1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "disk-io.h"
13 #include "block-group.h"
14 #include "dev-replace.h"
15 #include "space-info.h"
16 #include "fs.h"
17 #include "accessors.h"
18 #include "bio.h"
19 #include "transaction.h"
20 #include "sysfs.h"
21
22 /* Maximum number of zones to report per blkdev_report_zones() call */
23 #define BTRFS_REPORT_NR_ZONES 4096
24 /* Invalid allocation pointer value for missing devices */
25 #define WP_MISSING_DEV ((u64)-1)
26 /* Pseudo write pointer value for conventional zone */
27 #define WP_CONVENTIONAL ((u64)-2)
28
29 /*
30 * Location of the first zone of superblock logging zone pairs.
31 *
32 * - primary superblock: 0B (zone 0)
33 * - first copy: 512G (zone starting at that offset)
34 * - second copy: 4T (zone starting at that offset)
35 */
36 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
37 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
38 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
39
40 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
41 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
42
43 /* Number of superblock log zones */
44 #define BTRFS_NR_SB_LOG_ZONES 2
45
46 /* Default number of max active zones when the device has no limits. */
47 #define BTRFS_DEFAULT_MAX_ACTIVE_ZONES 128
48
49 /*
50 * Minimum of active zones we need:
51 *
52 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
53 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
54 * - 1 zone for tree-log dedicated block group
55 * - 1 zone for relocation
56 */
57 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
58
59 /*
60 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
61 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
62 * We do not expect the zone size to become larger than 8GiB or smaller than
63 * 4MiB in the near future.
64 */
65 #define BTRFS_MAX_ZONE_SIZE SZ_8G
66 #define BTRFS_MIN_ZONE_SIZE SZ_4M
67
68 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
69
70 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
71 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
72
sb_zone_is_full(const struct blk_zone * zone)73 static inline bool sb_zone_is_full(const struct blk_zone *zone)
74 {
75 return (zone->cond == BLK_ZONE_COND_FULL) ||
76 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
77 }
78
copy_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)79 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
80 {
81 struct blk_zone *zones = data;
82
83 memcpy(&zones[idx], zone, sizeof(*zone));
84
85 return 0;
86 }
87
sb_write_pointer(struct block_device * bdev,struct blk_zone * zones,u64 * wp_ret)88 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
89 u64 *wp_ret)
90 {
91 bool empty[BTRFS_NR_SB_LOG_ZONES];
92 bool full[BTRFS_NR_SB_LOG_ZONES];
93 sector_t sector;
94
95 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
96 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
97 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
98 full[i] = sb_zone_is_full(&zones[i]);
99 }
100
101 /*
102 * Possible states of log buffer zones
103 *
104 * Empty[0] In use[0] Full[0]
105 * Empty[1] * 0 1
106 * In use[1] x x 1
107 * Full[1] 0 0 C
108 *
109 * Log position:
110 * *: Special case, no superblock is written
111 * 0: Use write pointer of zones[0]
112 * 1: Use write pointer of zones[1]
113 * C: Compare super blocks from zones[0] and zones[1], use the latest
114 * one determined by generation
115 * x: Invalid state
116 */
117
118 if (empty[0] && empty[1]) {
119 /* Special case to distinguish no superblock to read */
120 *wp_ret = zones[0].start << SECTOR_SHIFT;
121 return -ENOENT;
122 } else if (full[0] && full[1]) {
123 /* Compare two super blocks */
124 struct address_space *mapping = bdev->bd_mapping;
125 struct page *page[BTRFS_NR_SB_LOG_ZONES];
126 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
127
128 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131 BTRFS_SUPER_INFO_SIZE;
132
133 page[i] = read_cache_page_gfp(mapping,
134 bytenr >> PAGE_SHIFT, GFP_NOFS);
135 if (IS_ERR(page[i])) {
136 if (i == 1)
137 btrfs_release_disk_super(super[0]);
138 return PTR_ERR(page[i]);
139 }
140 super[i] = page_address(page[i]);
141 }
142
143 if (btrfs_super_generation(super[0]) >
144 btrfs_super_generation(super[1]))
145 sector = zones[1].start;
146 else
147 sector = zones[0].start;
148
149 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150 btrfs_release_disk_super(super[i]);
151 } else if (!full[0] && (empty[1] || full[1])) {
152 sector = zones[0].wp;
153 } else if (full[0]) {
154 sector = zones[1].wp;
155 } else {
156 return -EUCLEAN;
157 }
158 *wp_ret = sector << SECTOR_SHIFT;
159 return 0;
160 }
161
162 /*
163 * Get the first zone number of the superblock mirror
164 */
sb_zone_number(int shift,int mirror)165 static inline u32 sb_zone_number(int shift, int mirror)
166 {
167 u64 zone = U64_MAX;
168
169 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170 switch (mirror) {
171 case 0: zone = 0; break;
172 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174 }
175
176 ASSERT(zone <= U32_MAX);
177
178 return (u32)zone;
179 }
180
zone_start_sector(u32 zone_number,struct block_device * bdev)181 static inline sector_t zone_start_sector(u32 zone_number,
182 struct block_device *bdev)
183 {
184 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185 }
186
zone_start_physical(u32 zone_number,struct btrfs_zoned_device_info * zone_info)187 static inline u64 zone_start_physical(u32 zone_number,
188 struct btrfs_zoned_device_info *zone_info)
189 {
190 return (u64)zone_number << zone_info->zone_size_shift;
191 }
192
193 /*
194 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195 * device into static sized chunks and fake a conventional zone on each of
196 * them.
197 */
emulate_report_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int nr_zones)198 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199 struct blk_zone *zones, unsigned int nr_zones)
200 {
201 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202 sector_t bdev_size = bdev_nr_sectors(device->bdev);
203 unsigned int i;
204
205 pos >>= SECTOR_SHIFT;
206 for (i = 0; i < nr_zones; i++) {
207 zones[i].start = i * zone_sectors + pos;
208 zones[i].len = zone_sectors;
209 zones[i].capacity = zone_sectors;
210 zones[i].wp = zones[i].start + zone_sectors;
211 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212 zones[i].cond = BLK_ZONE_COND_NOT_WP;
213
214 if (zones[i].wp >= bdev_size) {
215 i++;
216 break;
217 }
218 }
219
220 return i;
221 }
222
btrfs_get_dev_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int * nr_zones)223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224 struct blk_zone *zones, unsigned int *nr_zones)
225 {
226 struct btrfs_zoned_device_info *zinfo = device->zone_info;
227 int ret;
228
229 if (!*nr_zones)
230 return 0;
231
232 if (!bdev_is_zoned(device->bdev)) {
233 ret = emulate_report_zones(device, pos, zones, *nr_zones);
234 *nr_zones = ret;
235 return 0;
236 }
237
238 /* Check cache */
239 if (zinfo->zone_cache) {
240 unsigned int i;
241 u32 zno;
242
243 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244 zno = pos >> zinfo->zone_size_shift;
245 /*
246 * We cannot report zones beyond the zone end. So, it is OK to
247 * cap *nr_zones to at the end.
248 */
249 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250
251 for (i = 0; i < *nr_zones; i++) {
252 struct blk_zone *zone_info;
253
254 zone_info = &zinfo->zone_cache[zno + i];
255 if (!zone_info->len)
256 break;
257 }
258
259 if (i == *nr_zones) {
260 /* Cache hit on all the zones */
261 memcpy(zones, zinfo->zone_cache + zno,
262 sizeof(*zinfo->zone_cache) * *nr_zones);
263 return 0;
264 }
265 }
266
267 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268 copy_zone_info_cb, zones);
269 if (ret < 0) {
270 btrfs_err(device->fs_info,
271 "zoned: failed to read zone %llu on %s (devid %llu)",
272 pos, rcu_dereference(device->name),
273 device->devid);
274 return ret;
275 }
276 *nr_zones = ret;
277 if (unlikely(!ret))
278 return -EIO;
279
280 /* Populate cache */
281 if (zinfo->zone_cache) {
282 u32 zno = pos >> zinfo->zone_size_shift;
283
284 memcpy(zinfo->zone_cache + zno, zones,
285 sizeof(*zinfo->zone_cache) * *nr_zones);
286 }
287
288 return 0;
289 }
290
291 /* The emulated zone size is determined from the size of device extent */
calculate_emulated_zone_size(struct btrfs_fs_info * fs_info)292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293 {
294 BTRFS_PATH_AUTO_FREE(path);
295 struct btrfs_root *root = fs_info->dev_root;
296 struct btrfs_key key;
297 struct extent_buffer *leaf;
298 struct btrfs_dev_extent *dext;
299 int ret = 0;
300
301 key.objectid = 1;
302 key.type = BTRFS_DEV_EXTENT_KEY;
303 key.offset = 0;
304
305 path = btrfs_alloc_path();
306 if (!path)
307 return -ENOMEM;
308
309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310 if (ret < 0)
311 return ret;
312
313 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314 ret = btrfs_next_leaf(root, path);
315 if (ret < 0)
316 return ret;
317 /* No dev extents at all? Not good */
318 if (unlikely(ret > 0))
319 return -EUCLEAN;
320 }
321
322 leaf = path->nodes[0];
323 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
324 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
325 return 0;
326 }
327
btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info * fs_info)328 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
329 {
330 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
331 struct btrfs_device *device;
332 int ret = 0;
333
334 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
335 if (!btrfs_fs_incompat(fs_info, ZONED))
336 return 0;
337
338 mutex_lock(&fs_devices->device_list_mutex);
339 list_for_each_entry(device, &fs_devices->devices, dev_list) {
340 /* We can skip reading of zone info for missing devices */
341 if (!device->bdev)
342 continue;
343
344 ret = btrfs_get_dev_zone_info(device, true);
345 if (ret)
346 break;
347 }
348 mutex_unlock(&fs_devices->device_list_mutex);
349
350 return ret;
351 }
352
btrfs_get_dev_zone_info(struct btrfs_device * device,bool populate_cache)353 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
354 {
355 struct btrfs_fs_info *fs_info = device->fs_info;
356 struct btrfs_zoned_device_info *zone_info = NULL;
357 struct block_device *bdev = device->bdev;
358 unsigned int max_active_zones;
359 unsigned int nactive;
360 sector_t nr_sectors;
361 sector_t sector = 0;
362 struct blk_zone *zones = NULL;
363 unsigned int i, nreported = 0, nr_zones;
364 sector_t zone_sectors;
365 char *model, *emulated;
366 int ret;
367
368 /*
369 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
370 * yet be set.
