xref: /linux/mm/kmemleak.c (revision 5635d8bad221701188017a6087fbe25ab245c226)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object trees
18  *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19  *   object_list is the main list holding the metadata (struct
20  *   kmemleak_object) for the allocated memory blocks. The object trees are
21  *   red black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The kmemleak_object structures are added to
23  *   the object_list and the object tree root in the create_object() function
24  *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25  *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
28  *   that some members of this structure may be protected by other means
29  *   (atomic or kmemleak_lock). This lock is also held when scanning the
30  *   corresponding memory block to avoid the kernel freeing it via the
31  *   kmemleak_free() callback. This is less heavyweight than holding a global
32  *   lock like kmemleak_lock during scanning.
33  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34  *   unreferenced objects at a time. The gray_list contains the objects which
35  *   are already referenced or marked as false positives and need to be
36  *   scanned. This list is only modified during a scanning episode when the
37  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
38  *   Note that the kmemleak_object.use_count is incremented when an object is
39  *   added to the gray_list and therefore cannot be freed. This mutex also
40  *   prevents multiple users of the "kmemleak" debugfs file together with
41  *   modifications to the memory scanning parameters including the scan_thread
42  *   pointer
43  *
44  * Locks and mutexes are acquired/nested in the following order:
45  *
46  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47  *
48  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49  * regions.
50  *
51  * The kmemleak_object structures have a use_count incremented or decremented
52  * using the get_object()/put_object() functions. When the use_count becomes
53  * 0, this count can no longer be incremented and put_object() schedules the
54  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55  * function must be protected by rcu_read_lock() to avoid accessing a freed
56  * structure.
57  */
58 
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60 
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105 
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE		16	/* stack trace length */
110 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
111 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
112 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
114 
115 #define BYTES_PER_POINTER	sizeof(void *)
116 
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119 	struct hlist_node node;
120 	unsigned long start;
121 	size_t size;
122 };
123 
124 #define KMEMLEAK_GREY	0
125 #define KMEMLEAK_BLACK	-1
126 
127 /*
128  * Structure holding the metadata for each allocated memory block.
129  * Modifications to such objects should be made while holding the
130  * object->lock. Insertions or deletions from object_list, gray_list or
131  * rb_node are already protected by the corresponding locks or mutex (see
132  * the notes on locking above). These objects are reference-counted
133  * (use_count) and freed using the RCU mechanism.
134  */
135 struct kmemleak_object {
136 	raw_spinlock_t lock;
137 	unsigned int flags;		/* object status flags */
138 	struct list_head object_list;
139 	struct list_head gray_list;
140 	struct rb_node rb_node;
141 	struct rcu_head rcu;		/* object_list lockless traversal */
142 	/* object usage count; object freed when use_count == 0 */
143 	atomic_t use_count;
144 	unsigned int del_state;		/* deletion state */
145 	unsigned long pointer;
146 	size_t size;
147 	/* pass surplus references to this pointer */
148 	unsigned long excess_ref;
149 	/* minimum number of a pointers found before it is considered leak */
150 	int min_count;
151 	/* the total number of pointers found pointing to this object */
152 	int count;
153 	/* checksum for detecting modified objects */
154 	u32 checksum;
155 	depot_stack_handle_t trace_handle;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long jiffies;		/* creation timestamp */
159 	pid_t pid;			/* pid of the current task */
160 	char comm[TASK_COMM_LEN];	/* executable name */
161 };
162 
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED	(1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED		(1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN		(1 << 2)
169 /* flag set to fully scan the object when scan_area allocation failed */
170 #define OBJECT_FULL_SCAN	(1 << 3)
171 /* flag set for object allocated with physical address */
172 #define OBJECT_PHYS		(1 << 4)
173 /* flag set for per-CPU pointers */
174 #define OBJECT_PERCPU		(1 << 5)
175 
176 /* set when __remove_object() called */
177 #define DELSTATE_REMOVED	(1 << 0)
178 /* set to temporarily prevent deletion from object_list */
179 #define DELSTATE_NO_DELETE	(1 << 1)
180 
181 #define HEX_PREFIX		"    "
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE		16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE		1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII		1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES		2
190 
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* memory pool allocation */
196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
198 static LIST_HEAD(mem_pool_free_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* search tree for object (with OBJECT_PHYS flag) boundaries */
202 static struct rb_root object_phys_tree_root = RB_ROOT;
203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
204 static struct rb_root object_percpu_tree_root = RB_ROOT;
205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
207 
208 /* allocation caches for kmemleak internal data */
209 static struct kmem_cache *object_cache;
210 static struct kmem_cache *scan_area_cache;
211 
212 /* set if tracing memory operations is enabled */
213 static int kmemleak_enabled = 1;
214 /* same as above but only for the kmemleak_free() callback */
215 static int kmemleak_free_enabled = 1;
216 /* set in the late_initcall if there were no errors */
217 static int kmemleak_late_initialized;
218 /* set if a kmemleak warning was issued */
219 static int kmemleak_warning;
220 /* set if a fatal kmemleak error has occurred */
221 static int kmemleak_error;
222 
223 /* minimum and maximum address that may be valid pointers */
224 static unsigned long min_addr = ULONG_MAX;
225 static unsigned long max_addr;
226 
227 /* minimum and maximum address that may be valid per-CPU pointers */
228 static unsigned long min_percpu_addr = ULONG_MAX;
229 static unsigned long max_percpu_addr;
230 
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245 
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248 
249 static void kmemleak_disable(void);
250 
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)	do {		\
255 	pr_warn(x);				\
256 	dump_stack();				\
257 	kmemleak_warning = 1;			\
258 } while (0)
259 
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)	do {	\
266 	kmemleak_warn(x);		\
267 	kmemleak_disable();		\
268 } while (0)
269 
270 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
271 	if (seq)					\
272 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
273 	else						\
274 		pr_warn(fmt, ##__VA_ARGS__);		\
275 } while (0)
276 
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 				 int rowsize, int groupsize, const void *buf,
279 				 size_t len, bool ascii)
280 {
281 	if (seq)
282 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 			     buf, len, ascii);
284 	else
285 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 			       rowsize, groupsize, buf, len, ascii);
287 }
288 
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)295 static void hex_dump_object(struct seq_file *seq,
296 			    struct kmemleak_object *object)
297 {
298 	const u8 *ptr = (const u8 *)object->pointer;
299 	size_t len;
300 
301 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 		return;
303 
304 	if (object->flags & OBJECT_PERCPU)
305 		ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
306 
307 	/* limit the number of lines to HEX_MAX_LINES */
308 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
309 
310 	if (object->flags & OBJECT_PERCPU)
311 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes on cpu %d):\n",
312 				   len, raw_smp_processor_id());
313 	else
314 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
315 	kasan_disable_current();
316 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
317 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
318 	kasan_enable_current();
319 }
320 
321 /*
322  * Object colors, encoded with count and min_count:
323  * - white - orphan object, not enough references to it (count < min_count)
324  * - gray  - not orphan, not marked as false positive (min_count == 0) or
325  *		sufficient references to it (count >= min_count)
326  * - black - ignore, it doesn't contain references (e.g. text section)
327  *		(min_count == -1). No function defined for this color.
328  * Newly created objects don't have any color assigned (object->count == -1)
329  * before the next memory scan when they become white.
330  */
color_white(const struct kmemleak_object * object)331 static bool color_white(const struct kmemleak_object *object)
332 {
333 	return object->count != KMEMLEAK_BLACK &&
334 		object->count < object->min_count;
335 }
336 
color_gray(const struct kmemleak_object * object)337 static bool color_gray(const struct kmemleak_object *object)
338 {
339 	return object->min_count != KMEMLEAK_BLACK &&
340 		object->count >= object->min_count;
341 }
342 
343 /*
344  * Objects are considered unreferenced only if their color is white, they have
345  * not be deleted and have a minimum age to avoid false positives caused by
346  * pointers temporarily stored in CPU registers.
347  */
unreferenced_object(struct kmemleak_object * object)348 static bool unreferenced_object(struct kmemleak_object *object)
349 {
350 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
351 		time_before_eq(object->jiffies + jiffies_min_age,
352 			       jiffies_last_scan);
353 }
354 
355 /*
356  * Printing of the unreferenced objects information to the seq file. The
357  * print_unreferenced function must be called with the object->lock held.
358  */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)359 static void print_unreferenced(struct seq_file *seq,
360 			       struct kmemleak_object *object)
361 {
362 	int i;
363 	unsigned long *entries;
364 	unsigned int nr_entries;
365 
366 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
367 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
368 			  object->pointer, object->size);
369 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
370 			   object->comm, object->pid, object->jiffies);
371 	hex_dump_object(seq, object);
372 	warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
373 
374 	for (i = 0; i < nr_entries; i++) {
375 		void *ptr = (void *)entries[i];
376 		warn_or_seq_printf(seq, "    %pS\n", ptr);
377 	}
378 }
379 
380 /*
381  * Print the kmemleak_object information. This function is used mainly for
382  * debugging special cases when kmemleak operations. It must be called with
383  * the object->lock held.
