1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcachefs setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_node_scan.h"
19 #include "btree_update_interior.h"
20 #include "btree_io.h"
21 #include "btree_write_buffer.h"
22 #include "buckets_waiting_for_journal.h"
23 #include "chardev.h"
24 #include "checksum.h"
25 #include "clock.h"
26 #include "compress.h"
27 #include "debug.h"
28 #include "disk_accounting.h"
29 #include "disk_groups.h"
30 #include "ec.h"
31 #include "errcode.h"
32 #include "error.h"
33 #include "fs.h"
34 #include "fs-io.h"
35 #include "fs-io-buffered.h"
36 #include "fs-io-direct.h"
37 #include "fsck.h"
38 #include "inode.h"
39 #include "io_read.h"
40 #include "io_write.h"
41 #include "journal.h"
42 #include "journal_reclaim.h"
43 #include "journal_seq_blacklist.h"
44 #include "move.h"
45 #include "migrate.h"
46 #include "movinggc.h"
47 #include "nocow_locking.h"
48 #include "quota.h"
49 #include "rebalance.h"
50 #include "recovery.h"
51 #include "replicas.h"
52 #include "sb-clean.h"
53 #include "sb-counters.h"
54 #include "sb-errors.h"
55 #include "sb-members.h"
56 #include "snapshot.h"
57 #include "subvolume.h"
58 #include "super.h"
59 #include "super-io.h"
60 #include "sysfs.h"
61 #include "thread_with_file.h"
62 #include "trace.h"
63
64 #include <linux/backing-dev.h>
65 #include <linux/blkdev.h>
66 #include <linux/debugfs.h>
67 #include <linux/device.h>
68 #include <linux/idr.h>
69 #include <linux/module.h>
70 #include <linux/percpu.h>
71 #include <linux/random.h>
72 #include <linux/sysfs.h>
73 #include <crypto/hash.h>
74
75 MODULE_LICENSE("GPL");
76 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
77 MODULE_DESCRIPTION("bcachefs filesystem");
78 MODULE_SOFTDEP("pre: crc32c");
79 MODULE_SOFTDEP("pre: crc64");
80 MODULE_SOFTDEP("pre: sha256");
81 MODULE_SOFTDEP("pre: chacha20");
82 MODULE_SOFTDEP("pre: poly1305");
83 MODULE_SOFTDEP("pre: xxhash");
84
85 const char * const bch2_fs_flag_strs[] = {
86 #define x(n) #n,
87 BCH_FS_FLAGS()
88 #undef x
89 NULL
90 };
91
bch2_print_str(struct bch_fs * c,const char * str)92 void bch2_print_str(struct bch_fs *c, const char *str)
93 {
94 #ifdef __KERNEL__
95 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
96
97 if (unlikely(stdio)) {
98 bch2_stdio_redirect_printf(stdio, true, "%s", str);
99 return;
100 }
101 #endif
102 bch2_print_string_as_lines(KERN_ERR, str);
103 }
104
105 __printf(2, 0)
bch2_print_maybe_redirect(struct stdio_redirect * stdio,const char * fmt,va_list args)106 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
107 {
108 #ifdef __KERNEL__
109 if (unlikely(stdio)) {
110 if (fmt[0] == KERN_SOH[0])
111 fmt += 2;
112
113 bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
114 return;
115 }
116 #endif
117 vprintk(fmt, args);
118 }
119
bch2_print_opts(struct bch_opts * opts,const char * fmt,...)120 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
121 {
122 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
123
124 va_list args;
125 va_start(args, fmt);
126 bch2_print_maybe_redirect(stdio, fmt, args);
127 va_end(args);
128 }
129
__bch2_print(struct bch_fs * c,const char * fmt,...)130 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
131 {
132 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
133
134 va_list args;
135 va_start(args, fmt);
136 bch2_print_maybe_redirect(stdio, fmt, args);
137 va_end(args);
138 }
139
140 #define KTYPE(type) \
141 static const struct attribute_group type ## _group = { \
142 .attrs = type ## _files \
143 }; \
144 \
145 static const struct attribute_group *type ## _groups[] = { \
146 &type ## _group, \
147 NULL \
148 }; \
149 \
150 static const struct kobj_type type ## _ktype = { \
151 .release = type ## _release, \
152 .sysfs_ops = &type ## _sysfs_ops, \
153 .default_groups = type ## _groups \
154 }
155
156 static void bch2_fs_release(struct kobject *);
157 static void bch2_dev_release(struct kobject *);
bch2_fs_counters_release(struct kobject * k)158 static void bch2_fs_counters_release(struct kobject *k)
159 {
160 }
161
bch2_fs_internal_release(struct kobject * k)162 static void bch2_fs_internal_release(struct kobject *k)
163 {
164 }
165
bch2_fs_opts_dir_release(struct kobject * k)166 static void bch2_fs_opts_dir_release(struct kobject *k)
167 {
168 }
169
bch2_fs_time_stats_release(struct kobject * k)170 static void bch2_fs_time_stats_release(struct kobject *k)
171 {
172 }
173
174 KTYPE(bch2_fs);
175 KTYPE(bch2_fs_counters);
176 KTYPE(bch2_fs_internal);
177 KTYPE(bch2_fs_opts_dir);
178 KTYPE(bch2_fs_time_stats);
179 KTYPE(bch2_dev);
180
181 static struct kset *bcachefs_kset;
182 static LIST_HEAD(bch_fs_list);
183 static DEFINE_MUTEX(bch_fs_list_lock);
184
185 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
186
187 static void bch2_dev_unlink(struct bch_dev *);
188 static void bch2_dev_free(struct bch_dev *);
189 static int bch2_dev_alloc(struct bch_fs *, unsigned);
190 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
191 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
192
bch2_dev_to_fs(dev_t dev)193 struct bch_fs *bch2_dev_to_fs(dev_t dev)
194 {
195 struct bch_fs *c;
196
197 mutex_lock(&bch_fs_list_lock);
198 rcu_read_lock();
199
200 list_for_each_entry(c, &bch_fs_list, list)
201 for_each_member_device_rcu(c, ca, NULL)
202 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
203 closure_get(&c->cl);
204 goto found;
205 }
206 c = NULL;
207 found:
208 rcu_read_unlock();
209 mutex_unlock(&bch_fs_list_lock);
210
211 return c;
212 }
213
__bch2_uuid_to_fs(__uuid_t uuid)214 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
215 {
216 struct bch_fs *c;
217
218 lockdep_assert_held(&bch_fs_list_lock);
219
220 list_for_each_entry(c, &bch_fs_list, list)
221 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
222 return c;
223
224 return NULL;
225 }
226
bch2_uuid_to_fs(__uuid_t uuid)227 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
228 {
229 struct bch_fs *c;
230
231 mutex_lock(&bch_fs_list_lock);
232 c = __bch2_uuid_to_fs(uuid);
233 if (c)
234 closure_get(&c->cl);
235 mutex_unlock(&bch_fs_list_lock);
236
237 return c;
238 }
239
240 /* Filesystem RO/RW: */
241
242 /*
243 * For startup/shutdown of RW stuff, the dependencies are:
244 *
245 * - foreground writes depend on copygc and rebalance (to free up space)
246 *
247 * - copygc and rebalance depend on mark and sweep gc (they actually probably
248 * don't because they either reserve ahead of time or don't block if
249 * allocations fail, but allocations can require mark and sweep gc to run
250 * because of generation number wraparound)
251 *
252 * - all of the above depends on the allocator threads
253 *
254 * - allocator depends on the journal (when it rewrites prios and gens)
255 */
256
__bch2_fs_read_only(struct bch_fs * c)257 static void __bch2_fs_read_only(struct bch_fs *c)
258 {
259 unsigned clean_passes = 0;
260 u64 seq = 0;
261
262 bch2_fs_ec_stop(c);
263 bch2_open_buckets_stop(c, NULL, true);
264 bch2_rebalance_stop(c);
265 bch2_copygc_stop(c);
266 bch2_fs_ec_flush(c);
267
268 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
269 journal_cur_seq(&c->journal));
270
271 do {
272 clean_passes++;
273
274 if (bch2_btree_interior_updates_flush(c) ||
