_weight for why) but in this
2347 * case, it does not matter.
2348 */
2349 if (cur->numa_preferred_nid == env->src_nid)
2350 imp += imp / 8;
2351
2352 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2353 imp = moveimp;
2354 cur = NULL;
2355 goto assign;
2356 }
2357
2358 /*
2359 * Prefer swapping with a task moving to its preferred node over a
2360 * task that is not.
2361 */
2362 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2363 env->best_task->numa_preferred_nid != env->src_nid) {
2364 goto assign;
2365 }
2366
2367 /*
2368 * If the NUMA importance is less than SMALLIMP,
2369 * task migration might only result in ping pong
2370 * of tasks and also hurt performance due to cache
2371 * misses.
2372 */
2373 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2374 goto unlock;
2375
2376 /*
2377 * In the overloaded case, try and keep the load balanced.
2378 */
2379 load = task_h_load(env->p) - task_h_load(cur);
2380 if (!load)
2381 goto assign;
2382
2383 dst_load = env->dst_stats.load + load;
2384 src_load = env->src_stats.load - load;
2385
2386 if (load_too_imbalanced(src_load, dst_load, env))
2387 goto unlock;
2388
2389 assign:
2390 /* Evaluate an idle CPU for a task numa move. */
2391 if (!cur) {
2392 int cpu = env->dst_stats.idle_cpu;
2393
2394 /* Nothing cached so current CPU went idle since the search. */
2395 if (cpu < 0)
2396 cpu = env->dst_cpu;
2397
2398 /*
2399 * If the CPU is no longer truly idle and the previous best CPU
2400 * is, keep using it.
2401 */
2402 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2403 idle_cpu(env->best_cpu)) {
2404 cpu = env->best_cpu;
2405 }
2406
2407 env->dst_cpu = cpu;
2408 }
2409
2410 task_numa_assign(env, cur, imp);
2411
2412 /*
2413 * If a move to idle is allowed because there is capacity or load
2414 * balance improves then stop the search. While a better swap
2415 * candidate may exist, a search is not free.
2416 */
2417 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2418 stopsearch = true;
2419
2420 /*
2421 * If a swap candidate must be identified and the current best task
2422 * moves its preferred node then stop the search.
2423 */
2424 if (!maymove && env->best_task &&
2425 env->best_task->numa_preferred_nid == env->src_nid) {
2426 stopsearch = true;
2427 }
2428 unlock:
2429 rcu_read_unlock();
2430
2431 return stopsearch;
2432 }
2433
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2434 static void task_numa_find_cpu(struct task_numa_env *env,
2435 long taskimp, long groupimp)
2436 {
2437 bool maymove = false;
2438 int cpu;
2439
2440 /*
2441 * If dst node has spare capacity, then check if there is an
2442 * imbalance that would be overruled by the load balancer.
2443 */
2444 if (env->dst_stats.node_type == node_has_spare) {
2445 unsigned int imbalance;
2446 int src_running, dst_running;
2447
2448 /*
2449 * Would movement cause an imbalance? Note that if src has
2450 * more running tasks that the imbalance is ignored as the
2451 * move improves the imbalance from the perspective of the
2452 * CPU load balancer.
2453 * */
2454 src_running = env->src_stats.nr_running - 1;
2455 dst_running = env->dst_stats.nr_running + 1;
2456 imbalance = max(0, dst_running - src_running);
2457 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2458 env->imb_numa_nr);
2459
2460 /* Use idle CPU if there is no imbalance */
2461 if (!imbalance) {
2462 maymove = true;
2463 if (env->dst_stats.idle_cpu >= 0) {
2464 env->dst_cpu = env->dst_stats.idle_cpu;
2465 task_numa_assign(env, NULL, 0);
2466 return;
2467 }
2468 }
2469 } else {
2470 long src_load, dst_load, load;
2471 /*
2472 * If the improvement from just moving env->p direction is better
2473 * than swapping tasks around, check if a move is possible.
2474 */
2475 load = task_h_load(env->p);
2476 dst_load = env->dst_stats.load + load;
2477 src_load = env->src_stats.load - load;
2478 maymove = !load_too_imbalanced(src_load, dst_load, env);
2479 }
2480
2481 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2482 /* Skip this CPU if the source task cannot migrate */
2483 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2484 continue;
2485
2486 env->dst_cpu = cpu;
2487 if (task_numa_compare(env, taskimp, groupimp, maymove))
2488 break;
2489 }
2490 }
2491
task_numa_migrate(struct task_struct * p)2492 static int task_numa_migrate(struct task_struct *p)
2493 {
2494 struct task_numa_env env = {
2495 .p = p,
2496
2497 .src_cpu = task_cpu(p),
2498 .src_nid = task_node(p),
2499
2500 .imbalance_pct = 112,
2501
2502 .best_task = NULL,
2503 .best_imp = 0,
2504 .best_cpu = -1,
2505 };
2506 unsigned long taskweight, groupweight;
2507 struct sched_domain *sd;
2508 long taskimp, groupimp;
2509 struct numa_group *ng;
2510 struct rq *best_rq;
2511 int nid, ret, dist;
2512
2513 /*
2514 * Pick the lowest SD_NUMA domain, as that would have the smallest
2515 * imbalance and would be the first to start moving tasks about.
2516 *
2517 * And we want to avoid any moving of tasks about, as that would create
2518 * random movement of tasks -- counter the numa conditions we're trying
2519 * to satisfy here.
2520 */
2521 rcu_read_lock();
2522 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2523 if (sd) {
2524 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2525 env.imb_numa_nr = sd->imb_numa_nr;
2526 }
2527 rcu_read_unlock();
2528
2529 /*
2530 * Cpusets can break the scheduler domain tree into smaller
2531 * balance domains, some of which do not cross NUMA boundaries.
2532 * Tasks that are "trapped" in such domains cannot be migrated
2533 * elsewhere, so there is no point in (re)trying.
2534 */
2535 if (unlikely(!sd)) {
2536 sched_setnuma(p, task_node(p));
2537 return -EINVAL;
2538 }
2539
2540 env.dst_nid = p->numa_preferred_nid;
2541 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2542 taskweight = task_weight(p, env.src_nid, dist);
2543 groupweight = group_weight(p, env.src_nid, dist);
2544 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2545 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2546 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2547 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2548
2549 /* Try to find a spot on the preferred nid. */
2550 task_numa_find_cpu(&env, taskimp, groupimp);
2551
2552 /*
2553 * Look at other nodes in these cases:
2554 * - there is no space available on the preferred_nid
2555 * - the task is part of a numa_group that is interleaved across
2556 * multiple NUMA nodes; in order to better consolidate the group,
2557 * we need to check other locations.
2558 */
2559 ng = deref_curr_numa_group(p);
2560 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2561 for_each_node_state(nid, N_CPU) {
2562 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2563 continue;
2564
2565 dist = node_distance(env.src_nid, env.dst_nid);
2566 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2567 dist != env.dist) {
2568 taskweight = task_weight(p, env.src_nid, dist);
2569 groupweight = group_weight(p, env.src_nid, dist);
2570 }
2571
2572 /* Only consider nodes where both task and groups benefit */
2573 taskimp = task_weight(p, nid, dist) - taskweight;
2574 groupimp = group_weight(p, nid, dist) - groupweight;
2575 if (taskimp < 0 && groupimp < 0)
2576 continue;
2577
2578 env.dist = dist;
2579 env.dst_nid = nid;
2580 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2581 task_numa_find_cpu(&env, taskimp, groupimp);
2582 }
2583 }
2584
2585 /*
2586 * If the task is part of a workload that spans multiple NUMA nodes,
2587 * and is migrating into one of the workload's active nodes, remember
2588 * this node as the task's preferred numa node, so the workload can
2589 * settle down.
2590 * A task that migrated to a second choice node will be better off
2591 * trying for a better one later. Do not set the preferred node here.
2592 */
2593 if (ng) {
2594 if (env.best_cpu == -1)
2595 nid = env.src_nid;
2596 else
2597 nid = cpu_to_node(env.best_cpu);
2598
2599 if (nid != p->numa_preferred_nid)
2600 sched_setnuma(p, nid);
2601 }
2602
2603 /* No better CPU than the current one was found. */
2604 if (env.best_cpu == -1) {
2605 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2606 return -EAGAIN;
2607 }
2608
2609 best_rq = cpu_rq(env.best_cpu);
2610 if (env.best_task == NULL) {
2611 ret = migrate_task_to(p, env.best_cpu);
2612 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2613 if (ret != 0)
2614 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2615 return ret;
2616 }
2617
2618 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2619 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2620
2621 if (ret != 0)
2622 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2623 put_task_struct(env.best_task);
2624 return ret;
2625 }
2626
2627 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2628 static void numa_migrate_preferred(struct task_struct *p)
2629 {
2630 unsigned long interval = HZ;
2631
2632 /* This task has no NUMA fault statistics yet */
2633 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2634 return;
2635
2636 /* Periodically retry migrating the task to the preferred node */
2637 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2638 p->numa_migrate_retry = jiffies + interval;
2639
2640 /* Success if task is already running on preferred CPU */
2641 if (task_node(p) == p->numa_preferred_nid)
2642 return;
2643
2644 /* Otherwise, try migrate to a CPU on the preferred node */
2645 task_numa_migrate(p);
2646 }
2647
2648 /*
2649 * Find out how many nodes the workload is actively running on. Do this by
2650 * tracking the nodes from which NUMA hinting faults are triggered. This can
2651 * be different from the set of nodes where the workload's memory is currently
2652 * located.
2653 */
numa_group_count_active_nodes(struct numa_group * numa_group)2654 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2655 {
2656 unsigned long faults, max_faults = 0;
2657 int nid, active_nodes = 0;
2658
2659 for_each_node_state(nid, N_CPU) {
2660 faults = group_faults_cpu(numa_group, nid);
2661 if (faults > max_faults)
2662 max_faults = faults;
2663 }
2664
2665 for_each_node_state(nid, N_CPU) {
2666 faults = group_faults_cpu(numa_group, nid);
2667 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2668 active_nodes++;
2669 }
2670
2671 numa_group->max_faults_cpu = max_faults;
2672 numa_group->active_nodes = active_nodes;
2673 }
2674
2675 /*
2676 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2677 * increments. The more local the fault statistics are, the higher the scan
2678 * period will be for the next scan window. If local/(local+remote) ratio is
2679 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2680 * the scan period will decrease. Aim for 70% local accesses.
2681 */
2682 #define NUMA_PERIOD_SLOTS 10
2683 #define NUMA_PERIOD_THRESHOLD 7
2684
2685 /*
2686 * Increase the scan period (slow down scanning) if the majority of
2687 * our memory is already on our local node, or if the majority of
2688 * the page accesses are shared with other processes.
2689 * Otherwise, decrease the scan period.
2690 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2691 static void update_task_scan_period(struct task_struct *p,
2692 unsigned long shared, unsigned long private)
2693 {
2694 unsigned int period_slot;
2695 int lr_ratio, ps_ratio;
2696 int diff;
2697
2698 unsigned long remote = p->numa_faults_locality[0];
2699 unsigned long local = p->numa_faults_locality[1];
2700
2701 /*
2702 * If there were no record hinting faults then either the task is
2703 * completely idle or all activity is in areas that are not of interest
2704 * to automatic numa balancing. Related to that, if there were failed
2705 * migration then it implies we are migrating too quickly or the local
2706 * node is overloaded. In either case, scan slower
2707 */
2708 if (local + shared == 0 || p->numa_faults_locality[2]) {
2709 p->numa_scan_period = min(p->numa_scan_period_max,
2710 p->numa_scan_period << 1);
2711
2712 p->mm->numa_next_scan = jiffies +
2713 msecs_to_jiffies(p->numa_scan_period);
2714
2715 return;
2716 }
2717
2718 /*
2719 * Prepare to scale scan period relative to the current period.
2720 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2721 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2722 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2723 */
2724 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2725 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2726 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2727
2728 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2729 /*
2730 * Most memory accesses are local. There is no need to
2731 * do fast NUMA scanning, since memory is already local.
2732 */
2733 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2734 if (!slot)
2735 slot = 1;
2736 diff = slot * period_slot;
2737 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2738 /*
2739 * Most memory accesses are shared with other tasks.
2740 * There is no point in continuing fast NUMA scanning,
2741 * since other tasks may just move the memory elsewhere.
2742 */
2743 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2744 if (!slot)
2745 slot = 1;
2746 diff = slot * period_slot;
2747 } else {
2748 /*
2749 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2750 * yet they are not on the local NUMA node. Speed up
2751 * NUMA scanning to get the memory moved over.
2752 */
2753 int ratio = max(lr_ratio, ps_ratio);
2754 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2755 }
2756
2757 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2758 task_scan_min(p), task_scan_max(p));
2759 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2760 }
2761
2762 /*
2763 * Get the fraction of time the task has been running since the last
2764 * NUMA placement cycle. The scheduler keeps similar statistics, but
2765 * decays those on a 32ms period, which is orders of magnitude off
2766 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2767 * stats only if the task is so new there are no NUMA statistics yet.
2768 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2769 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2770 {
2771 u64 runtime, delta, now;
2772 /* Use the start of this time slice to avoid calculations. */
2773 now = p->se.exec_start;
2774 runtime = p->se.sum_exec_runtime;
2775
2776 if (p->last_task_numa_placement) {
2777 delta = runtime - p->last_sum_exec_runtime;
2778 *period = now - p->last_task_numa_placement;
2779
2780 /* Avoid time going backwards, prevent potential divide error: */
2781 if (unlikely((s64)*period < 0))
2782 *period = 0;
2783 } else {
2784 delta = p->se.avg.load_sum;
2785 *period = LOAD_AVG_MAX;
2786 }
2787
2788 p->last_sum_exec_runtime = runtime;
2789 p->last_task_numa_placement = now;
2790
2791 return delta;
2792 }
2793
2794 /*
2795 * Determine the preferred nid for a task in a numa_group. This needs to
2796 * be done in a way that produces consistent results with group_weight,
2797 * otherwise workloads might not converge.
2798 */
preferred_group_nid(struct task_struct * p,int nid)2799 static int preferred_group_nid(struct task_struct *p, int nid)
2800 {
2801 nodemask_t nodes;
2802 int dist;
2803
2804 /* Direct connections between all NUMA nodes. */
2805 if (sched_numa_topology_type == NUMA_DIRECT)
2806 return nid;
2807
2808 /*
2809 * On a system with glueless mesh NUMA topology, group_weight
2810 * scores nodes according to the number of NUMA hinting faults on
2811 * both the node itself, and on nearby nodes.
2812 */
2813 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2814 unsigned long score, max_score = 0;
2815 int node, max_node = nid;
2816
2817 dist = sched_max_numa_distance;
2818
2819 for_each_node_state(node, N_CPU) {
2820 score = group_weight(p, node, dist);
2821 if (score > max_score) {
2822 max_score = score;
2823 max_node = node;
2824 }
2825 }
2826 return max_node;
2827 }
2828
2829 /*
2830 * Finding the preferred nid in a system with NUMA backplane
2831 * interconnect topology is more involved. The goal is to locate
2832 * tasks from numa_groups near each other in the system, and
2833 * untangle workloads from different sides of the system. This requires
2834 * searching down the hierarchy of node groups, recursively searching
2835 * inside the highest scoring group of nodes. The nodemask tricks
2836 * keep the complexity of the search down.
2837 */
2838 nodes = node_states[N_CPU];
2839 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2840 unsigned long max_faults = 0;
2841 nodemask_t max_group = NODE_MASK_NONE;
2842 int a, b;
2843
2844 /* Are there nodes at this distance from each other? */
2845 if (!find_numa_distance(dist))
2846 continue;
2847
2848 for_each_node_mask(a, nodes) {
2849 unsigned long faults = 0;
2850 nodemask_t this_group;
2851 nodes_clear(this_group);
2852
2853 /* Sum group's NUMA faults; includes a==b case. */
2854 for_each_node_mask(b, nodes) {
2855 if (node_distance(a, b) < dist) {
2856 faults += group_faults(p, b);
2857 node_set(b, this_group);
2858 node_clear(b, nodes);
2859 }
2860 }
2861
2862 /* Remember the top group. */
2863 if (faults > max_faults) {
2864 max_faults = faults;
2865 max_group = this_group;
2866 /*
2867 * subtle: at the smallest distance there is
2868 * just one node left in each "group", the
2869 * winner is the preferred nid.
2870 */
2871 nid = a;
2872 }
2873 }
2874 /* Next round, evaluate the nodes within max_group. */
2875 if (!max_faults)
2876 break;
2877 nodes = max_group;
2878 }
2879 return nid;
2880 }
2881
task_numa_placement(struct task_struct * p)2882 static void task_numa_placement(struct task_struct *p)
2883 {
2884 int seq, nid, max_nid = NUMA_NO_NODE;
2885 unsigned long max_faults = 0;
2886 unsigned long fault_types[2] = { 0, 0 };
2887 unsigned long total_faults;
2888 u64 runtime, period;
2889 spinlock_t *group_lock = NULL;
2890 struct numa_group *ng;
2891
2892 /*
2893 * The p->mm->numa_scan_seq field gets updated without
2894 * exclusive access. Use READ_ONCE() here to ensure
2895 * that the field is read in a single access:
2896 */
2897 seq = READ_ONCE(p->mm->numa_scan_seq);
2898 if (p->numa_scan_seq == seq)
2899 return;
2900 p->numa_scan_seq = seq;
2901 p->numa_scan_period_max = task_scan_max(p);
2902
2903 total_faults = p->numa_faults_locality[0] +
2904 p->numa_faults_locality[1];
2905 runtime = numa_get_avg_runtime(p, &period);
2906
2907 /* If the task is part of a group prevent parallel updates to group stats */
2908 ng = deref_curr_numa_group(p);
2909 if (ng) {
2910 group_lock = &ng->lock;
2911 spin_lock_irq(group_lock);
2912 }
2913
2914 /* Find the node with the highest number of faults */
2915 for_each_online_node(nid) {
2916 /* Keep track of the offsets in numa_faults array */
2917 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2918 unsigned long faults = 0, group_faults = 0;
2919 int priv;
2920
2921 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2922 long diff, f_diff, f_weight;
2923
2924 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2925 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2926 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2927 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2928
2929 /* Decay existing window, copy faults since last scan */
2930 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2931 fault_types[priv] += p->numa_faults[membuf_idx];
2932 p->numa_faults[membuf_idx] = 0;
2933
2934 /*
2935 * Normalize the faults_from, so all tasks in a group
2936 * count according to CPU use, instead of by the raw
2937 * number of faults. Tasks with little runtime have
2938 * little over-all impact on throughput, and thus their
2939 * faults are less important.
2940 */
2941 f_weight = div64_u64(runtime << 16, period + 1);
2942 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2943 (total_faults + 1);
2944 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2945 p->numa_faults[cpubuf_idx] = 0;
2946
2947 p->numa_faults[mem_idx] += diff;
2948 p->numa_faults[cpu_idx] += f_diff;
2949 faults += p->numa_faults[mem_idx];
2950 p->total_numa_faults += diff;
2951 if (ng) {
2952 /*
2953 * safe because we can only change our own group
2954 *
2955 * mem_idx represents the offset for a given
2956 * nid and priv in a specific region because it
2957 * is at the beginning of the numa_faults array.
2958 */
2959 ng->faults[mem_idx] += diff;
2960 ng->faults[cpu_idx] += f_diff;
2961 ng->total_faults += diff;
2962 group_faults += ng->faults[mem_idx];
2963 }
2964 }
2965
2966 if (!ng) {
2967 if (faults > max_faults) {
2968 max_faults = faults;
2969 max_nid = nid;
2970 }
2971 } else if (group_faults > max_faults) {
2972 max_faults = group_faults;
2973 max_nid = nid;
2974 }
2975 }
2976
2977 /* Cannot migrate task to CPU-less node */
2978 max_nid = numa_nearest_node(max_nid, N_CPU);
2979
2980 if (ng) {
2981 numa_group_count_active_nodes(ng);
2982 spin_unlock_irq(group_lock);
2983 max_nid = preferred_group_nid(p, max_nid);
2984 }
2985
2986 if (max_faults) {
2987 /* Set the new preferred node */
2988 if (max_nid != p->numa_preferred_nid)
2989 sched_setnuma(p, max_nid);
2990 }
2991
2992 update_task_scan_period(p, fault_types[0], fault_types[1]);
2993 }
2994
get_numa_group(struct numa_group * grp)2995 static inline int get_numa_group(struct numa_group *grp)
2996 {
2997 return refcount_inc_not_zero(&grp->refcount);
2998 }
2999
put_numa_group(struct numa_group * grp)3000 static inline void put_numa_group(struct numa_group *grp)
3001 {
3002 if (refcount_dec_and_test(&grp->refcount))
3003 kfree_rcu(grp, rcu);
3004 }
3005
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3006 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3007 int *priv)
3008 {
3009 struct numa_group *grp, *my_grp;
3010 struct task_struct *tsk;
3011 bool join = false;
3012 int cpu = cpupid_to_cpu(cpupid);
3013 int i;
3014
3015 if (unlikely(!deref_curr_numa_group(p))) {
3016 unsigned int size = sizeof(struct numa_group) +
3017 NR_NUMA_HINT_FAULT_STATS *
3018 nr_node_ids * sizeof(unsigned long);
3019
3020 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3021 if (!grp)
3022 return;
3023
3024 refcount_set(&grp->refcount, 1);
3025 grp->active_nodes = 1;
3026 grp->max_faults_cpu = 0;
3027 spin_lock_init(&grp->lock);
3028 grp->gid = p->pid;
3029
3030 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3031 grp->faults[i] = p->numa_faults[i];
3032
3033 grp->total_faults = p->total_numa_faults;
3034
3035 grp->nr_tasks++;
3036 rcu_assign_pointer(p->numa_group, grp);
3037 }
3038
3039 rcu_read_lock();
3040 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3041
3042 if (!cpupid_match_pid(tsk, cpupid))
3043 goto no_join;
3044
3045 grp = rcu_dereference(tsk->numa_group);
3046 if (!grp)
3047 goto no_join;
3048
3049 my_grp = deref_curr_numa_group(p);
3050 if (grp == my_grp)
3051 goto no_join;
3052
3053 /*
3054 * Only join the other group if its bigger; if we're the bigger group,
3055 * the other task will join us.
3056 */
3057 if (my_grp->nr_tasks > grp->nr_tasks)
3058 goto no_join;
3059
3060 /*
3061 * Tie-break on the grp address.
3062 */
3063 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3064 goto no_join;
3065
3066 /* Always join threads in the same process. */
3067 if (tsk->mm == current->mm)
3068 join = true;
3069
3070 /* Simple filter to avoid false positives due to PID collisions */
3071 if (flags & TNF_SHARED)
3072 join = true;
3073
3074 /* Update priv based on whether false sharing was detected */
3075 *priv = !join;
3076
3077 if (join && !get_numa_group(grp))
3078 goto no_join;
3079
3080 rcu_read_unlock();
3081
3082 if (!join)
3083 return;
3084
3085 WARN_ON_ONCE(irqs_disabled());
3086 double_lock_irq(&my_grp->lock, &grp->lock);
3087
3088 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3089 my_grp->faults[i] -= p->numa_faults[i];
3090 grp->faults[i] += p->numa_faults[i];
3091 }
3092 my_grp->total_faults -= p->total_numa_faults;
3093 grp->total_faults += p->total_numa_faults;
3094
3095 my_grp->nr_tasks--;
3096 grp->nr_tasks++;
3097
3098 spin_unlock(&my_grp->lock);
3099 spin_unlock_irq(&grp->lock);
3100
3101 rcu_assign_pointer(p->numa_group, grp);
3102
3103 put_numa_group(my_grp);
3104 return;
3105
3106 no_join:
3107 rcu_read_unlock();
3108 return;
3109 }
3110
3111 /*
3112 * Get rid of NUMA statistics associated with a task (either current or dead).
3113 * If @final is set, the task is dead and has reached refcount zero, so we can
3114 * safely free all relevant data structures. Otherwise, there might be
3115 * concurrent reads from places like load balancing and procfs, and we should
3116 * reset the data back to default state without freeing ->numa_faults.
3117 */
task_numa_free(struct task_struct * p,bool final)3118 void task_numa_free(struct task_struct *p, bool final)
3119 {
3120 /* safe: p either is current or is being freed by current */
3121 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3122 unsigned long *numa_faults = p->numa_faults;
3123 unsigned long flags;
3124 int i;
3125
3126 if (!numa_faults)
3127 return;
3128
3129 if (grp) {
3130 spin_lock_irqsave(&grp->lock, flags);
3131 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3132 grp->faults[i] -= p->numa_faults[i];
3133 grp->total_faults -= p->total_numa_faults;
3134
3135 grp->nr_tasks--;
3136 spin_unlock_irqrestore(&grp->lock, flags);
3137 RCU_INIT_POINTER(p->numa_group, NULL);
3138 put_numa_group(grp);
3139 }
3140
3141 if (final) {
3142 p->numa_faults = NULL;
3143 kfree(numa_faults);
3144 } else {
3145 p->total_numa_faults = 0;
3146 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3147 numa_faults[i] = 0;
3148 }
3149 }
3150
3151 /*
3152 * Got a PROT_NONE fault for a page on @node.
3153 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3154 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3155 {
3156 struct task_struct *p = current;
3157 bool migrated = flags & TNF_MIGRATED;
3158 int cpu_node = task_node(current);
3159 int local = !!(flags & TNF_FAULT_LOCAL);
3160 struct numa_group *ng;
3161 int priv;
3162
3163 if (!static_branch_likely(&sched_numa_balancing))
3164 return;
3165
3166 /* for example, ksmd faulting in a user's mm */
3167 if (!p->mm)
3168 return;
3169
3170 /*
3171 * NUMA faults statistics are unnecessary for the slow memory
3172 * node for memory tiering mode.
3173 */
3174 if (!node_is_toptier(mem_node) &&
3175 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3176 !cpupid_valid(last_cpupid)))
3177 return;
3178
3179 /* Allocate buffer to track faults on a per-node basis */
3180 if (unlikely(!p->numa_faults)) {
3181 int size = sizeof(*p->numa_faults) *
3182 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3183
3184 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3185 if (!p->numa_faults)
3186 return;
3187
3188 p->total_numa_faults = 0;
3189 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3190 }
3191
3192 /*
3193 * First accesses are treated as private, otherwise consider accesses
3194 * to be private if the accessing pid has not changed
3195 */
3196 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3197 priv = 1;
3198 } else {
3199 priv = cpupid_match_pid(p, last_cpupid);
3200 if (!priv && !(flags & TNF_NO_GROUP))
3201 task_numa_group(p, last_cpupid, flags, &priv);
3202 }
3203
3204 /*
3205 * If a workload spans multiple NUMA nodes, a shared fault that
3206 * occurs wholly within the set of nodes that the workload is
3207 * actively using should be counted as local. This allows the
3208 * scan rate to slow down when a workload has settled down.
3209 */
3210 ng = deref_curr_numa_group(p);
3211 if (!priv && !local && ng && ng->active_nodes > 1 &&
3212 numa_is_active_node(cpu_node, ng) &&
3213 numa_is_active_node(mem_node, ng))
3214 local = 1;
3215
3216 /*
3217 * Retry to migrate task to preferred node periodically, in case it
3218 * previously failed, or the scheduler moved us.
3219 */
3220 if (time_after(jiffies, p->numa_migrate_retry)) {
3221 task_numa_placement(p);
3222 numa_migrate_preferred(p);
3223 }
3224
3225 if (migrated)
3226 p->numa_pages_migrated += pages;
3227 if (flags & TNF_MIGRATE_FAIL)
3228 p->numa_faults_locality[2] += pages;
3229
3230 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3231 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3232 p->numa_faults_locality[local] += pages;
3233 }
3234
reset_ptenuma_scan(struct task_struct * p)3235 static void reset_ptenuma_scan(struct task_struct *p)
3236 {
3237 /*
3238 * We only did a read acquisition of the mmap sem, so
3239 * p->mm->numa_scan_seq is written to without exclusive access
3240 * and the update is not guaranteed to be atomic. That's not
3241 * much of an issue though, since this is just used for
3242 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3243 * expensive, to avoid any form of compiler optimizations:
3244 */
3245 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3246 p->mm->numa_scan_offset = 0;
3247 }
3248
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3249 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3250 {
3251 unsigned long pids;
3252 /*
3253 * Allow unconditional access first two times, so that all the (pages)
3254 * of VMAs get prot_none fault introduced irrespective of accesses.
3255 * This is also done to avoid any side effect of task scanning
3256 * amplifying the unfairness of disjoint set of VMAs' access.
3257 */
3258 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3259 return true;
3260
3261 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3262 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3263 return true;
3264
3265 /*
3266 * Complete a scan that has already started regardless of PID access, or
3267 * some VMAs may never be scanned in multi-threaded applications:
3268 */
3269 if (mm->numa_scan_offset > vma->vm_start) {
3270 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3271 return true;
3272 }
3273
3274 /*
3275 * This vma has not been accessed for a while, and if the number
3276 * the threads in the same process is low, which means no other
3277 * threads can help scan this vma, force a vma scan.
3278 */
3279 if (READ_ONCE(mm->numa_scan_seq) >
3280 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3281 return true;
3282
3283 return false;
3284 }
3285
3286 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3287
3288 /*
3289 * The expensive part of numa migration is done from task_work context.
3290 * Triggered from task_tick_numa().
3291 */
task_numa_work(struct callback_head * work)3292 static void task_numa_work(struct callback_head *work)
3293 {
3294 unsigned long migrate, next_scan, now = jiffies;
3295 struct task_struct *p = current;
3296 struct mm_struct *mm = p->mm;
3297 u64 runtime = p->se.sum_exec_runtime;
3298 struct vm_area_struct *vma;
3299 unsigned long start, end;
3300 unsigned long nr_pte_updates = 0;
3301 long pages, virtpages;
3302 struct vma_iterator vmi;
3303 bool vma_pids_skipped;
3304 bool vma_pids_forced = false;
3305
3306 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3307
3308 work->next = work;
3309 /*
3310 * Who cares about NUMA placement when they're dying.
3311 *
3312 * NOTE: make sure not to dereference p->mm before this check,
3313 * exit_task_work() happens _after_ exit_mm() so we could be called
3314 * without p->mm even though we still had it when we enqueued this
3315 * work.
3316 */
3317 if (p->flags & PF_EXITING)
3318 return;
3319
3320 if (!mm->numa_next_scan) {
3321 mm->numa_next_scan = now +
3322 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3323 }
3324
3325 /*
3326 * Enforce maximal scan/migration frequency..
3327 */
3328 migrate = mm->numa_next_scan;
3329 if (time_before(now, migrate))
3330 return;
3331
3332 if (p->numa_scan_period == 0) {
3333 p->numa_scan_period_max = task_scan_max(p);
3334 p->numa_scan_period = task_scan_start(p);
3335 }
3336
3337 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3338 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3339 return;
3340
3341 /*
3342 * Delay this task enough that another task of this mm will likely win
3343 * the next time around.
3344 */
3345 p->node_stamp += 2 * TICK_NSEC;
3346
3347 pages = sysctl_numa_balancing_scan_size;
3348 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3349 virtpages = pages * 8; /* Scan up to this much virtual space */
3350 if (!pages)
3351 return;
3352
3353
3354 if (!mmap_read_trylock(mm))
3355 return;
3356
3357 /*
3358 * VMAs are skipped if the current PID has not trapped a fault within
3359 * the VMA recently. Allow scanning to be forced if there is no
3360 * suitable VMA remaining.
3361 */
3362 vma_pids_skipped = false;
3363
3364 retry_pids:
3365 start = mm->numa_scan_offset;
3366 vma_iter_init(&vmi, mm, start);
3367 vma = vma_next(&vmi);
3368 if (!vma) {
3369 reset_ptenuma_scan(p);
3370 start = 0;
3371 vma_iter_set(&vmi, start);
3372 vma = vma_next(&vmi);
3373 }
3374
3375 for (; vma; vma = vma_next(&vmi)) {
3376 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3377 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3378 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3379 continue;
3380 }
3381
3382 /*
3383 * Shared library pages mapped by multiple processes are not
3384 * migrated as it is expected they are cache replicated. Avoid
3385 * hinting faults in read-only file-backed mappings or the vDSO
3386 * as migrating the pages will be of marginal benefit.
3387 */
3388 if (!vma->vm_mm ||
3389 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3390 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3391 continue;
3392 }
3393
3394 /*
3395 * Skip inaccessible VMAs to avoid any confusion between
3396 * PROT_NONE and NUMA hinting PTEs
3397 */
3398 if (!vma_is_accessible(vma)) {
3399 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3400 continue;
3401 }
3402
3403 /* Initialise new per-VMA NUMAB state. */
3404 if (!vma->numab_state) {
3405 struct vma_numab_state *ptr;
3406
3407 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3408 if (!ptr)
3409 continue;
3410
3411 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3412 kfree(ptr);
3413 continue;
3414 }
3415
3416 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3417
3418 vma->numab_state->next_scan = now +
3419 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3420
3421 /* Reset happens after 4 times scan delay of scan start */
3422 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3423 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3424
3425 /*
3426 * Ensure prev_scan_seq does not match numa_scan_seq,
3427 * to prevent VMAs being skipped prematurely on the
3428 * first scan:
3429 */
3430 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3431 }
3432
3433 /*
3434 * Scanning the VMAs of short lived tasks add more overhead. So
3435 * delay the scan for new VMAs.
3436 */
3437 if (mm->numa_scan_seq && time_before(jiffies,
3438 vma->numab_state->next_scan)) {
3439 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3440 continue;
3441 }
3442
3443 /* RESET access PIDs regularly for old VMAs. */
3444 if (mm->numa_scan_seq &&
3445 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3446 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3447 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3448 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3449 vma->numab_state->pids_active[1] = 0;
3450 }
3451
3452 /* Do not rescan VMAs twice within the same sequence. */
3453 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3454 mm->numa_scan_offset = vma->vm_end;
3455 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3456 continue;
3457 }
3458
3459 /*
3460 * Do not scan the VMA if task has not accessed it, unless no other
3461 * VMA candidate exists.
3462 */
3463 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3464 vma_pids_skipped = true;
3465 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3466 continue;
3467 }
3468
3469 do {
3470 start = max(start, vma->vm_start);
3471 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3472 end = min(end, vma->vm_end);
3473 nr_pte_updates = change_prot_numa(vma, start, end);
3474
3475 /*
3476 * Try to scan sysctl_numa_balancing_size worth of
3477 * hpages that have at least one present PTE that
3478 * is not already PTE-numa. If the VMA contains
3479 * areas that are unused or already full of prot_numa
3480 * PTEs, scan up to virtpages, to skip through those
3481 * areas faster.
3482 */
3483 if (nr_pte_updates)
3484 pages -= (end - start) >> PAGE_SHIFT;
3485 virtpages -= (end - start) >> PAGE_SHIFT;
3486
3487 start = end;
3488 if (pages <= 0 || virtpages <= 0)
3489 goto out;
3490
3491 cond_resched();
3492 } while (end != vma->vm_end);
3493
3494 /* VMA scan is complete, do not scan until next sequence. */
3495 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3496
3497 /*
3498 * Only force scan within one VMA at a time, to limit the
3499 * cost of scanning a potentially uninteresting VMA.
3500 */
3501 if (vma_pids_forced)
3502 break;
3503 }
3504
3505 /*
3506 * If no VMAs are remaining and VMAs were skipped due to the PID
3507 * not accessing the VMA previously, then force a scan to ensure
3508 * forward progress:
3509 */
3510 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3511 vma_pids_forced = true;
3512 goto retry_pids;
3513 }
3514
3515 out:
3516 /*
3517 * It is possible to reach the end of the VMA list but the last few
3518 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3519 * would find the !migratable VMA on the next scan but not reset the
3520 * scanner to the start so check it now.
3521 */
3522 if (vma)
3523 mm->numa_scan_offset = start;
3524 else
3525 reset_ptenuma_scan(p);
3526 mmap_read_unlock(mm);
3527
3528 /*
3529 * Make sure tasks use at least 32x as much time to run other code
3530 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3531 * Usually update_task_scan_period slows down scanning enough; on an
3532 * overloaded system we need to limit overhead on a per task basis.
3533 */
3534 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3535 u64 diff = p->se.sum_exec_runtime - runtime;
3536 p->node_stamp += 32 * diff;
3537 }
3538 }
3539
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3540 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3541 {
3542 int mm_users = 0;
3543 struct mm_struct *mm = p->mm;
3544
3545 if (mm) {
3546 mm_users = atomic_read(&mm->mm_users);
3547 if (mm_users == 1) {
3548 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3549 mm->numa_scan_seq = 0;
3550 }
3551 }
3552 p->node_stamp = 0;
3553 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3554 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3555 p->numa_migrate_retry = 0;
3556 /* Protect against double add, see task_tick_numa and task_numa_work */
3557 p->numa_work.next = &p->numa_work;
3558 p->numa_faults = NULL;
3559 p->numa_pages_migrated = 0;
3560 p->total_numa_faults = 0;
3561 RCU_INIT_POINTER(p->numa_group, NULL);
3562 p->last_task_numa_placement = 0;
3563 p->last_sum_exec_runtime = 0;
3564
3565 init_task_work(&p->numa_work, task_numa_work);
3566
3567 /* New address space, reset the preferred nid */
3568 if (!(clone_flags & CLONE_VM)) {
3569 p->numa_preferred_nid = NUMA_NO_NODE;
3570 return;
3571 }
3572
3573 /*
3574 * New thread, keep existing numa_preferred_nid which should be copied
3575 * already by arch_dup_task_struct but stagger when scans start.
3576 */
3577 if (mm) {
3578 unsigned int delay;
3579
3580 delay = min_t(unsigned int, task_scan_max(current),
3581 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3582 delay += 2 * TICK_NSEC;
3583 p->node_stamp = delay;
3584 }
3585 }
3586
3587 /*
3588 * Drive the periodic memory faults..
3589 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3590 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3591 {
3592 struct callback_head *work = &curr->numa_work;
3593 u64 period, now;
3594
3595 /*
3596 * We don't care about NUMA placement if we don't have memory.
3597 */
3598 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3599 return;
3600
3601 /*
3602 * Using runtime rather than walltime has the dual advantage that
3603 * we (mostly) drive the selection from busy threads and that the
3604 * task needs to have done some actual work before we bother with
3605 * NUMA placement.
3606 */
3607 now = curr->se.sum_exec_runtime;
3608 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3609
3610 if (now > curr->node_stamp + period) {
3611 if (!curr->node_stamp)
3612 curr->numa_scan_period = task_scan_start(curr);
3613 curr->node_stamp += period;
3614
3615 if (!time_before(jiffies, curr->mm->numa_next_scan))
3616 task_work_add(curr, work, TWA_RESUME);
3617 }
3618 }
3619
update_scan_period(struct task_struct * p,int new_cpu)3620 static void update_scan_period(struct task_struct *p, int new_cpu)
3621 {
3622 int src_nid = cpu_to_node(task_cpu(p));
3623 int dst_nid = cpu_to_node(new_cpu);
3624
3625 if (!static_branch_likely(&sched_numa_balancing))
3626 return;
3627
3628 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3629 return;
3630
3631 if (src_nid == dst_nid)
3632 return;
3633
3634 /*
3635 * Allow resets if faults have been trapped before one scan
3636 * has completed. This is most likely due to a new task that
3637 * is pulled cross-node due to wakeups or load balancing.
3638 */
3639 if (p->numa_scan_seq) {
3640 /*
3641 * Avoid scan adjustments if moving to the preferred
3642 * node or if the task was not previously running on
3643 * the preferred node.
3644 */
3645 if (dst_nid == p->numa_preferred_nid ||
3646 (p->numa_preferred_nid != NUMA_NO_NODE &&
3647 src_nid != p->numa_preferred_nid))
3648 return;
3649 }
3650
3651 p->numa_scan_period = task_scan_start(p);
3652 }
3653
3654 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3655 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3656 {
3657 }
3658
account_numa_enqueue(struct rq * rq,struct task_struct * p)3659 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3660 {
3661 }
3662
account_numa_dequeue(struct rq * rq,struct task_struct * p)3663 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3664 {
3665 }
3666
update_scan_period(struct task_struct * p,int new_cpu)3667 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3668 {
3669 }
3670
3671 #endif /* CONFIG_NUMA_BALANCING */
3672
3673 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3674 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3675 {
3676 update_load_add(&cfs_rq->load, se->load.weight);
3677 #ifdef CONFIG_SMP
3678 if (entity_is_task(se)) {
3679 struct rq *rq = rq_of(cfs_rq);
3680
3681 account_numa_enqueue(rq, task_of(se));
3682 list_add(&se->group_node, &rq->cfs_tasks);
3683 }
3684 #endif
3685 cfs_rq->nr_running++;
3686 if (se_is_idle(se))
3687 cfs_rq->idle_nr_running++;
3688 }
3689
3690 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3691 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3692 {
3693 update_load_sub(&cfs_rq->load, se->load.weight);
3694 #ifdef CONFIG_SMP
3695 if (entity_is_task(se)) {
3696 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3697 list_del_init(&se->group_node);
3698 }
3699 #endif
3700 cfs_rq->nr_running--;
3701 if (se_is_idle(se))
3702 cfs_rq->idle_nr_running--;
3703 }
3704
3705 /*
3706 * Signed add and clamp on underflow.
3707 *
3708 * Explicitly do a load-store to ensure the intermediate value never hits
3709 * memory. This allows lockless observations without ever seeing the negative
3710 * values.
3711 */
3712 #define add_positive(_ptr, _val) do { \
3713 typeof(_ptr) ptr = (_ptr); \
3714 typeof(_val) val = (_val); \
3715 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3716 \
3717 res = var + val; \
3718 \
3719 if (val < 0 && res > var) \
3720 res = 0; \
3721 \
3722 WRITE_ONCE(*ptr, res); \
3723 } while (0)
3724
3725 /*
3726 * Unsigned subtract and clamp on underflow.
3727 *
3728 * Explicitly do a load-store to ensure the intermediate value never hits
3729 * memory. This allows lockless observations without ever seeing the negative
3730 * values.
3731 */
3732 #define sub_positive(_ptr, _val) do { \
3733 typeof(_ptr) ptr = (_ptr); \
3734 typeof(*ptr) val = (_val); \
3735 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3736 res = var - val; \
3737 if (res > var) \
3738 res = 0; \
3739 WRITE_ONCE(*ptr, res); \
3740 } while (0)
3741
3742 /*
3743 * Remove and clamp on negative, from a local variable.