384  */
dump_object_info(struct kmemleak_object * object)385 static void dump_object_info(struct kmemleak_object *object)
386 {
387 	pr_notice("Object 0x%08lx (size %zu):\n",
388 			object->pointer, object->size);
389 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
390 			object->comm, object->pid, object->jiffies);
391 	pr_notice("  min_count = %d\n", object->min_count);
392 	pr_notice("  count = %d\n", object->count);
393 	pr_notice("  flags = 0x%x\n", object->flags);
394 	pr_notice("  checksum = %u\n", object->checksum);
395 	pr_notice("  backtrace:\n");
396 	if (object->trace_handle)
397 		stack_depot_print(object->trace_handle);
398 }
399 
object_tree(unsigned long objflags)400 static struct rb_root *object_tree(unsigned long objflags)
401 {
402 	if (objflags & OBJECT_PHYS)
403 		return &object_phys_tree_root;
404 	if (objflags & OBJECT_PERCPU)
405 		return &object_percpu_tree_root;
406 	return &object_tree_root;
407 }
408 
409 /*
410  * Look-up a memory block metadata (kmemleak_object) in the object search
411  * tree based on a pointer value. If alias is 0, only values pointing to the
412  * beginning of the memory block are allowed. The kmemleak_lock must be held
413  * when calling this function.
414  */
__lookup_object(unsigned long ptr,int alias,unsigned int objflags)415 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
416 					       unsigned int objflags)
417 {
418 	struct rb_node *rb = object_tree(objflags)->rb_node;
419 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
420 
421 	while (rb) {
422 		struct kmemleak_object *object;
423 		unsigned long untagged_objp;
424 
425 		object = rb_entry(rb, struct kmemleak_object, rb_node);
426 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
427 
428 		if (untagged_ptr < untagged_objp)
429 			rb = object->rb_node.rb_left;
430 		else if (untagged_objp + object->size <= untagged_ptr)
431 			rb = object->rb_node.rb_right;
432 		else if (untagged_objp == untagged_ptr || alias)
433 			return object;
434 		else {
435 			kmemleak_warn("Found object by alias at 0x%08lx\n",
436 				      ptr);
437 			dump_object_info(object);
438 			break;
439 		}
440 	}
441 	return NULL;
442 }
443 
444 /* Look-up a kmemleak object which allocated with virtual address. */
lookup_object(unsigned long ptr,int alias)445 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
446 {
447 	return __lookup_object(ptr, alias, 0);
448 }
449 
450 /*
451  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
452  * that once an object's use_count reached 0, the RCU freeing was already
453  * registered and the object should no longer be used. This function must be
454  * called under the protection of rcu_read_lock().
455  */
get_object(struct kmemleak_object * object)456 static int get_object(struct kmemleak_object *object)
457 {
458 	return atomic_inc_not_zero(&object->use_count);
459 }
460 
461 /*
462  * Memory pool allocation and freeing. kmemleak_lock must not be held.
463  */
mem_pool_alloc(gfp_t gfp)464 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
465 {
466 	unsigned long flags;
467 	struct kmemleak_object *object;
468 
469 	/* try the slab allocator first */
470 	if (object_cache) {
471 		object = kmem_cache_alloc_noprof(object_cache,
472 						 gfp_nested_mask(gfp));
473 		if (object)
474 			return object;
475 	}
476 
477 	/* slab allocation failed, try the memory pool */
478 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
479 	object = list_first_entry_or_null(&mem_pool_free_list,
480 					  typeof(*object), object_list);
481 	if (object)
482 		list_del(&object->object_list);
483 	else if (mem_pool_free_count)
484 		object = &mem_pool[--mem_pool_free_count];
485 	else
486 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
487 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
488 
489 	return object;
490 }
491 
492 /*
493  * Return the object to either the slab allocator or the memory pool.
494  */
mem_pool_free(struct kmemleak_object * object)495 static void mem_pool_free(struct kmemleak_object *object)
496 {
497 	unsigned long flags;
498 
499 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
500 		kmem_cache_free(object_cache, object);
501 		return;
502 	}
503 
504 	/* add the object to the memory pool free list */
505 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
506 	list_add(&object->object_list, &mem_pool_free_list);
507 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
508 }
509 
510 /*
511  * RCU callback to free a kmemleak_object.
512  */
free_object_rcu(struct rcu_head * rcu)513 static void free_object_rcu(struct rcu_head *rcu)
514 {
515 	struct hlist_node *tmp;
516 	struct kmemleak_scan_area *area;
517 	struct kmemleak_object *object =
518 		container_of(rcu, struct kmemleak_object, rcu);
519 
520 	/*
521 	 * Once use_count is 0 (guaranteed by put_object), there is no other
522 	 * code accessing this object, hence no need for locking.
523 	 */
524 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
525 		hlist_del(&area->node);
526 		kmem_cache_free(scan_area_cache, area);
527 	}
528 	mem_pool_free(object);
529 }
530 
531 /*
532  * Decrement the object use_count. Once the count is 0, free the object using
533  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
534  * delete_object() path, the delayed RCU freeing ensures that there is no
535  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
536  * is also possible.
537  */
put_object(struct kmemleak_object * object)538 static void put_object(struct kmemleak_object *object)
539 {
540 	if (!atomic_dec_and_test(&object->use_count))
541 		return;
542 
543 	/* should only get here after delete_object was called */
544 	WARN_ON(object->flags & OBJECT_ALLOCATED);
545 
546 	/*
547 	 * It may be too early for the RCU callbacks, however, there is no
548 	 * concurrent object_list traversal when !object_cache and all objects
549 	 * came from the memory pool. Free the object directly.
550 	 */
551 	if (object_cache)
552 		call_rcu(&object->rcu, free_object_rcu);
553 	else
554 		free_object_rcu(&object->rcu);
555 }
556 
557 /*
558  * Look up an object in the object search tree and increase its use_count.
559  */
__find_and_get_object(unsigned long ptr,int alias,unsigned int objflags)560 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
561 						     unsigned int objflags)
562 {
563 	unsigned long flags;
564 	struct kmemleak_object *object;
565 
566 	rcu_read_lock();
567 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
568 	object = __lookup_object(ptr, alias, objflags);
569 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
570 
571 	/* check whether the object is still available */
572 	if (object && !get_object(object))
573 		object = NULL;
574 	rcu_read_unlock();
575 
576 	return object;
577 }
578 
579 /* Look up and get an object which allocated with virtual address. */
find_and_get_object(unsigned long ptr,int alias)580 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
581 {
582 	return __find_and_get_object(ptr, alias, 0);
583 }
584 
585 /*
586  * Remove an object from its object tree and object_list. Must be called with
587  * the kmemleak_lock held _if_ kmemleak is still enabled.
588  */
__remove_object(struct kmemleak_object * object)589 static void __remove_object(struct kmemleak_object *object)
590 {
591 	rb_erase(&object->rb_node, object_tree(object->flags));
592 	if (!(object->del_state & DELSTATE_NO_DELETE))
593 		list_del_rcu(&object->object_list);
594 	object->del_state |= DELSTATE_REMOVED;
595 }
596 
__find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)597 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
598 							int alias,
599 							unsigned int objflags)
600 {
601 	struct kmemleak_object *object;
602 
603 	object = __lookup_object(ptr, alias, objflags);
604 	if (object)
605 		__remove_object(object);
606 
607 	return object;
608 }
609 
610 /*
611  * Look up an object in the object search tree and remove it from both object
612  * tree root and object_list. The returned object's use_count should be at
613  * least 1, as initially set by create_object().
614  */
find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)615 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
616 						      unsigned int objflags)
617 {
618 	unsigned long flags;
619 	struct kmemleak_object *object;
620 
621 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
622 	object = __find_and_remove_object(ptr, alias, objflags);
623 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
624 
625 	return object;
626 }
627 
set_track_prepare(void)628 static noinline depot_stack_handle_t set_track_prepare(void)
629 {
630 	depot_stack_handle_t trace_handle;
631 	unsigned long entries[MAX_TRACE];
632 	unsigned int nr_entries;
633 
634 	/*
635 	 * Use object_cache to determine whether kmemleak_init() has
636 	 * been invoked. stack_depot_early_init() is called before
637 	 * kmemleak_init() in mm_core_init().
638 	 */
639 	if (!object_cache)
640 		return 0;
641 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
642 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
643 
644 	return trace_handle;
645 }
646 
__alloc_object(gfp_t gfp)647 static struct kmemleak_object *__alloc_object(gfp_t gfp)
648 {
649 	struct kmemleak_object *object;
650 
651 	object = mem_pool_alloc(gfp);
652 	if (!object) {
653 		pr_warn("Cannot allocate a kmemleak_object structure\n");
654 		kmemleak_disable();
655 		return NULL;
656 	}
657 
658 	INIT_LIST_HEAD(&object->object_list);
659 	INIT_LIST_HEAD(&object->gray_list);
660 	INIT_HLIST_HEAD(&object->area_list);
661 	raw_spin_lock_init(&object->lock);
662 	atomic_set(&object->use_count, 1);
663 	object->excess_ref = 0;
664 	object->count = 0;			/* white color initially */
665 	object->checksum = 0;
666 	object->del_state = 0;
667 
668 	/* task information */
669 	if (in_hardirq()) {
670 		object->pid = 0;
671 		strscpy(object->comm, "hardirq");
672 	} else if (in_serving_softirq()) {
673 		object->pid = 0;
674 		strscpy(object->comm, "softirq");
675 	} else {
676 		object->pid = current->pid;
677 		/*
678 		 * There is a small chance of a race with set_task_comm(),
679 		 * however using get_task_comm() here may cause locking
680 		 * dependency issues with current->alloc_lock. In the worst
681 		 * case, the command line is not correct.
