1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object trees
18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19 * object_list is the main list holding the metadata (struct
20 * kmemleak_object) for the allocated memory blocks. The object trees are
21 * red black trees used to look-up metadata based on a pointer to the
22 * corresponding memory block. The kmemleak_object structures are added to
23 * the object_list and the object tree root in the create_object() function
24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27 * Accesses to the metadata (e.g. count) are protected by this lock. Note
28 * that some members of this structure may be protected by other means
29 * (atomic or kmemleak_lock). This lock is also held when scanning the
30 * corresponding memory block to avoid the kernel freeing it via the
31 * kmemleak_free() callback. This is less heavyweight than holding a global
32 * lock like kmemleak_lock during scanning.
33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34 * unreferenced objects at a time. The gray_list contains the objects which
35 * are already referenced or marked as false positives and need to be
36 * scanned. This list is only modified during a scanning episode when the
37 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
38 * Note that the kmemleak_object.use_count is incremented when an object is
39 * added to the gray_list and therefore cannot be freed. This mutex also
40 * prevents multiple users of the "kmemleak" debugfs file together with
41 * modifications to the memory scanning parameters including the scan_thread
42 * pointer
43 *
44 * Locks and mutexes are acquired/nested in the following order:
45 *
46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47 *
48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49 * regions.
50 *
51 * The kmemleak_object structures have a use_count incremented or decremented
52 * using the get_object()/put_object() functions. When the use_count becomes
53 * 0, this count can no longer be incremented and put_object() schedules the
54 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55 * function must be protected by rcu_read_lock() to avoid accessing a freed
56 * structure.
57 */
58
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105
106 /*
107 * Kmemleak configuration and common defines.
108 */
109 #define MAX_TRACE 16 /* stack trace length */
110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
114
115 #define BYTES_PER_POINTER sizeof(void *)
116
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119 struct hlist_node node;
120 unsigned long start;
121 size_t size;
122 };
123
124 #define KMEMLEAK_GREY 0
125 #define KMEMLEAK_BLACK -1
126
127 /*
128 * Structure holding the metadata for each allocated memory block.
129 * Modifications to such objects should be made while holding the
130 * object->lock. Insertions or deletions from object_list, gray_list or
131 * rb_node are already protected by the corresponding locks or mutex (see
132 * the notes on locking above). These objects are reference-counted
133 * (use_count) and freed using the RCU mechanism.
134 */
135 struct kmemleak_object {
136 raw_spinlock_t lock;
137 unsigned int flags; /* object status flags */
138 struct list_head object_list;
139 struct list_head gray_list;
140 struct rb_node rb_node;
141 struct rcu_head rcu; /* object_list lockless traversal */
142 /* object usage count; object freed when use_count == 0 */
143 atomic_t use_count;
144 unsigned int del_state; /* deletion state */
145 unsigned long pointer;
146 size_t size;
147 /* pass surplus references to this pointer */
148 unsigned long excess_ref;
149 /* minimum number of a pointers found before it is considered leak */
150 int min_count;
151 /* the total number of pointers found pointing to this object */
152 int count;
153 /* checksum for detecting modified objects */
154 u32 checksum;
155 depot_stack_handle_t trace_handle;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long jiffies; /* creation timestamp */
159 pid_t pid; /* pid of the current task */
160 char comm[TASK_COMM_LEN]; /* executable name */
161 };
162
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED (1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED (1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN (1 << 2)
169 /* flag set to fully scan the object when scan_area allocation failed */
170 #define OBJECT_FULL_SCAN (1 << 3)
171 /* flag set for object allocated with physical address */
172 #define OBJECT_PHYS (1 << 4)
173 /* flag set for per-CPU pointers */
174 #define OBJECT_PERCPU (1 << 5)
175
176 /* set when __remove_object() called */
177 #define DELSTATE_REMOVED (1 << 0)
178 /* set to temporarily prevent deletion from object_list */
179 #define DELSTATE_NO_DELETE (1 << 1)
180
181 #define HEX_PREFIX " "
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE 16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE 1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII 1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES 2
190
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* memory pool allocation */
196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
198 static LIST_HEAD(mem_pool_free_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* search tree for object (with OBJECT_PHYS flag) boundaries */
202 static struct rb_root object_phys_tree_root = RB_ROOT;
203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
204 static struct rb_root object_percpu_tree_root = RB_ROOT;
205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
207
208 /* allocation caches for kmemleak internal data */
209 static struct kmem_cache *object_cache;
210 static struct kmem_cache *scan_area_cache;
211
212 /* set if tracing memory operations is enabled */
213 static int kmemleak_enabled = 1;
214 /* same as above but only for the kmemleak_free() callback */
215 static int kmemleak_free_enabled = 1;
216 /* set in the late_initcall if there were no errors */
217 static int kmemleak_late_initialized;
218 /* set if a kmemleak warning was issued */
219 static int kmemleak_warning;
220 /* set if a fatal kmemleak error has occurred */
221 static int kmemleak_error;
222
223 /* minimum and maximum address that may be valid pointers */
224 static unsigned long min_addr = ULONG_MAX;
225 static unsigned long max_addr;
226
227 /* minimum and maximum address that may be valid per-CPU pointers */
228 static unsigned long min_percpu_addr = ULONG_MAX;
229 static unsigned long max_percpu_addr;
230
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
249 static void kmemleak_disable(void);
250
251 /*
252 * Print a warning and dump the stack trace.
253 */
254 #define kmemleak_warn(x...) do { \
255 pr_warn(x); \
256 dump_stack(); \
257 kmemleak_warning = 1; \
258 } while (0)
259
260 /*
261 * Macro invoked when a serious kmemleak condition occurred and cannot be
262 * recovered from. Kmemleak will be disabled and further allocation/freeing
263 * tracing no longer available.
264 */
265 #define kmemleak_stop(x...) do { \
266 kmemleak_warn(x); \
267 kmemleak_disable(); \
268 } while (0)
269
270 #define warn_or_seq_printf(seq, fmt, ...) do { \
271 if (seq) \
272 seq_printf(seq, fmt, ##__VA_ARGS__); \
273 else \
274 pr_warn(fmt, ##__VA_ARGS__); \
275 } while (0)
276
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 int rowsize, int groupsize, const void *buf,
279 size_t len, bool ascii)
280 {
281 if (seq)
282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 buf, len, ascii);
284 else
285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 rowsize, groupsize, buf, len, ascii);
287 }
288
289 /*
290 * Printing of the objects hex dump to the seq file. The number of lines to be
291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293 * with the object->lock held.
294 */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)295 static void hex_dump_object(struct seq_file *seq,
296 struct kmemleak_object *object)
297 {
298 const u8 *ptr = (const u8 *)object->pointer;
299 size_t len;
300
301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 return;
303
304 if (object->flags & OBJECT_PERCPU)
305 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
306
307 /* limit the number of lines to HEX_MAX_LINES */
308 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
309
310 if (object->flags & OBJECT_PERCPU)
311 warn_or_seq_printf(seq, " hex dump (first %zu bytes on cpu %d):\n",
312 len, raw_smp_processor_id());
313 else
314 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
315 kasan_disable_current();
316 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
317 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
318 kasan_enable_current();
319 }
320
321 /*
322 * Object colors, encoded with count and min_count:
323 * - white - orphan object, not enough references to it (count < min_count)
324 * - gray - not orphan, not marked as false positive (min_count == 0) or
325 * sufficient references to it (count >= min_count)
326 * - black - ignore, it doesn't contain references (e.g. text section)
327 * (min_count == -1). No function defined for this color.
328 * Newly created objects don't have any color assigned (object->count == -1)
329 * before the next memory scan when they become white.
330 */
color_white(const struct kmemleak_object * object)331 static bool color_white(const struct kmemleak_object *object)
332 {
333 return object->count != KMEMLEAK_BLACK &&
334 object->count < object->min_count;
335 }
336
color_gray(const struct kmemleak_object * object)337 static bool color_gray(const struct kmemleak_object *object)
338 {
339 return object->min_count != KMEMLEAK_BLACK &&
340 object->count >= object->min_count;
341 }
342
343 /*
344 * Objects are considered unreferenced only if their color is white, they have
345 * not be deleted and have a minimum age to avoid false positives caused by
346 * pointers temporarily stored in CPU registers.
347 */
unreferenced_object(struct kmemleak_object * object)348 static bool unreferenced_object(struct kmemleak_object *object)
349 {
350 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
351 time_before_eq(object->jiffies + jiffies_min_age,
352 jiffies_last_scan);
353 }
354
355 /*
356 * Printing of the unreferenced objects information to the seq file. The
357 * print_unreferenced function must be called with the object->lock held.