275 bch2_btree_write_buffer_flush_going_ro(c) ||
276 bch2_journal_flush_all_pins(&c->journal) ||
277 bch2_btree_flush_all_writes(c) ||
278 seq != atomic64_read(&c->journal.seq)) {
279 seq = atomic64_read(&c->journal.seq);
280 clean_passes = 0;
281 }
282 } while (clean_passes < 2);
283
284 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
285 journal_cur_seq(&c->journal));
286
287 if (test_bit(JOURNAL_replay_done, &c->journal.flags) &&
288 !test_bit(BCH_FS_emergency_ro, &c->flags))
289 set_bit(BCH_FS_clean_shutdown, &c->flags);
290
291 bch2_fs_journal_stop(&c->journal);
292
293 bch_info(c, "%sclean shutdown complete, journal seq %llu",
294 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un",
295 c->journal.seq_ondisk);
296
297 /*
298 * After stopping journal:
299 */
300 for_each_member_device(c, ca)
301 bch2_dev_allocator_remove(c, ca);
302 }
303
304 #ifndef BCH_WRITE_REF_DEBUG
bch2_writes_disabled(struct percpu_ref * writes)305 static void bch2_writes_disabled(struct percpu_ref *writes)
306 {
307 struct bch_fs *c = container_of(writes, struct bch_fs, writes);
308
309 set_bit(BCH_FS_write_disable_complete, &c->flags);
310 wake_up(&bch2_read_only_wait);
311 }
312 #endif
313
bch2_fs_read_only(struct bch_fs * c)314 void bch2_fs_read_only(struct bch_fs *c)
315 {
316 if (!test_bit(BCH_FS_rw, &c->flags)) {
317 bch2_journal_reclaim_stop(&c->journal);
318 return;
319 }
320
321 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
322
323 bch_verbose(c, "going read-only");
324
325 /*
326 * Block new foreground-end write operations from starting - any new
327 * writes will return -EROFS:
328 */
329 set_bit(BCH_FS_going_ro, &c->flags);
330 #ifndef BCH_WRITE_REF_DEBUG
331 percpu_ref_kill(&c->writes);
332 #else
333 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
334 bch2_write_ref_put(c, i);
335 #endif
336
337 /*
338 * If we're not doing an emergency shutdown, we want to wait on
339 * outstanding writes to complete so they don't see spurious errors due
340 * to shutting down the allocator:
341 *
342 * If we are doing an emergency shutdown outstanding writes may
343 * hang until we shutdown the allocator so we don't want to wait
344 * on outstanding writes before shutting everything down - but
345 * we do need to wait on them before returning and signalling
346 * that going RO is complete:
347 */
348 wait_event(bch2_read_only_wait,
349 test_bit(BCH_FS_write_disable_complete, &c->flags) ||
350 test_bit(BCH_FS_emergency_ro, &c->flags));
351
352 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
353 if (writes_disabled)
354 bch_verbose(c, "finished waiting for writes to stop");
355
356 __bch2_fs_read_only(c);
357
358 wait_event(bch2_read_only_wait,
359 test_bit(BCH_FS_write_disable_complete, &c->flags));
360
361 if (!writes_disabled)
362 bch_verbose(c, "finished waiting for writes to stop");
363
364 clear_bit(BCH_FS_write_disable_complete, &c->flags);
365 clear_bit(BCH_FS_going_ro, &c->flags);
366 clear_bit(BCH_FS_rw, &c->flags);
367
368 if (!bch2_journal_error(&c->journal) &&
369 !test_bit(BCH_FS_error, &c->flags) &&
370 !test_bit(BCH_FS_emergency_ro, &c->flags) &&
371 test_bit(BCH_FS_started, &c->flags) &&
372 test_bit(BCH_FS_clean_shutdown, &c->flags) &&
373 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) {
374 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
375 BUG_ON(atomic_long_read(&c->btree_cache.nr_dirty));
376 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
377 BUG_ON(c->btree_write_buffer.inc.keys.nr);
378 BUG_ON(c->btree_write_buffer.flushing.keys.nr);
379 bch2_verify_accounting_clean(c);
380
381 bch_verbose(c, "marking filesystem clean");
382 bch2_fs_mark_clean(c);
383 } else {
384 bch_verbose(c, "done going read-only, filesystem not clean");
385 }
386 }
387
bch2_fs_read_only_work(struct work_struct * work)388 static void bch2_fs_read_only_work(struct work_struct *work)
389 {
390 struct bch_fs *c =
391 container_of(work, struct bch_fs, read_only_work);
392
393 down_write(&c->state_lock);
394 bch2_fs_read_only(c);
395 up_write(&c->state_lock);
396 }
397
bch2_fs_read_only_async(struct bch_fs * c)398 static void bch2_fs_read_only_async(struct bch_fs *c)
399 {
400 queue_work(system_long_wq, &c->read_only_work);
401 }
402
bch2_fs_emergency_read_only(struct bch_fs * c)403 bool bch2_fs_emergency_read_only(struct bch_fs *c)
404 {
405 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
406
407 bch2_journal_halt(&c->journal);
408 bch2_fs_read_only_async(c);
409
410 wake_up(&bch2_read_only_wait);
411 return ret;
412 }
413
bch2_fs_emergency_read_only_locked(struct bch_fs * c)414 bool bch2_fs_emergency_read_only_locked(struct bch_fs *c)
415 {
416 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
417
418 bch2_journal_halt_locked(&c->journal);
419 bch2_fs_read_only_async(c);
420
421 wake_up(&bch2_read_only_wait);
422 return ret;
423 }
424
bch2_fs_read_write_late(struct bch_fs * c)425 static int bch2_fs_read_write_late(struct bch_fs *c)
426 {
427 int ret;
428
429 /*
430 * Data move operations can't run until after check_snapshots has
431 * completed, and bch2_snapshot_is_ancestor() is available.
432 *
433 * Ideally we'd start copygc/rebalance earlier instead of waiting for
434 * all of recovery/fsck to complete:
435 */
436 ret = bch2_copygc_start(c);
437 if (ret) {
438 bch_err(c, "error starting copygc thread");
439 return ret;
440 }
441
442 ret = bch2_rebalance_start(c);
443 if (ret) {
444 bch_err(c, "error starting rebalance thread");
445 return ret;
446 }
447
448 return 0;
449 }
450
__bch2_fs_read_write(struct bch_fs * c,bool early)451 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
452 {
453 int ret;
454
455 BUG_ON(!test_bit(BCH_FS_may_go_rw, &c->flags));
456
457 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
458 bch_err(c, "cannot go rw, unfixed btree errors");
459 return -BCH_ERR_erofs_unfixed_errors;
460 }
461
462 if (test_bit(BCH_FS_rw, &c->flags))
463 return 0;
464
465 bch_info(c, "going read-write");
466
467 ret = bch2_sb_members_v2_init(c);
468 if (ret)
469 goto err;
470
471 ret = bch2_fs_mark_dirty(c);
472 if (ret)
473 goto err;
474
475 clear_bit(BCH_FS_clean_shutdown, &c->flags);
476
477 /*
478 * First journal write must be a flush write: after a clean shutdown we
479 * don't read the journal, so the first journal write may end up
480 * overwriting whatever was there previously, and there must always be
481 * at least one non-flush write in the journal or recovery will fail:
482 */
483 set_bit(JOURNAL_need_flush_write, &c->journal.flags);
484 set_bit(JOURNAL_running, &c->journal.flags);
485
486 for_each_rw_member(c, ca)
487 bch2_dev_allocator_add(c, ca);
488 bch2_recalc_capacity(c);
489
490 set_bit(BCH_FS_rw, &c->flags);
491 set_bit(BCH_FS_was_rw, &c->flags);
492
493 #ifndef BCH_WRITE_REF_DEBUG
494 percpu_ref_reinit(&c->writes);
495 #else
496 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
497 BUG_ON(atomic_long_read(&c->writes[i]));
498 atomic_long_inc(&c->writes[i]);
499 }
500 #endif
501
502 ret = bch2_journal_reclaim_start(&c->journal);
503 if (ret)
504 goto err;
505
506 if (!early) {
507 ret = bch2_fs_read_write_late(c);
508 if (ret)
509 goto err;
510 }
511
512 bch2_do_discards(c);