682 		 */
683 		strscpy(object->comm, current->comm);
684 	}
685 
686 	/* kernel backtrace */
687 	object->trace_handle = set_track_prepare();
688 
689 	return object;
690 }
691 
__link_object(struct kmemleak_object * object,unsigned long ptr,size_t size,int min_count,unsigned int objflags)692 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
693 			 size_t size, int min_count, unsigned int objflags)
694 {
695 
696 	struct kmemleak_object *parent;
697 	struct rb_node **link, *rb_parent;
698 	unsigned long untagged_ptr;
699 	unsigned long untagged_objp;
700 
701 	object->flags = OBJECT_ALLOCATED | objflags;
702 	object->pointer = ptr;
703 	object->size = kfence_ksize((void *)ptr) ?: size;
704 	object->min_count = min_count;
705 	object->jiffies = jiffies;
706 
707 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
708 	/*
709 	 * Only update min_addr and max_addr with object storing virtual
710 	 * address. And update min_percpu_addr max_percpu_addr for per-CPU
711 	 * objects.
712 	 */
713 	if (objflags & OBJECT_PERCPU) {
714 		min_percpu_addr = min(min_percpu_addr, untagged_ptr);
715 		max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
716 	} else if (!(objflags & OBJECT_PHYS)) {
717 		min_addr = min(min_addr, untagged_ptr);
718 		max_addr = max(max_addr, untagged_ptr + size);
719 	}
720 	link = &object_tree(objflags)->rb_node;
721 	rb_parent = NULL;
722 	while (*link) {
723 		rb_parent = *link;
724 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
725 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
726 		if (untagged_ptr + size <= untagged_objp)
727 			link = &parent->rb_node.rb_left;
728 		else if (untagged_objp + parent->size <= untagged_ptr)
729 			link = &parent->rb_node.rb_right;
730 		else {
731 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
732 				      ptr);
733 			/*
734 			 * No need for parent->lock here since "parent" cannot
735 			 * be freed while the kmemleak_lock is held.
736 			 */
737 			dump_object_info(parent);
738 			return -EEXIST;
739 		}
740 	}
741 	rb_link_node(&object->rb_node, rb_parent, link);
742 	rb_insert_color(&object->rb_node, object_tree(objflags));
743 	list_add_tail_rcu(&object->object_list, &object_list);
744 
745 	return 0;
746 }
747 
748 /*
749  * Create the metadata (struct kmemleak_object) corresponding to an allocated
750  * memory block and add it to the object_list and object tree.
751  */
__create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp,unsigned int objflags)752 static void __create_object(unsigned long ptr, size_t size,
753 				int min_count, gfp_t gfp, unsigned int objflags)
754 {
755 	struct kmemleak_object *object;
756 	unsigned long flags;
757 	int ret;
758 
759 	object = __alloc_object(gfp);
760 	if (!object)
761 		return;
762 
763 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
764 	ret = __link_object(object, ptr, size, min_count, objflags);
765 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
766 	if (ret)
767 		mem_pool_free(object);
768 }
769 
770 /* Create kmemleak object which allocated with virtual address. */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)771 static void create_object(unsigned long ptr, size_t size,
772 			  int min_count, gfp_t gfp)
773 {
774 	__create_object(ptr, size, min_count, gfp, 0);
775 }
776 
777 /* Create kmemleak object which allocated with physical address. */
create_object_phys(unsigned long ptr,size_t size,int min_count,gfp_t gfp)778 static void create_object_phys(unsigned long ptr, size_t size,
779 			       int min_count, gfp_t gfp)
780 {
781 	__create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
782 }
783 
784 /* Create kmemleak object corresponding to a per-CPU allocation. */
create_object_percpu(unsigned long ptr,size_t size,int min_count,gfp_t gfp)785 static void create_object_percpu(unsigned long ptr, size_t size,
786 				 int min_count, gfp_t gfp)
787 {
788 	__create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
789 }
790 
791 /*
792  * Mark the object as not allocated and schedule RCU freeing via put_object().
793  */
__delete_object(struct kmemleak_object * object)794 static void __delete_object(struct kmemleak_object *object)
795 {
796 	unsigned long flags;
797 
798 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
799 	WARN_ON(atomic_read(&object->use_count) < 1);
800 
801 	/*
802 	 * Locking here also ensures that the corresponding memory block
803 	 * cannot be freed when it is being scanned.
804 	 */
805 	raw_spin_lock_irqsave(&object->lock, flags);
806 	object->flags &= ~OBJECT_ALLOCATED;
807 	raw_spin_unlock_irqrestore(&object->lock, flags);
808 	put_object(object);
809 }
810 
811 /*
812  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
813  * delete it.
814  */
delete_object_full(unsigned long ptr,unsigned int objflags)815 static void delete_object_full(unsigned long ptr, unsigned int objflags)
816 {
817 	struct kmemleak_object *object;
818 
819 	object = find_and_remove_object(ptr, 0, objflags);
820 	if (!object) {
821 #ifdef DEBUG
822 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
823 			      ptr);
824 #endif
825 		return;
826 	}
827 	__delete_object(object);
828 }
829 
830 /*
831  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
832  * delete it. If the memory block is partially freed, the function may create
833  * additional metadata for the remaining parts of the block.
834  */
delete_object_part(unsigned long ptr,size_t size,unsigned int objflags)835 static void delete_object_part(unsigned long ptr, size_t size,
836 			       unsigned int objflags)
837 {
838 	struct kmemleak_object *object, *object_l, *object_r;
839 	unsigned long start, end, flags;
840 
841 	object_l = __alloc_object(GFP_KERNEL);
842 	if (!object_l)
843 		return;
844 
845 	object_r = __alloc_object(GFP_KERNEL);
846 	if (!object_r)
847 		goto out;
848 
849 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
850 	object = __find_and_remove_object(ptr, 1, objflags);
851 	if (!object) {
852 #ifdef DEBUG
853 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
854 			      ptr, size);
855 #endif
856 		goto unlock;
857 	}
858 
859 	/*
860 	 * Create one or two objects that may result from the memory block
861 	 * split. Note that partial freeing is only done by free_bootmem() and
862 	 * this happens before kmemleak_init() is called.
863 	 */
864 	start = object->pointer;
865 	end = object->pointer + object->size;
866 	if ((ptr > start) &&
867 	    !__link_object(object_l, start, ptr - start,
868 			   object->min_count, objflags))
869 		object_l = NULL;
870 	if ((ptr + size < end) &&
871 	    !__link_object(object_r, ptr + size, end - ptr - size,
872 			   object->min_count, objflags))
873 		object_r = NULL;
874 
875 unlock:
876 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
877 	if (object)
878 		__delete_object(object);
879 
880 out:
881 	if (object_l)
882 		mem_pool_free(object_l);
883 	if (object_r)
884 		mem_pool_free(object_r);
885 }
886 
__paint_it(struct kmemleak_object * object,int color)887 static void __paint_it(struct kmemleak_object *object, int color)
888 {
889 	object->min_count = color;
890 	if (color == KMEMLEAK_BLACK)
891 		object->flags |= OBJECT_NO_SCAN;
892 }
893 
paint_it(struct kmemleak_object * object,int color)894 static void paint_it(struct kmemleak_object *object, int color)
895 {
896 	unsigned long flags;
897 
898 	raw_spin_lock_irqsave(&object->lock, flags);
899 	__paint_it(object, color);
900 	raw_spin_unlock_irqrestore(&object->lock, flags);
901 }
902 
paint_ptr(unsigned long ptr,int color,unsigned int objflags)903 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
904 {
905 	struct kmemleak_object *object;
906 
907 	object = __find_and_get_object(ptr, 0, objflags);
908 	if (!object) {
909 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
910 			      ptr,
911 			      (color == KMEMLEAK_GREY) ? "Grey" :
912 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
913 		return;
914 	}
915 	paint_it(object, color);
916 	put_object(object);
917 }
918 
919 /*
920  * Mark an object permanently as gray-colored so that it can no longer be
921  * reported as a leak. This is used in general to mark a false positive.
922  */
make_gray_object(unsigned long ptr)923 static void make_gray_object(unsigned long ptr)
924 {
925 	paint_ptr(ptr, KMEMLEAK_GREY, 0);
926 }
927 
928 /*
929  * Mark the object as black-colored so that it is ignored from scans and
930  * reporting.