371 */
372 if (!btrfs_fs_incompat(fs_info, ZONED))
373 return 0;
374
375 if (device->zone_info)
376 return 0;
377
378 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
379 if (!zone_info)
380 return -ENOMEM;
381
382 device->zone_info = zone_info;
383
384 if (!bdev_is_zoned(bdev)) {
385 if (!fs_info->zone_size) {
386 ret = calculate_emulated_zone_size(fs_info);
387 if (ret)
388 goto out;
389 }
390
391 ASSERT(fs_info->zone_size);
392 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
393 } else {
394 zone_sectors = bdev_zone_sectors(bdev);
395 }
396
397 ASSERT(is_power_of_two_u64(zone_sectors));
398 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
399
400 /* We reject devices with a zone size larger than 8GB */
401 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
402 btrfs_err(fs_info,
403 "zoned: %s: zone size %llu larger than supported maximum %llu",
404 rcu_dereference(device->name),
405 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
406 ret = -EINVAL;
407 goto out;
408 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
409 btrfs_err(fs_info,
410 "zoned: %s: zone size %llu smaller than supported minimum %u",
411 rcu_dereference(device->name),
412 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
413 ret = -EINVAL;
414 goto out;
415 }
416
417 nr_sectors = bdev_nr_sectors(bdev);
418 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
419 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
420 if (!IS_ALIGNED(nr_sectors, zone_sectors))
421 zone_info->nr_zones++;
422
423 max_active_zones = min_not_zero(bdev_max_active_zones(bdev),
424 bdev_max_open_zones(bdev));
425 if (!max_active_zones && zone_info->nr_zones > BTRFS_DEFAULT_MAX_ACTIVE_ZONES)
426 max_active_zones = BTRFS_DEFAULT_MAX_ACTIVE_ZONES;
427 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
428 btrfs_err(fs_info,
429 "zoned: %s: max active zones %u is too small, need at least %u active zones",
430 rcu_dereference(device->name), max_active_zones,
431 BTRFS_MIN_ACTIVE_ZONES);
432 ret = -EINVAL;
433 goto out;
434 }
435 zone_info->max_active_zones = max_active_zones;
436
437 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
438 if (!zone_info->seq_zones) {
439 ret = -ENOMEM;
440 goto out;
441 }
442
443 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
444 if (!zone_info->empty_zones) {
445 ret = -ENOMEM;
446 goto out;
447 }
448
449 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
450 if (!zone_info->active_zones) {
451 ret = -ENOMEM;
452 goto out;
453 }
454
455 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
456 if (!zones) {
457 ret = -ENOMEM;
458 goto out;
459 }
460
461 /*
462 * Enable zone cache only for a zoned device. On a non-zoned device, we
463 * fill the zone info with emulated CONVENTIONAL zones, so no need to
464 * use the cache.
465 */
466 if (populate_cache && bdev_is_zoned(device->bdev)) {
467 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
468 sizeof(struct blk_zone));
469 if (!zone_info->zone_cache) {
470 btrfs_err(device->fs_info,
471 "zoned: failed to allocate zone cache for %s",
472 rcu_dereference(device->name));
473 ret = -ENOMEM;
474 goto out;
475 }
476 }
477
478 /* Get zones type */
479 nactive = 0;
480 while (sector < nr_sectors) {
481 nr_zones = BTRFS_REPORT_NR_ZONES;
482 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
483 &nr_zones);
484 if (ret)
485 goto out;
486
487 for (i = 0; i < nr_zones; i++) {
488 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
489 __set_bit(nreported, zone_info->seq_zones);
490 switch (zones[i].cond) {
491 case BLK_ZONE_COND_EMPTY:
492 __set_bit(nreported, zone_info->empty_zones);
493 break;
494 case BLK_ZONE_COND_IMP_OPEN:
495 case BLK_ZONE_COND_EXP_OPEN:
496 case BLK_ZONE_COND_CLOSED:
497 __set_bit(nreported, zone_info->active_zones);
498 nactive++;
499 break;
500 }
501 nreported++;
502 }
503 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
504 }
505
506 if (unlikely(nreported != zone_info->nr_zones)) {
507 btrfs_err(device->fs_info,
508 "inconsistent number of zones on %s (%u/%u)",
509 rcu_dereference(device->name), nreported,
510 zone_info->nr_zones);
511 ret = -EIO;
512 goto out;
513 }
514
515 if (max_active_zones) {
516 if (unlikely(nactive > max_active_zones)) {
517 if (bdev_max_active_zones(bdev) == 0) {
518 max_active_zones = 0;
519 zone_info->max_active_zones = 0;
520 goto validate;
521 }
522 btrfs_err(device->fs_info,
523 "zoned: %u active zones on %s exceeds max_active_zones %u",
524 nactive, rcu_dereference(device->name),
525 max_active_zones);
526 ret = -EIO;
527 goto out;
528 }
529 atomic_set(&zone_info->active_zones_left,
530 max_active_zones - nactive);
531 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
532 }
533
534 validate:
535 /* Validate superblock log */
536 nr_zones = BTRFS_NR_SB_LOG_ZONES;
537 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
538 u32 sb_zone;
539 u64 sb_wp;
540 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
541
542 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
543 if (sb_zone + 1 >= zone_info->nr_zones)
544 continue;
545
546 ret = btrfs_get_dev_zones(device,
547 zone_start_physical(sb_zone, zone_info),
548 &zone_info->sb_zones[sb_pos],
549 &nr_zones);
550 if (ret)
551 goto out;
552
553 if (unlikely(nr_zones != BTRFS_NR_SB_LOG_ZONES)) {
554 btrfs_err(device->fs_info,
555 "zoned: failed to read super block log zone info at devid %llu zone %u",
556 device->devid, sb_zone);
557 ret = -EUCLEAN;
558 goto out;
559 }
560
561 /*
562 * If zones[0] is conventional, always use the beginning of the
563 * zone to record superblock. No need to validate in that case.
564 */
565 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
566 BLK_ZONE_TYPE_CONVENTIONAL)
567 continue;
568
569 ret = sb_write_pointer(device->bdev,
570 &zone_info->sb_zones[sb_pos], &sb_wp);
571 if (unlikely(ret != -ENOENT && ret)) {
572 btrfs_err(device->fs_info,
573 "zoned: super block log zone corrupted devid %llu zone %u",
574 device->devid, sb_zone);
575 ret = -EUCLEAN;
576 goto out;
577 }
578 }
579
580
581 kvfree(zones);
582
583 if (bdev_is_zoned(bdev)) {
584 model = "host-managed zoned";
585 emulated = "";
586 } else {
587 model = "regular";
588 emulated = "emulated ";
589 }
590
591 btrfs_info(fs_info,
592 "%s block device %s, %u %szones of %llu bytes",
593 model, rcu_dereference(device->name), zone_info->nr_zones,
594 emulated, zone_info->zone_size);
595
596 return 0;
597
598 out:
599 kvfree(zones);
600 btrfs_destroy_dev_zone_info(device);
601 return ret;
602 }
603
btrfs_destroy_dev_zone_info(struct btrfs_device * device)604 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
605 {
606 struct btrfs_zoned_device_info *zone_info = device->zone_info;
607
608 if (!zone_info)
609 return;
610
611 bitmap_free(zone_info->active_zones);
612 bitmap_free(zone_info->seq_zones);
613 bitmap_free(zone_info->empty_zones);
614 vfree(zone_info->zone_cache);
615 kfree(zone_info);
616 device->zone_info = NULL;
617 }
618
btrfs_clone_dev_zone_info(struct btrfs_device * orig_dev)619 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
620 {
621 struct btrfs_zoned_device_info *zone_info;
622
623 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
624 if (!zone_info)
625 return NULL;
626
627 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
628 if (!zone_info->seq_zones)
629 goto out;
630
631 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
632 zone_info->nr_zones);
633
634 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
635 if (!zone_info->empty_zones)
636 goto out;
637
638 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
639 zone_info->nr_zones);
640
641 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
642 if (!zone_info->active_zones)
643 goto out;
644
645 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
646 zone_info->nr_zones);
647 zone_info->zone_cache = NULL;
648
649 return zone_info;
650
651 out:
652 bitmap_free(zone_info->seq_zones);
653 bitmap_free(zone_info->empty_zones);
654 bitmap_free(zone_info->active_zones);
655 kfree(zone_info);
656 return NULL;
657 }
658
btrfs_get_dev_zone(struct btrfs_device * device,u64 pos,struct blk_zone * zone)659 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
660 {
661 unsigned int nr_zones = 1;
662 int ret;
663
664 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
665 if (ret != 0 || !nr_zones)
666 return ret ? ret : -EIO;
667
668 return 0;
669 }
670
btrfs_check_for_zoned_device(struct btrfs_fs_info * fs_info)671 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
672 {
673 struct btrfs_device *device;
674
675 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
676 if (device->bdev && bdev_is_zoned(device->bdev)) {
677 btrfs_err(fs_info,
678 "zoned: mode not enabled but zoned device found: %pg",
679 device->bdev);
680 return -EINVAL;
681 }
682 }
683
684 return 0;
685 }
686
btrfs_check_zoned_mode(struct btrfs_fs_info * fs_info)687 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
688 {
689 struct queue_limits *lim = &fs_info->limits;
690 struct btrfs_device *device;
691 u64 zone_size = 0;
692 int ret;
693
694 /*
695 * Host-Managed devices can't be used without the ZONED flag. With the
696 * ZONED all devices can be used, using zone emulation if required.
697 */
698 if (!btrfs_fs_incompat(fs_info, ZONED))
699 return btrfs_check_for_zoned_device(fs_info);
700
701 blk_set_stacking_limits(lim);
702
703 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
704 struct btrfs_zoned_device_info *zone_info = device->zone_info;
705
706 if (!device->bdev)
707 continue;
708
709 if (!zone_size) {
710 zone_size = zone_info->zone_size;
711 } else if (zone_info->zone_size != zone_size) {
712 btrfs_err(fs_info,
713 "zoned: unequal block device zone sizes: have %llu found %llu",
714 zone_info->zone_size, zone_size);
715 return -EINVAL;
716 }
717
718 /*
719 * With the zoned emulation, we can have non-zoned device on the
720 * zoned mode. In this case, we don't have a valid max zone
721 * append size.
722 */
723 if (bdev_is_zoned(device->bdev))
724 blk_stack_limits(lim, bdev_limits(device->bdev), 0);
725 }
726
727 ret = blk_validate_limits(lim);
728 if (ret) {
729 btrfs_err(fs_info, "zoned: failed to validate queue limits");
730 return ret;
731 }
732
733 /*
734 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
735 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
736 * check the alignment here.
737 */
738 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
739 btrfs_err(fs_info,
740 "zoned: zone size %llu not aligned to stripe %u",
741 zone_size, BTRFS_STRIPE_LEN);
742 return -EINVAL;
743 }
744
745 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
746 btrfs_err(fs_info, "zoned: mixed block groups not supported");
747 return -EINVAL;
748 }
749
750 fs_info->zone_size = zone_size;
751 /*
752 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
753 * Technically, we can have multiple pages per segment. But, since
754 * we add the pages one by one to a bio, and cannot increase the
755 * metadata reservation even if it increases the number of extents, it
756 * is safe to stick with the limit.
757 */
758 fs_info->max_zone_append_size = ALIGN_DOWN(
759 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
760 (u64)lim->max_sectors << SECTOR_SHIFT,
761 (u64)lim->max_segments << PAGE_SHIFT),
762 fs_info->sectorsize);
763 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
764
765 fs_info->max_extent_size = min_not_zero(fs_info->max_extent_size,
766 fs_info->max_zone_append_size);
767
768 /*
769 * Check mount options here, because we might change fs_info->zoned
770 * from fs_info->zone_size.
771 */
772 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
773 if (ret)
774 return ret;
775
776 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
777 return 0;
778 }
779
btrfs_check_mountopts_zoned(const struct btrfs_fs_info * info,unsigned long long * mount_opt)780 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
781 unsigned long long *mount_opt)
782 {
783 if (!btrfs_is_zoned(info))
784 return 0;
785
786 /*
787 * Space cache writing is not COWed. Disable that to avoid write errors
788 * in sequential zones.