513 bch2_do_invalidates(c);
514 bch2_do_stripe_deletes(c);
515 bch2_do_pending_node_rewrites(c);
516 return 0;
517 err:
518 if (test_bit(BCH_FS_rw, &c->flags))
519 bch2_fs_read_only(c);
520 else
521 __bch2_fs_read_only(c);
522 return ret;
523 }
524
bch2_fs_read_write(struct bch_fs * c)525 int bch2_fs_read_write(struct bch_fs *c)
526 {
527 if (c->opts.recovery_pass_last &&
528 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay)
529 return -BCH_ERR_erofs_norecovery;
530
531 if (c->opts.nochanges)
532 return -BCH_ERR_erofs_nochanges;
533
534 return __bch2_fs_read_write(c, false);
535 }
536
bch2_fs_read_write_early(struct bch_fs * c)537 int bch2_fs_read_write_early(struct bch_fs *c)
538 {
539 lockdep_assert_held(&c->state_lock);
540
541 return __bch2_fs_read_write(c, true);
542 }
543
544 /* Filesystem startup/shutdown: */
545
__bch2_fs_free(struct bch_fs * c)546 static void __bch2_fs_free(struct bch_fs *c)
547 {
548 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++)
549 bch2_time_stats_exit(&c->times[i]);
550
551 bch2_find_btree_nodes_exit(&c->found_btree_nodes);
552 bch2_free_pending_node_rewrites(c);
553 bch2_fs_accounting_exit(c);
554 bch2_fs_sb_errors_exit(c);
555 bch2_fs_counters_exit(c);
556 bch2_fs_snapshots_exit(c);
557 bch2_fs_quota_exit(c);
558 bch2_fs_fs_io_direct_exit(c);
559 bch2_fs_fs_io_buffered_exit(c);
560 bch2_fs_fsio_exit(c);
561 bch2_fs_vfs_exit(c);
562 bch2_fs_ec_exit(c);
563 bch2_fs_encryption_exit(c);
564 bch2_fs_nocow_locking_exit(c);
565 bch2_fs_io_write_exit(c);
566 bch2_fs_io_read_exit(c);
567 bch2_fs_buckets_waiting_for_journal_exit(c);
568 bch2_fs_btree_interior_update_exit(c);
569 bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
570 bch2_fs_btree_cache_exit(c);
571 bch2_fs_btree_iter_exit(c);
572 bch2_fs_replicas_exit(c);
573 bch2_fs_journal_exit(&c->journal);
574 bch2_io_clock_exit(&c->io_clock[WRITE]);
575 bch2_io_clock_exit(&c->io_clock[READ]);
576 bch2_fs_compress_exit(c);
577 bch2_fs_btree_gc_exit(c);
578 bch2_journal_keys_put_initial(c);
579 bch2_find_btree_nodes_exit(&c->found_btree_nodes);
580 BUG_ON(atomic_read(&c->journal_keys.ref));
581 bch2_fs_btree_write_buffer_exit(c);
582 percpu_free_rwsem(&c->mark_lock);
583 if (c->online_reserved) {
584 u64 v = percpu_u64_get(c->online_reserved);
585 WARN(v, "online_reserved not 0 at shutdown: %lli", v);
586 free_percpu(c->online_reserved);
587 }
588
589 darray_exit(&c->btree_roots_extra);
590 free_percpu(c->pcpu);
591 free_percpu(c->usage);
592 mempool_exit(&c->large_bkey_pool);
593 mempool_exit(&c->btree_bounce_pool);
594 bioset_exit(&c->btree_bio);
595 mempool_exit(&c->fill_iter);
596 #ifndef BCH_WRITE_REF_DEBUG
597 percpu_ref_exit(&c->writes);
598 #endif
599 kfree(rcu_dereference_protected(c->disk_groups, 1));
600 kfree(c->journal_seq_blacklist_table);
601
602 if (c->write_ref_wq)
603 destroy_workqueue(c->write_ref_wq);
604 if (c->btree_write_submit_wq)
605 destroy_workqueue(c->btree_write_submit_wq);
606 if (c->btree_read_complete_wq)
607 destroy_workqueue(c->btree_read_complete_wq);
608 if (c->copygc_wq)
609 destroy_workqueue(c->copygc_wq);
610 if (c->btree_io_complete_wq)
611 destroy_workqueue(c->btree_io_complete_wq);
612 if (c->btree_update_wq)
613 destroy_workqueue(c->btree_update_wq);
614
615 bch2_free_super(&c->disk_sb);
616 kvfree(c);
617 module_put(THIS_MODULE);
618 }
619
bch2_fs_release(struct kobject * kobj)620 static void bch2_fs_release(struct kobject *kobj)
621 {
622 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
623
624 __bch2_fs_free(c);
625 }
626
__bch2_fs_stop(struct bch_fs * c)627 void __bch2_fs_stop(struct bch_fs *c)
628 {
629 bch_verbose(c, "shutting down");
630
631 set_bit(BCH_FS_stopping, &c->flags);
632
633 down_write(&c->state_lock);
634 bch2_fs_read_only(c);
635 up_write(&c->state_lock);
636
637 for_each_member_device(c, ca)
638 bch2_dev_unlink(ca);
639
640 if (c->kobj.state_in_sysfs)
641 kobject_del(&c->kobj);
642
643 bch2_fs_debug_exit(c);
644 bch2_fs_chardev_exit(c);
645
646 bch2_ro_ref_put(c);
647 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
648
649 kobject_put(&c->counters_kobj);
650 kobject_put(&c->time_stats);
651 kobject_put(&c->opts_dir);
652 kobject_put(&c->internal);
653
654 /* btree prefetch might have kicked off reads in the background: */
655 bch2_btree_flush_all_reads(c);
656
657 for_each_member_device(c, ca)
658 cancel_work_sync(&ca->io_error_work);
659
660 cancel_work_sync(&c->read_only_work);
661 }
662
bch2_fs_free(struct bch_fs * c)663 void bch2_fs_free(struct bch_fs *c)
664 {
665 unsigned i;
666
667 mutex_lock(&bch_fs_list_lock);
668 list_del(&c->list);
669 mutex_unlock(&bch_fs_list_lock);
670
671 closure_sync(&c->cl);
672 closure_debug_destroy(&c->cl);
673
674 for (i = 0; i < c->sb.nr_devices; i++) {
675 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
676
677 if (ca) {
678 EBUG_ON(atomic_long_read(&ca->ref) != 1);
679 bch2_free_super(&ca->disk_sb);
680 bch2_dev_free(ca);
681 }
682 }
683
684 bch_verbose(c, "shutdown complete");
685
686 kobject_put(&c->kobj);
687 }
688
bch2_fs_stop(struct bch_fs * c)689 void bch2_fs_stop(struct bch_fs *c)
690 {
691 __bch2_fs_stop(c);
692 bch2_fs_free(c);
693 }
694
bch2_fs_online(struct bch_fs * c)695 static int bch2_fs_online(struct bch_fs *c)
696 {
697 int ret = 0;
698
699 lockdep_assert_held(&bch_fs_list_lock);
700
701 if (__bch2_uuid_to_fs(c->sb.uuid)) {
702 bch_err(c, "filesystem UUID already open");
703 return -EINVAL;
704 }
705
706 ret = bch2_fs_chardev_init(c);
707 if (ret) {
708 bch_err(c, "error creating character device");
709 return ret;
710 }
711
712 bch2_fs_debug_init(c);
713
714 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
715 kobject_add(&c->internal, &c->kobj, "internal") ?:
716 kobject_add(&c->opts_dir, &c->kobj, "options") ?:
717 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
718 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
719 #endif
720 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
721 bch2_opts_create_sysfs_files(&c->opts_dir);
722 if (ret) {
723 bch_err(c, "error creating sysfs objects");
724 return ret;
725 }
726
727 down_write(&c->state_lock);
728
729 for_each_member_device(c, ca) {
730 ret = bch2_dev_sysfs_online(c, ca);
731 if (ret) {
732 bch_err(c, "error creating sysfs objects");
733 bch2_dev_put(ca);
734 goto err;
735 }
736 }
737
738 BUG_ON(!list_empty(&c->list));
739 list_add(&c->list, &bch_fs_list);
740 err:
741 up_write(&c->state_lock);
742 return ret;
743 }
744
bch2_fs_alloc(struct bch_sb * sb,struct bch_opts opts)745 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
746 {
747 struct bch_fs *c;
748 struct printbuf name = PRINTBUF;
749 unsigned i, iter_size;
750 int ret = 0;
751
752 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
753 if (!c) {
754 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
755 goto out;
756 }
757
758 c->stdio = (void *)(unsigned long) opts.stdio;
759
760 __module_get(THIS_MODULE);
761
762 closure_init(&c->cl, NULL);
763
764 c->kobj.kset = bcachefs_kset;
765 kobject_init(&c->kobj, &bch2_fs_ktype);
766 kobject_init(&c->internal, &bch2_fs_internal_ktype);
767 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
768 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
