xref: /linux/fs/bcachefs/super.c (revision 131c040bbb0f561ef68ad2ba6fcd28c97fa6d4cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_node_scan.h"
19 #include "btree_update_interior.h"
20 #include "btree_io.h"
21 #include "btree_write_buffer.h"
22 #include "buckets_waiting_for_journal.h"
23 #include "chardev.h"
24 #include "checksum.h"
25 #include "clock.h"
26 #include "compress.h"
27 #include "debug.h"
28 #include "disk_accounting.h"
29 #include "disk_groups.h"
30 #include "ec.h"
31 #include "errcode.h"
32 #include "error.h"
33 #include "fs.h"
34 #include "fs-io.h"
35 #include "fs-io-buffered.h"
36 #include "fs-io-direct.h"
37 #include "fsck.h"
38 #include "inode.h"
39 #include "io_read.h"
40 #include "io_write.h"
41 #include "journal.h"
42 #include "journal_reclaim.h"
43 #include "journal_seq_blacklist.h"
44 #include "move.h"
45 #include "migrate.h"
46 #include "movinggc.h"
47 #include "nocow_locking.h"
48 #include "quota.h"
49 #include "rebalance.h"
50 #include "recovery.h"
51 #include "replicas.h"
52 #include "sb-clean.h"
53 #include "sb-counters.h"
54 #include "sb-errors.h"
55 #include "sb-members.h"
56 #include "snapshot.h"
57 #include "subvolume.h"
58 #include "super.h"
59 #include "super-io.h"
60 #include "sysfs.h"
61 #include "thread_with_file.h"
62 #include "trace.h"
63 
64 #include <linux/backing-dev.h>
65 #include <linux/blkdev.h>
66 #include <linux/debugfs.h>
67 #include <linux/device.h>
68 #include <linux/idr.h>
69 #include <linux/module.h>
70 #include <linux/percpu.h>
71 #include <linux/random.h>
72 #include <linux/sysfs.h>
73 #include <crypto/hash.h>
74 
75 MODULE_LICENSE("GPL");
76 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
77 MODULE_DESCRIPTION("bcachefs filesystem");
78 MODULE_SOFTDEP("pre: crc32c");
79 MODULE_SOFTDEP("pre: crc64");
80 MODULE_SOFTDEP("pre: sha256");
81 MODULE_SOFTDEP("pre: chacha20");
82 MODULE_SOFTDEP("pre: poly1305");
83 MODULE_SOFTDEP("pre: xxhash");
84 
85 const char * const bch2_fs_flag_strs[] = {
86 #define x(n)		#n,
87 	BCH_FS_FLAGS()
88 #undef x
89 	NULL
90 };
91 
bch2_print_str(struct bch_fs * c,const char * str)92 void bch2_print_str(struct bch_fs *c, const char *str)
93 {
94 #ifdef __KERNEL__
95 	struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
96 
97 	if (unlikely(stdio)) {
98 		bch2_stdio_redirect_printf(stdio, true, "%s", str);
99 		return;
100 	}
101 #endif
102 	bch2_print_string_as_lines(KERN_ERR, str);
103 }
104 
105 __printf(2, 0)
bch2_print_maybe_redirect(struct stdio_redirect * stdio,const char * fmt,va_list args)106 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
107 {
108 #ifdef __KERNEL__
109 	if (unlikely(stdio)) {
110 		if (fmt[0] == KERN_SOH[0])
111 			fmt += 2;
112 
113 		bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
114 		return;
115 	}
116 #endif
117 	vprintk(fmt, args);
118 }
119 
bch2_print_opts(struct bch_opts * opts,const char * fmt,...)120 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
121 {
122 	struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
123 
124 	va_list args;
125 	va_start(args, fmt);
126 	bch2_print_maybe_redirect(stdio, fmt, args);
127 	va_end(args);
128 }
129 
__bch2_print(struct bch_fs * c,const char * fmt,...)130 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
131 {
132 	struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
133 
134 	va_list args;
135 	va_start(args, fmt);
136 	bch2_print_maybe_redirect(stdio, fmt, args);
137 	va_end(args);
138 }
139 
140 #define KTYPE(type)							\
141 static const struct attribute_group type ## _group = {			\
142 	.attrs = type ## _files						\
143 };									\
144 									\
145 static const struct attribute_group *type ## _groups[] = {		\
146 	&type ## _group,						\
147 	NULL								\
148 };									\
149 									\
150 static const struct kobj_type type ## _ktype = {			\
151 	.release	= type ## _release,				\
152 	.sysfs_ops	= &type ## _sysfs_ops,				\
153 	.default_groups = type ## _groups				\
154 }
155 
156 static void bch2_fs_release(struct kobject *);
157 static void bch2_dev_release(struct kobject *);
bch2_fs_counters_release(struct kobject * k)158 static void bch2_fs_counters_release(struct kobject *k)
159 {
160 }
161 
bch2_fs_internal_release(struct kobject * k)162 static void bch2_fs_internal_release(struct kobject *k)
163 {
164 }
165 
bch2_fs_opts_dir_release(struct kobject * k)166 static void bch2_fs_opts_dir_release(struct kobject *k)
167 {
168 }
169 
bch2_fs_time_stats_release(struct kobject * k)170 static void bch2_fs_time_stats_release(struct kobject *k)
171 {
172 }
173 
174 KTYPE(bch2_fs);
175 KTYPE(bch2_fs_counters);
176 KTYPE(bch2_fs_internal);
177 KTYPE(bch2_fs_opts_dir);
178 KTYPE(bch2_fs_time_stats);
179 KTYPE(bch2_dev);
180 
181 static struct kset *bcachefs_kset;
182 static LIST_HEAD(bch_fs_list);
183 static DEFINE_MUTEX(bch_fs_list_lock);
184 
185 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
186 
187 static void bch2_dev_unlink(struct bch_dev *);
188 static void bch2_dev_free(struct bch_dev *);
189 static int bch2_dev_alloc(struct bch_fs *, unsigned);
190 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
191 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
192 
bch2_dev_to_fs(dev_t dev)193 struct bch_fs *bch2_dev_to_fs(dev_t dev)
194 {
195 	struct bch_fs *c;
196 
197 	mutex_lock(&bch_fs_list_lock);
198 	rcu_read_lock();
199 
200 	list_for_each_entry(c, &bch_fs_list, list)
201 		for_each_member_device_rcu(c, ca, NULL)
202 			if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
203 				closure_get(&c->cl);
204 				goto found;
205 			}
206 	c = NULL;
207 found:
208 	rcu_read_unlock();
209 	mutex_unlock(&bch_fs_list_lock);
210 
211 	return c;
212 }
213 
__bch2_uuid_to_fs(__uuid_t uuid)214 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
215 {
216 	struct bch_fs *c;
217 
218 	lockdep_assert_held(&bch_fs_list_lock);
219 
220 	list_for_each_entry(c, &bch_fs_list, list)
221 		if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
222 			return c;
223 
224 	return NULL;
225 }
226 
bch2_uuid_to_fs(__uuid_t uuid)227 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
228 {
229 	struct bch_fs *c;
230 
231 	mutex_lock(&bch_fs_list_lock);
232 	c = __bch2_uuid_to_fs(uuid);
233 	if (c)
234 		closure_get(&c->cl);
235 	mutex_unlock(&bch_fs_list_lock);
236 
237 	return c;
238 }
239 
240 /* Filesystem RO/RW: */
241 
242 /*
243  * For startup/shutdown of RW stuff, the dependencies are:
244  *
245  * - foreground writes depend on copygc and rebalance (to free up space)
246  *
247  * - copygc and rebalance depend on mark and sweep gc (they actually probably
248  *   don't because they either reserve ahead of time or don't block if
249  *   allocations fail, but allocations can require mark and sweep gc to run
250  *   because of generation number wraparound)
251  *
252  * - all of the above depends on the allocator threads
253  *
254  * - allocator depends on the journal (when it rewrites prios and gens)
255  */
256 
__bch2_fs_read_only(struct bch_fs * c)257 static void __bch2_fs_read_only(struct bch_fs *c)
258 {
259 	unsigned clean_passes = 0;
260 	u64 seq = 0;
261 
262 	bch2_fs_ec_stop(c);
263 	bch2_open_buckets_stop(c, NULL, true);
264 	bch2_rebalance_stop(c);
265 	bch2_copygc_stop(c);
266 	bch2_fs_ec_flush(c);
267 
268 	bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
269 		    journal_cur_seq(&c->journal));
270 
271 	do {
272 		clean_passes++;
273 
274 		if (bch2_btree_interior_updates_flush(c) ||
275 		    bch2_btree_write_buffer_flush_going_ro(c) ||
276 		    bch2_journal_flush_all_pins(&c->journal) ||