789 */
790 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
791 btrfs_err(info, "zoned: space cache v1 is not supported");
792 return -EINVAL;
793 }
794
795 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
796 btrfs_err(info, "zoned: NODATACOW not supported");
797 return -EINVAL;
798 }
799
800 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
801 btrfs_info(info,
802 "zoned: async discard ignored and disabled for zoned mode");
803 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
804 }
805
806 return 0;
807 }
808
sb_log_location(struct block_device * bdev,struct blk_zone * zones,int rw,u64 * bytenr_ret)809 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
810 int rw, u64 *bytenr_ret)
811 {
812 u64 wp;
813 int ret;
814
815 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
816 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
817 return 0;
818 }
819
820 ret = sb_write_pointer(bdev, zones, &wp);
821 if (ret != -ENOENT && ret < 0)
822 return ret;
823
824 if (rw == WRITE) {
825 struct blk_zone *reset = NULL;
826
827 if (wp == zones[0].start << SECTOR_SHIFT)
828 reset = &zones[0];
829 else if (wp == zones[1].start << SECTOR_SHIFT)
830 reset = &zones[1];
831
832 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
833 unsigned int nofs_flags;
834
835 ASSERT(sb_zone_is_full(reset));
836
837 nofs_flags = memalloc_nofs_save();
838 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
839 reset->start, reset->len);
840 memalloc_nofs_restore(nofs_flags);
841 if (ret)
842 return ret;
843
844 reset->cond = BLK_ZONE_COND_EMPTY;
845 reset->wp = reset->start;
846 }
847 } else if (ret != -ENOENT) {
848 /*
849 * For READ, we want the previous one. Move write pointer to
850 * the end of a zone, if it is at the head of a zone.
851 */
852 u64 zone_end = 0;
853
854 if (wp == zones[0].start << SECTOR_SHIFT)
855 zone_end = zones[1].start + zones[1].capacity;
856 else if (wp == zones[1].start << SECTOR_SHIFT)
857 zone_end = zones[0].start + zones[0].capacity;
858 if (zone_end)
859 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
860 BTRFS_SUPER_INFO_SIZE);
861
862 wp -= BTRFS_SUPER_INFO_SIZE;
863 }
864
865 *bytenr_ret = wp;
866 return 0;
867
868 }
869
btrfs_sb_log_location_bdev(struct block_device * bdev,int mirror,int rw,u64 * bytenr_ret)870 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
871 u64 *bytenr_ret)
872 {
873 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
874 sector_t zone_sectors;
875 u32 sb_zone;
876 int ret;
877 u8 zone_sectors_shift;
878 sector_t nr_sectors;
879 u32 nr_zones;
880
881 if (!bdev_is_zoned(bdev)) {
882 *bytenr_ret = btrfs_sb_offset(mirror);
883 return 0;
884 }
885
886 ASSERT(rw == READ || rw == WRITE);
887
888 zone_sectors = bdev_zone_sectors(bdev);
889 if (!is_power_of_2(zone_sectors))
890 return -EINVAL;
891 zone_sectors_shift = ilog2(zone_sectors);
892 nr_sectors = bdev_nr_sectors(bdev);
893 nr_zones = nr_sectors >> zone_sectors_shift;
894
895 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
896 if (sb_zone + 1 >= nr_zones)
897 return -ENOENT;
898
899 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
900 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
901 zones);
902 if (ret < 0)
903 return ret;
904 if (unlikely(ret != BTRFS_NR_SB_LOG_ZONES))
905 return -EIO;
906
907 return sb_log_location(bdev, zones, rw, bytenr_ret);
908 }
909
btrfs_sb_log_location(struct btrfs_device * device,int mirror,int rw,u64 * bytenr_ret)910 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
911 u64 *bytenr_ret)
912 {
913 struct btrfs_zoned_device_info *zinfo = device->zone_info;
914 u32 zone_num;
915
916 /*
917 * For a zoned filesystem on a non-zoned block device, use the same
918 * super block locations as regular filesystem. Doing so, the super
919 * block can always be retrieved and the zoned flag of the volume
920 * detected from the super block information.
921 */
922 if (!bdev_is_zoned(device->bdev)) {
923 *bytenr_ret = btrfs_sb_offset(mirror);
924 return 0;
925 }
926
927 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
928 if (zone_num + 1 >= zinfo->nr_zones)
929 return -ENOENT;
930
931 return sb_log_location(device->bdev,
932 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
933 rw, bytenr_ret);
934 }
935
is_sb_log_zone(struct btrfs_zoned_device_info * zinfo,int mirror)936 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
937 int mirror)
938 {
939 u32 zone_num;
940
941 if (!zinfo)
942 return false;
943
944 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
945 if (zone_num + 1 >= zinfo->nr_zones)
946 return false;
947
948 if (!test_bit(zone_num, zinfo->seq_zones))
949 return false;
950
951 return true;
952 }
953
btrfs_advance_sb_log(struct btrfs_device * device,int mirror)954 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
955 {
956 struct btrfs_zoned_device_info *zinfo = device->zone_info;
957 struct blk_zone *zone;
958 int i;
959
960 if (!is_sb_log_zone(zinfo, mirror))
961 return 0;
962
963 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
964 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
965 /* Advance the next zone */
966 if (zone->cond == BLK_ZONE_COND_FULL) {
967 zone++;
968 continue;
969 }
970
971 if (zone->cond == BLK_ZONE_COND_EMPTY)
972 zone->cond = BLK_ZONE_COND_IMP_OPEN;
973
974 zone->wp += SUPER_INFO_SECTORS;
975
976 if (sb_zone_is_full(zone)) {
977 /*
978 * No room left to write new superblock. Since
979 * superblock is written with REQ_SYNC, it is safe to
980 * finish the zone now.
981 *
982 * If the write pointer is exactly at the capacity,
983 * explicit ZONE_FINISH is not necessary.
984 */
985 if (zone->wp != zone->start + zone->capacity) {
986 unsigned int nofs_flags;
987 int ret;
988
989 nofs_flags = memalloc_nofs_save();
990 ret = blkdev_zone_mgmt(device->bdev,
991 REQ_OP_ZONE_FINISH, zone->start,
992 zone->len);
993 memalloc_nofs_restore(nofs_flags);
994 if (ret)
995 return ret;
996 }
997
998 zone->wp = zone->start + zone->len;
999 zone->cond = BLK_ZONE_COND_FULL;
1000 }
1001 return 0;
1002 }
1003
1004 /* All the zones are FULL. Should not reach here. */
1005 DEBUG_WARN("unexpected state, all zones full");
1006 return -EIO;
1007 }
1008
btrfs_reset_sb_log_zones(struct block_device * bdev,int mirror)1009 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1010 {
1011 unsigned int nofs_flags;
1012 sector_t zone_sectors;
1013 sector_t nr_sectors;
1014 u8 zone_sectors_shift;
1015 u32 sb_zone;
1016 u32 nr_zones;
1017 int ret;
1018
1019 zone_sectors = bdev_zone_sectors(bdev);
1020 zone_sectors_shift = ilog2(zone_sectors);
1021 nr_sectors = bdev_nr_sectors(bdev);
1022 nr_zones = nr_sectors >> zone_sectors_shift;
1023
1024 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1025 if (sb_zone + 1 >= nr_zones)
1026 return -ENOENT;
1027
1028 nofs_flags = memalloc_nofs_save();
1029 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1030 zone_start_sector(sb_zone, bdev),
1031 zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1032 memalloc_nofs_restore(nofs_flags);
1033 return ret;
1034 }
1035
1036 /*
1037 * Find allocatable zones within a given region.
1038 *
1039 * @device: the device to allocate a region on
1040 * @hole_start: the position of the hole to allocate the region
1041 * @num_bytes: size of wanted region
1042 * @hole_end: the end of the hole
1043 * @return: position of allocatable zones
1044 *
1045 * Allocatable region should not contain any superblock locations.
1046 */
btrfs_find_allocatable_zones(struct btrfs_device * device,u64 hole_start,u64 hole_end,u64 num_bytes)1047 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1048 u64 hole_end, u64 num_bytes)
1049 {
1050 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1051 const u8 shift = zinfo->zone_size_shift;
1052 u64 nzones = num_bytes >> shift;
1053 u64 pos = hole_start;
1054 u64 begin, end;
1055 bool have_sb;
1056 int i;
1057
1058 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1059 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1060
1061 while (pos < hole_end) {
1062 begin = pos >> shift;
1063 end = begin + nzones;
1064
1065 if (end > zinfo->nr_zones)
1066 return hole_end;
1067
1068 /* Check if zones in the region are all empty */
1069 if (btrfs_dev_is_sequential(device, pos) &&
1070 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1071 pos += zinfo->zone_size;
1072 continue;
1073 }
1074
1075 have_sb = false;
1076 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1077 u32 sb_zone;
1078 u64 sb_pos;
1079
1080 sb_zone = sb_zone_number(shift, i);
1081 if (!(end <= sb_zone ||
1082 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1083 have_sb = true;
1084 pos = zone_start_physical(
1085 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1086 break;
1087 }
1088
1089 /* We also need to exclude regular superblock positions */
1090 sb_pos = btrfs_sb_offset(i);
1091 if (!(pos + num_bytes <= sb_pos ||
1092 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1093 have_sb = true;
1094 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1095 zinfo->zone_size);
1096 break;
1097 }
1098 }
1099 if (!have_sb)
1100 break;
1101 }
1102
1103 return pos;
1104 }
1105
btrfs_dev_set_active_zone(struct btrfs_device * device,u64 pos)1106 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1107 {
1108 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1109 unsigned int zno = (pos >> zone_info->zone_size_shift);
1110
1111 /* We can use any number of zones */
1112 if (zone_info->max_active_zones == 0)
1113 return true;
1114
1115 if (!test_bit(zno, zone_info->active_zones)) {
1116 /* Active zone left? */
1117 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1118 return false;
1119 if (test_and_set_bit(zno, zone_info->active_zones)) {
1120 /* Someone already set the bit */
1121 atomic_inc(&zone_info->active_zones_left);
1122 }
1123 }
1124
1125 return true;
1126 }
1127
btrfs_dev_clear_active_zone(struct btrfs_device * device,u64 pos)1128 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1129 {
1130 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1131 unsigned int zno = (pos >> zone_info->zone_size_shift);
1132
1133 /* We can use any number of zones */
1134 if (zone_info->max_active_zones == 0)
1135 return;
1136
1137 if (test_and_clear_bit(zno, zone_info->active_zones))
1138 atomic_inc(&zone_info->active_zones_left);
1139 }
1140
btrfs_reset_device_zone(struct btrfs_device * device,u64 physical,u64 length,u64 * bytes)1141 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1142 u64 length, u64 *bytes)
1143 {
1144 unsigned int nofs_flags;
1145 int ret;
1146
1147 *bytes = 0;
1148 nofs_flags = memalloc_nofs_save();
1149 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1150 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1151 memalloc_nofs_restore(nofs_flags);
1152 if (ret)
1153 return ret;
1154
1155 *bytes = length;
1156 while (length) {
1157 btrfs_dev_set_zone_empty(device, physical);
1158 btrfs_dev_clear_active_zone(device, physical);
1159 physical += device->zone_info->zone_size;
1160 length -= device->zone_info->zone_size;
1161 }
1162
1163 return 0;
1164 }
1165
btrfs_ensure_empty_zones(struct btrfs_device * device,u64 start,u64 size)1166 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1167 {
1168 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1169 const u8 shift = zinfo->zone_size_shift;
1170 unsigned long begin = start >> shift;
1171 unsigned long nbits = size >> shift;
1172 u64 pos;
1173 int ret;
1174
1175 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1176 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1177
1178 if (begin + nbits > zinfo->nr_zones)
1179 return -ERANGE;
1180
1181 /* All the zones are conventional */
1182 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1183 return 0;
1184
1185 /* All the zones are sequential and empty */
1186 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1187 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1188 return 0;
1189
1190 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1191 u64 reset_bytes;
1192
1193 if (!btrfs_dev_is_sequential(device, pos) ||
1194 btrfs_dev_is_empty_zone(device, pos))
1195 continue;
1196
1197 /* Free regions should be empty */
1198 btrfs_warn(
1199 device->fs_info,
1200 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1201 rcu_dereference(device->name), device->devid, pos >> shift);
1202 WARN_ON_ONCE(1);
1203
1204 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1205 &reset_bytes);
1206 if (ret)
1207 return ret;
1208 }
1209
1210 return 0;
1211 }
1212
1213 /*
1214 * Calculate an allocation pointer from the extent allocation information
1215 * for a block group consist of conventional zones. It is pointed to the
1216 * end of the highest addressed extent in the block group as an allocation
1217 * offset.