769 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
770
771 c->minor = -1;
772 c->disk_sb.fs_sb = true;
773
774 init_rwsem(&c->state_lock);
775 mutex_init(&c->sb_lock);
776 mutex_init(&c->replicas_gc_lock);
777 mutex_init(&c->btree_root_lock);
778 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
779
780 refcount_set(&c->ro_ref, 1);
781 init_waitqueue_head(&c->ro_ref_wait);
782 spin_lock_init(&c->recovery_pass_lock);
783 sema_init(&c->online_fsck_mutex, 1);
784
785 for (i = 0; i < BCH_TIME_STAT_NR; i++)
786 bch2_time_stats_init(&c->times[i]);
787
788 bch2_fs_copygc_init(c);
789 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
790 bch2_fs_btree_iter_init_early(c);
791 bch2_fs_btree_interior_update_init_early(c);
792 bch2_fs_journal_keys_init(c);
793 bch2_fs_allocator_background_init(c);
794 bch2_fs_allocator_foreground_init(c);
795 bch2_fs_rebalance_init(c);
796 bch2_fs_quota_init(c);
797 bch2_fs_ec_init_early(c);
798 bch2_fs_move_init(c);
799 bch2_fs_sb_errors_init_early(c);
800
801 INIT_LIST_HEAD(&c->list);
802
803 mutex_init(&c->bio_bounce_pages_lock);
804 mutex_init(&c->snapshot_table_lock);
805 init_rwsem(&c->snapshot_create_lock);
806
807 spin_lock_init(&c->btree_write_error_lock);
808
809 INIT_LIST_HEAD(&c->journal_iters);
810
811 INIT_LIST_HEAD(&c->fsck_error_msgs);
812 mutex_init(&c->fsck_error_msgs_lock);
813
814 seqcount_init(&c->usage_lock);
815
816 sema_init(&c->io_in_flight, 128);
817
818 INIT_LIST_HEAD(&c->vfs_inodes_list);
819 mutex_init(&c->vfs_inodes_lock);
820
821 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write];
822 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write];
823 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
824
825 bch2_fs_btree_cache_init_early(&c->btree_cache);
826
827 mutex_init(&c->sectors_available_lock);
828
829 ret = percpu_init_rwsem(&c->mark_lock);
830 if (ret)
831 goto err;
832
833 mutex_lock(&c->sb_lock);
834 ret = bch2_sb_to_fs(c, sb);
835 mutex_unlock(&c->sb_lock);
836
837 if (ret)
838 goto err;
839
840 pr_uuid(&name, c->sb.user_uuid.b);
841 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
842 if (ret)
843 goto err;
844
845 strscpy(c->name, name.buf, sizeof(c->name));
846 printbuf_exit(&name);
847
848 /* Compat: */
849 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
850 !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
851 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
852
853 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
854 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
855 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
856
857 c->opts = bch2_opts_default;
858 ret = bch2_opts_from_sb(&c->opts, sb);
859 if (ret)
860 goto err;
861
862 bch2_opts_apply(&c->opts, opts);
863
864 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
865 if (c->opts.inodes_use_key_cache)
866 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
867 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
868
869 c->block_bits = ilog2(block_sectors(c));
870 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
871
872 if (bch2_fs_init_fault("fs_alloc")) {
873 bch_err(c, "fs_alloc fault injected");
874 ret = -EFAULT;
875 goto err;
876 }
877
878 iter_size = sizeof(struct sort_iter) +
879 (btree_blocks(c) + 1) * 2 *
880 sizeof(struct sort_iter_set);
881
882 if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
883 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
884 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
885 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
886 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
887 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
888 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete",
889 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
890 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit",
891 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
892 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
893 WQ_FREEZABLE, 0)) ||
894 #ifndef BCH_WRITE_REF_DEBUG
895 percpu_ref_init(&c->writes, bch2_writes_disabled,
896 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
897 #endif
898 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
899 bioset_init(&c->btree_bio, 1,
900 max(offsetof(struct btree_read_bio, bio),
901 offsetof(struct btree_write_bio, wbio.bio)),
902 BIOSET_NEED_BVECS) ||
903 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
904 !(c->usage = alloc_percpu(struct bch_fs_usage_base)) ||
905 !(c->online_reserved = alloc_percpu(u64)) ||
906 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
907 c->opts.btree_node_size) ||
908 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048)) {
909 ret = -BCH_ERR_ENOMEM_fs_other_alloc;
910 goto err;
911 }
912
913 ret = bch2_fs_counters_init(c) ?:
914 bch2_fs_sb_errors_init(c) ?:
915 bch2_io_clock_init(&c->io_clock[READ]) ?:
916 bch2_io_clock_init(&c->io_clock[WRITE]) ?:
917 bch2_fs_journal_init(&c->journal) ?:
918 bch2_fs_btree_iter_init(c) ?:
919 bch2_fs_btree_cache_init(c) ?:
920 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
921 bch2_fs_btree_interior_update_init(c) ?:
922 bch2_fs_btree_gc_init(c) ?:
923 bch2_fs_buckets_waiting_for_journal_init(c) ?:
924 bch2_fs_btree_write_buffer_init(c) ?:
925 bch2_fs_subvolumes_init(c) ?:
926 bch2_fs_io_read_init(c) ?:
927 bch2_fs_io_write_init(c) ?:
928 bch2_fs_nocow_locking_init(c) ?:
929 bch2_fs_encryption_init(c) ?:
930 bch2_fs_compress_init(c) ?:
931 bch2_fs_ec_init(c) ?:
932 bch2_fs_vfs_init(c) ?:
933 bch2_fs_fsio_init(c) ?:
934 bch2_fs_fs_io_buffered_init(c) ?:
935 bch2_fs_fs_io_direct_init(c);
936 if (ret)
937 goto err;
938
939 for (i = 0; i < c->sb.nr_devices; i++) {
940 if (!bch2_member_exists(c->disk_sb.sb, i))
941 continue;
942 ret = bch2_dev_alloc(c, i);
943 if (ret)
944 goto err;
945 }
946
947 bch2_journal_entry_res_resize(&c->journal,
948 &c->btree_root_journal_res,
949 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
950 bch2_journal_entry_res_resize(&c->journal,
951 &c->clock_journal_res,
952 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
953
954 mutex_lock(&bch_fs_list_lock);
955 ret = bch2_fs_online(c);
956 mutex_unlock(&bch_fs_list_lock);
957
958 if (ret)
959 goto err;
960 out:
961 return c;
962 err:
963 bch2_fs_free(c);
964 c = ERR_PTR(ret);
965 goto out;
966 }
967
968 noinline_for_stack
print_mount_opts(struct bch_fs * c)969 static void print_mount_opts(struct bch_fs *c)
970 {
971 enum bch_opt_id i;
972 struct printbuf p = PRINTBUF;
973 bool first = true;
974
975 prt_str(&p, "starting version ");
976 bch2_version_to_text(&p, c->sb.version);
977
978 if (c->opts.read_only) {
979 prt_str(&p, " opts=");
980 first = false;
981 prt_printf(&p, "ro");
982 }
983
984 for (i = 0; i < bch2_opts_nr; i++) {
985 const struct bch_option *opt = &bch2_opt_table[i];
986 u64 v = bch2_opt_get_by_id(&c->opts, i);
987
988 if (!(opt->flags & OPT_MOUNT))
989 continue;
990
991 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
992 continue;
993
994 prt_str(&p, first ? " opts=" : ",");
995 first = false;
996 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
997 }
998
999 bch_info(c, "%s", p.buf);
1000 printbuf_exit(&p);
1001 }
1002