3744 *
3745 * A variant of sub_positive(), which does not use explicit load-store
3746 * and is thus optimized for local variable updates.
3747 */
3748 #define lsub_positive(_ptr, _val) do { \
3749 typeof(_ptr) ptr = (_ptr); \
3750 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3751 } while (0)
3752
3753 #ifdef CONFIG_SMP
3754 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3755 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3756 {
3757 cfs_rq->avg.load_avg += se->avg.load_avg;
3758 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3759 }
3760
3761 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3762 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3763 {
3764 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3765 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3766 /* See update_cfs_rq_load_avg() */
3767 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3768 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3769 }
3770 #else
3771 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3772 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3773 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3774 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3775 #endif
3776
reweight_eevdf(struct sched_entity * se,u64 avruntime,unsigned long weight)3777 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3778 unsigned long weight)
3779 {
3780 unsigned long old_weight = se->load.weight;
3781 s64 vlag, vslice;
3782
3783 /*
3784 * VRUNTIME
3785 * --------
3786 *
3787 * COROLLARY #1: The virtual runtime of the entity needs to be
3788 * adjusted if re-weight at !0-lag point.
3789 *
3790 * Proof: For contradiction assume this is not true, so we can
3791 * re-weight without changing vruntime at !0-lag point.
3792 *
3793 * Weight VRuntime Avg-VRuntime
3794 * before w v V
3795 * after w' v' V'
3796 *
3797 * Since lag needs to be preserved through re-weight:
3798 *
3799 * lag = (V - v)*w = (V'- v')*w', where v = v'
3800 * ==> V' = (V - v)*w/w' + v (1)
3801 *
3802 * Let W be the total weight of the entities before reweight,
3803 * since V' is the new weighted average of entities:
3804 *
3805 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3806 *
3807 * by using (1) & (2) we obtain:
3808 *
3809 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3810 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3811 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3812 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3813 *
3814 * Since we are doing at !0-lag point which means V != v, we
3815 * can simplify (3):
3816 *
3817 * ==> W / (W + w' - w) = w / w'
3818 * ==> Ww' = Ww + ww' - ww
3819 * ==> W * (w' - w) = w * (w' - w)
3820 * ==> W = w (re-weight indicates w' != w)
3821 *
3822 * So the cfs_rq contains only one entity, hence vruntime of
3823 * the entity @v should always equal to the cfs_rq's weighted
3824 * average vruntime @V, which means we will always re-weight
3825 * at 0-lag point, thus breach assumption. Proof completed.
3826 *
3827 *
3828 * COROLLARY #2: Re-weight does NOT affect weighted average
3829 * vruntime of all the entities.
3830 *
3831 * Proof: According to corollary #1, Eq. (1) should be:
3832 *
3833 * (V - v)*w = (V' - v')*w'
3834 * ==> v' = V' - (V - v)*w/w' (4)
3835 *
3836 * According to the weighted average formula, we have:
3837 *
3838 * V' = (WV - wv + w'v') / (W - w + w')
3839 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3840 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3841 * = (WV + w'V' - Vw) / (W - w + w')
3842 *
3843 * ==> V'*(W - w + w') = WV + w'V' - Vw
3844 * ==> V' * (W - w) = (W - w) * V (5)
3845 *
3846 * If the entity is the only one in the cfs_rq, then reweight
3847 * always occurs at 0-lag point, so V won't change. Or else
3848 * there are other entities, hence W != w, then Eq. (5) turns
3849 * into V' = V. So V won't change in either case, proof done.
3850 *
3851 *
3852 * So according to corollary #1 & #2, the effect of re-weight
3853 * on vruntime should be:
3854 *
3855 * v' = V' - (V - v) * w / w' (4)
3856 * = V - (V - v) * w / w'
3857 * = V - vl * w / w'
3858 * = V - vl'
3859 */
3860 if (avruntime != se->vruntime) {
3861 vlag = entity_lag(avruntime, se);
3862 vlag = div_s64(vlag * old_weight, weight);
3863 se->vruntime = avruntime - vlag;
3864 }
3865
3866 /*
3867 * DEADLINE
3868 * --------
3869 *
3870 * When the weight changes, the virtual time slope changes and
3871 * we should adjust the relative virtual deadline accordingly.
3872 *
3873 * d' = v' + (d - v)*w/w'
3874 * = V' - (V - v)*w/w' + (d - v)*w/w'
3875 * = V - (V - v)*w/w' + (d - v)*w/w'
3876 * = V + (d - V)*w/w'
3877 */
3878 vslice = (s64)(se->deadline - avruntime);
3879 vslice = div_s64(vslice * old_weight, weight);
3880 se->deadline = avruntime + vslice;
3881 }
3882
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3883 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3884 unsigned long weight)
3885 {
3886 bool curr = cfs_rq->curr == se;
3887 u64 avruntime;
3888
3889 if (se->on_rq) {
3890 /* commit outstanding execution time */
3891 update_curr(cfs_rq);
3892 avruntime = avg_vruntime(cfs_rq);
3893 if (!curr)
3894 __dequeue_entity(cfs_rq, se);
3895 update_load_sub(&cfs_rq->load, se->load.weight);
3896 }
3897 dequeue_load_avg(cfs_rq, se);
3898
3899 if (se->on_rq) {
3900 reweight_eevdf(se, avruntime, weight);
3901 } else {
3902 /*
3903 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3904 * we need to scale se->vlag when w_i changes.
3905 */
3906 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3907 }
3908
3909 update_load_set(&se->load, weight);
3910
3911 #ifdef CONFIG_SMP
3912 do {
3913 u32 divider = get_pelt_divider(&se->avg);
3914
3915 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3916 } while (0);
3917 #endif
3918
3919 enqueue_load_avg(cfs_rq, se);
3920 if (se->on_rq) {
3921 update_load_add(&cfs_rq->load, se->load.weight);
3922 if (!curr)
3923 __enqueue_entity(cfs_rq, se);
3924
3925 /*
3926 * The entity's vruntime has been adjusted, so let's check
3927 * whether the rq-wide min_vruntime needs updated too. Since
3928 * the calculations above require stable min_vruntime rather
3929 * than up-to-date one, we do the update at the end of the
3930 * reweight process.
3931 */
3932 update_min_vruntime(cfs_rq);
3933 }
3934 }
3935
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3936 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3937 const struct load_weight *lw)
3938 {
3939 struct sched_entity *se = &p->se;
3940 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3941 struct load_weight *load = &se->load;
3942
3943 reweight_entity(cfs_rq, se, lw->weight);
3944 load->inv_weight = lw->inv_weight;
3945 }
3946
3947 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3948
3949 #ifdef CONFIG_FAIR_GROUP_SCHED
3950 #ifdef CONFIG_SMP
3951 /*
3952 * All this does is approximate the hierarchical proportion which includes that
3953 * global sum we all love to hate.
3954 *
3955 * That is, the weight of a group entity, is the proportional share of the
3956 * group weight based on the group runqueue weights. That is:
3957 *
3958 * tg->weight * grq->load.weight
3959 * ge->load.weight = ----------------------------- (1)
3960 * \Sum grq->load.weight
3961 *
3962 * Now, because computing that sum is prohibitively expensive to compute (been
3963 * there, done that) we approximate it with this average stuff. The average
3964 * moves slower and therefore the approximation is cheaper and more stable.
3965 *
3966 * So instead of the above, we substitute:
3967 *
3968 * grq->load.weight -> grq->avg.load_avg (2)
3969 *
3970 * which yields the following:
3971 *
3972 * tg->weight * grq->avg.load_avg
3973 * ge->load.weight = ------------------------------ (3)
3974 * tg->load_avg
3975 *
3976 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3977 *
3978 * That is shares_avg, and it is right (given the approximation (2)).
3979 *
3980 * The problem with it is that because the average is slow -- it was designed
3981 * to be exactly that of course -- this leads to transients in boundary
3982 * conditions. In specific, the case where the group was idle and we start the
3983 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3984 * yielding bad latency etc..
3985 *
3986 * Now, in that special case (1) reduces to:
3987 *
3988 * tg->weight * grq->load.weight
3989 * ge->load.weight = ----------------------------- = tg->weight (4)
3990 * grp->load.weight
3991 *
3992 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3993 *
3994 * So what we do is modify our approximation (3) to approach (4) in the (near)
3995 * UP case, like:
3996 *
3997 * ge->load.weight =
3998 *
3999 * tg->weight * grq->load.weight
4000 * --------------------------------------------------- (5)
4001 * tg->load_avg - grq->avg.load_avg + grq->load.weight
4002 *
4003 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
4004 * we need to use grq->avg.load_avg as its lower bound, which then gives:
4005 *
4006 *
4007 * tg->weight * grq->load.weight
4008 * ge->load.weight = ----------------------------- (6)
4009 * tg_load_avg'
4010 *
4011 * Where:
4012 *
4013 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4014 * max(grq->load.weight, grq->avg.load_avg)
4015 *
4016 * And that is shares_weight and is icky. In the (near) UP case it approaches
4017 * (4) while in the normal case it approaches (3). It consistently
4018 * overestimates the ge->load.weight and therefore:
4019 *
4020 * \Sum ge->load.weight >= tg->weight
4021 *
4022 * hence icky!
4023 */
calc_group_shares(struct cfs_rq * cfs_rq)4024 static long calc_group_shares(struct cfs_rq *cfs_rq)
4025 {
4026 long tg_weight, tg_shares, load, shares;
4027 struct task_group *tg = cfs_rq->tg;
4028
4029 tg_shares = READ_ONCE(tg->shares);
4030
4031 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4032
4033 tg_weight = atomic_long_read(&tg->load_avg);
4034
4035 /* Ensure tg_weight >= load */
4036 tg_weight -= cfs_rq->tg_load_avg_contrib;
4037 tg_weight += load;
4038
4039 shares = (tg_shares * load);
4040 if (tg_weight)
4041 shares /= tg_weight;
4042
4043 /*
4044 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4045 * of a group with small tg->shares value. It is a floor value which is
4046 * assigned as a minimum load.weight to the sched_entity representing
4047 * the group on a CPU.
4048 *
4049 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4050 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4051 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4052 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4053 * instead of 0.
4054 */
4055 return clamp_t(long, shares, MIN_SHARES, tg_shares);
4056 }
4057 #endif /* CONFIG_SMP */
4058
4059 /*
4060 * Recomputes the group entity based on the current state of its group
4061 * runqueue.
4062 */
update_cfs_group(struct sched_entity * se)4063 static void update_cfs_group(struct sched_entity *se)
4064 {
4065 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4066 long shares;
4067
4068 if (!gcfs_rq)
4069 return;
4070
4071 if (throttled_hierarchy(gcfs_rq))
4072 return;
4073
4074 #ifndef CONFIG_SMP
4075 shares = READ_ONCE(gcfs_rq->tg->shares);
4076 #else
4077 shares = calc_group_shares(gcfs_rq);
4078 #endif
4079 if (unlikely(se->load.weight != shares))
4080 reweight_entity(cfs_rq_of(se), se, shares);
4081 }
4082
4083 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)4084 static inline void update_cfs_group(struct sched_entity *se)
4085 {
4086 }
4087 #endif /* CONFIG_FAIR_GROUP_SCHED */
4088
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)4089 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4090 {
4091 struct rq *rq = rq_of(cfs_rq);
4092
4093 if (&rq->cfs == cfs_rq) {
4094 /*
4095 * There are a few boundary cases this might miss but it should
4096 * get called often enough that that should (hopefully) not be
4097 * a real problem.
4098 *
4099 * It will not get called when we go idle, because the idle
4100 * thread is a different class (!fair), nor will the utilization
4101 * number include things like RT tasks.
4102 *
4103 * As is, the util number is not freq-invariant (we'd have to
4104 * implement arch_scale_freq_capacity() for that).
4105 *
4106 * See cpu_util_cfs().
4107 */
4108 cpufreq_update_util(rq, flags);
4109 }
4110 }
4111
4112 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4113 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4114 {
4115 if (sa->load_sum)
4116 return false;
4117
4118 if (sa->util_sum)
4119 return false;
4120
4121 if (sa->runnable_sum)
4122 return false;
4123
4124 /*
4125 * _avg must be null when _sum are null because _avg = _sum / divider
4126 * Make sure that rounding and/or propagation of PELT values never
4127 * break this.
4128 */
4129 SCHED_WARN_ON(sa->load_avg ||
4130 sa->util_avg ||
4131 sa->runnable_avg);
4132
4133 return true;
4134 }
4135
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4136 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4137 {
4138 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4139 cfs_rq->last_update_time_copy);
4140 }
4141 #ifdef CONFIG_FAIR_GROUP_SCHED
4142 /*
4143 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4144 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4145 * bottom-up, we only have to test whether the cfs_rq before us on the list
4146 * is our child.
4147 * If cfs_rq is not on the list, test whether a child needs its to be added to
4148 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4149 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4150 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4151 {
4152 struct cfs_rq *prev_cfs_rq;
4153 struct list_head *prev;
4154
4155 if (cfs_rq->on_list) {
4156 prev = cfs_rq->leaf_cfs_rq_list.prev;
4157 } else {
4158 struct rq *rq = rq_of(cfs_rq);
4159
4160 prev = rq->tmp_alone_branch;
4161 }
4162
4163 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4164
4165 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4166 }
4167
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4168 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4169 {
4170 if (cfs_rq->load.weight)
4171 return false;
4172
4173 if (!load_avg_is_decayed(&cfs_rq->avg))
4174 return false;
4175
4176 if (child_cfs_rq_on_list(cfs_rq))
4177 return false;
4178
4179 return true;
4180 }
4181
4182 /**
4183 * update_tg_load_avg - update the tg's load avg
4184 * @cfs_rq: the cfs_rq whose avg changed
4185 *
4186 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4187 * However, because tg->load_avg is a global value there are performance
4188 * considerations.
4189 *
4190 * In order to avoid having to look at the other cfs_rq's, we use a
4191 * differential update where we store the last value we propagated. This in
4192 * turn allows skipping updates if the differential is 'small'.
4193 *
4194 * Updating tg's load_avg is necessary before update_cfs_share().
4195 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4196 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4197 {
4198 long delta;
4199 u64 now;
4200
4201 /*
4202 * No need to update load_avg for root_task_group as it is not used.
4203 */
4204 if (cfs_rq->tg == &root_task_group)
4205 return;
4206
4207 /* rq has been offline and doesn't contribute to the share anymore: */
4208 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4209 return;
4210
4211 /*
4212 * For migration heavy workloads, access to tg->load_avg can be
4213 * unbound. Limit the update rate to at most once per ms.
4214 */
4215 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4216 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4217 return;
4218
4219 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4220 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4221 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4222 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4223 cfs_rq->last_update_tg_load_avg = now;
4224 }
4225 }
4226
clear_tg_load_avg(struct cfs_rq * cfs_rq)4227 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4228 {
4229 long delta;
4230 u64 now;
4231
4232 /*
4233 * No need to update load_avg for root_task_group, as it is not used.
4234 */
4235 if (cfs_rq->tg == &root_task_group)
4236 return;
4237
4238 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4239 delta = 0 - cfs_rq->tg_load_avg_contrib;
4240 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4241 cfs_rq->tg_load_avg_contrib = 0;
4242 cfs_rq->last_update_tg_load_avg = now;
4243 }
4244
4245 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4246 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4247 {
4248 struct task_group *tg;
4249
4250 lockdep_assert_rq_held(rq);
4251
4252 /*
4253 * The rq clock has already been updated in
4254 * set_rq_offline(), so we should skip updating
4255 * the rq clock again in unthrottle_cfs_rq().
4256 */
4257 rq_clock_start_loop_update(rq);
4258
4259 rcu_read_lock();
4260 list_for_each_entry_rcu(tg, &task_groups, list) {
4261 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4262
4263 clear_tg_load_avg(cfs_rq);
4264 }
4265 rcu_read_unlock();
4266
4267 rq_clock_stop_loop_update(rq);
4268 }
4269
4270 /*
4271 * Called within set_task_rq() right before setting a task's CPU. The
4272 * caller only guarantees p->pi_lock is held; no other assumptions,
4273 * including the state of rq->lock, should be made.
4274 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4275 void set_task_rq_fair(struct sched_entity *se,
4276 struct cfs_rq *prev, struct cfs_rq *next)
4277 {
4278 u64 p_last_update_time;
4279 u64 n_last_update_time;
4280
4281 if (!sched_feat(ATTACH_AGE_LOAD))
4282 return;
4283
4284 /*
4285 * We are supposed to update the task to "current" time, then its up to
4286 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4287 * getting what current time is, so simply throw away the out-of-date
4288 * time. This will result in the wakee task is less decayed, but giving
4289 * the wakee more load sounds not bad.
4290 */
4291 if (!(se->avg.last_update_time && prev))
4292 return;
4293
4294 p_last_update_time = cfs_rq_last_update_time(prev);
4295 n_last_update_time = cfs_rq_last_update_time(next);
4296
4297 __update_load_avg_blocked_se(p_last_update_time, se);
4298 se->avg.last_update_time = n_last_update_time;
4299 }
4300
4301 /*
4302 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4303 * propagate its contribution. The key to this propagation is the invariant
4304 * that for each group:
4305 *
4306 * ge->avg == grq->avg (1)
4307 *
4308 * _IFF_ we look at the pure running and runnable sums. Because they
4309 * represent the very same entity, just at different points in the hierarchy.
4310 *
4311 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4312 * and simply copies the running/runnable sum over (but still wrong, because
4313 * the group entity and group rq do not have their PELT windows aligned).
4314 *
4315 * However, update_tg_cfs_load() is more complex. So we have:
4316 *
4317 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4318 *
4319 * And since, like util, the runnable part should be directly transferable,
4320 * the following would _appear_ to be the straight forward approach:
4321 *
4322 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4323 *
4324 * And per (1) we have:
4325 *
4326 * ge->avg.runnable_avg == grq->avg.runnable_avg
4327 *
4328 * Which gives:
4329 *
4330 * ge->load.weight * grq->avg.load_avg
4331 * ge->avg.load_avg = ----------------------------------- (4)
4332 * grq->load.weight
4333 *
4334 * Except that is wrong!
4335 *
4336 * Because while for entities historical weight is not important and we
4337 * really only care about our future and therefore can consider a pure
4338 * runnable sum, runqueues can NOT do this.
4339 *
4340 * We specifically want runqueues to have a load_avg that includes
4341 * historical weights. Those represent the blocked load, the load we expect
4342 * to (shortly) return to us. This only works by keeping the weights as
4343 * integral part of the sum. We therefore cannot decompose as per (3).
4344 *
4345 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4346 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4347 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4348 * runnable section of these tasks overlap (or not). If they were to perfectly
4349 * align the rq as a whole would be runnable 2/3 of the time. If however we
4350 * always have at least 1 runnable task, the rq as a whole is always runnable.
4351 *
4352 * So we'll have to approximate.. :/
4353 *
4354 * Given the constraint:
4355 *
4356 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4357 *
4358 * We can construct a rule that adds runnable to a rq by assuming minimal
4359 * overlap.
4360 *
4361 * On removal, we'll assume each task is equally runnable; which yields:
4362 *
4363 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4364 *
4365 * XXX: only do this for the part of runnable > running ?
4366 *
4367 */
4368 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4369 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4370 {
4371 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4372 u32 new_sum, divider;
4373
4374 /* Nothing to update */
4375 if (!delta_avg)
4376 return;
4377
4378 /*
4379 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4380 * See ___update_load_avg() for details.
4381 */
4382 divider = get_pelt_divider(&cfs_rq->avg);
4383
4384
4385 /* Set new sched_entity's utilization */
4386 se->avg.util_avg = gcfs_rq->avg.util_avg;
4387 new_sum = se->avg.util_avg * divider;
4388 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4389 se->avg.util_sum = new_sum;
4390
4391 /* Update parent cfs_rq utilization */
4392 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4393 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4394
4395 /* See update_cfs_rq_load_avg() */
4396 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4397 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4398 }
4399
4400 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4401 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4402 {
4403 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4404 u32 new_sum, divider;
4405
4406 /* Nothing to update */
4407 if (!delta_avg)
4408 return;
4409
4410 /*
4411 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4412 * See ___update_load_avg() for details.
4413 */
4414 divider = get_pelt_divider(&cfs_rq->avg);
4415
4416 /* Set new sched_entity's runnable */
4417 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4418 new_sum = se->avg.runnable_avg * divider;
4419 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4420 se->avg.runnable_sum = new_sum;
4421
4422 /* Update parent cfs_rq runnable */
4423 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4424 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4425 /* See update_cfs_rq_load_avg() */
4426 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4427 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4428 }
4429
4430 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4431 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4432 {
4433 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4434 unsigned long load_avg;
4435 u64 load_sum = 0;
4436 s64 delta_sum;
4437 u32 divider;
4438
4439 if (!runnable_sum)
4440 return;
4441
4442 gcfs_rq->prop_runnable_sum = 0;
4443
4444 /*
4445 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4446 * See ___update_load_avg() for details.
4447 */
4448 divider = get_pelt_divider(&cfs_rq->avg);
4449
4450 if (runnable_sum >= 0) {
4451 /*
4452 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4453 * the CPU is saturated running == runnable.
4454 */
4455 runnable_sum += se->avg.load_sum;
4456 runnable_sum = min_t(long, runnable_sum, divider);
4457 } else {
4458 /*
4459 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4460 * assuming all tasks are equally runnable.
4461 */
4462 if (scale_load_down(gcfs_rq->load.weight)) {
4463 load_sum = div_u64(gcfs_rq->avg.load_sum,
4464 scale_load_down(gcfs_rq->load.weight));
4465 }
4466
4467 /* But make sure to not inflate se's runnable */
4468 runnable_sum = min(se->avg.load_sum, load_sum);
4469 }
4470
4471 /*
4472 * runnable_sum can't be lower than running_sum
4473 * Rescale running sum to be in the same range as runnable sum
4474 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4475 * runnable_sum is in [0 : LOAD_AVG_MAX]
4476 */
4477 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4478 runnable_sum = max(runnable_sum, running_sum);
4479
4480 load_sum = se_weight(se) * runnable_sum;
4481 load_avg = div_u64(load_sum, divider);
4482
4483 delta_avg = load_avg - se->avg.load_avg;
4484 if (!delta_avg)
4485 return;
4486
4487 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4488
4489 se->avg.load_sum = runnable_sum;
4490 se->avg.load_avg = load_avg;
4491 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4492 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4493 /* See update_cfs_rq_load_avg() */
4494 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4495 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4496 }
4497
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4498 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4499 {
4500 cfs_rq->propagate = 1;
4501 cfs_rq->prop_runnable_sum += runnable_sum;
4502 }
4503
4504 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4505 static inline int propagate_entity_load_avg(struct sched_entity *se)
4506 {
4507 struct cfs_rq *cfs_rq, *gcfs_rq;
4508
4509 if (entity_is_task(se))
4510 return 0;
4511
4512 gcfs_rq = group_cfs_rq(se);
4513 if (!gcfs_rq->propagate)
4514 return 0;
4515
4516 gcfs_rq->propagate = 0;
4517
4518 cfs_rq = cfs_rq_of(se);
4519
4520 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4521
4522 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4523 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4524 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4525
4526 trace_pelt_cfs_tp(cfs_rq);
4527 trace_pelt_se_tp(se);
4528
4529 return 1;
4530 }
4531
4532 /*
4533 * Check if we need to update the load and the utilization of a blocked
4534 * group_entity:
4535 */
skip_blocked_update(struct sched_entity * se)4536 static inline bool skip_blocked_update(struct sched_entity *se)
4537 {
4538 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4539
4540 /*
4541 * If sched_entity still have not zero load or utilization, we have to
4542 * decay it:
4543 */
4544 if (se->avg.load_avg || se->avg.util_avg)
4545 return false;
4546
4547 /*
4548 * If there is a pending propagation, we have to update the load and
4549 * the utilization of the sched_entity:
4550 */
4551 if (gcfs_rq->propagate)
4552 return false;
4553
4554 /*
4555 * Otherwise, the load and the utilization of the sched_entity is
4556 * already zero and there is no pending propagation, so it will be a
4557 * waste of time to try to decay it:
4558 */
4559 return true;
4560 }
4561
4562 #else /* CONFIG_FAIR_GROUP_SCHED */
4563
update_tg_load_avg(struct cfs_rq * cfs_rq)4564 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4565
clear_tg_offline_cfs_rqs(struct rq * rq)4566 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4567
propagate_entity_load_avg(struct sched_entity * se)4568 static inline int propagate_entity_load_avg(struct sched_entity *se)
4569 {
4570 return 0;
4571 }
4572
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4573 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4574
4575 #endif /* CONFIG_FAIR_GROUP_SCHED */
4576
4577 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4578 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4579 {
4580 u64 throttled = 0, now, lut;
4581 struct cfs_rq *cfs_rq;
4582 struct rq *rq;
4583 bool is_idle;
4584
4585 if (load_avg_is_decayed(&se->avg))
4586 return;
4587
4588 cfs_rq = cfs_rq_of(se);
4589 rq = rq_of(cfs_rq);
4590
4591 rcu_read_lock();
4592 is_idle = is_idle_task(rcu_dereference(rq->curr));
4593 rcu_read_unlock();
4594
4595 /*
4596 * The lag estimation comes with a cost we don't want to pay all the
4597 * time. Hence, limiting to the case where the source CPU is idle and
4598 * we know we are at the greatest risk to have an outdated clock.
4599 */
4600 if (!is_idle)
4601 return;
4602
4603 /*
4604 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4605 *
4606 * last_update_time (the cfs_rq's last_update_time)
4607 * = cfs_rq_clock_pelt()@cfs_rq_idle
4608 * = rq_clock_pelt()@cfs_rq_idle
4609 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4610 *
4611 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4612 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4613 *
4614 * rq_idle_lag (delta between now and rq's update)
4615 * = sched_clock_cpu() - rq_clock()@rq_idle
4616 *
4617 * We can then write:
4618 *
4619 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4620 * sched_clock_cpu() - rq_clock()@rq_idle
4621 * Where:
4622 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4623 * rq_clock()@rq_idle is rq->clock_idle
4624 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4625 * is cfs_rq->throttled_pelt_idle
4626 */
4627
4628 #ifdef CONFIG_CFS_BANDWIDTH
4629 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4630 /* The clock has been stopped for throttling */
4631 if (throttled == U64_MAX)
4632 return;
4633 #endif
4634 now = u64_u32_load(rq->clock_pelt_idle);
4635 /*
4636 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4637 * is observed the old clock_pelt_idle value and the new clock_idle,
4638 * which lead to an underestimation. The opposite would lead to an
4639 * overestimation.
4640 */
4641 smp_rmb();
4642 lut = cfs_rq_last_update_time(cfs_rq);
4643
4644 now -= throttled;
4645 if (now < lut)
4646 /*
4647 * cfs_rq->avg.last_update_time is more recent than our
4648 * estimation, let's use it.
4649 */
4650 now = lut;
4651 else
4652 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4653
4654 __update_load_avg_blocked_se(now, se);
4655 }
4656 #else
migrate_se_pelt_lag(struct sched_entity * se)4657 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4658 #endif
4659
4660 /**
4661 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4662 * @now: current time, as per cfs_rq_clock_pelt()
4663 * @cfs_rq: cfs_rq to update
4664 *
4665 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4666 * avg. The immediate corollary is that all (fair) tasks must be attached.
4667 *
4668 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4669 *
4670 * Return: true if the load decayed or we removed load.
4671 *
4672 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4673 * call update_tg_load_avg() when this function returns true.
4674 */
4675 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4676 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4677 {
4678 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4679 struct sched_avg *sa = &cfs_rq->avg;
4680 int decayed = 0;
4681
4682 if (cfs_rq->removed.nr) {
4683 unsigned long r;
4684 u32 divider = get_pelt_divider(&cfs_rq->avg);
4685
4686 raw_spin_lock(&cfs_rq->removed.lock);
4687 swap(cfs_rq->removed.util_avg, removed_util);
4688 swap(cfs_rq->removed.load_avg, removed_load);
4689 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4690 cfs_rq->removed.nr = 0;
4691 raw_spin_unlock(&cfs_rq->removed.lock);
4692
4693 r = removed_load;
4694 sub_positive(&sa->load_avg, r);
4695 sub_positive(&sa->load_sum, r * divider);
4696 /* See sa->util_sum below */
4697 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4698
4699 r = removed_util;
4700 sub_positive(&sa->util_avg, r);
4701 sub_positive(&sa->util_sum, r * divider);
4702 /*
4703 * Because of rounding, se->util_sum might ends up being +1 more than
4704 * cfs->util_sum. Although this is not a problem by itself, detaching
4705 * a lot of tasks with the rounding problem between 2 updates of
4706 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4707 * cfs_util_avg is not.
4708 * Check that util_sum is still above its lower bound for the new
4709 * util_avg. Given that period_contrib might have moved since the last
4710 * sync, we are only sure that util_sum must be above or equal to
4711 * util_avg * minimum possible divider
4712 */
4713 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4714
4715 r = removed_runnable;
4716 sub_positive(&sa->runnable_avg, r);
4717 sub_positive(&sa->runnable_sum, r * divider);
4718 /* See sa->util_sum above */
4719 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4720 sa->runnable_avg * PELT_MIN_DIVIDER);
4721
4722 /*
4723 * removed_runnable is the unweighted version of removed_load so we
4724 * can use it to estimate removed_load_sum.
4725 */
4726 add_tg_cfs_propagate(cfs_rq,
4727 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4728
4729 decayed = 1;
4730 }
4731
4732 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4733 u64_u32_store_copy(sa->last_update_time,
4734 cfs_rq->last_update_time_copy,
4735 sa->last_update_time);
4736 return decayed;
4737 }
4738
4739 /**
4740 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4741 * @cfs_rq: cfs_rq to attach to
4742 * @se: sched_entity to attach
4743 *
4744 * Must call update_cfs_rq_load_avg() before this, since we rely on
4745 * cfs_rq->avg.last_update_time being current.
4746 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4747 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4748 {
4749 /*
4750 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4751 * See ___update_load_avg() for details.
4752 */
4753 u32 divider = get_pelt_divider(&cfs_rq->avg);
4754
4755 /*
4756 * When we attach the @se to the @cfs_rq, we must align the decay
4757 * window because without that, really weird and wonderful things can
4758 * happen.
4759 *
4760 * XXX illustrate
4761 */
4762 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4763 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4764
4765 /*
4766 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4767 * period_contrib. This isn't strictly correct, but since we're
4768 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4769 * _sum a little.
4770 */
4771 se->avg.util_sum = se->avg.util_avg * divider;
4772
4773 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4774
4775 se->avg.load_sum = se->avg.load_avg * divider;
4776 if (se_weight(se) < se->avg.load_sum)
4777 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4778 else
4779 se->avg.load_sum = 1;
4780
4781 enqueue_load_avg(cfs_rq, se);
4782 cfs_rq->avg.util_avg += se->avg.util_avg;
4783 cfs_rq->avg.util_sum += se->avg.util_sum;
4784 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4785 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4786
4787 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4788
4789 cfs_rq_util_change(cfs_rq, 0);
4790
4791 trace_pelt_cfs_tp(cfs_rq);
4792 }
4793
4794 /**
4795 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4796 * @cfs_rq: cfs_rq to detach from
4797 * @se: sched_entity to detach
4798 *
4799 * Must call update_cfs_rq_load_avg() before this, since we rely on
4800 * cfs_rq->avg.last_update_time being current.
4801 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4802 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4803 {
4804 dequeue_load_avg(cfs_rq, se);
4805 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4806 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4807 /* See update_cfs_rq_load_avg() */
4808 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4809 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4810
4811 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4812 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4813 /* See update_cfs_rq_load_avg() */
4814 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4815 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4816
4817 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4818
4819 cfs_rq_util_change(cfs_rq, 0);
4820
4821 trace_pelt_cfs_tp(cfs_rq);
4822 }
4823
4824 /*
4825 * Optional action to be done while updating the load average
4826 */
4827 #define UPDATE_TG 0x1
4828 #define SKIP_AGE_LOAD 0x2
4829 #define DO_ATTACH 0x4
4830 #define DO_DETACH 0x8
4831
4832 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4833 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4834 {
4835 u64 now = cfs_rq_clock_pelt(cfs_rq);
4836 int decayed;
4837
4838 /*
4839 * Track task load average for carrying it to new CPU after migrated, and
4840 * track group sched_entity load average for task_h_load calculation in migration
4841 */
4842 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4843 __update_load_avg_se(now, cfs_rq, se);
4844
4845 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4846 decayed |= propagate_entity_load_avg(se);
4847
4848 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4849
4850 /*
4851 * DO_ATTACH means we're here from enqueue_entity().
4852 * !last_update_time means we've passed through
4853 * migrate_task_rq_fair() indicating we migrated.
4854 *
4855 * IOW we're enqueueing a task on a new CPU.
4856 */
4857 attach_entity_load_avg(cfs_rq, se);
4858 update_tg_load_avg(cfs_rq);
4859
4860 } else if (flags & DO_DETACH) {
4861 /*
4862 * DO_DETACH means we're here from dequeue_entity()
4863 * and we are migrating task out of the CPU.
4864 */
4865 detach_entity_load_avg(cfs_rq, se);
4866 update_tg_load_avg(cfs_rq);
4867 } else if (decayed) {
4868 cfs_rq_util_change(cfs_rq, 0);
4869
4870 if (flags & UPDATE_TG)
4871 update_tg_load_avg(cfs_rq);
4872 }
4873 }
4874
4875 /*
4876 * Synchronize entity load avg of dequeued entity without locking
4877 * the previous rq.
4878 */
sync_entity_load_avg(struct sched_entity * se)4879 static void sync_entity_load_avg(struct sched_entity *se)
4880 {
4881 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4882 u64 last_update_time;
4883
4884 last_update_time = cfs_rq_last_update_time(cfs_rq);
4885 __update_load_avg_blocked_se(last_update_time, se);
4886 }
4887
4888 /*
4889 * Task first catches up with cfs_rq, and then subtract
4890 * itself from the cfs_rq (task must be off the queue now).
4891 */
remove_entity_load_avg(struct sched_entity * se)4892 static void remove_entity_load_avg(struct sched_entity *se)
4893 {
4894 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4895 unsigned long flags;
4896
4897 /*
4898 * tasks cannot exit without having gone through wake_up_new_task() ->
4899 * enqueue_task_fair() which will have added things to the cfs_rq,
4900 * so we can remove unconditionally.
4901 */
4902
4903 sync_entity_load_avg(se);
4904
4905 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4906 ++cfs_rq->removed.nr;
4907 cfs_rq->removed.util_avg += se->avg.util_avg;
4908 cfs_rq->removed.load_avg += se->avg.load_avg;
4909 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4910 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4911 }
4912
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4913 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4914 {
4915 return cfs_rq->avg.runnable_avg;
4916 }
4917
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4918 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4919 {
4920 return cfs_rq->avg.load_avg;
4921 }
4922
4923 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4924
task_util(struct task_struct * p)4925 static inline unsigned long task_util(struct task_struct *p)
4926 {
4927 return READ_ONCE(p->se.avg.util_avg);
4928 }
4929
task_runnable(struct task_struct * p)4930 static inline unsigned long task_runnable(struct task_struct *p)
4931 {
4932 return READ_ONCE(p->se.avg.runnable_avg);
4933 }
4934
_task_util_est(struct task_struct * p)4935 static inline unsigned long _task_util_est(struct task_struct *p)
4936 {
4937 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4938 }
4939
task_util_est(struct task_struct * p)4940 static inline unsigned long task_util_est(struct task_struct *p)
4941 {
4942 return max(task_util(p), _task_util_est(p));
4943 }
4944
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4945 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4946 struct task_struct *p)
4947 {
4948 unsigned int enqueued;
4949
4950 if (!sched_feat(UTIL_EST))
4951 return;
4952
4953 /* Update root cfs_rq's estimated utilization */
4954 enqueued = cfs_rq->avg.util_est;
4955 enqueued += _task_util_est(p);
4956 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4957
4958 trace_sched_util_est_cfs_tp(cfs_rq);
4959 }
4960
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4961 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4962 struct task_struct *p)
4963 {
4964 unsigned int enqueued;
4965
4966 if (!sched_feat(UTIL_EST))
4967 return;
4968
4969 /* Update root cfs_rq's estimated utilization */
4970 enqueued = cfs_rq->avg.util_est;
4971 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4972 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4973
4974 trace_sched_util_est_cfs_tp(cfs_rq);
4975 }
4976
4977 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4978
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4979 static inline void util_est_update(struct cfs_rq *cfs_rq,
4980 struct task_struct *p,
4981 bool task_sleep)
4982 {
4983 unsigned int ewma, dequeued, last_ewma_diff;
4984
4985 if (!sched_feat(UTIL_EST))
4986 return;
4987
4988 /*
4989 * Skip update of task's estimated utilization when the task has not
4990 * yet completed an activation, e.g. being migrated.
4991 */
4992 if (!task_sleep)
4993 return;
4994
4995 /* Get current estimate of utilization */
4996 ewma = READ_ONCE(p->se.avg.util_est);
4997
4998 /*
4999 * If the PELT values haven't changed since enqueue time,
5000 * skip the util_est update.
5001 */
5002 if (ewma & UTIL_AVG_UNCHANGED)
5003 return;
5004
5005 /* Get utilization at dequeue */
5006 dequeued = task_util(p);
5007
5008 /*
5009 * Reset EWMA on utilization increases, the moving average is used only
5010 * to smooth utilization decreases.
5011 */
5012 if (ewma <= dequeued) {
5013 ewma = dequeued;
5014 goto done;
5015 }
5016
5017 /*
5018 * Skip update of task's estimated utilization when its members are
5019 * already ~1% close to its last activation value.
5020 */
5021 last_ewma_diff = ewma - dequeued;
5022 if (last_ewma_diff < UTIL_EST_MARGIN)
5023 goto done;
5024
5025 /*
5026 * To avoid overestimation of actual task utilization, skip updates if
5027 * we cannot grant there is idle time in this CPU.
5028 */
5029 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5030 return;
5031
5032 /*
5033 * To avoid underestimate of task utilization, skip updates of EWMA if
5034 * we cannot grant that thread got all CPU time it wanted.
5035 */
5036 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5037 goto done;
5038
5039
5040 /*
5041 * Update Task's estimated utilization
5042 *
5043 * When *p completes an activation we can consolidate another sample
5044 * of the task size. This is done by using this value to update the
5045 * Exponential Weighted Moving Average (EWMA):
5046 *
5047 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
5048 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
5049 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
5050 * = w * ( -last_ewma_diff ) + ewma(t-1)
5051 * = w * (-last_ewma_diff + ewma(t-1) / w)
5052 *
5053 * Where 'w' is the weight of new samples, which is configured to be
5054 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5055 */
5056 ewma <<= UTIL_EST_WEIGHT_SHIFT;
5057 ewma -= last_ewma_diff;
5058 ewma >>= UTIL_EST_WEIGHT_SHIFT;
5059 done:
5060 ewma |= UTIL_AVG_UNCHANGED;
5061 WRITE_ONCE(p->se.avg.util_est, ewma);
5062
5063 trace_sched_util_est_se_tp(&p->se);
5064 }
5065
get_actual_cpu_capacity(int cpu)5066 static inline unsigned long get_actual_cpu_capacity(int cpu)
5067 {
5068 unsigned long capacity = arch_scale_cpu_capacity(cpu);
5069
5070 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5071
5072 return capacity;
5073 }
5074
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)5075 static inline int util_fits_cpu(unsigned long util,
5076 unsigned long uclamp_min,
5077 unsigned long uclamp_max,
5078 int cpu)
5079 {
5080 unsigned long capacity = capacity_of(cpu);
5081 unsigned long capacity_orig;
5082 bool fits, uclamp_max_fits;
5083
5084 /*
5085 * Check if the real util fits without any uclamp boost/cap applied.
5086 */
5087 fits = fits_capacity(util, capacity);
5088
5089 if (!uclamp_is_used())
5090 return fits;
5091
5092 /*
5093 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5094 * uclamp_max. We only care about capacity pressure (by using
5095 * capacity_of()) for comparing against the real util.
5096 *
5097 * If a task is boosted to 1024 for example, we don't want a tiny
5098 * pressure to skew the check whether it fits a CPU or not.
5099 *
5100 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5101 * should fit a little cpu even if there's some pressure.
5102 *
5103 * Only exception is for HW or cpufreq pressure since it has a direct impact
5104 * on available OPP of the system.
5105 *
5106 * We honour it for uclamp_min only as a drop in performance level
5107 * could result in not getting the requested minimum performance level.
5108 *
5109 * For uclamp_max, we can tolerate a drop in performance level as the
5110 * goal is to cap the task. So it's okay if it's getting less.
5111 */
5112 capacity_orig = arch_scale_cpu_capacity(cpu);
5113
5114 /*
5115 * We want to force a task to fit a cpu as implied by uclamp_max.
5116 * But we do have some corner cases to cater for..
5117 *
5118 *
5119 * C=z
5120 * | ___
5121 * | C=y | |
5122 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5123 * | C=x | | | |
5124 * | ___ | | | |
5125 * | | | | | | | (util somewhere in this region)
5126 * | | | | | | |
5127 * | | | | | | |
5128 * +----------------------------------------
5129 * CPU0 CPU1 CPU2
5130 *
5131 * In the above example if a task is capped to a specific performance
5132 * point, y, then when:
5133 *
5134 * * util = 80% of x then it does not fit on CPU0 and should migrate
5135 * to CPU1
5136 * * util = 80% of y then it is forced to fit on CPU1 to honour
5137 * uclamp_max request.
5138 *
5139 * which is what we're enforcing here. A task always fits if
5140 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5141 * the normal upmigration rules should withhold still.
5142 *
5143 * Only exception is when we are on max capacity, then we need to be
5144 * careful not to block overutilized state. This is so because:
5145 *
5146 * 1. There's no concept of capping at max_capacity! We can't go
5147 * beyond this performance level anyway.
5148 * 2. The system is being saturated when we're operating near
5149 * max capacity, it doesn't make sense to block overutilized.