1218 */
calculate_alloc_pointer(struct btrfs_block_group * cache,u64 * offset_ret,bool new)1219 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1220 u64 *offset_ret, bool new)
1221 {
1222 struct btrfs_fs_info *fs_info = cache->fs_info;
1223 struct btrfs_root *root;
1224 BTRFS_PATH_AUTO_FREE(path);
1225 struct btrfs_key key;
1226 struct btrfs_key found_key;
1227 int ret;
1228 u64 length;
1229
1230 /*
1231 * Avoid tree lookups for a new block group, there's no use for it.
1232 * It must always be 0.
1233 *
1234 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1235 * For new a block group, this function is called from
1236 * btrfs_make_block_group() which is already taking the chunk mutex.
1237 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1238 * buffer locks to avoid deadlock.
1239 */
1240 if (new) {
1241 *offset_ret = 0;
1242 return 0;
1243 }
1244
1245 path = btrfs_alloc_path();
1246 if (!path)
1247 return -ENOMEM;
1248
1249 key.objectid = cache->start + cache->length;
1250 key.type = 0;
1251 key.offset = 0;
1252
1253 root = btrfs_extent_root(fs_info, key.objectid);
1254 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1255 /* We should not find the exact match */
1256 if (unlikely(!ret))
1257 ret = -EUCLEAN;
1258 if (ret < 0)
1259 return ret;
1260
1261 ret = btrfs_previous_extent_item(root, path, cache->start);
1262 if (ret) {
1263 if (ret == 1) {
1264 ret = 0;
1265 *offset_ret = 0;
1266 }
1267 return ret;
1268 }
1269
1270 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1271
1272 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1273 length = found_key.offset;
1274 else
1275 length = fs_info->nodesize;
1276
1277 if (unlikely(!(found_key.objectid >= cache->start &&
1278 found_key.objectid + length <= cache->start + cache->length))) {
1279 return -EUCLEAN;
1280 }
1281 *offset_ret = found_key.objectid + length - cache->start;
1282 return 0;
1283 }
1284
1285 struct zone_info {
1286 u64 physical;
1287 u64 capacity;
1288 u64 alloc_offset;
1289 };
1290
btrfs_load_zone_info(struct btrfs_fs_info * fs_info,int zone_idx,struct zone_info * info,unsigned long * active,struct btrfs_chunk_map * map,bool new)1291 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1292 struct zone_info *info, unsigned long *active,
1293 struct btrfs_chunk_map *map, bool new)
1294 {
1295 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1296 struct btrfs_device *device;
1297 int dev_replace_is_ongoing = 0;
1298 unsigned int nofs_flag;
1299 struct blk_zone zone;
1300 int ret;
1301
1302 info->physical = map->stripes[zone_idx].physical;
1303
1304 down_read(&dev_replace->rwsem);
1305 device = map->stripes[zone_idx].dev;
1306
1307 if (!device->bdev) {
1308 up_read(&dev_replace->rwsem);
1309 info->alloc_offset = WP_MISSING_DEV;
1310 return 0;
1311 }
1312
1313 /* Consider a zone as active if we can allow any number of active zones. */
1314 if (!device->zone_info->max_active_zones)
1315 __set_bit(zone_idx, active);
1316
1317 if (!btrfs_dev_is_sequential(device, info->physical)) {
1318 up_read(&dev_replace->rwsem);
1319 info->alloc_offset = WP_CONVENTIONAL;
1320 info->capacity = device->zone_info->zone_size;
1321 return 0;
1322 }
1323
1324 ASSERT(!new || btrfs_dev_is_empty_zone(device, info->physical));
1325
1326 /* This zone will be used for allocation, so mark this zone non-empty. */
1327 btrfs_dev_clear_zone_empty(device, info->physical);
1328
1329 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1330 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1331 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1332
1333 /*
1334 * The group is mapped to a sequential zone. Get the zone write pointer
1335 * to determine the allocation offset within the zone.
1336 */
1337 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1338
1339 if (new) {
1340 sector_t capacity;
1341
1342 capacity = bdev_zone_capacity(device->bdev, info->physical >> SECTOR_SHIFT);
1343 up_read(&dev_replace->rwsem);
1344 info->alloc_offset = 0;
1345 info->capacity = capacity << SECTOR_SHIFT;
1346
1347 return 0;
1348 }
1349
1350 nofs_flag = memalloc_nofs_save();
1351 ret = btrfs_get_dev_zone(device, info->physical, &zone);
1352 memalloc_nofs_restore(nofs_flag);
1353 if (ret) {
1354 up_read(&dev_replace->rwsem);
1355 if (ret != -EIO && ret != -EOPNOTSUPP)
1356 return ret;
1357 info->alloc_offset = WP_MISSING_DEV;
1358 return 0;
1359 }
1360
1361 if (unlikely(zone.type == BLK_ZONE_TYPE_CONVENTIONAL)) {
1362 btrfs_err(fs_info,
1363 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1364 zone.start << SECTOR_SHIFT, rcu_dereference(device->name),
1365 device->devid);
1366 up_read(&dev_replace->rwsem);
1367 return -EIO;
1368 }
1369
1370 info->capacity = (zone.capacity << SECTOR_SHIFT);
1371
1372 switch (zone.cond) {
1373 case BLK_ZONE_COND_OFFLINE:
1374 case BLK_ZONE_COND_READONLY:
1375 btrfs_err(fs_info,
1376 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1377 (info->physical >> device->zone_info->zone_size_shift),
1378 rcu_dereference(device->name), device->devid);
1379 info->alloc_offset = WP_MISSING_DEV;
1380 break;
1381 case BLK_ZONE_COND_EMPTY:
1382 info->alloc_offset = 0;
1383 break;
1384 case BLK_ZONE_COND_FULL:
1385 info->alloc_offset = info->capacity;
1386 break;
1387 default:
1388 /* Partially used zone. */
1389 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1390 __set_bit(zone_idx, active);
1391 break;
1392 }
1393
1394 up_read(&dev_replace->rwsem);
1395
1396 return 0;
1397 }
1398
btrfs_load_block_group_single(struct btrfs_block_group * bg,struct zone_info * info,unsigned long * active)1399 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1400 struct zone_info *info,
1401 unsigned long *active)
1402 {
1403 if (unlikely(info->alloc_offset == WP_MISSING_DEV)) {
1404 btrfs_err(bg->fs_info,
1405 "zoned: cannot recover write pointer for zone %llu",
1406 info->physical);
1407 return -EIO;
1408 }
1409
1410 bg->alloc_offset = info->alloc_offset;
1411 bg->zone_capacity = info->capacity;
1412 if (test_bit(0, active))
1413 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1414 return 0;
1415 }
1416
btrfs_load_block_group_dup(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1417 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1418 struct btrfs_chunk_map *map,
1419 struct zone_info *zone_info,
1420 unsigned long *active,
1421 u64 last_alloc)
1422 {
1423 struct btrfs_fs_info *fs_info = bg->fs_info;
1424
1425 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1426 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1427 return -EINVAL;
1428 }
1429
1430 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1431
1432 if (unlikely(zone_info[0].alloc_offset == WP_MISSING_DEV)) {
1433 btrfs_err(bg->fs_info,
1434 "zoned: cannot recover write pointer for zone %llu",
1435 zone_info[0].physical);
1436 return -EIO;
1437 }
1438 if (unlikely(zone_info[1].alloc_offset == WP_MISSING_DEV)) {
1439 btrfs_err(bg->fs_info,
1440 "zoned: cannot recover write pointer for zone %llu",
1441 zone_info[1].physical);
1442 return -EIO;
1443 }
1444
1445 if (zone_info[0].alloc_offset == WP_CONVENTIONAL)
1446 zone_info[0].alloc_offset = last_alloc;
1447
1448 if (zone_info[1].alloc_offset == WP_CONVENTIONAL)
1449 zone_info[1].alloc_offset = last_alloc;
1450
1451 if (unlikely(zone_info[0].alloc_offset != zone_info[1].alloc_offset)) {
1452 btrfs_err(bg->fs_info,
1453 "zoned: write pointer offset mismatch of zones in DUP profile");
1454 return -EIO;
1455 }
1456
1457 if (test_bit(0, active) != test_bit(1, active)) {
1458 if (unlikely(!btrfs_zone_activate(bg)))
1459 return -EIO;
1460 } else if (test_bit(0, active)) {
1461 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1462 }
1463
1464 bg->alloc_offset = zone_info[0].alloc_offset;
1465 return 0;
1466 }
1467
btrfs_load_block_group_raid1(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1468 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1469 struct btrfs_chunk_map *map,
1470 struct zone_info *zone_info,
1471 unsigned long *active,
1472 u64 last_alloc)
1473 {
1474 struct btrfs_fs_info *fs_info = bg->fs_info;
1475 int i;
1476
1477 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1478 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1479 btrfs_bg_type_to_raid_name(map->type));
1480 return -EINVAL;
1481 }
1482
1483 /* In case a device is missing we have a cap of 0, so don't use it. */
1484 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1485
1486 for (i = 0; i < map->num_stripes; i++) {
1487 if (zone_info[i].alloc_offset == WP_MISSING_DEV)
1488 continue;
1489
1490 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1491 zone_info[i].alloc_offset = last_alloc;
1492
1493 if (unlikely((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1494 !btrfs_test_opt(fs_info, DEGRADED))) {
1495 btrfs_err(fs_info,
1496 "zoned: write pointer offset mismatch of zones in %s profile",
1497 btrfs_bg_type_to_raid_name(map->type));
1498 return -EIO;
1499 }
1500 if (test_bit(0, active) != test_bit(i, active)) {
1501 if (unlikely(!btrfs_test_opt(fs_info, DEGRADED) &&
1502 !btrfs_zone_activate(bg))) {
1503 return -EIO;
1504 }
1505 } else {
1506 if (test_bit(0, active))
1507 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1508 }
1509 }
1510
1511 if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1512 bg->alloc_offset = zone_info[0].alloc_offset;
1513 else
1514 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1515
1516 return 0;
1517 }
1518
btrfs_load_block_group_raid0(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1519 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1520 struct btrfs_chunk_map *map,
1521 struct zone_info *zone_info,
1522 unsigned long *active,
1523 u64 last_alloc)
1524 {
1525 struct btrfs_fs_info *fs_info = bg->fs_info;
1526 u64 stripe_nr = 0, stripe_offset = 0;
1527 u32 stripe_index = 0;
1528
1529 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1530 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1531 btrfs_bg_type_to_raid_name(map->type));
1532 return -EINVAL;
1533 }
1534
1535 if (last_alloc) {
1536 u32 factor = map->num_stripes;
1537
1538 stripe_nr = last_alloc >> BTRFS_STRIPE_LEN_SHIFT;
1539 stripe_offset = last_alloc & BTRFS_STRIPE_LEN_MASK;
1540 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
1541 }
1542
1543 for (int i = 0; i < map->num_stripes; i++) {
1544 if (zone_info[i].alloc_offset == WP_MISSING_DEV)
1545 continue;
1546
1547 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) {
1548
1549 zone_info[i].alloc_offset = btrfs_stripe_nr_to_offset(stripe_nr);
1550
1551 if (stripe_index > i)
1552 zone_info[i].alloc_offset += BTRFS_STRIPE_LEN;
1553 else if (stripe_index == i)
1554 zone_info[i].alloc_offset += stripe_offset;
1555 }
1556
1557 if (test_bit(0, active) != test_bit(i, active)) {
1558 if (unlikely(!btrfs_zone_activate(bg)))
1559 return -EIO;
1560 } else {
1561 if (test_bit(0, active))
1562 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1563 }