bch2_fs_start(struct bch_fs * c)1003 int bch2_fs_start(struct bch_fs *c)
1004 {
1005 time64_t now = ktime_get_real_seconds();
1006 int ret;
1007
1008 print_mount_opts(c);
1009
1010 down_write(&c->state_lock);
1011
1012 BUG_ON(test_bit(BCH_FS_started, &c->flags));
1013
1014 mutex_lock(&c->sb_lock);
1015
1016 ret = bch2_sb_members_v2_init(c);
1017 if (ret) {
1018 mutex_unlock(&c->sb_lock);
1019 goto err;
1020 }
1021
1022 for_each_online_member(c, ca)
1023 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1024
1025 struct bch_sb_field_ext *ext =
1026 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
1027 mutex_unlock(&c->sb_lock);
1028
1029 if (!ext) {
1030 bch_err(c, "insufficient space in superblock for sb_field_ext");
1031 ret = -BCH_ERR_ENOSPC_sb;
1032 goto err;
1033 }
1034
1035 for_each_rw_member(c, ca)
1036 bch2_dev_allocator_add(c, ca);
1037 bch2_recalc_capacity(c);
1038
1039 c->recovery_task = current;
1040 ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1041 ? bch2_fs_recovery(c)
1042 : bch2_fs_initialize(c);
1043 c->recovery_task = NULL;
1044
1045 if (ret)
1046 goto err;
1047
1048 ret = bch2_opts_check_may_set(c);
1049 if (ret)
1050 goto err;
1051
1052 if (bch2_fs_init_fault("fs_start")) {
1053 bch_err(c, "fs_start fault injected");
1054 ret = -EINVAL;
1055 goto err;
1056 }
1057
1058 set_bit(BCH_FS_started, &c->flags);
1059
1060 if (c->opts.read_only) {
1061 bch2_fs_read_only(c);
1062 } else {
1063 ret = !test_bit(BCH_FS_rw, &c->flags)
1064 ? bch2_fs_read_write(c)
1065 : bch2_fs_read_write_late(c);
1066 if (ret)
1067 goto err;
1068 }
1069
1070 ret = 0;
1071 err:
1072 if (ret)
1073 bch_err_msg(c, ret, "starting filesystem");
1074 else
1075 bch_verbose(c, "done starting filesystem");
1076 up_write(&c->state_lock);
1077 return ret;
1078 }
1079
bch2_dev_may_add(struct bch_sb * sb,struct bch_fs * c)1080 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1081 {
1082 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1083
1084 if (le16_to_cpu(sb->block_size) != block_sectors(c))
1085 return -BCH_ERR_mismatched_block_size;
1086
1087 if (le16_to_cpu(m.bucket_size) <
1088 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1089 return -BCH_ERR_bucket_size_too_small;
1090
1091 return 0;
1092 }
1093
bch2_dev_in_fs(struct bch_sb_handle * fs,struct bch_sb_handle * sb,struct bch_opts * opts)1094 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1095 struct bch_sb_handle *sb,
1096 struct bch_opts *opts)
1097 {
1098 if (fs == sb)
1099 return 0;
1100
1101 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1102 return -BCH_ERR_device_not_a_member_of_filesystem;
1103
1104 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx))
1105 return -BCH_ERR_device_has_been_removed;
1106
1107 if (fs->sb->block_size != sb->sb->block_size)
1108 return -BCH_ERR_mismatched_block_size;
1109
1110 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1111 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1112 return 0;
1113
1114 if (fs->sb->seq == sb->sb->seq &&
1115 fs->sb->write_time != sb->sb->write_time) {
1116 struct printbuf buf = PRINTBUF;
1117
1118 prt_str(&buf, "Split brain detected between ");
1119 prt_bdevname(&buf, sb->bdev);
1120 prt_str(&buf, " and ");
1121 prt_bdevname(&buf, fs->bdev);
1122 prt_char(&buf, ':');
1123 prt_newline(&buf);
1124 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1125 prt_newline(&buf);
1126
1127 prt_bdevname(&buf, fs->bdev);
1128 prt_char(&buf, ' ');
1129 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));
1130 prt_newline(&buf);
1131
1132 prt_bdevname(&buf, sb->bdev);
1133 prt_char(&buf, ' ');
1134 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));
1135 prt_newline(&buf);
1136
1137 if (!opts->no_splitbrain_check)
1138 prt_printf(&buf, "Not using older sb");
1139
1140 pr_err("%s", buf.buf);
1141 printbuf_exit(&buf);
1142
1143 if (!opts->no_splitbrain_check)
1144 return -BCH_ERR_device_splitbrain;
1145 }
1146
1147 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1148 u64 seq_from_fs = le64_to_cpu(m.seq);
1149 u64 seq_from_member = le64_to_cpu(sb->sb->seq);
1150
1151 if (seq_from_fs && seq_from_fs < seq_from_member) {
1152 struct printbuf buf = PRINTBUF;
1153
1154 prt_str(&buf, "Split brain detected between ");
1155 prt_bdevname(&buf, sb->bdev);
1156 prt_str(&buf, " and ");
1157 prt_bdevname(&buf, fs->bdev);
1158 prt_char(&buf, ':');
1159 prt_newline(&buf);
1160
1161 prt_bdevname(&buf, fs->bdev);
1162 prt_str(&buf, " believes seq of ");
1163 prt_bdevname(&buf, sb->bdev);
1164 prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1165 prt_bdevname(&buf, sb->bdev);
1166 prt_printf(&buf, " has %llu\n", seq_from_member);
1167
1168 if (!opts->no_splitbrain_check) {
1169 prt_str(&buf, "Not using ");
1170 prt_bdevname(&buf, sb->bdev);
1171 }
1172
1173 pr_err("%s", buf.buf);
1174 printbuf_exit(&buf);
1175
1176 if (!opts->no_splitbrain_check)
1177 return -BCH_ERR_device_splitbrain;
1178 }
1179
1180 return 0;
1181 }
1182
1183 /* Device startup/shutdown: */
1184
bch2_dev_release(struct kobject * kobj)1185 static void bch2_dev_release(struct kobject *kobj)
1186 {
1187 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1188
1189 kfree(ca);
1190 }
1191
bch2_dev_free(struct bch_dev * ca)1192 static void bch2_dev_free(struct bch_dev *ca)
1193 {
1194 cancel_work_sync(&ca->io_error_work);
1195
1196 bch2_dev_unlink(ca);
1197
1198 if (ca->kobj.state_in_sysfs)
1199 kobject_del(&ca->kobj);
1200
1201 bch2_free_super(&ca->disk_sb);
1202 bch2_dev_allocator_background_exit(ca);
1203 bch2_dev_journal_exit(ca);
1204
1205 free_percpu(ca->io_done);
1206 bch2_dev_buckets_free(ca);
1207 kfree(ca->sb_read_scratch);
1208
1209 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1210 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]);
1211
1212 percpu_ref_exit(&ca->io_ref);
1213 #ifndef CONFIG_BCACHEFS_DEBUG
1214 percpu_ref_exit(&ca->ref);
1215 #endif
1216 kobject_put(&ca->kobj);
1217 }
1218
__bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca)1219 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1220 {
1221
1222 lockdep_assert_held(&c->state_lock);
1223
1224 if (percpu_ref_is_zero(&ca->io_ref))
1225 return;
1226
1227 __bch2_dev_read_only(c, ca);
1228
1229 reinit_completion(&ca->io_ref_completion);
1230 percpu_ref_kill(&ca->io_ref);
1231 wait_for_completion(&ca->io_ref_completion);
1232
1233 bch2_dev_unlink(ca);
1234
1235 bch2_free_super(&ca->disk_sb);
1236 bch2_dev_journal_exit(ca);
1237 }
1238
1239 #ifndef CONFIG_BCACHEFS_DEBUG
bch2_dev_ref_complete(struct percpu_ref * ref)1240 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1241 {
1242 struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1243
1244 complete(&ca->ref_completion);
1245 }
1246 #endif
1247
bch2_dev_io_ref_complete(struct percpu_ref * ref)1248 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1249 {
1250 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1251
1252 complete(&ca->io_ref_completion);
1253 }
1254
bch2_dev_unlink(struct bch_dev * ca)1255 static void bch2_dev_unlink(struct bch_dev *ca)
1256 {
1257 struct kobject *b;
1258
1259 /*
1260 * This is racy w.r.t. the underlying block device being hot-removed,
1261 * which removes it from sysfs.