358 */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)359 static void print_unreferenced(struct seq_file *seq,
360 struct kmemleak_object *object)
361 {
362 int i;
363 unsigned long *entries;
364 unsigned int nr_entries;
365
366 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
367 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
368 object->pointer, object->size);
369 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
370 object->comm, object->pid, object->jiffies);
371 hex_dump_object(seq, object);
372 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum);
373
374 for (i = 0; i < nr_entries; i++) {
375 void *ptr = (void *)entries[i];
376 warn_or_seq_printf(seq, " %pS\n", ptr);
377 }
378 }
379
380 /*
381 * Print the kmemleak_object information. This function is used mainly for
382 * debugging special cases when kmemleak operations. It must be called with
383 * the object->lock held.
384 */
dump_object_info(struct kmemleak_object * object)385 static void dump_object_info(struct kmemleak_object *object)
386 {
387 pr_notice("Object 0x%08lx (size %zu):\n",
388 object->pointer, object->size);
389 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
390 object->comm, object->pid, object->jiffies);
391 pr_notice(" min_count = %d\n", object->min_count);
392 pr_notice(" count = %d\n", object->count);
393 pr_notice(" flags = 0x%x\n", object->flags);
394 pr_notice(" checksum = %u\n", object->checksum);
395 pr_notice(" backtrace:\n");
396 if (object->trace_handle)
397 stack_depot_print(object->trace_handle);
398 }
399
object_tree(unsigned long objflags)400 static struct rb_root *object_tree(unsigned long objflags)
401 {
402 if (objflags & OBJECT_PHYS)
403 return &object_phys_tree_root;
404 if (objflags & OBJECT_PERCPU)
405 return &object_percpu_tree_root;
406 return &object_tree_root;
407 }
408
409 /*
410 * Look-up a memory block metadata (kmemleak_object) in the object search
411 * tree based on a pointer value. If alias is 0, only values pointing to the
412 * beginning of the memory block are allowed. The kmemleak_lock must be held
413 * when calling this function.
414 */
__lookup_object(unsigned long ptr,int alias,unsigned int objflags)415 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
416 unsigned int objflags)
417 {
418 struct rb_node *rb = object_tree(objflags)->rb_node;
419 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
420
421 while (rb) {
422 struct kmemleak_object *object;
423 unsigned long untagged_objp;
424
425 object = rb_entry(rb, struct kmemleak_object, rb_node);
426 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
427
428 if (untagged_ptr < untagged_objp)
429 rb = object->rb_node.rb_left;
430 else if (untagged_objp + object->size <= untagged_ptr)
431 rb = object->rb_node.rb_right;
432 else if (untagged_objp == untagged_ptr || alias)
433 return object;
434 else {
435 kmemleak_warn("Found object by alias at 0x%08lx\n",
436 ptr);
437 dump_object_info(object);
438 break;
439 }
440 }
441 return NULL;
442 }
443
444 /* Look-up a kmemleak object which allocated with virtual address. */
lookup_object(unsigned long ptr,int alias)445 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
446 {
447 return __lookup_object(ptr, alias, 0);
448 }
449
450 /*
451 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
452 * that once an object's use_count reached 0, the RCU freeing was already
453 * registered and the object should no longer be used. This function must be
454 * called under the protection of rcu_read_lock().
455 */
get_object(struct kmemleak_object * object)456 static int get_object(struct kmemleak_object *object)
457 {
458 return atomic_inc_not_zero(&object->use_count);
459 }
460
461 /*
462 * Memory pool allocation and freeing. kmemleak_lock must not be held.
463 */
mem_pool_alloc(gfp_t gfp)464 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
465 {
466 unsigned long flags;
467 struct kmemleak_object *object;
468
469 /* try the slab allocator first */
470 if (object_cache) {
471 object = kmem_cache_alloc_noprof(object_cache,
472 gfp_nested_mask(gfp));
473 if (object)
474 return object;
475 }
476
477 /* slab allocation failed, try the memory pool */
478 raw_spin_lock_irqsave(&kmemleak_lock, flags);
479 object = list_first_entry_or_null(&mem_pool_free_list,
480 typeof(*object), object_list);
481 if (object)
482 list_del(&object->object_list);
483 else if (mem_pool_free_count)
484 object = &mem_pool[--mem_pool_free_count];
485 else
486 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
487 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
488
489 return object;
490 }
491
492 /*
493 * Return the object to either the slab allocator or the memory pool.
494 */
mem_pool_free(struct kmemleak_object * object)495 static void mem_pool_free(struct kmemleak_object *object)
496 {
497 unsigned long flags;
498
499 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
500 kmem_cache_free(object_cache, object);
501 return;
502 }
503
504 /* add the object to the memory pool free list */
505 raw_spin_lock_irqsave(&kmemleak_lock, flags);
506 list_add(&object->object_list, &mem_pool_free_list);
507 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
508 }
509
510 /*
511 * RCU callback to free a kmemleak_object.
512 */
free_object_rcu(struct rcu_head * rcu)513 static void free_object_rcu(struct rcu_head *rcu)
514 {
515 struct hlist_node *tmp;
516 struct kmemleak_scan_area *area;
517 struct kmemleak_object *object =
518 container_of(rcu, struct kmemleak_object, rcu);
519
520 /*
521 * Once use_count is 0 (guaranteed by put_object), there is no other
522 * code accessing this object, hence no need for locking.
523 */
524 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
525 hlist_del(&area->node);
526 kmem_cache_free(scan_area_cache, area);
527 }
528 mem_pool_free(object);
529 }
530
531 /*
532 * Decrement the object use_count. Once the count is 0, free the object using
533 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
534 * delete_object() path, the delayed RCU freeing ensures that there is no
535 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
536 * is also possible.
537 */
put_object(struct kmemleak_object * object)538 static void put_object(struct kmemleak_object *object)
539 {
540 if (!atomic_dec_and_test(&object->use_count))
541 return;
542
543 /* should only get here after delete_object was called */
544 WARN_ON(object->flags & OBJECT_ALLOCATED);
545
546 /*
547 * It may be too early for the RCU callbacks, however, there is no
548 * concurrent object_list traversal when !object_cache and all objects
549 * came from the memory pool. Free the object directly.
550 */
551 if (object_cache)
552 call_rcu(&object->rcu, free_object_rcu);
553 else
554 free_object_rcu(&object->rcu);
555 }
556
557 /*
558 * Look up an object in the object search tree and increase its use_count.
559 */
__find_and_get_object(unsigned long ptr,int alias,unsigned int objflags)560 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
561 unsigned int objflags)
562 {
563 unsigned long flags;
564 struct kmemleak_object *object;
565
566 rcu_read_lock();
567 raw_spin_lock_irqsave(&kmemleak_lock, flags);
568 object = __lookup_object(ptr, alias, objflags);
569 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
570
571 /* check whether the object is still available */
572 if (object && !get_object(object))
573 object = NULL;
574 rcu_read_unlock();
575
576 return object;
577 }
578
579 /* Look up and get an object which allocated with virtual address. */
find_and_get_object(unsigned long ptr,int alias)580 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
581 {
582 return __find_and_get_object(ptr, alias, 0);
583 }
584
585 /*
586 * Remove an object from its object tree and object_list. Must be called with
587 * the kmemleak_lock held _if_ kmemleak is still enabled.
588 */
__remove_object(struct kmemleak_object * object)589 static void __remove_object(struct kmemleak_object *object)
590 {
591 rb_erase(&object->rb_node, object_tree(object->flags));
592 if (!(object->del_state & DELSTATE_NO_DELETE))
593 list_del_rcu(&object->object_list);
594 object->del_state |= DELSTATE_REMOVED;
595 }
596
__find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)597 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
598 int alias,
599 unsigned int objflags)
600 {
601 struct kmemleak_object *object;
602
603 object = __lookup_object(ptr, alias, objflags);
604 if (object)
605 __remove_object(object);
606
607 return object;
608 }
609
610 /*
611 * Look up an object in the object search tree and remove it from both object
612 * tree root and object_list. The returned object's use_count should be at
613 * least 1, as initially set by create_object().
614 */
find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)615 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
616 unsigned int objflags)
617 {
618 unsigned long flags;
619 struct kmemleak_object *object;
620
621 raw_spin_lock_irqsave(&kmemleak_lock, flags);
622 object = __find_and_remove_object(ptr, alias, objflags);
623 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
624
625 return object;
626 }
627
set_track_prepare(void)628 static noinline depot_stack_handle_t set_track_prepare(void)
629 {
630 depot_stack_handle_t trace_handle;
631 unsigned long entries[MAX_TRACE];
632 unsigned int nr_entries;
633
634 /*
635 * Use object_cache to determine whether kmemleak_init() has
636 * been invoked. stack_depot_early_init() is called before
637 * kmemleak_init() in mm_core_init().