931  */
make_black_object(unsigned long ptr,unsigned int objflags)932 static void make_black_object(unsigned long ptr, unsigned int objflags)
933 {
934 	paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
935 }
936 
937 /*
938  * Reset the checksum of an object. The immediate effect is that it will not
939  * be reported as a leak during the next scan until its checksum is updated.
940  */
reset_checksum(unsigned long ptr)941 static void reset_checksum(unsigned long ptr)
942 {
943 	unsigned long flags;
944 	struct kmemleak_object *object;
945 
946 	object = find_and_get_object(ptr, 0);
947 	if (!object) {
948 		kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
949 			      ptr);
950 		return;
951 	}
952 
953 	raw_spin_lock_irqsave(&object->lock, flags);
954 	object->checksum = 0;
955 	raw_spin_unlock_irqrestore(&object->lock, flags);
956 	put_object(object);
957 }
958 
959 /*
960  * Add a scanning area to the object. If at least one such area is added,
961  * kmemleak will only scan these ranges rather than the whole memory block.
962  */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)963 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
964 {
965 	unsigned long flags;
966 	struct kmemleak_object *object;
967 	struct kmemleak_scan_area *area = NULL;
968 	unsigned long untagged_ptr;
969 	unsigned long untagged_objp;
970 
971 	object = find_and_get_object(ptr, 1);
972 	if (!object) {
973 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
974 			      ptr);
975 		return;
976 	}
977 
978 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
979 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
980 
981 	if (scan_area_cache)
982 		area = kmem_cache_alloc_noprof(scan_area_cache,
983 					       gfp_nested_mask(gfp));
984 
985 	raw_spin_lock_irqsave(&object->lock, flags);
986 	if (!area) {
987 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
988 		/* mark the object for full scan to avoid false positives */
989 		object->flags |= OBJECT_FULL_SCAN;
990 		goto out_unlock;
991 	}
992 	if (size == SIZE_MAX) {
993 		size = untagged_objp + object->size - untagged_ptr;
994 	} else if (untagged_ptr + size > untagged_objp + object->size) {
995 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
996 		dump_object_info(object);
997 		kmem_cache_free(scan_area_cache, area);
998 		goto out_unlock;
999 	}
1000 
1001 	INIT_HLIST_NODE(&area->node);
1002 	area->start = ptr;
1003 	area->size = size;
1004 
1005 	hlist_add_head(&area->node, &object->area_list);
1006 out_unlock:
1007 	raw_spin_unlock_irqrestore(&object->lock, flags);
1008 	put_object(object);
1009 }
1010 
1011 /*
1012  * Any surplus references (object already gray) to 'ptr' are passed to
1013  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1014  * vm_struct may be used as an alternative reference to the vmalloc'ed object
1015  * (see free_thread_stack()).
1016  */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)1017 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
1018 {
1019 	unsigned long flags;
1020 	struct kmemleak_object *object;
1021 
1022 	object = find_and_get_object(ptr, 0);
1023 	if (!object) {
1024 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1025 			      ptr);
1026 		return;
1027 	}
1028 
1029 	raw_spin_lock_irqsave(&object->lock, flags);
1030 	object->excess_ref = excess_ref;
1031 	raw_spin_unlock_irqrestore(&object->lock, flags);
1032 	put_object(object);
1033 }
1034 
1035 /*
1036  * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1037  * pointer. Such object will not be scanned by kmemleak but references to it
1038  * are searched.
1039  */
object_no_scan(unsigned long ptr)1040 static void object_no_scan(unsigned long ptr)
1041 {
1042 	unsigned long flags;
1043 	struct kmemleak_object *object;
1044 
1045 	object = find_and_get_object(ptr, 0);
1046 	if (!object) {
1047 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1048 		return;
1049 	}
1050 
1051 	raw_spin_lock_irqsave(&object->lock, flags);
1052 	object->flags |= OBJECT_NO_SCAN;
1053 	raw_spin_unlock_irqrestore(&object->lock, flags);
1054 	put_object(object);
1055 }
1056 
1057 /**
1058  * kmemleak_alloc - register a newly allocated object
1059  * @ptr:	pointer to beginning of the object
1060  * @size:	size of the object
1061  * @min_count:	minimum number of references to this object. If during memory
1062  *		scanning a number of references less than @min_count is found,
1063  *		the object is reported as a memory leak. If @min_count is 0,
1064  *		the object is never reported as a leak. If @min_count is -1,
1065  *		the object is ignored (not scanned and not reported as a leak)
1066  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1067  *
1068  * This function is called from the kernel allocators when a new object
1069  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1070  */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)1071 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1072 			  gfp_t gfp)
1073 {
1074 	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1075 
1076 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1077 		create_object((unsigned long)ptr, size, min_count, gfp);
1078 }
1079 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1080 
1081 /**
1082  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1083  * @ptr:	__percpu pointer to beginning of the object
1084  * @size:	size of the object
1085  * @gfp:	flags used for kmemleak internal memory allocations
1086  *
1087  * This function is called from the kernel percpu allocator when a new object
1088  * (memory block) is allocated (alloc_percpu).
1089  */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)1090 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1091 				 gfp_t gfp)
1092 {
1093 	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1094 
1095 	if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1096 		create_object_percpu((__force unsigned long)ptr, size, 0, gfp);
1097 }
1098 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1099 
1100 /**
1101  * kmemleak_vmalloc - register a newly vmalloc'ed object
1102  * @area:	pointer to vm_struct
1103  * @size:	size of the object
1104  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1105  *
1106  * This function is called from the vmalloc() kernel allocator when a new
1107  * object (memory block) is allocated.
1108  */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)1109 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1110 {
1111 	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1112 
1113 	/*
1114 	 * A min_count = 2 is needed because vm_struct contains a reference to
1115 	 * the virtual address of the vmalloc'ed block.
1116 	 */
1117 	if (kmemleak_enabled) {
1118 		create_object((unsigned long)area->addr, size, 2, gfp);
1119 		object_set_excess_ref((unsigned long)area,
1120 				      (unsigned long)area->addr);
1121 	}
1122 }
1123 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1124 
1125 /**
1126  * kmemleak_free - unregister a previously registered object
1127  * @ptr:	pointer to beginning of the object
1128  *
1129  * This function is called from the kernel allocators when an object (memory
1130  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1131  */
kmemleak_free(const void * ptr)1132 void __ref kmemleak_free(const void *ptr)
1133 {
1134 	pr_debug("%s(0x%px)\n", __func__, ptr);
1135 
1136 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1137 		delete_object_full((unsigned long)ptr, 0);
1138 }
1139 EXPORT_SYMBOL_GPL(kmemleak_free);
1140 
1141 /**
1142  * kmemleak_free_part - partially unregister a previously registered object
1143  * @ptr:	pointer to the beginning or inside the object. This also
1144  *		represents the start of the range to be freed
1145  * @size:	size to be unregistered
1146  *
1147  * This function is called when only a part of a memory block is freed
1148  * (usually from the bootmem allocator).
1149  */
kmemleak_free_part(const void * ptr,size_t size)1150 void __ref kmemleak_free_part(const void *ptr, size_t size)
1151 {
1152 	pr_debug("%s(0x%px)\n", __func__, ptr);
1153 
1154 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1155 		delete_object_part((unsigned long)ptr, size, 0);
1156 }
1157 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1158 
1159 /**
1160  * kmemleak_free_percpu - unregister a previously registered __percpu object
1161  * @ptr:	__percpu pointer to beginning of the object
1162  *
1163  * This function is called from the kernel percpu allocator when an object
1164  * (memory block) is freed (free_percpu).
1165  */
kmemleak_free_percpu(const void __percpu * ptr)1166 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1167 {
1168 	pr_debug("%s(0x%px)\n", __func__, ptr);
1169 
1170 	if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1171 		delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
1172 }
1173 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1174 
1175 /**
1176  * kmemleak_update_trace - update object allocation stack trace
1177  * @ptr:	pointer to beginning of the object
1178  *
1179  * Override the object allocation stack trace for cases where the actual
1180  * allocation place is not always useful.
1181  */
kmemleak_update_trace(const void * ptr)1182 void __ref kmemleak_update_trace(const void *ptr)
1183 {
1184 	struct kmemleak_object *object;
1185 	depot_stack_handle_t trace_handle;
1186 	unsigned long flags;
1187 
1188 	pr_debug("%s(0x%px)\n", __func__, ptr);
1189 
1190 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1191 		return;
1192 
1193 	object = find_and_get_object((unsigned long)ptr, 1);
1194 	if (!object) {
1195 #ifdef DEBUG
1196 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1197 			      ptr);
1198 #endif
1199 		return;
1200 	}
1201 
1202 	trace_handle = set_track_prepare();
1203 	raw_spin_lock_irqsave(&object->lock, flags);
1204 	object->trace_handle = trace_handle;
1205 	raw_spin_unlock_irqrestore(&object->lock, flags);
1206 
1207 	put_object(object);
1208 }
1209 EXPORT_SYMBOL(kmemleak_update_trace);
1210 
1211 /**
1212  * kmemleak_not_leak - mark an allocated object as false positive
1213  * @ptr:	pointer to beginning of the object
1214  *
1215  * Calling this function on an object will cause the memory block to no longer
1216  * be reported as leak and always be scanned.