1262 *
1263 * It'd be lovely if we had a way to handle this race, but the sysfs
1264 * code doesn't appear to provide a good method and block/holder.c is
1265 * susceptible as well:
1266 */
1267 if (ca->kobj.state_in_sysfs &&
1268 ca->disk_sb.bdev &&
1269 (b = bdev_kobj(ca->disk_sb.bdev))->state_in_sysfs) {
1270 sysfs_remove_link(b, "bcachefs");
1271 sysfs_remove_link(&ca->kobj, "block");
1272 }
1273 }
1274
bch2_dev_sysfs_online(struct bch_fs * c,struct bch_dev * ca)1275 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1276 {
1277 int ret;
1278
1279 if (!c->kobj.state_in_sysfs)
1280 return 0;
1281
1282 if (!ca->kobj.state_in_sysfs) {
1283 ret = kobject_add(&ca->kobj, &c->kobj,
1284 "dev-%u", ca->dev_idx);
1285 if (ret)
1286 return ret;
1287 }
1288
1289 if (ca->disk_sb.bdev) {
1290 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1291
1292 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1293 if (ret)
1294 return ret;
1295
1296 ret = sysfs_create_link(&ca->kobj, block, "block");
1297 if (ret)
1298 return ret;
1299 }
1300
1301 return 0;
1302 }
1303
__bch2_dev_alloc(struct bch_fs * c,struct bch_member * member)1304 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1305 struct bch_member *member)
1306 {
1307 struct bch_dev *ca;
1308 unsigned i;
1309
1310 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1311 if (!ca)
1312 return NULL;
1313
1314 kobject_init(&ca->kobj, &bch2_dev_ktype);
1315 init_completion(&ca->ref_completion);
1316 init_completion(&ca->io_ref_completion);
1317
1318 INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1319
1320 bch2_time_stats_quantiles_init(&ca->io_latency[READ]);
1321 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]);
1322
1323 ca->mi = bch2_mi_to_cpu(member);
1324
1325 for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1326 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1327
1328 ca->uuid = member->uuid;
1329
1330 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1331 ca->mi.bucket_size / btree_sectors(c));
1332
1333 #ifndef CONFIG_BCACHEFS_DEBUG
1334 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL))
1335 goto err;
1336 #else
1337 atomic_long_set(&ca->ref, 1);
1338 #endif
1339
1340 bch2_dev_allocator_background_init(ca);
1341
1342 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1343 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1344 !(ca->sb_read_scratch = kmalloc(BCH_SB_READ_SCRATCH_BUF_SIZE, GFP_KERNEL)) ||
1345 bch2_dev_buckets_alloc(c, ca) ||
1346 !(ca->io_done = alloc_percpu(*ca->io_done)))
1347 goto err;
1348
1349 return ca;
1350 err:
1351 bch2_dev_free(ca);
1352 return NULL;
1353 }
1354
bch2_dev_attach(struct bch_fs * c,struct bch_dev * ca,unsigned dev_idx)1355 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1356 unsigned dev_idx)
1357 {
1358 ca->dev_idx = dev_idx;
1359 __set_bit(ca->dev_idx, ca->self.d);
1360 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1361
1362 ca->fs = c;
1363 rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1364
1365 if (bch2_dev_sysfs_online(c, ca))
1366 pr_warn("error creating sysfs objects");
1367 }
1368
bch2_dev_alloc(struct bch_fs * c,unsigned dev_idx)1369 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1370 {
1371 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1372 struct bch_dev *ca = NULL;
1373
1374 if (bch2_fs_init_fault("dev_alloc"))
1375 goto err;
1376
1377 ca = __bch2_dev_alloc(c, &member);
1378 if (!ca)
1379 goto err;
1380
1381 ca->fs = c;
1382
1383 bch2_dev_attach(c, ca, dev_idx);
1384 return 0;
1385 err:
1386 return -BCH_ERR_ENOMEM_dev_alloc;
1387 }
1388
__bch2_dev_attach_bdev(struct bch_dev * ca,struct bch_sb_handle * sb)1389 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1390 {
1391 unsigned ret;
1392
1393 if (bch2_dev_is_online(ca)) {
1394 bch_err(ca, "already have device online in slot %u",
1395 sb->sb->dev_idx);
1396 return -BCH_ERR_device_already_online;
1397 }
1398
1399 if (get_capacity(sb->bdev->bd_disk) <
1400 ca->mi.bucket_size * ca->mi.nbuckets) {
1401 bch_err(ca, "cannot online: device too small");
1402 return -BCH_ERR_device_size_too_small;
1403 }
1404
1405 BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1406
1407 ret = bch2_dev_journal_init(ca, sb->sb);
1408 if (ret)
1409 return ret;
1410
1411 /* Commit: */
1412 ca->disk_sb = *sb;
1413 memset(sb, 0, sizeof(*sb));
1414
1415 ca->dev = ca->disk_sb.bdev->bd_dev;
1416
1417 percpu_ref_reinit(&ca->io_ref);
1418
1419 return 0;
1420 }
1421
bch2_dev_attach_bdev(struct bch_fs * c,struct bch_sb_handle * sb)1422 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1423 {
1424 struct bch_dev *ca;
1425 int ret;
1426
1427 lockdep_assert_held(&c->state_lock);
1428
1429 if (le64_to_cpu(sb->sb->seq) >
1430 le64_to_cpu(c->disk_sb.sb->seq))
1431 bch2_sb_to_fs(c, sb->sb);
1432
1433 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx));
1434
1435 ca = bch2_dev_locked(c, sb->sb->dev_idx);
1436
1437 ret = __bch2_dev_attach_bdev(ca, sb);
1438 if (ret)
1439 return ret;
1440
1441 bch2_dev_sysfs_online(c, ca);
1442
1443 struct printbuf name = PRINTBUF;
1444 prt_bdevname(&name, ca->disk_sb.bdev);
1445
1446 if (c->sb.nr_devices == 1)
1447 strscpy(c->name, name.buf, sizeof(c->name));
1448 strscpy(ca->name, name.buf, sizeof(ca->name));
1449
1450 printbuf_exit(&name);
1451
1452 rebalance_wakeup(c);
1453 return 0;
1454 }
1455
1456 /* Device management: */
1457
1458 /*
1459 * Note: this function is also used by the error paths - when a particular
1460 * device sees an error, we call it to determine whether we can just set the
1461 * device RO, or - if this function returns false - we'll set the whole
1462 * filesystem RO:
1463 *
1464 * XXX: maybe we should be more explicit about whether we're changing state
1465 * because we got an error or what have you?
1466 */
bch2_dev_state_allowed(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1467 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1468 enum bch_member_state new_state, int flags)
1469 {
1470 struct bch_devs_mask new_online_devs;
1471 int nr_rw = 0, required;
1472
1473 lockdep_assert_held(&c->state_lock);
1474
1475 switch (new_state) {
1476 case BCH_MEMBER_STATE_rw:
1477 return true;
1478 case BCH_MEMBER_STATE_ro:
1479 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1480 return true;
1481
1482 /* do we have enough devices to write to? */
1483 for_each_member_device(c, ca2)
1484 if (ca2 != ca)
1485 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1486
1487 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1488 ? c->opts.metadata_replicas
1489 : metadata_replicas_required(c),
1490 !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1491 ? c->opts.data_replicas
1492 : data_replicas_required(c));
1493
1494 return nr_rw >= required;
1495 case BCH_MEMBER_STATE_failed:
1496 case BCH_MEMBER_STATE_spare:
1497 if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1498 ca->mi.state != BCH_MEMBER_STATE_ro)
1499 return true;
1500
1501 /* do we have enough devices to read from? */
1502 new_online_devs = bch2_online_devs(c);
1503 __clear_bit(ca->dev_idx, new_online_devs.d);
1504
1505 return bch2_have_enough_devs(c, new_online_devs, flags, false);
1506 default:
1507 BUG();
1508 }
1509 }
1510
bch2_fs_may_start(struct bch_fs * c)1511 static bool bch2_fs_may_start(struct bch_fs *c)
1512 {
1513 struct bch_dev *ca;
1514 unsigned i, flags = 0;
1515
1516 if (c->opts.very_degraded)
1517 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1518
1519 if (c->opts.degraded)
1520 flags |= BCH_FORCE_IF_DEGRADED;
1521
1522 if (!c->opts.degraded &&
1523 !c->opts.very_degraded) {
1524 mutex_lock(&c->sb_lock);
1525
1526 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1527 if (!bch2_member_exists(c->disk_sb.sb, i))
1528 continue;
1529
1530 ca = bch2_dev_locked(c, i);
1531
1532 if (!bch2_dev_is_online(ca) &&
1533 (ca->mi.state == BCH_MEMBER_STATE_rw ||
1534 ca->mi.state == BCH_MEMBER_STATE_ro)) {
1535 mutex_unlock(&c->sb_lock);
1536 return false;
1537 }
1538 }
1539 mutex_unlock(&c->sb_lock);
1540 }
1541
1542 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1543 }