638 */
639 if (!object_cache)
640 return 0;
641 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
642 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
643
644 return trace_handle;
645 }
646
__alloc_object(gfp_t gfp)647 static struct kmemleak_object *__alloc_object(gfp_t gfp)
648 {
649 struct kmemleak_object *object;
650
651 object = mem_pool_alloc(gfp);
652 if (!object) {
653 pr_warn("Cannot allocate a kmemleak_object structure\n");
654 kmemleak_disable();
655 return NULL;
656 }
657
658 INIT_LIST_HEAD(&object->object_list);
659 INIT_LIST_HEAD(&object->gray_list);
660 INIT_HLIST_HEAD(&object->area_list);
661 raw_spin_lock_init(&object->lock);
662 atomic_set(&object->use_count, 1);
663 object->excess_ref = 0;
664 object->count = 0; /* white color initially */
665 object->checksum = 0;
666 object->del_state = 0;
667
668 /* task information */
669 if (in_hardirq()) {
670 object->pid = 0;
671 strscpy(object->comm, "hardirq");
672 } else if (in_serving_softirq()) {
673 object->pid = 0;
674 strscpy(object->comm, "softirq");
675 } else {
676 object->pid = current->pid;
677 /*
678 * There is a small chance of a race with set_task_comm(),
679 * however using get_task_comm() here may cause locking
680 * dependency issues with current->alloc_lock. In the worst
681 * case, the command line is not correct.
682 */
683 strscpy(object->comm, current->comm);
684 }
685
686 /* kernel backtrace */
687 object->trace_handle = set_track_prepare();
688
689 return object;
690 }
691
__link_object(struct kmemleak_object * object,unsigned long ptr,size_t size,int min_count,unsigned int objflags)692 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
693 size_t size, int min_count, unsigned int objflags)
694 {
695
696 struct kmemleak_object *parent;
697 struct rb_node **link, *rb_parent;
698 unsigned long untagged_ptr;
699 unsigned long untagged_objp;
700
701 object->flags = OBJECT_ALLOCATED | objflags;
702 object->pointer = ptr;
703 object->size = kfence_ksize((void *)ptr) ?: size;
704 object->min_count = min_count;
705 object->jiffies = jiffies;
706
707 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
708 /*
709 * Only update min_addr and max_addr with object storing virtual
710 * address. And update min_percpu_addr max_percpu_addr for per-CPU
711 * objects.
712 */
713 if (objflags & OBJECT_PERCPU) {
714 min_percpu_addr = min(min_percpu_addr, untagged_ptr);
715 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
716 } else if (!(objflags & OBJECT_PHYS)) {
717 min_addr = min(min_addr, untagged_ptr);
718 max_addr = max(max_addr, untagged_ptr + size);
719 }
720 link = &object_tree(objflags)->rb_node;
721 rb_parent = NULL;
722 while (*link) {
723 rb_parent = *link;
724 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
725 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
726 if (untagged_ptr + size <= untagged_objp)
727 link = &parent->rb_node.rb_left;
728 else if (untagged_objp + parent->size <= untagged_ptr)
729 link = &parent->rb_node.rb_right;
730 else {
731 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
732 ptr);
733 /*
734 * No need for parent->lock here since "parent" cannot
735 * be freed while the kmemleak_lock is held.
736 */
737 dump_object_info(parent);
738 return -EEXIST;
739 }
740 }
741 rb_link_node(&object->rb_node, rb_parent, link);
742 rb_insert_color(&object->rb_node, object_tree(objflags));
743 list_add_tail_rcu(&object->object_list, &object_list);
744
745 return 0;
746 }
747
748 /*
749 * Create the metadata (struct kmemleak_object) corresponding to an allocated
750 * memory block and add it to the object_list and object tree.
751 */
__create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp,unsigned int objflags)752 static void __create_object(unsigned long ptr, size_t size,
753 int min_count, gfp_t gfp, unsigned int objflags)
754 {
755 struct kmemleak_object *object;
756 unsigned long flags;
757 int ret;
758
759 object = __alloc_object(gfp);
760 if (!object)
761 return;
762
763 raw_spin_lock_irqsave(&kmemleak_lock, flags);
764 ret = __link_object(object, ptr, size, min_count, objflags);
765 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
766 if (ret)
767 mem_pool_free(object);
768 }
769
770 /* Create kmemleak object which allocated with virtual address. */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)771 static void create_object(unsigned long ptr, size_t size,
772 int min_count, gfp_t gfp)
773 {
774 __create_object(ptr, size, min_count, gfp, 0);
775 }
776
777 /* Create kmemleak object which allocated with physical address. */
create_object_phys(unsigned long ptr,size_t size,int min_count,gfp_t gfp)778 static void create_object_phys(unsigned long ptr, size_t size,
779 int min_count, gfp_t gfp)
780 {
781 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
782 }
783
784 /* Create kmemleak object corresponding to a per-CPU allocation. */
create_object_percpu(unsigned long ptr,size_t size,int min_count,gfp_t gfp)785 static void create_object_percpu(unsigned long ptr, size_t size,
786 int min_count, gfp_t gfp)
787 {
788 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
789 }
790
791 /*
792 * Mark the object as not allocated and schedule RCU freeing via put_object().
793 */
__delete_object(struct kmemleak_object * object)794 static void __delete_object(struct kmemleak_object *object)
795 {
796 unsigned long flags;
797
798 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
799 WARN_ON(atomic_read(&object->use_count) < 1);
800
801 /*
802 * Locking here also ensures that the corresponding memory block
803 * cannot be freed when it is being scanned.
804 */
805 raw_spin_lock_irqsave(&object->lock, flags);
806 object->flags &= ~OBJECT_ALLOCATED;
807 raw_spin_unlock_irqrestore(&object->lock, flags);
808 put_object(object);
809 }
810
811 /*
812 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
813 * delete it.
814 */
delete_object_full(unsigned long ptr,unsigned int objflags)815 static void delete_object_full(unsigned long ptr, unsigned int objflags)
816 {
817 struct kmemleak_object *object;
818
819 object = find_and_remove_object(ptr, 0, objflags);
820 if (!object) {
821 #ifdef DEBUG
822 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
823 ptr);
824 #endif
825 return;
826 }
827 __delete_object(object);
828 }
829
830 /*
831 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
832 * delete it. If the memory block is partially freed, the function may create
833 * additional metadata for the remaining parts of the block.
834 */
delete_object_part(unsigned long ptr,size_t size,unsigned int objflags)835 static void delete_object_part(unsigned long ptr, size_t size,
836 unsigned int objflags)
837 {
838 struct kmemleak_object *object, *object_l, *object_r;
839 unsigned long start, end, flags;
840
841 object_l = __alloc_object(GFP_KERNEL);
842 if (!object_l)
843 return;
844
845 object_r = __alloc_object(GFP_KERNEL);
846 if (!object_r)
847 goto out;
848
849 raw_spin_lock_irqsave(&kmemleak_lock, flags);
850 object = __find_and_remove_object(ptr, 1, objflags);
851 if (!object) {
852 #ifdef DEBUG
853 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
854 ptr, size);
855 #endif
856 goto unlock;
857 }
858
859 /*
860 * Create one or two objects that may result from the memory block
861 * split. Note that partial freeing is only done by free_bootmem() and
862 * this happens before kmemleak_init() is called.
863 */
864 start = object->pointer;
865 end = object->pointer + object->size;
866 if ((ptr > start) &&
867 !__link_object(object_l, start, ptr - start,
868 object->min_count, objflags))
869 object_l = NULL;
870 if ((ptr + size < end) &&
871 !__link_object(object_r, ptr + size, end - ptr - size,
872 object->min_count, objflags))
873 object_r = NULL;
874
875 unlock:
876 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
877 if (object)
878 __delete_object(object);
879
880 out:
881 if (object_l)
882 mem_pool_free(object_l);
883 if (object_r)
884 mem_pool_free(object_r);
885 }
886
__paint_it(struct kmemleak_object * object,int color)887 static void __paint_it(struct kmemleak_object *object, int color)
888 {
889 object->min_count = color;
890 if (color == KMEMLEAK_BLACK)
891 object->flags |= OBJECT_NO_SCAN;
892 }
893
paint_it(struct kmemleak_object * object,int color)894 static void paint_it(struct kmemleak_object *object, int color)
895 {
896 unsigned long flags;
897
898 raw_spin_lock_irqsave(&object->lock, flags);
899 __paint_it(object, color);
900 raw_spin_unlock_irqrestore(&object->lock, flags);
901 }
902
paint_ptr(unsigned long ptr,int color,unsigned int objflags)903 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
904 {
905 struct kmemleak_object *object;
906
907 object = __find_and_get_object(ptr, 0, objflags);
908 if (!object) {
909 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
910 ptr,
911 (color == KMEMLEAK_GREY) ? "Grey" :
912 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
913 return;
914 }
915 paint_it(object, color);
916 put_object(object);
917 }
918
919 /*
920 * Mark an object permanently as gray-colored so that it can no longer be
921 * reported as a leak. This is used in general to mark a false positive.