1564 bg->zone_capacity += zone_info[i].capacity;
1565 bg->alloc_offset += zone_info[i].alloc_offset;
1566 }
1567
1568 return 0;
1569 }
1570
btrfs_load_block_group_raid10(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1571 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1572 struct btrfs_chunk_map *map,
1573 struct zone_info *zone_info,
1574 unsigned long *active,
1575 u64 last_alloc)
1576 {
1577 struct btrfs_fs_info *fs_info = bg->fs_info;
1578 u64 stripe_nr = 0, stripe_offset = 0;
1579 u32 stripe_index = 0;
1580
1581 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1582 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1583 btrfs_bg_type_to_raid_name(map->type));
1584 return -EINVAL;
1585 }
1586
1587 if (last_alloc) {
1588 u32 factor = map->num_stripes / map->sub_stripes;
1589
1590 stripe_nr = last_alloc >> BTRFS_STRIPE_LEN_SHIFT;
1591 stripe_offset = last_alloc & BTRFS_STRIPE_LEN_MASK;
1592 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
1593 }
1594
1595 for (int i = 0; i < map->num_stripes; i++) {
1596 if (zone_info[i].alloc_offset == WP_MISSING_DEV)
1597 continue;
1598
1599 if (test_bit(0, active) != test_bit(i, active)) {
1600 if (unlikely(!btrfs_zone_activate(bg)))
1601 return -EIO;
1602 } else {
1603 if (test_bit(0, active))
1604 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1605 }
1606
1607 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) {
1608 zone_info[i].alloc_offset = btrfs_stripe_nr_to_offset(stripe_nr);
1609
1610 if (stripe_index > (i / map->sub_stripes))
1611 zone_info[i].alloc_offset += BTRFS_STRIPE_LEN;
1612 else if (stripe_index == (i / map->sub_stripes))
1613 zone_info[i].alloc_offset += stripe_offset;
1614 }
1615
1616 if ((i % map->sub_stripes) == 0) {
1617 bg->zone_capacity += zone_info[i].capacity;
1618 bg->alloc_offset += zone_info[i].alloc_offset;
1619 }
1620 }
1621
1622 return 0;
1623 }
1624
btrfs_load_block_group_zone_info(struct btrfs_block_group * cache,bool new)1625 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1626 {
1627 struct btrfs_fs_info *fs_info = cache->fs_info;
1628 struct btrfs_chunk_map *map;
1629 u64 logical = cache->start;
1630 u64 length = cache->length;
1631 struct zone_info *zone_info = NULL;
1632 int ret;
1633 int i;
1634 unsigned long *active = NULL;
1635 u64 last_alloc = 0;
1636 u32 num_sequential = 0, num_conventional = 0;
1637 u64 profile;
1638
1639 if (!btrfs_is_zoned(fs_info))
1640 return 0;
1641
1642 /* Sanity check */
1643 if (unlikely(!IS_ALIGNED(length, fs_info->zone_size))) {
1644 btrfs_err(fs_info,
1645 "zoned: block group %llu len %llu unaligned to zone size %llu",
1646 logical, length, fs_info->zone_size);
1647 return -EIO;
1648 }
1649
1650 map = btrfs_find_chunk_map(fs_info, logical, length);
1651 if (!map)
1652 return -EINVAL;
1653
1654 cache->physical_map = map;
1655
1656 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1657 if (!zone_info) {
1658 ret = -ENOMEM;
1659 goto out;
1660 }
1661
1662 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1663 if (!active) {
1664 ret = -ENOMEM;
1665 goto out;
1666 }
1667
1668 for (i = 0; i < map->num_stripes; i++) {
1669 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map, new);
1670 if (ret)
1671 goto out;
1672
1673 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1674 num_conventional++;
1675 else
1676 num_sequential++;
1677 }
1678
1679 if (num_sequential > 0)
1680 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1681
1682 if (num_conventional > 0) {
1683 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1684 if (ret) {
1685 btrfs_err(fs_info,
1686 "zoned: failed to determine allocation offset of bg %llu",
1687 cache->start);
1688 goto out;
1689 } else if (map->num_stripes == num_conventional) {
1690 cache->alloc_offset = last_alloc;
1691 cache->zone_capacity = cache->length;
1692 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1693 goto out;
1694 }
1695 }
1696
1697 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1698 switch (profile) {
1699 case 0: /* single */
1700 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1701 break;
1702 case BTRFS_BLOCK_GROUP_DUP:
1703 ret = btrfs_load_block_group_dup(cache, map, zone_info, active,
1704 last_alloc);
1705 break;
1706 case BTRFS_BLOCK_GROUP_RAID1:
1707 case BTRFS_BLOCK_GROUP_RAID1C3:
1708 case BTRFS_BLOCK_GROUP_RAID1C4:
1709 ret = btrfs_load_block_group_raid1(cache, map, zone_info,
1710 active, last_alloc);
1711 break;
1712 case BTRFS_BLOCK_GROUP_RAID0:
1713 ret = btrfs_load_block_group_raid0(cache, map, zone_info,
1714 active, last_alloc);
1715 break;
1716 case BTRFS_BLOCK_GROUP_RAID10:
1717 ret = btrfs_load_block_group_raid10(cache, map, zone_info,
1718 active, last_alloc);
1719 break;
1720 case BTRFS_BLOCK_GROUP_RAID5:
1721 case BTRFS_BLOCK_GROUP_RAID6:
1722 default:
1723 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1724 btrfs_bg_type_to_raid_name(map->type));
1725 ret = -EINVAL;
1726 goto out;
1727 }
1728
1729 if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
1730 profile != BTRFS_BLOCK_GROUP_RAID10) {
1731 /*
1732 * Detected broken write pointer. Make this block group
1733 * unallocatable by setting the allocation pointer at the end of
1734 * allocatable region. Relocating this block group will fix the
1735 * mismatch.
1736 *
1737 * Currently, we cannot handle RAID0 or RAID10 case like this
1738 * because we don't have a proper zone_capacity value. But,
1739 * reading from this block group won't work anyway by a missing
1740 * stripe.
1741 */
1742 cache->alloc_offset = cache->zone_capacity;
1743 }
1744
1745 out:
1746 /* Reject non SINGLE data profiles without RST */
1747 if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1748 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1749 !fs_info->stripe_root) {
1750 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1751 btrfs_bg_type_to_raid_name(map->type));
1752 ret = -EINVAL;
1753 }
1754
1755 if (unlikely(cache->alloc_offset > cache->zone_capacity)) {
1756 btrfs_err(fs_info,
1757 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1758 cache->alloc_offset, cache->zone_capacity,
1759 cache->start);
1760 ret = -EIO;
1761 }
1762
1763 /* An extent is allocated after the write pointer */
1764 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1765 btrfs_err(fs_info,
1766 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1767 logical, last_alloc, cache->alloc_offset);
1768 ret = -EIO;
1769 }
1770
1771 if (!ret) {
1772 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1773 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1774 btrfs_get_block_group(cache);
1775 spin_lock(&fs_info->zone_active_bgs_lock);
1776 list_add_tail(&cache->active_bg_list,
1777 &fs_info->zone_active_bgs);
1778 spin_unlock(&fs_info->zone_active_bgs_lock);
1779 }
1780 } else {
1781 btrfs_free_chunk_map(cache->physical_map);
1782 cache->physical_map = NULL;
1783 }
1784 bitmap_free(active);
1785 kfree(zone_info);
1786
1787 return ret;
1788 }
1789
btrfs_calc_zone_unusable(struct btrfs_block_group * cache)1790 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1791 {
1792 u64 unusable, free;
1793
1794 if (!btrfs_is_zoned(cache->fs_info))
1795 return;
1796
1797 WARN_ON(cache->bytes_super != 0);
1798 unusable = (cache->alloc_offset - cache->used) +
1799 (cache->length - cache->zone_capacity);
1800 free = cache->zone_capacity - cache->alloc_offset;
1801
1802 /* We only need ->free_space in ALLOC_SEQ block groups */
1803 cache->cached = BTRFS_CACHE_FINISHED;
1804 cache->free_space_ctl->free_space = free;
1805 cache->zone_unusable = unusable;
1806 }
1807
btrfs_use_zone_append(struct btrfs_bio * bbio)1808 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1809 {
1810 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1811 struct btrfs_inode *inode = bbio->inode;
1812 struct btrfs_fs_info *fs_info = bbio->fs_info;
1813 struct btrfs_block_group *cache;
1814 bool ret = false;
1815
1816 if (!btrfs_is_zoned(fs_info))
1817 return false;
1818
1819 if (!inode || !is_data_inode(inode))
1820 return false;
1821
1822 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1823 return false;
1824
1825 /*
1826 * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the
1827 * extent layout the relocation code has.
1828 * Furthermore we have set aside own block-group from which only the
1829 * relocation "process" can allocate and make sure only one process at a
1830 * time can add pages to an extent that gets relocated, so it's safe to
1831 * use regular REQ_OP_WRITE for this special case.
1832 */
1833 if (btrfs_is_data_reloc_root(inode->root))
1834 return false;
1835
1836 cache = btrfs_lookup_block_group(fs_info, start);
1837 ASSERT(cache);
1838 if (!cache)
1839 return false;
1840
1841 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1842 btrfs_put_block_group(cache);
1843
1844 return ret;
1845 }
1846
btrfs_record_physical_zoned(struct btrfs_bio * bbio)1847 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1848 {
1849 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1850 struct btrfs_ordered_sum *sum = bbio->sums;
1851
1852 if (physical < bbio->orig_physical)
1853 sum->logical -= bbio->orig_physical - physical;
1854 else
1855 sum->logical += physical - bbio->orig_physical;
1856 }
1857
btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent * ordered,u64 logical)1858 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1859 u64 logical)
1860 {
1861 struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
1862 struct extent_map *em;
1863
1864 ordered->disk_bytenr = logical;
1865
1866 write_lock(&em_tree->lock);
1867 em = btrfs_search_extent_mapping(em_tree, ordered->file_offset,
1868 ordered->num_bytes);
1869 /* The em should be a new COW extent, thus it should not have an offset. */
1870 ASSERT(em->offset == 0);
1871 em->disk_bytenr = logical;
1872 btrfs_free_extent_map(em);
1873 write_unlock(&em_tree->lock);
1874 }
1875
btrfs_zoned_split_ordered(struct btrfs_ordered_extent * ordered,u64 logical,u64 len)1876 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1877 u64 logical, u64 len)
1878 {
1879 struct btrfs_ordered_extent *new;
1880
1881 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1882 btrfs_split_extent_map(ordered->inode, ordered->file_offset,
1883 ordered->num_bytes, len, logical))
1884 return false;
1885
1886 new = btrfs_split_ordered_extent(ordered, len);
1887 if (IS_ERR(new))
1888 return false;
1889 new->disk_bytenr = logical;
1890 btrfs_finish_one_ordered(new);
1891 return true;
1892 }
1893
btrfs_finish_ordered_zoned(struct btrfs_ordered_extent * ordered)1894 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1895 {
1896 struct btrfs_inode *inode = ordered->inode;
1897 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1898 struct btrfs_ordered_sum *sum;
1899 u64 logical, len;
1900
1901 /*
1902 * Write to pre-allocated region is for the data relocation, and so
1903 * it should use WRITE operation. No split/rewrite are necessary.