5150 */
5151 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5152 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5153 fits = fits || uclamp_max_fits;
5154
5155 /*
5156 *
5157 * C=z
5158 * | ___ (region a, capped, util >= uclamp_max)
5159 * | C=y | |
5160 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5161 * | C=x | | | |
5162 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5163 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5164 * | | | | | | |
5165 * | | | | | | | (region c, boosted, util < uclamp_min)
5166 * +----------------------------------------
5167 * CPU0 CPU1 CPU2
5168 *
5169 * a) If util > uclamp_max, then we're capped, we don't care about
5170 * actual fitness value here. We only care if uclamp_max fits
5171 * capacity without taking margin/pressure into account.
5172 * See comment above.
5173 *
5174 * b) If uclamp_min <= util <= uclamp_max, then the normal
5175 * fits_capacity() rules apply. Except we need to ensure that we
5176 * enforce we remain within uclamp_max, see comment above.
5177 *
5178 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5179 * need to take into account the boosted value fits the CPU without
5180 * taking margin/pressure into account.
5181 *
5182 * Cases (a) and (b) are handled in the 'fits' variable already. We
5183 * just need to consider an extra check for case (c) after ensuring we
5184 * handle the case uclamp_min > uclamp_max.
5185 */
5186 uclamp_min = min(uclamp_min, uclamp_max);
5187 if (fits && (util < uclamp_min) &&
5188 (uclamp_min > get_actual_cpu_capacity(cpu)))
5189 return -1;
5190
5191 return fits;
5192 }
5193
task_fits_cpu(struct task_struct * p,int cpu)5194 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5195 {
5196 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5197 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5198 unsigned long util = task_util_est(p);
5199 /*
5200 * Return true only if the cpu fully fits the task requirements, which
5201 * include the utilization but also the performance hints.
5202 */
5203 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5204 }
5205
update_misfit_status(struct task_struct * p,struct rq * rq)5206 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5207 {
5208 int cpu = cpu_of(rq);
5209
5210 if (!sched_asym_cpucap_active())
5211 return;
5212
5213 /*
5214 * Affinity allows us to go somewhere higher? Or are we on biggest
5215 * available CPU already? Or do we fit into this CPU ?
5216 */
5217 if (!p || (p->nr_cpus_allowed == 1) ||
5218 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5219 task_fits_cpu(p, cpu)) {
5220
5221 rq->misfit_task_load = 0;
5222 return;
5223 }
5224
5225 /*
5226 * Make sure that misfit_task_load will not be null even if
5227 * task_h_load() returns 0.
5228 */
5229 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5230 }
5231
5232 #else /* CONFIG_SMP */
5233
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5234 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5235 {
5236 return !cfs_rq->nr_running;
5237 }
5238
5239 #define UPDATE_TG 0x0
5240 #define SKIP_AGE_LOAD 0x0
5241 #define DO_ATTACH 0x0
5242 #define DO_DETACH 0x0
5243
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5244 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5245 {
5246 cfs_rq_util_change(cfs_rq, 0);
5247 }
5248
remove_entity_load_avg(struct sched_entity * se)5249 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5250
5251 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5252 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5253 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5254 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5255
sched_balance_newidle(struct rq * rq,struct rq_flags * rf)5256 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5257 {
5258 return 0;
5259 }
5260
5261 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5262 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5263
5264 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5265 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5266
5267 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5268 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5269 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5270 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5271
5272 #endif /* CONFIG_SMP */
5273
5274 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5275 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5276 {
5277 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5278 s64 lag = 0;
5279
5280 if (!se->custom_slice)
5281 se->slice = sysctl_sched_base_slice;
5282 vslice = calc_delta_fair(se->slice, se);
5283
5284 /*
5285 * Due to how V is constructed as the weighted average of entities,
5286 * adding tasks with positive lag, or removing tasks with negative lag
5287 * will move 'time' backwards, this can screw around with the lag of
5288 * other tasks.
5289 *
5290 * EEVDF: placement strategy #1 / #2
5291 */
5292 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) {
5293 struct sched_entity *curr = cfs_rq->curr;
5294 unsigned long load;
5295
5296 lag = se->vlag;
5297
5298 /*
5299 * If we want to place a task and preserve lag, we have to
5300 * consider the effect of the new entity on the weighted
5301 * average and compensate for this, otherwise lag can quickly
5302 * evaporate.
5303 *
5304 * Lag is defined as:
5305 *
5306 * lag_i = S - s_i = w_i * (V - v_i)
5307 *
5308 * To avoid the 'w_i' term all over the place, we only track
5309 * the virtual lag:
5310 *
5311 * vl_i = V - v_i <=> v_i = V - vl_i
5312 *
5313 * And we take V to be the weighted average of all v:
5314 *
5315 * V = (\Sum w_j*v_j) / W
5316 *
5317 * Where W is: \Sum w_j
5318 *
5319 * Then, the weighted average after adding an entity with lag
5320 * vl_i is given by:
5321 *
5322 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5323 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5324 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5325 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5326 * = V - w_i*vl_i / (W + w_i)
5327 *
5328 * And the actual lag after adding an entity with vl_i is:
5329 *
5330 * vl'_i = V' - v_i
5331 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5332 * = vl_i - w_i*vl_i / (W + w_i)
5333 *
5334 * Which is strictly less than vl_i. So in order to preserve lag
5335 * we should inflate the lag before placement such that the
5336 * effective lag after placement comes out right.
5337 *
5338 * As such, invert the above relation for vl'_i to get the vl_i
5339 * we need to use such that the lag after placement is the lag
5340 * we computed before dequeue.
5341 *
5342 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5343 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5344 *
5345 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5346 * = W*vl_i
5347 *
5348 * vl_i = (W + w_i)*vl'_i / W
5349 */
5350 load = cfs_rq->avg_load;
5351 if (curr && curr->on_rq)
5352 load += scale_load_down(curr->load.weight);
5353
5354 lag *= load + scale_load_down(se->load.weight);
5355 if (WARN_ON_ONCE(!load))
5356 load = 1;
5357 lag = div_s64(lag, load);
5358 }
5359
5360 se->vruntime = vruntime - lag;
5361
5362 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5363 se->deadline += se->vruntime;
5364 se->rel_deadline = 0;
5365 return;
5366 }
5367
5368 /*
5369 * When joining the competition; the existing tasks will be,
5370 * on average, halfway through their slice, as such start tasks
5371 * off with half a slice to ease into the competition.
5372 */
5373 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5374 vslice /= 2;
5375
5376 /*
5377 * EEVDF: vd_i = ve_i + r_i/w_i
5378 */
5379 se->deadline = se->vruntime + vslice;
5380 }
5381
5382 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5383 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5384
5385 static inline bool cfs_bandwidth_used(void);
5386
5387 static void
5388 requeue_delayed_entity(struct sched_entity *se);
5389
5390 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5391 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5392 {
5393 bool curr = cfs_rq->curr == se;
5394
5395 /*
5396 * If we're the current task, we must renormalise before calling
5397 * update_curr().
5398 */
5399 if (curr)
5400 place_entity(cfs_rq, se, flags);
5401
5402 update_curr(cfs_rq);
5403
5404 /*
5405 * When enqueuing a sched_entity, we must:
5406 * - Update loads to have both entity and cfs_rq synced with now.
5407 * - For group_entity, update its runnable_weight to reflect the new
5408 * h_nr_running of its group cfs_rq.
5409 * - For group_entity, update its weight to reflect the new share of
5410 * its group cfs_rq
5411 * - Add its new weight to cfs_rq->load.weight
5412 */
5413 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5414 se_update_runnable(se);
5415 /*
5416 * XXX update_load_avg() above will have attached us to the pelt sum;
5417 * but update_cfs_group() here will re-adjust the weight and have to
5418 * undo/redo all that. Seems wasteful.
5419 */
5420 update_cfs_group(se);
5421
5422 /*
5423 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5424 * we can place the entity.
5425 */
5426 if (!curr)
5427 place_entity(cfs_rq, se, flags);
5428
5429 account_entity_enqueue(cfs_rq, se);
5430
5431 /* Entity has migrated, no longer consider this task hot */
5432 if (flags & ENQUEUE_MIGRATED)
5433 se->exec_start = 0;
5434
5435 check_schedstat_required();
5436 update_stats_enqueue_fair(cfs_rq, se, flags);
5437 if (!curr)
5438 __enqueue_entity(cfs_rq, se);
5439 se->on_rq = 1;
5440
5441 if (cfs_rq->nr_running == 1) {
5442 check_enqueue_throttle(cfs_rq);
5443 if (!throttled_hierarchy(cfs_rq)) {
5444 list_add_leaf_cfs_rq(cfs_rq);
5445 } else {
5446 #ifdef CONFIG_CFS_BANDWIDTH
5447 struct rq *rq = rq_of(cfs_rq);
5448
5449 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5450 cfs_rq->throttled_clock = rq_clock(rq);
5451 if (!cfs_rq->throttled_clock_self)
5452 cfs_rq->throttled_clock_self = rq_clock(rq);
5453 #endif
5454 }
5455 }
5456 }
5457
__clear_buddies_next(struct sched_entity * se)5458 static void __clear_buddies_next(struct sched_entity *se)
5459 {
5460 for_each_sched_entity(se) {
5461 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5462 if (cfs_rq->next != se)
5463 break;
5464
5465 cfs_rq->next = NULL;
5466 }
5467 }
5468
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5469 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5470 {
5471 if (cfs_rq->next == se)
5472 __clear_buddies_next(se);
5473 }
5474
5475 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5476
set_delayed(struct sched_entity * se)5477 static void set_delayed(struct sched_entity *se)
5478 {
5479 se->sched_delayed = 1;
5480 for_each_sched_entity(se) {
5481 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5482
5483 cfs_rq->h_nr_delayed++;
5484 if (cfs_rq_throttled(cfs_rq))
5485 break;
5486 }
5487 }
5488
clear_delayed(struct sched_entity * se)5489 static void clear_delayed(struct sched_entity *se)
5490 {
5491 se->sched_delayed = 0;
5492 for_each_sched_entity(se) {
5493 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5494
5495 cfs_rq->h_nr_delayed--;
5496 if (cfs_rq_throttled(cfs_rq))
5497 break;
5498 }
5499 }
5500
finish_delayed_dequeue_entity(struct sched_entity * se)5501 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5502 {
5503 clear_delayed(se);
5504 if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5505 se->vlag = 0;
5506 }
5507
5508 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5509 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5510 {
5511 bool sleep = flags & DEQUEUE_SLEEP;
5512
5513 update_curr(cfs_rq);
5514 clear_buddies(cfs_rq, se);
5515
5516 if (flags & DEQUEUE_DELAYED) {
5517 SCHED_WARN_ON(!se->sched_delayed);
5518 } else {
5519 bool delay = sleep;
5520 /*
5521 * DELAY_DEQUEUE relies on spurious wakeups, special task
5522 * states must not suffer spurious wakeups, excempt them.
5523 */
5524 if (flags & DEQUEUE_SPECIAL)
5525 delay = false;
5526
5527 SCHED_WARN_ON(delay && se->sched_delayed);
5528
5529 if (sched_feat(DELAY_DEQUEUE) && delay &&
5530 !entity_eligible(cfs_rq, se)) {
5531 update_load_avg(cfs_rq, se, 0);
5532 set_delayed(se);
5533 return false;
5534 }
5535 }
5536
5537 int action = UPDATE_TG;
5538 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5539 action |= DO_DETACH;
5540
5541 /*
5542 * When dequeuing a sched_entity, we must:
5543 * - Update loads to have both entity and cfs_rq synced with now.
5544 * - For group_entity, update its runnable_weight to reflect the new
5545 * h_nr_running of its group cfs_rq.
5546 * - Subtract its previous weight from cfs_rq->load.weight.
5547 * - For group entity, update its weight to reflect the new share
5548 * of its group cfs_rq.
5549 */
5550 update_load_avg(cfs_rq, se, action);
5551 se_update_runnable(se);
5552
5553 update_stats_dequeue_fair(cfs_rq, se, flags);
5554
5555 update_entity_lag(cfs_rq, se);
5556 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5557 se->deadline -= se->vruntime;
5558 se->rel_deadline = 1;
5559 }
5560
5561 if (se != cfs_rq->curr)
5562 __dequeue_entity(cfs_rq, se);
5563 se->on_rq = 0;
5564 account_entity_dequeue(cfs_rq, se);
5565
5566 /* return excess runtime on last dequeue */
5567 return_cfs_rq_runtime(cfs_rq);
5568
5569 update_cfs_group(se);
5570
5571 /*
5572 * Now advance min_vruntime if @se was the entity holding it back,
5573 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5574 * put back on, and if we advance min_vruntime, we'll be placed back
5575 * further than we started -- i.e. we'll be penalized.
5576 */
5577 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5578 update_min_vruntime(cfs_rq);
5579
5580 if (flags & DEQUEUE_DELAYED)
5581 finish_delayed_dequeue_entity(se);
5582
5583 if (cfs_rq->nr_running == 0)
5584 update_idle_cfs_rq_clock_pelt(cfs_rq);
5585
5586 return true;
5587 }
5588
5589 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5590 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5591 {
5592 clear_buddies(cfs_rq, se);
5593
5594 /* 'current' is not kept within the tree. */
5595 if (se->on_rq) {
5596 /*
5597 * Any task has to be enqueued before it get to execute on
5598 * a CPU. So account for the time it spent waiting on the
5599 * runqueue.
5600 */
5601 update_stats_wait_end_fair(cfs_rq, se);
5602 __dequeue_entity(cfs_rq, se);
5603 update_load_avg(cfs_rq, se, UPDATE_TG);
5604 /*
5605 * HACK, stash a copy of deadline at the point of pick in vlag,
5606 * which isn't used until dequeue.
5607 */
5608 se->vlag = se->deadline;
5609 }
5610
5611 update_stats_curr_start(cfs_rq, se);
5612 SCHED_WARN_ON(cfs_rq->curr);
5613 cfs_rq->curr = se;
5614
5615 /*
5616 * Track our maximum slice length, if the CPU's load is at
5617 * least twice that of our own weight (i.e. don't track it
5618 * when there are only lesser-weight tasks around):
5619 */
5620 if (schedstat_enabled() &&
5621 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5622 struct sched_statistics *stats;
5623
5624 stats = __schedstats_from_se(se);
5625 __schedstat_set(stats->slice_max,
5626 max((u64)stats->slice_max,
5627 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5628 }
5629
5630 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5631 }
5632
5633 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5634
5635 /*
5636 * Pick the next process, keeping these things in mind, in this order:
5637 * 1) keep things fair between processes/task groups
5638 * 2) pick the "next" process, since someone really wants that to run
5639 * 3) pick the "last" process, for cache locality
5640 * 4) do not run the "skip" process, if something else is available
5641 */
5642 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5643 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5644 {
5645 /*
5646 * Enabling NEXT_BUDDY will affect latency but not fairness.
5647 */
5648 if (sched_feat(NEXT_BUDDY) &&
5649 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5650 /* ->next will never be delayed */
5651 SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5652 return cfs_rq->next;
5653 }
5654
5655 struct sched_entity *se = pick_eevdf(cfs_rq);
5656 if (se->sched_delayed) {
5657 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5658 /*
5659 * Must not reference @se again, see __block_task().
5660 */
5661 return NULL;
5662 }
5663 return se;
5664 }
5665
5666 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5667
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5668 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5669 {
5670 /*
5671 * If still on the runqueue then deactivate_task()
5672 * was not called and update_curr() has to be done:
5673 */
5674 if (prev->on_rq)
5675 update_curr(cfs_rq);
5676
5677 /* throttle cfs_rqs exceeding runtime */
5678 check_cfs_rq_runtime(cfs_rq);
5679
5680 if (prev->on_rq) {
5681 update_stats_wait_start_fair(cfs_rq, prev);
5682 /* Put 'current' back into the tree. */
5683 __enqueue_entity(cfs_rq, prev);
5684 /* in !on_rq case, update occurred at dequeue */
5685 update_load_avg(cfs_rq, prev, 0);
5686 }
5687 SCHED_WARN_ON(cfs_rq->curr != prev);
5688 cfs_rq->curr = NULL;
5689 }
5690
5691 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5692 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5693 {
5694 /*
5695 * Update run-time statistics of the 'current'.
5696 */
5697 update_curr(cfs_rq);
5698
5699 /*
5700 * Ensure that runnable average is periodically updated.
5701 */
5702 update_load_avg(cfs_rq, curr, UPDATE_TG);
5703 update_cfs_group(curr);
5704
5705 #ifdef CONFIG_SCHED_HRTICK
5706 /*
5707 * queued ticks are scheduled to match the slice, so don't bother
5708 * validating it and just reschedule.
5709 */
5710 if (queued) {
5711 resched_curr_lazy(rq_of(cfs_rq));
5712 return;
5713 }
5714 #endif
5715 }
5716
5717
5718 /**************************************************
5719 * CFS bandwidth control machinery
5720 */
5721
5722 #ifdef CONFIG_CFS_BANDWIDTH
5723
5724 #ifdef CONFIG_JUMP_LABEL
5725 static struct static_key __cfs_bandwidth_used;
5726
cfs_bandwidth_used(void)5727 static inline bool cfs_bandwidth_used(void)
5728 {
5729 return static_key_false(&__cfs_bandwidth_used);
5730 }
5731
cfs_bandwidth_usage_inc(void)5732 void cfs_bandwidth_usage_inc(void)
5733 {
5734 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5735 }
5736
cfs_bandwidth_usage_dec(void)5737 void cfs_bandwidth_usage_dec(void)
5738 {
5739 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5740 }
5741 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5742 static bool cfs_bandwidth_used(void)
5743 {
5744 return true;
5745 }
5746
cfs_bandwidth_usage_inc(void)5747 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5748 void cfs_bandwidth_usage_dec(void) {}
5749 #endif /* CONFIG_JUMP_LABEL */
5750
5751 /*
5752 * default period for cfs group bandwidth.
5753 * default: 0.1s, units: nanoseconds
5754 */
default_cfs_period(void)5755 static inline u64 default_cfs_period(void)
5756 {
5757 return 100000000ULL;
5758 }
5759
sched_cfs_bandwidth_slice(void)5760 static inline u64 sched_cfs_bandwidth_slice(void)
5761 {
5762 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5763 }
5764
5765 /*
5766 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5767 * directly instead of rq->clock to avoid adding additional synchronization
5768 * around rq->lock.
5769 *
5770 * requires cfs_b->lock
5771 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5772 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5773 {
5774 s64 runtime;
5775
5776 if (unlikely(cfs_b->quota == RUNTIME_INF))
5777 return;
5778
5779 cfs_b->runtime += cfs_b->quota;
5780 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5781 if (runtime > 0) {
5782 cfs_b->burst_time += runtime;
5783 cfs_b->nr_burst++;
5784 }
5785
5786 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5787 cfs_b->runtime_snap = cfs_b->runtime;
5788 }
5789
tg_cfs_bandwidth(struct task_group * tg)5790 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5791 {
5792 return &tg->cfs_bandwidth;
5793 }
5794
5795 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5796 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5797 struct cfs_rq *cfs_rq, u64 target_runtime)
5798 {
5799 u64 min_amount, amount = 0;
5800
5801 lockdep_assert_held(&cfs_b->lock);
5802
5803 /* note: this is a positive sum as runtime_remaining <= 0 */
5804 min_amount = target_runtime - cfs_rq->runtime_remaining;
5805
5806 if (cfs_b->quota == RUNTIME_INF)
5807 amount = min_amount;
5808 else {
5809 start_cfs_bandwidth(cfs_b);
5810
5811 if (cfs_b->runtime > 0) {
5812 amount = min(cfs_b->runtime, min_amount);
5813 cfs_b->runtime -= amount;
5814 cfs_b->idle = 0;
5815 }
5816 }
5817
5818 cfs_rq->runtime_remaining += amount;
5819
5820 return cfs_rq->runtime_remaining > 0;
5821 }
5822
5823 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5824 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5825 {
5826 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5827 int ret;
5828
5829 raw_spin_lock(&cfs_b->lock);
5830 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5831 raw_spin_unlock(&cfs_b->lock);
5832
5833 return ret;
5834 }
5835
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5836 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5837 {
5838 /* dock delta_exec before expiring quota (as it could span periods) */
5839 cfs_rq->runtime_remaining -= delta_exec;
5840
5841 if (likely(cfs_rq->runtime_remaining > 0))
5842 return;
5843
5844 if (cfs_rq->throttled)
5845 return;
5846 /*
5847 * if we're unable to extend our runtime we resched so that the active
5848 * hierarchy can be throttled
5849 */
5850 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5851 resched_curr(rq_of(cfs_rq));
5852 }
5853
5854 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5855 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5856 {
5857 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5858 return;
5859
5860 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5861 }
5862
cfs_rq_throttled(struct cfs_rq * cfs_rq)5863 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5864 {
5865 return cfs_bandwidth_used() && cfs_rq->throttled;
5866 }
5867
5868 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5869 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5870 {
5871 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5872 }
5873
5874 /*
5875 * Ensure that neither of the group entities corresponding to src_cpu or
5876 * dest_cpu are members of a throttled hierarchy when performing group
5877 * load-balance operations.
5878 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5879 static inline int throttled_lb_pair(struct task_group *tg,
5880 int src_cpu, int dest_cpu)
5881 {
5882 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5883
5884 src_cfs_rq = tg->cfs_rq[src_cpu];
5885 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5886
5887 return throttled_hierarchy(src_cfs_rq) ||
5888 throttled_hierarchy(dest_cfs_rq);
5889 }
5890
tg_unthrottle_up(struct task_group * tg,void * data)5891 static int tg_unthrottle_up(struct task_group *tg, void *data)
5892 {
5893 struct rq *rq = data;
5894 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5895
5896 cfs_rq->throttle_count--;
5897 if (!cfs_rq->throttle_count) {
5898 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5899 cfs_rq->throttled_clock_pelt;
5900
5901 /* Add cfs_rq with load or one or more already running entities to the list */
5902 if (!cfs_rq_is_decayed(cfs_rq))
5903 list_add_leaf_cfs_rq(cfs_rq);
5904
5905 if (cfs_rq->throttled_clock_self) {
5906 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5907
5908 cfs_rq->throttled_clock_self = 0;
5909
5910 if (SCHED_WARN_ON((s64)delta < 0))
5911 delta = 0;
5912
5913 cfs_rq->throttled_clock_self_time += delta;
5914 }
5915 }
5916
5917 return 0;
5918 }
5919
tg_throttle_down(struct task_group * tg,void * data)5920 static int tg_throttle_down(struct task_group *tg, void *data)
5921 {
5922 struct rq *rq = data;
5923 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5924
5925 /* group is entering throttled state, stop time */
5926 if (!cfs_rq->throttle_count) {
5927 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5928 list_del_leaf_cfs_rq(cfs_rq);
5929
5930 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5931 if (cfs_rq->nr_running)
5932 cfs_rq->throttled_clock_self = rq_clock(rq);
5933 }
5934 cfs_rq->throttle_count++;
5935
5936 return 0;
5937 }
5938
throttle_cfs_rq(struct cfs_rq * cfs_rq)5939 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5940 {
5941 struct rq *rq = rq_of(cfs_rq);
5942 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5943 struct sched_entity *se;
5944 long task_delta, idle_task_delta, delayed_delta, dequeue = 1;
5945 long rq_h_nr_running = rq->cfs.h_nr_running;
5946
5947 raw_spin_lock(&cfs_b->lock);
5948 /* This will start the period timer if necessary */
5949 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5950 /*
5951 * We have raced with bandwidth becoming available, and if we
5952 * actually throttled the timer might not unthrottle us for an
5953 * entire period. We additionally needed to make sure that any
5954 * subsequent check_cfs_rq_runtime calls agree not to throttle
5955 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5956 * for 1ns of runtime rather than just check cfs_b.
5957 */
5958 dequeue = 0;
5959 } else {
5960 list_add_tail_rcu(&cfs_rq->throttled_list,
5961 &cfs_b->throttled_cfs_rq);
5962 }
5963 raw_spin_unlock(&cfs_b->lock);
5964
5965 if (!dequeue)
5966 return false; /* Throttle no longer required. */
5967
5968 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5969
5970 /* freeze hierarchy runnable averages while throttled */
5971 rcu_read_lock();
5972 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5973 rcu_read_unlock();
5974
5975 task_delta = cfs_rq->h_nr_running;
5976 idle_task_delta = cfs_rq->idle_h_nr_running;
5977 delayed_delta = cfs_rq->h_nr_delayed;
5978 for_each_sched_entity(se) {
5979 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5980 int flags;
5981
5982 /* throttled entity or throttle-on-deactivate */
5983 if (!se->on_rq)
5984 goto done;
5985
5986 /*
5987 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5988 * This avoids teaching dequeue_entities() about throttled
5989 * entities and keeps things relatively simple.
5990 */
5991 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5992 if (se->sched_delayed)
5993 flags |= DEQUEUE_DELAYED;
5994 dequeue_entity(qcfs_rq, se, flags);
5995
5996 if (cfs_rq_is_idle(group_cfs_rq(se)))
5997 idle_task_delta = cfs_rq->h_nr_running;
5998
5999 qcfs_rq->h_nr_running -= task_delta;
6000 qcfs_rq->idle_h_nr_running -= idle_task_delta;
6001 qcfs_rq->h_nr_delayed -= delayed_delta;
6002
6003 if (qcfs_rq->load.weight) {
6004 /* Avoid re-evaluating load for this entity: */
6005 se = parent_entity(se);
6006 break;
6007 }
6008 }
6009
6010 for_each_sched_entity(se) {
6011 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6012 /* throttled entity or throttle-on-deactivate */
6013 if (!se->on_rq)
6014 goto done;
6015
6016 update_load_avg(qcfs_rq, se, 0);
6017 se_update_runnable(se);
6018
6019 if (cfs_rq_is_idle(group_cfs_rq(se)))
6020 idle_task_delta = cfs_rq->h_nr_running;
6021
6022 qcfs_rq->h_nr_running -= task_delta;
6023 qcfs_rq->idle_h_nr_running -= idle_task_delta;
6024 qcfs_rq->h_nr_delayed -= delayed_delta;
6025 }
6026
6027 /* At this point se is NULL and we are at root level*/
6028 sub_nr_running(rq, task_delta);
6029
6030 /* Stop the fair server if throttling resulted in no runnable tasks */
6031 if (rq_h_nr_running && !rq->cfs.h_nr_running)
6032 dl_server_stop(&rq->fair_server);
6033 done:
6034 /*
6035 * Note: distribution will already see us throttled via the
6036 * throttled-list. rq->lock protects completion.
6037 */
6038 cfs_rq->throttled = 1;
6039 SCHED_WARN_ON(cfs_rq->throttled_clock);
6040 if (cfs_rq->nr_running)
6041 cfs_rq->throttled_clock = rq_clock(rq);
6042 return true;
6043 }
6044
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)6045 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6046 {
6047 struct rq *rq = rq_of(cfs_rq);
6048 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6049 struct sched_entity *se;
6050 long task_delta, idle_task_delta, delayed_delta;
6051 long rq_h_nr_running = rq->cfs.h_nr_running;
6052
6053 se = cfs_rq->tg->se[cpu_of(rq)];
6054
6055 cfs_rq->throttled = 0;
6056
6057 update_rq_clock(rq);
6058
6059 raw_spin_lock(&cfs_b->lock);
6060 if (cfs_rq->throttled_clock) {
6061 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6062 cfs_rq->throttled_clock = 0;
6063 }
6064 list_del_rcu(&cfs_rq->throttled_list);
6065 raw_spin_unlock(&cfs_b->lock);
6066
6067 /* update hierarchical throttle state */
6068 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6069
6070 if (!cfs_rq->load.weight) {
6071 if (!cfs_rq->on_list)
6072 return;
6073 /*
6074 * Nothing to run but something to decay (on_list)?
6075 * Complete the branch.
6076 */
6077 for_each_sched_entity(se) {
6078 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6079 break;
6080 }
6081 goto unthrottle_throttle;
6082 }
6083
6084 task_delta = cfs_rq->h_nr_running;
6085 idle_task_delta = cfs_rq->idle_h_nr_running;
6086 delayed_delta = cfs_rq->h_nr_delayed;
6087 for_each_sched_entity(se) {
6088 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6089
6090 /* Handle any unfinished DELAY_DEQUEUE business first. */
6091 if (se->sched_delayed) {
6092 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6093
6094 dequeue_entity(qcfs_rq, se, flags);
6095 } else if (se->on_rq)
6096 break;
6097 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6098
6099 if (cfs_rq_is_idle(group_cfs_rq(se)))
6100 idle_task_delta = cfs_rq->h_nr_running;
6101
6102 qcfs_rq->h_nr_running += task_delta;
6103 qcfs_rq->idle_h_nr_running += idle_task_delta;
6104 qcfs_rq->h_nr_delayed += delayed_delta;
6105
6106 /* end evaluation on encountering a throttled cfs_rq */
6107 if (cfs_rq_throttled(qcfs_rq))
6108 goto unthrottle_throttle;
6109 }
6110
6111 for_each_sched_entity(se) {
6112 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6113
6114 update_load_avg(qcfs_rq, se, UPDATE_TG);
6115 se_update_runnable(se);
6116
6117 if (cfs_rq_is_idle(group_cfs_rq(se)))
6118 idle_task_delta = cfs_rq->h_nr_running;
6119
6120 qcfs_rq->h_nr_running += task_delta;
6121 qcfs_rq->idle_h_nr_running += idle_task_delta;
6122 qcfs_rq->h_nr_delayed += delayed_delta;
6123
6124 /* end evaluation on encountering a throttled cfs_rq */
6125 if (cfs_rq_throttled(qcfs_rq))
6126 goto unthrottle_throttle;
6127 }
6128
6129 /* Start the fair server if un-throttling resulted in new runnable tasks */
6130 if (!rq_h_nr_running && rq->cfs.h_nr_running)
6131 dl_server_start(&rq->fair_server);
6132
6133 /* At this point se is NULL and we are at root level*/
6134 add_nr_running(rq, task_delta);
6135
6136 unthrottle_throttle:
6137 assert_list_leaf_cfs_rq(rq);
6138
6139 /* Determine whether we need to wake up potentially idle CPU: */
6140 if (rq->curr == rq->idle && rq->cfs.nr_running)
6141 resched_curr(rq);
6142 }
6143
6144 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)6145 static void __cfsb_csd_unthrottle(void *arg)
6146 {
6147 struct cfs_rq *cursor, *tmp;
6148 struct rq *rq = arg;
6149 struct rq_flags rf;
6150
6151 rq_lock(rq, &rf);
6152
6153 /*
6154 * Iterating over the list can trigger several call to
6155 * update_rq_clock() in unthrottle_cfs_rq().
6156 * Do it once and skip the potential next ones.
6157 */
6158 update_rq_clock(rq);
6159 rq_clock_start_loop_update(rq);
6160
6161 /*
6162 * Since we hold rq lock we're safe from concurrent manipulation of
6163 * the CSD list. However, this RCU critical section annotates the
6164 * fact that we pair with sched_free_group_rcu(), so that we cannot
6165 * race with group being freed in the window between removing it
6166 * from the list and advancing to the next entry in the list.
6167 */
6168 rcu_read_lock();
6169
6170 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6171 throttled_csd_list) {
6172 list_del_init(&cursor->throttled_csd_list);
6173
6174 if (cfs_rq_throttled(cursor))
6175 unthrottle_cfs_rq(cursor);
6176 }
6177
6178 rcu_read_unlock();
6179
6180 rq_clock_stop_loop_update(rq);
6181 rq_unlock(rq, &rf);
6182 }
6183
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6184 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6185 {
6186 struct rq *rq = rq_of(cfs_rq);
6187 bool first;
6188
6189 if (rq == this_rq()) {
6190 unthrottle_cfs_rq(cfs_rq);
6191 return;
6192 }
6193
6194 /* Already enqueued */
6195 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6196 return;
6197
6198 first = list_empty(&rq->cfsb_csd_list);
6199 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6200 if (first)
6201 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6202 }
6203 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6204 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6205 {
6206 unthrottle_cfs_rq(cfs_rq);
6207 }
6208 #endif
6209
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6210 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6211 {
6212 lockdep_assert_rq_held(rq_of(cfs_rq));
6213
6214 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6215 cfs_rq->runtime_remaining <= 0))
6216 return;
6217
6218 __unthrottle_cfs_rq_async(cfs_rq);
6219 }
6220
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6221 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6222 {
6223 int this_cpu = smp_processor_id();
6224 u64 runtime, remaining = 1;
6225 bool throttled = false;
6226 struct cfs_rq *cfs_rq, *tmp;
6227 struct rq_flags rf;
6228 struct rq *rq;
6229 LIST_HEAD(local_unthrottle);
6230
6231 rcu_read_lock();
6232 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6233 throttled_list) {
6234 rq = rq_of(cfs_rq);
6235
6236 if (!remaining) {
6237 throttled = true;
6238 break;
6239 }
6240
6241 rq_lock_irqsave(rq, &rf);
6242 if (!cfs_rq_throttled(cfs_rq))
6243 goto next;
6244
6245 /* Already queued for async unthrottle */
6246 if (!list_empty(&cfs_rq->throttled_csd_list))
6247 goto next;
6248
6249 /* By the above checks, this should never be true */
6250 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6251
6252 raw_spin_lock(&cfs_b->lock);
6253 runtime = -cfs_rq->runtime_remaining + 1;
6254 if (runtime > cfs_b->runtime)
6255 runtime = cfs_b->runtime;
6256 cfs_b->runtime -= runtime;
6257 remaining = cfs_b->runtime;
6258 raw_spin_unlock(&cfs_b->lock);
6259
6260 cfs_rq->runtime_remaining += runtime;
6261
6262 /* we check whether we're throttled above */
6263 if (cfs_rq->runtime_remaining > 0) {
6264 if (cpu_of(rq) != this_cpu) {
6265 unthrottle_cfs_rq_async(cfs_rq);
6266 } else {
6267 /*
6268 * We currently only expect to be unthrottling
6269 * a single cfs_rq locally.
6270 */
6271 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6272 list_add_tail(&cfs_rq->throttled_csd_list,
6273 &local_unthrottle);
6274 }
6275 } else {
6276 throttled = true;
6277 }
6278
6279 next:
6280 rq_unlock_irqrestore(rq, &rf);
6281 }
6282
6283 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6284 throttled_csd_list) {
6285 struct rq *rq = rq_of(cfs_rq);
6286
6287 rq_lock_irqsave(rq, &rf);
6288
6289 list_del_init(&cfs_rq->throttled_csd_list);
6290
6291 if (cfs_rq_throttled(cfs_rq))
6292 unthrottle_cfs_rq(cfs_rq);
6293
6294 rq_unlock_irqrestore(rq, &rf);
6295 }
6296 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6297
6298 rcu_read_unlock();
6299
6300 return throttled;
6301 }
6302
6303 /*
6304 * Responsible for refilling a task_group's bandwidth and unthrottling its
6305 * cfs_rqs as appropriate. If there has been no activity within the last
6306 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6307 * used to track this state.
6308 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6309 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6310 {
6311 int throttled;
6312
6313 /* no need to continue the timer with no bandwidth constraint */
6314 if (cfs_b->quota == RUNTIME_INF)
6315 goto out_deactivate;
6316
6317 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6318 cfs_b->nr_periods += overrun;
6319
6320 /* Refill extra burst quota even if cfs_b->idle */
6321 __refill_cfs_bandwidth_runtime(cfs_b);
6322
6323 /*
6324 * idle depends on !throttled (for the case of a large deficit), and if
6325 * we're going inactive then everything else can be deferred
6326 */
6327 if (cfs_b->idle && !throttled)
6328 goto out_deactivate;
6329
6330 if (!throttled) {
6331 /* mark as potentially idle for the upcoming period */
6332 cfs_b->idle = 1;
6333 return 0;
6334 }
6335
6336 /* account preceding periods in which throttling occurred */
6337 cfs_b->nr_throttled += overrun;
6338
6339 /*
6340 * This check is repeated as we release cfs_b->lock while we unthrottle.
6341 */
6342 while (throttled && cfs_b->runtime > 0) {
6343 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6344 /* we can't nest cfs_b->lock while distributing bandwidth */
6345 throttled = distribute_cfs_runtime(cfs_b);
6346 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6347 }
6348
6349 /*
6350 * While we are ensured activity in the period following an
6351 * unthrottle, this also covers the case in which the new bandwidth is
6352 * insufficient to cover the existing bandwidth deficit. (Forcing the
6353 * timer to remain active while there are any throttled entities.)
6354 */
6355 cfs_b->idle = 0;
6356
6357 return 0;
6358
6359 out_deactivate:
6360 return 1;
6361 }
6362
6363 /* a cfs_rq won't donate quota below this amount */
6364 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6365 /* minimum remaining period time to redistribute slack quota */
6366 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6367 /* how long we wait to gather additional slack before distributing */
6368 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6369
6370 /*
6371 * Are we near the end of the current quota period?
6372 *
6373 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6374 * hrtimer base being cleared by hrtimer_start. In the case of
6375 * migrate_hrtimers, base is never cleared, so we are fine.
6376 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6377 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6378 {
6379 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6380 s64 remaining;
6381
6382 /* if the call-back is running a quota refresh is already occurring */
6383 if (hrtimer_callback_running(refresh_timer))
6384 return 1;
6385
6386 /* is a quota refresh about to occur? */
6387 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6388 if (remaining < (s64)min_expire)
6389 return 1;
6390
6391 return 0;
6392 }
6393
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6394 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6395 {
6396 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6397
6398 /* if there's a quota refresh soon don't bother with slack */
6399 if (runtime_refresh_within(cfs_b, min_left))
6400 return;
6401
6402 /* don't push forwards an existing deferred unthrottle */
6403 if (cfs_b->slack_started)
6404 return;
6405 cfs_b->slack_started = true;
6406
6407 hrtimer_start(&cfs_b->slack_timer,
6408 ns_to_ktime(cfs_bandwidth_slack_period),
6409 HRTIMER_MODE_REL);
6410 }
6411
6412 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6413 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6414 {
6415 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6416 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6417
6418 if (slack_runtime <= 0)
6419 return;
6420
6421 raw_spin_lock(&cfs_b->lock);
6422 if (cfs_b->quota != RUNTIME_INF) {
6423 cfs_b->runtime += slack_runtime;
6424
6425 /* we are under rq->lock, defer unthrottling using a timer */
6426 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6427 !list_empty(&cfs_b->throttled_cfs_rq))
6428 start_cfs_slack_bandwidth(cfs_b);
6429 }
6430 raw_spin_unlock(&cfs_b->lock);
6431
6432 /* even if it's not valid for return we don't want to try again */
6433 cfs_rq->runtime_remaining -= slack_runtime;
6434 }
6435
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6436 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6437 {
6438 if (!cfs_bandwidth_used())
6439 return;
6440
6441 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6442 return;
6443
6444 __return_cfs_rq_runtime(cfs_rq);
6445 }
6446
6447 /*
6448 * This is done with a timer (instead of inline with bandwidth return) since
6449 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6450 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6451 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6452 {
6453 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6454 unsigned long flags;
6455
6456 /* confirm we're still not at a refresh boundary */
6457 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6458 cfs_b->slack_started = false;
6459
6460 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6461 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6462 return;
6463 }
6464
6465 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6466 runtime = cfs_b->runtime;
6467
6468 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6469
6470 if (!runtime)
6471 return;
6472
6473 distribute_cfs_runtime(cfs_b);
6474 }
6475
6476 /*
6477 * When a group wakes up we want to make sure that its quota is not already
6478 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6479 * runtime as update_curr() throttling can not trigger until it's on-rq.
6480 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6481 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6482 {
6483 if (!cfs_bandwidth_used())
6484 return;
6485
6486 /* an active group must be handled by the update_curr()->put() path */
6487 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6488 return;
6489
6490 /* ensure the group is not already throttled */
6491 if (cfs_rq_throttled(cfs_rq))
6492 return;
6493
6494 /* update runtime allocation */
6495 account_cfs_rq_runtime(cfs_rq, 0);
6496 if (cfs_rq->runtime_remaining <= 0)
6497 throttle_cfs_rq(cfs_rq);
6498 }
6499
sync_throttle(struct task_group * tg,int cpu)6500 static void sync_throttle(struct task_group *tg, int cpu)
6501 {
6502 struct cfs_rq *pcfs_rq, *cfs_rq;
6503
6504 if (!cfs_bandwidth_used())
6505 return;
6506
6507 if (!tg->parent)
6508 return;
6509
6510 cfs_rq = tg->cfs_rq[cpu];
6511 pcfs_rq = tg->parent->cfs_rq[cpu];
6512
6513 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6514 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6515 }
6516
6517 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6518 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6519 {
6520 if (!cfs_bandwidth_used())
6521 return false;
6522
6523 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6524 return false;
6525
6526 /*
6527 * it's possible for a throttled entity to be forced into a running
6528 * state (e.g. set_curr_task), in this case we're finished.
6529 */
6530 if (cfs_rq_throttled(cfs_rq))
6531 return true;
6532
6533 return throttle_cfs_rq(cfs_rq);
6534 }
6535
sched_cfs_slack_timer(struct hrtimer * timer)6536 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6537 {
6538 struct cfs_bandwidth *cfs_b =
6539 container_of(timer, struct cfs_bandwidth, slack_timer);
6540
6541 do_sched_cfs_slack_timer(cfs_b);
6542
6543 return HRTIMER_NORESTART;
6544 }
6545
6546 extern const u64 max_cfs_quota_period;
6547
sched_cfs_period_timer(struct hrtimer * timer)6548 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6549 {
6550 struct cfs_bandwidth *cfs_b =
6551 container_of(timer, struct cfs_bandwidth, period_timer);
6552 unsigned long flags;
6553 int overrun;
6554 int idle = 0;
6555 int count = 0;
6556
6557 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6558 for (;;) {
6559 overrun = hrtimer_forward_now(timer, cfs_b->period);
6560 if (!overrun)
6561 break;
6562
6563 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6564
6565 if (++count > 3) {
6566 u64 new, old = ktime_to_ns(cfs_b->period);
6567
6568 /*
6569 * Grow period by a factor of 2 to avoid losing precision.
6570 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6571 * to fail.