277 		    bch2_btree_flush_all_writes(c) ||
278 		    seq != atomic64_read(&c->journal.seq)) {
279 			seq = atomic64_read(&c->journal.seq);
280 			clean_passes = 0;
281 		}
282 	} while (clean_passes < 2);
283 
284 	bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
285 		    journal_cur_seq(&c->journal));
286 
287 	if (test_bit(JOURNAL_replay_done, &c->journal.flags) &&
288 	    !test_bit(BCH_FS_emergency_ro, &c->flags))
289 		set_bit(BCH_FS_clean_shutdown, &c->flags);
290 
291 	bch2_fs_journal_stop(&c->journal);
292 
293 	bch_info(c, "%sclean shutdown complete, journal seq %llu",
294 		 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un",
295 		 c->journal.seq_ondisk);
296 
297 	/*
298 	 * After stopping journal:
299 	 */
300 	for_each_member_device(c, ca)
301 		bch2_dev_allocator_remove(c, ca);
302 }
303 
304 #ifndef BCH_WRITE_REF_DEBUG
bch2_writes_disabled(struct percpu_ref * writes)305 static void bch2_writes_disabled(struct percpu_ref *writes)
306 {
307 	struct bch_fs *c = container_of(writes, struct bch_fs, writes);
308 
309 	set_bit(BCH_FS_write_disable_complete, &c->flags);
310 	wake_up(&bch2_read_only_wait);
311 }
312 #endif
313 
bch2_fs_read_only(struct bch_fs * c)314 void bch2_fs_read_only(struct bch_fs *c)
315 {
316 	if (!test_bit(BCH_FS_rw, &c->flags)) {
317 		bch2_journal_reclaim_stop(&c->journal);
318 		return;
319 	}
320 
321 	BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
322 
323 	bch_verbose(c, "going read-only");
324 
325 	/*
326 	 * Block new foreground-end write operations from starting - any new
327 	 * writes will return -EROFS:
328 	 */
329 	set_bit(BCH_FS_going_ro, &c->flags);
330 #ifndef BCH_WRITE_REF_DEBUG
331 	percpu_ref_kill(&c->writes);
332 #else
333 	for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
334 		bch2_write_ref_put(c, i);
335 #endif
336 
337 	/*
338 	 * If we're not doing an emergency shutdown, we want to wait on
339 	 * outstanding writes to complete so they don't see spurious errors due
340 	 * to shutting down the allocator:
341 	 *
342 	 * If we are doing an emergency shutdown outstanding writes may
343 	 * hang until we shutdown the allocator so we don't want to wait
344 	 * on outstanding writes before shutting everything down - but
345 	 * we do need to wait on them before returning and signalling
346 	 * that going RO is complete:
347 	 */
348 	wait_event(bch2_read_only_wait,
349 		   test_bit(BCH_FS_write_disable_complete, &c->flags) ||
350 		   test_bit(BCH_FS_emergency_ro, &c->flags));
351 
352 	bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
353 	if (writes_disabled)
354 		bch_verbose(c, "finished waiting for writes to stop");
355 
356 	__bch2_fs_read_only(c);
357 
358 	wait_event(bch2_read_only_wait,
359 		   test_bit(BCH_FS_write_disable_complete, &c->flags));
360 
361 	if (!writes_disabled)
362 		bch_verbose(c, "finished waiting for writes to stop");
363 
364 	clear_bit(BCH_FS_write_disable_complete, &c->flags);
365 	clear_bit(BCH_FS_going_ro, &c->flags);
366 	clear_bit(BCH_FS_rw, &c->flags);
367 
368 	if (!bch2_journal_error(&c->journal) &&
369 	    !test_bit(BCH_FS_error, &c->flags) &&
370 	    !test_bit(BCH_FS_emergency_ro, &c->flags) &&
371 	    test_bit(BCH_FS_started, &c->flags) &&
372 	    test_bit(BCH_FS_clean_shutdown, &c->flags) &&
373 	    c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) {
374 		BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
375 		BUG_ON(atomic_long_read(&c->btree_cache.nr_dirty));
376 		BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
377 		BUG_ON(c->btree_write_buffer.inc.keys.nr);
378 		BUG_ON(c->btree_write_buffer.flushing.keys.nr);
379 		bch2_verify_accounting_clean(c);
380 
381 		bch_verbose(c, "marking filesystem clean");
382 		bch2_fs_mark_clean(c);
383 	} else {
384 		bch_verbose(c, "done going read-only, filesystem not clean");
385 	}
386 }
387 
bch2_fs_read_only_work(struct work_struct * work)388 static void bch2_fs_read_only_work(struct work_struct *work)
389 {
390 	struct bch_fs *c =
391 		container_of(work, struct bch_fs, read_only_work);
392 
393 	down_write(&c->state_lock);
394 	bch2_fs_read_only(c);
395 	up_write(&c->state_lock);
396 }
397 
bch2_fs_read_only_async(struct bch_fs * c)398 static void bch2_fs_read_only_async(struct bch_fs *c)
399 {
400 	queue_work(system_long_wq, &c->read_only_work);
401 }
402 
bch2_fs_emergency_read_only(struct bch_fs * c)403 bool bch2_fs_emergency_read_only(struct bch_fs *c)
404 {
405 	bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
406 
407 	bch2_journal_halt(&c->journal);
408 	bch2_fs_read_only_async(c);
409 
410 	wake_up(&bch2_read_only_wait);
411 	return ret;
412 }
413 
bch2_fs_emergency_read_only_locked(struct bch_fs * c)414 bool bch2_fs_emergency_read_only_locked(struct bch_fs *c)
415 {
416 	bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
417 
418 	bch2_journal_halt_locked(&c->journal);
419 	bch2_fs_read_only_async(c);
420 
421 	wake_up(&bch2_read_only_wait);
422 	return ret;
423 }
424 
bch2_fs_read_write_late(struct bch_fs * c)425 static int bch2_fs_read_write_late(struct bch_fs *c)
426 {
427 	int ret;
428 
429 	/*
430 	 * Data move operations can't run until after check_snapshots has
431 	 * completed, and bch2_snapshot_is_ancestor() is available.
432 	 *
433 	 * Ideally we'd start copygc/rebalance earlier instead of waiting for
434 	 * all of recovery/fsck to complete:
435 	 */
436 	ret = bch2_copygc_start(c);
437 	if (ret) {
438 		bch_err(c, "error starting copygc thread");
439 		return ret;
440 	}
441 
442 	ret = bch2_rebalance_start(c);
443 	if (ret) {
444 		bch_err(c, "error starting rebalance thread");
445 		return ret;
446 	}
447 
448 	return 0;
449 }
450 
__bch2_fs_read_write(struct bch_fs * c,bool early)451 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
452 {
453 	int ret;
454 
455 	BUG_ON(!test_bit(BCH_FS_may_go_rw, &c->flags));
456 
457 	if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
458 		bch_err(c, "cannot go rw, unfixed btree errors");
459 		return -BCH_ERR_erofs_unfixed_errors;
460 	}
461 
462 	if (test_bit(BCH_FS_rw, &c->flags))
463 		return 0;
464 
465 	bch_info(c, "going read-write");
466 
467 	ret = bch2_sb_members_v2_init(c);
468 	if (ret)
469 		goto err;
470 
471 	ret = bch2_fs_mark_dirty(c);
472 	if (ret)
473 		goto err;
474 
475 	clear_bit(BCH_FS_clean_shutdown, &c->flags);
476 
477 	/*
478 	 * First journal write must be a flush write: after a clean shutdown we
479 	 * don't read the journal, so the first journal write may end up
480 	 * overwriting whatever was there previously, and there must always be
481 	 * at least one non-flush write in the journal or recovery will fail:
482 	 */
483 	set_bit(JOURNAL_need_flush_write, &c->journal.flags);
484 	set_bit(JOURNAL_running, &c->journal.flags);
485 
486 	for_each_rw_member(c, ca)
487 		bch2_dev_allocator_add(c, ca);
488 	bch2_recalc_capacity(c);
489 
490 	set_bit(BCH_FS_rw, &c->flags);
491 	set_bit(BCH_FS_was_rw, &c->flags);
492 
493 #ifndef BCH_WRITE_REF_DEBUG
494 	percpu_ref_reinit(&c->writes);
495 #else
496 	for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
497 		BUG_ON(atomic_long_read(&c->writes[i]));
498 		atomic_long_inc(&c->writes[i]);
499 	}
500 #endif
501 
502 	ret = bch2_journal_reclaim_start(&c->journal);
503 	if (ret)
504 		goto err;
505 
506 	if (!early) {
507 		ret = bch2_fs_read_write_late(c);
508 		if (ret)
509 			goto err;
510 	}
511 
512 	bch2_do_discards(c);
513 	bch2_do_invalidates(c);
514 	bch2_do_stripe_deletes(c);
515 	bch2_do_pending_node_rewrites(c);
