1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <linux/bitops.h> 74 #include <net/dst.h> 75 #include <net/tcp.h> 76 #include <net/tcp_ecn.h> 77 #include <net/proto_memory.h> 78 #include <net/inet_common.h> 79 #include <linux/ipsec.h> 80 #include <linux/unaligned.h> 81 #include <linux/errqueue.h> 82 #include <trace/events/tcp.h> 83 #include <linux/jump_label_ratelimit.h> 84 #include <net/busy_poll.h> 85 #include <net/mptcp.h> 86 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 89 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 90 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 91 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 92 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 93 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 94 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 95 #define FLAG_ECE 0x40 /* ECE in this ACK */ 96 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 97 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 98 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 99 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 100 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 101 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 102 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 103 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 104 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 105 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 106 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 107 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */ 108 109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 113 114 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 115 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 116 117 #define REXMIT_NONE 0 /* no loss recovery to do */ 118 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 119 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 120 121 #if IS_ENABLED(CONFIG_TLS_DEVICE) 122 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 123 124 void clean_acked_data_enable(struct tcp_sock *tp, 125 void (*cad)(struct sock *sk, u32 ack_seq)) 126 { 127 tp->tcp_clean_acked = cad; 128 static_branch_deferred_inc(&clean_acked_data_enabled); 129 } 130 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 131 132 void clean_acked_data_disable(struct tcp_sock *tp) 133 { 134 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 135 tp->tcp_clean_acked = NULL; 136 } 137 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 138 139 void clean_acked_data_flush(void) 140 { 141 static_key_deferred_flush(&clean_acked_data_enabled); 142 } 143 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 144 #endif 145 146 #ifdef CONFIG_CGROUP_BPF 147 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 148 { 149 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 150 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 151 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 152 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 153 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 154 struct bpf_sock_ops_kern sock_ops; 155 156 if (likely(!unknown_opt && !parse_all_opt)) 157 return; 158 159 /* The skb will be handled in the 160 * bpf_skops_established() or 161 * bpf_skops_write_hdr_opt(). 162 */ 163 switch (sk->sk_state) { 164 case TCP_SYN_RECV: 165 case TCP_SYN_SENT: 166 case TCP_LISTEN: 167 return; 168 } 169 170 sock_owned_by_me(sk); 171 172 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 173 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 174 sock_ops.is_fullsock = 1; 175 sock_ops.is_locked_tcp_sock = 1; 176 sock_ops.sk = sk; 177 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 178 179 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 180 } 181 182 static void bpf_skops_established(struct sock *sk, int bpf_op, 183 struct sk_buff *skb) 184 { 185 struct bpf_sock_ops_kern sock_ops; 