6572 */
6573 new = old * 2;
6574 if (new < max_cfs_quota_period) {
6575 cfs_b->period = ns_to_ktime(new);
6576 cfs_b->quota *= 2;
6577 cfs_b->burst *= 2;
6578
6579 pr_warn_ratelimited(
6580 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6581 smp_processor_id(),
6582 div_u64(new, NSEC_PER_USEC),
6583 div_u64(cfs_b->quota, NSEC_PER_USEC));
6584 } else {
6585 pr_warn_ratelimited(
6586 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6587 smp_processor_id(),
6588 div_u64(old, NSEC_PER_USEC),
6589 div_u64(cfs_b->quota, NSEC_PER_USEC));
6590 }
6591
6592 /* reset count so we don't come right back in here */
6593 count = 0;
6594 }
6595 }
6596 if (idle)
6597 cfs_b->period_active = 0;
6598 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6599
6600 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6601 }
6602
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6603 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6604 {
6605 raw_spin_lock_init(&cfs_b->lock);
6606 cfs_b->runtime = 0;
6607 cfs_b->quota = RUNTIME_INF;
6608 cfs_b->period = ns_to_ktime(default_cfs_period());
6609 cfs_b->burst = 0;
6610 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6611
6612 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6613 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6614 cfs_b->period_timer.function = sched_cfs_period_timer;
6615
6616 /* Add a random offset so that timers interleave */
6617 hrtimer_set_expires(&cfs_b->period_timer,
6618 get_random_u32_below(cfs_b->period));
6619 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6620 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6621 cfs_b->slack_started = false;
6622 }
6623
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6624 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6625 {
6626 cfs_rq->runtime_enabled = 0;
6627 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6628 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6629 }
6630
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6631 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6632 {
6633 lockdep_assert_held(&cfs_b->lock);
6634
6635 if (cfs_b->period_active)
6636 return;
6637
6638 cfs_b->period_active = 1;
6639 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6640 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6641 }
6642
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6643 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6644 {
6645 int __maybe_unused i;
6646
6647 /* init_cfs_bandwidth() was not called */
6648 if (!cfs_b->throttled_cfs_rq.next)
6649 return;
6650
6651 hrtimer_cancel(&cfs_b->period_timer);
6652 hrtimer_cancel(&cfs_b->slack_timer);
6653
6654 /*
6655 * It is possible that we still have some cfs_rq's pending on a CSD
6656 * list, though this race is very rare. In order for this to occur, we
6657 * must have raced with the last task leaving the group while there
6658 * exist throttled cfs_rq(s), and the period_timer must have queued the
6659 * CSD item but the remote cpu has not yet processed it. To handle this,
6660 * we can simply flush all pending CSD work inline here. We're
6661 * guaranteed at this point that no additional cfs_rq of this group can
6662 * join a CSD list.
6663 */
6664 #ifdef CONFIG_SMP
6665 for_each_possible_cpu(i) {
6666 struct rq *rq = cpu_rq(i);
6667 unsigned long flags;
6668
6669 if (list_empty(&rq->cfsb_csd_list))
6670 continue;
6671
6672 local_irq_save(flags);
6673 __cfsb_csd_unthrottle(rq);
6674 local_irq_restore(flags);
6675 }
6676 #endif
6677 }
6678
6679 /*
6680 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6681 *
6682 * The race is harmless, since modifying bandwidth settings of unhooked group
6683 * bits doesn't do much.
6684 */
6685
6686 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6687 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6688 {
6689 struct task_group *tg;
6690
6691 lockdep_assert_rq_held(rq);
6692
6693 rcu_read_lock();
6694 list_for_each_entry_rcu(tg, &task_groups, list) {
6695 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6696 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6697
6698 raw_spin_lock(&cfs_b->lock);
6699 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6700 raw_spin_unlock(&cfs_b->lock);
6701 }
6702 rcu_read_unlock();
6703 }
6704
6705 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6706 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6707 {
6708 struct task_group *tg;
6709
6710 lockdep_assert_rq_held(rq);
6711
6712 /*
6713 * The rq clock has already been updated in the
6714 * set_rq_offline(), so we should skip updating
6715 * the rq clock again in unthrottle_cfs_rq().
6716 */
6717 rq_clock_start_loop_update(rq);
6718
6719 rcu_read_lock();
6720 list_for_each_entry_rcu(tg, &task_groups, list) {
6721 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6722
6723 if (!cfs_rq->runtime_enabled)
6724 continue;
6725
6726 /*
6727 * clock_task is not advancing so we just need to make sure
6728 * there's some valid quota amount
6729 */
6730 cfs_rq->runtime_remaining = 1;
6731 /*
6732 * Offline rq is schedulable till CPU is completely disabled
6733 * in take_cpu_down(), so we prevent new cfs throttling here.
6734 */
6735 cfs_rq->runtime_enabled = 0;
6736
6737 if (cfs_rq_throttled(cfs_rq))
6738 unthrottle_cfs_rq(cfs_rq);
6739 }
6740 rcu_read_unlock();
6741
6742 rq_clock_stop_loop_update(rq);
6743 }
6744
cfs_task_bw_constrained(struct task_struct * p)6745 bool cfs_task_bw_constrained(struct task_struct *p)
6746 {
6747 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6748
6749 if (!cfs_bandwidth_used())
6750 return false;
6751
6752 if (cfs_rq->runtime_enabled ||
6753 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6754 return true;
6755
6756 return false;
6757 }
6758
6759 #ifdef CONFIG_NO_HZ_FULL
6760 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6761 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6762 {
6763 int cpu = cpu_of(rq);
6764
6765 if (!cfs_bandwidth_used())
6766 return;
6767
6768 if (!tick_nohz_full_cpu(cpu))
6769 return;
6770
6771 if (rq->nr_running != 1)
6772 return;
6773
6774 /*
6775 * We know there is only one task runnable and we've just picked it. The
6776 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6777 * be otherwise able to stop the tick. Just need to check if we are using
6778 * bandwidth control.
6779 */
6780 if (cfs_task_bw_constrained(p))
6781 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6782 }
6783 #endif
6784
6785 #else /* CONFIG_CFS_BANDWIDTH */
6786
cfs_bandwidth_used(void)6787 static inline bool cfs_bandwidth_used(void)
6788 {
6789 return false;
6790 }
6791
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6792 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6793 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6794 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6795 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6796 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6797
cfs_rq_throttled(struct cfs_rq * cfs_rq)6798 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6799 {
6800 return 0;
6801 }
6802
throttled_hierarchy(struct cfs_rq * cfs_rq)6803 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6804 {
6805 return 0;
6806 }
6807
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6808 static inline int throttled_lb_pair(struct task_group *tg,
6809 int src_cpu, int dest_cpu)
6810 {
6811 return 0;
6812 }
6813
6814 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6815 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6816 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6817 #endif
6818
tg_cfs_bandwidth(struct task_group * tg)6819 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6820 {
6821 return NULL;
6822 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6823 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6824 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6825 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6826 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6827 bool cfs_task_bw_constrained(struct task_struct *p)
6828 {
6829 return false;
6830 }
6831 #endif
6832 #endif /* CONFIG_CFS_BANDWIDTH */
6833
6834 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6835 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6836 #endif
6837
6838 /**************************************************
6839 * CFS operations on tasks:
6840 */
6841
6842 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6843 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6844 {
6845 struct sched_entity *se = &p->se;
6846
6847 SCHED_WARN_ON(task_rq(p) != rq);
6848
6849 if (rq->cfs.h_nr_running > 1) {
6850 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6851 u64 slice = se->slice;
6852 s64 delta = slice - ran;
6853
6854 if (delta < 0) {
6855 if (task_current_donor(rq, p))
6856 resched_curr(rq);
6857 return;
6858 }
6859 hrtick_start(rq, delta);
6860 }
6861 }
6862
6863 /*
6864 * called from enqueue/dequeue and updates the hrtick when the
6865 * current task is from our class and nr_running is low enough
6866 * to matter.
6867 */
hrtick_update(struct rq * rq)6868 static void hrtick_update(struct rq *rq)
6869 {
6870 struct task_struct *donor = rq->donor;
6871
6872 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6873 return;
6874
6875 hrtick_start_fair(rq, donor);
6876 }
6877 #else /* !CONFIG_SCHED_HRTICK */
6878 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6879 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6880 {
6881 }
6882
hrtick_update(struct rq * rq)6883 static inline void hrtick_update(struct rq *rq)
6884 {
6885 }
6886 #endif
6887
6888 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6889 static inline bool cpu_overutilized(int cpu)
6890 {
6891 unsigned long rq_util_min, rq_util_max;
6892
6893 if (!sched_energy_enabled())
6894 return false;
6895
6896 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6897 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6898
6899 /* Return true only if the utilization doesn't fit CPU's capacity */
6900 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6901 }
6902
6903 /*
6904 * overutilized value make sense only if EAS is enabled
6905 */
is_rd_overutilized(struct root_domain * rd)6906 static inline bool is_rd_overutilized(struct root_domain *rd)
6907 {
6908 return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6909 }
6910
set_rd_overutilized(struct root_domain * rd,bool flag)6911 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6912 {
6913 if (!sched_energy_enabled())
6914 return;
6915
6916 WRITE_ONCE(rd->overutilized, flag);
6917 trace_sched_overutilized_tp(rd, flag);
6918 }
6919
check_update_overutilized_status(struct rq * rq)6920 static inline void check_update_overutilized_status(struct rq *rq)
6921 {
6922 /*
6923 * overutilized field is used for load balancing decisions only
6924 * if energy aware scheduler is being used
6925 */
6926
6927 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6928 set_rd_overutilized(rq->rd, 1);
6929 }
6930 #else
check_update_overutilized_status(struct rq * rq)6931 static inline void check_update_overutilized_status(struct rq *rq) { }
6932 #endif
6933
6934 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6935 static int sched_idle_rq(struct rq *rq)
6936 {
6937 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6938 rq->nr_running);
6939 }
6940
6941 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6942 static int sched_idle_cpu(int cpu)
6943 {
6944 return sched_idle_rq(cpu_rq(cpu));
6945 }
6946 #endif
6947
6948 static void
requeue_delayed_entity(struct sched_entity * se)6949 requeue_delayed_entity(struct sched_entity *se)
6950 {
6951 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6952
6953 /*
6954 * se->sched_delayed should imply: se->on_rq == 1.
6955 * Because a delayed entity is one that is still on
6956 * the runqueue competing until elegibility.
6957 */
6958 SCHED_WARN_ON(!se->sched_delayed);
6959 SCHED_WARN_ON(!se->on_rq);
6960
6961 if (sched_feat(DELAY_ZERO)) {
6962 update_entity_lag(cfs_rq, se);
6963 if (se->vlag > 0) {
6964 cfs_rq->nr_running--;
6965 if (se != cfs_rq->curr)
6966 __dequeue_entity(cfs_rq, se);
6967 se->vlag = 0;
6968 place_entity(cfs_rq, se, 0);
6969 if (se != cfs_rq->curr)
6970 __enqueue_entity(cfs_rq, se);
6971 cfs_rq->nr_running++;
6972 }
6973 }
6974
6975 update_load_avg(cfs_rq, se, 0);
6976 clear_delayed(se);
6977 }
6978
6979 /*
6980 * The enqueue_task method is called before nr_running is
6981 * increased. Here we update the fair scheduling stats and
6982 * then put the task into the rbtree:
6983 */
6984 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6985 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6986 {
6987 struct cfs_rq *cfs_rq;
6988 struct sched_entity *se = &p->se;
6989 int idle_h_nr_running = task_has_idle_policy(p);
6990 int h_nr_delayed = 0;
6991 int task_new = !(flags & ENQUEUE_WAKEUP);
6992 int rq_h_nr_running = rq->cfs.h_nr_running;
6993 u64 slice = 0;
6994
6995 /*
6996 * The code below (indirectly) updates schedutil which looks at
6997 * the cfs_rq utilization to select a frequency.
6998 * Let's add the task's estimated utilization to the cfs_rq's
6999 * estimated utilization, before we update schedutil.
7000 */
7001 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
7002 util_est_enqueue(&rq->cfs, p);
7003
7004 if (flags & ENQUEUE_DELAYED) {
7005 requeue_delayed_entity(se);
7006 return;
7007 }
7008
7009 /*
7010 * If in_iowait is set, the code below may not trigger any cpufreq
7011 * utilization updates, so do it here explicitly with the IOWAIT flag
7012 * passed.
7013 */
7014 if (p->in_iowait)
7015 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
7016
7017 if (task_new)
7018 h_nr_delayed = !!se->sched_delayed;
7019
7020 for_each_sched_entity(se) {
7021 if (se->on_rq) {
7022 if (se->sched_delayed)
7023 requeue_delayed_entity(se);
7024 break;
7025 }
7026 cfs_rq = cfs_rq_of(se);
7027
7028 /*
7029 * Basically set the slice of group entries to the min_slice of
7030 * their respective cfs_rq. This ensures the group can service
7031 * its entities in the desired time-frame.
7032 */
7033 if (slice) {
7034 se->slice = slice;
7035 se->custom_slice = 1;
7036 }
7037 enqueue_entity(cfs_rq, se, flags);
7038 slice = cfs_rq_min_slice(cfs_rq);
7039
7040 cfs_rq->h_nr_running++;
7041 cfs_rq->idle_h_nr_running += idle_h_nr_running;
7042 cfs_rq->h_nr_delayed += h_nr_delayed;
7043
7044 if (cfs_rq_is_idle(cfs_rq))
7045 idle_h_nr_running = 1;
7046
7047 /* end evaluation on encountering a throttled cfs_rq */
7048 if (cfs_rq_throttled(cfs_rq))
7049 goto enqueue_throttle;
7050
7051 flags = ENQUEUE_WAKEUP;
7052 }
7053
7054 for_each_sched_entity(se) {
7055 cfs_rq = cfs_rq_of(se);
7056
7057 update_load_avg(cfs_rq, se, UPDATE_TG);
7058 se_update_runnable(se);
7059 update_cfs_group(se);
7060
7061 se->slice = slice;
7062 slice = cfs_rq_min_slice(cfs_rq);
7063
7064 cfs_rq->h_nr_running++;
7065 cfs_rq->idle_h_nr_running += idle_h_nr_running;
7066 cfs_rq->h_nr_delayed += h_nr_delayed;
7067
7068 if (cfs_rq_is_idle(cfs_rq))
7069 idle_h_nr_running = 1;
7070
7071 /* end evaluation on encountering a throttled cfs_rq */
7072 if (cfs_rq_throttled(cfs_rq))
7073 goto enqueue_throttle;
7074 }
7075
7076 if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7077 /* Account for idle runtime */
7078 if (!rq->nr_running)
7079 dl_server_update_idle_time(rq, rq->curr);
7080 dl_server_start(&rq->fair_server);
7081 }
7082
7083 /* At this point se is NULL and we are at root level*/
7084 add_nr_running(rq, 1);
7085
7086 /*
7087 * Since new tasks are assigned an initial util_avg equal to
7088 * half of the spare capacity of their CPU, tiny tasks have the
7089 * ability to cross the overutilized threshold, which will
7090 * result in the load balancer ruining all the task placement
7091 * done by EAS. As a way to mitigate that effect, do not account
7092 * for the first enqueue operation of new tasks during the
7093 * overutilized flag detection.
7094 *
7095 * A better way of solving this problem would be to wait for
7096 * the PELT signals of tasks to converge before taking them
7097 * into account, but that is not straightforward to implement,
7098 * and the following generally works well enough in practice.
7099 */
7100 if (!task_new)
7101 check_update_overutilized_status(rq);
7102
7103 enqueue_throttle:
7104 assert_list_leaf_cfs_rq(rq);
7105
7106 hrtick_update(rq);
7107 }
7108
7109 static void set_next_buddy(struct sched_entity *se);
7110
7111 /*
7112 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7113 * failing half-way through and resume the dequeue later.
7114 *
7115 * Returns:
7116 * -1 - dequeue delayed
7117 * 0 - dequeue throttled
7118 * 1 - dequeue complete
7119 */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7120 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7121 {
7122 bool was_sched_idle = sched_idle_rq(rq);
7123 int rq_h_nr_running = rq->cfs.h_nr_running;
7124 bool task_sleep = flags & DEQUEUE_SLEEP;
7125 bool task_delayed = flags & DEQUEUE_DELAYED;
7126 struct task_struct *p = NULL;
7127 int idle_h_nr_running = 0;
7128 int h_nr_running = 0;
7129 int h_nr_delayed = 0;
7130 struct cfs_rq *cfs_rq;
7131 u64 slice = 0;
7132
7133 if (entity_is_task(se)) {
7134 p = task_of(se);
7135 h_nr_running = 1;
7136 idle_h_nr_running = task_has_idle_policy(p);
7137 if (!task_sleep && !task_delayed)
7138 h_nr_delayed = !!se->sched_delayed;
7139 } else {
7140 cfs_rq = group_cfs_rq(se);
7141 slice = cfs_rq_min_slice(cfs_rq);
7142 }
7143
7144 for_each_sched_entity(se) {
7145 cfs_rq = cfs_rq_of(se);
7146
7147 if (!dequeue_entity(cfs_rq, se, flags)) {
7148 if (p && &p->se == se)
7149 return -1;
7150
7151 break;
7152 }
7153
7154 cfs_rq->h_nr_running -= h_nr_running;
7155 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7156 cfs_rq->h_nr_delayed -= h_nr_delayed;
7157
7158 if (cfs_rq_is_idle(cfs_rq))
7159 idle_h_nr_running = h_nr_running;
7160
7161 /* end evaluation on encountering a throttled cfs_rq */
7162 if (cfs_rq_throttled(cfs_rq))
7163 return 0;
7164
7165 /* Don't dequeue parent if it has other entities besides us */
7166 if (cfs_rq->load.weight) {
7167 slice = cfs_rq_min_slice(cfs_rq);
7168
7169 /* Avoid re-evaluating load for this entity: */
7170 se = parent_entity(se);
7171 /*
7172 * Bias pick_next to pick a task from this cfs_rq, as
7173 * p is sleeping when it is within its sched_slice.
7174 */
7175 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7176 set_next_buddy(se);
7177 break;
7178 }
7179 flags |= DEQUEUE_SLEEP;
7180 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7181 }
7182
7183 for_each_sched_entity(se) {
7184 cfs_rq = cfs_rq_of(se);
7185
7186 update_load_avg(cfs_rq, se, UPDATE_TG);
7187 se_update_runnable(se);
7188 update_cfs_group(se);
7189
7190 se->slice = slice;
7191 slice = cfs_rq_min_slice(cfs_rq);
7192
7193 cfs_rq->h_nr_running -= h_nr_running;
7194 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7195 cfs_rq->h_nr_delayed -= h_nr_delayed;
7196
7197 if (cfs_rq_is_idle(cfs_rq))
7198 idle_h_nr_running = h_nr_running;
7199
7200 /* end evaluation on encountering a throttled cfs_rq */
7201 if (cfs_rq_throttled(cfs_rq))
7202 return 0;
7203 }
7204
7205 sub_nr_running(rq, h_nr_running);
7206
7207 if (rq_h_nr_running && !rq->cfs.h_nr_running)
7208 dl_server_stop(&rq->fair_server);
7209
7210 /* balance early to pull high priority tasks */
7211 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7212 rq->next_balance = jiffies;
7213
7214 if (p && task_delayed) {
7215 SCHED_WARN_ON(!task_sleep);
7216 SCHED_WARN_ON(p->on_rq != 1);
7217
7218 /* Fix-up what dequeue_task_fair() skipped */
7219 hrtick_update(rq);
7220
7221 /*
7222 * Fix-up what block_task() skipped.
7223 *
7224 * Must be last, @p might not be valid after this.
7225 */
7226 __block_task(rq, p);
7227 }
7228
7229 return 1;
7230 }
7231
7232 /*
7233 * The dequeue_task method is called before nr_running is
7234 * decreased. We remove the task from the rbtree and
7235 * update the fair scheduling stats:
7236 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7237 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7238 {
7239 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7240 util_est_dequeue(&rq->cfs, p);
7241
7242 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7243 if (dequeue_entities(rq, &p->se, flags) < 0)
7244 return false;
7245
7246 /*
7247 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7248 */
7249
7250 hrtick_update(rq);
7251 return true;
7252 }
7253
7254 #ifdef CONFIG_SMP
7255
7256 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7257 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7258 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7259 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7260
7261 #ifdef CONFIG_NO_HZ_COMMON
7262
7263 static struct {
7264 cpumask_var_t idle_cpus_mask;
7265 atomic_t nr_cpus;
7266 int has_blocked; /* Idle CPUS has blocked load */
7267 int needs_update; /* Newly idle CPUs need their next_balance collated */
7268 unsigned long next_balance; /* in jiffy units */
7269 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7270 } nohz ____cacheline_aligned;
7271
7272 #endif /* CONFIG_NO_HZ_COMMON */
7273
cpu_load(struct rq * rq)7274 static unsigned long cpu_load(struct rq *rq)
7275 {
7276 return cfs_rq_load_avg(&rq->cfs);
7277 }
7278
7279 /*
7280 * cpu_load_without - compute CPU load without any contributions from *p
7281 * @cpu: the CPU which load is requested
7282 * @p: the task which load should be discounted
7283 *
7284 * The load of a CPU is defined by the load of tasks currently enqueued on that
7285 * CPU as well as tasks which are currently sleeping after an execution on that
7286 * CPU.
7287 *
7288 * This method returns the load of the specified CPU by discounting the load of
7289 * the specified task, whenever the task is currently contributing to the CPU
7290 * load.
7291 */
cpu_load_without(struct rq * rq,struct task_struct * p)7292 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7293 {
7294 struct cfs_rq *cfs_rq;
7295 unsigned int load;
7296
7297 /* Task has no contribution or is new */
7298 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7299 return cpu_load(rq);
7300
7301 cfs_rq = &rq->cfs;
7302 load = READ_ONCE(cfs_rq->avg.load_avg);
7303
7304 /* Discount task's util from CPU's util */
7305 lsub_positive(&load, task_h_load(p));
7306
7307 return load;
7308 }
7309
cpu_runnable(struct rq * rq)7310 static unsigned long cpu_runnable(struct rq *rq)
7311 {
7312 return cfs_rq_runnable_avg(&rq->cfs);
7313 }
7314
cpu_runnable_without(struct rq * rq,struct task_struct * p)7315 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7316 {
7317 struct cfs_rq *cfs_rq;
7318 unsigned int runnable;
7319
7320 /* Task has no contribution or is new */
7321 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7322 return cpu_runnable(rq);
7323
7324 cfs_rq = &rq->cfs;
7325 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7326
7327 /* Discount task's runnable from CPU's runnable */
7328 lsub_positive(&runnable, p->se.avg.runnable_avg);
7329
7330 return runnable;
7331 }
7332
capacity_of(int cpu)7333 static unsigned long capacity_of(int cpu)
7334 {
7335 return cpu_rq(cpu)->cpu_capacity;
7336 }
7337
record_wakee(struct task_struct * p)7338 static void record_wakee(struct task_struct *p)
7339 {
7340 /*
7341 * Only decay a single time; tasks that have less then 1 wakeup per
7342 * jiffy will not have built up many flips.
7343 */
7344 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7345 current->wakee_flips >>= 1;
7346 current->wakee_flip_decay_ts = jiffies;
7347 }
7348
7349 if (current->last_wakee != p) {
7350 current->last_wakee = p;
7351 current->wakee_flips++;
7352 }
7353 }
7354
7355 /*
7356 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7357 *
7358 * A waker of many should wake a different task than the one last awakened
7359 * at a frequency roughly N times higher than one of its wakees.
7360 *
7361 * In order to determine whether we should let the load spread vs consolidating
7362 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7363 * partner, and a factor of lls_size higher frequency in the other.
7364 *
7365 * With both conditions met, we can be relatively sure that the relationship is
7366 * non-monogamous, with partner count exceeding socket size.
7367 *
7368 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7369 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7370 * socket size.
7371 */
wake_wide(struct task_struct * p)7372 static int wake_wide(struct task_struct *p)
7373 {
7374 unsigned int master = current->wakee_flips;
7375 unsigned int slave = p->wakee_flips;
7376 int factor = __this_cpu_read(sd_llc_size);
7377
7378 if (master < slave)
7379 swap(master, slave);
7380 if (slave < factor || master < slave * factor)
7381 return 0;
7382 return 1;
7383 }
7384
7385 /*
7386 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7387 * soonest. For the purpose of speed we only consider the waking and previous
7388 * CPU.
7389 *
7390 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7391 * cache-affine and is (or will be) idle.
7392 *
7393 * wake_affine_weight() - considers the weight to reflect the average
7394 * scheduling latency of the CPUs. This seems to work
7395 * for the overloaded case.
7396 */
7397 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7398 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7399 {
7400 /*
7401 * If this_cpu is idle, it implies the wakeup is from interrupt
7402 * context. Only allow the move if cache is shared. Otherwise an
7403 * interrupt intensive workload could force all tasks onto one
7404 * node depending on the IO topology or IRQ affinity settings.
7405 *
7406 * If the prev_cpu is idle and cache affine then avoid a migration.
7407 * There is no guarantee that the cache hot data from an interrupt
7408 * is more important than cache hot data on the prev_cpu and from
7409 * a cpufreq perspective, it's better to have higher utilisation
7410 * on one CPU.
7411 */
7412 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7413 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7414
7415 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7416 return this_cpu;
7417
7418 if (available_idle_cpu(prev_cpu))
7419 return prev_cpu;
7420
7421 return nr_cpumask_bits;
7422 }
7423
7424 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7425 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7426 int this_cpu, int prev_cpu, int sync)
7427 {
7428 s64 this_eff_load, prev_eff_load;
7429 unsigned long task_load;
7430
7431 this_eff_load = cpu_load(cpu_rq(this_cpu));
7432
7433 if (sync) {
7434 unsigned long current_load = task_h_load(current);
7435
7436 if (current_load > this_eff_load)
7437 return this_cpu;
7438
7439 this_eff_load -= current_load;
7440 }
7441
7442 task_load = task_h_load(p);
7443
7444 this_eff_load += task_load;
7445 if (sched_feat(WA_BIAS))
7446 this_eff_load *= 100;
7447 this_eff_load *= capacity_of(prev_cpu);
7448
7449 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7450 prev_eff_load -= task_load;
7451 if (sched_feat(WA_BIAS))
7452 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7453 prev_eff_load *= capacity_of(this_cpu);
7454
7455 /*
7456 * If sync, adjust the weight of prev_eff_load such that if
7457 * prev_eff == this_eff that select_idle_sibling() will consider
7458 * stacking the wakee on top of the waker if no other CPU is
7459 * idle.
7460 */
7461 if (sync)
7462 prev_eff_load += 1;
7463
7464 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7465 }
7466
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7467 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7468 int this_cpu, int prev_cpu, int sync)
7469 {
7470 int target = nr_cpumask_bits;
7471
7472 if (sched_feat(WA_IDLE))
7473 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7474
7475 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7476 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7477
7478 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7479 if (target != this_cpu)
7480 return prev_cpu;
7481
7482 schedstat_inc(sd->ttwu_move_affine);
7483 schedstat_inc(p->stats.nr_wakeups_affine);
7484 return target;
7485 }
7486
7487 static struct sched_group *
7488 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7489
7490 /*
7491 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7492 */
7493 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7494 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7495 {
7496 unsigned long load, min_load = ULONG_MAX;
7497 unsigned int min_exit_latency = UINT_MAX;
7498 u64 latest_idle_timestamp = 0;
7499 int least_loaded_cpu = this_cpu;
7500 int shallowest_idle_cpu = -1;
7501 int i;
7502
7503 /* Check if we have any choice: */
7504 if (group->group_weight == 1)
7505 return cpumask_first(sched_group_span(group));
7506
7507 /* Traverse only the allowed CPUs */
7508 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7509 struct rq *rq = cpu_rq(i);
7510
7511 if (!sched_core_cookie_match(rq, p))
7512 continue;
7513
7514 if (sched_idle_cpu(i))
7515 return i;
7516
7517 if (available_idle_cpu(i)) {
7518 struct cpuidle_state *idle = idle_get_state(rq);
7519 if (idle && idle->exit_latency < min_exit_latency) {
7520 /*
7521 * We give priority to a CPU whose idle state
7522 * has the smallest exit latency irrespective
7523 * of any idle timestamp.
7524 */
7525 min_exit_latency = idle->exit_latency;
7526 latest_idle_timestamp = rq->idle_stamp;
7527 shallowest_idle_cpu = i;
7528 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7529 rq->idle_stamp > latest_idle_timestamp) {
7530 /*
7531 * If equal or no active idle state, then
7532 * the most recently idled CPU might have
7533 * a warmer cache.
7534 */
7535 latest_idle_timestamp = rq->idle_stamp;
7536 shallowest_idle_cpu = i;
7537 }
7538 } else if (shallowest_idle_cpu == -1) {
7539 load = cpu_load(cpu_rq(i));
7540 if (load < min_load) {
7541 min_load = load;
7542 least_loaded_cpu = i;
7543 }
7544 }
7545 }
7546
7547 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7548 }
7549
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7550 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7551 int cpu, int prev_cpu, int sd_flag)
7552 {
7553 int new_cpu = cpu;
7554
7555 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7556 return prev_cpu;
7557
7558 /*
7559 * We need task's util for cpu_util_without, sync it up to
7560 * prev_cpu's last_update_time.
7561 */
7562 if (!(sd_flag & SD_BALANCE_FORK))
7563 sync_entity_load_avg(&p->se);
7564
7565 while (sd) {
7566 struct sched_group *group;
7567 struct sched_domain *tmp;
7568 int weight;
7569
7570 if (!(sd->flags & sd_flag)) {
7571 sd = sd->child;
7572 continue;
7573 }
7574
7575 group = sched_balance_find_dst_group(sd, p, cpu);
7576 if (!group) {
7577 sd = sd->child;
7578 continue;
7579 }
7580
7581 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7582 if (new_cpu == cpu) {
7583 /* Now try balancing at a lower domain level of 'cpu': */
7584 sd = sd->child;
7585 continue;
7586 }
7587
7588 /* Now try balancing at a lower domain level of 'new_cpu': */
7589 cpu = new_cpu;
7590 weight = sd->span_weight;
7591 sd = NULL;
7592 for_each_domain(cpu, tmp) {
7593 if (weight <= tmp->span_weight)
7594 break;
7595 if (tmp->flags & sd_flag)
7596 sd = tmp;
7597 }
7598 }
7599
7600 return new_cpu;
7601 }
7602
__select_idle_cpu(int cpu,struct task_struct * p)7603 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7604 {
7605 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7606 sched_cpu_cookie_match(cpu_rq(cpu), p))
7607 return cpu;
7608
7609 return -1;
7610 }
7611
7612 #ifdef CONFIG_SCHED_SMT
7613 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7614 EXPORT_SYMBOL_GPL(sched_smt_present);
7615
set_idle_cores(int cpu,int val)7616 static inline void set_idle_cores(int cpu, int val)
7617 {
7618 struct sched_domain_shared *sds;
7619
7620 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7621 if (sds)
7622 WRITE_ONCE(sds->has_idle_cores, val);
7623 }
7624
test_idle_cores(int cpu)7625 static inline bool test_idle_cores(int cpu)
7626 {
7627 struct sched_domain_shared *sds;
7628
7629 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7630 if (sds)
7631 return READ_ONCE(sds->has_idle_cores);
7632
7633 return false;
7634 }
7635
7636 /*
7637 * Scans the local SMT mask to see if the entire core is idle, and records this
7638 * information in sd_llc_shared->has_idle_cores.
7639 *
7640 * Since SMT siblings share all cache levels, inspecting this limited remote
7641 * state should be fairly cheap.
7642 */
__update_idle_core(struct rq * rq)7643 void __update_idle_core(struct rq *rq)
7644 {
7645 int core = cpu_of(rq);
7646 int cpu;
7647
7648 rcu_read_lock();
7649 if (test_idle_cores(core))
7650 goto unlock;
7651
7652 for_each_cpu(cpu, cpu_smt_mask(core)) {
7653 if (cpu == core)
7654 continue;
7655
7656 if (!available_idle_cpu(cpu))
7657 goto unlock;
7658 }
7659
7660 set_idle_cores(core, 1);
7661 unlock:
7662 rcu_read_unlock();
7663 }
7664
7665 /*
7666 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7667 * there are no idle cores left in the system; tracked through
7668 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7669 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7670 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7671 {
7672 bool idle = true;
7673 int cpu;
7674
7675 for_each_cpu(cpu, cpu_smt_mask(core)) {
7676 if (!available_idle_cpu(cpu)) {
7677 idle = false;
7678 if (*idle_cpu == -1) {
7679 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7680 *idle_cpu = cpu;
7681 break;
7682 }
7683 continue;
7684 }
7685 break;
7686 }
7687 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7688 *idle_cpu = cpu;
7689 }
7690
7691 if (idle)
7692 return core;
7693
7694 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7695 return -1;
7696 }
7697
7698 /*
7699 * Scan the local SMT mask for idle CPUs.
7700 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7701 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7702 {
7703 int cpu;
7704
7705 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7706 if (cpu == target)
7707 continue;
7708 /*
7709 * Check if the CPU is in the LLC scheduling domain of @target.
7710 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7711 */
7712 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7713 continue;
7714 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7715 return cpu;
7716 }
7717
7718 return -1;
7719 }
7720
7721 #else /* CONFIG_SCHED_SMT */
7722
set_idle_cores(int cpu,int val)7723 static inline void set_idle_cores(int cpu, int val)
7724 {
7725 }
7726
test_idle_cores(int cpu)7727 static inline bool test_idle_cores(int cpu)
7728 {
7729 return false;
7730 }
7731
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7732 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7733 {
7734 return __select_idle_cpu(core, p);
7735 }
7736
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7737 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7738 {
7739 return -1;
7740 }
7741
7742 #endif /* CONFIG_SCHED_SMT */
7743
7744 /*
7745 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7746 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7747 * average idle time for this rq (as found in rq->avg_idle).
7748 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7749 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7750 {
7751 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7752 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7753 struct sched_domain_shared *sd_share;
7754
7755 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7756
7757 if (sched_feat(SIS_UTIL)) {
7758 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7759 if (sd_share) {
7760 /* because !--nr is the condition to stop scan */
7761 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7762 /* overloaded LLC is unlikely to have idle cpu/core */
7763 if (nr == 1)
7764 return -1;
7765 }
7766 }
7767
7768 if (static_branch_unlikely(&sched_cluster_active)) {
7769 struct sched_group *sg = sd->groups;
7770
7771 if (sg->flags & SD_CLUSTER) {
7772 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7773 if (!cpumask_test_cpu(cpu, cpus))
7774 continue;
7775
7776 if (has_idle_core) {
7777 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7778 if ((unsigned int)i < nr_cpumask_bits)
7779 return i;
7780 } else {
7781 if (--nr <= 0)
7782 return -1;
7783 idle_cpu = __select_idle_cpu(cpu, p);
7784 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7785 return idle_cpu;
7786 }
7787 }
7788 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7789 }
7790 }
7791
7792 for_each_cpu_wrap(cpu, cpus, target + 1) {
7793 if (has_idle_core) {
7794 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7795 if ((unsigned int)i < nr_cpumask_bits)
7796 return i;
7797
7798 } else {
7799 if (--nr <= 0)
7800 return -1;
7801 idle_cpu = __select_idle_cpu(cpu, p);
7802 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7803 break;
7804 }
7805 }
7806
7807 if (has_idle_core)
7808 set_idle_cores(target, false);
7809
7810 return idle_cpu;
7811 }
7812
7813 /*
7814 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7815 * the task fits. If no CPU is big enough, but there are idle ones, try to
7816 * maximize capacity.
7817 */
7818 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7819 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7820 {
7821 unsigned long task_util, util_min, util_max, best_cap = 0;
7822 int fits, best_fits = 0;
7823 int cpu, best_cpu = -1;
7824 struct cpumask *cpus;
7825
7826 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7827 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7828
7829 task_util = task_util_est(p);
7830 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7831 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7832
7833 for_each_cpu_wrap(cpu, cpus, target) {
7834 unsigned long cpu_cap = capacity_of(cpu);
7835
7836 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7837 continue;
7838
7839 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7840
7841 /* This CPU fits with all requirements */
7842 if (fits > 0)
7843 return cpu;
7844 /*
7845 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7846 * Look for the CPU with best capacity.
7847 */
7848 else if (fits < 0)
7849 cpu_cap = get_actual_cpu_capacity(cpu);
7850
7851 /*
7852 * First, select CPU which fits better (-1 being better than 0).
7853 * Then, select the one with best capacity at same level.
7854 */
7855 if ((fits < best_fits) ||
7856 ((fits == best_fits) && (cpu_cap > best_cap))) {
7857 best_cap = cpu_cap;
7858 best_cpu = cpu;
7859 best_fits = fits;
7860 }
7861 }
7862
7863 return best_cpu;
7864 }
7865
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7866 static inline bool asym_fits_cpu(unsigned long util,
7867 unsigned long util_min,
7868 unsigned long util_max,
7869 int cpu)
7870 {
7871 if (sched_asym_cpucap_active())
7872 /*
7873 * Return true only if the cpu fully fits the task requirements
7874 * which include the utilization and the performance hints.
7875 */
7876 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7877
7878 return true;
7879 }
7880
7881 /*
7882 * Try and locate an idle core/thread in the LLC cache domain.
7883 */
select_idle_sibling(struct task_struct * p,int prev,int target)7884 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7885 {
7886 bool has_idle_core = false;
7887 struct sched_domain *sd;
7888 unsigned long task_util, util_min, util_max;
7889 int i, recent_used_cpu, prev_aff = -1;
7890
7891 /*
7892 * On asymmetric system, update task utilization because we will check
7893 * that the task fits with CPU's capacity.
7894 */
7895 if (sched_asym_cpucap_active()) {
7896 sync_entity_load_avg(&p->se);
7897 task_util = task_util_est(p);
7898 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7899 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7900 }
7901
7902 /*
7903 * per-cpu select_rq_mask usage
7904 */
7905 lockdep_assert_irqs_disabled();
7906
7907 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7908 asym_fits_cpu(task_util, util_min, util_max, target))
7909 return target;
7910
7911 /*
7912 * If the previous CPU is cache affine and idle, don't be stupid:
7913 */
7914 if (prev != target && cpus_share_cache(prev, target) &&
7915 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7916 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7917
7918 if (!static_branch_unlikely(&sched_cluster_active) ||
7919 cpus_share_resources(prev, target))
7920 return prev;
7921
7922 prev_aff = prev;
7923 }
7924
7925 /*
7926 * Allow a per-cpu kthread to stack with the wakee if the
7927 * kworker thread and the tasks previous CPUs are the same.
7928 * The assumption is that the wakee queued work for the
7929 * per-cpu kthread that is now complete and the wakeup is
7930 * essentially a sync wakeup. An obvious example of this
7931 * pattern is IO completions.
7932 */
7933 if (is_per_cpu_kthread(current) &&
7934 in_task() &&
7935 prev == smp_processor_id() &&
7936 this_rq()->nr_running <= 1 &&
7937 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7938 return prev;
7939 }
7940
7941 /* Check a recently used CPU as a potential idle candidate: */
7942 recent_used_cpu = p->recent_used_cpu;
7943 p->recent_used_cpu = prev;
7944 if (recent_used_cpu != prev &&
7945 recent_used_cpu != target &&
7946 cpus_share_cache(recent_used_cpu, target) &&
7947 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7948 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7949 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7950
7951 if (!static_branch_unlikely(&sched_cluster_active) ||
7952 cpus_share_resources(recent_used_cpu, target))
7953 return recent_used_cpu;
7954
7955 } else {
7956 recent_used_cpu = -1;
7957 }
7958
7959 /*
7960 * For asymmetric CPU capacity systems, our domain of interest is
7961 * sd_asym_cpucapacity rather than sd_llc.
7962 */
7963 if (sched_asym_cpucap_active()) {
7964 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7965 /*
7966 * On an asymmetric CPU capacity system where an exclusive
7967 * cpuset defines a symmetric island (i.e. one unique
7968 * capacity_orig value through the cpuset), the key will be set
7969 * but the CPUs within that cpuset will not have a domain with
7970 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7971 * capacity path.
7972 */
7973 if (sd) {
7974 i = select_idle_capacity(p, sd, target);
7975 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7976 }
7977 }
7978
7979 sd = rcu_dereference(per_cpu(sd_llc, target));
7980 if (!sd)
7981 return target;
7982
7983 if (sched_smt_active()) {
7984 has_idle_core = test_idle_cores(target);
7985
7986 if (!has_idle_core && cpus_share_cache(prev, target)) {
7987 i = select_idle_smt(p, sd, prev);
7988 if ((unsigned int)i < nr_cpumask_bits)
7989 return i;
7990 }
7991 }
7992
7993 i = select_idle_cpu(p, sd, has_idle_core, target);
7994 if ((unsigned)i < nr_cpumask_bits)
7995 return i;
7996
7997 /*
7998 * For cluster machines which have lower sharing cache like L2 or
7999 * LLC Tag, we tend to find an idle CPU in the target's cluster
8000 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
8001 * use them if possible when no idle CPU found in select_idle_cpu().
8002 */
8003 if ((unsigned int)prev_aff < nr_cpumask_bits)
8004 return prev_aff;
8005 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
8006 return recent_used_cpu;
8007
8008 return target;
8009 }
8010
8011 /**
8012 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
8013 * @cpu: the CPU to get the utilization for
8014 * @p: task for which the CPU utilization should be predicted or NULL
8015 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
8016 * @boost: 1 to enable boosting, otherwise 0
8017 *
8018 * The unit of the return value must be the same as the one of CPU capacity
8019 * so that CPU utilization can be compared with CPU capacity.
8020 *
8021 * CPU utilization is the sum of running time of runnable tasks plus the
8022 * recent utilization of currently non-runnable tasks on that CPU.
8023 * It represents the amount of CPU capacity currently used by CFS tasks in
8024 * the range [0..max CPU capacity] with max CPU capacity being the CPU
8025 * capacity at f_max.
8026 *
8027 * The estimated CPU utilization is defined as the maximum between CPU
8028 * utilization and sum of the estimated utilization of the currently
8029 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
8030 * previously-executed tasks, which helps better deduce how busy a CPU will
8031 * be when a long-sleeping task wakes up. The contribution to CPU utilization
8032 * of such a task would be significantly decayed at this point of time.
8033 *
8034 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
8035 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
8036 * utilization. Boosting is implemented in cpu_util() so that internal
8037 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
8038 * latter via cpu_util_cfs_boost().
8039 *
8040 * CPU utilization can be higher than the current CPU capacity
8041 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
8042 * of rounding errors as well as task migrations or wakeups of new tasks.
8043 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
8044 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
8045 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
8046 * capacity. CPU utilization is allowed to overshoot current CPU capacity
8047 * though since this is useful for predicting the CPU capacity required
8048 * after task migrations (scheduler-driven DVFS).