922 */
make_gray_object(unsigned long ptr)923 static void make_gray_object(unsigned long ptr)
924 {
925 paint_ptr(ptr, KMEMLEAK_GREY, 0);
926 }
927
928 /*
929 * Mark the object as black-colored so that it is ignored from scans and
930 * reporting.
931 */
make_black_object(unsigned long ptr,unsigned int objflags)932 static void make_black_object(unsigned long ptr, unsigned int objflags)
933 {
934 paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
935 }
936
937 /*
938 * Reset the checksum of an object. The immediate effect is that it will not
939 * be reported as a leak during the next scan until its checksum is updated.
940 */
reset_checksum(unsigned long ptr)941 static void reset_checksum(unsigned long ptr)
942 {
943 unsigned long flags;
944 struct kmemleak_object *object;
945
946 object = find_and_get_object(ptr, 0);
947 if (!object) {
948 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
949 ptr);
950 return;
951 }
952
953 raw_spin_lock_irqsave(&object->lock, flags);
954 object->checksum = 0;
955 raw_spin_unlock_irqrestore(&object->lock, flags);
956 put_object(object);
957 }
958
959 /*
960 * Add a scanning area to the object. If at least one such area is added,
961 * kmemleak will only scan these ranges rather than the whole memory block.
962 */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)963 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
964 {
965 unsigned long flags;
966 struct kmemleak_object *object;
967 struct kmemleak_scan_area *area = NULL;
968 unsigned long untagged_ptr;
969 unsigned long untagged_objp;
970
971 object = find_and_get_object(ptr, 1);
972 if (!object) {
973 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
974 ptr);
975 return;
976 }
977
978 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
979 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
980
981 if (scan_area_cache)
982 area = kmem_cache_alloc_noprof(scan_area_cache,
983 gfp_nested_mask(gfp));
984
985 raw_spin_lock_irqsave(&object->lock, flags);
986 if (!area) {
987 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
988 /* mark the object for full scan to avoid false positives */
989 object->flags |= OBJECT_FULL_SCAN;
990 goto out_unlock;
991 }
992 if (size == SIZE_MAX) {
993 size = untagged_objp + object->size - untagged_ptr;
994 } else if (untagged_ptr + size > untagged_objp + object->size) {
995 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
996 dump_object_info(object);
997 kmem_cache_free(scan_area_cache, area);
998 goto out_unlock;
999 }
1000
1001 INIT_HLIST_NODE(&area->node);
1002 area->start = ptr;
1003 area->size = size;
1004
1005 hlist_add_head(&area->node, &object->area_list);
1006 out_unlock:
1007 raw_spin_unlock_irqrestore(&object->lock, flags);
1008 put_object(object);
1009 }
1010
1011 /*
1012 * Any surplus references (object already gray) to 'ptr' are passed to
1013 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1014 * vm_struct may be used as an alternative reference to the vmalloc'ed object
1015 * (see free_thread_stack()).
1016 */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)1017 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
1018 {
1019 unsigned long flags;
1020 struct kmemleak_object *object;
1021
1022 object = find_and_get_object(ptr, 0);
1023 if (!object) {
1024 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1025 ptr);
1026 return;
1027 }
1028
1029 raw_spin_lock_irqsave(&object->lock, flags);
1030 object->excess_ref = excess_ref;
1031 raw_spin_unlock_irqrestore(&object->lock, flags);
1032 put_object(object);
1033 }
1034
1035 /*
1036 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1037 * pointer. Such object will not be scanned by kmemleak but references to it
1038 * are searched.
1039 */
object_no_scan(unsigned long ptr)1040 static void object_no_scan(unsigned long ptr)
1041 {
1042 unsigned long flags;
1043 struct kmemleak_object *object;
1044
1045 object = find_and_get_object(ptr, 0);
1046 if (!object) {
1047 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1048 return;
1049 }
1050
1051 raw_spin_lock_irqsave(&object->lock, flags);
1052 object->flags |= OBJECT_NO_SCAN;
1053 raw_spin_unlock_irqrestore(&object->lock, flags);
1054 put_object(object);
1055 }
1056
1057 /**
1058 * kmemleak_alloc - register a newly allocated object
1059 * @ptr: pointer to beginning of the object
1060 * @size: size of the object
1061 * @min_count: minimum number of references to this object. If during memory
1062 * scanning a number of references less than @min_count is found,
1063 * the object is reported as a memory leak. If @min_count is 0,
1064 * the object is never reported as a leak. If @min_count is -1,
1065 * the object is ignored (not scanned and not reported as a leak)
1066 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1067 *
1068 * This function is called from the kernel allocators when a new object
1069 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1070 */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)1071 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1072 gfp_t gfp)
1073 {
1074 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1075
1076 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1077 create_object((unsigned long)ptr, size, min_count, gfp);
1078 }
1079 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1080
1081 /**
1082 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1083 * @ptr: __percpu pointer to beginning of the object
1084 * @size: size of the object
1085 * @gfp: flags used for kmemleak internal memory allocations
1086 *
1087 * This function is called from the kernel percpu allocator when a new object
1088 * (memory block) is allocated (alloc_percpu).
1089 */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)1090 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1091 gfp_t gfp)
1092 {
1093 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1094
1095 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1096 create_object_percpu((__force unsigned long)ptr, size, 0, gfp);
1097 }
1098 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1099
1100 /**
1101 * kmemleak_vmalloc - register a newly vmalloc'ed object
1102 * @area: pointer to vm_struct
1103 * @size: size of the object
1104 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1105 *
1106 * This function is called from the vmalloc() kernel allocator when a new
1107 * object (memory block) is allocated.
1108 */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)1109 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1110 {
1111 pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1112
1113 /*
1114 * A min_count = 2 is needed because vm_struct contains a reference to
1115 * the virtual address of the vmalloc'ed block.
1116 */
1117 if (kmemleak_enabled) {
1118 create_object((unsigned long)area->addr, size, 2, gfp);
1119 object_set_excess_ref((unsigned long)area,
1120 (unsigned long)area->addr);
1121 }
1122 }
1123 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1124
1125 /**
1126 * kmemleak_free - unregister a previously registered object
1127 * @ptr: pointer to beginning of the object
1128 *
1129 * This function is called from the kernel allocators when an object (memory
1130 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1131 */
kmemleak_free(const void * ptr)1132 void __ref kmemleak_free(const void *ptr)
1133 {
1134 pr_debug("%s(0x%px)\n", __func__, ptr);
1135
1136 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1137 delete_object_full((unsigned long)ptr, 0);
1138 }
1139 EXPORT_SYMBOL_GPL(kmemleak_free);
1140
1141 /**
1142 * kmemleak_free_part - partially unregister a previously registered object
1143 * @ptr: pointer to the beginning or inside the object. This also
1144 * represents the start of the range to be freed
1145 * @size: size to be unregistered
1146 *
1147 * This function is called when only a part of a memory block is freed
1148 * (usually from the bootmem allocator).
1149 */
kmemleak_free_part(const void * ptr,size_t size)1150 void __ref kmemleak_free_part(const void *ptr, size_t size)
1151 {
1152 pr_debug("%s(0x%px)\n", __func__, ptr);
1153
1154 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1155 delete_object_part((unsigned long)ptr, size, 0);
1156 }
1157 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1158
1159 /**
1160 * kmemleak_free_percpu - unregister a previously registered __percpu object
1161 * @ptr: __percpu pointer to beginning of the object
1162 *
1163 * This function is called from the kernel percpu allocator when an object
1164 * (memory block) is freed (free_percpu).
1165 */
kmemleak_free_percpu(const void __percpu * ptr)1166 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1167 {
1168 pr_debug("%s(0x%px)\n", __func__, ptr);
1169
1170 if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1171 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
1172 }
1173 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1174
1175 /**
1176 * kmemleak_update_trace - update object allocation stack trace
1177 * @ptr: pointer to beginning of the object
1178 *
1179 * Override the object allocation stack trace for cases where the actual
1180 * allocation place is not always useful.