516 	return 0;
517 err:
518 	if (test_bit(BCH_FS_rw, &c->flags))
519 		bch2_fs_read_only(c);
520 	else
521 		__bch2_fs_read_only(c);
522 	return ret;
523 }
524 
bch2_fs_read_write(struct bch_fs * c)525 int bch2_fs_read_write(struct bch_fs *c)
526 {
527 	if (c->opts.recovery_pass_last &&
528 	    c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay)
529 		return -BCH_ERR_erofs_norecovery;
530 
531 	if (c->opts.nochanges)
532 		return -BCH_ERR_erofs_nochanges;
533 
534 	return __bch2_fs_read_write(c, false);
535 }
536 
bch2_fs_read_write_early(struct bch_fs * c)537 int bch2_fs_read_write_early(struct bch_fs *c)
538 {
539 	lockdep_assert_held(&c->state_lock);
540 
541 	return __bch2_fs_read_write(c, true);
542 }
543 
544 /* Filesystem startup/shutdown: */
545 
__bch2_fs_free(struct bch_fs * c)546 static void __bch2_fs_free(struct bch_fs *c)
547 {
548 	for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++)
549 		bch2_time_stats_exit(&c->times[i]);
550 
551 	bch2_find_btree_nodes_exit(&c->found_btree_nodes);
552 	bch2_free_pending_node_rewrites(c);
553 	bch2_fs_accounting_exit(c);
554 	bch2_fs_sb_errors_exit(c);
555 	bch2_fs_counters_exit(c);
556 	bch2_fs_snapshots_exit(c);
557 	bch2_fs_quota_exit(c);
558 	bch2_fs_fs_io_direct_exit(c);
559 	bch2_fs_fs_io_buffered_exit(c);
560 	bch2_fs_fsio_exit(c);
561 	bch2_fs_vfs_exit(c);
562 	bch2_fs_ec_exit(c);
563 	bch2_fs_encryption_exit(c);
564 	bch2_fs_nocow_locking_exit(c);
565 	bch2_fs_io_write_exit(c);
566 	bch2_fs_io_read_exit(c);
567 	bch2_fs_buckets_waiting_for_journal_exit(c);
568 	bch2_fs_btree_interior_update_exit(c);
569 	bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
570 	bch2_fs_btree_cache_exit(c);
571 	bch2_fs_btree_iter_exit(c);
572 	bch2_fs_replicas_exit(c);
573 	bch2_fs_journal_exit(&c->journal);
574 	bch2_io_clock_exit(&c->io_clock[WRITE]);
575 	bch2_io_clock_exit(&c->io_clock[READ]);
576 	bch2_fs_compress_exit(c);
577 	bch2_fs_btree_gc_exit(c);
578 	bch2_journal_keys_put_initial(c);
579 	bch2_find_btree_nodes_exit(&c->found_btree_nodes);
580 	BUG_ON(atomic_read(&c->journal_keys.ref));
581 	bch2_fs_btree_write_buffer_exit(c);
582 	percpu_free_rwsem(&c->mark_lock);
583 	if (c->online_reserved) {
584 		u64 v = percpu_u64_get(c->online_reserved);
585 		WARN(v, "online_reserved not 0 at shutdown: %lli", v);
586 		free_percpu(c->online_reserved);
587 	}
588 
589 	darray_exit(&c->btree_roots_extra);
590 	free_percpu(c->pcpu);
591 	free_percpu(c->usage);
592 	mempool_exit(&c->large_bkey_pool);
593 	mempool_exit(&c->btree_bounce_pool);
594 	bioset_exit(&c->btree_bio);
595 	mempool_exit(&c->fill_iter);
596 #ifndef BCH_WRITE_REF_DEBUG
597 	percpu_ref_exit(&c->writes);
598 #endif
599 	kfree(rcu_dereference_protected(c->disk_groups, 1));
600 	kfree(c->journal_seq_blacklist_table);
601 
602 	if (c->write_ref_wq)
603 		destroy_workqueue(c->write_ref_wq);
604 	if (c->btree_write_submit_wq)
605 		destroy_workqueue(c->btree_write_submit_wq);
606 	if (c->btree_read_complete_wq)
607 		destroy_workqueue(c->btree_read_complete_wq);
608 	if (c->copygc_wq)
609 		destroy_workqueue(c->copygc_wq);
610 	if (c->btree_io_complete_wq)
611 		destroy_workqueue(c->btree_io_complete_wq);
612 	if (c->btree_update_wq)
613 		destroy_workqueue(c->btree_update_wq);
614 
615 	bch2_free_super(&c->disk_sb);
616 	kvfree(c);
617 	module_put(THIS_MODULE);
618 }
619 
bch2_fs_release(struct kobject * kobj)620 static void bch2_fs_release(struct kobject *kobj)
621 {
622 	struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
623 
624 	__bch2_fs_free(c);
625 }
626 
__bch2_fs_stop(struct bch_fs * c)627 void __bch2_fs_stop(struct bch_fs *c)
628 {
629 	bch_verbose(c, "shutting down");
630 
631 	set_bit(BCH_FS_stopping, &c->flags);
632 
633 	down_write(&c->state_lock);
634 	bch2_fs_read_only(c);
635 	up_write(&c->state_lock);
636 
637 	for_each_member_device(c, ca)
638 		bch2_dev_unlink(ca);
639 
640 	if (c->kobj.state_in_sysfs)
641 		kobject_del(&c->kobj);
642 
643 	bch2_fs_debug_exit(c);
644 	bch2_fs_chardev_exit(c);
645 
646 	bch2_ro_ref_put(c);
647 	wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
648 
649 	kobject_put(&c->counters_kobj);
650 	kobject_put(&c->time_stats);
651 	kobject_put(&c->opts_dir);
652 	kobject_put(&c->internal);
653 
654 	/* btree prefetch might have kicked off reads in the background: */
655 	bch2_btree_flush_all_reads(c);
656 
657 	for_each_member_device(c, ca)
658 		cancel_work_sync(&ca->io_error_work);
659 
660 	cancel_work_sync(&c->read_only_work);
661 }
662 
bch2_fs_free(struct bch_fs * c)663 void bch2_fs_free(struct bch_fs *c)
664 {
665 	unsigned i;
666 
667 	mutex_lock(&bch_fs_list_lock);
668 	list_del(&c->list);
669 	mutex_unlock(&bch_fs_list_lock);
670 
671 	closure_sync(&c->cl);
672 	closure_debug_destroy(&c->cl);
673 
674 	for (i = 0; i < c->sb.nr_devices; i++) {
675 		struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
676 
677 		if (ca) {
678 			EBUG_ON(atomic_long_read(&ca->ref) != 1);
679 			bch2_free_super(&ca->disk_sb);
680 			bch2_dev_free(ca);
681 		}
682 	}
683 
684 	bch_verbose(c, "shutdown complete");
685 
686 	kobject_put(&c->kobj);
687 }
688 
bch2_fs_stop(struct bch_fs * c)689 void bch2_fs_stop(struct bch_fs *c)
690 {
691 	__bch2_fs_stop(c);
692 	bch2_fs_free(c);
693 }
694 
bch2_fs_online(struct bch_fs * c)695 static int bch2_fs_online(struct bch_fs *c)
696 {
697 	int ret = 0;
698 
699 	lockdep_assert_held(&bch_fs_list_lock);
700 
701 	if (__bch2_uuid_to_fs(c->sb.uuid)) {
702 		bch_err(c, "filesystem UUID already open");
703 		return -EINVAL;
704 	}
705 
706 	ret = bch2_fs_chardev_init(c);
707 	if (ret) {
708 		bch_err(c, "error creating character device");
709 		return ret;
710 	}
711 
712 	bch2_fs_debug_init(c);
713 
714 	ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
715 	    kobject_add(&c->internal, &c->kobj, "internal") ?:
716 	    kobject_add(&c->opts_dir, &c->kobj, "options") ?:
717 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
718 	    kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
719 #endif
720 	    kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
721 	    bch2_opts_create_sysfs_files(&c->opts_dir);
722 	if (ret) {
723 		bch_err(c, "error creating sysfs objects");
724 		return ret;
725 	}
726 
727 	down_write(&c->state_lock);
728 
729 	for_each_member_device(c, ca) {
730 		ret = bch2_dev_sysfs_online(c, ca);
731 		if (ret) {
732 			bch_err(c, "error creating sysfs objects");
733 			bch2_dev_put(ca);
734 			goto err;
735 		}
736 	}
737 
738 	BUG_ON(!list_empty(&c->list));
739 	list_add(&c->list, &bch_fs_list);
740 err:
741 	up_write(&c->state_lock);
742 	return ret;
743 }
744 
bch2_fs_alloc(struct bch_sb * sb,struct bch_opts opts)745 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
746 {
747 	struct bch_fs *c;
748 	struct printbuf name = PRINTBUF;
749 	unsigned i, iter_size;
750 	int ret = 0;
751 
752 	c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
753 	if (!c) {
754 		c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
755 		goto out;
756 	}
757 
758 	c->stdio = (void *)(unsigned long) opts.stdio;
759 
760 	__module_get(THIS_MODULE);
761 
762 	closure_init(&c->cl, NULL);
763 
764 	c->kobj.kset = bcachefs_kset;
765 	kobject_init(&c->kobj, &bch2_fs_ktype);
766 	kobject_init(&c->internal, &bch2_fs_internal_ktype);
767 	kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
768 	kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
769 	kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
770 
771 	c->minor		= -1;
772 	c->disk_sb.fs_sb	= true;
773 