1904 */
1905 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1906 return;
1907
1908 ASSERT(!list_empty(&ordered->list));
1909 /* The ordered->list can be empty in the above pre-alloc case. */
1910 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1911 logical = sum->logical;
1912 len = sum->len;
1913
1914 while (len < ordered->disk_num_bytes) {
1915 sum = list_next_entry(sum, list);
1916 if (sum->logical == logical + len) {
1917 len += sum->len;
1918 continue;
1919 }
1920 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1921 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1922 btrfs_err(fs_info, "failed to split ordered extent");
1923 goto out;
1924 }
1925 logical = sum->logical;
1926 len = sum->len;
1927 }
1928
1929 if (ordered->disk_bytenr != logical)
1930 btrfs_rewrite_logical_zoned(ordered, logical);
1931
1932 out:
1933 /*
1934 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1935 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1936 * addresses and don't contain actual checksums. We thus must free them
1937 * here so that we don't attempt to log the csums later.
1938 */
1939 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1940 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
1941 while ((sum = list_first_entry_or_null(&ordered->list,
1942 typeof(*sum), list))) {
1943 list_del(&sum->list);
1944 kfree(sum);
1945 }
1946 }
1947 }
1948
check_bg_is_active(struct btrfs_eb_write_context * ctx,struct btrfs_block_group ** active_bg)1949 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1950 struct btrfs_block_group **active_bg)
1951 {
1952 const struct writeback_control *wbc = ctx->wbc;
1953 struct btrfs_block_group *block_group = ctx->zoned_bg;
1954 struct btrfs_fs_info *fs_info = block_group->fs_info;
1955
1956 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1957 return true;
1958
1959 if (fs_info->treelog_bg == block_group->start) {
1960 if (!btrfs_zone_activate(block_group)) {
1961 int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1962
1963 if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1964 return false;
1965 }
1966 } else if (*active_bg != block_group) {
1967 struct btrfs_block_group *tgt = *active_bg;
1968
1969 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1970 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1971
1972 if (tgt) {
1973 /*
1974 * If there is an unsent IO left in the allocated area,
1975 * we cannot wait for them as it may cause a deadlock.
1976 */
1977 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1978 if (wbc->sync_mode == WB_SYNC_NONE ||
1979 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1980 return false;
1981 }
1982
1983 /* Pivot active metadata/system block group. */
1984 btrfs_zoned_meta_io_unlock(fs_info);
1985 wait_eb_writebacks(tgt);
1986 do_zone_finish(tgt, true);
1987 btrfs_zoned_meta_io_lock(fs_info);
1988 if (*active_bg == tgt) {
1989 btrfs_put_block_group(tgt);
1990 *active_bg = NULL;
1991 }
1992 }
1993 if (!btrfs_zone_activate(block_group))
1994 return false;
1995 if (*active_bg != block_group) {
1996 ASSERT(*active_bg == NULL);
1997 *active_bg = block_group;
1998 btrfs_get_block_group(block_group);
1999 }
2000 }
2001
2002 return true;
2003 }
2004
2005 /*
2006 * Check if @ctx->eb is aligned to the write pointer.
2007 *
2008 * Return:
2009 * 0: @ctx->eb is at the write pointer. You can write it.
2010 * -EAGAIN: There is a hole. The caller should handle the case.
2011 * -EBUSY: There is a hole, but the caller can just bail out.
2012 */
btrfs_check_meta_write_pointer(struct btrfs_fs_info * fs_info,struct btrfs_eb_write_context * ctx)2013 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
2014 struct btrfs_eb_write_context *ctx)
2015 {
2016 const struct writeback_control *wbc = ctx->wbc;
2017 const struct extent_buffer *eb = ctx->eb;
2018 struct btrfs_block_group *block_group = ctx->zoned_bg;
2019
2020 if (!btrfs_is_zoned(fs_info))
2021 return 0;
2022
2023 if (block_group) {
2024 if (block_group->start > eb->start ||
2025 block_group->start + block_group->length <= eb->start) {
2026 btrfs_put_block_group(block_group);
2027 block_group = NULL;
2028 ctx->zoned_bg = NULL;
2029 }
2030 }
2031
2032 if (!block_group) {
2033 block_group = btrfs_lookup_block_group(fs_info, eb->start);
2034 if (!block_group)
2035 return 0;
2036 ctx->zoned_bg = block_group;
2037 }
2038
2039 if (block_group->meta_write_pointer == eb->start) {
2040 struct btrfs_block_group **tgt;
2041
2042 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2043 return 0;
2044
2045 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2046 tgt = &fs_info->active_system_bg;
2047 else
2048 tgt = &fs_info->active_meta_bg;
2049 if (check_bg_is_active(ctx, tgt))
2050 return 0;
2051 }
2052
2053 /*
2054 * Since we may release fs_info->zoned_meta_io_lock, someone can already
2055 * start writing this eb. In that case, we can just bail out.
2056 */
2057 if (block_group->meta_write_pointer > eb->start)
2058 return -EBUSY;
2059
2060 /* If for_sync, this hole will be filled with transaction commit. */
2061 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2062 return -EAGAIN;
2063 return -EBUSY;
2064 }
2065
btrfs_zoned_issue_zeroout(struct btrfs_device * device,u64 physical,u64 length)2066 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
2067 {
2068 if (!btrfs_dev_is_sequential(device, physical))
2069 return -EOPNOTSUPP;
2070
2071 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
2072 length >> SECTOR_SHIFT, GFP_NOFS, 0);
2073 }
2074
read_zone_info(struct btrfs_fs_info * fs_info,u64 logical,struct blk_zone * zone)2075 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
2076 struct blk_zone *zone)
2077 {
2078 struct btrfs_io_context *bioc = NULL;
2079 u64 mapped_length = PAGE_SIZE;
2080 unsigned int nofs_flag;
2081 int nmirrors;
2082 int i, ret;
2083
2084 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2085 &mapped_length, &bioc, NULL, NULL);
2086 if (unlikely(ret || !bioc || mapped_length < PAGE_SIZE)) {
2087 ret = -EIO;
2088 goto out_put_bioc;
2089 }
2090
2091 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2092 ret = -EINVAL;
2093 goto out_put_bioc;
2094 }
2095
2096 nofs_flag = memalloc_nofs_save();
2097 nmirrors = (int)bioc->num_stripes;
2098 for (i = 0; i < nmirrors; i++) {
2099 u64 physical = bioc->stripes[i].physical;
2100 struct btrfs_device *dev = bioc->stripes[i].dev;
2101
2102 /* Missing device */
2103 if (!dev->bdev)
2104 continue;
2105
2106 ret = btrfs_get_dev_zone(dev, physical, zone);
2107 /* Failing device */
2108 if (ret == -EIO || ret == -EOPNOTSUPP)
2109 continue;
2110 break;
2111 }
2112 memalloc_nofs_restore(nofs_flag);
2113 out_put_bioc:
2114 btrfs_put_bioc(bioc);
2115 return ret;
2116 }
2117
2118 /*
2119 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2120 * filling zeros between @physical_pos to a write pointer of dev-replace
2121 * source device.
2122 */
btrfs_sync_zone_write_pointer(struct btrfs_device * tgt_dev,u64 logical,u64 physical_start,u64 physical_pos)2123 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2124 u64 physical_start, u64 physical_pos)
2125 {
2126 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2127 struct blk_zone zone;
2128 u64 length;
2129 u64 wp;
2130 int ret;
2131
2132 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2133 return 0;
2134
2135 ret = read_zone_info(fs_info, logical, &zone);
2136 if (ret)
2137 return ret;
2138
2139 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2140
2141 if (physical_pos == wp)
2142 return 0;
2143
2144 if (unlikely(physical_pos > wp))
2145 return -EUCLEAN;
2146
2147 length = wp - physical_pos;
2148 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2149 }
2150
2151 /*
2152 * Activate block group and underlying device zones
2153 *
2154 * @block_group: the block group to activate
2155 *
2156 * Return: true on success, false otherwise
2157 */
btrfs_zone_activate(struct btrfs_block_group * block_group)2158 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2159 {
2160 struct btrfs_fs_info *fs_info = block_group->fs_info;
2161 struct btrfs_chunk_map *map;
2162 struct btrfs_device *device;
2163 u64 physical;
2164 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2165 bool ret;
2166 int i;
2167
2168 if (!btrfs_is_zoned(block_group->fs_info))
2169 return true;
2170
2171 map = block_group->physical_map;
2172
2173 spin_lock(&fs_info->zone_active_bgs_lock);
2174 spin_lock(&block_group->lock);
2175 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2176 ret = true;
2177 goto out_unlock;
2178 }
2179
2180 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) {
2181 /* The caller should check if the block group is full. */
2182 if (WARN_ON_ONCE(btrfs_zoned_bg_is_full(block_group))) {
2183 ret = false;
2184 goto out_unlock;
2185 }
2186 } else {
2187 /* Since it is already written, it should have been active. */
2188 WARN_ON_ONCE(block_group->meta_write_pointer != block_group->start);
2189 }
2190
2191 for (i = 0; i < map->num_stripes; i++) {
2192 struct btrfs_zoned_device_info *zinfo;
2193 int reserved = 0;
2194
2195 device = map->stripes[i].dev;
2196 physical = map->stripes[i].physical;
2197 zinfo = device->zone_info;
2198
2199 if (!device->bdev)
2200 continue;
2201
2202 if (zinfo->max_active_zones == 0)
2203 continue;
2204
2205 if (is_data)
2206 reserved = zinfo->reserved_active_zones;
2207 /*
2208 * For the data block group, leave active zones for one
2209 * metadata block group and one system block group.
2210 */
2211 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2212 ret = false;
2213 goto out_unlock;
2214 }
2215
2216 if (!btrfs_dev_set_active_zone(device, physical)) {
2217 /* Cannot activate the zone */
2218 ret = false;
2219 goto out_unlock;
2220 }
2221 if (!is_data)
2222 zinfo->reserved_active_zones--;
2223 }
2224
2225 /* Successfully activated all the zones */
2226 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2227 spin_unlock(&block_group->lock);
2228
2229 /* For the active block group list */
2230 btrfs_get_block_group(block_group);
2231 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2232 spin_unlock(&fs_info->zone_active_bgs_lock);
2233
2234 return true;
2235
2236 out_unlock:
2237 spin_unlock(&block_group->lock);
2238 spin_unlock(&fs_info->zone_active_bgs_lock);
2239 return ret;
2240 }
2241
wait_eb_writebacks(struct btrfs_block_group * block_group)2242 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2243 {
2244 struct btrfs_fs_info *fs_info = block_group->fs_info;
2245 const u64 end = block_group->start + block_group->length;
2246 struct extent_buffer *eb;
2247 unsigned long index, start = (block_group->start >> fs_info->nodesize_bits);
2248
2249 rcu_read_lock();
2250 xa_for_each_start(&fs_info->buffer_tree, index, eb, start) {
2251 if (eb->start < block_group->start)
2252 continue;
2253 if (eb->start >= end)
2254 break;
2255 rcu_read_unlock();
2256 wait_on_extent_buffer_writeback(eb);
2257 rcu_read_lock();
2258 }
2259 rcu_read_unlock();
2260 }
2261
call_zone_finish(struct btrfs_block_group * block_group,struct btrfs_io_stripe * stripe)2262 static int call_zone_finish(struct btrfs_block_group *block_group,
2263 struct btrfs_io_stripe *stripe)
2264 {
2265 struct btrfs_device *device = stripe->dev;
2266 const u64 physical = stripe->physical;
2267 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2268 int ret;
2269
2270 if (!device->bdev)
2271 return 0;
2272
2273 if (zinfo->max_active_zones == 0)
2274 return 0;
2275
2276 if (btrfs_dev_is_sequential(device, physical)) {
2277 unsigned int nofs_flags;
2278
2279 nofs_flags = memalloc_nofs_save();
2280 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2281 physical >> SECTOR_SHIFT,
2282 zinfo->zone_size >> SECTOR_SHIFT);
2283 memalloc_nofs_restore(nofs_flags);
2284
2285 if (ret)
2286 return ret;
2287 }
2288
2289 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2290 zinfo->reserved_active_zones++;
2291 btrfs_dev_clear_active_zone(device, physical);
2292
2293 return 0;
2294 }
2295
do_zone_finish(struct btrfs_block_group * block_group,bool fully_written)2296 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2297 {
2298 struct btrfs_fs_info *fs_info = block_group->fs_info;
2299 struct btrfs_chunk_map *map;
2300 const bool is_metadata = (block_group->flags &
2301 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2302 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2303 int ret = 0;
2304 int i;
2305
2306 spin_lock(&block_group->lock);
2307 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2308 spin_unlock(&block_group->lock);
2309 return 0;
2310 }
2311
2312 /* Check if we have unwritten allocated space */
2313 if (is_metadata &&
2314 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2315 spin_unlock(&block_group->lock);
2316 return -EAGAIN;
2317 }
2318
2319 /*
2320 * If we are sure that the block group is full (= no more room left for
2321 * new allocation) and the IO for the last usable block is completed, we
2322 * don't need to wait for the other IOs. This holds because we ensure
2323 * the sequential IO submissions using the ZONE_APPEND command for data
2324 * and block_group->meta_write_pointer for metadata.