1181 */
kmemleak_update_trace(const void * ptr)1182 void __ref kmemleak_update_trace(const void *ptr)
1183 {
1184 struct kmemleak_object *object;
1185 depot_stack_handle_t trace_handle;
1186 unsigned long flags;
1187
1188 pr_debug("%s(0x%px)\n", __func__, ptr);
1189
1190 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1191 return;
1192
1193 object = find_and_get_object((unsigned long)ptr, 1);
1194 if (!object) {
1195 #ifdef DEBUG
1196 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1197 ptr);
1198 #endif
1199 return;
1200 }
1201
1202 trace_handle = set_track_prepare();
1203 raw_spin_lock_irqsave(&object->lock, flags);
1204 object->trace_handle = trace_handle;
1205 raw_spin_unlock_irqrestore(&object->lock, flags);
1206
1207 put_object(object);
1208 }
1209 EXPORT_SYMBOL(kmemleak_update_trace);
1210
1211 /**
1212 * kmemleak_not_leak - mark an allocated object as false positive
1213 * @ptr: pointer to beginning of the object
1214 *
1215 * Calling this function on an object will cause the memory block to no longer
1216 * be reported as leak and always be scanned.
1217 */
kmemleak_not_leak(const void * ptr)1218 void __ref kmemleak_not_leak(const void *ptr)
1219 {
1220 pr_debug("%s(0x%px)\n", __func__, ptr);
1221
1222 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1223 make_gray_object((unsigned long)ptr);
1224 }
1225 EXPORT_SYMBOL(kmemleak_not_leak);
1226
1227 /**
1228 * kmemleak_transient_leak - mark an allocated object as transient false positive
1229 * @ptr: pointer to beginning of the object
1230 *
1231 * Calling this function on an object will cause the memory block to not be
1232 * reported as a leak temporarily. This may happen, for example, if the object
1233 * is part of a singly linked list and the ->next reference to it is changed.
1234 */
kmemleak_transient_leak(const void * ptr)1235 void __ref kmemleak_transient_leak(const void *ptr)
1236 {
1237 pr_debug("%s(0x%px)\n", __func__, ptr);
1238
1239 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1240 reset_checksum((unsigned long)ptr);
1241 }
1242 EXPORT_SYMBOL(kmemleak_transient_leak);
1243
1244 /**
1245 * kmemleak_ignore - ignore an allocated object
1246 * @ptr: pointer to beginning of the object
1247 *
1248 * Calling this function on an object will cause the memory block to be
1249 * ignored (not scanned and not reported as a leak). This is usually done when
1250 * it is known that the corresponding block is not a leak and does not contain
1251 * any references to other allocated memory blocks.
1252 */
kmemleak_ignore(const void * ptr)1253 void __ref kmemleak_ignore(const void *ptr)
1254 {
1255 pr_debug("%s(0x%px)\n", __func__, ptr);
1256
1257 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1258 make_black_object((unsigned long)ptr, 0);
1259 }
1260 EXPORT_SYMBOL(kmemleak_ignore);
1261
1262 /**
1263 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1264 * @ptr: pointer to beginning or inside the object. This also
1265 * represents the start of the scan area
1266 * @size: size of the scan area
1267 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1268 *
1269 * This function is used when it is known that only certain parts of an object
1270 * contain references to other objects. Kmemleak will only scan these areas
1271 * reducing the number false negatives.
1272 */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1273 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1274 {
1275 pr_debug("%s(0x%px)\n", __func__, ptr);
1276
1277 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1278 add_scan_area((unsigned long)ptr, size, gfp);
1279 }
1280 EXPORT_SYMBOL(kmemleak_scan_area);
1281
1282 /**
1283 * kmemleak_no_scan - do not scan an allocated object
1284 * @ptr: pointer to beginning of the object
1285 *
1286 * This function notifies kmemleak not to scan the given memory block. Useful
1287 * in situations where it is known that the given object does not contain any
1288 * references to other objects. Kmemleak will not scan such objects reducing
1289 * the number of false negatives.
1290 */
kmemleak_no_scan(const void * ptr)1291 void __ref kmemleak_no_scan(const void *ptr)
1292 {
1293 pr_debug("%s(0x%px)\n", __func__, ptr);
1294
1295 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1296 object_no_scan((unsigned long)ptr);
1297 }
1298 EXPORT_SYMBOL(kmemleak_no_scan);
1299
1300 /**
1301 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1302 * address argument
1303 * @phys: physical address of the object
1304 * @size: size of the object
1305 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1306 */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,gfp_t gfp)1307 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1308 {
1309 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1310
1311 if (kmemleak_enabled)
1312 /*
1313 * Create object with OBJECT_PHYS flag and
1314 * assume min_count 0.
1315 */
1316 create_object_phys((unsigned long)phys, size, 0, gfp);
1317 }
1318 EXPORT_SYMBOL(kmemleak_alloc_phys);
1319
1320 /**
1321 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1322 * physical address argument
1323 * @phys: physical address if the beginning or inside an object. This
1324 * also represents the start of the range to be freed
1325 * @size: size to be unregistered
1326 */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1327 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1328 {
1329 pr_debug("%s(0x%px)\n", __func__, &phys);
1330
1331 if (kmemleak_enabled)
1332 delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1333 }
1334 EXPORT_SYMBOL(kmemleak_free_part_phys);
1335
1336 /**
1337 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1338 * address argument
1339 * @phys: physical address of the object
1340 */
kmemleak_ignore_phys(phys_addr_t phys)1341 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1342 {
1343 pr_debug("%s(0x%px)\n", __func__, &phys);
1344
1345 if (kmemleak_enabled)
1346 make_black_object((unsigned long)phys, OBJECT_PHYS);
1347 }
1348 EXPORT_SYMBOL(kmemleak_ignore_phys);
1349
1350 /*
1351 * Update an object's checksum and return true if it was modified.
1352 */
update_checksum(struct kmemleak_object * object)1353 static bool update_checksum(struct kmemleak_object *object)
1354 {
1355 u32 old_csum = object->checksum;
1356
1357 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1358 return false;
1359
1360 kasan_disable_current();
1361 kcsan_disable_current();
1362 if (object->flags & OBJECT_PERCPU) {
1363 unsigned int cpu;
1364
1365 object->checksum = 0;
1366 for_each_possible_cpu(cpu) {
1367 void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1368
1369 object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1370 }
1371 } else {
1372 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1373 }
1374 kasan_enable_current();
1375 kcsan_enable_current();
1376
1377 return object->checksum != old_csum;
1378 }
1379
1380 /*
1381 * Update an object's references. object->lock must be held by the caller.
1382 */
update_refs(struct kmemleak_object * object)1383 static void update_refs(struct kmemleak_object *object)
1384 {
1385 if (!color_white(object)) {
1386 /* non-orphan, ignored or new */
1387 return;
1388 }
1389
1390 /*
1391 * Increase the object's reference count (number of pointers to the
1392 * memory block). If this count reaches the required minimum, the
1393 * object's color will become gray and it will be added to the
1394 * gray_list.
1395 */
1396 object->count++;
1397 if (color_gray(object)) {
1398 /* put_object() called when removing from gray_list */
1399 WARN_ON(!get_object(object));
1400 list_add_tail(&object->gray_list, &gray_list);
1401 }
1402 }
1403
pointer_update_refs(struct kmemleak_object * scanned,unsigned long pointer,unsigned int objflags)1404 static void pointer_update_refs(struct kmemleak_object *scanned,
1405 unsigned long pointer, unsigned int objflags)
1406 {
1407 struct kmemleak_object *object;
1408 unsigned long untagged_ptr;
1409 unsigned long excess_ref;
1410
1411 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1412 if (objflags & OBJECT_PERCPU) {
1413 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1414 return;
1415 } else {
1416 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1417 return;
1418 }
1419
1420 /*
1421 * No need for get_object() here since we hold kmemleak_lock.
1422 * object->use_count cannot be dropped to 0 while the object
1423 * is still present in object_tree_root and object_list
1424 * (with updates protected by kmemleak_lock).
1425 */
1426 object = __lookup_object(pointer, 1, objflags);
1427 if (!object)
1428 return;
1429 if (object == scanned)
1430 /* self referenced, ignore */
1431 return;
1432
1433 /*
1434 * Avoid the lockdep recursive warning on object->lock being
1435 * previously acquired in scan_object(). These locks are
1436 * enclosed by scan_mutex.
1437 */
1438 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1439 /* only pass surplus references (object already gray) */
1440 if (color_gray(object)) {
1441 excess_ref = object->excess_ref;
1442 /* no need for update_refs() if object already gray */
1443 } else {
1444 excess_ref = 0;
1445 update_refs(object);
1446 }
1447 raw_spin_unlock(&object->lock);
1448
1449 if (excess_ref) {
1450 object = lookup_object(excess_ref, 0);
1451 if (!object)
1452 return;
1453 if (object == scanned)
1454 /* circular reference, ignore */
1455 return;
1456 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1457 update_refs(object);
1458 raw_spin_unlock(&object->lock);
1459 }
1460 }
1461
1462 /*
1463 * Memory scanning is a long process and it needs to be interruptible. This
1464 * function checks whether such interrupt condition occurred.