774 	init_rwsem(&c->state_lock);
775 	mutex_init(&c->sb_lock);
776 	mutex_init(&c->replicas_gc_lock);
777 	mutex_init(&c->btree_root_lock);
778 	INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
779 
780 	refcount_set(&c->ro_ref, 1);
781 	init_waitqueue_head(&c->ro_ref_wait);
782 	spin_lock_init(&c->recovery_pass_lock);
783 	sema_init(&c->online_fsck_mutex, 1);
784 
785 	for (i = 0; i < BCH_TIME_STAT_NR; i++)
786 		bch2_time_stats_init(&c->times[i]);
787 
788 	bch2_fs_copygc_init(c);
789 	bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
790 	bch2_fs_btree_iter_init_early(c);
791 	bch2_fs_btree_interior_update_init_early(c);
792 	bch2_fs_journal_keys_init(c);
793 	bch2_fs_allocator_background_init(c);
794 	bch2_fs_allocator_foreground_init(c);
795 	bch2_fs_rebalance_init(c);
796 	bch2_fs_quota_init(c);
797 	bch2_fs_ec_init_early(c);
798 	bch2_fs_move_init(c);
799 	bch2_fs_sb_errors_init_early(c);
800 
801 	INIT_LIST_HEAD(&c->list);
802 
803 	mutex_init(&c->bio_bounce_pages_lock);
804 	mutex_init(&c->snapshot_table_lock);
805 	init_rwsem(&c->snapshot_create_lock);
806 
807 	spin_lock_init(&c->btree_write_error_lock);
808 
809 	INIT_LIST_HEAD(&c->journal_iters);
810 
811 	INIT_LIST_HEAD(&c->fsck_error_msgs);
812 	mutex_init(&c->fsck_error_msgs_lock);
813 
814 	seqcount_init(&c->usage_lock);
815 
816 	sema_init(&c->io_in_flight, 128);
817 
818 	INIT_LIST_HEAD(&c->vfs_inodes_list);
819 	mutex_init(&c->vfs_inodes_lock);
820 
821 	c->journal.flush_write_time	= &c->times[BCH_TIME_journal_flush_write];
822 	c->journal.noflush_write_time	= &c->times[BCH_TIME_journal_noflush_write];
823 	c->journal.flush_seq_time	= &c->times[BCH_TIME_journal_flush_seq];
824 
825 	bch2_fs_btree_cache_init_early(&c->btree_cache);
826 
827 	mutex_init(&c->sectors_available_lock);
828 
829 	ret = percpu_init_rwsem(&c->mark_lock);
830 	if (ret)
831 		goto err;
832 
833 	mutex_lock(&c->sb_lock);
834 	ret = bch2_sb_to_fs(c, sb);
835 	mutex_unlock(&c->sb_lock);
836 
837 	if (ret)
838 		goto err;
839 
840 	pr_uuid(&name, c->sb.user_uuid.b);
841 	ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
842 	if (ret)
843 		goto err;
844 
845 	strscpy(c->name, name.buf, sizeof(c->name));
846 	printbuf_exit(&name);
847 
848 	/* Compat: */
849 	if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
850 	    !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
851 		SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
852 
853 	if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
854 	    !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
855 		SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
856 
857 	c->opts = bch2_opts_default;
858 	ret = bch2_opts_from_sb(&c->opts, sb);
859 	if (ret)
860 		goto err;
861 
862 	bch2_opts_apply(&c->opts, opts);
863 
864 	c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
865 	if (c->opts.inodes_use_key_cache)
866 		c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
867 	c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
868 
869 	c->block_bits		= ilog2(block_sectors(c));
870 	c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
871 
872 	if (bch2_fs_init_fault("fs_alloc")) {
873 		bch_err(c, "fs_alloc fault injected");
874 		ret = -EFAULT;
875 		goto err;
876 	}
877 
878 	iter_size = sizeof(struct sort_iter) +
879 		(btree_blocks(c) + 1) * 2 *
880 		sizeof(struct sort_iter_set);
881 
882 	if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
883 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
884 	    !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
885 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
886 	    !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
887 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
888 	    !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete",
889 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
890 	    !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit",
891 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
892 	    !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
893 				WQ_FREEZABLE, 0)) ||
894 #ifndef BCH_WRITE_REF_DEBUG
895 	    percpu_ref_init(&c->writes, bch2_writes_disabled,
896 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
897 #endif
898 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
899 	    bioset_init(&c->btree_bio, 1,
900 			max(offsetof(struct btree_read_bio, bio),
901 			    offsetof(struct btree_write_bio, wbio.bio)),
902 			BIOSET_NEED_BVECS) ||
903 	    !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
904 	    !(c->usage = alloc_percpu(struct bch_fs_usage_base)) ||
905 	    !(c->online_reserved = alloc_percpu(u64)) ||
906 	    mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
907 				       c->opts.btree_node_size) ||
908 	    mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048)) {
909 		ret = -BCH_ERR_ENOMEM_fs_other_alloc;
910 		goto err;
911 	}
912 
913 	ret = bch2_fs_counters_init(c) ?:
914 	    bch2_fs_sb_errors_init(c) ?:
915 	    bch2_io_clock_init(&c->io_clock[READ]) ?:
916 	    bch2_io_clock_init(&c->io_clock[WRITE]) ?:
917 	    bch2_fs_journal_init(&c->journal) ?:
918 	    bch2_fs_btree_iter_init(c) ?:
919 	    bch2_fs_btree_cache_init(c) ?:
920 	    bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
921 	    bch2_fs_btree_interior_update_init(c) ?:
922 	    bch2_fs_btree_gc_init(c) ?:
923 	    bch2_fs_buckets_waiting_for_journal_init(c) ?:
924 	    bch2_fs_btree_write_buffer_init(c) ?:
925 	    bch2_fs_subvolumes_init(c) ?:
926 	    bch2_fs_io_read_init(c) ?:
927 	    bch2_fs_io_write_init(c) ?:
928 	    bch2_fs_nocow_locking_init(c) ?:
929 	    bch2_fs_encryption_init(c) ?:
930 	    bch2_fs_compress_init(c) ?:
931 	    bch2_fs_ec_init(c) ?:
932 	    bch2_fs_vfs_init(c) ?:
933 	    bch2_fs_fsio_init(c) ?:
934 	    bch2_fs_fs_io_buffered_init(c) ?:
935 	    bch2_fs_fs_io_direct_init(c);
936 	if (ret)
937 		goto err;
938 
939 	for (i = 0; i < c->sb.nr_devices; i++) {
940 		if (!bch2_member_exists(c->disk_sb.sb, i))
941 			continue;
942 		ret = bch2_dev_alloc(c, i);
943 		if (ret)
944 			goto err;
945 	}
946 
947 	bch2_journal_entry_res_resize(&c->journal,
948 			&c->btree_root_journal_res,
949 			BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
950 	bch2_journal_entry_res_resize(&c->journal,
951 			&c->clock_journal_res,
952 			(sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
953 
954 	mutex_lock(&bch_fs_list_lock);
955 	ret = bch2_fs_online(c);
956 	mutex_unlock(&bch_fs_list_lock);
957 
958 	if (ret)
959 		goto err;
960 out:
961 	return c;
962 err:
963 	bch2_fs_free(c);
964 	c = ERR_PTR(ret);
965 	goto out;
966 }
967 
968 noinline_for_stack
print_mount_opts(struct bch_fs * c)969 static void print_mount_opts(struct bch_fs *c)
970 {
971 	enum bch_opt_id i;
972 	struct printbuf p = PRINTBUF;
973 	bool first = true;
974 
975 	prt_str(&p, "starting version ");
976 	bch2_version_to_text(&p, c->sb.version);
977 
978 	if (c->opts.read_only) {
979 		prt_str(&p, " opts=");
980 		first = false;
981 		prt_printf(&p, "ro");
982 	}
983 
984 	for (i = 0; i < bch2_opts_nr; i++) {
985 		const struct bch_option *opt = &bch2_opt_table[i];
986 		u64 v = bch2_opt_get_by_id(&c->opts, i);
987 
988 		if (!(opt->flags & OPT_MOUNT))
989 			continue;
990 
991 		if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
992 			continue;
993 
994 		prt_str(&p, first ? " opts=" : ",");
995 		first = false;
996 		bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
997 	}
998 
999 	bch_info(c, "%s", p.buf);
1000 	printbuf_exit(&p);
1001 }
1002 