8049 *
8050 * Return: (Boosted) (estimated) utilization for the specified CPU.
8051 */
8052 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)8053 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8054 {
8055 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8056 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8057 unsigned long runnable;
8058
8059 if (boost) {
8060 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8061 util = max(util, runnable);
8062 }
8063
8064 /*
8065 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8066 * contribution. If @p migrates from another CPU to @cpu add its
8067 * contribution. In all the other cases @cpu is not impacted by the
8068 * migration so its util_avg is already correct.
8069 */
8070 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8071 lsub_positive(&util, task_util(p));
8072 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8073 util += task_util(p);
8074
8075 if (sched_feat(UTIL_EST)) {
8076 unsigned long util_est;
8077
8078 util_est = READ_ONCE(cfs_rq->avg.util_est);
8079
8080 /*
8081 * During wake-up @p isn't enqueued yet and doesn't contribute
8082 * to any cpu_rq(cpu)->cfs.avg.util_est.
8083 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8084 * has been enqueued.
8085 *
8086 * During exec (@dst_cpu = -1) @p is enqueued and does
8087 * contribute to cpu_rq(cpu)->cfs.util_est.
8088 * Remove it to "simulate" cpu_util without @p's contribution.
8089 *
8090 * Despite the task_on_rq_queued(@p) check there is still a
8091 * small window for a possible race when an exec
8092 * select_task_rq_fair() races with LB's detach_task().
8093 *
8094 * detach_task()
8095 * deactivate_task()
8096 * p->on_rq = TASK_ON_RQ_MIGRATING;
8097 * -------------------------------- A
8098 * dequeue_task() \
8099 * dequeue_task_fair() + Race Time
8100 * util_est_dequeue() /
8101 * -------------------------------- B
8102 *
8103 * The additional check "current == p" is required to further
8104 * reduce the race window.
8105 */
8106 if (dst_cpu == cpu)
8107 util_est += _task_util_est(p);
8108 else if (p && unlikely(task_on_rq_queued(p) || current == p))
8109 lsub_positive(&util_est, _task_util_est(p));
8110
8111 util = max(util, util_est);
8112 }
8113
8114 return min(util, arch_scale_cpu_capacity(cpu));
8115 }
8116
cpu_util_cfs(int cpu)8117 unsigned long cpu_util_cfs(int cpu)
8118 {
8119 return cpu_util(cpu, NULL, -1, 0);
8120 }
8121
cpu_util_cfs_boost(int cpu)8122 unsigned long cpu_util_cfs_boost(int cpu)
8123 {
8124 return cpu_util(cpu, NULL, -1, 1);
8125 }
8126
8127 /*
8128 * cpu_util_without: compute cpu utilization without any contributions from *p
8129 * @cpu: the CPU which utilization is requested
8130 * @p: the task which utilization should be discounted
8131 *
8132 * The utilization of a CPU is defined by the utilization of tasks currently
8133 * enqueued on that CPU as well as tasks which are currently sleeping after an
8134 * execution on that CPU.
8135 *
8136 * This method returns the utilization of the specified CPU by discounting the
8137 * utilization of the specified task, whenever the task is currently
8138 * contributing to the CPU utilization.
8139 */
cpu_util_without(int cpu,struct task_struct * p)8140 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8141 {
8142 /* Task has no contribution or is new */
8143 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8144 p = NULL;
8145
8146 return cpu_util(cpu, p, -1, 0);
8147 }
8148
8149 /*
8150 * This function computes an effective utilization for the given CPU, to be
8151 * used for frequency selection given the linear relation: f = u * f_max.
8152 *
8153 * The scheduler tracks the following metrics:
8154 *
8155 * cpu_util_{cfs,rt,dl,irq}()
8156 * cpu_bw_dl()
8157 *
8158 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8159 * synchronized windows and are thus directly comparable.
8160 *
8161 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8162 * which excludes things like IRQ and steal-time. These latter are then accrued
8163 * in the IRQ utilization.
8164 *
8165 * The DL bandwidth number OTOH is not a measured metric but a value computed
8166 * based on the task model parameters and gives the minimal utilization
8167 * required to meet deadlines.
8168 */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8169 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8170 unsigned long *min,
8171 unsigned long *max)
8172 {
8173 unsigned long util, irq, scale;
8174 struct rq *rq = cpu_rq(cpu);
8175
8176 scale = arch_scale_cpu_capacity(cpu);
8177
8178 /*
8179 * Early check to see if IRQ/steal time saturates the CPU, can be
8180 * because of inaccuracies in how we track these -- see
8181 * update_irq_load_avg().
8182 */
8183 irq = cpu_util_irq(rq);
8184 if (unlikely(irq >= scale)) {
8185 if (min)
8186 *min = scale;
8187 if (max)
8188 *max = scale;
8189 return scale;
8190 }
8191
8192 if (min) {
8193 /*
8194 * The minimum utilization returns the highest level between:
8195 * - the computed DL bandwidth needed with the IRQ pressure which
8196 * steals time to the deadline task.
8197 * - The minimum performance requirement for CFS and/or RT.
8198 */
8199 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8200
8201 /*
8202 * When an RT task is runnable and uclamp is not used, we must
8203 * ensure that the task will run at maximum compute capacity.
8204 */
8205 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8206 *min = max(*min, scale);
8207 }
8208
8209 /*
8210 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8211 * CFS tasks and we use the same metric to track the effective
8212 * utilization (PELT windows are synchronized) we can directly add them
8213 * to obtain the CPU's actual utilization.
8214 */
8215 util = util_cfs + cpu_util_rt(rq);
8216 util += cpu_util_dl(rq);
8217
8218 /*
8219 * The maximum hint is a soft bandwidth requirement, which can be lower
8220 * than the actual utilization because of uclamp_max requirements.
8221 */
8222 if (max)
8223 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8224
8225 if (util >= scale)
8226 return scale;
8227
8228 /*
8229 * There is still idle time; further improve the number by using the
8230 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8231 * need to scale the task numbers:
8232 *
8233 * max - irq
8234 * U' = irq + --------- * U
8235 * max
8236 */
8237 util = scale_irq_capacity(util, irq, scale);
8238 util += irq;
8239
8240 return min(scale, util);
8241 }
8242
sched_cpu_util(int cpu)8243 unsigned long sched_cpu_util(int cpu)
8244 {
8245 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8246 }
8247
8248 /*
8249 * energy_env - Utilization landscape for energy estimation.
8250 * @task_busy_time: Utilization contribution by the task for which we test the
8251 * placement. Given by eenv_task_busy_time().
8252 * @pd_busy_time: Utilization of the whole perf domain without the task
8253 * contribution. Given by eenv_pd_busy_time().
8254 * @cpu_cap: Maximum CPU capacity for the perf domain.
8255 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8256 */
8257 struct energy_env {
8258 unsigned long task_busy_time;
8259 unsigned long pd_busy_time;
8260 unsigned long cpu_cap;
8261 unsigned long pd_cap;
8262 };
8263
8264 /*
8265 * Compute the task busy time for compute_energy(). This time cannot be
8266 * injected directly into effective_cpu_util() because of the IRQ scaling.
8267 * The latter only makes sense with the most recent CPUs where the task has
8268 * run.
8269 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8270 static inline void eenv_task_busy_time(struct energy_env *eenv,
8271 struct task_struct *p, int prev_cpu)
8272 {
8273 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8274 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8275
8276 if (unlikely(irq >= max_cap))
8277 busy_time = max_cap;
8278 else
8279 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8280
8281 eenv->task_busy_time = busy_time;
8282 }
8283
8284 /*
8285 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8286 * utilization for each @pd_cpus, it however doesn't take into account
8287 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8288 * scale the EM reported power consumption at the (eventually clamped)
8289 * cpu_capacity.
8290 *
8291 * The contribution of the task @p for which we want to estimate the
8292 * energy cost is removed (by cpu_util()) and must be calculated
8293 * separately (see eenv_task_busy_time). This ensures:
8294 *
8295 * - A stable PD utilization, no matter which CPU of that PD we want to place
8296 * the task on.
8297 *
8298 * - A fair comparison between CPUs as the task contribution (task_util())
8299 * will always be the same no matter which CPU utilization we rely on
8300 * (util_avg or util_est).
8301 *
8302 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8303 * exceed @eenv->pd_cap.
8304 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8305 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8306 struct cpumask *pd_cpus,
8307 struct task_struct *p)
8308 {
8309 unsigned long busy_time = 0;
8310 int cpu;
8311
8312 for_each_cpu(cpu, pd_cpus) {
8313 unsigned long util = cpu_util(cpu, p, -1, 0);
8314
8315 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8316 }
8317
8318 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8319 }
8320
8321 /*
8322 * Compute the maximum utilization for compute_energy() when the task @p
8323 * is placed on the cpu @dst_cpu.
8324 *
8325 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8326 * exceed @eenv->cpu_cap.
8327 */
8328 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8329 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8330 struct task_struct *p, int dst_cpu)
8331 {
8332 unsigned long max_util = 0;
8333 int cpu;
8334
8335 for_each_cpu(cpu, pd_cpus) {
8336 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8337 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8338 unsigned long eff_util, min, max;
8339
8340 /*
8341 * Performance domain frequency: utilization clamping
8342 * must be considered since it affects the selection
8343 * of the performance domain frequency.
8344 * NOTE: in case RT tasks are running, by default the min
8345 * utilization can be max OPP.
8346 */
8347 eff_util = effective_cpu_util(cpu, util, &min, &max);
8348
8349 /* Task's uclamp can modify min and max value */
8350 if (tsk && uclamp_is_used()) {
8351 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8352
8353 /*
8354 * If there is no active max uclamp constraint,
8355 * directly use task's one, otherwise keep max.
8356 */
8357 if (uclamp_rq_is_idle(cpu_rq(cpu)))
8358 max = uclamp_eff_value(p, UCLAMP_MAX);
8359 else
8360 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8361 }
8362
8363 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8364 max_util = max(max_util, eff_util);
8365 }
8366
8367 return min(max_util, eenv->cpu_cap);
8368 }
8369
8370 /*
8371 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8372 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8373 * contribution is ignored.
8374 */
8375 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8376 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8377 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8378 {
8379 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8380 unsigned long busy_time = eenv->pd_busy_time;
8381 unsigned long energy;
8382
8383 if (dst_cpu >= 0)
8384 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8385
8386 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8387
8388 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8389
8390 return energy;
8391 }
8392
8393 /*
8394 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8395 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8396 * spare capacity in each performance domain and uses it as a potential
8397 * candidate to execute the task. Then, it uses the Energy Model to figure
8398 * out which of the CPU candidates is the most energy-efficient.
8399 *
8400 * The rationale for this heuristic is as follows. In a performance domain,
8401 * all the most energy efficient CPU candidates (according to the Energy
8402 * Model) are those for which we'll request a low frequency. When there are
8403 * several CPUs for which the frequency request will be the same, we don't
8404 * have enough data to break the tie between them, because the Energy Model
8405 * only includes active power costs. With this model, if we assume that
8406 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8407 * the maximum spare capacity in a performance domain is guaranteed to be among
8408 * the best candidates of the performance domain.
8409 *
8410 * In practice, it could be preferable from an energy standpoint to pack
8411 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8412 * but that could also hurt our chances to go cluster idle, and we have no
8413 * ways to tell with the current Energy Model if this is actually a good
8414 * idea or not. So, find_energy_efficient_cpu() basically favors
8415 * cluster-packing, and spreading inside a cluster. That should at least be
8416 * a good thing for latency, and this is consistent with the idea that most
8417 * of the energy savings of EAS come from the asymmetry of the system, and
8418 * not so much from breaking the tie between identical CPUs. That's also the
8419 * reason why EAS is enabled in the topology code only for systems where
8420 * SD_ASYM_CPUCAPACITY is set.
8421 *
8422 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8423 * they don't have any useful utilization data yet and it's not possible to
8424 * forecast their impact on energy consumption. Consequently, they will be
8425 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8426 * to be energy-inefficient in some use-cases. The alternative would be to
8427 * bias new tasks towards specific types of CPUs first, or to try to infer
8428 * their util_avg from the parent task, but those heuristics could hurt
8429 * other use-cases too. So, until someone finds a better way to solve this,
8430 * let's keep things simple by re-using the existing slow path.
8431 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8432 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8433 {
8434 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8435 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8436 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8437 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8438 struct root_domain *rd = this_rq()->rd;
8439 int cpu, best_energy_cpu, target = -1;
8440 int prev_fits = -1, best_fits = -1;
8441 unsigned long best_actual_cap = 0;
8442 unsigned long prev_actual_cap = 0;
8443 struct sched_domain *sd;
8444 struct perf_domain *pd;
8445 struct energy_env eenv;
8446
8447 rcu_read_lock();
8448 pd = rcu_dereference(rd->pd);
8449 if (!pd)
8450 goto unlock;
8451
8452 /*
8453 * Energy-aware wake-up happens on the lowest sched_domain starting
8454 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8455 */
8456 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8457 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8458 sd = sd->parent;
8459 if (!sd)
8460 goto unlock;
8461
8462 target = prev_cpu;
8463
8464 sync_entity_load_avg(&p->se);
8465 if (!task_util_est(p) && p_util_min == 0)
8466 goto unlock;
8467
8468 eenv_task_busy_time(&eenv, p, prev_cpu);
8469
8470 for (; pd; pd = pd->next) {
8471 unsigned long util_min = p_util_min, util_max = p_util_max;
8472 unsigned long cpu_cap, cpu_actual_cap, util;
8473 long prev_spare_cap = -1, max_spare_cap = -1;
8474 unsigned long rq_util_min, rq_util_max;
8475 unsigned long cur_delta, base_energy;
8476 int max_spare_cap_cpu = -1;
8477 int fits, max_fits = -1;
8478
8479 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8480
8481 if (cpumask_empty(cpus))
8482 continue;
8483
8484 /* Account external pressure for the energy estimation */
8485 cpu = cpumask_first(cpus);
8486 cpu_actual_cap = get_actual_cpu_capacity(cpu);
8487
8488 eenv.cpu_cap = cpu_actual_cap;
8489 eenv.pd_cap = 0;
8490
8491 for_each_cpu(cpu, cpus) {
8492 struct rq *rq = cpu_rq(cpu);
8493
8494 eenv.pd_cap += cpu_actual_cap;
8495
8496 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8497 continue;
8498
8499 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8500 continue;
8501
8502 util = cpu_util(cpu, p, cpu, 0);
8503 cpu_cap = capacity_of(cpu);
8504
8505 /*
8506 * Skip CPUs that cannot satisfy the capacity request.
8507 * IOW, placing the task there would make the CPU
8508 * overutilized. Take uclamp into account to see how
8509 * much capacity we can get out of the CPU; this is
8510 * aligned with sched_cpu_util().
8511 */
8512 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8513 /*
8514 * Open code uclamp_rq_util_with() except for
8515 * the clamp() part. I.e.: apply max aggregation
8516 * only. util_fits_cpu() logic requires to
8517 * operate on non clamped util but must use the
8518 * max-aggregated uclamp_{min, max}.
8519 */
8520 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8521 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8522
8523 util_min = max(rq_util_min, p_util_min);
8524 util_max = max(rq_util_max, p_util_max);
8525 }
8526
8527 fits = util_fits_cpu(util, util_min, util_max, cpu);
8528 if (!fits)
8529 continue;
8530
8531 lsub_positive(&cpu_cap, util);
8532
8533 if (cpu == prev_cpu) {
8534 /* Always use prev_cpu as a candidate. */
8535 prev_spare_cap = cpu_cap;
8536 prev_fits = fits;
8537 } else if ((fits > max_fits) ||
8538 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8539 /*
8540 * Find the CPU with the maximum spare capacity
8541 * among the remaining CPUs in the performance
8542 * domain.
8543 */
8544 max_spare_cap = cpu_cap;
8545 max_spare_cap_cpu = cpu;
8546 max_fits = fits;
8547 }
8548 }
8549
8550 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8551 continue;
8552
8553 eenv_pd_busy_time(&eenv, cpus, p);
8554 /* Compute the 'base' energy of the pd, without @p */
8555 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8556
8557 /* Evaluate the energy impact of using prev_cpu. */
8558 if (prev_spare_cap > -1) {
8559 prev_delta = compute_energy(&eenv, pd, cpus, p,
8560 prev_cpu);
8561 /* CPU utilization has changed */
8562 if (prev_delta < base_energy)
8563 goto unlock;
8564 prev_delta -= base_energy;
8565 prev_actual_cap = cpu_actual_cap;
8566 best_delta = min(best_delta, prev_delta);
8567 }
8568
8569 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8570 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8571 /* Current best energy cpu fits better */
8572 if (max_fits < best_fits)
8573 continue;
8574
8575 /*
8576 * Both don't fit performance hint (i.e. uclamp_min)
8577 * but best energy cpu has better capacity.
8578 */
8579 if ((max_fits < 0) &&
8580 (cpu_actual_cap <= best_actual_cap))
8581 continue;
8582
8583 cur_delta = compute_energy(&eenv, pd, cpus, p,
8584 max_spare_cap_cpu);
8585 /* CPU utilization has changed */
8586 if (cur_delta < base_energy)
8587 goto unlock;
8588 cur_delta -= base_energy;
8589
8590 /*
8591 * Both fit for the task but best energy cpu has lower
8592 * energy impact.
8593 */
8594 if ((max_fits > 0) && (best_fits > 0) &&
8595 (cur_delta >= best_delta))
8596 continue;
8597
8598 best_delta = cur_delta;
8599 best_energy_cpu = max_spare_cap_cpu;
8600 best_fits = max_fits;
8601 best_actual_cap = cpu_actual_cap;
8602 }
8603 }
8604 rcu_read_unlock();
8605
8606 if ((best_fits > prev_fits) ||
8607 ((best_fits > 0) && (best_delta < prev_delta)) ||
8608 ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8609 target = best_energy_cpu;
8610
8611 return target;
8612
8613 unlock:
8614 rcu_read_unlock();
8615
8616 return target;
8617 }
8618
8619 /*
8620 * select_task_rq_fair: Select target runqueue for the waking task in domains
8621 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8622 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8623 *
8624 * Balances load by selecting the idlest CPU in the idlest group, or under
8625 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8626 *
8627 * Returns the target CPU number.
8628 */
8629 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8630 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8631 {
8632 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8633 struct sched_domain *tmp, *sd = NULL;
8634 int cpu = smp_processor_id();
8635 int new_cpu = prev_cpu;
8636 int want_affine = 0;
8637 /* SD_flags and WF_flags share the first nibble */
8638 int sd_flag = wake_flags & 0xF;
8639
8640 /*
8641 * required for stable ->cpus_allowed
8642 */
8643 lockdep_assert_held(&p->pi_lock);
8644 if (wake_flags & WF_TTWU) {
8645 record_wakee(p);
8646
8647 if ((wake_flags & WF_CURRENT_CPU) &&
8648 cpumask_test_cpu(cpu, p->cpus_ptr))
8649 return cpu;
8650
8651 if (!is_rd_overutilized(this_rq()->rd)) {
8652 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8653 if (new_cpu >= 0)
8654 return new_cpu;
8655 new_cpu = prev_cpu;
8656 }
8657
8658 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8659 }
8660
8661 rcu_read_lock();
8662 for_each_domain(cpu, tmp) {
8663 /*
8664 * If both 'cpu' and 'prev_cpu' are part of this domain,
8665 * cpu is a valid SD_WAKE_AFFINE target.
8666 */
8667 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8668 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8669 if (cpu != prev_cpu)
8670 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8671
8672 sd = NULL; /* Prefer wake_affine over balance flags */
8673 break;
8674 }
8675
8676 /*
8677 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8678 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8679 * will usually go to the fast path.
8680 */
8681 if (tmp->flags & sd_flag)
8682 sd = tmp;
8683 else if (!want_affine)
8684 break;
8685 }
8686
8687 if (unlikely(sd)) {
8688 /* Slow path */
8689 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8690 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8691 /* Fast path */
8692 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8693 }
8694 rcu_read_unlock();
8695
8696 return new_cpu;
8697 }
8698
8699 /*
8700 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8701 * cfs_rq_of(p) references at time of call are still valid and identify the
8702 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8703 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8704 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8705 {
8706 struct sched_entity *se = &p->se;
8707
8708 if (!task_on_rq_migrating(p)) {
8709 remove_entity_load_avg(se);
8710
8711 /*
8712 * Here, the task's PELT values have been updated according to
8713 * the current rq's clock. But if that clock hasn't been
8714 * updated in a while, a substantial idle time will be missed,
8715 * leading to an inflation after wake-up on the new rq.
8716 *
8717 * Estimate the missing time from the cfs_rq last_update_time
8718 * and update sched_avg to improve the PELT continuity after
8719 * migration.
8720 */
8721 migrate_se_pelt_lag(se);
8722 }
8723
8724 /* Tell new CPU we are migrated */
8725 se->avg.last_update_time = 0;
8726
8727 update_scan_period(p, new_cpu);
8728 }
8729
task_dead_fair(struct task_struct * p)8730 static void task_dead_fair(struct task_struct *p)
8731 {
8732 struct sched_entity *se = &p->se;
8733
8734 if (se->sched_delayed) {
8735 struct rq_flags rf;
8736 struct rq *rq;
8737
8738 rq = task_rq_lock(p, &rf);
8739 if (se->sched_delayed) {
8740 update_rq_clock(rq);
8741 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8742 }
8743 task_rq_unlock(rq, p, &rf);
8744 }
8745
8746 remove_entity_load_avg(se);
8747 }
8748
8749 /*
8750 * Set the max capacity the task is allowed to run at for misfit detection.
8751 */
set_task_max_allowed_capacity(struct task_struct * p)8752 static void set_task_max_allowed_capacity(struct task_struct *p)
8753 {
8754 struct asym_cap_data *entry;
8755
8756 if (!sched_asym_cpucap_active())
8757 return;
8758
8759 rcu_read_lock();
8760 list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8761 cpumask_t *cpumask;
8762
8763 cpumask = cpu_capacity_span(entry);
8764 if (!cpumask_intersects(p->cpus_ptr, cpumask))
8765 continue;
8766
8767 p->max_allowed_capacity = entry->capacity;
8768 break;
8769 }
8770 rcu_read_unlock();
8771 }
8772
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8773 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8774 {
8775 set_cpus_allowed_common(p, ctx);
8776 set_task_max_allowed_capacity(p);
8777 }
8778
8779 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8780 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8781 {
8782 if (sched_fair_runnable(rq))
8783 return 1;
8784
8785 return sched_balance_newidle(rq, rf) != 0;
8786 }
8787 #else
set_task_max_allowed_capacity(struct task_struct * p)8788 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8789 #endif /* CONFIG_SMP */
8790
set_next_buddy(struct sched_entity * se)8791 static void set_next_buddy(struct sched_entity *se)
8792 {
8793 for_each_sched_entity(se) {
8794 if (SCHED_WARN_ON(!se->on_rq))
8795 return;
8796 if (se_is_idle(se))
8797 return;
8798 cfs_rq_of(se)->next = se;
8799 }
8800 }
8801
8802 /*
8803 * Preempt the current task with a newly woken task if needed:
8804 */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8805 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8806 {
8807 struct task_struct *donor = rq->donor;
8808 struct sched_entity *se = &donor->se, *pse = &p->se;
8809 struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8810 int cse_is_idle, pse_is_idle;
8811
8812 if (unlikely(se == pse))
8813 return;
8814
8815 /*
8816 * This is possible from callers such as attach_tasks(), in which we
8817 * unconditionally wakeup_preempt() after an enqueue (which may have
8818 * lead to a throttle). This both saves work and prevents false
8819 * next-buddy nomination below.
8820 */
8821 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8822 return;
8823
8824 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8825 set_next_buddy(pse);
8826 }
8827
8828 /*
8829 * We can come here with TIF_NEED_RESCHED already set from new task
8830 * wake up path.
8831 *
8832 * Note: this also catches the edge-case of curr being in a throttled
8833 * group (e.g. via set_curr_task), since update_curr() (in the
8834 * enqueue of curr) will have resulted in resched being set. This
8835 * prevents us from potentially nominating it as a false LAST_BUDDY
8836 * below.
8837 */
8838 if (test_tsk_need_resched(rq->curr))
8839 return;
8840
8841 if (!sched_feat(WAKEUP_PREEMPTION))
8842 return;
8843
8844 find_matching_se(&se, &pse);
8845 WARN_ON_ONCE(!pse);
8846
8847 cse_is_idle = se_is_idle(se);
8848 pse_is_idle = se_is_idle(pse);
8849
8850 /*
8851 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8852 * in the inverse case).
8853 */
8854 if (cse_is_idle && !pse_is_idle)
8855 goto preempt;
8856 if (cse_is_idle != pse_is_idle)
8857 return;
8858
8859 /*
8860 * BATCH and IDLE tasks do not preempt others.
8861 */
8862 if (unlikely(!normal_policy(p->policy)))
8863 return;
8864
8865 cfs_rq = cfs_rq_of(se);
8866 update_curr(cfs_rq);
8867 /*
8868 * If @p has a shorter slice than current and @p is eligible, override
8869 * current's slice protection in order to allow preemption.
8870 *
8871 * Note that even if @p does not turn out to be the most eligible
8872 * task at this moment, current's slice protection will be lost.
8873 */
8874 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8875 se->vlag = se->deadline + 1;
8876
8877 /*
8878 * If @p has become the most eligible task, force preemption.
8879 */
8880 if (pick_eevdf(cfs_rq) == pse)
8881 goto preempt;
8882
8883 return;
8884
8885 preempt:
8886 resched_curr_lazy(rq);
8887 }
8888
pick_task_fair(struct rq * rq)8889 static struct task_struct *pick_task_fair(struct rq *rq)
8890 {
8891 struct sched_entity *se;
8892 struct cfs_rq *cfs_rq;
8893
8894 again:
8895 cfs_rq = &rq->cfs;
8896 if (!cfs_rq->nr_running)
8897 return NULL;
8898
8899 do {
8900 /* Might not have done put_prev_entity() */
8901 if (cfs_rq->curr && cfs_rq->curr->on_rq)
8902 update_curr(cfs_rq);
8903
8904 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8905 goto again;
8906
8907 se = pick_next_entity(rq, cfs_rq);
8908 if (!se)
8909 goto again;
8910 cfs_rq = group_cfs_rq(se);
8911 } while (cfs_rq);
8912
8913 return task_of(se);
8914 }
8915
8916 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8917 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8918
8919 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8920 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8921 {
8922 struct sched_entity *se;
8923 struct task_struct *p;
8924 int new_tasks;
8925
8926 again:
8927 p = pick_task_fair(rq);
8928 if (!p)
8929 goto idle;
8930 se = &p->se;
8931
8932 #ifdef CONFIG_FAIR_GROUP_SCHED
8933 if (prev->sched_class != &fair_sched_class)
8934 goto simple;
8935
8936 __put_prev_set_next_dl_server(rq, prev, p);
8937
8938 /*
8939 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8940 * likely that a next task is from the same cgroup as the current.
8941 *
8942 * Therefore attempt to avoid putting and setting the entire cgroup
8943 * hierarchy, only change the part that actually changes.
8944 *
8945 * Since we haven't yet done put_prev_entity and if the selected task
8946 * is a different task than we started out with, try and touch the
8947 * least amount of cfs_rqs.
8948 */
8949 if (prev != p) {
8950 struct sched_entity *pse = &prev->se;
8951 struct cfs_rq *cfs_rq;
8952
8953 while (!(cfs_rq = is_same_group(se, pse))) {
8954 int se_depth = se->depth;
8955 int pse_depth = pse->depth;
8956
8957 if (se_depth <= pse_depth) {
8958 put_prev_entity(cfs_rq_of(pse), pse);
8959 pse = parent_entity(pse);
8960 }
8961 if (se_depth >= pse_depth) {
8962 set_next_entity(cfs_rq_of(se), se);
8963 se = parent_entity(se);
8964 }
8965 }
8966
8967 put_prev_entity(cfs_rq, pse);
8968 set_next_entity(cfs_rq, se);
8969
8970 __set_next_task_fair(rq, p, true);
8971 }
8972
8973 return p;
8974
8975 simple:
8976 #endif
8977 put_prev_set_next_task(rq, prev, p);
8978 return p;
8979
8980 idle:
8981 if (!rf)
8982 return NULL;
8983
8984 new_tasks = sched_balance_newidle(rq, rf);
8985
8986 /*
8987 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8988 * possible for any higher priority task to appear. In that case we
8989 * must re-start the pick_next_entity() loop.
8990 */
8991 if (new_tasks < 0)
8992 return RETRY_TASK;
8993
8994 if (new_tasks > 0)
8995 goto again;
8996
8997 /*
8998 * rq is about to be idle, check if we need to update the
8999 * lost_idle_time of clock_pelt
9000 */
9001 update_idle_rq_clock_pelt(rq);
9002
9003 return NULL;
9004 }
9005
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)9006 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
9007 {
9008 return pick_next_task_fair(rq, prev, NULL);
9009 }
9010
fair_server_has_tasks(struct sched_dl_entity * dl_se)9011 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
9012 {
9013 return !!dl_se->rq->cfs.nr_running;
9014 }
9015
fair_server_pick_task(struct sched_dl_entity * dl_se)9016 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
9017 {
9018 return pick_task_fair(dl_se->rq);
9019 }
9020
fair_server_init(struct rq * rq)9021 void fair_server_init(struct rq *rq)
9022 {
9023 struct sched_dl_entity *dl_se = &rq->fair_server;
9024
9025 init_dl_entity(dl_se);
9026
9027 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
9028 }
9029
9030 /*
9031 * Account for a descheduled task:
9032 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)9033 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
9034 {
9035 struct sched_entity *se = &prev->se;
9036 struct cfs_rq *cfs_rq;
9037
9038 for_each_sched_entity(se) {
9039 cfs_rq = cfs_rq_of(se);
9040 put_prev_entity(cfs_rq, se);
9041 }
9042 }
9043
9044 /*
9045 * sched_yield() is very simple
9046 */
yield_task_fair(struct rq * rq)9047 static void yield_task_fair(struct rq *rq)
9048 {
9049 struct task_struct *curr = rq->curr;
9050 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9051 struct sched_entity *se = &curr->se;
9052
9053 /*
9054 * Are we the only task in the tree?
9055 */
9056 if (unlikely(rq->nr_running == 1))
9057 return;
9058
9059 clear_buddies(cfs_rq, se);
9060
9061 update_rq_clock(rq);
9062 /*
9063 * Update run-time statistics of the 'current'.
9064 */
9065 update_curr(cfs_rq);
9066 /*
9067 * Tell update_rq_clock() that we've just updated,
9068 * so we don't do microscopic update in schedule()
9069 * and double the fastpath cost.
9070 */
9071 rq_clock_skip_update(rq);
9072
9073 se->deadline += calc_delta_fair(se->slice, se);
9074 }
9075
yield_to_task_fair(struct rq * rq,struct task_struct * p)9076 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9077 {
9078 struct sched_entity *se = &p->se;
9079
9080 /* throttled hierarchies are not runnable */
9081 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9082 return false;
9083
9084 /* Tell the scheduler that we'd really like se to run next. */
9085 set_next_buddy(se);
9086
9087 yield_task_fair(rq);
9088
9089 return true;
9090 }
9091
9092 #ifdef CONFIG_SMP
9093 /**************************************************
9094 * Fair scheduling class load-balancing methods.
9095 *
9096 * BASICS
9097 *
9098 * The purpose of load-balancing is to achieve the same basic fairness the
9099 * per-CPU scheduler provides, namely provide a proportional amount of compute
9100 * time to each task. This is expressed in the following equation:
9101 *
9102 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9103 *
9104 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9105 * W_i,0 is defined as:
9106 *
9107 * W_i,0 = \Sum_j w_i,j (2)
9108 *
9109 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9110 * is derived from the nice value as per sched_prio_to_weight[].
9111 *
9112 * The weight average is an exponential decay average of the instantaneous
9113 * weight:
9114 *
9115 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9116 *
9117 * C_i is the compute capacity of CPU i, typically it is the
9118 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9119 * can also include other factors [XXX].
9120 *
9121 * To achieve this balance we define a measure of imbalance which follows
9122 * directly from (1):
9123 *
9124 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9125 *
9126 * We them move tasks around to minimize the imbalance. In the continuous
9127 * function space it is obvious this converges, in the discrete case we get
9128 * a few fun cases generally called infeasible weight scenarios.
9129 *
9130 * [XXX expand on:
9131 * - infeasible weights;
9132 * - local vs global optima in the discrete case. ]
9133 *
9134 *
9135 * SCHED DOMAINS
9136 *
9137 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9138 * for all i,j solution, we create a tree of CPUs that follows the hardware
9139 * topology where each level pairs two lower groups (or better). This results
9140 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9141 * tree to only the first of the previous level and we decrease the frequency
9142 * of load-balance at each level inversely proportional to the number of CPUs in
9143 * the groups.
9144 *
9145 * This yields:
9146 *
9147 * log_2 n 1 n
9148 * \Sum { --- * --- * 2^i } = O(n) (5)
9149 * i = 0 2^i 2^i
9150 * `- size of each group
9151 * | | `- number of CPUs doing load-balance
9152 * | `- freq
9153 * `- sum over all levels
9154 *
9155 * Coupled with a limit on how many tasks we can migrate every balance pass,
9156 * this makes (5) the runtime complexity of the balancer.
9157 *
9158 * An important property here is that each CPU is still (indirectly) connected
9159 * to every other CPU in at most O(log n) steps:
9160 *
9161 * The adjacency matrix of the resulting graph is given by:
9162 *
9163 * log_2 n
9164 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9165 * k = 0
9166 *
9167 * And you'll find that:
9168 *
9169 * A^(log_2 n)_i,j != 0 for all i,j (7)
9170 *
9171 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9172 * The task movement gives a factor of O(m), giving a convergence complexity
9173 * of:
9174 *
9175 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9176 *
9177 *
9178 * WORK CONSERVING
9179 *
9180 * In order to avoid CPUs going idle while there's still work to do, new idle
9181 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9182 * tree itself instead of relying on other CPUs to bring it work.
9183 *
9184 * This adds some complexity to both (5) and (8) but it reduces the total idle
9185 * time.
9186 *
9187 * [XXX more?]
9188 *
9189 *
9190 * CGROUPS
9191 *
9192 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9193 *
9194 * s_k,i
9195 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9196 * S_k
9197 *
9198 * Where
9199 *
9200 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9201 *
9202 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9203 *
9204 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9205 * property.
9206 *
9207 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9208 * rewrite all of this once again.]
9209 */
9210
9211 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9212
9213 enum fbq_type { regular, remote, all };
9214
9215 /*
9216 * 'group_type' describes the group of CPUs at the moment of load balancing.
9217 *
9218 * The enum is ordered by pulling priority, with the group with lowest priority
9219 * first so the group_type can simply be compared when selecting the busiest
9220 * group. See update_sd_pick_busiest().
9221 */
9222 enum group_type {
9223 /* The group has spare capacity that can be used to run more tasks. */
9224 group_has_spare = 0,
9225 /*
9226 * The group is fully used and the tasks don't compete for more CPU
9227 * cycles. Nevertheless, some tasks might wait before running.
9228 */
9229 group_fully_busy,
9230 /*
9231 * One task doesn't fit with CPU's capacity and must be migrated to a
9232 * more powerful CPU.
9233 */
9234 group_misfit_task,
9235 /*
9236 * Balance SMT group that's fully busy. Can benefit from migration
9237 * a task on SMT with busy sibling to another CPU on idle core.
9238 */
9239 group_smt_balance,
9240 /*
9241 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9242 * and the task should be migrated to it instead of running on the
9243 * current CPU.
9244 */
9245 group_asym_packing,
9246 /*
9247 * The tasks' affinity constraints previously prevented the scheduler
9248 * from balancing the load across the system.
9249 */
9250 group_imbalanced,
9251 /*
9252 * The CPU is overloaded and can't provide expected CPU cycles to all
9253 * tasks.
9254 */
9255 group_overloaded
9256 };
9257
9258 enum migration_type {
9259 migrate_load = 0,
9260 migrate_util,
9261 migrate_task,
9262 migrate_misfit
9263 };
9264
9265 #define LBF_ALL_PINNED 0x01
9266 #define LBF_NEED_BREAK 0x02
9267 #define LBF_DST_PINNED 0x04
9268 #define LBF_SOME_PINNED 0x08
9269 #define LBF_ACTIVE_LB 0x10
9270
9271 struct lb_env {
9272 struct sched_domain *sd;
9273
9274 struct rq *src_rq;
9275 int src_cpu;
9276
9277 int dst_cpu;
9278 struct rq *dst_rq;
9279
9280 struct cpumask *dst_grpmask;
9281 int new_dst_cpu;
9282 enum cpu_idle_type idle;
9283 long imbalance;
9284 /* The set of CPUs under consideration for load-balancing */
9285 struct cpumask *cpus;
9286
9287 unsigned int flags;
9288
9289 unsigned int loop;
9290 unsigned int loop_break;
9291 unsigned int loop_max;
9292
9293 enum fbq_type fbq_type;
9294 enum migration_type migration_type;
9295 struct list_head tasks;
9296 };
9297
9298 /*
9299 * Is this task likely cache-hot:
9300 */
task_hot(struct task_struct * p,struct lb_env * env)9301 static int task_hot(struct task_struct *p, struct lb_env *env)
9302 {
9303 s64 delta;
9304
9305 lockdep_assert_rq_held(env->src_rq);
9306
9307 if (p->sched_class != &fair_sched_class)
9308 return 0;
9309
9310 if (unlikely(task_has_idle_policy(p)))
9311 return 0;
9312
9313 /* SMT siblings share cache */
9314 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9315 return 0;
9316
9317 /*
9318 * Buddy candidates are cache hot:
9319 */
9320 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9321 (&p->se == cfs_rq_of(&p->se)->next))
9322 return 1;
9323
9324 if (sysctl_sched_migration_cost == -1)
9325 return 1;
9326
9327 /*
9328 * Don't migrate task if the task's cookie does not match
9329 * with the destination CPU's core cookie.
9330 */
9331 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9332 return 1;
9333
9334 if (sysctl_sched_migration_cost == 0)
9335 return 0;
9336
9337 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9338
9339 return delta < (s64)sysctl_sched_migration_cost;
9340 }
9341
9342 #ifdef CONFIG_NUMA_BALANCING
9343 /*
9344 * Returns 1, if task migration degrades locality
9345 * Returns 0, if task migration improves locality i.e migration preferred.
9346 * Returns -1, if task migration is not affected by locality.
9347 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9348 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9349 {
9350 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9351 unsigned long src_weight, dst_weight;
9352 int src_nid, dst_nid, dist;
9353
9354 if (!static_branch_likely(&sched_numa_balancing))
9355 return -1;
9356
9357 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9358 return -1;
9359
9360 src_nid = cpu_to_node(env->src_cpu);
9361 dst_nid = cpu_to_node(env->dst_cpu);
9362
9363 if (src_nid == dst_nid)
9364 return -1;
9365
9366 /* Migrating away from the preferred node is always bad. */
9367 if (src_nid == p->numa_preferred_nid) {
9368 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9369 return 1;
9370 else
9371 return -1;
9372 }
9373
9374 /* Encourage migration to the preferred node. */
9375 if (dst_nid == p->numa_preferred_nid)
9376 return 0;
9377
9378 /* Leaving a core idle is often worse than degrading locality. */
9379 if (env->idle == CPU_IDLE)
9380 return -1;
9381
9382 dist = node_distance(src_nid, dst_nid);
9383 if (numa_group) {
9384 src_weight = group_weight(p, src_nid, dist);
9385 dst_weight = group_weight(p, dst_nid, dist);
9386 } else {
9387 src_weight = task_weight(p, src_nid, dist);
9388 dst_weight = task_weight(p, dst_nid, dist);
9389 }
9390
9391 return dst_weight < src_weight;
9392 }
9393
9394 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9395 static inline int migrate_degrades_locality(struct task_struct *p,
9396 struct lb_env *env)
9397 {
9398 return -1;
9399 }
9400 #endif
9401
9402 /*
9403 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9404 */
9405 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9406 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9407 {
9408 int tsk_cache_hot;
9409
9410 lockdep_assert_rq_held(env->src_rq);
9411
9412 /*
9413 * We do not migrate tasks that are:
9414 * 1) throttled_lb_pair, or
9415 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9416 * 3) running (obviously), or
9417 * 4) are cache-hot on their current CPU.
9418 */
9419 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9420 return 0;
9421
9422 /* Disregard percpu kthreads; they are where they need to be. */
9423 if (kthread_is_per_cpu(p))
9424 return 0;
9425
9426 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9427 int cpu;
9428
9429 schedstat_inc(p->stats.nr_failed_migrations_affine);
9430
9431 env->flags |= LBF_SOME_PINNED;
9432
9433 /*
9434 * Remember if this task can be migrated to any other CPU in
9435 * our sched_group. We may want to revisit it if we couldn't
9436 * meet load balance goals by pulling other tasks on src_cpu.
9437 *
9438 * Avoid computing new_dst_cpu
9439 * - for NEWLY_IDLE
9440 * - if we have already computed one in current iteration
9441 * - if it's an active balance
9442 */
9443 if (env->idle == CPU_NEWLY_IDLE ||
9444 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9445 return 0;
9446
9447 /* Prevent to re-select dst_cpu via env's CPUs: */
9448 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9449 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9450 env->flags |= LBF_DST_PINNED;
9451 env->new_dst_cpu = cpu;
9452 break;
9453 }
9454 }
9455
9456 return 0;
9457 }
9458
9459 /* Record that we found at least one task that could run on dst_cpu */
9460 env->flags &= ~LBF_ALL_PINNED;
9461
9462 if (task_on_cpu(env->src_rq, p)) {
9463 schedstat_inc(p->stats.nr_failed_migrations_running);
9464 return 0;
9465 }
9466
9467 /*
9468 * Aggressive migration if:
9469 * 1) active balance
9470 * 2) destination numa is preferred
9471 * 3) task is cache cold, or
9472 * 4) too many balance attempts have failed.