1465 */
scan_should_stop(void)1466 static int scan_should_stop(void)
1467 {
1468 if (!kmemleak_enabled)
1469 return 1;
1470
1471 /*
1472 * This function may be called from either process or kthread context,
1473 * hence the need to check for both stop conditions.
1474 */
1475 if (current->mm)
1476 return signal_pending(current);
1477 else
1478 return kthread_should_stop();
1479
1480 return 0;
1481 }
1482
1483 /*
1484 * Scan a memory block (exclusive range) for valid pointers and add those
1485 * found to the gray list.
1486 */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1487 static void scan_block(void *_start, void *_end,
1488 struct kmemleak_object *scanned)
1489 {
1490 unsigned long *ptr;
1491 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1492 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1493 unsigned long flags;
1494
1495 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1496 for (ptr = start; ptr < end; ptr++) {
1497 unsigned long pointer;
1498
1499 if (scan_should_stop())
1500 break;
1501
1502 kasan_disable_current();
1503 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1504 kasan_enable_current();
1505
1506 pointer_update_refs(scanned, pointer, 0);
1507 pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
1508 }
1509 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1510 }
1511
1512 /*
1513 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1514 */
1515 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1516 static void scan_large_block(void *start, void *end)
1517 {
1518 void *next;
1519
1520 while (start < end) {
1521 next = min(start + MAX_SCAN_SIZE, end);
1522 scan_block(start, next, NULL);
1523 start = next;
1524 cond_resched();
1525 }
1526 }
1527 #endif
1528
1529 /*
1530 * Scan a memory block corresponding to a kmemleak_object. A condition is
1531 * that object->use_count >= 1.
1532 */
scan_object(struct kmemleak_object * object)1533 static void scan_object(struct kmemleak_object *object)
1534 {
1535 struct kmemleak_scan_area *area;
1536 unsigned long flags;
1537
1538 /*
1539 * Once the object->lock is acquired, the corresponding memory block
1540 * cannot be freed (the same lock is acquired in delete_object).
1541 */
1542 raw_spin_lock_irqsave(&object->lock, flags);
1543 if (object->flags & OBJECT_NO_SCAN)
1544 goto out;
1545 if (!(object->flags & OBJECT_ALLOCATED))
1546 /* already freed object */
1547 goto out;
1548
1549 if (object->flags & OBJECT_PERCPU) {
1550 unsigned int cpu;
1551
1552 for_each_possible_cpu(cpu) {
1553 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1554 void *end = start + object->size;
1555
1556 scan_block(start, end, object);
1557
1558 raw_spin_unlock_irqrestore(&object->lock, flags);
1559 cond_resched();
1560 raw_spin_lock_irqsave(&object->lock, flags);
1561 if (!(object->flags & OBJECT_ALLOCATED))
1562 break;
1563 }
1564 } else if (hlist_empty(&object->area_list) ||
1565 object->flags & OBJECT_FULL_SCAN) {
1566 void *start = object->flags & OBJECT_PHYS ?
1567 __va((phys_addr_t)object->pointer) :
1568 (void *)object->pointer;
1569 void *end = start + object->size;
1570 void *next;
1571
1572 do {
1573 next = min(start + MAX_SCAN_SIZE, end);
1574 scan_block(start, next, object);
1575
1576 start = next;
1577 if (start >= end)
1578 break;
1579
1580 raw_spin_unlock_irqrestore(&object->lock, flags);
1581 cond_resched();
1582 raw_spin_lock_irqsave(&object->lock, flags);
1583 } while (object->flags & OBJECT_ALLOCATED);
1584 } else {
1585 hlist_for_each_entry(area, &object->area_list, node)
1586 scan_block((void *)area->start,
1587 (void *)(area->start + area->size),
1588 object);
1589 }
1590 out:
1591 raw_spin_unlock_irqrestore(&object->lock, flags);
1592 }
1593
1594 /*
1595 * Scan the objects already referenced (gray objects). More objects will be
1596 * referenced and, if there are no memory leaks, all the objects are scanned.
1597 */
scan_gray_list(void)1598 static void scan_gray_list(void)
1599 {
1600 struct kmemleak_object *object, *tmp;
1601
1602 /*
1603 * The list traversal is safe for both tail additions and removals
1604 * from inside the loop. The kmemleak objects cannot be freed from
1605 * outside the loop because their use_count was incremented.
1606 */
1607 object = list_entry(gray_list.next, typeof(*object), gray_list);
1608 while (&object->gray_list != &gray_list) {
1609 cond_resched();
1610
1611 /* may add new objects to the list */
1612 if (!scan_should_stop())
1613 scan_object(object);
1614
1615 tmp = list_entry(object->gray_list.next, typeof(*object),
1616 gray_list);
1617
1618 /* remove the object from the list and release it */
1619 list_del(&object->gray_list);
1620 put_object(object);
1621
1622 object = tmp;
1623 }
1624 WARN_ON(!list_empty(&gray_list));
1625 }
1626
1627 /*
1628 * Conditionally call resched() in an object iteration loop while making sure
1629 * that the given object won't go away without RCU read lock by performing a
1630 * get_object() if necessaary.
1631 */
kmemleak_cond_resched(struct kmemleak_object * object)1632 static void kmemleak_cond_resched(struct kmemleak_object *object)
1633 {
1634 if (!get_object(object))
1635 return; /* Try next object */
1636
1637 raw_spin_lock_irq(&kmemleak_lock);
1638 if (object->del_state & DELSTATE_REMOVED)
1639 goto unlock_put; /* Object removed */
1640 object->del_state |= DELSTATE_NO_DELETE;
1641 raw_spin_unlock_irq(&kmemleak_lock);
1642
1643 rcu_read_unlock();
1644 cond_resched();
1645 rcu_read_lock();
1646
1647 raw_spin_lock_irq(&kmemleak_lock);
1648 if (object->del_state & DELSTATE_REMOVED)
1649 list_del_rcu(&object->object_list);
1650 object->del_state &= ~DELSTATE_NO_DELETE;
1651 unlock_put:
1652 raw_spin_unlock_irq(&kmemleak_lock);
1653 put_object(object);
1654 }
1655
1656 /*
1657 * Scan data sections and all the referenced memory blocks allocated via the
1658 * kernel's standard allocators. This function must be called with the
1659 * scan_mutex held.
1660 */
kmemleak_scan(void)1661 static void kmemleak_scan(void)
1662 {
1663 struct kmemleak_object *object;
1664 struct zone *zone;
1665 int __maybe_unused i;
1666 int new_leaks = 0;
1667
1668 jiffies_last_scan = jiffies;
1669
1670 /* prepare the kmemleak_object's */
1671 rcu_read_lock();
1672 list_for_each_entry_rcu(object, &object_list, object_list) {
1673 raw_spin_lock_irq(&object->lock);
1674 #ifdef DEBUG
1675 /*
1676 * With a few exceptions there should be a maximum of
1677 * 1 reference to any object at this point.
1678 */
1679 if (atomic_read(&object->use_count) > 1) {
1680 pr_debug("object->use_count = %d\n",
1681 atomic_read(&object->use_count));
1682 dump_object_info(object);
1683 }
1684 #endif
1685
1686 /* ignore objects outside lowmem (paint them black) */
1687 if ((object->flags & OBJECT_PHYS) &&
1688 !(object->flags & OBJECT_NO_SCAN)) {
1689 unsigned long phys = object->pointer;
1690
1691 if (PHYS_PFN(phys) < min_low_pfn ||
1692 PHYS_PFN(phys + object->size) >= max_low_pfn)
1693 __paint_it(object, KMEMLEAK_BLACK);
1694 }
1695
1696 /* reset the reference count (whiten the object) */
1697 object->count = 0;
1698 if (color_gray(object) && get_object(object))
1699 list_add_tail(&object->gray_list, &gray_list);
1700
1701 raw_spin_unlock_irq(&object->lock);
1702
1703 if (need_resched())
1704 kmemleak_cond_resched(object);
1705 }
1706 rcu_read_unlock();
1707
1708 #ifdef CONFIG_SMP
1709 /* per-cpu sections scanning */
1710 for_each_possible_cpu(i)
1711 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1712 __per_cpu_end + per_cpu_offset(i));
1713 #endif
1714
1715 /*
1716 * Struct page scanning for each node.
1717 */
1718 get_online_mems();
1719 for_each_populated_zone(zone) {
1720 unsigned long start_pfn = zone->zone_start_pfn;
1721 unsigned long end_pfn = zone_end_pfn(zone);
1722 unsigned long pfn;
1723
1724 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1725 struct page *page = pfn_to_online_page(pfn);
1726
1727 if (!(pfn & 63))
1728 cond_resched();
1729
1730 if (!page)
1731 continue;
1732
1733 /* only scan pages belonging to this zone */
1734 if (page_zone(page) != zone)
1735 continue;
1736 /* only scan if page is in use */
1737 if (page_count(page) == 0)
1738 continue;
1739 scan_block(page, page + 1, NULL);
1740 }
1741 }
1742 put_online_mems();
1743
1744 /*
1745 * Scanning the task stacks (may introduce false negatives).