186 187 sock_owned_by_me(sk); 188 189 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 190 sock_ops.op = bpf_op; 191 sock_ops.is_fullsock = 1; 192 sock_ops.is_locked_tcp_sock = 1; 193 sock_ops.sk = sk; 194 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 195 if (skb) 196 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 197 198 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 199 } 200 #else 201 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 202 { 203 } 204 205 static void bpf_skops_established(struct sock *sk, int bpf_op, 206 struct sk_buff *skb) 207 { 208 } 209 #endif 210 211 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 212 unsigned int len) 213 { 214 struct net_device *dev; 215 216 rcu_read_lock(); 217 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 218 if (!dev || len >= READ_ONCE(dev->mtu)) 219 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 220 dev ? dev->name : "Unknown driver"); 221 rcu_read_unlock(); 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 247 248 do_div(val, skb->truesize); 249 tcp_sk(sk)->scaling_ratio = val ? val : 1; 250 251 if (old_ratio != tcp_sk(sk)->scaling_ratio) { 252 struct tcp_sock *tp = tcp_sk(sk); 253 254 val = tcp_win_from_space(sk, sk->sk_rcvbuf); 255 tcp_set_window_clamp(sk, val); 256 257 if (tp->window_clamp < tp->rcvq_space.space) 258 tp->rcvq_space.space = tp->window_clamp; 259 } 260 } 261 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 262 tcp_sk(sk)->advmss); 263 /* Account for possibly-removed options */ 264 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 265 tcp_gro_dev_warn, sk, skb, len); 266 /* If the skb has a len of exactly 1*MSS and has the PSH bit 267 * set then it is likely the end of an application write. So 268 * more data may not be arriving soon, and yet the data sender 269 * may be waiting for an ACK if cwnd-bound or using TX zero 270 * copy. So we set ICSK_ACK_PUSHED here so that 271 * tcp_cleanup_rbuf() will send an ACK immediately if the app 272 * reads all of the data and is not ping-pong. If len > MSS 273 * then this logic does not matter (and does not hurt) because 274 * tcp_cleanup_rbuf() will always ACK immediately if the app 275 * reads data and there is more than an MSS of unACKed data. 276 */ 277 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 278 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 279 } else { 280 /* Otherwise, we make more careful check taking into account, 281 * that SACKs block is variable. 282 * 283 * "len" is invariant segment length, including TCP header. 284 */ 285 len += skb->data - skb_transport_header(skb); 286 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 287 /* If PSH is not set, packet should be 288 * full sized, provided peer TCP is not badly broken. 289 * This observation (if it is correct 8)) allows 290 * to handle super-low mtu links fairly. 291 */ 292 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 293 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 294 /* Subtract also invariant (if peer is RFC compliant), 295 * tcp header plus fixed timestamp option length. 296 * Resulting "len" is MSS free of SACK jitter. 297 */ 298 len -= tcp_sk(sk)->tcp_header_len; 299 icsk->icsk_ack.last_seg_size = len; 300 if (len == lss) { 301 icsk->icsk_ack.rcv_mss = len; 302 return; 303 } 304 } 305 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 306 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 307 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 308 } 309 } 310 311 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 312 { 313 struct inet_connection_sock *icsk = inet_csk(sk); 314 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 315 316 if (quickacks == 0) 317 quickacks = 2; 318 quickacks = min(quickacks, max_quickacks); 319 if (quickacks > icsk->icsk_ack.quick) 320 icsk->icsk_ack.quick = quickacks; 321 } 322 323 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 324 { 325 struct inet_connection_sock *icsk = inet_csk(sk); 326 327 tcp_incr_quickack(sk, max_quickacks); 328 inet_csk_exit_pingpong_mode(sk); 329 icsk->icsk_ack.ato = TCP_ATO_MIN; 330 } 331 332 /* Send ACKs quickly, if "quick" count is not exhausted 333 * and the session is not interactive. 