bch2_fs_start(struct bch_fs * c)1003 int bch2_fs_start(struct bch_fs *c)
1004 {
1005 	time64_t now = ktime_get_real_seconds();
1006 	int ret;
1007 
1008 	print_mount_opts(c);
1009 
1010 	down_write(&c->state_lock);
1011 
1012 	BUG_ON(test_bit(BCH_FS_started, &c->flags));
1013 
1014 	mutex_lock(&c->sb_lock);
1015 
1016 	ret = bch2_sb_members_v2_init(c);
1017 	if (ret) {
1018 		mutex_unlock(&c->sb_lock);
1019 		goto err;
1020 	}
1021 
1022 	for_each_online_member(c, ca)
1023 		bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1024 
1025 	struct bch_sb_field_ext *ext =
1026 		bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
1027 	mutex_unlock(&c->sb_lock);
1028 
1029 	if (!ext) {
1030 		bch_err(c, "insufficient space in superblock for sb_field_ext");
1031 		ret = -BCH_ERR_ENOSPC_sb;
1032 		goto err;
1033 	}
1034 
1035 	for_each_rw_member(c, ca)
1036 		bch2_dev_allocator_add(c, ca);
1037 	bch2_recalc_capacity(c);
1038 
1039 	c->recovery_task = current;
1040 	ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1041 		? bch2_fs_recovery(c)
1042 		: bch2_fs_initialize(c);
1043 	c->recovery_task = NULL;
1044 
1045 	if (ret)
1046 		goto err;
1047 
1048 	ret = bch2_opts_check_may_set(c);
1049 	if (ret)
1050 		goto err;
1051 
1052 	if (bch2_fs_init_fault("fs_start")) {
1053 		bch_err(c, "fs_start fault injected");
1054 		ret = -EINVAL;
1055 		goto err;
1056 	}
1057 
1058 	set_bit(BCH_FS_started, &c->flags);
1059 
1060 	if (c->opts.read_only) {
1061 		bch2_fs_read_only(c);
1062 	} else {
1063 		ret = !test_bit(BCH_FS_rw, &c->flags)
1064 			? bch2_fs_read_write(c)
1065 			: bch2_fs_read_write_late(c);
1066 		if (ret)
1067 			goto err;
1068 	}
1069 
1070 	ret = 0;
1071 err:
1072 	if (ret)
1073 		bch_err_msg(c, ret, "starting filesystem");
1074 	else
1075 		bch_verbose(c, "done starting filesystem");
1076 	up_write(&c->state_lock);
1077 	return ret;
1078 }
1079 
bch2_dev_may_add(struct bch_sb * sb,struct bch_fs * c)1080 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1081 {
1082 	struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1083 
1084 	if (le16_to_cpu(sb->block_size) != block_sectors(c))
1085 		return -BCH_ERR_mismatched_block_size;
1086 
1087 	if (le16_to_cpu(m.bucket_size) <
1088 	    BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1089 		return -BCH_ERR_bucket_size_too_small;
1090 
1091 	return 0;
1092 }
1093 
bch2_dev_in_fs(struct bch_sb_handle * fs,struct bch_sb_handle * sb,struct bch_opts * opts)1094 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1095 			  struct bch_sb_handle *sb,
1096 			  struct bch_opts *opts)
1097 {
1098 	if (fs == sb)
1099 		return 0;
1100 
1101 	if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1102 		return -BCH_ERR_device_not_a_member_of_filesystem;
1103 
1104 	if (!bch2_member_exists(fs->sb, sb->sb->dev_idx))
1105 		return -BCH_ERR_device_has_been_removed;
1106 
1107 	if (fs->sb->block_size != sb->sb->block_size)
1108 		return -BCH_ERR_mismatched_block_size;
1109 
1110 	if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1111 	    le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1112 		return 0;
1113 
1114 	if (fs->sb->seq == sb->sb->seq &&
1115 	    fs->sb->write_time != sb->sb->write_time) {
1116 		struct printbuf buf = PRINTBUF;
1117 
1118 		prt_str(&buf, "Split brain detected between ");
1119 		prt_bdevname(&buf, sb->bdev);
1120 		prt_str(&buf, " and ");
1121 		prt_bdevname(&buf, fs->bdev);
1122 		prt_char(&buf, ':');
1123 		prt_newline(&buf);
1124 		prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1125 		prt_newline(&buf);
1126 
1127 		prt_bdevname(&buf, fs->bdev);
1128 		prt_char(&buf, ' ');
1129 		bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));
1130 		prt_newline(&buf);
1131 
1132 		prt_bdevname(&buf, sb->bdev);
1133 		prt_char(&buf, ' ');
1134 		bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));
1135 		prt_newline(&buf);
1136 
1137 		if (!opts->no_splitbrain_check)
1138 			prt_printf(&buf, "Not using older sb");
1139 
1140 		pr_err("%s", buf.buf);
1141 		printbuf_exit(&buf);
1142 
1143 		if (!opts->no_splitbrain_check)
1144 			return -BCH_ERR_device_splitbrain;
1145 	}
1146 
1147 	struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1148 	u64 seq_from_fs		= le64_to_cpu(m.seq);
1149 	u64 seq_from_member	= le64_to_cpu(sb->sb->seq);
1150 
1151 	if (seq_from_fs && seq_from_fs < seq_from_member) {
1152 		struct printbuf buf = PRINTBUF;
1153 
1154 		prt_str(&buf, "Split brain detected between ");
1155 		prt_bdevname(&buf, sb->bdev);
1156 		prt_str(&buf, " and ");
1157 		prt_bdevname(&buf, fs->bdev);
1158 		prt_char(&buf, ':');
1159 		prt_newline(&buf);
1160 
1161 		prt_bdevname(&buf, fs->bdev);
1162 		prt_str(&buf, " believes seq of ");
1163 		prt_bdevname(&buf, sb->bdev);
1164 		prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1165 		prt_bdevname(&buf, sb->bdev);
1166 		prt_printf(&buf, " has %llu\n", seq_from_member);
1167 
1168 		if (!opts->no_splitbrain_check) {
1169 			prt_str(&buf, "Not using ");
1170 			prt_bdevname(&buf, sb->bdev);
1171 		}
1172 
1173 		pr_err("%s", buf.buf);
1174 		printbuf_exit(&buf);
1175 
1176 		if (!opts->no_splitbrain_check)
1177 			return -BCH_ERR_device_splitbrain;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 /* Device startup/shutdown: */
1184 
bch2_dev_release(struct kobject * kobj)1185 static void bch2_dev_release(struct kobject *kobj)
1186 {
1187 	struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1188 
1189 	kfree(ca);
1190 }
1191 
bch2_dev_free(struct bch_dev * ca)1192 static void bch2_dev_free(struct bch_dev *ca)
1193 {
1194 	cancel_work_sync(&ca->io_error_work);
1195 
1196 	bch2_dev_unlink(ca);
1197 
1198 	if (ca->kobj.state_in_sysfs)
1199 		kobject_del(&ca->kobj);
1200 
1201 	bch2_free_super(&ca->disk_sb);
1202 	bch2_dev_allocator_background_exit(ca);
1203 	bch2_dev_journal_exit(ca);
1204 
1205 	free_percpu(ca->io_done);
1206 	bch2_dev_buckets_free(ca);
1207 	kfree(ca->sb_read_scratch);
1208 
1209 	bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1210 	bch2_time_stats_quantiles_exit(&ca->io_latency[READ]);
1211 
1212 	percpu_ref_exit(&ca->io_ref);
1213 #ifndef CONFIG_BCACHEFS_DEBUG
1214 	percpu_ref_exit(&ca->ref);
1215 #endif
1216 	kobject_put(&ca->kobj);
1217 }
1218 
__bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca)1219 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1220 {
1221 
1222 	lockdep_assert_held(&c->state_lock);
1223 
1224 	if (percpu_ref_is_zero(&ca->io_ref))
1225 		return;
1226 
1227 	__bch2_dev_read_only(c, ca);
1228 
1229 	reinit_completion(&ca->io_ref_completion);
1230 	percpu_ref_kill(&ca->io_ref);
1231 	wait_for_completion(&ca->io_ref_completion);
1232 
1233 	bch2_dev_unlink(ca);
1234 
1235 	bch2_free_super(&ca->disk_sb);
1236 	bch2_dev_journal_exit(ca);
1237 }
1238 
1239 #ifndef CONFIG_BCACHEFS_DEBUG
bch2_dev_ref_complete(struct percpu_ref * ref)1240 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1241 {
1242 	struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1243 
1244 	complete(&ca->ref_completion);
1245 }
1246 #endif
1247 
bch2_dev_io_ref_complete(struct percpu_ref * ref)1248 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1249 {
1250 	struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1251 
1252 	complete(&ca->io_ref_completion);
1253 }
1254 
bch2_dev_unlink(struct bch_dev * ca)1255 static void bch2_dev_unlink(struct bch_dev *ca)
1256 {
1257 	struct kobject *b;
1258 
1259 	/*
1260 	 * This is racy w.r.t. the underlying block device being hot-removed,
1261 	 * which removes it from sysfs.