2325 */
2326 if (!fully_written) {
2327 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2328 spin_unlock(&block_group->lock);
2329 return -EAGAIN;
2330 }
2331 spin_unlock(&block_group->lock);
2332
2333 ret = btrfs_inc_block_group_ro(block_group, false);
2334 if (ret)
2335 return ret;
2336
2337 /* Ensure all writes in this block group finish */
2338 btrfs_wait_block_group_reservations(block_group);
2339 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2340 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
2341 /* Wait for extent buffers to be written. */
2342 if (is_metadata)
2343 wait_eb_writebacks(block_group);
2344
2345 spin_lock(&block_group->lock);
2346
2347 /*
2348 * Bail out if someone already deactivated the block group, or
2349 * allocated space is left in the block group.
2350 */
2351 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2352 &block_group->runtime_flags)) {
2353 spin_unlock(&block_group->lock);
2354 btrfs_dec_block_group_ro(block_group);
2355 return 0;
2356 }
2357
2358 if (block_group->reserved ||
2359 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2360 &block_group->runtime_flags)) {
2361 spin_unlock(&block_group->lock);
2362 btrfs_dec_block_group_ro(block_group);
2363 return -EAGAIN;
2364 }
2365 }
2366
2367 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2368 block_group->alloc_offset = block_group->zone_capacity;
2369 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2370 block_group->meta_write_pointer = block_group->start +
2371 block_group->zone_capacity;
2372 block_group->free_space_ctl->free_space = 0;
2373 btrfs_clear_treelog_bg(block_group);
2374 btrfs_clear_data_reloc_bg(block_group);
2375 spin_unlock(&block_group->lock);
2376
2377 down_read(&dev_replace->rwsem);
2378 map = block_group->physical_map;
2379 for (i = 0; i < map->num_stripes; i++) {
2380
2381 ret = call_zone_finish(block_group, &map->stripes[i]);
2382 if (ret) {
2383 up_read(&dev_replace->rwsem);
2384 return ret;
2385 }
2386 }
2387 up_read(&dev_replace->rwsem);
2388
2389 if (!fully_written)
2390 btrfs_dec_block_group_ro(block_group);
2391
2392 spin_lock(&fs_info->zone_active_bgs_lock);
2393 ASSERT(!list_empty(&block_group->active_bg_list));
2394 list_del_init(&block_group->active_bg_list);
2395 spin_unlock(&fs_info->zone_active_bgs_lock);
2396
2397 /* For active_bg_list */
2398 btrfs_put_block_group(block_group);
2399
2400 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2401
2402 return 0;
2403 }
2404
btrfs_zone_finish(struct btrfs_block_group * block_group)2405 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2406 {
2407 if (!btrfs_is_zoned(block_group->fs_info))
2408 return 0;
2409
2410 return do_zone_finish(block_group, false);
2411 }
2412
btrfs_can_activate_zone(struct btrfs_fs_devices * fs_devices,u64 flags)2413 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2414 {
2415 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2416 struct btrfs_device *device;
2417 bool ret = false;
2418
2419 if (!btrfs_is_zoned(fs_info))
2420 return true;
2421
2422 if (test_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags))
2423 return false;
2424
2425 /* Check if there is a device with active zones left */
2426 mutex_lock(&fs_info->chunk_mutex);
2427 spin_lock(&fs_info->zone_active_bgs_lock);
2428 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2429 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2430 int reserved = 0;
2431
2432 if (!device->bdev)
2433 continue;
2434
2435 if (!zinfo->max_active_zones) {
2436 ret = true;
2437 break;
2438 }
2439
2440 if (flags & BTRFS_BLOCK_GROUP_DATA)
2441 reserved = zinfo->reserved_active_zones;
2442
2443 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2444 case 0: /* single */
2445 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2446 break;
2447 case BTRFS_BLOCK_GROUP_DUP:
2448 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2449 break;
2450 }
2451 if (ret)
2452 break;
2453 }
2454 spin_unlock(&fs_info->zone_active_bgs_lock);
2455 mutex_unlock(&fs_info->chunk_mutex);
2456
2457 if (!ret)
2458 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2459
2460 return ret;
2461 }
2462
btrfs_zone_finish_endio(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2463 int btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2464 {
2465 struct btrfs_block_group *block_group;
2466 u64 min_alloc_bytes;
2467
2468 if (!btrfs_is_zoned(fs_info))
2469 return 0;
2470
2471 block_group = btrfs_lookup_block_group(fs_info, logical);
2472 if (WARN_ON_ONCE(!block_group))
2473 return -ENOENT;
2474
2475 /* No MIXED_BG on zoned btrfs. */
2476 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2477 min_alloc_bytes = fs_info->sectorsize;
2478 else
2479 min_alloc_bytes = fs_info->nodesize;
2480
2481 /* Bail out if we can allocate more data from this block group. */
2482 if (logical + length + min_alloc_bytes <=
2483 block_group->start + block_group->zone_capacity)
2484 goto out;
2485
2486 do_zone_finish(block_group, true);
2487
2488 out:
2489 btrfs_put_block_group(block_group);
2490 return 0;
2491 }
2492
btrfs_zone_finish_endio_workfn(struct work_struct * work)2493 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2494 {
2495 int ret;
2496 struct btrfs_block_group *bg =
2497 container_of(work, struct btrfs_block_group, zone_finish_work);
2498
2499 wait_on_extent_buffer_writeback(bg->last_eb);
2500 free_extent_buffer(bg->last_eb);
2501 ret = do_zone_finish(bg, true);
2502 if (ret)
2503 btrfs_handle_fs_error(bg->fs_info, ret,
2504 "Failed to finish block-group's zone");
2505 btrfs_put_block_group(bg);
2506 }
2507
btrfs_schedule_zone_finish_bg(struct btrfs_block_group * bg,struct extent_buffer * eb)2508 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2509 struct extent_buffer *eb)
2510 {
2511 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2512 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2513 return;
2514
2515 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2516 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2517 bg->start);
2518 return;
2519 }
2520
2521 /* For the work */
2522 btrfs_get_block_group(bg);
2523 refcount_inc(&eb->refs);
2524 bg->last_eb = eb;
2525 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2526 queue_work(system_dfl_wq, &bg->zone_finish_work);
2527 }
2528
btrfs_clear_data_reloc_bg(struct btrfs_block_group * bg)2529 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2530 {
2531 struct btrfs_fs_info *fs_info = bg->fs_info;
2532
2533 spin_lock(&fs_info->relocation_bg_lock);
2534 if (fs_info->data_reloc_bg == bg->start)
2535 fs_info->data_reloc_bg = 0;
2536 spin_unlock(&fs_info->relocation_bg_lock);
2537 }
2538
btrfs_zoned_reserve_data_reloc_bg(struct btrfs_fs_info * fs_info)2539 void btrfs_zoned_reserve_data_reloc_bg(struct btrfs_fs_info *fs_info)
2540 {
2541 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
2542 struct btrfs_space_info *space_info = data_sinfo;
2543 struct btrfs_trans_handle *trans;
2544 struct btrfs_block_group *bg;
2545 struct list_head *bg_list;
2546 u64 alloc_flags;
2547 bool first = true;
2548 bool did_chunk_alloc = false;
2549 int index;
2550 int ret;
2551
2552 if (!btrfs_is_zoned(fs_info))
2553 return;
2554
2555 if (fs_info->data_reloc_bg)
2556 return;
2557
2558 if (sb_rdonly(fs_info->sb))
2559 return;
2560
2561 alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags);
2562 index = btrfs_bg_flags_to_raid_index(alloc_flags);
2563
2564 /* Scan the data space_info to find empty block groups. Take the second one. */
2565 again:
2566 bg_list = &space_info->block_groups[index];
2567 list_for_each_entry(bg, bg_list, list) {
2568 if (bg->alloc_offset != 0)
2569 continue;
2570
2571 if (first) {
2572 first = false;
2573 continue;
2574 }
2575
2576 if (space_info == data_sinfo) {
2577 /* Migrate the block group to the data relocation space_info. */
2578 struct btrfs_space_info *reloc_sinfo = data_sinfo->sub_group[0];
2579 int factor;
2580
2581 ASSERT(reloc_sinfo->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC);
2582 factor = btrfs_bg_type_to_factor(bg->flags);
2583
2584 down_write(&space_info->groups_sem);
2585 list_del_init(&bg->list);
2586 /* We can assume this as we choose the second empty one. */
2587 ASSERT(!list_empty(&space_info->block_groups[index]));
2588 up_write(&space_info->groups_sem);
2589
2590 spin_lock(&space_info->lock);
2591 space_info->total_bytes -= bg->length;
2592 space_info->disk_total -= bg->length * factor;
2593 space_info->disk_total -= bg->zone_unusable;
2594 /* There is no allocation ever happened. */
2595 ASSERT(bg->used == 0);
2596 /* No super block in a block group on the zoned setup. */
2597 ASSERT(bg->bytes_super == 0);
2598 spin_unlock(&space_info->lock);
2599
2600 bg->space_info = reloc_sinfo;
2601 if (reloc_sinfo->block_group_kobjs[index] == NULL)
2602 btrfs_sysfs_add_block_group_type(bg);
2603
2604 btrfs_add_bg_to_space_info(fs_info, bg);
2605 }
2606
2607 fs_info->data_reloc_bg = bg->start;
2608 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &bg->runtime_flags);
2609 btrfs_zone_activate(bg);
2610
2611 return;
2612 }
2613
2614 if (did_chunk_alloc)
2615 return;
2616
2617 trans = btrfs_join_transaction(fs_info->tree_root);
2618 if (IS_ERR(trans))
2619 return;
2620
2621 /* Allocate new BG in the data relocation space_info. */
2622 space_info = data_sinfo->sub_group[0];
2623 ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC);
2624 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
2625 btrfs_end_transaction(trans);
2626 if (ret == 1) {
2627 /*
2628 * We allocated a new block group in the data relocation space_info. We
2629 * can take that one.