9473 */
9474 if (env->flags & LBF_ACTIVE_LB)
9475 return 1;
9476
9477 tsk_cache_hot = migrate_degrades_locality(p, env);
9478 if (tsk_cache_hot == -1)
9479 tsk_cache_hot = task_hot(p, env);
9480
9481 if (tsk_cache_hot <= 0 ||
9482 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9483 if (tsk_cache_hot == 1) {
9484 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9485 schedstat_inc(p->stats.nr_forced_migrations);
9486 }
9487 return 1;
9488 }
9489
9490 schedstat_inc(p->stats.nr_failed_migrations_hot);
9491 return 0;
9492 }
9493
9494 /*
9495 * detach_task() -- detach the task for the migration specified in env
9496 */
detach_task(struct task_struct * p,struct lb_env * env)9497 static void detach_task(struct task_struct *p, struct lb_env *env)
9498 {
9499 lockdep_assert_rq_held(env->src_rq);
9500
9501 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9502 set_task_cpu(p, env->dst_cpu);
9503 }
9504
9505 /*
9506 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9507 * part of active balancing operations within "domain".
9508 *
9509 * Returns a task if successful and NULL otherwise.
9510 */
detach_one_task(struct lb_env * env)9511 static struct task_struct *detach_one_task(struct lb_env *env)
9512 {
9513 struct task_struct *p;
9514
9515 lockdep_assert_rq_held(env->src_rq);
9516
9517 list_for_each_entry_reverse(p,
9518 &env->src_rq->cfs_tasks, se.group_node) {
9519 if (!can_migrate_task(p, env))
9520 continue;
9521
9522 detach_task(p, env);
9523
9524 /*
9525 * Right now, this is only the second place where
9526 * lb_gained[env->idle] is updated (other is detach_tasks)
9527 * so we can safely collect stats here rather than
9528 * inside detach_tasks().
9529 */
9530 schedstat_inc(env->sd->lb_gained[env->idle]);
9531 return p;
9532 }
9533 return NULL;
9534 }
9535
9536 /*
9537 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9538 * busiest_rq, as part of a balancing operation within domain "sd".
9539 *
9540 * Returns number of detached tasks if successful and 0 otherwise.
9541 */
detach_tasks(struct lb_env * env)9542 static int detach_tasks(struct lb_env *env)
9543 {
9544 struct list_head *tasks = &env->src_rq->cfs_tasks;
9545 unsigned long util, load;
9546 struct task_struct *p;
9547 int detached = 0;
9548
9549 lockdep_assert_rq_held(env->src_rq);
9550
9551 /*
9552 * Source run queue has been emptied by another CPU, clear
9553 * LBF_ALL_PINNED flag as we will not test any task.
9554 */
9555 if (env->src_rq->nr_running <= 1) {
9556 env->flags &= ~LBF_ALL_PINNED;
9557 return 0;
9558 }
9559
9560 if (env->imbalance <= 0)
9561 return 0;
9562
9563 while (!list_empty(tasks)) {
9564 /*
9565 * We don't want to steal all, otherwise we may be treated likewise,
9566 * which could at worst lead to a livelock crash.
9567 */
9568 if (env->idle && env->src_rq->nr_running <= 1)
9569 break;
9570
9571 env->loop++;
9572 /* We've more or less seen every task there is, call it quits */
9573 if (env->loop > env->loop_max)
9574 break;
9575
9576 /* take a breather every nr_migrate tasks */
9577 if (env->loop > env->loop_break) {
9578 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9579 env->flags |= LBF_NEED_BREAK;
9580 break;
9581 }
9582
9583 p = list_last_entry(tasks, struct task_struct, se.group_node);
9584
9585 if (!can_migrate_task(p, env))
9586 goto next;
9587
9588 switch (env->migration_type) {
9589 case migrate_load:
9590 /*
9591 * Depending of the number of CPUs and tasks and the
9592 * cgroup hierarchy, task_h_load() can return a null
9593 * value. Make sure that env->imbalance decreases
9594 * otherwise detach_tasks() will stop only after
9595 * detaching up to loop_max tasks.
9596 */
9597 load = max_t(unsigned long, task_h_load(p), 1);
9598
9599 if (sched_feat(LB_MIN) &&
9600 load < 16 && !env->sd->nr_balance_failed)
9601 goto next;
9602
9603 /*
9604 * Make sure that we don't migrate too much load.
9605 * Nevertheless, let relax the constraint if
9606 * scheduler fails to find a good waiting task to
9607 * migrate.
9608 */
9609 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9610 goto next;
9611
9612 env->imbalance -= load;
9613 break;
9614
9615 case migrate_util:
9616 util = task_util_est(p);
9617
9618 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9619 goto next;
9620
9621 env->imbalance -= util;
9622 break;
9623
9624 case migrate_task:
9625 env->imbalance--;
9626 break;
9627
9628 case migrate_misfit:
9629 /* This is not a misfit task */
9630 if (task_fits_cpu(p, env->src_cpu))
9631 goto next;
9632
9633 env->imbalance = 0;
9634 break;
9635 }
9636
9637 detach_task(p, env);
9638 list_add(&p->se.group_node, &env->tasks);
9639
9640 detached++;
9641
9642 #ifdef CONFIG_PREEMPTION
9643 /*
9644 * NEWIDLE balancing is a source of latency, so preemptible
9645 * kernels will stop after the first task is detached to minimize
9646 * the critical section.
9647 */
9648 if (env->idle == CPU_NEWLY_IDLE)
9649 break;
9650 #endif
9651
9652 /*
9653 * We only want to steal up to the prescribed amount of
9654 * load/util/tasks.
9655 */
9656 if (env->imbalance <= 0)
9657 break;
9658
9659 continue;
9660 next:
9661 list_move(&p->se.group_node, tasks);
9662 }
9663
9664 /*
9665 * Right now, this is one of only two places we collect this stat
9666 * so we can safely collect detach_one_task() stats here rather
9667 * than inside detach_one_task().
9668 */
9669 schedstat_add(env->sd->lb_gained[env->idle], detached);
9670
9671 return detached;
9672 }
9673
9674 /*
9675 * attach_task() -- attach the task detached by detach_task() to its new rq.
9676 */
attach_task(struct rq * rq,struct task_struct * p)9677 static void attach_task(struct rq *rq, struct task_struct *p)
9678 {
9679 lockdep_assert_rq_held(rq);
9680
9681 WARN_ON_ONCE(task_rq(p) != rq);
9682 activate_task(rq, p, ENQUEUE_NOCLOCK);
9683 wakeup_preempt(rq, p, 0);
9684 }
9685
9686 /*
9687 * attach_one_task() -- attaches the task returned from detach_one_task() to
9688 * its new rq.
9689 */
attach_one_task(struct rq * rq,struct task_struct * p)9690 static void attach_one_task(struct rq *rq, struct task_struct *p)
9691 {
9692 struct rq_flags rf;
9693
9694 rq_lock(rq, &rf);
9695 update_rq_clock(rq);
9696 attach_task(rq, p);
9697 rq_unlock(rq, &rf);
9698 }
9699
9700 /*
9701 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9702 * new rq.
9703 */
attach_tasks(struct lb_env * env)9704 static void attach_tasks(struct lb_env *env)
9705 {
9706 struct list_head *tasks = &env->tasks;
9707 struct task_struct *p;
9708 struct rq_flags rf;
9709
9710 rq_lock(env->dst_rq, &rf);
9711 update_rq_clock(env->dst_rq);
9712
9713 while (!list_empty(tasks)) {
9714 p = list_first_entry(tasks, struct task_struct, se.group_node);
9715 list_del_init(&p->se.group_node);
9716
9717 attach_task(env->dst_rq, p);
9718 }
9719
9720 rq_unlock(env->dst_rq, &rf);
9721 }
9722
9723 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9724 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9725 {
9726 if (cfs_rq->avg.load_avg)
9727 return true;
9728
9729 if (cfs_rq->avg.util_avg)
9730 return true;
9731
9732 return false;
9733 }
9734
others_have_blocked(struct rq * rq)9735 static inline bool others_have_blocked(struct rq *rq)
9736 {
9737 if (cpu_util_rt(rq))
9738 return true;
9739
9740 if (cpu_util_dl(rq))
9741 return true;
9742
9743 if (hw_load_avg(rq))
9744 return true;
9745
9746 if (cpu_util_irq(rq))
9747 return true;
9748
9749 return false;
9750 }
9751
update_blocked_load_tick(struct rq * rq)9752 static inline void update_blocked_load_tick(struct rq *rq)
9753 {
9754 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9755 }
9756
update_blocked_load_status(struct rq * rq,bool has_blocked)9757 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9758 {
9759 if (!has_blocked)
9760 rq->has_blocked_load = 0;
9761 }
9762 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9763 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9764 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9765 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9766 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9767 #endif
9768
__update_blocked_others(struct rq * rq,bool * done)9769 static bool __update_blocked_others(struct rq *rq, bool *done)
9770 {
9771 bool updated;
9772
9773 /*
9774 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9775 * DL and IRQ signals have been updated before updating CFS.
9776 */
9777 updated = update_other_load_avgs(rq);
9778
9779 if (others_have_blocked(rq))
9780 *done = false;
9781
9782 return updated;
9783 }
9784
9785 #ifdef CONFIG_FAIR_GROUP_SCHED
9786
__update_blocked_fair(struct rq * rq,bool * done)9787 static bool __update_blocked_fair(struct rq *rq, bool *done)
9788 {
9789 struct cfs_rq *cfs_rq, *pos;
9790 bool decayed = false;
9791 int cpu = cpu_of(rq);
9792
9793 /*
9794 * Iterates the task_group tree in a bottom up fashion, see
9795 * list_add_leaf_cfs_rq() for details.
9796 */
9797 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9798 struct sched_entity *se;
9799
9800 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9801 update_tg_load_avg(cfs_rq);
9802
9803 if (cfs_rq->nr_running == 0)
9804 update_idle_cfs_rq_clock_pelt(cfs_rq);
9805
9806 if (cfs_rq == &rq->cfs)
9807 decayed = true;
9808 }
9809
9810 /* Propagate pending load changes to the parent, if any: */
9811 se = cfs_rq->tg->se[cpu];
9812 if (se && !skip_blocked_update(se))
9813 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9814
9815 /*
9816 * There can be a lot of idle CPU cgroups. Don't let fully
9817 * decayed cfs_rqs linger on the list.
9818 */
9819 if (cfs_rq_is_decayed(cfs_rq))
9820 list_del_leaf_cfs_rq(cfs_rq);
9821
9822 /* Don't need periodic decay once load/util_avg are null */
9823 if (cfs_rq_has_blocked(cfs_rq))
9824 *done = false;
9825 }
9826
9827 return decayed;
9828 }
9829
9830 /*
9831 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9832 * This needs to be done in a top-down fashion because the load of a child
9833 * group is a fraction of its parents load.
9834 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9835 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9836 {
9837 struct rq *rq = rq_of(cfs_rq);
9838 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9839 unsigned long now = jiffies;
9840 unsigned long load;
9841
9842 if (cfs_rq->last_h_load_update == now)
9843 return;
9844
9845 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9846 for_each_sched_entity(se) {
9847 cfs_rq = cfs_rq_of(se);
9848 WRITE_ONCE(cfs_rq->h_load_next, se);
9849 if (cfs_rq->last_h_load_update == now)
9850 break;
9851 }
9852
9853 if (!se) {
9854 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9855 cfs_rq->last_h_load_update = now;
9856 }
9857
9858 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9859 load = cfs_rq->h_load;
9860 load = div64_ul(load * se->avg.load_avg,
9861 cfs_rq_load_avg(cfs_rq) + 1);
9862 cfs_rq = group_cfs_rq(se);
9863 cfs_rq->h_load = load;
9864 cfs_rq->last_h_load_update = now;
9865 }
9866 }
9867
task_h_load(struct task_struct * p)9868 static unsigned long task_h_load(struct task_struct *p)
9869 {
9870 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9871
9872 update_cfs_rq_h_load(cfs_rq);
9873 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9874 cfs_rq_load_avg(cfs_rq) + 1);
9875 }
9876 #else
__update_blocked_fair(struct rq * rq,bool * done)9877 static bool __update_blocked_fair(struct rq *rq, bool *done)
9878 {
9879 struct cfs_rq *cfs_rq = &rq->cfs;
9880 bool decayed;
9881
9882 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9883 if (cfs_rq_has_blocked(cfs_rq))
9884 *done = false;
9885
9886 return decayed;
9887 }
9888
task_h_load(struct task_struct * p)9889 static unsigned long task_h_load(struct task_struct *p)
9890 {
9891 return p->se.avg.load_avg;
9892 }
9893 #endif
9894
sched_balance_update_blocked_averages(int cpu)9895 static void sched_balance_update_blocked_averages(int cpu)
9896 {
9897 bool decayed = false, done = true;
9898 struct rq *rq = cpu_rq(cpu);
9899 struct rq_flags rf;
9900
9901 rq_lock_irqsave(rq, &rf);
9902 update_blocked_load_tick(rq);
9903 update_rq_clock(rq);
9904
9905 decayed |= __update_blocked_others(rq, &done);
9906 decayed |= __update_blocked_fair(rq, &done);
9907
9908 update_blocked_load_status(rq, !done);
9909 if (decayed)
9910 cpufreq_update_util(rq, 0);
9911 rq_unlock_irqrestore(rq, &rf);
9912 }
9913
9914 /********** Helpers for sched_balance_find_src_group ************************/
9915
9916 /*
9917 * sg_lb_stats - stats of a sched_group required for load-balancing:
9918 */
9919 struct sg_lb_stats {
9920 unsigned long avg_load; /* Avg load over the CPUs of the group */
9921 unsigned long group_load; /* Total load over the CPUs of the group */
9922 unsigned long group_capacity; /* Capacity over the CPUs of the group */
9923 unsigned long group_util; /* Total utilization over the CPUs of the group */
9924 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9925 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
9926 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9927 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
9928 unsigned int group_weight;
9929 enum group_type group_type;
9930 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9931 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9932 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9933 #ifdef CONFIG_NUMA_BALANCING
9934 unsigned int nr_numa_running;
9935 unsigned int nr_preferred_running;
9936 #endif
9937 };
9938
9939 /*
9940 * sd_lb_stats - stats of a sched_domain required for load-balancing:
9941 */
9942 struct sd_lb_stats {
9943 struct sched_group *busiest; /* Busiest group in this sd */
9944 struct sched_group *local; /* Local group in this sd */
9945 unsigned long total_load; /* Total load of all groups in sd */
9946 unsigned long total_capacity; /* Total capacity of all groups in sd */
9947 unsigned long avg_load; /* Average load across all groups in sd */
9948 unsigned int prefer_sibling; /* Tasks should go to sibling first */
9949
9950 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
9951 struct sg_lb_stats local_stat; /* Statistics of the local group */
9952 };
9953
init_sd_lb_stats(struct sd_lb_stats * sds)9954 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9955 {
9956 /*
9957 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9958 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9959 * We must however set busiest_stat::group_type and
9960 * busiest_stat::idle_cpus to the worst busiest group because
9961 * update_sd_pick_busiest() reads these before assignment.
9962 */
9963 *sds = (struct sd_lb_stats){
9964 .busiest = NULL,
9965 .local = NULL,
9966 .total_load = 0UL,
9967 .total_capacity = 0UL,
9968 .busiest_stat = {
9969 .idle_cpus = UINT_MAX,
9970 .group_type = group_has_spare,
9971 },
9972 };
9973 }
9974
scale_rt_capacity(int cpu)9975 static unsigned long scale_rt_capacity(int cpu)
9976 {
9977 unsigned long max = get_actual_cpu_capacity(cpu);
9978 struct rq *rq = cpu_rq(cpu);
9979 unsigned long used, free;
9980 unsigned long irq;
9981
9982 irq = cpu_util_irq(rq);
9983
9984 if (unlikely(irq >= max))
9985 return 1;
9986
9987 /*
9988 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9989 * (running and not running) with weights 0 and 1024 respectively.
9990 */
9991 used = cpu_util_rt(rq);
9992 used += cpu_util_dl(rq);
9993
9994 if (unlikely(used >= max))
9995 return 1;
9996
9997 free = max - used;
9998
9999 return scale_irq_capacity(free, irq, max);
10000 }
10001
update_cpu_capacity(struct sched_domain * sd,int cpu)10002 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10003 {
10004 unsigned long capacity = scale_rt_capacity(cpu);
10005 struct sched_group *sdg = sd->groups;
10006
10007 if (!capacity)
10008 capacity = 1;
10009
10010 cpu_rq(cpu)->cpu_capacity = capacity;
10011 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10012
10013 sdg->sgc->capacity = capacity;
10014 sdg->sgc->min_capacity = capacity;
10015 sdg->sgc->max_capacity = capacity;
10016 }
10017
update_group_capacity(struct sched_domain * sd,int cpu)10018 void update_group_capacity(struct sched_domain *sd, int cpu)
10019 {
10020 struct sched_domain *child = sd->child;
10021 struct sched_group *group, *sdg = sd->groups;
10022 unsigned long capacity, min_capacity, max_capacity;
10023 unsigned long interval;
10024
10025 interval = msecs_to_jiffies(sd->balance_interval);
10026 interval = clamp(interval, 1UL, max_load_balance_interval);
10027 sdg->sgc->next_update = jiffies + interval;
10028
10029 if (!child) {
10030 update_cpu_capacity(sd, cpu);
10031 return;
10032 }
10033
10034 capacity = 0;
10035 min_capacity = ULONG_MAX;
10036 max_capacity = 0;
10037
10038 if (child->flags & SD_OVERLAP) {
10039 /*
10040 * SD_OVERLAP domains cannot assume that child groups
10041 * span the current group.
10042 */
10043
10044 for_each_cpu(cpu, sched_group_span(sdg)) {
10045 unsigned long cpu_cap = capacity_of(cpu);
10046
10047 capacity += cpu_cap;
10048 min_capacity = min(cpu_cap, min_capacity);
10049 max_capacity = max(cpu_cap, max_capacity);
10050 }
10051 } else {
10052 /*
10053 * !SD_OVERLAP domains can assume that child groups
10054 * span the current group.
10055 */
10056
10057 group = child->groups;
10058 do {
10059 struct sched_group_capacity *sgc = group->sgc;
10060
10061 capacity += sgc->capacity;
10062 min_capacity = min(sgc->min_capacity, min_capacity);
10063 max_capacity = max(sgc->max_capacity, max_capacity);
10064 group = group->next;
10065 } while (group != child->groups);
10066 }
10067
10068 sdg->sgc->capacity = capacity;
10069 sdg->sgc->min_capacity = min_capacity;
10070 sdg->sgc->max_capacity = max_capacity;
10071 }
10072
10073 /*
10074 * Check whether the capacity of the rq has been noticeably reduced by side
10075 * activity. The imbalance_pct is used for the threshold.
10076 * Return true is the capacity is reduced
10077 */
10078 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10079 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10080 {
10081 return ((rq->cpu_capacity * sd->imbalance_pct) <
10082 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10083 }
10084
10085 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10086 static inline bool check_misfit_status(struct rq *rq)
10087 {
10088 return rq->misfit_task_load;
10089 }
10090
10091 /*
10092 * Group imbalance indicates (and tries to solve) the problem where balancing
10093 * groups is inadequate due to ->cpus_ptr constraints.
10094 *
10095 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10096 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10097 * Something like:
10098 *
10099 * { 0 1 2 3 } { 4 5 6 7 }
10100 * * * * *
10101 *
10102 * If we were to balance group-wise we'd place two tasks in the first group and
10103 * two tasks in the second group. Clearly this is undesired as it will overload
10104 * cpu 3 and leave one of the CPUs in the second group unused.
10105 *
10106 * The current solution to this issue is detecting the skew in the first group
10107 * by noticing the lower domain failed to reach balance and had difficulty
10108 * moving tasks due to affinity constraints.
10109 *
10110 * When this is so detected; this group becomes a candidate for busiest; see
10111 * update_sd_pick_busiest(). And calculate_imbalance() and
10112 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10113 * to create an effective group imbalance.
10114 *
10115 * This is a somewhat tricky proposition since the next run might not find the
10116 * group imbalance and decide the groups need to be balanced again. A most
10117 * subtle and fragile situation.
10118 */
10119
sg_imbalanced(struct sched_group * group)10120 static inline int sg_imbalanced(struct sched_group *group)
10121 {
10122 return group->sgc->imbalance;
10123 }
10124
10125 /*
10126 * group_has_capacity returns true if the group has spare capacity that could
10127 * be used by some tasks.
10128 * We consider that a group has spare capacity if the number of task is
10129 * smaller than the number of CPUs or if the utilization is lower than the
10130 * available capacity for CFS tasks.
10131 * For the latter, we use a threshold to stabilize the state, to take into
10132 * account the variance of the tasks' load and to return true if the available
10133 * capacity in meaningful for the load balancer.
10134 * As an example, an available capacity of 1% can appear but it doesn't make
10135 * any benefit for the load balance.
10136 */
10137 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10138 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10139 {
10140 if (sgs->sum_nr_running < sgs->group_weight)
10141 return true;
10142
10143 if ((sgs->group_capacity * imbalance_pct) <
10144 (sgs->group_runnable * 100))
10145 return false;
10146
10147 if ((sgs->group_capacity * 100) >
10148 (sgs->group_util * imbalance_pct))
10149 return true;
10150
10151 return false;
10152 }
10153
10154 /*
10155 * group_is_overloaded returns true if the group has more tasks than it can
10156 * handle.
10157 * group_is_overloaded is not equals to !group_has_capacity because a group
10158 * with the exact right number of tasks, has no more spare capacity but is not
10159 * overloaded so both group_has_capacity and group_is_overloaded return
10160 * false.
10161 */
10162 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10163 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10164 {
10165 if (sgs->sum_nr_running <= sgs->group_weight)
10166 return false;
10167
10168 if ((sgs->group_capacity * 100) <
10169 (sgs->group_util * imbalance_pct))
10170 return true;
10171
10172 if ((sgs->group_capacity * imbalance_pct) <
10173 (sgs->group_runnable * 100))
10174 return true;
10175
10176 return false;
10177 }
10178
10179 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10180 group_type group_classify(unsigned int imbalance_pct,
10181 struct sched_group *group,
10182 struct sg_lb_stats *sgs)
10183 {
10184 if (group_is_overloaded(imbalance_pct, sgs))
10185 return group_overloaded;
10186
10187 if (sg_imbalanced(group))
10188 return group_imbalanced;
10189
10190 if (sgs->group_asym_packing)
10191 return group_asym_packing;
10192
10193 if (sgs->group_smt_balance)
10194 return group_smt_balance;
10195
10196 if (sgs->group_misfit_task_load)
10197 return group_misfit_task;
10198
10199 if (!group_has_capacity(imbalance_pct, sgs))
10200 return group_fully_busy;
10201
10202 return group_has_spare;
10203 }
10204
10205 /**
10206 * sched_use_asym_prio - Check whether asym_packing priority must be used
10207 * @sd: The scheduling domain of the load balancing
10208 * @cpu: A CPU
10209 *
10210 * Always use CPU priority when balancing load between SMT siblings. When
10211 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10212 * use CPU priority if the whole core is idle.
10213 *
10214 * Returns: True if the priority of @cpu must be followed. False otherwise.
10215 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10216 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10217 {
10218 if (!(sd->flags & SD_ASYM_PACKING))
10219 return false;
10220
10221 if (!sched_smt_active())
10222 return true;
10223
10224 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10225 }
10226
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10227 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10228 {
10229 /*
10230 * First check if @dst_cpu can do asym_packing load balance. Only do it
10231 * if it has higher priority than @src_cpu.
10232 */
10233 return sched_use_asym_prio(sd, dst_cpu) &&
10234 sched_asym_prefer(dst_cpu, src_cpu);
10235 }
10236
10237 /**
10238 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10239 * @env: The load balancing environment
10240 * @sgs: Load-balancing statistics of the candidate busiest group
10241 * @group: The candidate busiest group
10242 *
10243 * @env::dst_cpu can do asym_packing if it has higher priority than the
10244 * preferred CPU of @group.
10245 *
10246 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10247 * otherwise.
10248 */
10249 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10250 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10251 {
10252 /*
10253 * CPU priorities do not make sense for SMT cores with more than one
10254 * busy sibling.
10255 */
10256 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10257 (sgs->group_weight - sgs->idle_cpus != 1))
10258 return false;
10259
10260 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10261 }
10262
10263 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10264 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10265 struct sched_group *sg2)
10266 {
10267 if (!sg1 || !sg2)
10268 return false;
10269
10270 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10271 (sg2->flags & SD_SHARE_CPUCAPACITY);
10272 }
10273
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10274 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10275 struct sched_group *group)
10276 {
10277 if (!env->idle)
10278 return false;
10279
10280 /*
10281 * For SMT source group, it is better to move a task
10282 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10283 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10284 * will not be on.
10285 */
10286 if (group->flags & SD_SHARE_CPUCAPACITY &&
10287 sgs->sum_h_nr_running > 1)
10288 return true;
10289
10290 return false;
10291 }
10292
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10293 static inline long sibling_imbalance(struct lb_env *env,
10294 struct sd_lb_stats *sds,
10295 struct sg_lb_stats *busiest,
10296 struct sg_lb_stats *local)
10297 {
10298 int ncores_busiest, ncores_local;
10299 long imbalance;
10300
10301 if (!env->idle || !busiest->sum_nr_running)
10302 return 0;
10303
10304 ncores_busiest = sds->busiest->cores;
10305 ncores_local = sds->local->cores;
10306
10307 if (ncores_busiest == ncores_local) {
10308 imbalance = busiest->sum_nr_running;
10309 lsub_positive(&imbalance, local->sum_nr_running);
10310 return imbalance;
10311 }
10312
10313 /* Balance such that nr_running/ncores ratio are same on both groups */
10314 imbalance = ncores_local * busiest->sum_nr_running;
10315 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10316 /* Normalize imbalance and do rounding on normalization */
10317 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10318 imbalance /= ncores_local + ncores_busiest;
10319
10320 /* Take advantage of resource in an empty sched group */
10321 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10322 busiest->sum_nr_running > 1)
10323 imbalance = 2;
10324
10325 return imbalance;
10326 }
10327
10328 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10329 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10330 {
10331 /*
10332 * When there is more than 1 task, the group_overloaded case already
10333 * takes care of cpu with reduced capacity
10334 */
10335 if (rq->cfs.h_nr_running != 1)
10336 return false;
10337
10338 return check_cpu_capacity(rq, sd);
10339 }
10340
10341 /**
10342 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10343 * @env: The load balancing environment.
10344 * @sds: Load-balancing data with statistics of the local group.
10345 * @group: sched_group whose statistics are to be updated.
10346 * @sgs: variable to hold the statistics for this group.
10347 * @sg_overloaded: sched_group is overloaded
10348 * @sg_overutilized: sched_group is overutilized
10349 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10350 static inline void update_sg_lb_stats(struct lb_env *env,
10351 struct sd_lb_stats *sds,
10352 struct sched_group *group,
10353 struct sg_lb_stats *sgs,
10354 bool *sg_overloaded,
10355 bool *sg_overutilized)
10356 {
10357 int i, nr_running, local_group;
10358
10359 memset(sgs, 0, sizeof(*sgs));
10360
10361 local_group = group == sds->local;
10362
10363 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10364 struct rq *rq = cpu_rq(i);
10365 unsigned long load = cpu_load(rq);
10366
10367 sgs->group_load += load;
10368 sgs->group_util += cpu_util_cfs(i);
10369 sgs->group_runnable += cpu_runnable(rq);
10370 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10371
10372 nr_running = rq->nr_running;
10373 sgs->sum_nr_running += nr_running;
10374
10375 if (nr_running > 1)
10376 *sg_overloaded = 1;
10377
10378 if (cpu_overutilized(i))
10379 *sg_overutilized = 1;
10380
10381 #ifdef CONFIG_NUMA_BALANCING
10382 sgs->nr_numa_running += rq->nr_numa_running;
10383 sgs->nr_preferred_running += rq->nr_preferred_running;
10384 #endif
10385 /*
10386 * No need to call idle_cpu() if nr_running is not 0
10387 */
10388 if (!nr_running && idle_cpu(i)) {
10389 sgs->idle_cpus++;
10390 /* Idle cpu can't have misfit task */
10391 continue;
10392 }
10393
10394 if (local_group)
10395 continue;
10396
10397 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10398 /* Check for a misfit task on the cpu */
10399 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10400 sgs->group_misfit_task_load = rq->misfit_task_load;
10401 *sg_overloaded = 1;
10402 }
10403 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10404 /* Check for a task running on a CPU with reduced capacity */
10405 if (sgs->group_misfit_task_load < load)
10406 sgs->group_misfit_task_load = load;
10407 }
10408 }
10409
10410 sgs->group_capacity = group->sgc->capacity;
10411
10412 sgs->group_weight = group->group_weight;
10413
10414 /* Check if dst CPU is idle and preferred to this group */
10415 if (!local_group && env->idle && sgs->sum_h_nr_running &&
10416 sched_group_asym(env, sgs, group))
10417 sgs->group_asym_packing = 1;
10418
10419 /* Check for loaded SMT group to be balanced to dst CPU */
10420 if (!local_group && smt_balance(env, sgs, group))
10421 sgs->group_smt_balance = 1;
10422
10423 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10424
10425 /* Computing avg_load makes sense only when group is overloaded */
10426 if (sgs->group_type == group_overloaded)
10427 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10428 sgs->group_capacity;
10429 }
10430
10431 /**
10432 * update_sd_pick_busiest - return 1 on busiest group
10433 * @env: The load balancing environment.
10434 * @sds: sched_domain statistics
10435 * @sg: sched_group candidate to be checked for being the busiest
10436 * @sgs: sched_group statistics
10437 *
10438 * Determine if @sg is a busier group than the previously selected
10439 * busiest group.
10440 *
10441 * Return: %true if @sg is a busier group than the previously selected
10442 * busiest group. %false otherwise.
10443 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10444 static bool update_sd_pick_busiest(struct lb_env *env,
10445 struct sd_lb_stats *sds,
10446 struct sched_group *sg,
10447 struct sg_lb_stats *sgs)
10448 {
10449 struct sg_lb_stats *busiest = &sds->busiest_stat;
10450
10451 /* Make sure that there is at least one task to pull */
10452 if (!sgs->sum_h_nr_running)
10453 return false;
10454
10455 /*
10456 * Don't try to pull misfit tasks we can't help.
10457 * We can use max_capacity here as reduction in capacity on some
10458 * CPUs in the group should either be possible to resolve
10459 * internally or be covered by avg_load imbalance (eventually).
10460 */
10461 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10462 (sgs->group_type == group_misfit_task) &&
10463 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10464 sds->local_stat.group_type != group_has_spare))
10465 return false;
10466
10467 if (sgs->group_type > busiest->group_type)
10468 return true;
10469
10470 if (sgs->group_type < busiest->group_type)
10471 return false;
10472
10473 /*
10474 * The candidate and the current busiest group are the same type of
10475 * group. Let check which one is the busiest according to the type.
10476 */
10477
10478 switch (sgs->group_type) {
10479 case group_overloaded:
10480 /* Select the overloaded group with highest avg_load. */
10481 return sgs->avg_load > busiest->avg_load;
10482
10483 case group_imbalanced:
10484 /*
10485 * Select the 1st imbalanced group as we don't have any way to
10486 * choose one more than another.
10487 */
10488 return false;
10489
10490 case group_asym_packing:
10491 /* Prefer to move from lowest priority CPU's work */
10492 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10493
10494 case group_misfit_task:
10495 /*
10496 * If we have more than one misfit sg go with the biggest
10497 * misfit.
10498 */
10499 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10500
10501 case group_smt_balance:
10502 /*
10503 * Check if we have spare CPUs on either SMT group to
10504 * choose has spare or fully busy handling.
10505 */
10506 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10507 goto has_spare;
10508
10509 fallthrough;
10510
10511 case group_fully_busy:
10512 /*
10513 * Select the fully busy group with highest avg_load. In
10514 * theory, there is no need to pull task from such kind of
10515 * group because tasks have all compute capacity that they need
10516 * but we can still improve the overall throughput by reducing
10517 * contention when accessing shared HW resources.
10518 *
10519 * XXX for now avg_load is not computed and always 0 so we
10520 * select the 1st one, except if @sg is composed of SMT
10521 * siblings.
10522 */
10523
10524 if (sgs->avg_load < busiest->avg_load)
10525 return false;
10526
10527 if (sgs->avg_load == busiest->avg_load) {
10528 /*
10529 * SMT sched groups need more help than non-SMT groups.
10530 * If @sg happens to also be SMT, either choice is good.
10531 */
10532 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10533 return false;
10534 }
10535
10536 break;
10537
10538 case group_has_spare:
10539 /*
10540 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10541 * as we do not want to pull task off SMT core with one task
10542 * and make the core idle.
10543 */
10544 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10545 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10546 return false;
10547 else
10548 return true;
10549 }
10550 has_spare:
10551
10552 /*
10553 * Select not overloaded group with lowest number of idle CPUs
10554 * and highest number of running tasks. We could also compare
10555 * the spare capacity which is more stable but it can end up
10556 * that the group has less spare capacity but finally more idle
10557 * CPUs which means less opportunity to pull tasks.
10558 */
10559 if (sgs->idle_cpus > busiest->idle_cpus)
10560 return false;
10561 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10562 (sgs->sum_nr_running <= busiest->sum_nr_running))
10563 return false;
10564
10565 break;
10566 }
10567
10568 /*
10569 * Candidate sg has no more than one task per CPU and has higher
10570 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10571 * throughput. Maximize throughput, power/energy consequences are not
10572 * considered.
10573 */
10574 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10575 (sgs->group_type <= group_fully_busy) &&
10576 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10577 return false;
10578
10579 return true;
10580 }
10581
10582 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10583 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10584 {
10585 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10586 return regular;
10587 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10588 return remote;
10589 return all;
10590 }
10591
fbq_classify_rq(struct rq * rq)10592 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10593 {
10594 if (rq->nr_running > rq->nr_numa_running)
10595 return regular;
10596 if (rq->nr_running > rq->nr_preferred_running)
10597 return remote;
10598 return all;
10599 }
10600 #else
fbq_classify_group(struct sg_lb_stats * sgs)10601 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10602 {
10603 return all;
10604 }
10605
fbq_classify_rq(struct rq * rq)10606 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10607 {
10608 return regular;
10609 }
10610 #endif /* CONFIG_NUMA_BALANCING */
10611
10612
10613 struct sg_lb_stats;
10614
10615 /*
10616 * task_running_on_cpu - return 1 if @p is running on @cpu.
10617 */
10618
task_running_on_cpu(int cpu,struct task_struct * p)10619 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10620 {
10621 /* Task has no contribution or is new */
10622 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10623 return 0;
10624
10625 if (task_on_rq_queued(p))
10626 return 1;
10627
10628 return 0;
10629 }
10630
10631 /**
10632 * idle_cpu_without - would a given CPU be idle without p ?
10633 * @cpu: the processor on which idleness is tested.
10634 * @p: task which should be ignored.
10635 *
10636 * Return: 1 if the CPU would be idle. 0 otherwise.
10637 */
idle_cpu_without(int cpu,struct task_struct * p)10638 static int idle_cpu_without(int cpu, struct task_struct *p)
10639 {
10640 struct rq *rq = cpu_rq(cpu);
10641
10642 if (rq->curr != rq->idle && rq->curr != p)
10643 return 0;
10644
10645 /*
10646 * rq->nr_running can't be used but an updated version without the
10647 * impact of p on cpu must be used instead. The updated nr_running
10648 * be computed and tested before calling idle_cpu_without().
10649 */
10650
10651 if (rq->ttwu_pending)
10652 return 0;
10653
10654 return 1;
10655 }
10656
10657 /*
10658 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10659 * @sd: The sched_domain level to look for idlest group.
10660 * @group: sched_group whose statistics are to be updated.
10661 * @sgs: variable to hold the statistics for this group.
10662 * @p: The task for which we look for the idlest group/CPU.
10663 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10664 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10665 struct sched_group *group,
10666 struct sg_lb_stats *sgs,
10667 struct task_struct *p)
10668 {
10669 int i, nr_running;
10670
10671 memset(sgs, 0, sizeof(*sgs));
10672
10673 /* Assume that task can't fit any CPU of the group */
10674 if (sd->flags & SD_ASYM_CPUCAPACITY)
10675 sgs->group_misfit_task_load = 1;
10676
10677 for_each_cpu(i, sched_group_span(group)) {
10678 struct rq *rq = cpu_rq(i);
10679 unsigned int local;
10680
10681 sgs->group_load += cpu_load_without(rq, p);
10682 sgs->group_util += cpu_util_without(i, p);
10683 sgs->group_runnable += cpu_runnable_without(rq, p);
10684 local = task_running_on_cpu(i, p);
10685 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10686
10687 nr_running = rq->nr_running - local;
10688 sgs->sum_nr_running += nr_running;
10689
10690 /*
10691 * No need to call idle_cpu_without() if nr_running is not 0
10692 */
10693 if (!nr_running && idle_cpu_without(i, p))
10694 sgs->idle_cpus++;
10695
10696 /* Check if task fits in the CPU */
10697 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10698 sgs->group_misfit_task_load &&
10699 task_fits_cpu(p, i))
10700 sgs->group_misfit_task_load = 0;
10701
10702 }
10703
10704 sgs->group_capacity = group->sgc->capacity;
10705
10706 sgs->group_weight = group->group_weight;
10707
10708 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10709
10710 /*
10711 * Computing avg_load makes sense only when group is fully busy or
10712 * overloaded
10713 */
10714 if (sgs->group_type == group_fully_busy ||
10715 sgs->group_type == group_overloaded)
10716 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10717 sgs->group_capacity;
10718 }
10719
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10720 static bool update_pick_idlest(struct sched_group *idlest,
10721 struct sg_lb_stats *idlest_sgs,
10722 struct sched_group *group,
10723 struct sg_lb_stats *sgs)
10724 {
10725 if (sgs->group_type < idlest_sgs->group_type)
10726 return true;
10727
10728 if (sgs->group_type > idlest_sgs->group_type)
10729 return false;
10730
10731 /*
10732 * The candidate and the current idlest group are the same type of
10733 * group. Let check which one is the idlest according to the type.
10734 */
10735
10736 switch (sgs->group_type) {
10737 case group_overloaded:
10738 case group_fully_busy:
10739 /* Select the group with lowest avg_load. */
10740 if (idlest_sgs->avg_load <= sgs->avg_load)
10741 return false;
10742 break;
10743
10744 case group_imbalanced:
10745 case group_asym_packing:
10746 case group_smt_balance:
10747 /* Those types are not used in the slow wakeup path */
10748 return false;
10749
10750 case group_misfit_task:
10751 /* Select group with the highest max capacity */
10752 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10753 return false;
10754 break;
10755
10756 case group_has_spare:
10757 /* Select group with most idle CPUs */
10758 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10759 return false;
10760
10761 /* Select group with lowest group_util */
10762 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10763 idlest_sgs->group_util <= sgs->group_util)
10764 return false;
10765
10766 break;
10767 }
10768
10769 return true;
10770 }
10771
10772 /*
10773 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10774 * domain.
10775 *
10776 * Assumes p is allowed on at least one CPU in sd.
10777 */
10778 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10779 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10780 {
10781 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10782 struct sg_lb_stats local_sgs, tmp_sgs;
10783 struct sg_lb_stats *sgs;
10784 unsigned long imbalance;
10785 struct sg_lb_stats idlest_sgs = {
10786 .avg_load = UINT_MAX,
10787 .group_type = group_overloaded,
10788 };
10789
10790 do {
10791 int local_group;
10792
10793 /* Skip over this group if it has no CPUs allowed */
10794 if (!cpumask_intersects(sched_group_span(group),
10795 p->cpus_ptr))
10796 continue;
10797
10798 /* Skip over this group if no cookie matched */
10799 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10800 continue;
10801
10802 local_group = cpumask_test_cpu(this_cpu,
10803 sched_group_span(group));
10804
10805 if (local_group) {
10806 sgs = &local_sgs;
10807 local = group;
10808 } else {
10809 sgs = &tmp_sgs;
10810 }
10811
10812 update_sg_wakeup_stats(sd, group, sgs, p);
10813
10814 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10815 idlest = group;
10816 idlest_sgs = *sgs;
10817 }
10818
10819 } while (group = group->next, group != sd->groups);
10820
10821
10822 /* There is no idlest group to push tasks to */
10823 if (!idlest)
10824 return NULL;
10825
10826 /* The local group has been skipped because of CPU affinity */
10827 if (!local)
10828 return idlest;
10829
10830 /*
10831 * If the local group is idler than the selected idlest group
10832 * don't try and push the task.
10833 */
10834 if (local_sgs.group_type < idlest_sgs.group_type)
10835 return NULL;
10836
10837 /*
10838 * If the local group is busier than the selected idlest group
10839 * try and push the task.
10840 */
10841 if (local_sgs.group_type > idlest_sgs.group_type)
10842 return idlest;
10843
10844 switch (local_sgs.group_type) {
10845 case group_overloaded:
10846 case group_fully_busy:
10847
10848 /* Calculate allowed imbalance based on load */
10849 imbalance = scale_load_down(NICE_0_LOAD) *
10850 (sd->imbalance_pct-100) / 100;
10851
10852 /*
10853 * When comparing groups across NUMA domains, it's possible for
10854 * the local domain to be very lightly loaded relative to the
10855 * remote domains but "imbalance" skews the comparison making
10856 * remote CPUs look much more favourable. When considering
10857 * cross-domain, add imbalance to the load on the remote node
10858 * and consider staying local.
10859 */
10860
10861 if ((sd->flags & SD_NUMA) &&
10862 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10863 return NULL;
10864
10865 /*
10866 * If the local group is less loaded than the selected
10867 * idlest group don't try and push any tasks.
10868 */
10869 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10870 return NULL;
10871
10872 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10873 return NULL;
10874 break;
10875
10876 case group_imbalanced:
10877 case group_asym_packing:
10878 case group_smt_balance:
10879 /* Those type are not used in the slow wakeup path */
10880 return NULL;
10881
10882 case group_misfit_task:
10883 /* Select group with the highest max capacity */
10884 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10885 return NULL;
10886 break;
10887
10888 case group_has_spare:
10889 #ifdef CONFIG_NUMA
10890 if (sd->flags & SD_NUMA) {
10891 int imb_numa_nr = sd->imb_numa_nr;
10892 #ifdef CONFIG_NUMA_BALANCING
10893 int idlest_cpu;
10894 /*
10895 * If there is spare capacity at NUMA, try to select
10896 * the preferred node
10897 */
10898 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10899 return NULL;
10900
10901 idlest_cpu = cpumask_first(sched_group_span(idlest));
10902 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10903 return idlest;
10904 #endif /* CONFIG_NUMA_BALANCING */
10905 /*
10906 * Otherwise, keep the task close to the wakeup source
10907 * and improve locality if the number of running tasks
10908 * would remain below threshold where an imbalance is
10909 * allowed while accounting for the possibility the
10910 * task is pinned to a subset of CPUs. If there is a
10911 * real need of migration, periodic load balance will
10912 * take care of it.