1217  */
kmemleak_not_leak(const void * ptr)1218 void __ref kmemleak_not_leak(const void *ptr)
1219 {
1220 	pr_debug("%s(0x%px)\n", __func__, ptr);
1221 
1222 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1223 		make_gray_object((unsigned long)ptr);
1224 }
1225 EXPORT_SYMBOL(kmemleak_not_leak);
1226 
1227 /**
1228  * kmemleak_transient_leak - mark an allocated object as transient false positive
1229  * @ptr:	pointer to beginning of the object
1230  *
1231  * Calling this function on an object will cause the memory block to not be
1232  * reported as a leak temporarily. This may happen, for example, if the object
1233  * is part of a singly linked list and the ->next reference to it is changed.
1234  */
kmemleak_transient_leak(const void * ptr)1235 void __ref kmemleak_transient_leak(const void *ptr)
1236 {
1237 	pr_debug("%s(0x%px)\n", __func__, ptr);
1238 
1239 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1240 		reset_checksum((unsigned long)ptr);
1241 }
1242 EXPORT_SYMBOL(kmemleak_transient_leak);
1243 
1244 /**
1245  * kmemleak_ignore - ignore an allocated object
1246  * @ptr:	pointer to beginning of the object
1247  *
1248  * Calling this function on an object will cause the memory block to be
1249  * ignored (not scanned and not reported as a leak). This is usually done when
1250  * it is known that the corresponding block is not a leak and does not contain
1251  * any references to other allocated memory blocks.
1252  */
kmemleak_ignore(const void * ptr)1253 void __ref kmemleak_ignore(const void *ptr)
1254 {
1255 	pr_debug("%s(0x%px)\n", __func__, ptr);
1256 
1257 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1258 		make_black_object((unsigned long)ptr, 0);
1259 }
1260 EXPORT_SYMBOL(kmemleak_ignore);
1261 
1262 /**
1263  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1264  * @ptr:	pointer to beginning or inside the object. This also
1265  *		represents the start of the scan area
1266  * @size:	size of the scan area
1267  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1268  *
1269  * This function is used when it is known that only certain parts of an object
1270  * contain references to other objects. Kmemleak will only scan these areas
1271  * reducing the number false negatives.
1272  */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1273 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1274 {
1275 	pr_debug("%s(0x%px)\n", __func__, ptr);
1276 
1277 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1278 		add_scan_area((unsigned long)ptr, size, gfp);
1279 }
1280 EXPORT_SYMBOL(kmemleak_scan_area);
1281 
1282 /**
1283  * kmemleak_no_scan - do not scan an allocated object
1284  * @ptr:	pointer to beginning of the object
1285  *
1286  * This function notifies kmemleak not to scan the given memory block. Useful
1287  * in situations where it is known that the given object does not contain any
1288  * references to other objects. Kmemleak will not scan such objects reducing
1289  * the number of false negatives.
1290  */
kmemleak_no_scan(const void * ptr)1291 void __ref kmemleak_no_scan(const void *ptr)
1292 {
1293 	pr_debug("%s(0x%px)\n", __func__, ptr);
1294 
1295 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1296 		object_no_scan((unsigned long)ptr);
1297 }
1298 EXPORT_SYMBOL(kmemleak_no_scan);
1299 
1300 /**
1301  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1302  *			 address argument
1303  * @phys:	physical address of the object
1304  * @size:	size of the object
1305  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1306  */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,gfp_t gfp)1307 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1308 {
1309 	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1310 
1311 	if (kmemleak_enabled)
1312 		/*
1313 		 * Create object with OBJECT_PHYS flag and
1314 		 * assume min_count 0.
1315 		 */
1316 		create_object_phys((unsigned long)phys, size, 0, gfp);
1317 }
1318 EXPORT_SYMBOL(kmemleak_alloc_phys);
1319 
1320 /**
1321  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1322  *			     physical address argument
1323  * @phys:	physical address if the beginning or inside an object. This
1324  *		also represents the start of the range to be freed
1325  * @size:	size to be unregistered
1326  */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1327 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1328 {
1329 	pr_debug("%s(0x%px)\n", __func__, &phys);
1330 
1331 	if (kmemleak_enabled)
1332 		delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1333 }
1334 EXPORT_SYMBOL(kmemleak_free_part_phys);
1335 
1336 /**
1337  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1338  *			  address argument
1339  * @phys:	physical address of the object
1340  */
kmemleak_ignore_phys(phys_addr_t phys)1341 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1342 {
1343 	pr_debug("%s(0x%px)\n", __func__, &phys);
1344 
1345 	if (kmemleak_enabled)
1346 		make_black_object((unsigned long)phys, OBJECT_PHYS);
1347 }
1348 EXPORT_SYMBOL(kmemleak_ignore_phys);
1349 
1350 /*
1351  * Update an object's checksum and return true if it was modified.
1352  */
update_checksum(struct kmemleak_object * object)1353 static bool update_checksum(struct kmemleak_object *object)
1354 {
1355 	u32 old_csum = object->checksum;
1356 
1357 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1358 		return false;
1359 
1360 	kasan_disable_current();
1361 	kcsan_disable_current();
1362 	if (object->flags & OBJECT_PERCPU) {
1363 		unsigned int cpu;
1364 
1365 		object->checksum = 0;
1366 		for_each_possible_cpu(cpu) {
1367 			void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1368 
1369 			object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1370 		}
1371 	} else {
1372 		object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1373 	}
1374 	kasan_enable_current();
1375 	kcsan_enable_current();
1376 
1377 	return object->checksum != old_csum;
1378 }
1379 
1380 /*
1381  * Update an object's references. object->lock must be held by the caller.
1382  */
update_refs(struct kmemleak_object * object)1383 static void update_refs(struct kmemleak_object *object)
1384 {
1385 	if (!color_white(object)) {
1386 		/* non-orphan, ignored or new */
1387 		return;
1388 	}
1389 
1390 	/*
1391 	 * Increase the object's reference count (number of pointers to the
1392 	 * memory block). If this count reaches the required minimum, the
1393 	 * object's color will become gray and it will be added to the
1394 	 * gray_list.
1395 	 */
1396 	object->count++;
1397 	if (color_gray(object)) {
1398 		/* put_object() called when removing from gray_list */
1399 		WARN_ON(!get_object(object));
1400 		list_add_tail(&object->gray_list, &gray_list);
1401 	}
1402 }
1403 
pointer_update_refs(struct kmemleak_object * scanned,unsigned long pointer,unsigned int objflags)1404 static void pointer_update_refs(struct kmemleak_object *scanned,
1405 			 unsigned long pointer, unsigned int objflags)
1406 {
1407 	struct kmemleak_object *object;
1408 	unsigned long untagged_ptr;
1409 	unsigned long excess_ref;
1410 
1411 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1412 	if (objflags & OBJECT_PERCPU) {
1413 		if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1414 			return;
1415 	} else {
1416 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1417 			return;
1418 	}
1419 
1420 	/*
1421 	 * No need for get_object() here since we hold kmemleak_lock.
1422 	 * object->use_count cannot be dropped to 0 while the object
1423 	 * is still present in object_tree_root and object_list
1424 	 * (with updates protected by kmemleak_lock).
1425 	 */
1426 	object = __lookup_object(pointer, 1, objflags);
1427 	if (!object)
1428 		return;
1429 	if (object == scanned)
1430 		/* self referenced, ignore */
1431 		return;
1432 
1433 	/*
1434 	 * Avoid the lockdep recursive warning on object->lock being
1435 	 * previously acquired in scan_object(). These locks are
1436 	 * enclosed by scan_mutex.
1437 	 */
1438 	raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1439 	/* only pass surplus references (object already gray) */
1440 	if (color_gray(object)) {
1441 		excess_ref = object->excess_ref;
1442 		/* no need for update_refs() if object already gray */
1443 	} else {
1444 		excess_ref = 0;
1445 		update_refs(object);
1446 	}
1447 	raw_spin_unlock(&object->lock);
1448 
1449 	if (excess_ref) {
1450 		object = lookup_object(excess_ref, 0);
1451 		if (!object)
1452 			return;
1453 		if (object == scanned)
1454 			/* circular reference, ignore */
1455 			return;
1456 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1457 		update_refs(object);
1458 		raw_spin_unlock(&object->lock);
1459 	}
1460 }
1461 
1462 /*
1463  * Memory scanning is a long process and it needs to be interruptible. This
1464  * function checks whether such interrupt condition occurred.
1465  */
scan_should_stop(void)1466 static int scan_should_stop(void)
1467 {
1468 	if (!kmemleak_enabled)
1469 		return 1;
1470 
1471 	/*
1472 	 * This function may be called from either process or kthread context,
1473 	 * hence the need to check for both stop conditions.
1474 	 */
1475 	if (current->mm)
1476 		return signal_pending(current);
1477 	else
1478 		return kthread_should_stop();
1479 
1480 	return 0;
1481 }
1482 
1483 /*
1484  * Scan a memory block (exclusive range) for valid pointers and add those
1485  * found to the gray list.