2630 */
2631 first = false;
2632 did_chunk_alloc = true;
2633 goto again;
2634 }
2635 }
2636
btrfs_free_zone_cache(struct btrfs_fs_info * fs_info)2637 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2638 {
2639 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2640 struct btrfs_device *device;
2641
2642 if (!btrfs_is_zoned(fs_info))
2643 return;
2644
2645 mutex_lock(&fs_devices->device_list_mutex);
2646 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2647 if (device->zone_info) {
2648 vfree(device->zone_info->zone_cache);
2649 device->zone_info->zone_cache = NULL;
2650 }
2651 }
2652 mutex_unlock(&fs_devices->device_list_mutex);
2653 }
2654
btrfs_zoned_should_reclaim(const struct btrfs_fs_info * fs_info)2655 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info)
2656 {
2657 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2658 struct btrfs_device *device;
2659 u64 total = btrfs_super_total_bytes(fs_info->super_copy);
2660 u64 used = 0;
2661 u64 factor;
2662
2663 ASSERT(btrfs_is_zoned(fs_info));
2664
2665 if (fs_info->bg_reclaim_threshold == 0)
2666 return false;
2667
2668 mutex_lock(&fs_devices->device_list_mutex);
2669 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2670 if (!device->bdev)
2671 continue;
2672
2673 used += device->bytes_used;
2674 }
2675 mutex_unlock(&fs_devices->device_list_mutex);
2676
2677 factor = div64_u64(used * 100, total);
2678 return factor >= fs_info->bg_reclaim_threshold;
2679 }
2680
btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2681 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2682 u64 length)
2683 {
2684 struct btrfs_block_group *block_group;
2685
2686 if (!btrfs_is_zoned(fs_info))
2687 return;
2688
2689 block_group = btrfs_lookup_block_group(fs_info, logical);
2690 /* It should be called on a previous data relocation block group. */
2691 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2692
2693 spin_lock(&block_group->lock);
2694 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2695 goto out;
2696
2697 /* All relocation extents are written. */
2698 if (block_group->start + block_group->alloc_offset == logical + length) {
2699 /*
2700 * Now, release this block group for further allocations and
2701 * zone finish.
2702 */
2703 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2704 &block_group->runtime_flags);
2705 }
2706
2707 out:
2708 spin_unlock(&block_group->lock);
2709 btrfs_put_block_group(block_group);
2710 }
2711
btrfs_zone_finish_one_bg(struct btrfs_fs_info * fs_info)2712 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2713 {
2714 struct btrfs_block_group *block_group;
2715 struct btrfs_block_group *min_bg = NULL;
2716 u64 min_avail = U64_MAX;
2717 int ret;
2718
2719 spin_lock(&fs_info->zone_active_bgs_lock);
2720 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2721 active_bg_list) {
2722 u64 avail;
2723
2724 spin_lock(&block_group->lock);
2725 if (block_group->reserved || block_group->alloc_offset == 0 ||
2726 !(block_group->flags & BTRFS_BLOCK_GROUP_DATA) ||
2727 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2728 spin_unlock(&block_group->lock);
2729 continue;
2730 }
2731
2732 avail = block_group->zone_capacity - block_group->alloc_offset;
2733 if (min_avail > avail) {
2734 if (min_bg)
2735 btrfs_put_block_group(min_bg);
2736 min_bg = block_group;
2737 min_avail = avail;
2738 btrfs_get_block_group(min_bg);
2739 }
2740 spin_unlock(&block_group->lock);
2741 }
2742 spin_unlock(&fs_info->zone_active_bgs_lock);
2743
2744 if (!min_bg)
2745 return 0;
2746
2747 ret = btrfs_zone_finish(min_bg);
2748 btrfs_put_block_group(min_bg);
2749
2750 return ret < 0 ? ret : 1;
2751 }
2752
btrfs_zoned_activate_one_bg(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool do_finish)2753 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2754 struct btrfs_space_info *space_info,
2755 bool do_finish)
2756 {
2757 struct btrfs_block_group *bg;
2758 int index;
2759
2760 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2761 return 0;
2762
2763 for (;;) {
2764 int ret;
2765 bool need_finish = false;
2766
2767 down_read(&space_info->groups_sem);
2768 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2769 list_for_each_entry(bg, &space_info->block_groups[index],
2770 list) {
2771 if (!spin_trylock(&bg->lock))
2772 continue;
2773 if (btrfs_zoned_bg_is_full(bg) ||
2774 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2775 &bg->runtime_flags)) {
2776 spin_unlock(&bg->lock);
2777 continue;
2778 }
2779 spin_unlock(&bg->lock);
2780
2781 if (btrfs_zone_activate(bg)) {
2782 up_read(&space_info->groups_sem);
2783 return 1;
2784 }
2785
2786 need_finish = true;
2787 }
2788 }
2789 up_read(&space_info->groups_sem);
2790
2791 if (!do_finish || !need_finish)
2792 break;
2793
2794 ret = btrfs_zone_finish_one_bg(fs_info);
2795 if (ret == 0)
2796 break;
2797 if (ret < 0)
2798 return ret;
2799 }
2800
2801 return 0;
2802 }
2803
2804 /*
2805 * Reserve zones for one metadata block group, one tree-log block group, and one
2806 * system block group.
2807 */
btrfs_check_active_zone_reservation(struct btrfs_fs_info * fs_info)2808 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2809 {
2810 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2811 struct btrfs_block_group *block_group;
2812 struct btrfs_device *device;
2813 /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2814 unsigned int metadata_reserve = 2;
2815 /* Reserve a zone for SINGLE system block group. */
2816 unsigned int system_reserve = 1;
2817
2818 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2819 return;
2820
2821 /*
2822 * This function is called from the mount context. So, there is no
2823 * parallel process touching the bits. No need for read_seqretry().
2824 */
2825 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2826 metadata_reserve = 4;
2827 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2828 system_reserve = 2;
2829
2830 /* Apply the reservation on all the devices. */
2831 mutex_lock(&fs_devices->device_list_mutex);
2832 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2833 if (!device->bdev)
2834 continue;
2835
2836 device->zone_info->reserved_active_zones =
2837 metadata_reserve + system_reserve;
2838 }
2839 mutex_unlock(&fs_devices->device_list_mutex);
2840
2841 /* Release reservation for currently active block groups. */
2842 spin_lock(&fs_info->zone_active_bgs_lock);
2843 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2844 struct btrfs_chunk_map *map = block_group->physical_map;
2845
2846 if (!(block_group->flags &
2847 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2848 continue;
2849
2850 for (int i = 0; i < map->num_stripes; i++)
2851 map->stripes[i].dev->zone_info->reserved_active_zones--;
2852 }
2853 spin_unlock(&fs_info->zone_active_bgs_lock);
2854 }
2855
2856 /*
2857 * Reset the zones of unused block groups from @space_info->bytes_zone_unusable.
2858 *
2859 * @space_info: the space to work on
2860 * @num_bytes: targeting reclaim bytes
2861 *
2862 * This one resets the zones of a block group, so we can reuse the region
2863 * without removing the block group. On the other hand, btrfs_delete_unused_bgs()
2864 * just removes a block group and frees up the underlying zones. So, we still
2865 * need to allocate a new block group to reuse the zones.
2866 *
2867 * Resetting is faster than deleting/recreating a block group. It is similar
2868 * to freeing the logical space on the regular mode. However, we cannot change
2869 * the block group's profile with this operation.
2870 */
btrfs_reset_unused_block_groups(struct btrfs_space_info * space_info,u64 num_bytes)2871 int btrfs_reset_unused_block_groups(struct btrfs_space_info *space_info, u64 num_bytes)
2872 {
2873 struct btrfs_fs_info *fs_info = space_info->fs_info;
2874 const sector_t zone_size_sectors = fs_info->zone_size >> SECTOR_SHIFT;
2875
2876 if (!btrfs_is_zoned(fs_info))
2877 return 0;
2878
2879 while (num_bytes > 0) {
2880 struct btrfs_chunk_map *map;
2881 struct btrfs_block_group *bg = NULL;
2882 bool found = false;
2883 u64 reclaimed = 0;
2884
2885 /*
2886 * Here, we choose a fully zone_unusable block group. It's
2887 * technically possible to reset a partly zone_unusable block
2888 * group, which still has some free space left. However,
2889 * handling that needs to cope with the allocation side, which
2890 * makes the logic more complex. So, let's handle the easy case
2891 * for now.
2892 */
2893 spin_lock(&fs_info->unused_bgs_lock);
2894 list_for_each_entry(bg, &fs_info->unused_bgs, bg_list) {
2895 if ((bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != space_info->flags)
2896 continue;
2897
2898 /*
2899 * Use trylock to avoid locking order violation. In
2900 * btrfs_reclaim_bgs_work(), the lock order is
2901 * &bg->lock -> &fs_info->unused_bgs_lock. We skip a
2902 * block group if we cannot take its lock.
2903 */
2904 if (!spin_trylock(&bg->lock))
2905 continue;
2906 if (btrfs_is_block_group_used(bg) || bg->zone_unusable < bg->length) {
2907 spin_unlock(&bg->lock);
2908 continue;
2909 }
2910 spin_unlock(&bg->lock);
2911 found = true;
2912 break;
2913 }
2914 if (!found) {
2915 spin_unlock(&fs_info->unused_bgs_lock);
2916 return 0;
2917 }
2918
2919 list_del_init(&bg->bg_list);
2920 btrfs_put_block_group(bg);
2921 spin_unlock(&fs_info->unused_bgs_lock);
2922
2923 /*
2924 * Since the block group is fully zone_unusable and we cannot
2925 * allocate from this block group anymore, we don't need to set
2926 * this block group read-only.
2927 */
2928
2929 down_read(&fs_info->dev_replace.rwsem);
2930 map = bg->physical_map;
2931 for (int i = 0; i < map->num_stripes; i++) {
2932 struct btrfs_io_stripe *stripe = &map->stripes[i];
2933 unsigned int nofs_flags;
2934 int ret;
2935
2936 nofs_flags = memalloc_nofs_save();
2937 ret = blkdev_zone_mgmt(stripe->dev->bdev, REQ_OP_ZONE_RESET,
2938 stripe->physical >> SECTOR_SHIFT,
2939 zone_size_sectors);
2940 memalloc_nofs_restore(nofs_flags);
2941
2942 if (ret) {
2943 up_read(&fs_info->dev_replace.rwsem);
2944 return ret;
2945 }
2946 }
2947 up_read(&fs_info->dev_replace.rwsem);
2948
2949 spin_lock(&space_info->lock);
2950 spin_lock(&bg->lock);
2951 ASSERT(!btrfs_is_block_group_used(bg));
2952 if (bg->ro) {
2953 spin_unlock(&bg->lock);
2954 spin_unlock(&space_info->lock);
2955 continue;
2956 }
2957
2958 reclaimed = bg->alloc_offset;
2959 bg->zone_unusable = bg->length - bg->zone_capacity;
2960 bg->alloc_offset = 0;
2961 /*
2962 * This holds because we currently reset fully used then freed
2963 * block group.
2964 */
2965 ASSERT(reclaimed == bg->zone_capacity);
2966 bg->free_space_ctl->free_space += reclaimed;
2967 space_info->bytes_zone_unusable -= reclaimed;
2968 spin_unlock(&bg->lock);
2969 btrfs_return_free_space(space_info, reclaimed);
2970 spin_unlock(&space_info->lock);
2971
2972 if (num_bytes <= reclaimed)
2973 break;
2974 num_bytes -= reclaimed;
2975 }
2976
2977 return 0;
2978 }
2979