1262 	 *
1263 	 * It'd be lovely if we had a way to handle this race, but the sysfs
1264 	 * code doesn't appear to provide a good method and block/holder.c is
1265 	 * susceptible as well:
1266 	 */
1267 	if (ca->kobj.state_in_sysfs &&
1268 	    ca->disk_sb.bdev &&
1269 	    (b = bdev_kobj(ca->disk_sb.bdev))->state_in_sysfs) {
1270 		sysfs_remove_link(b, "bcachefs");
1271 		sysfs_remove_link(&ca->kobj, "block");
1272 	}
1273 }
1274 
bch2_dev_sysfs_online(struct bch_fs * c,struct bch_dev * ca)1275 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1276 {
1277 	int ret;
1278 
1279 	if (!c->kobj.state_in_sysfs)
1280 		return 0;
1281 
1282 	if (!ca->kobj.state_in_sysfs) {
1283 		ret = kobject_add(&ca->kobj, &c->kobj,
1284 				  "dev-%u", ca->dev_idx);
1285 		if (ret)
1286 			return ret;
1287 	}
1288 
1289 	if (ca->disk_sb.bdev) {
1290 		struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1291 
1292 		ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1293 		if (ret)
1294 			return ret;
1295 
1296 		ret = sysfs_create_link(&ca->kobj, block, "block");
1297 		if (ret)
1298 			return ret;
1299 	}
1300 
1301 	return 0;
1302 }
1303 
__bch2_dev_alloc(struct bch_fs * c,struct bch_member * member)1304 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1305 					struct bch_member *member)
1306 {
1307 	struct bch_dev *ca;
1308 	unsigned i;
1309 
1310 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1311 	if (!ca)
1312 		return NULL;
1313 
1314 	kobject_init(&ca->kobj, &bch2_dev_ktype);
1315 	init_completion(&ca->ref_completion);
1316 	init_completion(&ca->io_ref_completion);
1317 
1318 	INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1319 
1320 	bch2_time_stats_quantiles_init(&ca->io_latency[READ]);
1321 	bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]);
1322 
1323 	ca->mi = bch2_mi_to_cpu(member);
1324 
1325 	for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1326 		atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1327 
1328 	ca->uuid = member->uuid;
1329 
1330 	ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1331 			     ca->mi.bucket_size / btree_sectors(c));
1332 
1333 #ifndef CONFIG_BCACHEFS_DEBUG
1334 	if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL))
1335 		goto err;
1336 #else
1337 	atomic_long_set(&ca->ref, 1);
1338 #endif
1339 
1340 	bch2_dev_allocator_background_init(ca);
1341 
1342 	if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1343 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1344 	    !(ca->sb_read_scratch = kmalloc(BCH_SB_READ_SCRATCH_BUF_SIZE, GFP_KERNEL)) ||
1345 	    bch2_dev_buckets_alloc(c, ca) ||
1346 	    !(ca->io_done	= alloc_percpu(*ca->io_done)))
1347 		goto err;
1348 
1349 	return ca;
1350 err:
1351 	bch2_dev_free(ca);
1352 	return NULL;
1353 }
1354 
bch2_dev_attach(struct bch_fs * c,struct bch_dev * ca,unsigned dev_idx)1355 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1356 			    unsigned dev_idx)
1357 {
1358 	ca->dev_idx = dev_idx;
1359 	__set_bit(ca->dev_idx, ca->self.d);
1360 	scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1361 
1362 	ca->fs = c;
1363 	rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1364 
1365 	if (bch2_dev_sysfs_online(c, ca))
1366 		pr_warn("error creating sysfs objects");
1367 }
1368 
bch2_dev_alloc(struct bch_fs * c,unsigned dev_idx)1369 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1370 {
1371 	struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1372 	struct bch_dev *ca = NULL;
1373 
1374 	if (bch2_fs_init_fault("dev_alloc"))
1375 		goto err;
1376 
1377 	ca = __bch2_dev_alloc(c, &member);
1378 	if (!ca)
1379 		goto err;
1380 
1381 	ca->fs = c;
1382 
1383 	bch2_dev_attach(c, ca, dev_idx);
1384 	return 0;
1385 err:
1386 	return -BCH_ERR_ENOMEM_dev_alloc;
1387 }
1388 
__bch2_dev_attach_bdev(struct bch_dev * ca,struct bch_sb_handle * sb)1389 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1390 {
1391 	unsigned ret;
1392 
1393 	if (bch2_dev_is_online(ca)) {
1394 		bch_err(ca, "already have device online in slot %u",
1395 			sb->sb->dev_idx);
1396 		return -BCH_ERR_device_already_online;
1397 	}
1398 
1399 	if (get_capacity(sb->bdev->bd_disk) <
1400 	    ca->mi.bucket_size * ca->mi.nbuckets) {
1401 		bch_err(ca, "cannot online: device too small");
1402 		return -BCH_ERR_device_size_too_small;
1403 	}
1404 
1405 	BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1406 
1407 	ret = bch2_dev_journal_init(ca, sb->sb);
1408 	if (ret)
1409 		return ret;
1410 
1411 	/* Commit: */
1412 	ca->disk_sb = *sb;
1413 	memset(sb, 0, sizeof(*sb));
1414 
1415 	ca->dev = ca->disk_sb.bdev->bd_dev;
1416 
1417 	percpu_ref_reinit(&ca->io_ref);
1418 
1419 	return 0;
1420 }
1421 
bch2_dev_attach_bdev(struct bch_fs * c,struct bch_sb_handle * sb)1422 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1423 {
1424 	struct bch_dev *ca;
1425 	int ret;
1426 
1427 	lockdep_assert_held(&c->state_lock);
1428 
1429 	if (le64_to_cpu(sb->sb->seq) >
1430 	    le64_to_cpu(c->disk_sb.sb->seq))
1431 		bch2_sb_to_fs(c, sb->sb);
1432 
1433 	BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx));
1434 
1435 	ca = bch2_dev_locked(c, sb->sb->dev_idx);
1436 
1437 	ret = __bch2_dev_attach_bdev(ca, sb);
1438 	if (ret)
1439 		return ret;
1440 
1441 	bch2_dev_sysfs_online(c, ca);
1442 
1443 	struct printbuf name = PRINTBUF;
1444 	prt_bdevname(&name, ca->disk_sb.bdev);
1445 
1446 	if (c->sb.nr_devices == 1)
1447 		strscpy(c->name, name.buf, sizeof(c->name));
1448 	strscpy(ca->name, name.buf, sizeof(ca->name));
1449 
1450 	printbuf_exit(&name);
1451 
1452 	rebalance_wakeup(c);
1453 	return 0;
1454 }
1455 
1456 /* Device management: */
1457 
1458 /*
1459  * Note: this function is also used by the error paths - when a particular
1460  * device sees an error, we call it to determine whether we can just set the
1461  * device RO, or - if this function returns false - we'll set the whole
1462  * filesystem RO:
1463  *
1464  * XXX: maybe we should be more explicit about whether we're changing state
1465  * because we got an error or what have you?
1466  */
bch2_dev_state_allowed(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1467 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1468 			    enum bch_member_state new_state, int flags)
1469 {
1470 	struct bch_devs_mask new_online_devs;
1471 	int nr_rw = 0, required;
1472 
1473 	lockdep_assert_held(&c->state_lock);
1474 
1475 	switch (new_state) {
1476 	case BCH_MEMBER_STATE_rw:
1477 		return true;
1478 	case BCH_MEMBER_STATE_ro:
1479 		if (ca->mi.state != BCH_MEMBER_STATE_rw)
1480 			return true;
1481 
1482 		/* do we have enough devices to write to?  */
1483 		for_each_member_device(c, ca2)
1484 			if (ca2 != ca)
1485 				nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1486 
1487 		required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1488 			       ? c->opts.metadata_replicas
1489 			       : metadata_replicas_required(c),
1490 			       !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1491 			       ? c->opts.data_replicas
1492 			       : data_replicas_required(c));
1493 
1494 		return nr_rw >= required;
1495 	case BCH_MEMBER_STATE_failed:
1496 	case BCH_MEMBER_STATE_spare:
1497 		if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1498 		    ca->mi.state != BCH_MEMBER_STATE_ro)
1499 			return true;
1500 
1501 		/* do we have enough devices to read from?  */
1502 		new_online_devs = bch2_online_devs(c);
1503 		__clear_bit(ca->dev_idx, new_online_devs.d);
1504 
1505 		return bch2_have_enough_devs(c, new_online_devs, flags, false);
1506 	default:
1507 		BUG();
1508 	}
1509 }
1510 
bch2_fs_may_start(struct bch_fs * c)1511 static bool bch2_fs_may_start(struct bch_fs *c)
1512 {
1513 	struct bch_dev *ca;
1514 	unsigned i, flags = 0;
1515 
1516 	if (c->opts.very_degraded)
1517 		flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1518 
1519 	if (c->opts.degraded)
1520 		flags |= BCH_FORCE_IF_DEGRADED;
1521 
1522 	if (!c->opts.degraded &&
1523 	    !c->opts.very_degraded) {
1524 		mutex_lock(&c->sb_lock);
1525 
1526 		for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1527 			if (!bch2_member_exists(c->disk_sb.sb, i))
1528 				continue;
1529 
1530 			ca = bch2_dev_locked(c, i);
1531 
1532 			if (!bch2_dev_is_online(ca) &&
1533 			    (ca->mi.state == BCH_MEMBER_STATE_rw ||
1534 			     ca->mi.state == BCH_MEMBER_STATE_ro)) {
1535 				mutex_unlock(&c->sb_lock);
1536 				return false;
1537 			}
1538 		}
1539 		mutex_unlock(&c->sb_lock);
1540 	}