1746 */
1747 if (kmemleak_stack_scan) {
1748 struct task_struct *p, *g;
1749
1750 rcu_read_lock();
1751 for_each_process_thread(g, p) {
1752 void *stack = try_get_task_stack(p);
1753 if (stack) {
1754 scan_block(stack, stack + THREAD_SIZE, NULL);
1755 put_task_stack(p);
1756 }
1757 }
1758 rcu_read_unlock();
1759 }
1760
1761 /*
1762 * Scan the objects already referenced from the sections scanned
1763 * above.
1764 */
1765 scan_gray_list();
1766
1767 /*
1768 * Check for new or unreferenced objects modified since the previous
1769 * scan and color them gray until the next scan.
1770 */
1771 rcu_read_lock();
1772 list_for_each_entry_rcu(object, &object_list, object_list) {
1773 if (need_resched())
1774 kmemleak_cond_resched(object);
1775
1776 /*
1777 * This is racy but we can save the overhead of lock/unlock
1778 * calls. The missed objects, if any, should be caught in
1779 * the next scan.
1780 */
1781 if (!color_white(object))
1782 continue;
1783 raw_spin_lock_irq(&object->lock);
1784 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1785 && update_checksum(object) && get_object(object)) {
1786 /* color it gray temporarily */
1787 object->count = object->min_count;
1788 list_add_tail(&object->gray_list, &gray_list);
1789 }
1790 raw_spin_unlock_irq(&object->lock);
1791 }
1792 rcu_read_unlock();
1793
1794 /*
1795 * Re-scan the gray list for modified unreferenced objects.
1796 */
1797 scan_gray_list();
1798
1799 /*
1800 * If scanning was stopped do not report any new unreferenced objects.
1801 */
1802 if (scan_should_stop())
1803 return;
1804
1805 /*
1806 * Scanning result reporting.
1807 */
1808 rcu_read_lock();
1809 list_for_each_entry_rcu(object, &object_list, object_list) {
1810 if (need_resched())
1811 kmemleak_cond_resched(object);
1812
1813 /*
1814 * This is racy but we can save the overhead of lock/unlock
1815 * calls. The missed objects, if any, should be caught in
1816 * the next scan.
1817 */
1818 if (!color_white(object))
1819 continue;
1820 raw_spin_lock_irq(&object->lock);
1821 if (unreferenced_object(object) &&
1822 !(object->flags & OBJECT_REPORTED)) {
1823 object->flags |= OBJECT_REPORTED;
1824
1825 if (kmemleak_verbose)
1826 print_unreferenced(NULL, object);
1827
1828 new_leaks++;
1829 }
1830 raw_spin_unlock_irq(&object->lock);
1831 }
1832 rcu_read_unlock();
1833
1834 if (new_leaks) {
1835 kmemleak_found_leaks = true;
1836
1837 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1838 new_leaks);
1839 }
1840
1841 }
1842
1843 /*
1844 * Thread function performing automatic memory scanning. Unreferenced objects
1845 * at the end of a memory scan are reported but only the first time.
1846 */
kmemleak_scan_thread(void * arg)1847 static int kmemleak_scan_thread(void *arg)
1848 {
1849 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1850
1851 pr_info("Automatic memory scanning thread started\n");
1852 set_user_nice(current, 10);
1853
1854 /*
1855 * Wait before the first scan to allow the system to fully initialize.
1856 */
1857 if (first_run) {
1858 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1859 first_run = 0;
1860 while (timeout && !kthread_should_stop())
1861 timeout = schedule_timeout_interruptible(timeout);
1862 }
1863
1864 while (!kthread_should_stop()) {
1865 signed long timeout = READ_ONCE(jiffies_scan_wait);
1866
1867 mutex_lock(&scan_mutex);
1868 kmemleak_scan();
1869 mutex_unlock(&scan_mutex);
1870
1871 /* wait before the next scan */
1872 while (timeout && !kthread_should_stop())
1873 timeout = schedule_timeout_interruptible(timeout);
1874 }
1875
1876 pr_info("Automatic memory scanning thread ended\n");
1877
1878 return 0;
1879 }
1880
1881 /*
1882 * Start the automatic memory scanning thread. This function must be called
1883 * with the scan_mutex held.
1884 */
start_scan_thread(void)1885 static void start_scan_thread(void)
1886 {
1887 if (scan_thread)
1888 return;
1889 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1890 if (IS_ERR(scan_thread)) {
1891 pr_warn("Failed to create the scan thread\n");
1892 scan_thread = NULL;
1893 }
1894 }
1895
1896 /*
1897 * Stop the automatic memory scanning thread.
1898 */
stop_scan_thread(void)1899 static void stop_scan_thread(void)
1900 {
1901 if (scan_thread) {
1902 kthread_stop(scan_thread);
1903 scan_thread = NULL;
1904 }
1905 }
1906
1907 /*
1908 * Iterate over the object_list and return the first valid object at or after
1909 * the required position with its use_count incremented. The function triggers
1910 * a memory scanning when the pos argument points to the first position.
1911 */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1912 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1913 {
1914 struct kmemleak_object *object;
1915 loff_t n = *pos;
1916 int err;
1917
1918 err = mutex_lock_interruptible(&scan_mutex);
1919 if (err < 0)
1920 return ERR_PTR(err);
1921
1922 rcu_read_lock();
1923 list_for_each_entry_rcu(object, &object_list, object_list) {
1924 if (n-- > 0)
1925 continue;
1926 if (get_object(object))
1927 goto out;
1928 }
1929 object = NULL;
1930 out:
1931 return object;
1932 }
1933
1934 /*
1935 * Return the next object in the object_list. The function decrements the
1936 * use_count of the previous object and increases that of the next one.
1937 */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1938 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1939 {
1940 struct kmemleak_object *prev_obj = v;
1941 struct kmemleak_object *next_obj = NULL;
1942 struct kmemleak_object *obj = prev_obj;
1943
1944 ++(*pos);
1945
1946 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1947 if (get_object(obj)) {
1948 next_obj = obj;
1949 break;
1950 }
1951 }
1952
1953 put_object(prev_obj);
1954 return next_obj;
1955 }
1956
1957 /*
1958 * Decrement the use_count of the last object required, if any.
1959 */
kmemleak_seq_stop(struct seq_file * seq,void * v)1960 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1961 {
1962 if (!IS_ERR(v)) {
1963 /*
1964 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1965 * waiting was interrupted, so only release it if !IS_ERR.
1966 */
1967 rcu_read_unlock();
1968 mutex_unlock(&scan_mutex);
1969 if (v)
1970 put_object(v);
1971 }
1972 }
1973
1974 /*
1975 * Print the information for an unreferenced object to the seq file.
1976 */
kmemleak_seq_show(struct seq_file * seq,void * v)1977 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1978 {
1979 struct kmemleak_object *object = v;
1980 unsigned long flags;
1981
1982 raw_spin_lock_irqsave(&object->lock, flags);
1983 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1984 print_unreferenced(seq, object);
1985 raw_spin_unlock_irqrestore(&object->lock, flags);
1986 return 0;
1987 }
1988
1989 static const struct seq_operations kmemleak_seq_ops = {
1990 .start = kmemleak_seq_start,
1991 .next = kmemleak_seq_next,
1992 .stop = kmemleak_seq_stop,
1993 .show = kmemleak_seq_show,
1994 };
1995
kmemleak_open(struct inode * inode,struct file * file)1996 static int kmemleak_open(struct inode *inode, struct file *file)
1997 {
1998 return seq_open(file, &kmemleak_seq_ops);
1999 }
2000
dump_str_object_info(const char * str)2001 static int dump_str_object_info(const char *str)
2002 {
2003 unsigned long flags;
2004 struct kmemleak_object *object;
2005 unsigned long addr;
2006
2007 if (kstrtoul(str, 0, &addr))
2008 return -EINVAL;
2009 object = find_and_get_object(addr, 0);
2010 if (!object) {
2011 pr_info("Unknown object at 0x%08lx\n", addr);
2012 return -EINVAL;
2013 }
2014
2015 raw_spin_lock_irqsave(&object->lock, flags);
2016 dump_object_info(object);
2017 raw_spin_unlock_irqrestore(&object->lock, flags);
2018
2019 put_object(object);
2020 return 0;
2021 }
2022
2023 /*
2024 * We use grey instead of black to ensure we can do future scans on the same
2025 * objects. If we did not do future scans these black objects could
2026 * potentially contain references to newly allocated objects in the future and
2027 * we'd end up with false positives.