1544
__bch2_dev_read_only(struct bch_fs * c,struct bch_dev * ca)1545 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1546 {
1547 /*
1548 * The allocator thread itself allocates btree nodes, so stop it first:
1549 */
1550 bch2_dev_allocator_remove(c, ca);
1551 bch2_recalc_capacity(c);
1552 bch2_dev_journal_stop(&c->journal, ca);
1553 }
1554
__bch2_dev_read_write(struct bch_fs * c,struct bch_dev * ca)1555 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1556 {
1557 lockdep_assert_held(&c->state_lock);
1558
1559 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1560
1561 bch2_dev_allocator_add(c, ca);
1562 bch2_recalc_capacity(c);
1563 bch2_dev_do_discards(ca);
1564 }
1565
__bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1566 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1567 enum bch_member_state new_state, int flags)
1568 {
1569 struct bch_member *m;
1570 int ret = 0;
1571
1572 if (ca->mi.state == new_state)
1573 return 0;
1574
1575 if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1576 return -BCH_ERR_device_state_not_allowed;
1577
1578 if (new_state != BCH_MEMBER_STATE_rw)
1579 __bch2_dev_read_only(c, ca);
1580
1581 bch_notice(ca, "%s", bch2_member_states[new_state]);
1582
1583 mutex_lock(&c->sb_lock);
1584 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1585 SET_BCH_MEMBER_STATE(m, new_state);
1586 bch2_write_super(c);
1587 mutex_unlock(&c->sb_lock);
1588
1589 if (new_state == BCH_MEMBER_STATE_rw)
1590 __bch2_dev_read_write(c, ca);
1591
1592 rebalance_wakeup(c);
1593
1594 return ret;
1595 }
1596
bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1597 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1598 enum bch_member_state new_state, int flags)
1599 {
1600 int ret;
1601
1602 down_write(&c->state_lock);
1603 ret = __bch2_dev_set_state(c, ca, new_state, flags);
1604 up_write(&c->state_lock);
1605
1606 return ret;
1607 }
1608
1609 /* Device add/removal: */
1610
bch2_dev_remove(struct bch_fs * c,struct bch_dev * ca,int flags)1611 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1612 {
1613 struct bch_member *m;
1614 unsigned dev_idx = ca->dev_idx, data;
1615 int ret;
1616
1617 down_write(&c->state_lock);
1618
1619 /*
1620 * We consume a reference to ca->ref, regardless of whether we succeed
1621 * or fail:
1622 */
1623 bch2_dev_put(ca);
1624
1625 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1626 bch_err(ca, "Cannot remove without losing data");
1627 ret = -BCH_ERR_device_state_not_allowed;
1628 goto err;
1629 }
1630
1631 __bch2_dev_read_only(c, ca);
1632
1633 ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1634 bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1635 if (ret)
1636 goto err;
1637
1638 ret = bch2_dev_remove_alloc(c, ca);
1639 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1640 if (ret)
1641 goto err;
1642
1643 /*
1644 * We need to flush the entire journal to get rid of keys that reference
1645 * the device being removed before removing the superblock entry
1646 */
1647 bch2_journal_flush_all_pins(&c->journal);
1648
1649 /*
1650 * this is really just needed for the bch2_replicas_gc_(start|end)
1651 * calls, and could be cleaned up:
1652 */
1653 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1654 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1655 if (ret)
1656 goto err;
1657
1658 ret = bch2_journal_flush(&c->journal);
1659 bch_err_msg(ca, ret, "bch2_journal_flush()");
1660 if (ret)
1661 goto err;
1662
1663 ret = bch2_replicas_gc2(c);
1664 bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1665 if (ret)
1666 goto err;
1667
1668 data = bch2_dev_has_data(c, ca);
1669 if (data) {
1670 struct printbuf data_has = PRINTBUF;
1671
1672 prt_bitflags(&data_has, __bch2_data_types, data);
1673 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1674 printbuf_exit(&data_has);
1675 ret = -EBUSY;
1676 goto err;
1677 }
1678
1679 __bch2_dev_offline(c, ca);
1680
1681 mutex_lock(&c->sb_lock);
1682 rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1683 mutex_unlock(&c->sb_lock);
1684
1685 #ifndef CONFIG_BCACHEFS_DEBUG
1686 percpu_ref_kill(&ca->ref);
1687 #else
1688 ca->dying = true;
1689 bch2_dev_put(ca);
1690 #endif
1691 wait_for_completion(&ca->ref_completion);
1692
1693 bch2_dev_free(ca);
1694
1695 /*
1696 * Free this device's slot in the bch_member array - all pointers to
1697 * this device must be gone:
1698 */
1699 mutex_lock(&c->sb_lock);
1700 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1701 memset(&m->uuid, 0, sizeof(m->uuid));
1702
1703 bch2_write_super(c);
1704
1705 mutex_unlock(&c->sb_lock);
1706 up_write(&c->state_lock);
1707 return 0;
1708 err:
1709 if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1710 !percpu_ref_is_zero(&ca->io_ref))
1711 __bch2_dev_read_write(c, ca);
1712 up_write(&c->state_lock);
1713 return ret;
1714 }
1715
1716 /* Add new device to running filesystem: */
bch2_dev_add(struct bch_fs * c,const char * path)1717 int bch2_dev_add(struct bch_fs *c, const char *path)
1718 {
1719 struct bch_opts opts = bch2_opts_empty();
1720 struct bch_sb_handle sb;
1721 struct bch_dev *ca = NULL;
1722 struct printbuf errbuf = PRINTBUF;
1723 struct printbuf label = PRINTBUF;
1724 int ret;
1725
1726 ret = bch2_read_super(path, &opts, &sb);
1727 bch_err_msg(c, ret, "reading super");
1728 if (ret)
1729 goto err;
1730
1731 struct bch_member dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1732
1733 if (BCH_MEMBER_GROUP(&dev_mi)) {
1734 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1735 if (label.allocation_failure) {
1736 ret = -ENOMEM;
1737 goto err;
1738 }
1739 }
1740
1741 ret = bch2_dev_may_add(sb.sb, c);
1742 if (ret)
1743 goto err;
1744
1745 ca = __bch2_dev_alloc(c, &dev_mi);
1746 if (!ca) {
1747 ret = -ENOMEM;
1748 goto err;
1749 }
1750
1751 ret = __bch2_dev_attach_bdev(ca, &sb);
1752 if (ret)
1753 goto err;
1754
1755 down_write(&c->state_lock);
1756 mutex_lock(&c->sb_lock);
1757
1758 ret = bch2_sb_from_fs(c, ca);
1759 bch_err_msg(c, ret, "setting up new superblock");
1760 if (ret)
1761 goto err_unlock;
1762
1763 if (dynamic_fault("bcachefs:add:no_slot"))
1764 goto err_unlock;
1765
1766 ret = bch2_sb_member_alloc(c);
1767 if (ret < 0) {
1768 bch_err_msg(c, ret, "setting up new superblock");
1769 goto err_unlock;
1770 }
1771 unsigned dev_idx = ret;
1772
1773 /* success: */
1774
1775 dev_mi.last_mount = cpu_to_le64(ktime_get_real_seconds());
1776 *bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx) = dev_mi;
1777
1778 ca->disk_sb.sb->dev_idx = dev_idx;
1779 bch2_dev_attach(c, ca, dev_idx);
1780
1781 if (BCH_MEMBER_GROUP(&dev_mi)) {
1782 ret = __bch2_dev_group_set(c, ca, label.buf);
1783 bch_err_msg(c, ret, "creating new label");
1784 if (ret)
1785 goto err_unlock;
1786 }
1787
1788 bch2_write_super(c);
1789 mutex_unlock(&c->sb_lock);
1790
1791 ret = bch2_dev_usage_init(ca, false);
1792 if (ret)
1793 goto err_late;
1794
1795 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1796 bch_err_msg(ca, ret, "marking new superblock");
1797 if (ret)
1798 goto err_late;
1799
1800 ret = bch2_fs_freespace_init(c);
1801 bch_err_msg(ca, ret, "initializing free space");
1802 if (ret)
1803 goto err_late;
1804
1805 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1806 __bch2_dev_read_write(c, ca);
1807
1808 ret = bch2_dev_journal_alloc(ca, false);
1809 bch_err_msg(c, ret, "allocating journal");
1810 if (ret)
1811 goto err_late;
1812
1813 up_write(&c->state_lock);
1814 out:
1815 printbuf_exit(&label);
1816 printbuf_exit(&errbuf);
1817 bch_err_fn(c, ret);
1818 return ret;
1819
1820 err_unlock:
1821 mutex_unlock(&c->sb_lock);
1822 up_write(&c->state_lock);
1823 err:
1824 if (ca)
1825 bch2_dev_free(ca);
1826 bch2_free_super(&sb);
1827 goto out;
1828 err_late:
1829 up_write(&c->state_lock);
1830 ca = NULL;
1831 goto err;
1832 }
1833
1834 /* Hot add existing device to running filesystem: */
bch2_dev_online(struct bch_fs * c,const char * path)1835 int bch2_dev_online(struct bch_fs *c, const char *path)
1836 {
1837 struct bch_opts opts = bch2_opts_empty();
1838 struct bch_sb_handle sb = { NULL };