1541 
1542 	return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1543 }
1544 
__bch2_dev_read_only(struct bch_fs * c,struct bch_dev * ca)1545 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1546 {
1547 	/*
1548 	 * The allocator thread itself allocates btree nodes, so stop it first:
1549 	 */
1550 	bch2_dev_allocator_remove(c, ca);
1551 	bch2_recalc_capacity(c);
1552 	bch2_dev_journal_stop(&c->journal, ca);
1553 }
1554 
__bch2_dev_read_write(struct bch_fs * c,struct bch_dev * ca)1555 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1556 {
1557 	lockdep_assert_held(&c->state_lock);
1558 
1559 	BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1560 
1561 	bch2_dev_allocator_add(c, ca);
1562 	bch2_recalc_capacity(c);
1563 	bch2_dev_do_discards(ca);
1564 }
1565 
__bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1566 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1567 			 enum bch_member_state new_state, int flags)
1568 {
1569 	struct bch_member *m;
1570 	int ret = 0;
1571 
1572 	if (ca->mi.state == new_state)
1573 		return 0;
1574 
1575 	if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1576 		return -BCH_ERR_device_state_not_allowed;
1577 
1578 	if (new_state != BCH_MEMBER_STATE_rw)
1579 		__bch2_dev_read_only(c, ca);
1580 
1581 	bch_notice(ca, "%s", bch2_member_states[new_state]);
1582 
1583 	mutex_lock(&c->sb_lock);
1584 	m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1585 	SET_BCH_MEMBER_STATE(m, new_state);
1586 	bch2_write_super(c);
1587 	mutex_unlock(&c->sb_lock);
1588 
1589 	if (new_state == BCH_MEMBER_STATE_rw)
1590 		__bch2_dev_read_write(c, ca);
1591 
1592 	rebalance_wakeup(c);
1593 
1594 	return ret;
1595 }
1596 
bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1597 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1598 		       enum bch_member_state new_state, int flags)
1599 {
1600 	int ret;
1601 
1602 	down_write(&c->state_lock);
1603 	ret = __bch2_dev_set_state(c, ca, new_state, flags);
1604 	up_write(&c->state_lock);
1605 
1606 	return ret;
1607 }
1608 
1609 /* Device add/removal: */
1610 
bch2_dev_remove(struct bch_fs * c,struct bch_dev * ca,int flags)1611 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1612 {
1613 	struct bch_member *m;
1614 	unsigned dev_idx = ca->dev_idx, data;
1615 	int ret;
1616 
1617 	down_write(&c->state_lock);
1618 
1619 	/*
1620 	 * We consume a reference to ca->ref, regardless of whether we succeed
1621 	 * or fail:
1622 	 */
1623 	bch2_dev_put(ca);
1624 
1625 	if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1626 		bch_err(ca, "Cannot remove without losing data");
1627 		ret = -BCH_ERR_device_state_not_allowed;
1628 		goto err;
1629 	}
1630 
1631 	__bch2_dev_read_only(c, ca);
1632 
1633 	ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1634 	bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1635 	if (ret)
1636 		goto err;
1637 
1638 	ret = bch2_dev_remove_alloc(c, ca);
1639 	bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1640 	if (ret)
1641 		goto err;
1642 
1643 	/*
1644 	 * We need to flush the entire journal to get rid of keys that reference
1645 	 * the device being removed before removing the superblock entry
1646 	 */
1647 	bch2_journal_flush_all_pins(&c->journal);
1648 
1649 	/*
1650 	 * this is really just needed for the bch2_replicas_gc_(start|end)
1651 	 * calls, and could be cleaned up:
1652 	 */
1653 	ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1654 	bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1655 	if (ret)
1656 		goto err;
1657 
1658 	ret = bch2_journal_flush(&c->journal);
1659 	bch_err_msg(ca, ret, "bch2_journal_flush()");
1660 	if (ret)
1661 		goto err;
1662 
1663 	ret = bch2_replicas_gc2(c);
1664 	bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1665 	if (ret)
1666 		goto err;
1667 
1668 	data = bch2_dev_has_data(c, ca);
1669 	if (data) {
1670 		struct printbuf data_has = PRINTBUF;
1671 
1672 		prt_bitflags(&data_has, __bch2_data_types, data);
1673 		bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1674 		printbuf_exit(&data_has);
1675 		ret = -EBUSY;
1676 		goto err;
1677 	}
1678 
1679 	__bch2_dev_offline(c, ca);
1680 
1681 	mutex_lock(&c->sb_lock);
1682 	rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1683 	mutex_unlock(&c->sb_lock);
1684 
1685 #ifndef CONFIG_BCACHEFS_DEBUG
1686 	percpu_ref_kill(&ca->ref);
1687 #else
1688 	ca->dying = true;
1689 	bch2_dev_put(ca);
1690 #endif
1691 	wait_for_completion(&ca->ref_completion);
1692 
1693 	bch2_dev_free(ca);
1694 
1695 	/*
1696 	 * Free this device's slot in the bch_member array - all pointers to
1697 	 * this device must be gone:
1698 	 */
1699 	mutex_lock(&c->sb_lock);
1700 	m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1701 	memset(&m->uuid, 0, sizeof(m->uuid));
1702 
1703 	bch2_write_super(c);
1704 
1705 	mutex_unlock(&c->sb_lock);
1706 	up_write(&c->state_lock);
1707 	return 0;
1708 err:
1709 	if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1710 	    !percpu_ref_is_zero(&ca->io_ref))
1711 		__bch2_dev_read_write(c, ca);
1712 	up_write(&c->state_lock);
1713 	return ret;
1714 }
1715 
1716 /* Add new device to running filesystem: */
bch2_dev_add(struct bch_fs * c,const char * path)1717 int bch2_dev_add(struct bch_fs *c, const char *path)
1718 {
1719 	struct bch_opts opts = bch2_opts_empty();
1720 	struct bch_sb_handle sb;
1721 	struct bch_dev *ca = NULL;
1722 	struct printbuf errbuf = PRINTBUF;
1723 	struct printbuf label = PRINTBUF;
1724 	int ret;
1725 
1726 	ret = bch2_read_super(path, &opts, &sb);
1727 	bch_err_msg(c, ret, "reading super");
1728 	if (ret)
1729 		goto err;
1730 
1731 	struct bch_member dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1732 
1733 	if (BCH_MEMBER_GROUP(&dev_mi)) {
1734 		bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1735 		if (label.allocation_failure) {
1736 			ret = -ENOMEM;
1737 			goto err;
1738 		}
1739 	}
1740 
1741 	ret = bch2_dev_may_add(sb.sb, c);
1742 	if (ret)
1743 		goto err;
1744 
1745 	ca = __bch2_dev_alloc(c, &dev_mi);
1746 	if (!ca) {
1747 		ret = -ENOMEM;
1748 		goto err;
1749 	}
1750 
1751 	ret = __bch2_dev_attach_bdev(ca, &sb);
1752 	if (ret)
1753 		goto err;
1754 
1755 	down_write(&c->state_lock);
1756 	mutex_lock(&c->sb_lock);
1757 
1758 	ret = bch2_sb_from_fs(c, ca);
1759 	bch_err_msg(c, ret, "setting up new superblock");
1760 	if (ret)
1761 		goto err_unlock;
1762 
1763 	if (dynamic_fault("bcachefs:add:no_slot"))
1764 		goto err_unlock;
1765 
1766 	ret = bch2_sb_member_alloc(c);
1767 	if (ret < 0) {
1768 		bch_err_msg(c, ret, "setting up new superblock");
1769 		goto err_unlock;
1770 	}
1771 	unsigned dev_idx = ret;
1772 
1773 	/* success: */
1774 
1775 	dev_mi.last_mount = cpu_to_le64(ktime_get_real_seconds());
1776 	*bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx) = dev_mi;
1777 
1778 	ca->disk_sb.sb->dev_idx	= dev_idx;
1779 	bch2_dev_attach(c, ca, dev_idx);
1780 
1781 	if (BCH_MEMBER_GROUP(&dev_mi)) {
1782 		ret = __bch2_dev_group_set(c, ca, label.buf);
1783 		bch_err_msg(c, ret, "creating new label");
1784 		if (ret)
1785 			goto err_unlock;
1786 	}
1787 
1788 	bch2_write_super(c);
1789 	mutex_unlock(&c->sb_lock);
1790 
1791 	ret = bch2_dev_usage_init(ca, false);
1792 	if (ret)
1793 		goto err_late;
1794 
1795 	ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1796 	bch_err_msg(ca, ret, "marking new superblock");
1797 	if (ret)
1798 		goto err_late;
1799 
1800 	ret = bch2_fs_freespace_init(c);
1801 	bch_err_msg(ca, ret, "initializing free space");
1802 	if (ret)
1803 		goto err_late;
1804 
1805 	if (ca->mi.state == BCH_MEMBER_STATE_rw)
1806 		__bch2_dev_read_write(c, ca);
1807 
1808 	ret = bch2_dev_journal_alloc(ca, false);
1809 	bch_err_msg(c, ret, "allocating journal");
1810 	if (ret)
1811 		goto err_late;
1812 
1813 	up_write(&c->state_lock);
1814 out:
1815 	printbuf_exit(&label);
1816 	printbuf_exit(&errbuf);
1817 	bch_err_fn(c, ret);
1818 	return ret;
1819 
1820 err_unlock:
1821 	mutex_unlock(&c->sb_lock);
1822 	up_write(&c->state_lock);
1823 err:
1824 	if (ca)
1825 		bch2_dev_free(ca);
1826 	bch2_free_super(&sb);
1827 	goto out;
1828 err_late:
1829 	up_write(&c->state_lock);
1830 	ca = NULL;
1831 	goto err;
1832 }
1833 
1834 /* Hot add existing device to running filesystem: */
bch2_dev_online(struct bch_fs * c,const char * path)1835 int bch2_dev_online(struct bch_fs *c, const char *path)
1836 {
1837 	struct bch_opts opts = bch2_opts_empty();
1838 	struct bch_sb_handle sb = { NULL };
1839 	struct bch_dev *ca;