2028 */
kmemleak_clear(void)2029 static void kmemleak_clear(void)
2030 {
2031 struct kmemleak_object *object;
2032
2033 rcu_read_lock();
2034 list_for_each_entry_rcu(object, &object_list, object_list) {
2035 raw_spin_lock_irq(&object->lock);
2036 if ((object->flags & OBJECT_REPORTED) &&
2037 unreferenced_object(object))
2038 __paint_it(object, KMEMLEAK_GREY);
2039 raw_spin_unlock_irq(&object->lock);
2040 }
2041 rcu_read_unlock();
2042
2043 kmemleak_found_leaks = false;
2044 }
2045
2046 static void __kmemleak_do_cleanup(void);
2047
2048 /*
2049 * File write operation to configure kmemleak at run-time. The following
2050 * commands can be written to the /sys/kernel/debug/kmemleak file:
2051 * off - disable kmemleak (irreversible)
2052 * stack=on - enable the task stacks scanning
2053 * stack=off - disable the tasks stacks scanning
2054 * scan=on - start the automatic memory scanning thread
2055 * scan=off - stop the automatic memory scanning thread
2056 * scan=... - set the automatic memory scanning period in seconds (0 to
2057 * disable it)
2058 * scan - trigger a memory scan
2059 * clear - mark all current reported unreferenced kmemleak objects as
2060 * grey to ignore printing them, or free all kmemleak objects
2061 * if kmemleak has been disabled.
2062 * dump=... - dump information about the object found at the given address
2063 */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)2064 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2065 size_t size, loff_t *ppos)
2066 {
2067 char buf[64];
2068 int buf_size;
2069 int ret;
2070
2071 buf_size = min(size, (sizeof(buf) - 1));
2072 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2073 return -EFAULT;
2074 buf[buf_size] = 0;
2075
2076 ret = mutex_lock_interruptible(&scan_mutex);
2077 if (ret < 0)
2078 return ret;
2079
2080 if (strncmp(buf, "clear", 5) == 0) {
2081 if (kmemleak_enabled)
2082 kmemleak_clear();
2083 else
2084 __kmemleak_do_cleanup();
2085 goto out;
2086 }
2087
2088 if (!kmemleak_enabled) {
2089 ret = -EPERM;
2090 goto out;
2091 }
2092
2093 if (strncmp(buf, "off", 3) == 0)
2094 kmemleak_disable();
2095 else if (strncmp(buf, "stack=on", 8) == 0)
2096 kmemleak_stack_scan = 1;
2097 else if (strncmp(buf, "stack=off", 9) == 0)
2098 kmemleak_stack_scan = 0;
2099 else if (strncmp(buf, "scan=on", 7) == 0)
2100 start_scan_thread();
2101 else if (strncmp(buf, "scan=off", 8) == 0)
2102 stop_scan_thread();
2103 else if (strncmp(buf, "scan=", 5) == 0) {
2104 unsigned secs;
2105 unsigned long msecs;
2106
2107 ret = kstrtouint(buf + 5, 0, &secs);
2108 if (ret < 0)
2109 goto out;
2110
2111 msecs = secs * MSEC_PER_SEC;
2112 if (msecs > UINT_MAX)
2113 msecs = UINT_MAX;
2114
2115 stop_scan_thread();
2116 if (msecs) {
2117 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2118 start_scan_thread();
2119 }
2120 } else if (strncmp(buf, "scan", 4) == 0)
2121 kmemleak_scan();
2122 else if (strncmp(buf, "dump=", 5) == 0)
2123 ret = dump_str_object_info(buf + 5);
2124 else
2125 ret = -EINVAL;
2126
2127 out:
2128 mutex_unlock(&scan_mutex);
2129 if (ret < 0)
2130 return ret;
2131
2132 /* ignore the rest of the buffer, only one command at a time */
2133 *ppos += size;
2134 return size;
2135 }
2136
2137 static const struct file_operations kmemleak_fops = {
2138 .owner = THIS_MODULE,
2139 .open = kmemleak_open,
2140 .read = seq_read,
2141 .write = kmemleak_write,
2142 .llseek = seq_lseek,
2143 .release = seq_release,
2144 };
2145
__kmemleak_do_cleanup(void)2146 static void __kmemleak_do_cleanup(void)
2147 {
2148 struct kmemleak_object *object, *tmp;
2149
2150 /*
2151 * Kmemleak has already been disabled, no need for RCU list traversal
2152 * or kmemleak_lock held.
2153 */
2154 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2155 __remove_object(object);
2156 __delete_object(object);
2157 }
2158 }
2159
2160 /*
2161 * Stop the memory scanning thread and free the kmemleak internal objects if
2162 * no previous scan thread (otherwise, kmemleak may still have some useful
2163 * information on memory leaks).
2164 */
kmemleak_do_cleanup(struct work_struct * work)2165 static void kmemleak_do_cleanup(struct work_struct *work)
2166 {
2167 stop_scan_thread();
2168
2169 mutex_lock(&scan_mutex);
2170 /*
2171 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2172 * longer track object freeing. Ordering of the scan thread stopping and
2173 * the memory accesses below is guaranteed by the kthread_stop()
2174 * function.
2175 */
2176 kmemleak_free_enabled = 0;
2177 mutex_unlock(&scan_mutex);
2178
2179 if (!kmemleak_found_leaks)
2180 __kmemleak_do_cleanup();
2181 else
2182 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2183 }
2184
2185 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2186
2187 /*
2188 * Disable kmemleak. No memory allocation/freeing will be traced once this
2189 * function is called. Disabling kmemleak is an irreversible operation.
2190 */
kmemleak_disable(void)2191 static void kmemleak_disable(void)
2192 {
2193 /* atomically check whether it was already invoked */
2194 if (cmpxchg(&kmemleak_error, 0, 1))
2195 return;
2196
2197 /* stop any memory operation tracing */
2198 kmemleak_enabled = 0;
2199
2200 /* check whether it is too early for a kernel thread */
2201 if (kmemleak_late_initialized)
2202 schedule_work(&cleanup_work);
2203 else
2204 kmemleak_free_enabled = 0;
2205
2206 pr_info("Kernel memory leak detector disabled\n");
2207 }
2208
2209 /*
2210 * Allow boot-time kmemleak disabling (enabled by default).
2211 */
kmemleak_boot_config(char * str)2212 static int __init kmemleak_boot_config(char *str)
2213 {
2214 if (!str)
2215 return -EINVAL;
2216 if (strcmp(str, "off") == 0)
2217 kmemleak_disable();
2218 else if (strcmp(str, "on") == 0) {
2219 kmemleak_skip_disable = 1;
2220 stack_depot_request_early_init();
2221 }
2222 else
2223 return -EINVAL;
2224 return 0;
2225 }
2226 early_param("kmemleak", kmemleak_boot_config);
2227
2228 /*
2229 * Kmemleak initialization.
2230 */
kmemleak_init(void)2231 void __init kmemleak_init(void)
2232 {
2233 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2234 if (!kmemleak_skip_disable) {
2235 kmemleak_disable();
2236 return;
2237 }
2238 #endif
2239
2240 if (kmemleak_error)
2241 return;
2242
2243 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2244 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2245
2246 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2247 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2248
2249 /* register the data/bss sections */
2250 create_object((unsigned long)_sdata, _edata - _sdata,
2251 KMEMLEAK_GREY, GFP_ATOMIC);
2252 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2253 KMEMLEAK_GREY, GFP_ATOMIC);
2254 /* only register .data..ro_after_init if not within .data */
2255 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2256 create_object((unsigned long)__start_ro_after_init,
2257 __end_ro_after_init - __start_ro_after_init,
2258 KMEMLEAK_GREY, GFP_ATOMIC);
2259 }
2260
2261 /*
2262 * Late initialization function.
2263 */
kmemleak_late_init(void)2264 static int __init kmemleak_late_init(void)
2265 {
2266 kmemleak_late_initialized = 1;
2267
2268 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2269
2270 if (kmemleak_error) {
2271 /*
2272 * Some error occurred and kmemleak was disabled. There is a
2273 * small chance that kmemleak_disable() was called immediately
2274 * after setting kmemleak_late_initialized and we may end up with
2275 * two clean-up threads but serialized by scan_mutex.
2276 */
2277 schedule_work(&cleanup_work);
2278 return -ENOMEM;
2279 }
2280
2281 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2282 mutex_lock(&scan_mutex);
2283 start_scan_thread();
2284 mutex_unlock(&scan_mutex);
2285 }
2286
2287 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2288 mem_pool_free_count);
2289
2290 return 0;
2291 }
2292 late_initcall(kmemleak_late_init);
2293