1486  */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1487 static void scan_block(void *_start, void *_end,
1488 		       struct kmemleak_object *scanned)
1489 {
1490 	unsigned long *ptr;
1491 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1492 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1493 	unsigned long flags;
1494 
1495 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1496 	for (ptr = start; ptr < end; ptr++) {
1497 		unsigned long pointer;
1498 
1499 		if (scan_should_stop())
1500 			break;
1501 
1502 		kasan_disable_current();
1503 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1504 		kasan_enable_current();
1505 
1506 		pointer_update_refs(scanned, pointer, 0);
1507 		pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
1508 	}
1509 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1510 }
1511 
1512 /*
1513  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1514  */
1515 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1516 static void scan_large_block(void *start, void *end)
1517 {
1518 	void *next;
1519 
1520 	while (start < end) {
1521 		next = min(start + MAX_SCAN_SIZE, end);
1522 		scan_block(start, next, NULL);
1523 		start = next;
1524 		cond_resched();
1525 	}
1526 }
1527 #endif
1528 
1529 /*
1530  * Scan a memory block corresponding to a kmemleak_object. A condition is
1531  * that object->use_count >= 1.
1532  */
scan_object(struct kmemleak_object * object)1533 static void scan_object(struct kmemleak_object *object)
1534 {
1535 	struct kmemleak_scan_area *area;
1536 	unsigned long flags;
1537 
1538 	/*
1539 	 * Once the object->lock is acquired, the corresponding memory block
1540 	 * cannot be freed (the same lock is acquired in delete_object).
1541 	 */
1542 	raw_spin_lock_irqsave(&object->lock, flags);
1543 	if (object->flags & OBJECT_NO_SCAN)
1544 		goto out;
1545 	if (!(object->flags & OBJECT_ALLOCATED))
1546 		/* already freed object */
1547 		goto out;
1548 
1549 	if (object->flags & OBJECT_PERCPU) {
1550 		unsigned int cpu;
1551 
1552 		for_each_possible_cpu(cpu) {
1553 			void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1554 			void *end = start + object->size;
1555 
1556 			scan_block(start, end, object);
1557 
1558 			raw_spin_unlock_irqrestore(&object->lock, flags);
1559 			cond_resched();
1560 			raw_spin_lock_irqsave(&object->lock, flags);
1561 			if (!(object->flags & OBJECT_ALLOCATED))
1562 				break;
1563 		}
1564 	} else if (hlist_empty(&object->area_list) ||
1565 	    object->flags & OBJECT_FULL_SCAN) {
1566 		void *start = object->flags & OBJECT_PHYS ?
1567 				__va((phys_addr_t)object->pointer) :
1568 				(void *)object->pointer;
1569 		void *end = start + object->size;
1570 		void *next;
1571 
1572 		do {
1573 			next = min(start + MAX_SCAN_SIZE, end);
1574 			scan_block(start, next, object);
1575 
1576 			start = next;
1577 			if (start >= end)
1578 				break;
1579 
1580 			raw_spin_unlock_irqrestore(&object->lock, flags);
1581 			cond_resched();
1582 			raw_spin_lock_irqsave(&object->lock, flags);
1583 		} while (object->flags & OBJECT_ALLOCATED);
1584 	} else {
1585 		hlist_for_each_entry(area, &object->area_list, node)
1586 			scan_block((void *)area->start,
1587 				   (void *)(area->start + area->size),
1588 				   object);
1589 	}
1590 out:
1591 	raw_spin_unlock_irqrestore(&object->lock, flags);
1592 }
1593 
1594 /*
1595  * Scan the objects already referenced (gray objects). More objects will be
1596  * referenced and, if there are no memory leaks, all the objects are scanned.
1597  */
scan_gray_list(void)1598 static void scan_gray_list(void)
1599 {
1600 	struct kmemleak_object *object, *tmp;
1601 
1602 	/*
1603 	 * The list traversal is safe for both tail additions and removals
1604 	 * from inside the loop. The kmemleak objects cannot be freed from
1605 	 * outside the loop because their use_count was incremented.
1606 	 */
1607 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1608 	while (&object->gray_list != &gray_list) {
1609 		cond_resched();
1610 
1611 		/* may add new objects to the list */
1612 		if (!scan_should_stop())
1613 			scan_object(object);
1614 
1615 		tmp = list_entry(object->gray_list.next, typeof(*object),
1616 				 gray_list);
1617 
1618 		/* remove the object from the list and release it */
1619 		list_del(&object->gray_list);
1620 		put_object(object);
1621 
1622 		object = tmp;
1623 	}
1624 	WARN_ON(!list_empty(&gray_list));
1625 }
1626 
1627 /*
1628  * Conditionally call resched() in an object iteration loop while making sure
1629  * that the given object won't go away without RCU read lock by performing a
1630  * get_object() if necessaary.
1631  */
kmemleak_cond_resched(struct kmemleak_object * object)1632 static void kmemleak_cond_resched(struct kmemleak_object *object)
1633 {
1634 	if (!get_object(object))
1635 		return;	/* Try next object */
1636 
1637 	raw_spin_lock_irq(&kmemleak_lock);
1638 	if (object->del_state & DELSTATE_REMOVED)
1639 		goto unlock_put;	/* Object removed */
1640 	object->del_state |= DELSTATE_NO_DELETE;
1641 	raw_spin_unlock_irq(&kmemleak_lock);
1642 
1643 	rcu_read_unlock();
1644 	cond_resched();
1645 	rcu_read_lock();
1646 
1647 	raw_spin_lock_irq(&kmemleak_lock);
1648 	if (object->del_state & DELSTATE_REMOVED)
1649 		list_del_rcu(&object->object_list);
1650 	object->del_state &= ~DELSTATE_NO_DELETE;
1651 unlock_put:
1652 	raw_spin_unlock_irq(&kmemleak_lock);
1653 	put_object(object);
1654 }
1655 
1656 /*
1657  * Scan data sections and all the referenced memory blocks allocated via the
1658  * kernel's standard allocators. This function must be called with the
1659  * scan_mutex held.
1660  */
kmemleak_scan(void)1661 static void kmemleak_scan(void)
1662 {
1663 	struct kmemleak_object *object;
1664 	struct zone *zone;
1665 	int __maybe_unused i;
1666 	int new_leaks = 0;
1667 
1668 	jiffies_last_scan = jiffies;
1669 
1670 	/* prepare the kmemleak_object's */
1671 	rcu_read_lock();
1672 	list_for_each_entry_rcu(object, &object_list, object_list) {
1673 		raw_spin_lock_irq(&object->lock);
1674 #ifdef DEBUG
1675 		/*
1676 		 * With a few exceptions there should be a maximum of
1677 		 * 1 reference to any object at this point.
1678 		 */
1679 		if (atomic_read(&object->use_count) > 1) {
1680 			pr_debug("object->use_count = %d\n",
1681 				 atomic_read(&object->use_count));
1682 			dump_object_info(object);
1683 		}
1684 #endif
1685 
1686 		/* ignore objects outside lowmem (paint them black) */
1687 		if ((object->flags & OBJECT_PHYS) &&
1688 		   !(object->flags & OBJECT_NO_SCAN)) {
1689 			unsigned long phys = object->pointer;
1690 
1691 			if (PHYS_PFN(phys) < min_low_pfn ||
1692 			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1693 				__paint_it(object, KMEMLEAK_BLACK);
1694 		}
1695 
1696 		/* reset the reference count (whiten the object) */
1697 		object->count = 0;
1698 		if (color_gray(object) && get_object(object))
1699 			list_add_tail(&object->gray_list, &gray_list);
1700 
1701 		raw_spin_unlock_irq(&object->lock);
1702 
1703 		if (need_resched())
1704 			kmemleak_cond_resched(object);
1705 	}
1706 	rcu_read_unlock();
1707 
1708 #ifdef CONFIG_SMP
1709 	/* per-cpu sections scanning */
1710 	for_each_possible_cpu(i)
1711 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1712 				 __per_cpu_end + per_cpu_offset(i));
1713 #endif
1714 
1715 	/*
1716 	 * Struct page scanning for each node.
1717 	 */
1718 	get_online_mems();
1719 	for_each_populated_zone(zone) {
1720 		unsigned long start_pfn = zone->zone_start_pfn;
1721 		unsigned long end_pfn = zone_end_pfn(zone);
1722 		unsigned long pfn;
1723 
1724 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1725 			struct page *page = pfn_to_online_page(pfn);
1726 
1727 			if (!(pfn & 63))
1728 				cond_resched();
1729 
1730 			if (!page)
1731 				continue;
1732 
1733 			/* only scan pages belonging to this zone */
1734 			if (page_zone(page) != zone)
1735 				continue;
1736 			/* only scan if page is in use */
1737 			if (page_count(page) == 0)
1738 				continue;
1739 			scan_block(page, page + 1, NULL);
1740 		}
1741 	}
1742 	put_online_mems();
1743 
1744 	/*
1745 	 * Scanning the task stacks (may introduce false negatives).