10913 */
10914 if (p->nr_cpus_allowed != NR_CPUS) {
10915 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10916
10917 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10918 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10919 }
10920
10921 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10922 if (!adjust_numa_imbalance(imbalance,
10923 local_sgs.sum_nr_running + 1,
10924 imb_numa_nr)) {
10925 return NULL;
10926 }
10927 }
10928 #endif /* CONFIG_NUMA */
10929
10930 /*
10931 * Select group with highest number of idle CPUs. We could also
10932 * compare the utilization which is more stable but it can end
10933 * up that the group has less spare capacity but finally more
10934 * idle CPUs which means more opportunity to run task.
10935 */
10936 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10937 return NULL;
10938 break;
10939 }
10940
10941 return idlest;
10942 }
10943
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10944 static void update_idle_cpu_scan(struct lb_env *env,
10945 unsigned long sum_util)
10946 {
10947 struct sched_domain_shared *sd_share;
10948 int llc_weight, pct;
10949 u64 x, y, tmp;
10950 /*
10951 * Update the number of CPUs to scan in LLC domain, which could
10952 * be used as a hint in select_idle_cpu(). The update of sd_share
10953 * could be expensive because it is within a shared cache line.
10954 * So the write of this hint only occurs during periodic load
10955 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10956 * can fire way more frequently than the former.
10957 */
10958 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10959 return;
10960
10961 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10962 if (env->sd->span_weight != llc_weight)
10963 return;
10964
10965 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10966 if (!sd_share)
10967 return;
10968
10969 /*
10970 * The number of CPUs to search drops as sum_util increases, when
10971 * sum_util hits 85% or above, the scan stops.
10972 * The reason to choose 85% as the threshold is because this is the
10973 * imbalance_pct(117) when a LLC sched group is overloaded.
10974 *
10975 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10976 * and y'= y / SCHED_CAPACITY_SCALE
10977 *
10978 * x is the ratio of sum_util compared to the CPU capacity:
10979 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10980 * y' is the ratio of CPUs to be scanned in the LLC domain,
10981 * and the number of CPUs to scan is calculated by:
10982 *
10983 * nr_scan = llc_weight * y' [2]
10984 *
10985 * When x hits the threshold of overloaded, AKA, when
10986 * x = 100 / pct, y drops to 0. According to [1],
10987 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10988 *
10989 * Scale x by SCHED_CAPACITY_SCALE:
10990 * x' = sum_util / llc_weight; [3]
10991 *
10992 * and finally [1] becomes:
10993 * y = SCHED_CAPACITY_SCALE -
10994 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10995 *
10996 */
10997 /* equation [3] */
10998 x = sum_util;
10999 do_div(x, llc_weight);
11000
11001 /* equation [4] */
11002 pct = env->sd->imbalance_pct;
11003 tmp = x * x * pct * pct;
11004 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11005 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11006 y = SCHED_CAPACITY_SCALE - tmp;
11007
11008 /* equation [2] */
11009 y *= llc_weight;
11010 do_div(y, SCHED_CAPACITY_SCALE);
11011 if ((int)y != sd_share->nr_idle_scan)
11012 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11013 }
11014
11015 /**
11016 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11017 * @env: The load balancing environment.
11018 * @sds: variable to hold the statistics for this sched_domain.
11019 */
11020
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11021 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11022 {
11023 struct sched_group *sg = env->sd->groups;
11024 struct sg_lb_stats *local = &sds->local_stat;
11025 struct sg_lb_stats tmp_sgs;
11026 unsigned long sum_util = 0;
11027 bool sg_overloaded = 0, sg_overutilized = 0;
11028
11029 do {
11030 struct sg_lb_stats *sgs = &tmp_sgs;
11031 int local_group;
11032
11033 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11034 if (local_group) {
11035 sds->local = sg;
11036 sgs = local;
11037
11038 if (env->idle != CPU_NEWLY_IDLE ||
11039 time_after_eq(jiffies, sg->sgc->next_update))
11040 update_group_capacity(env->sd, env->dst_cpu);
11041 }
11042
11043 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11044
11045 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11046 sds->busiest = sg;
11047 sds->busiest_stat = *sgs;
11048 }
11049
11050 /* Now, start updating sd_lb_stats */
11051 sds->total_load += sgs->group_load;
11052 sds->total_capacity += sgs->group_capacity;
11053
11054 sum_util += sgs->group_util;
11055 sg = sg->next;
11056 } while (sg != env->sd->groups);
11057
11058 /*
11059 * Indicate that the child domain of the busiest group prefers tasks
11060 * go to a child's sibling domains first. NB the flags of a sched group
11061 * are those of the child domain.
11062 */
11063 if (sds->busiest)
11064 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11065
11066
11067 if (env->sd->flags & SD_NUMA)
11068 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11069
11070 if (!env->sd->parent) {
11071 /* update overload indicator if we are at root domain */
11072 set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11073
11074 /* Update over-utilization (tipping point, U >= 0) indicator */
11075 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11076 } else if (sg_overutilized) {
11077 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11078 }
11079
11080 update_idle_cpu_scan(env, sum_util);
11081 }
11082
11083 /**
11084 * calculate_imbalance - Calculate the amount of imbalance present within the
11085 * groups of a given sched_domain during load balance.
11086 * @env: load balance environment
11087 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11088 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11089 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11090 {
11091 struct sg_lb_stats *local, *busiest;
11092
11093 local = &sds->local_stat;
11094 busiest = &sds->busiest_stat;
11095
11096 if (busiest->group_type == group_misfit_task) {
11097 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11098 /* Set imbalance to allow misfit tasks to be balanced. */
11099 env->migration_type = migrate_misfit;
11100 env->imbalance = 1;
11101 } else {
11102 /*
11103 * Set load imbalance to allow moving task from cpu
11104 * with reduced capacity.
11105 */
11106 env->migration_type = migrate_load;
11107 env->imbalance = busiest->group_misfit_task_load;
11108 }
11109 return;
11110 }
11111
11112 if (busiest->group_type == group_asym_packing) {
11113 /*
11114 * In case of asym capacity, we will try to migrate all load to
11115 * the preferred CPU.
11116 */
11117 env->migration_type = migrate_task;
11118 env->imbalance = busiest->sum_h_nr_running;
11119 return;
11120 }
11121
11122 if (busiest->group_type == group_smt_balance) {
11123 /* Reduce number of tasks sharing CPU capacity */
11124 env->migration_type = migrate_task;
11125 env->imbalance = 1;
11126 return;
11127 }
11128
11129 if (busiest->group_type == group_imbalanced) {
11130 /*
11131 * In the group_imb case we cannot rely on group-wide averages
11132 * to ensure CPU-load equilibrium, try to move any task to fix
11133 * the imbalance. The next load balance will take care of
11134 * balancing back the system.
11135 */
11136 env->migration_type = migrate_task;
11137 env->imbalance = 1;
11138 return;
11139 }
11140
11141 /*
11142 * Try to use spare capacity of local group without overloading it or
11143 * emptying busiest.
11144 */
11145 if (local->group_type == group_has_spare) {
11146 if ((busiest->group_type > group_fully_busy) &&
11147 !(env->sd->flags & SD_SHARE_LLC)) {
11148 /*
11149 * If busiest is overloaded, try to fill spare
11150 * capacity. This might end up creating spare capacity
11151 * in busiest or busiest still being overloaded but
11152 * there is no simple way to directly compute the
11153 * amount of load to migrate in order to balance the
11154 * system.
11155 */
11156 env->migration_type = migrate_util;
11157 env->imbalance = max(local->group_capacity, local->group_util) -
11158 local->group_util;
11159
11160 /*
11161 * In some cases, the group's utilization is max or even
11162 * higher than capacity because of migrations but the
11163 * local CPU is (newly) idle. There is at least one
11164 * waiting task in this overloaded busiest group. Let's
11165 * try to pull it.
11166 */
11167 if (env->idle && env->imbalance == 0) {
11168 env->migration_type = migrate_task;
11169 env->imbalance = 1;
11170 }
11171
11172 return;
11173 }
11174
11175 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11176 /*
11177 * When prefer sibling, evenly spread running tasks on
11178 * groups.
11179 */
11180 env->migration_type = migrate_task;
11181 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11182 } else {
11183
11184 /*
11185 * If there is no overload, we just want to even the number of
11186 * idle CPUs.
11187 */
11188 env->migration_type = migrate_task;
11189 env->imbalance = max_t(long, 0,
11190 (local->idle_cpus - busiest->idle_cpus));
11191 }
11192
11193 #ifdef CONFIG_NUMA
11194 /* Consider allowing a small imbalance between NUMA groups */
11195 if (env->sd->flags & SD_NUMA) {
11196 env->imbalance = adjust_numa_imbalance(env->imbalance,
11197 local->sum_nr_running + 1,
11198 env->sd->imb_numa_nr);
11199 }
11200 #endif
11201
11202 /* Number of tasks to move to restore balance */
11203 env->imbalance >>= 1;
11204
11205 return;
11206 }
11207
11208 /*
11209 * Local is fully busy but has to take more load to relieve the
11210 * busiest group
11211 */
11212 if (local->group_type < group_overloaded) {
11213 /*
11214 * Local will become overloaded so the avg_load metrics are
11215 * finally needed.
11216 */
11217
11218 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11219 local->group_capacity;
11220
11221 /*
11222 * If the local group is more loaded than the selected
11223 * busiest group don't try to pull any tasks.
11224 */
11225 if (local->avg_load >= busiest->avg_load) {
11226 env->imbalance = 0;
11227 return;
11228 }
11229
11230 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11231 sds->total_capacity;
11232
11233 /*
11234 * If the local group is more loaded than the average system
11235 * load, don't try to pull any tasks.
11236 */
11237 if (local->avg_load >= sds->avg_load) {
11238 env->imbalance = 0;
11239 return;
11240 }
11241
11242 }
11243
11244 /*
11245 * Both group are or will become overloaded and we're trying to get all
11246 * the CPUs to the average_load, so we don't want to push ourselves
11247 * above the average load, nor do we wish to reduce the max loaded CPU
11248 * below the average load. At the same time, we also don't want to
11249 * reduce the group load below the group capacity. Thus we look for
11250 * the minimum possible imbalance.
11251 */
11252 env->migration_type = migrate_load;
11253 env->imbalance = min(
11254 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11255 (sds->avg_load - local->avg_load) * local->group_capacity
11256 ) / SCHED_CAPACITY_SCALE;
11257 }
11258
11259 /******* sched_balance_find_src_group() helpers end here *********************/
11260
11261 /*
11262 * Decision matrix according to the local and busiest group type:
11263 *
11264 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11265 * has_spare nr_idle balanced N/A N/A balanced balanced
11266 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11267 * misfit_task force N/A N/A N/A N/A N/A
11268 * asym_packing force force N/A N/A force force
11269 * imbalanced force force N/A N/A force force
11270 * overloaded force force N/A N/A force avg_load
11271 *
11272 * N/A : Not Applicable because already filtered while updating
11273 * statistics.
11274 * balanced : The system is balanced for these 2 groups.
11275 * force : Calculate the imbalance as load migration is probably needed.
11276 * avg_load : Only if imbalance is significant enough.
11277 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11278 * different in groups.
11279 */
11280
11281 /**
11282 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11283 * if there is an imbalance.
11284 * @env: The load balancing environment.
11285 *
11286 * Also calculates the amount of runnable load which should be moved
11287 * to restore balance.
11288 *
11289 * Return: - The busiest group if imbalance exists.
11290 */
sched_balance_find_src_group(struct lb_env * env)11291 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11292 {
11293 struct sg_lb_stats *local, *busiest;
11294 struct sd_lb_stats sds;
11295
11296 init_sd_lb_stats(&sds);
11297
11298 /*
11299 * Compute the various statistics relevant for load balancing at
11300 * this level.
11301 */
11302 update_sd_lb_stats(env, &sds);
11303
11304 /* There is no busy sibling group to pull tasks from */
11305 if (!sds.busiest)
11306 goto out_balanced;
11307
11308 busiest = &sds.busiest_stat;
11309
11310 /* Misfit tasks should be dealt with regardless of the avg load */
11311 if (busiest->group_type == group_misfit_task)
11312 goto force_balance;
11313
11314 if (!is_rd_overutilized(env->dst_rq->rd) &&
11315 rcu_dereference(env->dst_rq->rd->pd))
11316 goto out_balanced;
11317
11318 /* ASYM feature bypasses nice load balance check */
11319 if (busiest->group_type == group_asym_packing)
11320 goto force_balance;
11321
11322 /*
11323 * If the busiest group is imbalanced the below checks don't
11324 * work because they assume all things are equal, which typically
11325 * isn't true due to cpus_ptr constraints and the like.
11326 */
11327 if (busiest->group_type == group_imbalanced)
11328 goto force_balance;
11329
11330 local = &sds.local_stat;
11331 /*
11332 * If the local group is busier than the selected busiest group
11333 * don't try and pull any tasks.
11334 */
11335 if (local->group_type > busiest->group_type)
11336 goto out_balanced;
11337
11338 /*
11339 * When groups are overloaded, use the avg_load to ensure fairness
11340 * between tasks.
11341 */
11342 if (local->group_type == group_overloaded) {
11343 /*
11344 * If the local group is more loaded than the selected
11345 * busiest group don't try to pull any tasks.
11346 */
11347 if (local->avg_load >= busiest->avg_load)
11348 goto out_balanced;
11349
11350 /* XXX broken for overlapping NUMA groups */
11351 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11352 sds.total_capacity;
11353
11354 /*
11355 * Don't pull any tasks if this group is already above the
11356 * domain average load.
11357 */
11358 if (local->avg_load >= sds.avg_load)
11359 goto out_balanced;
11360
11361 /*
11362 * If the busiest group is more loaded, use imbalance_pct to be
11363 * conservative.
11364 */
11365 if (100 * busiest->avg_load <=
11366 env->sd->imbalance_pct * local->avg_load)
11367 goto out_balanced;
11368 }
11369
11370 /*
11371 * Try to move all excess tasks to a sibling domain of the busiest
11372 * group's child domain.
11373 */
11374 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11375 sibling_imbalance(env, &sds, busiest, local) > 1)
11376 goto force_balance;
11377
11378 if (busiest->group_type != group_overloaded) {
11379 if (!env->idle) {
11380 /*
11381 * If the busiest group is not overloaded (and as a
11382 * result the local one too) but this CPU is already
11383 * busy, let another idle CPU try to pull task.
11384 */
11385 goto out_balanced;
11386 }
11387
11388 if (busiest->group_type == group_smt_balance &&
11389 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11390 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11391 goto force_balance;
11392 }
11393
11394 if (busiest->group_weight > 1 &&
11395 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11396 /*
11397 * If the busiest group is not overloaded
11398 * and there is no imbalance between this and busiest
11399 * group wrt idle CPUs, it is balanced. The imbalance
11400 * becomes significant if the diff is greater than 1
11401 * otherwise we might end up to just move the imbalance
11402 * on another group. Of course this applies only if
11403 * there is more than 1 CPU per group.
11404 */
11405 goto out_balanced;
11406 }
11407
11408 if (busiest->sum_h_nr_running == 1) {
11409 /*
11410 * busiest doesn't have any tasks waiting to run
11411 */
11412 goto out_balanced;
11413 }
11414 }
11415
11416 force_balance:
11417 /* Looks like there is an imbalance. Compute it */
11418 calculate_imbalance(env, &sds);
11419 return env->imbalance ? sds.busiest : NULL;
11420
11421 out_balanced:
11422 env->imbalance = 0;
11423 return NULL;
11424 }
11425
11426 /*
11427 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11428 */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11429 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11430 struct sched_group *group)
11431 {
11432 struct rq *busiest = NULL, *rq;
11433 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11434 unsigned int busiest_nr = 0;
11435 int i;
11436
11437 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11438 unsigned long capacity, load, util;
11439 unsigned int nr_running;
11440 enum fbq_type rt;
11441
11442 rq = cpu_rq(i);
11443 rt = fbq_classify_rq(rq);
11444
11445 /*
11446 * We classify groups/runqueues into three groups:
11447 * - regular: there are !numa tasks
11448 * - remote: there are numa tasks that run on the 'wrong' node
11449 * - all: there is no distinction
11450 *
11451 * In order to avoid migrating ideally placed numa tasks,
11452 * ignore those when there's better options.
11453 *
11454 * If we ignore the actual busiest queue to migrate another
11455 * task, the next balance pass can still reduce the busiest
11456 * queue by moving tasks around inside the node.
11457 *
11458 * If we cannot move enough load due to this classification
11459 * the next pass will adjust the group classification and
11460 * allow migration of more tasks.
11461 *
11462 * Both cases only affect the total convergence complexity.
11463 */
11464 if (rt > env->fbq_type)
11465 continue;
11466
11467 nr_running = rq->cfs.h_nr_running;
11468 if (!nr_running)
11469 continue;
11470
11471 capacity = capacity_of(i);
11472
11473 /*
11474 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11475 * eventually lead to active_balancing high->low capacity.
11476 * Higher per-CPU capacity is considered better than balancing
11477 * average load.
11478 */
11479 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11480 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11481 nr_running == 1)
11482 continue;
11483
11484 /*
11485 * Make sure we only pull tasks from a CPU of lower priority
11486 * when balancing between SMT siblings.
11487 *
11488 * If balancing between cores, let lower priority CPUs help
11489 * SMT cores with more than one busy sibling.
11490 */
11491 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11492 continue;
11493
11494 switch (env->migration_type) {
11495 case migrate_load:
11496 /*
11497 * When comparing with load imbalance, use cpu_load()
11498 * which is not scaled with the CPU capacity.
11499 */
11500 load = cpu_load(rq);
11501
11502 if (nr_running == 1 && load > env->imbalance &&
11503 !check_cpu_capacity(rq, env->sd))
11504 break;
11505
11506 /*
11507 * For the load comparisons with the other CPUs,
11508 * consider the cpu_load() scaled with the CPU
11509 * capacity, so that the load can be moved away
11510 * from the CPU that is potentially running at a
11511 * lower capacity.
11512 *
11513 * Thus we're looking for max(load_i / capacity_i),
11514 * crosswise multiplication to rid ourselves of the
11515 * division works out to:
11516 * load_i * capacity_j > load_j * capacity_i;
11517 * where j is our previous maximum.
11518 */
11519 if (load * busiest_capacity > busiest_load * capacity) {
11520 busiest_load = load;
11521 busiest_capacity = capacity;
11522 busiest = rq;
11523 }
11524 break;
11525
11526 case migrate_util:
11527 util = cpu_util_cfs_boost(i);
11528
11529 /*
11530 * Don't try to pull utilization from a CPU with one
11531 * running task. Whatever its utilization, we will fail
11532 * detach the task.
11533 */
11534 if (nr_running <= 1)
11535 continue;
11536
11537 if (busiest_util < util) {
11538 busiest_util = util;
11539 busiest = rq;
11540 }
11541 break;
11542
11543 case migrate_task:
11544 if (busiest_nr < nr_running) {
11545 busiest_nr = nr_running;
11546 busiest = rq;
11547 }
11548 break;
11549
11550 case migrate_misfit:
11551 /*
11552 * For ASYM_CPUCAPACITY domains with misfit tasks we
11553 * simply seek the "biggest" misfit task.
11554 */
11555 if (rq->misfit_task_load > busiest_load) {
11556 busiest_load = rq->misfit_task_load;
11557 busiest = rq;
11558 }
11559
11560 break;
11561
11562 }
11563 }
11564
11565 return busiest;
11566 }
11567
11568 /*
11569 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11570 * so long as it is large enough.
11571 */
11572 #define MAX_PINNED_INTERVAL 512
11573
11574 static inline bool
asym_active_balance(struct lb_env * env)11575 asym_active_balance(struct lb_env *env)
11576 {
11577 /*
11578 * ASYM_PACKING needs to force migrate tasks from busy but lower
11579 * priority CPUs in order to pack all tasks in the highest priority
11580 * CPUs. When done between cores, do it only if the whole core if the
11581 * whole core is idle.
11582 *
11583 * If @env::src_cpu is an SMT core with busy siblings, let
11584 * the lower priority @env::dst_cpu help it. Do not follow
11585 * CPU priority.
11586 */
11587 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11588 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11589 !sched_use_asym_prio(env->sd, env->src_cpu));
11590 }
11591
11592 static inline bool
imbalanced_active_balance(struct lb_env * env)11593 imbalanced_active_balance(struct lb_env *env)
11594 {
11595 struct sched_domain *sd = env->sd;
11596
11597 /*
11598 * The imbalanced case includes the case of pinned tasks preventing a fair
11599 * distribution of the load on the system but also the even distribution of the
11600 * threads on a system with spare capacity
11601 */
11602 if ((env->migration_type == migrate_task) &&
11603 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11604 return 1;
11605
11606 return 0;
11607 }
11608
need_active_balance(struct lb_env * env)11609 static int need_active_balance(struct lb_env *env)
11610 {
11611 struct sched_domain *sd = env->sd;
11612
11613 if (asym_active_balance(env))
11614 return 1;
11615
11616 if (imbalanced_active_balance(env))
11617 return 1;
11618
11619 /*
11620 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11621 * It's worth migrating the task if the src_cpu's capacity is reduced
11622 * because of other sched_class or IRQs if more capacity stays
11623 * available on dst_cpu.
11624 */
11625 if (env->idle &&
11626 (env->src_rq->cfs.h_nr_running == 1)) {
11627 if ((check_cpu_capacity(env->src_rq, sd)) &&
11628 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11629 return 1;
11630 }
11631
11632 if (env->migration_type == migrate_misfit)
11633 return 1;
11634
11635 return 0;
11636 }
11637
11638 static int active_load_balance_cpu_stop(void *data);
11639
should_we_balance(struct lb_env * env)11640 static int should_we_balance(struct lb_env *env)
11641 {
11642 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11643 struct sched_group *sg = env->sd->groups;
11644 int cpu, idle_smt = -1;
11645
11646 /*
11647 * Ensure the balancing environment is consistent; can happen
11648 * when the softirq triggers 'during' hotplug.
11649 */
11650 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11651 return 0;
11652
11653 /*
11654 * In the newly idle case, we will allow all the CPUs
11655 * to do the newly idle load balance.
11656 *
11657 * However, we bail out if we already have tasks or a wakeup pending,
11658 * to optimize wakeup latency.
11659 */
11660 if (env->idle == CPU_NEWLY_IDLE) {
11661 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11662 return 0;
11663 return 1;
11664 }
11665
11666 cpumask_copy(swb_cpus, group_balance_mask(sg));
11667 /* Try to find first idle CPU */
11668 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11669 if (!idle_cpu(cpu))
11670 continue;
11671
11672 /*
11673 * Don't balance to idle SMT in busy core right away when
11674 * balancing cores, but remember the first idle SMT CPU for
11675 * later consideration. Find CPU on an idle core first.
11676 */
11677 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11678 if (idle_smt == -1)
11679 idle_smt = cpu;
11680 /*
11681 * If the core is not idle, and first SMT sibling which is
11682 * idle has been found, then its not needed to check other
11683 * SMT siblings for idleness:
11684 */
11685 #ifdef CONFIG_SCHED_SMT
11686 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11687 #endif
11688 continue;
11689 }
11690
11691 /*
11692 * Are we the first idle core in a non-SMT domain or higher,
11693 * or the first idle CPU in a SMT domain?
11694 */
11695 return cpu == env->dst_cpu;
11696 }
11697
11698 /* Are we the first idle CPU with busy siblings? */
11699 if (idle_smt != -1)
11700 return idle_smt == env->dst_cpu;
11701
11702 /* Are we the first CPU of this group ? */
11703 return group_balance_cpu(sg) == env->dst_cpu;
11704 }
11705
11706 /*
11707 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11708 * tasks if there is an imbalance.
11709 */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11710 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11711 struct sched_domain *sd, enum cpu_idle_type idle,
11712 int *continue_balancing)
11713 {
11714 int ld_moved, cur_ld_moved, active_balance = 0;
11715 struct sched_domain *sd_parent = sd->parent;
11716 struct sched_group *group;
11717 struct rq *busiest;
11718 struct rq_flags rf;
11719 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11720 struct lb_env env = {
11721 .sd = sd,
11722 .dst_cpu = this_cpu,
11723 .dst_rq = this_rq,
11724 .dst_grpmask = group_balance_mask(sd->groups),
11725 .idle = idle,
11726 .loop_break = SCHED_NR_MIGRATE_BREAK,
11727 .cpus = cpus,
11728 .fbq_type = all,
11729 .tasks = LIST_HEAD_INIT(env.tasks),
11730 };
11731
11732 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11733
11734 schedstat_inc(sd->lb_count[idle]);
11735
11736 redo:
11737 if (!should_we_balance(&env)) {
11738 *continue_balancing = 0;
11739 goto out_balanced;
11740 }
11741
11742 group = sched_balance_find_src_group(&env);
11743 if (!group) {
11744 schedstat_inc(sd->lb_nobusyg[idle]);
11745 goto out_balanced;
11746 }
11747
11748 busiest = sched_balance_find_src_rq(&env, group);
11749 if (!busiest) {
11750 schedstat_inc(sd->lb_nobusyq[idle]);
11751 goto out_balanced;
11752 }
11753
11754 WARN_ON_ONCE(busiest == env.dst_rq);
11755
11756 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11757
11758 env.src_cpu = busiest->cpu;
11759 env.src_rq = busiest;
11760
11761 ld_moved = 0;
11762 /* Clear this flag as soon as we find a pullable task */
11763 env.flags |= LBF_ALL_PINNED;
11764 if (busiest->nr_running > 1) {
11765 /*
11766 * Attempt to move tasks. If sched_balance_find_src_group has found
11767 * an imbalance but busiest->nr_running <= 1, the group is
11768 * still unbalanced. ld_moved simply stays zero, so it is
11769 * correctly treated as an imbalance.
11770 */
11771 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11772
11773 more_balance:
11774 rq_lock_irqsave(busiest, &rf);
11775 update_rq_clock(busiest);
11776
11777 /*
11778 * cur_ld_moved - load moved in current iteration
11779 * ld_moved - cumulative load moved across iterations
11780 */
11781 cur_ld_moved = detach_tasks(&env);
11782
11783 /*
11784 * We've detached some tasks from busiest_rq. Every
11785 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11786 * unlock busiest->lock, and we are able to be sure
11787 * that nobody can manipulate the tasks in parallel.
11788 * See task_rq_lock() family for the details.
11789 */
11790
11791 rq_unlock(busiest, &rf);
11792
11793 if (cur_ld_moved) {
11794 attach_tasks(&env);
11795 ld_moved += cur_ld_moved;
11796 }
11797
11798 local_irq_restore(rf.flags);
11799
11800 if (env.flags & LBF_NEED_BREAK) {
11801 env.flags &= ~LBF_NEED_BREAK;
11802 goto more_balance;
11803 }
11804
11805 /*
11806 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11807 * us and move them to an alternate dst_cpu in our sched_group
11808 * where they can run. The upper limit on how many times we
11809 * iterate on same src_cpu is dependent on number of CPUs in our
11810 * sched_group.
11811 *
11812 * This changes load balance semantics a bit on who can move
11813 * load to a given_cpu. In addition to the given_cpu itself
11814 * (or a ilb_cpu acting on its behalf where given_cpu is
11815 * nohz-idle), we now have balance_cpu in a position to move
11816 * load to given_cpu. In rare situations, this may cause
11817 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11818 * _independently_ and at _same_ time to move some load to
11819 * given_cpu) causing excess load to be moved to given_cpu.
11820 * This however should not happen so much in practice and
11821 * moreover subsequent load balance cycles should correct the
11822 * excess load moved.
11823 */
11824 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11825
11826 /* Prevent to re-select dst_cpu via env's CPUs */
11827 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11828
11829 env.dst_rq = cpu_rq(env.new_dst_cpu);
11830 env.dst_cpu = env.new_dst_cpu;
11831 env.flags &= ~LBF_DST_PINNED;
11832 env.loop = 0;
11833 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11834
11835 /*
11836 * Go back to "more_balance" rather than "redo" since we
11837 * need to continue with same src_cpu.
11838 */
11839 goto more_balance;
11840 }
11841
11842 /*
11843 * We failed to reach balance because of affinity.
11844 */
11845 if (sd_parent) {
11846 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11847
11848 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11849 *group_imbalance = 1;
11850 }
11851
11852 /* All tasks on this runqueue were pinned by CPU affinity */
11853 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11854 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11855 /*
11856 * Attempting to continue load balancing at the current
11857 * sched_domain level only makes sense if there are
11858 * active CPUs remaining as possible busiest CPUs to
11859 * pull load from which are not contained within the
11860 * destination group that is receiving any migrated
11861 * load.
11862 */
11863 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11864 env.loop = 0;
11865 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11866 goto redo;
11867 }
11868 goto out_all_pinned;
11869 }
11870 }
11871
11872 if (!ld_moved) {
11873 schedstat_inc(sd->lb_failed[idle]);
11874 /*
11875 * Increment the failure counter only on periodic balance.
11876 * We do not want newidle balance, which can be very
11877 * frequent, pollute the failure counter causing
11878 * excessive cache_hot migrations and active balances.
11879 *
11880 * Similarly for migration_misfit which is not related to
11881 * load/util migration, don't pollute nr_balance_failed.
11882 */
11883 if (idle != CPU_NEWLY_IDLE &&
11884 env.migration_type != migrate_misfit)
11885 sd->nr_balance_failed++;
11886
11887 if (need_active_balance(&env)) {
11888 unsigned long flags;
11889
11890 raw_spin_rq_lock_irqsave(busiest, flags);
11891
11892 /*
11893 * Don't kick the active_load_balance_cpu_stop,
11894 * if the curr task on busiest CPU can't be
11895 * moved to this_cpu:
11896 */
11897 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11898 raw_spin_rq_unlock_irqrestore(busiest, flags);
11899 goto out_one_pinned;
11900 }
11901
11902 /* Record that we found at least one task that could run on this_cpu */
11903 env.flags &= ~LBF_ALL_PINNED;
11904
11905 /*
11906 * ->active_balance synchronizes accesses to
11907 * ->active_balance_work. Once set, it's cleared
11908 * only after active load balance is finished.
11909 */
11910 if (!busiest->active_balance) {
11911 busiest->active_balance = 1;
11912 busiest->push_cpu = this_cpu;
11913 active_balance = 1;
11914 }
11915
11916 preempt_disable();
11917 raw_spin_rq_unlock_irqrestore(busiest, flags);
11918 if (active_balance) {
11919 stop_one_cpu_nowait(cpu_of(busiest),
11920 active_load_balance_cpu_stop, busiest,
11921 &busiest->active_balance_work);
11922 }
11923 preempt_enable();
11924 }
11925 } else {
11926 sd->nr_balance_failed = 0;
11927 }
11928
11929 if (likely(!active_balance) || need_active_balance(&env)) {
11930 /* We were unbalanced, so reset the balancing interval */
11931 sd->balance_interval = sd->min_interval;
11932 }
11933
11934 goto out;
11935
11936 out_balanced:
11937 /*
11938 * We reach balance although we may have faced some affinity
11939 * constraints. Clear the imbalance flag only if other tasks got
11940 * a chance to move and fix the imbalance.
11941 */
11942 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11943 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11944
11945 if (*group_imbalance)
11946 *group_imbalance = 0;
11947 }
11948
11949 out_all_pinned:
11950 /*
11951 * We reach balance because all tasks are pinned at this level so
11952 * we can't migrate them. Let the imbalance flag set so parent level
11953 * can try to migrate them.
11954 */
11955 schedstat_inc(sd->lb_balanced[idle]);
11956
11957 sd->nr_balance_failed = 0;
11958
11959 out_one_pinned:
11960 ld_moved = 0;
11961
11962 /*
11963 * sched_balance_newidle() disregards balance intervals, so we could
11964 * repeatedly reach this code, which would lead to balance_interval
11965 * skyrocketing in a short amount of time. Skip the balance_interval
11966 * increase logic to avoid that.
11967 *
11968 * Similarly misfit migration which is not necessarily an indication of
11969 * the system being busy and requires lb to backoff to let it settle
11970 * down.
11971 */
11972 if (env.idle == CPU_NEWLY_IDLE ||
11973 env.migration_type == migrate_misfit)
11974 goto out;
11975
11976 /* tune up the balancing interval */
11977 if ((env.flags & LBF_ALL_PINNED &&
11978 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11979 sd->balance_interval < sd->max_interval)
11980 sd->balance_interval *= 2;
11981 out:
11982 return ld_moved;
11983 }
11984
11985 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11986 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11987 {
11988 unsigned long interval = sd->balance_interval;
11989
11990 if (cpu_busy)
11991 interval *= sd->busy_factor;
11992
11993 /* scale ms to jiffies */
11994 interval = msecs_to_jiffies(interval);
11995
11996 /*
11997 * Reduce likelihood of busy balancing at higher domains racing with
11998 * balancing at lower domains by preventing their balancing periods
11999 * from being multiples of each other.
12000 */
12001 if (cpu_busy)
12002 interval -= 1;
12003
12004 interval = clamp(interval, 1UL, max_load_balance_interval);
12005
12006 return interval;
12007 }
12008
12009 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12010 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12011 {
12012 unsigned long interval, next;
12013
12014 /* used by idle balance, so cpu_busy = 0 */
12015 interval = get_sd_balance_interval(sd, 0);
12016 next = sd->last_balance + interval;
12017
12018 if (time_after(*next_balance, next))
12019 *next_balance = next;
12020 }
12021
12022 /*
12023 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12024 * running tasks off the busiest CPU onto idle CPUs. It requires at
12025 * least 1 task to be running on each physical CPU where possible, and
12026 * avoids physical / logical imbalances.
12027 */
active_load_balance_cpu_stop(void * data)12028 static int active_load_balance_cpu_stop(void *data)
12029 {
12030 struct rq *busiest_rq = data;
12031 int busiest_cpu = cpu_of(busiest_rq);
12032 int target_cpu = busiest_rq->push_cpu;
12033 struct rq *target_rq = cpu_rq(target_cpu);
12034 struct sched_domain *sd;
12035 struct task_struct *p = NULL;
12036 struct rq_flags rf;
12037
12038 rq_lock_irq(busiest_rq, &rf);
12039 /*
12040 * Between queueing the stop-work and running it is a hole in which
12041 * CPUs can become inactive. We should not move tasks from or to
12042 * inactive CPUs.
12043 */
12044 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12045 goto out_unlock;
12046
12047 /* Make sure the requested CPU hasn't gone down in the meantime: */
12048 if (unlikely(busiest_cpu != smp_processor_id() ||
12049 !busiest_rq->active_balance))
12050 goto out_unlock;
12051
12052 /* Is there any task to move? */
12053 if (busiest_rq->nr_running <= 1)
12054 goto out_unlock;
12055
12056 /*
12057 * This condition is "impossible", if it occurs
12058 * we need to fix it. Originally reported by
12059 * Bjorn Helgaas on a 128-CPU setup.
12060 */
12061 WARN_ON_ONCE(busiest_rq == target_rq);
12062
12063 /* Search for an sd spanning us and the target CPU. */
12064 rcu_read_lock();
12065 for_each_domain(target_cpu, sd) {
12066 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12067 break;
12068 }
12069
12070 if (likely(sd)) {
12071 struct lb_env env = {
12072 .sd = sd,
12073 .dst_cpu = target_cpu,
12074 .dst_rq = target_rq,
12075 .src_cpu = busiest_rq->cpu,
12076 .src_rq = busiest_rq,
12077 .idle = CPU_IDLE,
12078 .flags = LBF_ACTIVE_LB,
12079 };
12080
12081 schedstat_inc(sd->alb_count);
12082 update_rq_clock(busiest_rq);
12083
12084 p = detach_one_task(&env);
12085 if (p) {
12086 schedstat_inc(sd->alb_pushed);
12087 /* Active balancing done, reset the failure counter. */
12088 sd->nr_balance_failed = 0;
12089 } else {
12090 schedstat_inc(sd->alb_failed);
12091 }
12092 }
12093 rcu_read_unlock();
12094 out_unlock:
12095 busiest_rq->active_balance = 0;
12096 rq_unlock(busiest_rq, &rf);
12097
12098 if (p)
12099 attach_one_task(target_rq, p);
12100
12101 local_irq_enable();
12102
12103 return 0;
12104 }
12105
12106 /*
12107 * This flag serializes load-balancing passes over large domains
12108 * (above the NODE topology level) - only one load-balancing instance
12109 * may run at a time, to reduce overhead on very large systems with
12110 * lots of CPUs and large NUMA distances.
12111 *
12112 * - Note that load-balancing passes triggered while another one
12113 * is executing are skipped and not re-tried.
12114 *
12115 * - Also note that this does not serialize rebalance_domains()
12116 * execution, as non-SD_SERIALIZE domains will still be
12117 * load-balanced in parallel.
12118 */
12119 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12120
12121 /*
12122 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12123 * This trades load-balance latency on larger machines for less cross talk.
12124 */
update_max_interval(void)12125 void update_max_interval(void)
12126 {
12127 max_load_balance_interval = HZ*num_online_cpus()/10;
12128 }
12129
update_newidle_cost(struct sched_domain * sd,u64 cost)12130 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12131 {
12132 if (cost > sd->max_newidle_lb_cost) {
12133 /*
12134 * Track max cost of a domain to make sure to not delay the
12135 * next wakeup on the CPU.
12136 */
12137 sd->max_newidle_lb_cost = cost;
12138 sd->last_decay_max_lb_cost = jiffies;
12139 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12140 /*
12141 * Decay the newidle max times by ~1% per second to ensure that
12142 * it is not outdated and the current max cost is actually
12143 * shorter.
12144 */
12145 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12146 sd->last_decay_max_lb_cost = jiffies;
12147
12148 return true;
12149 }
12150
12151 return false;
12152 }
12153
12154 /*
12155 * It checks each scheduling domain to see if it is due to be balanced,
12156 * and initiates a balancing operation if so.
12157 *
12158 * Balancing parameters are set up in init_sched_domains.
12159 */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12160 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12161 {
12162 int continue_balancing = 1;
12163 int cpu = rq->cpu;
12164 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12165 unsigned long interval;
12166 struct sched_domain *sd;
12167 /* Earliest time when we have to do rebalance again */
12168 unsigned long next_balance = jiffies + 60*HZ;
12169 int update_next_balance = 0;
12170 int need_serialize, need_decay = 0;
12171 u64 max_cost = 0;
12172
12173 rcu_read_lock();
12174 for_each_domain(cpu, sd) {
12175 /*
12176 * Decay the newidle max times here because this is a regular
12177 * visit to all the domains.
12178 */
12179 need_decay = update_newidle_cost(sd, 0);
12180 max_cost += sd->max_newidle_lb_cost;
12181
12182 /*
12183 * Stop the load balance at this level. There is another
12184 * CPU in our sched group which is doing load balancing more
12185 * actively.
12186 */
12187 if (!continue_balancing) {
12188 if (need_decay)
12189 continue;
12190 break;
12191 }
12192
12193 interval = get_sd_balance_interval(sd, busy);
12194
12195 need_serialize = sd->flags & SD_SERIALIZE;
12196 if (need_serialize) {
12197 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12198 goto out;
12199 }
12200
12201 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12202 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12203 /*
12204 * The LBF_DST_PINNED logic could have changed
12205 * env->dst_cpu, so we can't know our idle
12206 * state even if we migrated tasks. Update it.
12207 */
12208 idle = idle_cpu(cpu);
12209 busy = !idle && !sched_idle_cpu(cpu);
12210 }
12211 sd->last_balance = jiffies;
12212 interval = get_sd_balance_interval(sd, busy);
12213 }
12214 if (need_serialize)
12215 atomic_set_release(&sched_balance_running, 0);
12216 out:
12217 if (time_after(next_balance, sd->last_balance + interval)) {
12218 next_balance = sd->last_balance + interval;
12219 update_next_balance = 1;
12220 }
12221 }
12222 if (need_decay) {
12223 /*
12224 * Ensure the rq-wide value also decays but keep it at a
12225 * reasonable floor to avoid funnies with rq->avg_idle.
12226 */
12227 rq->max_idle_balance_cost =
12228 max((u64)sysctl_sched_migration_cost, max_cost);
12229 }
12230 rcu_read_unlock();
12231
12232 /*
12233 * next_balance will be updated only when there is a need.
12234 * When the cpu is attached to null domain for ex, it will not be
12235 * updated.
12236 */
12237 if (likely(update_next_balance))
12238 rq->next_balance = next_balance;
12239
12240 }
12241
on_null_domain(struct rq * rq)12242 static inline int on_null_domain(struct rq *rq)
12243 {
12244 return unlikely(!rcu_dereference_sched(rq->sd));
12245 }
12246
12247 #ifdef CONFIG_NO_HZ_COMMON
12248 /*
12249 * NOHZ idle load balancing (ILB) details:
12250 *
12251 * - When one of the busy CPUs notices that there may be an idle rebalancing
12252 * needed, they will kick the idle load balancer, which then does idle
12253 * load balancing for all the idle CPUs.
12254 *
12255 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12256 * anywhere yet.
12257 */
find_new_ilb(void)12258 static inline int find_new_ilb(void)
12259 {
12260 const struct cpumask *hk_mask;
12261 int ilb_cpu;
12262
12263 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12264
12265 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12266
12267 if (ilb_cpu == smp_processor_id())
12268 continue;
12269
12270 if (idle_cpu(ilb_cpu))
12271 return ilb_cpu;
12272 }
12273
12274 return -1;
12275 }
12276
12277 /*
12278 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12279 * SMP function call (IPI).
12280 *
12281 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12282 */
kick_ilb(unsigned int flags)12283 static void kick_ilb(unsigned int flags)
12284 {
12285 int ilb_cpu;
12286
12287 /*
12288 * Increase nohz.next_balance only when if full ilb is triggered but
12289 * not if we only update stats.