1839 struct bch_dev *ca;
1840 unsigned dev_idx;
1841 int ret;
1842
1843 down_write(&c->state_lock);
1844
1845 ret = bch2_read_super(path, &opts, &sb);
1846 if (ret) {
1847 up_write(&c->state_lock);
1848 return ret;
1849 }
1850
1851 dev_idx = sb.sb->dev_idx;
1852
1853 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts);
1854 bch_err_msg(c, ret, "bringing %s online", path);
1855 if (ret)
1856 goto err;
1857
1858 ret = bch2_dev_attach_bdev(c, &sb);
1859 if (ret)
1860 goto err;
1861
1862 ca = bch2_dev_locked(c, dev_idx);
1863
1864 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1865 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1866 if (ret)
1867 goto err;
1868
1869 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1870 __bch2_dev_read_write(c, ca);
1871
1872 if (!ca->mi.freespace_initialized) {
1873 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1874 bch_err_msg(ca, ret, "initializing free space");
1875 if (ret)
1876 goto err;
1877 }
1878
1879 if (!ca->journal.nr) {
1880 ret = bch2_dev_journal_alloc(ca, false);
1881 bch_err_msg(ca, ret, "allocating journal");
1882 if (ret)
1883 goto err;
1884 }
1885
1886 mutex_lock(&c->sb_lock);
1887 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1888 cpu_to_le64(ktime_get_real_seconds());
1889 bch2_write_super(c);
1890 mutex_unlock(&c->sb_lock);
1891
1892 up_write(&c->state_lock);
1893 return 0;
1894 err:
1895 up_write(&c->state_lock);
1896 bch2_free_super(&sb);
1897 return ret;
1898 }
1899
bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca,int flags)1900 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1901 {
1902 down_write(&c->state_lock);
1903
1904 if (!bch2_dev_is_online(ca)) {
1905 bch_err(ca, "Already offline");
1906 up_write(&c->state_lock);
1907 return 0;
1908 }
1909
1910 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1911 bch_err(ca, "Cannot offline required disk");
1912 up_write(&c->state_lock);
1913 return -BCH_ERR_device_state_not_allowed;
1914 }
1915
1916 __bch2_dev_offline(c, ca);
1917
1918 up_write(&c->state_lock);
1919 return 0;
1920 }
1921
bch2_dev_resize(struct bch_fs * c,struct bch_dev * ca,u64 nbuckets)1922 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1923 {
1924 struct bch_member *m;
1925 u64 old_nbuckets;
1926 int ret = 0;
1927
1928 down_write(&c->state_lock);
1929 old_nbuckets = ca->mi.nbuckets;
1930
1931 if (nbuckets < ca->mi.nbuckets) {
1932 bch_err(ca, "Cannot shrink yet");
1933 ret = -EINVAL;
1934 goto err;
1935 }
1936
1937 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) {
1938 bch_err(ca, "New device size too big (%llu greater than max %u)",
1939 nbuckets, BCH_MEMBER_NBUCKETS_MAX);
1940 ret = -BCH_ERR_device_size_too_big;
1941 goto err;
1942 }
1943
1944 if (bch2_dev_is_online(ca) &&
1945 get_capacity(ca->disk_sb.bdev->bd_disk) <
1946 ca->mi.bucket_size * nbuckets) {
1947 bch_err(ca, "New size larger than device");
1948 ret = -BCH_ERR_device_size_too_small;
1949 goto err;
1950 }
1951
1952 ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1953 bch_err_msg(ca, ret, "resizing buckets");
1954 if (ret)
1955 goto err;
1956
1957 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1958 if (ret)
1959 goto err;
1960
1961 mutex_lock(&c->sb_lock);
1962 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1963 m->nbuckets = cpu_to_le64(nbuckets);
1964
1965 bch2_write_super(c);
1966 mutex_unlock(&c->sb_lock);
1967
1968 if (ca->mi.freespace_initialized) {
1969 struct disk_accounting_pos acc = {
1970 .type = BCH_DISK_ACCOUNTING_dev_data_type,
1971 .dev_data_type.dev = ca->dev_idx,
1972 .dev_data_type.data_type = BCH_DATA_free,
1973 };
1974 u64 v[3] = { nbuckets - old_nbuckets, 0, 0 };
1975
1976 ret = bch2_trans_commit_do(ca->fs, NULL, NULL, 0,
1977 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), false)) ?:
1978 bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1979 if (ret)
1980 goto err;
1981 }
1982
1983 bch2_recalc_capacity(c);
1984 err:
1985 up_write(&c->state_lock);
1986 return ret;
1987 }
1988
1989 /* return with ref on ca->ref: */
bch2_dev_lookup(struct bch_fs * c,const char * name)1990 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
1991 {
1992 if (!strncmp(name, "/dev/", strlen("/dev/")))
1993 name += strlen("/dev/");
1994
1995 for_each_member_device(c, ca)
1996 if (!strcmp(name, ca->name))
1997 return ca;
1998 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
1999 }
2000
2001 /* Filesystem open: */
2002
sb_cmp(struct bch_sb * l,struct bch_sb * r)2003 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2004 {
2005 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2006 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2007 }
2008
bch2_fs_open(char * const * devices,unsigned nr_devices,struct bch_opts opts)2009 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2010 struct bch_opts opts)
2011 {
2012 DARRAY(struct bch_sb_handle) sbs = { 0 };
2013 struct bch_fs *c = NULL;
2014 struct bch_sb_handle *best = NULL;
2015 struct printbuf errbuf = PRINTBUF;
2016 int ret = 0;
2017
2018 if (!try_module_get(THIS_MODULE))
2019 return ERR_PTR(-ENODEV);
2020
2021 if (!nr_devices) {
2022 ret = -EINVAL;
2023 goto err;
2024 }
2025
2026 ret = darray_make_room(&sbs, nr_devices);
2027 if (ret)
2028 goto err;
2029
2030 for (unsigned i = 0; i < nr_devices; i++) {
2031 struct bch_sb_handle sb = { NULL };
2032
2033 ret = bch2_read_super(devices[i], &opts, &sb);
2034 if (ret)
2035 goto err;
2036
2037 BUG_ON(darray_push(&sbs, sb));
2038 }
2039
2040 if (opts.nochanges && !opts.read_only) {
2041 ret = -BCH_ERR_erofs_nochanges;
2042 goto err_print;
2043 }
2044
2045 darray_for_each(sbs, sb)
2046 if (!best || sb_cmp(sb->sb, best->sb) > 0)
2047 best = sb;
2048
2049 darray_for_each_reverse(sbs, sb) {
2050 ret = bch2_dev_in_fs(best, sb, &opts);
2051
2052 if (ret == -BCH_ERR_device_has_been_removed ||
2053 ret == -BCH_ERR_device_splitbrain) {
2054 bch2_free_super(sb);
2055 darray_remove_item(&sbs, sb);
2056 best -= best > sb;
2057 ret = 0;
2058 continue;
2059 }
2060
2061 if (ret)
2062 goto err_print;
2063 }
2064
2065 c = bch2_fs_alloc(best->sb, opts);
2066 ret = PTR_ERR_OR_ZERO(c);
2067 if (ret)
2068 goto err;
2069
2070 down_write(&c->state_lock);
2071 darray_for_each(sbs, sb) {
2072 ret = bch2_dev_attach_bdev(c, sb);
2073 if (ret) {
2074 up_write(&c->state_lock);
2075 goto err;
2076 }
2077 }
2078 up_write(&c->state_lock);
2079
2080 if (!bch2_fs_may_start(c)) {
2081 ret = -BCH_ERR_insufficient_devices_to_start;
2082 goto err_print;
2083 }
2084
2085 if (!c->opts.nostart) {
2086 ret = bch2_fs_start(c);
2087 if (ret)
2088 goto err;
2089 }
2090 out:
2091 darray_for_each(sbs, sb)
2092 bch2_free_super(sb);
2093 darray_exit(&sbs);
2094 printbuf_exit(&errbuf);
2095 module_put(THIS_MODULE);
2096 return c;
2097 err_print:
2098 pr_err("bch_fs_open err opening %s: %s",
2099 devices[0], bch2_err_str(ret));
2100 err:
2101 if (!IS_ERR_OR_NULL(c))
2102 bch2_fs_stop(c);
2103 c = ERR_PTR(ret);
2104 goto out;
2105 }
2106
2107 /* Global interfaces/init */
2108
bcachefs_exit(void)2109 static void bcachefs_exit(void)
2110 {
2111 bch2_debug_exit();
2112 bch2_vfs_exit();
2113 bch2_chardev_exit();
2114 bch2_btree_key_cache_exit();
2115 if (bcachefs_kset)
2116 kset_unregister(bcachefs_kset);
2117 }
2118
bcachefs_init(void)2119 static int __init bcachefs_init(void)
2120 {
2121 bch2_bkey_pack_test();
2122
2123 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2124 bch2_btree_key_cache_init() ||
2125 bch2_chardev_init() ||
2126 bch2_vfs_init() ||
2127 bch2_debug_init())
2128 goto err;
2129
2130 return 0;
2131 err:
2132 bcachefs_exit();
2133 return -ENOMEM;
2134 }
2135
2136 #define BCH_DEBUG_PARAM(name, description) \
2137 bool bch2_##name; \
2138 module_param_named(name, bch2_##name, bool, 0644); \
2139 MODULE_PARM_DESC(name, description);
2140 BCH_DEBUG_PARAMS()
2141 #undef BCH_DEBUG_PARAM
2142
2143 __maybe_unused
2144 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2145 module_param_named(version, bch2_metadata_version, uint, 0400);
2146
2147 module_exit(bcachefs_exit);
2148 module_init(bcachefs_init);
2149