1746 	 */
1747 	if (kmemleak_stack_scan) {
1748 		struct task_struct *p, *g;
1749 
1750 		rcu_read_lock();
1751 		for_each_process_thread(g, p) {
1752 			void *stack = try_get_task_stack(p);
1753 			if (stack) {
1754 				scan_block(stack, stack + THREAD_SIZE, NULL);
1755 				put_task_stack(p);
1756 			}
1757 		}
1758 		rcu_read_unlock();
1759 	}
1760 
1761 	/*
1762 	 * Scan the objects already referenced from the sections scanned
1763 	 * above.
1764 	 */
1765 	scan_gray_list();
1766 
1767 	/*
1768 	 * Check for new or unreferenced objects modified since the previous
1769 	 * scan and color them gray until the next scan.
1770 	 */
1771 	rcu_read_lock();
1772 	list_for_each_entry_rcu(object, &object_list, object_list) {
1773 		if (need_resched())
1774 			kmemleak_cond_resched(object);
1775 
1776 		/*
1777 		 * This is racy but we can save the overhead of lock/unlock
1778 		 * calls. The missed objects, if any, should be caught in
1779 		 * the next scan.
1780 		 */
1781 		if (!color_white(object))
1782 			continue;
1783 		raw_spin_lock_irq(&object->lock);
1784 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1785 		    && update_checksum(object) && get_object(object)) {
1786 			/* color it gray temporarily */
1787 			object->count = object->min_count;
1788 			list_add_tail(&object->gray_list, &gray_list);
1789 		}
1790 		raw_spin_unlock_irq(&object->lock);
1791 	}
1792 	rcu_read_unlock();
1793 
1794 	/*
1795 	 * Re-scan the gray list for modified unreferenced objects.
1796 	 */
1797 	scan_gray_list();
1798 
1799 	/*
1800 	 * If scanning was stopped do not report any new unreferenced objects.
1801 	 */
1802 	if (scan_should_stop())
1803 		return;
1804 
1805 	/*
1806 	 * Scanning result reporting.
1807 	 */
1808 	rcu_read_lock();
1809 	list_for_each_entry_rcu(object, &object_list, object_list) {
1810 		if (need_resched())
1811 			kmemleak_cond_resched(object);
1812 
1813 		/*
1814 		 * This is racy but we can save the overhead of lock/unlock
1815 		 * calls. The missed objects, if any, should be caught in
1816 		 * the next scan.
1817 		 */
1818 		if (!color_white(object))
1819 			continue;
1820 		raw_spin_lock_irq(&object->lock);
1821 		if (unreferenced_object(object) &&
1822 		    !(object->flags & OBJECT_REPORTED)) {
1823 			object->flags |= OBJECT_REPORTED;
1824 
1825 			if (kmemleak_verbose)
1826 				print_unreferenced(NULL, object);
1827 
1828 			new_leaks++;
1829 		}
1830 		raw_spin_unlock_irq(&object->lock);
1831 	}
1832 	rcu_read_unlock();
1833 
1834 	if (new_leaks) {
1835 		kmemleak_found_leaks = true;
1836 
1837 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1838 			new_leaks);
1839 	}
1840 
1841 }
1842 
1843 /*
1844  * Thread function performing automatic memory scanning. Unreferenced objects
1845  * at the end of a memory scan are reported but only the first time.
1846  */
kmemleak_scan_thread(void * arg)1847 static int kmemleak_scan_thread(void *arg)
1848 {
1849 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1850 
1851 	pr_info("Automatic memory scanning thread started\n");
1852 	set_user_nice(current, 10);
1853 
1854 	/*
1855 	 * Wait before the first scan to allow the system to fully initialize.
1856 	 */
1857 	if (first_run) {
1858 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1859 		first_run = 0;
1860 		while (timeout && !kthread_should_stop())
1861 			timeout = schedule_timeout_interruptible(timeout);
1862 	}
1863 
1864 	while (!kthread_should_stop()) {
1865 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1866 
1867 		mutex_lock(&scan_mutex);
1868 		kmemleak_scan();
1869 		mutex_unlock(&scan_mutex);
1870 
1871 		/* wait before the next scan */
1872 		while (timeout && !kthread_should_stop())
1873 			timeout = schedule_timeout_interruptible(timeout);
1874 	}
1875 
1876 	pr_info("Automatic memory scanning thread ended\n");
1877 
1878 	return 0;
1879 }
1880 
1881 /*
1882  * Start the automatic memory scanning thread. This function must be called
1883  * with the scan_mutex held.
1884  */
start_scan_thread(void)1885 static void start_scan_thread(void)
1886 {
1887 	if (scan_thread)
1888 		return;
1889 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1890 	if (IS_ERR(scan_thread)) {
1891 		pr_warn("Failed to create the scan thread\n");
1892 		scan_thread = NULL;
1893 	}
1894 }
1895 
1896 /*
1897  * Stop the automatic memory scanning thread.
1898  */
stop_scan_thread(void)1899 static void stop_scan_thread(void)
1900 {
1901 	if (scan_thread) {
1902 		kthread_stop(scan_thread);
1903 		scan_thread = NULL;
1904 	}
1905 }
1906 
1907 /*
1908  * Iterate over the object_list and return the first valid object at or after
1909  * the required position with its use_count incremented. The function triggers
1910  * a memory scanning when the pos argument points to the first position.
1911  */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1912 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1913 {
1914 	struct kmemleak_object *object;
1915 	loff_t n = *pos;
1916 	int err;
1917 
1918 	err = mutex_lock_interruptible(&scan_mutex);
1919 	if (err < 0)
1920 		return ERR_PTR(err);
1921 
1922 	rcu_read_lock();
1923 	list_for_each_entry_rcu(object, &object_list, object_list) {
1924 		if (n-- > 0)
1925 			continue;
1926 		if (get_object(object))
1927 			goto out;
1928 	}
1929 	object = NULL;
1930 out:
1931 	return object;
1932 }
1933 
1934 /*
1935  * Return the next object in the object_list. The function decrements the
1936  * use_count of the previous object and increases that of the next one.
1937  */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1938 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1939 {
1940 	struct kmemleak_object *prev_obj = v;
1941 	struct kmemleak_object *next_obj = NULL;
1942 	struct kmemleak_object *obj = prev_obj;
1943 
1944 	++(*pos);
1945 
1946 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1947 		if (get_object(obj)) {
1948 			next_obj = obj;
1949 			break;
1950 		}
1951 	}
1952 
1953 	put_object(prev_obj);
1954 	return next_obj;
1955 }
1956 
1957 /*
1958  * Decrement the use_count of the last object required, if any.
1959  */
kmemleak_seq_stop(struct seq_file * seq,void * v)1960 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1961 {
1962 	if (!IS_ERR(v)) {
1963 		/*
1964 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1965 		 * waiting was interrupted, so only release it if !IS_ERR.
1966 		 */
1967 		rcu_read_unlock();
1968 		mutex_unlock(&scan_mutex);
1969 		if (v)
1970 			put_object(v);
1971 	}
1972 }
1973 
1974 /*
1975  * Print the information for an unreferenced object to the seq file.
1976  */
kmemleak_seq_show(struct seq_file * seq,void * v)1977 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1978 {
1979 	struct kmemleak_object *object = v;
1980 	unsigned long flags;
1981 
1982 	raw_spin_lock_irqsave(&object->lock, flags);
1983 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1984 		print_unreferenced(seq, object);
1985 	raw_spin_unlock_irqrestore(&object->lock, flags);
1986 	return 0;
1987 }
1988 
1989 static const struct seq_operations kmemleak_seq_ops = {
1990 	.start = kmemleak_seq_start,
1991 	.next  = kmemleak_seq_next,
1992 	.stop  = kmemleak_seq_stop,
1993 	.show  = kmemleak_seq_show,
1994 };
1995 
kmemleak_open(struct inode * inode,struct file * file)1996 static int kmemleak_open(struct inode *inode, struct file *file)
1997 {
1998 	return seq_open(file, &kmemleak_seq_ops);
1999 }
2000 
dump_str_object_info(const char * str)2001 static int dump_str_object_info(const char *str)
2002 {
2003 	unsigned long flags;
2004 	struct kmemleak_object *object;
2005 	unsigned long addr;
2006 
2007 	if (kstrtoul(str, 0, &addr))
2008 		return -EINVAL;
2009 	object = find_and_get_object(addr, 0);
2010 	if (!object) {
2011 		pr_info("Unknown object at 0x%08lx\n", addr);
2012 		return -EINVAL;
2013 	}
2014 
2015 	raw_spin_lock_irqsave(&object->lock, flags);
2016 	dump_object_info(object);
2017 	raw_spin_unlock_irqrestore(&object->lock, flags);
2018 
2019 	put_object(object);
2020 	return 0;
2021 }
2022 
2023 /*
2024  * We use grey instead of black to ensure we can do future scans on the same
2025  * objects. If we did not do future scans these black objects could
2026  * potentially contain references to newly allocated objects in the future and
2027  * we'd end up with false positives.