1840 	unsigned dev_idx;
1841 	int ret;
1842 
1843 	down_write(&c->state_lock);
1844 
1845 	ret = bch2_read_super(path, &opts, &sb);
1846 	if (ret) {
1847 		up_write(&c->state_lock);
1848 		return ret;
1849 	}
1850 
1851 	dev_idx = sb.sb->dev_idx;
1852 
1853 	ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts);
1854 	bch_err_msg(c, ret, "bringing %s online", path);
1855 	if (ret)
1856 		goto err;
1857 
1858 	ret = bch2_dev_attach_bdev(c, &sb);
1859 	if (ret)
1860 		goto err;
1861 
1862 	ca = bch2_dev_locked(c, dev_idx);
1863 
1864 	ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1865 	bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1866 	if (ret)
1867 		goto err;
1868 
1869 	if (ca->mi.state == BCH_MEMBER_STATE_rw)
1870 		__bch2_dev_read_write(c, ca);
1871 
1872 	if (!ca->mi.freespace_initialized) {
1873 		ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1874 		bch_err_msg(ca, ret, "initializing free space");
1875 		if (ret)
1876 			goto err;
1877 	}
1878 
1879 	if (!ca->journal.nr) {
1880 		ret = bch2_dev_journal_alloc(ca, false);
1881 		bch_err_msg(ca, ret, "allocating journal");
1882 		if (ret)
1883 			goto err;
1884 	}
1885 
1886 	mutex_lock(&c->sb_lock);
1887 	bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1888 		cpu_to_le64(ktime_get_real_seconds());
1889 	bch2_write_super(c);
1890 	mutex_unlock(&c->sb_lock);
1891 
1892 	up_write(&c->state_lock);
1893 	return 0;
1894 err:
1895 	up_write(&c->state_lock);
1896 	bch2_free_super(&sb);
1897 	return ret;
1898 }
1899 
bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca,int flags)1900 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1901 {
1902 	down_write(&c->state_lock);
1903 
1904 	if (!bch2_dev_is_online(ca)) {
1905 		bch_err(ca, "Already offline");
1906 		up_write(&c->state_lock);
1907 		return 0;
1908 	}
1909 
1910 	if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1911 		bch_err(ca, "Cannot offline required disk");
1912 		up_write(&c->state_lock);
1913 		return -BCH_ERR_device_state_not_allowed;
1914 	}
1915 
1916 	__bch2_dev_offline(c, ca);
1917 
1918 	up_write(&c->state_lock);
1919 	return 0;
1920 }
1921 
bch2_dev_resize(struct bch_fs * c,struct bch_dev * ca,u64 nbuckets)1922 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1923 {
1924 	struct bch_member *m;
1925 	u64 old_nbuckets;
1926 	int ret = 0;
1927 
1928 	down_write(&c->state_lock);
1929 	old_nbuckets = ca->mi.nbuckets;
1930 
1931 	if (nbuckets < ca->mi.nbuckets) {
1932 		bch_err(ca, "Cannot shrink yet");
1933 		ret = -EINVAL;
1934 		goto err;
1935 	}
1936 
1937 	if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) {
1938 		bch_err(ca, "New device size too big (%llu greater than max %u)",
1939 			nbuckets, BCH_MEMBER_NBUCKETS_MAX);
1940 		ret = -BCH_ERR_device_size_too_big;
1941 		goto err;
1942 	}
1943 
1944 	if (bch2_dev_is_online(ca) &&
1945 	    get_capacity(ca->disk_sb.bdev->bd_disk) <
1946 	    ca->mi.bucket_size * nbuckets) {
1947 		bch_err(ca, "New size larger than device");
1948 		ret = -BCH_ERR_device_size_too_small;
1949 		goto err;
1950 	}
1951 
1952 	ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1953 	bch_err_msg(ca, ret, "resizing buckets");
1954 	if (ret)
1955 		goto err;
1956 
1957 	ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1958 	if (ret)
1959 		goto err;
1960 
1961 	mutex_lock(&c->sb_lock);
1962 	m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1963 	m->nbuckets = cpu_to_le64(nbuckets);
1964 
1965 	bch2_write_super(c);
1966 	mutex_unlock(&c->sb_lock);
1967 
1968 	if (ca->mi.freespace_initialized) {
1969 		struct disk_accounting_pos acc = {
1970 			.type = BCH_DISK_ACCOUNTING_dev_data_type,
1971 			.dev_data_type.dev = ca->dev_idx,
1972 			.dev_data_type.data_type = BCH_DATA_free,
1973 		};
1974 		u64 v[3] = { nbuckets - old_nbuckets, 0, 0 };
1975 
1976 		ret   = bch2_trans_commit_do(ca->fs, NULL, NULL, 0,
1977 				bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), false)) ?:
1978 			bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1979 		if (ret)
1980 			goto err;
1981 	}
1982 
1983 	bch2_recalc_capacity(c);
1984 err:
1985 	up_write(&c->state_lock);
1986 	return ret;
1987 }
1988 
1989 /* return with ref on ca->ref: */
bch2_dev_lookup(struct bch_fs * c,const char * name)1990 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
1991 {
1992 	if (!strncmp(name, "/dev/", strlen("/dev/")))
1993 		name += strlen("/dev/");
1994 
1995 	for_each_member_device(c, ca)
1996 		if (!strcmp(name, ca->name))
1997 			return ca;
1998 	return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
1999 }
2000 
2001 /* Filesystem open: */
2002 
sb_cmp(struct bch_sb * l,struct bch_sb * r)2003 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2004 {
2005 	return  cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2006 		cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2007 }
2008 
bch2_fs_open(char * const * devices,unsigned nr_devices,struct bch_opts opts)2009 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2010 			    struct bch_opts opts)
2011 {
2012 	DARRAY(struct bch_sb_handle) sbs = { 0 };
2013 	struct bch_fs *c = NULL;
2014 	struct bch_sb_handle *best = NULL;
2015 	struct printbuf errbuf = PRINTBUF;
2016 	int ret = 0;
2017 
2018 	if (!try_module_get(THIS_MODULE))
2019 		return ERR_PTR(-ENODEV);
2020 
2021 	if (!nr_devices) {
2022 		ret = -EINVAL;
2023 		goto err;
2024 	}
2025 
2026 	ret = darray_make_room(&sbs, nr_devices);
2027 	if (ret)
2028 		goto err;
2029 
2030 	for (unsigned i = 0; i < nr_devices; i++) {
2031 		struct bch_sb_handle sb = { NULL };
2032 
2033 		ret = bch2_read_super(devices[i], &opts, &sb);
2034 		if (ret)
2035 			goto err;
2036 
2037 		BUG_ON(darray_push(&sbs, sb));
2038 	}
2039 
2040 	if (opts.nochanges && !opts.read_only) {
2041 		ret = -BCH_ERR_erofs_nochanges;
2042 		goto err_print;
2043 	}
2044 
2045 	darray_for_each(sbs, sb)
2046 		if (!best || sb_cmp(sb->sb, best->sb) > 0)
2047 			best = sb;
2048 
2049 	darray_for_each_reverse(sbs, sb) {
2050 		ret = bch2_dev_in_fs(best, sb, &opts);
2051 
2052 		if (ret == -BCH_ERR_device_has_been_removed ||
2053 		    ret == -BCH_ERR_device_splitbrain) {
2054 			bch2_free_super(sb);
2055 			darray_remove_item(&sbs, sb);
2056 			best -= best > sb;
2057 			ret = 0;
2058 			continue;
2059 		}
2060 
2061 		if (ret)
2062 			goto err_print;
2063 	}
2064 
2065 	c = bch2_fs_alloc(best->sb, opts);
2066 	ret = PTR_ERR_OR_ZERO(c);
2067 	if (ret)
2068 		goto err;
2069 
2070 	down_write(&c->state_lock);
2071 	darray_for_each(sbs, sb) {
2072 		ret = bch2_dev_attach_bdev(c, sb);
2073 		if (ret) {
2074 			up_write(&c->state_lock);
2075 			goto err;
2076 		}
2077 	}
2078 	up_write(&c->state_lock);
2079 
2080 	if (!bch2_fs_may_start(c)) {
2081 		ret = -BCH_ERR_insufficient_devices_to_start;
2082 		goto err_print;
2083 	}
2084 
2085 	if (!c->opts.nostart) {
2086 		ret = bch2_fs_start(c);
2087 		if (ret)
2088 			goto err;
2089 	}
2090 out:
2091 	darray_for_each(sbs, sb)
2092 		bch2_free_super(sb);
2093 	darray_exit(&sbs);
2094 	printbuf_exit(&errbuf);
2095 	module_put(THIS_MODULE);
2096 	return c;
2097 err_print:
2098 	pr_err("bch_fs_open err opening %s: %s",
2099 	       devices[0], bch2_err_str(ret));
2100 err:
2101 	if (!IS_ERR_OR_NULL(c))
2102 		bch2_fs_stop(c);
2103 	c = ERR_PTR(ret);
2104 	goto out;
2105 }
2106 
2107 /* Global interfaces/init */
2108 
bcachefs_exit(void)2109 static void bcachefs_exit(void)
2110 {
2111 	bch2_debug_exit();
2112 	bch2_vfs_exit();
2113 	bch2_chardev_exit();
2114 	bch2_btree_key_cache_exit();
2115 	if (bcachefs_kset)
2116 		kset_unregister(bcachefs_kset);
2117 }
2118 
bcachefs_init(void)2119 static int __init bcachefs_init(void)
2120 {
2121 	bch2_bkey_pack_test();
2122 
2123 	if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2124 	    bch2_btree_key_cache_init() ||
2125 	    bch2_chardev_init() ||
2126 	    bch2_vfs_init() ||
2127 	    bch2_debug_init())
2128 		goto err;
2129 
2130 	return 0;
2131 err:
2132 	bcachefs_exit();
2133 	return -ENOMEM;
2134 }
2135 
2136 #define BCH_DEBUG_PARAM(name, description)			\
2137 	bool bch2_##name;					\
2138 	module_param_named(name, bch2_##name, bool, 0644);	\
2139 	MODULE_PARM_DESC(name, description);
2140 BCH_DEBUG_PARAMS()
2141 #undef BCH_DEBUG_PARAM
2142 
2143 __maybe_unused
2144 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2145 module_param_named(version, bch2_metadata_version, uint, 0400);
2146 
2147 module_exit(bcachefs_exit);
2148 module_init(bcachefs_init);
2149