12290 */
12291 if (flags & NOHZ_BALANCE_KICK)
12292 nohz.next_balance = jiffies+1;
12293
12294 ilb_cpu = find_new_ilb();
12295 if (ilb_cpu < 0)
12296 return;
12297
12298 /*
12299 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12300 * i.e. all bits in flags are already set in ilb_cpu.
12301 */
12302 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12303 return;
12304
12305 /*
12306 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12307 * the first flag owns it; cleared by nohz_csd_func().
12308 */
12309 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12310 if (flags & NOHZ_KICK_MASK)
12311 return;
12312
12313 /*
12314 * This way we generate an IPI on the target CPU which
12315 * is idle, and the softirq performing NOHZ idle load balancing
12316 * will be run before returning from the IPI.
12317 */
12318 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12319 }
12320
12321 /*
12322 * Current decision point for kicking the idle load balancer in the presence
12323 * of idle CPUs in the system.
12324 */
nohz_balancer_kick(struct rq * rq)12325 static void nohz_balancer_kick(struct rq *rq)
12326 {
12327 unsigned long now = jiffies;
12328 struct sched_domain_shared *sds;
12329 struct sched_domain *sd;
12330 int nr_busy, i, cpu = rq->cpu;
12331 unsigned int flags = 0;
12332
12333 if (unlikely(rq->idle_balance))
12334 return;
12335
12336 /*
12337 * We may be recently in ticked or tickless idle mode. At the first
12338 * busy tick after returning from idle, we will update the busy stats.
12339 */
12340 nohz_balance_exit_idle(rq);
12341
12342 /*
12343 * None are in tickless mode and hence no need for NOHZ idle load
12344 * balancing:
12345 */
12346 if (likely(!atomic_read(&nohz.nr_cpus)))
12347 return;
12348
12349 if (READ_ONCE(nohz.has_blocked) &&
12350 time_after(now, READ_ONCE(nohz.next_blocked)))
12351 flags = NOHZ_STATS_KICK;
12352
12353 if (time_before(now, nohz.next_balance))
12354 goto out;
12355
12356 if (rq->nr_running >= 2) {
12357 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12358 goto out;
12359 }
12360
12361 rcu_read_lock();
12362
12363 sd = rcu_dereference(rq->sd);
12364 if (sd) {
12365 /*
12366 * If there's a runnable CFS task and the current CPU has reduced
12367 * capacity, kick the ILB to see if there's a better CPU to run on:
12368 */
12369 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12370 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12371 goto unlock;
12372 }
12373 }
12374
12375 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12376 if (sd) {
12377 /*
12378 * When ASYM_PACKING; see if there's a more preferred CPU
12379 * currently idle; in which case, kick the ILB to move tasks
12380 * around.
12381 *
12382 * When balancing between cores, all the SMT siblings of the
12383 * preferred CPU must be idle.
12384 */
12385 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12386 if (sched_asym(sd, i, cpu)) {
12387 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12388 goto unlock;
12389 }
12390 }
12391 }
12392
12393 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12394 if (sd) {
12395 /*
12396 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12397 * to run the misfit task on.
12398 */
12399 if (check_misfit_status(rq)) {
12400 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12401 goto unlock;
12402 }
12403
12404 /*
12405 * For asymmetric systems, we do not want to nicely balance
12406 * cache use, instead we want to embrace asymmetry and only
12407 * ensure tasks have enough CPU capacity.
12408 *
12409 * Skip the LLC logic because it's not relevant in that case.
12410 */
12411 goto unlock;
12412 }
12413
12414 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12415 if (sds) {
12416 /*
12417 * If there is an imbalance between LLC domains (IOW we could
12418 * increase the overall cache utilization), we need a less-loaded LLC
12419 * domain to pull some load from. Likewise, we may need to spread
12420 * load within the current LLC domain (e.g. packed SMT cores but
12421 * other CPUs are idle). We can't really know from here how busy
12422 * the others are - so just get a NOHZ balance going if it looks
12423 * like this LLC domain has tasks we could move.
12424 */
12425 nr_busy = atomic_read(&sds->nr_busy_cpus);
12426 if (nr_busy > 1) {
12427 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12428 goto unlock;
12429 }
12430 }
12431 unlock:
12432 rcu_read_unlock();
12433 out:
12434 if (READ_ONCE(nohz.needs_update))
12435 flags |= NOHZ_NEXT_KICK;
12436
12437 if (flags)
12438 kick_ilb(flags);
12439 }
12440
set_cpu_sd_state_busy(int cpu)12441 static void set_cpu_sd_state_busy(int cpu)
12442 {
12443 struct sched_domain *sd;
12444
12445 rcu_read_lock();
12446 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12447
12448 if (!sd || !sd->nohz_idle)
12449 goto unlock;
12450 sd->nohz_idle = 0;
12451
12452 atomic_inc(&sd->shared->nr_busy_cpus);
12453 unlock:
12454 rcu_read_unlock();
12455 }
12456
nohz_balance_exit_idle(struct rq * rq)12457 void nohz_balance_exit_idle(struct rq *rq)
12458 {
12459 SCHED_WARN_ON(rq != this_rq());
12460
12461 if (likely(!rq->nohz_tick_stopped))
12462 return;
12463
12464 rq->nohz_tick_stopped = 0;
12465 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12466 atomic_dec(&nohz.nr_cpus);
12467
12468 set_cpu_sd_state_busy(rq->cpu);
12469 }
12470
set_cpu_sd_state_idle(int cpu)12471 static void set_cpu_sd_state_idle(int cpu)
12472 {
12473 struct sched_domain *sd;
12474
12475 rcu_read_lock();
12476 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12477
12478 if (!sd || sd->nohz_idle)
12479 goto unlock;
12480 sd->nohz_idle = 1;
12481
12482 atomic_dec(&sd->shared->nr_busy_cpus);
12483 unlock:
12484 rcu_read_unlock();
12485 }
12486
12487 /*
12488 * This routine will record that the CPU is going idle with tick stopped.
12489 * This info will be used in performing idle load balancing in the future.
12490 */
nohz_balance_enter_idle(int cpu)12491 void nohz_balance_enter_idle(int cpu)
12492 {
12493 struct rq *rq = cpu_rq(cpu);
12494
12495 SCHED_WARN_ON(cpu != smp_processor_id());
12496
12497 /* If this CPU is going down, then nothing needs to be done: */
12498 if (!cpu_active(cpu))
12499 return;
12500
12501 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
12502 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12503 return;
12504
12505 /*
12506 * Can be set safely without rq->lock held
12507 * If a clear happens, it will have evaluated last additions because
12508 * rq->lock is held during the check and the clear
12509 */
12510 rq->has_blocked_load = 1;
12511
12512 /*
12513 * The tick is still stopped but load could have been added in the
12514 * meantime. We set the nohz.has_blocked flag to trig a check of the
12515 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12516 * of nohz.has_blocked can only happen after checking the new load
12517 */
12518 if (rq->nohz_tick_stopped)
12519 goto out;
12520
12521 /* If we're a completely isolated CPU, we don't play: */
12522 if (on_null_domain(rq))
12523 return;
12524
12525 rq->nohz_tick_stopped = 1;
12526
12527 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12528 atomic_inc(&nohz.nr_cpus);
12529
12530 /*
12531 * Ensures that if nohz_idle_balance() fails to observe our
12532 * @idle_cpus_mask store, it must observe the @has_blocked
12533 * and @needs_update stores.
12534 */
12535 smp_mb__after_atomic();
12536
12537 set_cpu_sd_state_idle(cpu);
12538
12539 WRITE_ONCE(nohz.needs_update, 1);
12540 out:
12541 /*
12542 * Each time a cpu enter idle, we assume that it has blocked load and
12543 * enable the periodic update of the load of idle CPUs
12544 */
12545 WRITE_ONCE(nohz.has_blocked, 1);
12546 }
12547
update_nohz_stats(struct rq * rq)12548 static bool update_nohz_stats(struct rq *rq)
12549 {
12550 unsigned int cpu = rq->cpu;
12551
12552 if (!rq->has_blocked_load)
12553 return false;
12554
12555 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12556 return false;
12557
12558 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12559 return true;
12560
12561 sched_balance_update_blocked_averages(cpu);
12562
12563 return rq->has_blocked_load;
12564 }
12565
12566 /*
12567 * Internal function that runs load balance for all idle CPUs. The load balance
12568 * can be a simple update of blocked load or a complete load balance with
12569 * tasks movement depending of flags.
12570 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12571 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12572 {
12573 /* Earliest time when we have to do rebalance again */
12574 unsigned long now = jiffies;
12575 unsigned long next_balance = now + 60*HZ;
12576 bool has_blocked_load = false;
12577 int update_next_balance = 0;
12578 int this_cpu = this_rq->cpu;
12579 int balance_cpu;
12580 struct rq *rq;
12581
12582 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12583
12584 /*
12585 * We assume there will be no idle load after this update and clear
12586 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12587 * set the has_blocked flag and trigger another update of idle load.
12588 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12589 * setting the flag, we are sure to not clear the state and not
12590 * check the load of an idle cpu.
12591 *
12592 * Same applies to idle_cpus_mask vs needs_update.
12593 */
12594 if (flags & NOHZ_STATS_KICK)
12595 WRITE_ONCE(nohz.has_blocked, 0);
12596 if (flags & NOHZ_NEXT_KICK)
12597 WRITE_ONCE(nohz.needs_update, 0);
12598
12599 /*
12600 * Ensures that if we miss the CPU, we must see the has_blocked
12601 * store from nohz_balance_enter_idle().
12602 */
12603 smp_mb();
12604
12605 /*
12606 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12607 * chance for other idle cpu to pull load.
12608 */
12609 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12610 if (!idle_cpu(balance_cpu))
12611 continue;
12612
12613 /*
12614 * If this CPU gets work to do, stop the load balancing
12615 * work being done for other CPUs. Next load
12616 * balancing owner will pick it up.
12617 */
12618 if (!idle_cpu(this_cpu) && need_resched()) {
12619 if (flags & NOHZ_STATS_KICK)
12620 has_blocked_load = true;
12621 if (flags & NOHZ_NEXT_KICK)
12622 WRITE_ONCE(nohz.needs_update, 1);
12623 goto abort;
12624 }
12625
12626 rq = cpu_rq(balance_cpu);
12627
12628 if (flags & NOHZ_STATS_KICK)
12629 has_blocked_load |= update_nohz_stats(rq);
12630
12631 /*
12632 * If time for next balance is due,
12633 * do the balance.
12634 */
12635 if (time_after_eq(jiffies, rq->next_balance)) {
12636 struct rq_flags rf;
12637
12638 rq_lock_irqsave(rq, &rf);
12639 update_rq_clock(rq);
12640 rq_unlock_irqrestore(rq, &rf);
12641
12642 if (flags & NOHZ_BALANCE_KICK)
12643 sched_balance_domains(rq, CPU_IDLE);
12644 }
12645
12646 if (time_after(next_balance, rq->next_balance)) {
12647 next_balance = rq->next_balance;
12648 update_next_balance = 1;
12649 }
12650 }
12651
12652 /*
12653 * next_balance will be updated only when there is a need.
12654 * When the CPU is attached to null domain for ex, it will not be
12655 * updated.
12656 */
12657 if (likely(update_next_balance))
12658 nohz.next_balance = next_balance;
12659
12660 if (flags & NOHZ_STATS_KICK)
12661 WRITE_ONCE(nohz.next_blocked,
12662 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12663
12664 abort:
12665 /* There is still blocked load, enable periodic update */
12666 if (has_blocked_load)
12667 WRITE_ONCE(nohz.has_blocked, 1);
12668 }
12669
12670 /*
12671 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12672 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12673 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12674 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12675 {
12676 unsigned int flags = this_rq->nohz_idle_balance;
12677
12678 if (!flags)
12679 return false;
12680
12681 this_rq->nohz_idle_balance = 0;
12682
12683 if (idle != CPU_IDLE)
12684 return false;
12685
12686 _nohz_idle_balance(this_rq, flags);
12687
12688 return true;
12689 }
12690
12691 /*
12692 * Check if we need to directly run the ILB for updating blocked load before
12693 * entering idle state. Here we run ILB directly without issuing IPIs.
12694 *
12695 * Note that when this function is called, the tick may not yet be stopped on
12696 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12697 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12698 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12699 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12700 * called from this function on (this) CPU that's not yet in the mask. That's
12701 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12702 * updating the blocked load of already idle CPUs without waking up one of
12703 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12704 * cpu about to enter idle, because it can take a long time.
12705 */
nohz_run_idle_balance(int cpu)12706 void nohz_run_idle_balance(int cpu)
12707 {
12708 unsigned int flags;
12709
12710 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12711
12712 /*
12713 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12714 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12715 */
12716 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12717 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12718 }
12719
nohz_newidle_balance(struct rq * this_rq)12720 static void nohz_newidle_balance(struct rq *this_rq)
12721 {
12722 int this_cpu = this_rq->cpu;
12723
12724 /*
12725 * This CPU doesn't want to be disturbed by scheduler
12726 * housekeeping
12727 */
12728 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12729 return;
12730
12731 /* Will wake up very soon. No time for doing anything else*/
12732 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12733 return;
12734
12735 /* Don't need to update blocked load of idle CPUs*/
12736 if (!READ_ONCE(nohz.has_blocked) ||
12737 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12738 return;
12739
12740 /*
12741 * Set the need to trigger ILB in order to update blocked load
12742 * before entering idle state.
12743 */
12744 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12745 }
12746
12747 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12748 static inline void nohz_balancer_kick(struct rq *rq) { }
12749
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12750 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12751 {
12752 return false;
12753 }
12754
nohz_newidle_balance(struct rq * this_rq)12755 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12756 #endif /* CONFIG_NO_HZ_COMMON */
12757
12758 /*
12759 * sched_balance_newidle is called by schedule() if this_cpu is about to become
12760 * idle. Attempts to pull tasks from other CPUs.
12761 *
12762 * Returns:
12763 * < 0 - we released the lock and there are !fair tasks present
12764 * 0 - failed, no new tasks
12765 * > 0 - success, new (fair) tasks present
12766 */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12767 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12768 {
12769 unsigned long next_balance = jiffies + HZ;
12770 int this_cpu = this_rq->cpu;
12771 int continue_balancing = 1;
12772 u64 t0, t1, curr_cost = 0;
12773 struct sched_domain *sd;
12774 int pulled_task = 0;
12775
12776 update_misfit_status(NULL, this_rq);
12777
12778 /*
12779 * There is a task waiting to run. No need to search for one.
12780 * Return 0; the task will be enqueued when switching to idle.
12781 */
12782 if (this_rq->ttwu_pending)
12783 return 0;
12784
12785 /*
12786 * We must set idle_stamp _before_ calling sched_balance_rq()
12787 * for CPU_NEWLY_IDLE, such that we measure the this duration
12788 * as idle time.
12789 */
12790 this_rq->idle_stamp = rq_clock(this_rq);
12791
12792 /*
12793 * Do not pull tasks towards !active CPUs...
12794 */
12795 if (!cpu_active(this_cpu))
12796 return 0;
12797
12798 /*
12799 * This is OK, because current is on_cpu, which avoids it being picked
12800 * for load-balance and preemption/IRQs are still disabled avoiding
12801 * further scheduler activity on it and we're being very careful to
12802 * re-start the picking loop.
12803 */
12804 rq_unpin_lock(this_rq, rf);
12805
12806 rcu_read_lock();
12807 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12808
12809 if (!get_rd_overloaded(this_rq->rd) ||
12810 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12811
12812 if (sd)
12813 update_next_balance(sd, &next_balance);
12814 rcu_read_unlock();
12815
12816 goto out;
12817 }
12818 rcu_read_unlock();
12819
12820 raw_spin_rq_unlock(this_rq);
12821
12822 t0 = sched_clock_cpu(this_cpu);
12823 sched_balance_update_blocked_averages(this_cpu);
12824
12825 rcu_read_lock();
12826 for_each_domain(this_cpu, sd) {
12827 u64 domain_cost;
12828
12829 update_next_balance(sd, &next_balance);
12830
12831 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12832 break;
12833
12834 if (sd->flags & SD_BALANCE_NEWIDLE) {
12835
12836 pulled_task = sched_balance_rq(this_cpu, this_rq,
12837 sd, CPU_NEWLY_IDLE,
12838 &continue_balancing);
12839
12840 t1 = sched_clock_cpu(this_cpu);
12841 domain_cost = t1 - t0;
12842 update_newidle_cost(sd, domain_cost);
12843
12844 curr_cost += domain_cost;
12845 t0 = t1;
12846 }
12847
12848 /*
12849 * Stop searching for tasks to pull if there are
12850 * now runnable tasks on this rq.
12851 */
12852 if (pulled_task || !continue_balancing)
12853 break;
12854 }
12855 rcu_read_unlock();
12856
12857 raw_spin_rq_lock(this_rq);
12858
12859 if (curr_cost > this_rq->max_idle_balance_cost)
12860 this_rq->max_idle_balance_cost = curr_cost;
12861
12862 /*
12863 * While browsing the domains, we released the rq lock, a task could
12864 * have been enqueued in the meantime. Since we're not going idle,
12865 * pretend we pulled a task.
12866 */
12867 if (this_rq->cfs.h_nr_running && !pulled_task)
12868 pulled_task = 1;
12869
12870 /* Is there a task of a high priority class? */
12871 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12872 pulled_task = -1;
12873
12874 out:
12875 /* Move the next balance forward */
12876 if (time_after(this_rq->next_balance, next_balance))
12877 this_rq->next_balance = next_balance;
12878
12879 if (pulled_task)
12880 this_rq->idle_stamp = 0;
12881 else
12882 nohz_newidle_balance(this_rq);
12883
12884 rq_repin_lock(this_rq, rf);
12885
12886 return pulled_task;
12887 }
12888
12889 /*
12890 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12891 *
12892 * - directly from the local scheduler_tick() for periodic load balancing
12893 *
12894 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12895 * through the SMP cross-call nohz_csd_func()
12896 */
sched_balance_softirq(void)12897 static __latent_entropy void sched_balance_softirq(void)
12898 {
12899 struct rq *this_rq = this_rq();
12900 enum cpu_idle_type idle = this_rq->idle_balance;
12901 /*
12902 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12903 * balancing on behalf of the other idle CPUs whose ticks are
12904 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12905 * give the idle CPUs a chance to load balance. Else we may
12906 * load balance only within the local sched_domain hierarchy
12907 * and abort nohz_idle_balance altogether if we pull some load.
12908 */
12909 if (nohz_idle_balance(this_rq, idle))
12910 return;
12911
12912 /* normal load balance */
12913 sched_balance_update_blocked_averages(this_rq->cpu);
12914 sched_balance_domains(this_rq, idle);
12915 }
12916
12917 /*
12918 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12919 */
sched_balance_trigger(struct rq * rq)12920 void sched_balance_trigger(struct rq *rq)
12921 {
12922 /*
12923 * Don't need to rebalance while attached to NULL domain or
12924 * runqueue CPU is not active
12925 */
12926 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12927 return;
12928
12929 if (time_after_eq(jiffies, rq->next_balance))
12930 raise_softirq(SCHED_SOFTIRQ);
12931
12932 nohz_balancer_kick(rq);
12933 }
12934
rq_online_fair(struct rq * rq)12935 static void rq_online_fair(struct rq *rq)
12936 {
12937 update_sysctl();
12938
12939 update_runtime_enabled(rq);
12940 }
12941
rq_offline_fair(struct rq * rq)12942 static void rq_offline_fair(struct rq *rq)
12943 {
12944 update_sysctl();
12945
12946 /* Ensure any throttled groups are reachable by pick_next_task */
12947 unthrottle_offline_cfs_rqs(rq);
12948
12949 /* Ensure that we remove rq contribution to group share: */
12950 clear_tg_offline_cfs_rqs(rq);
12951 }
12952
12953 #endif /* CONFIG_SMP */
12954
12955 #ifdef CONFIG_SCHED_CORE
12956 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12957 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12958 {
12959 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12960 u64 slice = se->slice;
12961
12962 return (rtime * min_nr_tasks > slice);
12963 }
12964
12965 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)12966 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12967 {
12968 if (!sched_core_enabled(rq))
12969 return;
12970
12971 /*
12972 * If runqueue has only one task which used up its slice and
12973 * if the sibling is forced idle, then trigger schedule to
12974 * give forced idle task a chance.
12975 *
12976 * sched_slice() considers only this active rq and it gets the
12977 * whole slice. But during force idle, we have siblings acting
12978 * like a single runqueue and hence we need to consider runnable
12979 * tasks on this CPU and the forced idle CPU. Ideally, we should
12980 * go through the forced idle rq, but that would be a perf hit.
12981 * We can assume that the forced idle CPU has at least
12982 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12983 * if we need to give up the CPU.
12984 */
12985 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12986 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12987 resched_curr(rq);
12988 }
12989
12990 /*
12991 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12992 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)12993 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12994 bool forceidle)
12995 {
12996 for_each_sched_entity(se) {
12997 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12998
12999 if (forceidle) {
13000 if (cfs_rq->forceidle_seq == fi_seq)
13001 break;
13002 cfs_rq->forceidle_seq = fi_seq;
13003 }
13004
13005 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13006 }
13007 }
13008
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13009 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13010 {
13011 struct sched_entity *se = &p->se;
13012
13013 if (p->sched_class != &fair_sched_class)
13014 return;
13015
13016 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13017 }
13018
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13019 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13020 bool in_fi)
13021 {
13022 struct rq *rq = task_rq(a);
13023 const struct sched_entity *sea = &a->se;
13024 const struct sched_entity *seb = &b->se;
13025 struct cfs_rq *cfs_rqa;
13026 struct cfs_rq *cfs_rqb;
13027 s64 delta;
13028
13029 SCHED_WARN_ON(task_rq(b)->core != rq->core);
13030
13031 #ifdef CONFIG_FAIR_GROUP_SCHED
13032 /*
13033 * Find an se in the hierarchy for tasks a and b, such that the se's
13034 * are immediate siblings.
13035 */
13036 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13037 int sea_depth = sea->depth;
13038 int seb_depth = seb->depth;
13039
13040 if (sea_depth >= seb_depth)
13041 sea = parent_entity(sea);
13042 if (sea_depth <= seb_depth)
13043 seb = parent_entity(seb);
13044 }
13045
13046 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13047 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13048
13049 cfs_rqa = sea->cfs_rq;
13050 cfs_rqb = seb->cfs_rq;
13051 #else
13052 cfs_rqa = &task_rq(a)->cfs;
13053 cfs_rqb = &task_rq(b)->cfs;
13054 #endif
13055
13056 /*
13057 * Find delta after normalizing se's vruntime with its cfs_rq's
13058 * min_vruntime_fi, which would have been updated in prior calls
13059 * to se_fi_update().
13060 */
13061 delta = (s64)(sea->vruntime - seb->vruntime) +
13062 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13063
13064 return delta > 0;
13065 }
13066
task_is_throttled_fair(struct task_struct * p,int cpu)13067 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13068 {
13069 struct cfs_rq *cfs_rq;
13070
13071 #ifdef CONFIG_FAIR_GROUP_SCHED
13072 cfs_rq = task_group(p)->cfs_rq[cpu];
13073 #else
13074 cfs_rq = &cpu_rq(cpu)->cfs;
13075 #endif
13076 return throttled_hierarchy(cfs_rq);
13077 }
13078 #else
task_tick_core(struct rq * rq,struct task_struct * curr)13079 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13080 #endif
13081
13082 /*
13083 * scheduler tick hitting a task of our scheduling class.
13084 *
13085 * NOTE: This function can be called remotely by the tick offload that
13086 * goes along full dynticks. Therefore no local assumption can be made
13087 * and everything must be accessed through the @rq and @curr passed in
13088 * parameters.
13089 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13090 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13091 {
13092 struct cfs_rq *cfs_rq;
13093 struct sched_entity *se = &curr->se;
13094
13095 for_each_sched_entity(se) {
13096 cfs_rq = cfs_rq_of(se);
13097 entity_tick(cfs_rq, se, queued);
13098 }
13099
13100 if (static_branch_unlikely(&sched_numa_balancing))
13101 task_tick_numa(rq, curr);
13102
13103 update_misfit_status(curr, rq);
13104 check_update_overutilized_status(task_rq(curr));
13105
13106 task_tick_core(rq, curr);
13107 }
13108
13109 /*
13110 * called on fork with the child task as argument from the parent's context
13111 * - child not yet on the tasklist
13112 * - preemption disabled
13113 */
task_fork_fair(struct task_struct * p)13114 static void task_fork_fair(struct task_struct *p)
13115 {
13116 set_task_max_allowed_capacity(p);
13117 }
13118
13119 /*
13120 * Priority of the task has changed. Check to see if we preempt
13121 * the current task.
13122 */
13123 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13124 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13125 {
13126 if (!task_on_rq_queued(p))
13127 return;
13128
13129 if (rq->cfs.nr_running == 1)
13130 return;
13131
13132 /*
13133 * Reschedule if we are currently running on this runqueue and
13134 * our priority decreased, or if we are not currently running on
13135 * this runqueue and our priority is higher than the current's
13136 */
13137 if (task_current_donor(rq, p)) {
13138 if (p->prio > oldprio)
13139 resched_curr(rq);
13140 } else
13141 wakeup_preempt(rq, p, 0);
13142 }
13143
13144 #ifdef CONFIG_FAIR_GROUP_SCHED
13145 /*
13146 * Propagate the changes of the sched_entity across the tg tree to make it
13147 * visible to the root
13148 */
propagate_entity_cfs_rq(struct sched_entity * se)13149 static void propagate_entity_cfs_rq(struct sched_entity *se)
13150 {
13151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13152
13153 if (cfs_rq_throttled(cfs_rq))
13154 return;
13155
13156 if (!throttled_hierarchy(cfs_rq))
13157 list_add_leaf_cfs_rq(cfs_rq);
13158
13159 /* Start to propagate at parent */
13160 se = se->parent;
13161
13162 for_each_sched_entity(se) {
13163 cfs_rq = cfs_rq_of(se);
13164
13165 update_load_avg(cfs_rq, se, UPDATE_TG);
13166
13167 if (cfs_rq_throttled(cfs_rq))
13168 break;
13169
13170 if (!throttled_hierarchy(cfs_rq))
13171 list_add_leaf_cfs_rq(cfs_rq);
13172 }
13173 }
13174 #else
propagate_entity_cfs_rq(struct sched_entity * se)13175 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13176 #endif
13177
detach_entity_cfs_rq(struct sched_entity * se)13178 static void detach_entity_cfs_rq(struct sched_entity *se)
13179 {
13180 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13181
13182 #ifdef CONFIG_SMP
13183 /*
13184 * In case the task sched_avg hasn't been attached:
13185 * - A forked task which hasn't been woken up by wake_up_new_task().
13186 * - A task which has been woken up by try_to_wake_up() but is
13187 * waiting for actually being woken up by sched_ttwu_pending().
13188 */
13189 if (!se->avg.last_update_time)
13190 return;
13191 #endif
13192
13193 /* Catch up with the cfs_rq and remove our load when we leave */
13194 update_load_avg(cfs_rq, se, 0);
13195 detach_entity_load_avg(cfs_rq, se);
13196 update_tg_load_avg(cfs_rq);
13197 propagate_entity_cfs_rq(se);
13198 }
13199
attach_entity_cfs_rq(struct sched_entity * se)13200 static void attach_entity_cfs_rq(struct sched_entity *se)
13201 {
13202 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13203
13204 /* Synchronize entity with its cfs_rq */
13205 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13206 attach_entity_load_avg(cfs_rq, se);
13207 update_tg_load_avg(cfs_rq);
13208 propagate_entity_cfs_rq(se);
13209 }
13210
detach_task_cfs_rq(struct task_struct * p)13211 static void detach_task_cfs_rq(struct task_struct *p)
13212 {
13213 struct sched_entity *se = &p->se;
13214
13215 detach_entity_cfs_rq(se);
13216 }
13217
attach_task_cfs_rq(struct task_struct * p)13218 static void attach_task_cfs_rq(struct task_struct *p)
13219 {
13220 struct sched_entity *se = &p->se;
13221
13222 attach_entity_cfs_rq(se);
13223 }
13224
switched_from_fair(struct rq * rq,struct task_struct * p)13225 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13226 {
13227 detach_task_cfs_rq(p);
13228 }
13229
switched_to_fair(struct rq * rq,struct task_struct * p)13230 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13231 {
13232 SCHED_WARN_ON(p->se.sched_delayed);
13233
13234 attach_task_cfs_rq(p);
13235
13236 set_task_max_allowed_capacity(p);
13237
13238 if (task_on_rq_queued(p)) {
13239 /*
13240 * We were most likely switched from sched_rt, so
13241 * kick off the schedule if running, otherwise just see
13242 * if we can still preempt the current task.
13243 */
13244 if (task_current_donor(rq, p))
13245 resched_curr(rq);
13246 else
13247 wakeup_preempt(rq, p, 0);
13248 }
13249 }
13250
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13251 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13252 {
13253 struct sched_entity *se = &p->se;
13254
13255 #ifdef CONFIG_SMP
13256 if (task_on_rq_queued(p)) {
13257 /*
13258 * Move the next running task to the front of the list, so our
13259 * cfs_tasks list becomes MRU one.
13260 */
13261 list_move(&se->group_node, &rq->cfs_tasks);
13262 }
13263 #endif
13264 if (!first)
13265 return;
13266
13267 SCHED_WARN_ON(se->sched_delayed);
13268
13269 if (hrtick_enabled_fair(rq))
13270 hrtick_start_fair(rq, p);
13271
13272 update_misfit_status(p, rq);
13273 sched_fair_update_stop_tick(rq, p);
13274 }
13275
13276 /*
13277 * Account for a task changing its policy or group.
13278 *
13279 * This routine is mostly called to set cfs_rq->curr field when a task
13280 * migrates between groups/classes.
13281 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13282 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13283 {
13284 struct sched_entity *se = &p->se;
13285
13286 for_each_sched_entity(se) {
13287 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13288
13289 set_next_entity(cfs_rq, se);
13290 /* ensure bandwidth has been allocated on our new cfs_rq */
13291 account_cfs_rq_runtime(cfs_rq, 0);
13292 }
13293
13294 __set_next_task_fair(rq, p, first);
13295 }
13296
init_cfs_rq(struct cfs_rq * cfs_rq)13297 void init_cfs_rq(struct cfs_rq *cfs_rq)
13298 {
13299 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13300 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13301 #ifdef CONFIG_SMP
13302 raw_spin_lock_init(&cfs_rq->removed.lock);
13303 #endif
13304 }
13305
13306 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13307 static void task_change_group_fair(struct task_struct *p)
13308 {
13309 /*
13310 * We couldn't detach or attach a forked task which
13311 * hasn't been woken up by wake_up_new_task().
13312 */
13313 if (READ_ONCE(p->__state) == TASK_NEW)
13314 return;
13315
13316 detach_task_cfs_rq(p);
13317
13318 #ifdef CONFIG_SMP
13319 /* Tell se's cfs_rq has been changed -- migrated */
13320 p->se.avg.last_update_time = 0;
13321 #endif
13322 set_task_rq(p, task_cpu(p));
13323 attach_task_cfs_rq(p);
13324 }
13325
free_fair_sched_group(struct task_group * tg)13326 void free_fair_sched_group(struct task_group *tg)
13327 {
13328 int i;
13329
13330 for_each_possible_cpu(i) {
13331 if (tg->cfs_rq)
13332 kfree(tg->cfs_rq[i]);
13333 if (tg->se)
13334 kfree(tg->se[i]);
13335 }
13336
13337 kfree(tg->cfs_rq);
13338 kfree(tg->se);
13339 }
13340
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13341 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13342 {
13343 struct sched_entity *se;
13344 struct cfs_rq *cfs_rq;
13345 int i;
13346
13347 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13348 if (!tg->cfs_rq)
13349 goto err;
13350 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13351 if (!tg->se)
13352 goto err;
13353
13354 tg->shares = NICE_0_LOAD;
13355
13356 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13357
13358 for_each_possible_cpu(i) {
13359 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13360 GFP_KERNEL, cpu_to_node(i));
13361 if (!cfs_rq)
13362 goto err;
13363
13364 se = kzalloc_node(sizeof(struct sched_entity_stats),
13365 GFP_KERNEL, cpu_to_node(i));
13366 if (!se)
13367 goto err_free_rq;
13368
13369 init_cfs_rq(cfs_rq);
13370 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13371 init_entity_runnable_average(se);
13372 }
13373
13374 return 1;
13375
13376 err_free_rq:
13377 kfree(cfs_rq);
13378 err:
13379 return 0;
13380 }
13381
online_fair_sched_group(struct task_group * tg)13382 void online_fair_sched_group(struct task_group *tg)
13383 {
13384 struct sched_entity *se;
13385 struct rq_flags rf;
13386 struct rq *rq;
13387 int i;
13388
13389 for_each_possible_cpu(i) {
13390 rq = cpu_rq(i);
13391 se = tg->se[i];
13392 rq_lock_irq(rq, &rf);
13393 update_rq_clock(rq);
13394 attach_entity_cfs_rq(se);
13395 sync_throttle(tg, i);
13396 rq_unlock_irq(rq, &rf);
13397 }
13398 }
13399
unregister_fair_sched_group(struct task_group * tg)13400 void unregister_fair_sched_group(struct task_group *tg)
13401 {
13402 int cpu;
13403
13404 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13405
13406 for_each_possible_cpu(cpu) {
13407 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13408 struct sched_entity *se = tg->se[cpu];
13409 struct rq *rq = cpu_rq(cpu);
13410
13411 if (se) {
13412 if (se->sched_delayed) {
13413 guard(rq_lock_irqsave)(rq);
13414 if (se->sched_delayed) {
13415 update_rq_clock(rq);
13416 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13417 }
13418 list_del_leaf_cfs_rq(cfs_rq);
13419 }
13420 remove_entity_load_avg(se);
13421 }
13422
13423 /*
13424 * Only empty task groups can be destroyed; so we can speculatively
13425 * check on_list without danger of it being re-added.
13426 */
13427 if (cfs_rq->on_list) {
13428 guard(rq_lock_irqsave)(rq);
13429 list_del_leaf_cfs_rq(cfs_rq);
13430 }
13431 }
13432 }
13433
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13434 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13435 struct sched_entity *se, int cpu,
13436 struct sched_entity *parent)
13437 {
13438 struct rq *rq = cpu_rq(cpu);
13439
13440 cfs_rq->tg = tg;
13441 cfs_rq->rq = rq;
13442 init_cfs_rq_runtime(cfs_rq);
13443
13444 tg->cfs_rq[cpu] = cfs_rq;
13445 tg->se[cpu] = se;
13446
13447 /* se could be NULL for root_task_group */
13448 if (!se)
13449 return;
13450
13451 if (!parent) {
13452 se->cfs_rq = &rq->cfs;
13453 se->depth = 0;
13454 } else {
13455 se->cfs_rq = parent->my_q;
13456 se->depth = parent->depth + 1;
13457 }
13458
13459 se->my_q = cfs_rq;
13460 /* guarantee group entities always have weight */
13461 update_load_set(&se->load, NICE_0_LOAD);
13462 se->parent = parent;
13463 }
13464
13465 static DEFINE_MUTEX(shares_mutex);
13466
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13467 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13468 {
13469 int i;
13470
13471 lockdep_assert_held(&shares_mutex);
13472
13473 /*
13474 * We can't change the weight of the root cgroup.
13475 */
13476 if (!tg->se[0])
13477 return -EINVAL;
13478
13479 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13480
13481 if (tg->shares == shares)
13482 return 0;
13483
13484 tg->shares = shares;
13485 for_each_possible_cpu(i) {
13486 struct rq *rq = cpu_rq(i);
13487 struct sched_entity *se = tg->se[i];
13488 struct rq_flags rf;
13489
13490 /* Propagate contribution to hierarchy */
13491 rq_lock_irqsave(rq, &rf);
13492 update_rq_clock(rq);
13493 for_each_sched_entity(se) {
13494 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13495 update_cfs_group(se);
13496 }
13497 rq_unlock_irqrestore(rq, &rf);
13498 }
13499
13500 return 0;
13501 }
13502
sched_group_set_shares(struct task_group * tg,unsigned long shares)13503 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13504 {
13505 int ret;
13506
13507 mutex_lock(&shares_mutex);
13508 if (tg_is_idle(tg))
13509 ret = -EINVAL;
13510 else
13511 ret = __sched_group_set_shares(tg, shares);
13512 mutex_unlock(&shares_mutex);
13513
13514 return ret;
13515 }
13516
sched_group_set_idle(struct task_group * tg,long idle)13517 int sched_group_set_idle(struct task_group *tg, long idle)
13518 {
13519 int i;
13520
13521 if (tg == &root_task_group)
13522 return -EINVAL;
13523
13524 if (idle < 0 || idle > 1)
13525 return -EINVAL;
13526
13527 mutex_lock(&shares_mutex);
13528
13529 if (tg->idle == idle) {
13530 mutex_unlock(&shares_mutex);
13531 return 0;
13532 }
13533
13534 tg->idle = idle;
13535
13536 for_each_possible_cpu(i) {
13537 struct rq *rq = cpu_rq(i);
13538 struct sched_entity *se = tg->se[i];
13539 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13540 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13541 long idle_task_delta;
13542 struct rq_flags rf;
13543
13544 rq_lock_irqsave(rq, &rf);
13545
13546 grp_cfs_rq->idle = idle;
13547 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13548 goto next_cpu;
13549
13550 if (se->on_rq) {
13551 parent_cfs_rq = cfs_rq_of(se);
13552 if (cfs_rq_is_idle(grp_cfs_rq))
13553 parent_cfs_rq->idle_nr_running++;
13554 else
13555 parent_cfs_rq->idle_nr_running--;
13556 }
13557
13558 idle_task_delta = grp_cfs_rq->h_nr_running -
13559 grp_cfs_rq->idle_h_nr_running;
13560 if (!cfs_rq_is_idle(grp_cfs_rq))
13561 idle_task_delta *= -1;
13562
13563 for_each_sched_entity(se) {
13564 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13565
13566 if (!se->on_rq)
13567 break;
13568
13569 cfs_rq->idle_h_nr_running += idle_task_delta;
13570
13571 /* Already accounted at parent level and above. */
13572 if (cfs_rq_is_idle(cfs_rq))
13573 break;
13574 }
13575
13576 next_cpu:
13577 rq_unlock_irqrestore(rq, &rf);
13578 }
13579
13580 /* Idle groups have minimum weight. */
13581 if (tg_is_idle(tg))
13582 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13583 else
13584 __sched_group_set_shares(tg, NICE_0_LOAD);
13585
13586 mutex_unlock(&shares_mutex);
13587 return 0;
13588 }
13589
13590 #endif /* CONFIG_FAIR_GROUP_SCHED */
13591
13592
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13593 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13594 {
13595 struct sched_entity *se = &task->se;
13596 unsigned int rr_interval = 0;
13597
13598 /*
13599 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13600 * idle runqueue:
13601 */
13602 if (rq->cfs.load.weight)
13603 rr_interval = NS_TO_JIFFIES(se->slice);
13604
13605 return rr_interval;
13606 }
13607
13608 /*
13609 * All the scheduling class methods:
13610 */
13611 DEFINE_SCHED_CLASS(fair) = {
13612
13613 .enqueue_task = enqueue_task_fair,
13614 .dequeue_task = dequeue_task_fair,
13615 .yield_task = yield_task_fair,
13616 .yield_to_task = yield_to_task_fair,
13617
13618 .wakeup_preempt = check_preempt_wakeup_fair,
13619
13620 .pick_task = pick_task_fair,
13621 .pick_next_task = __pick_next_task_fair,
13622 .put_prev_task = put_prev_task_fair,
13623 .set_next_task = set_next_task_fair,
13624
13625 #ifdef CONFIG_SMP
13626 .balance = balance_fair,
13627 .select_task_rq = select_task_rq_fair,
13628 .migrate_task_rq = migrate_task_rq_fair,
13629
13630 .rq_online = rq_online_fair,
13631 .rq_offline = rq_offline_fair,
13632
13633 .task_dead = task_dead_fair,
13634 .set_cpus_allowed = set_cpus_allowed_fair,
13635 #endif
13636
13637 .task_tick = task_tick_fair,
13638 .task_fork = task_fork_fair,
13639
13640 .reweight_task = reweight_task_fair,
13641 .prio_changed = prio_changed_fair,
13642 .switched_from = switched_from_fair,
13643 .switched_to = switched_to_fair,
13644
13645 .get_rr_interval = get_rr_interval_fair,
13646
13647 .update_curr = update_curr_fair,
13648
13649 #ifdef CONFIG_FAIR_GROUP_SCHED
13650 .task_change_group = task_change_group_fair,
13651 #endif
13652
13653 #ifdef CONFIG_SCHED_CORE
13654 .task_is_throttled = task_is_throttled_fair,
13655 #endif
13656
13657 #ifdef CONFIG_UCLAMP_TASK
13658 .uclamp_enabled = 1,
13659 #endif
13660 };
13661
13662 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13663 void print_cfs_stats(struct seq_file *m, int cpu)
13664 {
13665 struct cfs_rq *cfs_rq, *pos;
13666
13667 rcu_read_lock();
13668 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13669 print_cfs_rq(m, cpu, cfs_rq);
13670 rcu_read_unlock();
13671 }
13672
13673 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13674 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13675 {
13676 int node;
13677 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13678 struct numa_group *ng;
13679
13680 rcu_read_lock();
13681 ng = rcu_dereference(p->numa_group);
13682 for_each_online_node(node) {
13683 if (p->numa_faults) {
13684 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13685 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13686 }
13687 if (ng) {
13688 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13689 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13690 }
13691 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13692 }
13693 rcu_read_unlock();
13694 }
13695 #endif /* CONFIG_NUMA_BALANCING */
13696 #endif /* CONFIG_SCHED_DEBUG */
13697
init_sched_fair_class(void)13698 __init void init_sched_fair_class(void)
13699 {
13700 #ifdef CONFIG_SMP
13701 int i;
13702
13703 for_each_possible_cpu(i) {
13704 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13705 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13706 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13707 GFP_KERNEL, cpu_to_node(i));
13708
13709 #ifdef CONFIG_CFS_BANDWIDTH
13710 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13711 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13712 #endif
13713 }
13714
13715 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13716
13717 #ifdef CONFIG_NO_HZ_COMMON
13718 nohz.next_balance = jiffies;
13719 nohz.next_blocked = jiffies;
13720 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13721 #endif
13722 #endif /* SMP */
13723
13724 }
13725