2028  */
kmemleak_clear(void)2029 static void kmemleak_clear(void)
2030 {
2031 	struct kmemleak_object *object;
2032 
2033 	rcu_read_lock();
2034 	list_for_each_entry_rcu(object, &object_list, object_list) {
2035 		raw_spin_lock_irq(&object->lock);
2036 		if ((object->flags & OBJECT_REPORTED) &&
2037 		    unreferenced_object(object))
2038 			__paint_it(object, KMEMLEAK_GREY);
2039 		raw_spin_unlock_irq(&object->lock);
2040 	}
2041 	rcu_read_unlock();
2042 
2043 	kmemleak_found_leaks = false;
2044 }
2045 
2046 static void __kmemleak_do_cleanup(void);
2047 
2048 /*
2049  * File write operation to configure kmemleak at run-time. The following
2050  * commands can be written to the /sys/kernel/debug/kmemleak file:
2051  *   off	- disable kmemleak (irreversible)
2052  *   stack=on	- enable the task stacks scanning
2053  *   stack=off	- disable the tasks stacks scanning
2054  *   scan=on	- start the automatic memory scanning thread
2055  *   scan=off	- stop the automatic memory scanning thread
2056  *   scan=...	- set the automatic memory scanning period in seconds (0 to
2057  *		  disable it)
2058  *   scan	- trigger a memory scan
2059  *   clear	- mark all current reported unreferenced kmemleak objects as
2060  *		  grey to ignore printing them, or free all kmemleak objects
2061  *		  if kmemleak has been disabled.
2062  *   dump=...	- dump information about the object found at the given address
2063  */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)2064 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2065 			      size_t size, loff_t *ppos)
2066 {
2067 	char buf[64];
2068 	int buf_size;
2069 	int ret;
2070 
2071 	buf_size = min(size, (sizeof(buf) - 1));
2072 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2073 		return -EFAULT;
2074 	buf[buf_size] = 0;
2075 
2076 	ret = mutex_lock_interruptible(&scan_mutex);
2077 	if (ret < 0)
2078 		return ret;
2079 
2080 	if (strncmp(buf, "clear", 5) == 0) {
2081 		if (kmemleak_enabled)
2082 			kmemleak_clear();
2083 		else
2084 			__kmemleak_do_cleanup();
2085 		goto out;
2086 	}
2087 
2088 	if (!kmemleak_enabled) {
2089 		ret = -EPERM;
2090 		goto out;
2091 	}
2092 
2093 	if (strncmp(buf, "off", 3) == 0)
2094 		kmemleak_disable();
2095 	else if (strncmp(buf, "stack=on", 8) == 0)
2096 		kmemleak_stack_scan = 1;
2097 	else if (strncmp(buf, "stack=off", 9) == 0)
2098 		kmemleak_stack_scan = 0;
2099 	else if (strncmp(buf, "scan=on", 7) == 0)
2100 		start_scan_thread();
2101 	else if (strncmp(buf, "scan=off", 8) == 0)
2102 		stop_scan_thread();
2103 	else if (strncmp(buf, "scan=", 5) == 0) {
2104 		unsigned secs;
2105 		unsigned long msecs;
2106 
2107 		ret = kstrtouint(buf + 5, 0, &secs);
2108 		if (ret < 0)
2109 			goto out;
2110 
2111 		msecs = secs * MSEC_PER_SEC;
2112 		if (msecs > UINT_MAX)
2113 			msecs = UINT_MAX;
2114 
2115 		stop_scan_thread();
2116 		if (msecs) {
2117 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2118 			start_scan_thread();
2119 		}
2120 	} else if (strncmp(buf, "scan", 4) == 0)
2121 		kmemleak_scan();
2122 	else if (strncmp(buf, "dump=", 5) == 0)
2123 		ret = dump_str_object_info(buf + 5);
2124 	else
2125 		ret = -EINVAL;
2126 
2127 out:
2128 	mutex_unlock(&scan_mutex);
2129 	if (ret < 0)
2130 		return ret;
2131 
2132 	/* ignore the rest of the buffer, only one command at a time */
2133 	*ppos += size;
2134 	return size;
2135 }
2136 
2137 static const struct file_operations kmemleak_fops = {
2138 	.owner		= THIS_MODULE,
2139 	.open		= kmemleak_open,
2140 	.read		= seq_read,
2141 	.write		= kmemleak_write,
2142 	.llseek		= seq_lseek,
2143 	.release	= seq_release,
2144 };
2145 
__kmemleak_do_cleanup(void)2146 static void __kmemleak_do_cleanup(void)
2147 {
2148 	struct kmemleak_object *object, *tmp;
2149 
2150 	/*
2151 	 * Kmemleak has already been disabled, no need for RCU list traversal
2152 	 * or kmemleak_lock held.
2153 	 */
2154 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2155 		__remove_object(object);
2156 		__delete_object(object);
2157 	}
2158 }
2159 
2160 /*
2161  * Stop the memory scanning thread and free the kmemleak internal objects if
2162  * no previous scan thread (otherwise, kmemleak may still have some useful
2163  * information on memory leaks).
2164  */
kmemleak_do_cleanup(struct work_struct * work)2165 static void kmemleak_do_cleanup(struct work_struct *work)
2166 {
2167 	stop_scan_thread();
2168 
2169 	mutex_lock(&scan_mutex);
2170 	/*
2171 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2172 	 * longer track object freeing. Ordering of the scan thread stopping and
2173 	 * the memory accesses below is guaranteed by the kthread_stop()
2174 	 * function.
2175 	 */
2176 	kmemleak_free_enabled = 0;
2177 	mutex_unlock(&scan_mutex);
2178 
2179 	if (!kmemleak_found_leaks)
2180 		__kmemleak_do_cleanup();
2181 	else
2182 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2183 }
2184 
2185 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2186 
2187 /*
2188  * Disable kmemleak. No memory allocation/freeing will be traced once this
2189  * function is called. Disabling kmemleak is an irreversible operation.
2190  */
kmemleak_disable(void)2191 static void kmemleak_disable(void)
2192 {
2193 	/* atomically check whether it was already invoked */
2194 	if (cmpxchg(&kmemleak_error, 0, 1))
2195 		return;
2196 
2197 	/* stop any memory operation tracing */
2198 	kmemleak_enabled = 0;
2199 
2200 	/* check whether it is too early for a kernel thread */
2201 	if (kmemleak_late_initialized)
2202 		schedule_work(&cleanup_work);
2203 	else
2204 		kmemleak_free_enabled = 0;
2205 
2206 	pr_info("Kernel memory leak detector disabled\n");
2207 }
2208 
2209 /*
2210  * Allow boot-time kmemleak disabling (enabled by default).
2211  */
kmemleak_boot_config(char * str)2212 static int __init kmemleak_boot_config(char *str)
2213 {
2214 	if (!str)
2215 		return -EINVAL;
2216 	if (strcmp(str, "off") == 0)
2217 		kmemleak_disable();
2218 	else if (strcmp(str, "on") == 0) {
2219 		kmemleak_skip_disable = 1;
2220 		stack_depot_request_early_init();
2221 	}
2222 	else
2223 		return -EINVAL;
2224 	return 0;
2225 }
2226 early_param("kmemleak", kmemleak_boot_config);
2227 
2228 /*
2229  * Kmemleak initialization.
2230  */
kmemleak_init(void)2231 void __init kmemleak_init(void)
2232 {
2233 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2234 	if (!kmemleak_skip_disable) {
2235 		kmemleak_disable();
2236 		return;
2237 	}
2238 #endif
2239 
2240 	if (kmemleak_error)
2241 		return;
2242 
2243 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2244 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2245 
2246 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2247 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2248 
2249 	/* register the data/bss sections */
2250 	create_object((unsigned long)_sdata, _edata - _sdata,
2251 		      KMEMLEAK_GREY, GFP_ATOMIC);
2252 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2253 		      KMEMLEAK_GREY, GFP_ATOMIC);
2254 	/* only register .data..ro_after_init if not within .data */
2255 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2256 		create_object((unsigned long)__start_ro_after_init,
2257 			      __end_ro_after_init - __start_ro_after_init,
2258 			      KMEMLEAK_GREY, GFP_ATOMIC);
2259 }
2260 
2261 /*
2262  * Late initialization function.
2263  */
kmemleak_late_init(void)2264 static int __init kmemleak_late_init(void)
2265 {
2266 	kmemleak_late_initialized = 1;
2267 
2268 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2269 
2270 	if (kmemleak_error) {
2271 		/*
2272 		 * Some error occurred and kmemleak was disabled. There is a
2273 		 * small chance that kmemleak_disable() was called immediately
2274 		 * after setting kmemleak_late_initialized and we may end up with
2275 		 * two clean-up threads but serialized by scan_mutex.
2276 		 */
2277 		schedule_work(&cleanup_work);
2278 		return -ENOMEM;
2279 	}
2280 
2281 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2282 		mutex_lock(&scan_mutex);
2283 		start_scan_thread();
2284 		mutex_unlock(&scan_mutex);
2285 	}
2286 
2287 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2288 		mem_pool_free_count);
2289 
2290 	return 0;
2291 }
2292 late_initcall(kmemleak_late_init);
2293