334 */ 335 336 static bool tcp_in_quickack_mode(struct sock *sk) 337 { 338 const struct inet_connection_sock *icsk = inet_csk(sk); 339 340 return icsk->icsk_ack.dst_quick_ack || 341 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 342 } 343 344 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb) 345 { 346 struct tcp_sock *tp = tcp_sk(sk); 347 348 if (tcp_ecn_disabled(tp)) 349 return; 350 351 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 352 case INET_ECN_NOT_ECT: 353 /* Funny extension: if ECT is not set on a segment, 354 * and we already seen ECT on a previous segment, 355 * it is probably a retransmit. 356 */ 357 if (tp->ecn_flags & TCP_ECN_SEEN) 358 tcp_enter_quickack_mode(sk, 2); 359 break; 360 case INET_ECN_CE: 361 if (tcp_ca_needs_ecn(sk)) 362 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 363 364 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR) && 365 tcp_ecn_mode_rfc3168(tp)) { 366 /* Better not delay acks, sender can have a very low cwnd */ 367 tcp_enter_quickack_mode(sk, 2); 368 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 369 } 370 /* As for RFC3168 ECN, the TCP_ECN_SEEN flag is set by 371 * tcp_data_ecn_check() when the ECN codepoint of 372 * received TCP data contains ECT(0), ECT(1), or CE. 373 */ 374 if (!tcp_ecn_mode_rfc3168(tp)) 375 break; 376 tp->ecn_flags |= TCP_ECN_SEEN; 377 break; 378 default: 379 if (tcp_ca_needs_ecn(sk)) 380 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 381 if (!tcp_ecn_mode_rfc3168(tp)) 382 break; 383 tp->ecn_flags |= TCP_ECN_SEEN; 384 break; 385 } 386 } 387 388 /* Returns true if the byte counters can be used */ 389 static bool tcp_accecn_process_option(struct tcp_sock *tp, 390 const struct sk_buff *skb, 391 u32 delivered_bytes, int flag) 392 { 393 u8 estimate_ecnfield = tp->est_ecnfield; 394 bool ambiguous_ecn_bytes_incr = false; 395 bool first_changed = false; 396 unsigned int optlen; 397 bool order1, res; 398 unsigned int i; 399 u8 *ptr; 400 401 if (tcp_accecn_opt_fail_recv(tp)) 402 return false; 403 404 if (!(flag & FLAG_SLOWPATH) || !tp->rx_opt.accecn) { 405 if (!tp->saw_accecn_opt) { 406 /* Too late to enable after this point due to 407 * potential counter wraps 408 */ 409 if (tp->bytes_sent >= (1 << 23) - 1) { 410 u8 saw_opt = TCP_ACCECN_OPT_FAIL_SEEN; 411 412 tcp_accecn_saw_opt_fail_recv(tp, saw_opt); 413 } 414 return false; 415 } 416 417 if (estimate_ecnfield) { 418 u8 ecnfield = estimate_ecnfield - 1; 419 420 tp->delivered_ecn_bytes[ecnfield] += delivered_bytes; 421 return true; 422 } 423 return false; 424 } 425 426 ptr = skb_transport_header(skb) + tp->rx_opt.accecn; 427 optlen = ptr[1] - 2; 428 if (WARN_ON_ONCE(ptr[0] != TCPOPT_ACCECN0 && ptr[0] != TCPOPT_ACCECN1)) 429 return false; 430 order1 = (ptr[0] == TCPOPT_ACCECN1); 431 ptr += 2; 432 433 if (tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) { 434 tp->saw_accecn_opt = tcp_accecn_option_init(skb, 435 tp->rx_opt.accecn); 436 if (tp->saw_accecn_opt == TCP_ACCECN_OPT_FAIL_SEEN) 437 tcp_accecn_fail_mode_set(tp, TCP_ACCECN_OPT_FAIL_RECV); 438 } 439 440 res = !!estimate_ecnfield; 441 for (i = 0; i < 3; i++) { 442 u32 init_offset; 443 u8 ecnfield; 444 s32 delta; 445 u32 *cnt; 446 447 if (optlen < TCPOLEN_ACCECN_PERFIELD) 448 break; 449 450 ecnfield = tcp_accecn_optfield_to_ecnfield(i, order1); 451 init_offset = tcp_accecn_field_init_offset(ecnfield); 452 cnt = &tp->delivered_ecn_bytes[ecnfield - 1]; 453 delta = tcp_update_ecn_bytes(cnt, ptr, init_offset); 454 if (delta && delta < 0) { 455 res = false; 456 ambiguous_ecn_bytes_incr = true; 457 } 458 if (delta && ecnfield != estimate_ecnfield) { 459 if (!first_changed) { 460 tp->est_ecnfield = ecnfield; 461 first_changed = true; 462 } else { 463 res = false; 464 ambiguous_ecn_bytes_incr = true; 465 } 466 } 467 468 optlen -= TCPOLEN_ACCECN_PERFIELD; 469 ptr += TCPOLEN_ACCECN_PERFIELD; 470 } 471 if (ambiguous_ecn_bytes_incr) 472 tp->est_ecnfield = 0; 473 474 return res; 475 } 476 477 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count) 478 { 479 tp->delivered_ce += ecn_count; 480 } 481 482 /* Updates the delivered and delivered_ce counts */ 483 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 484 bool ece_ack) 485 { 486 tp->delivered += delivered; 487 if (tcp_ecn_mode_rfc3168(tp) && ece_ack) 488 tcp_count_delivered_ce(tp, delivered); 489 } 490 491 #define PKTS_ACKED_WEIGHT 6 492 #define PKTS_ACKED_PREC 6 493 #define ACK_COMP_THRESH 4 494 495 /* Returns the ECN CE delta */ 496 static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb, 497 u32 delivered_pkts, u32 delivered_bytes, 498 int flag) 499 { 500 u32 old_ceb = tcp_sk(sk)->delivered_ecn_bytes[INET_ECN_CE - 1]; 501 const struct tcphdr *th = tcp_hdr(skb); 502 struct tcp_sock *tp = tcp_sk(sk); 503 u32 delta, safe_delta, d_ceb; 504 bool opt_deltas_valid; 505 u32 corrected_ace; 506 u32 ewma; 507 508 /* Reordered ACK or uncertain due to lack of data to send and ts */ 509 if (!(flag & (FLAG_FORWARD_PROGRESS | FLAG_TS_PROGRESS))) 510 return 0; 511 512 opt_deltas_valid = tcp_accecn_process_option(tp, skb, 513 delivered_bytes, flag); 514 515 if (delivered_pkts) { 516 if (!tp->pkts_acked_ewma) { 517 ewma = delivered_pkts << PKTS_ACKED_PREC; 518 } else { 519 ewma = tp->pkts_acked_ewma; 520 ewma = (((ewma << PKTS_ACKED_WEIGHT) - ewma) + 521 (delivered_pkts << PKTS_ACKED_PREC)) >> 522 PKTS_ACKED_WEIGHT; 523 } 524 tp->pkts_acked_ewma = min_t(u32, ewma, 0xFFFFU); 525 } 526 527 if (!(flag & FLAG_SLOWPATH)) { 528 /* AccECN counter might overflow on large ACKs */ 529 if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK) 530 return 0; 531 } 532 533 /* ACE field is not available during handshake */ 534 if (flag & FLAG_SYN_ACKED) 535 return 0; 536 537 if (tp->received_ce_pending >= TCP_ACCECN_ACE_MAX_DELTA) 538 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 539 540 corrected_ace = tcp_accecn_ace(th) - TCP_ACCECN_CEP_INIT_OFFSET; 541 delta = (corrected_ace - tp->delivered_ce) & TCP_ACCECN_CEP_ACE_MASK; 542 if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK) 543 return delta; 544 545 safe_delta = delivered_pkts - 546 ((delivered_pkts - delta) & TCP_ACCECN_CEP_ACE_MASK); 547 548 if (opt_deltas_valid) { 549 d_ceb = tp->delivered_ecn_bytes[INET_ECN_CE - 1] - old_ceb; 550 if (!d_ceb) 551 return delta; 552 553 if ((delivered_pkts >= (TCP_ACCECN_CEP_ACE_MASK + 1) * 2) && 554 (tcp_is_sack(tp) || 555 ((1 << inet_csk(sk)->icsk_ca_state) & 556 (TCPF_CA_Open | TCPF_CA_CWR)))) { 557 u32 est_d_cep; 558 559 if (delivered_bytes <= d_ceb) 560 return safe_delta; 561 562 est_d_cep = DIV_ROUND_UP_ULL((u64)d_ceb * 563 delivered_pkts, 564 delivered_bytes); 565 return min(safe_delta, 566 delta + 567 (est_d_cep & ~TCP_ACCECN_CEP_ACE_MASK)); 568 } 569 570 if (d_ceb > delta * tp->mss_cache) 571 return safe_delta; 572 if (d_ceb < 573 safe_delta * tp->mss_cache >> TCP_ACCECN_SAFETY_SHIFT) 574 return delta; 575 } else if (tp->pkts_acked_ewma > (ACK_COMP_THRESH << PKTS_ACKED_PREC)) 576 return delta; 577 578 return safe_delta; 579 } 580 581 static u32 tcp_accecn_process(struct sock *sk, const struct sk_buff *skb, 582 u32 delivered_pkts, u32 delivered_bytes, 583 int *flag) 584 { 585 struct tcp_sock *tp = tcp_sk(sk); 586 u32 delta; 587 588 delta = __tcp_accecn_process(sk, skb, delivered_pkts, 589 delivered_bytes, *flag); 590 if (delta > 0) { 591 tcp_count_delivered_ce(tp, delta); 592 *flag |= FLAG_ECE; 593 /* Recalculate header predictor */ 594 if (tp->pred_flags) 595 tcp_fast_path_on(tp); 596 } 597 return delta; 598 } 599 600 /* Buffer size and advertised window tuning. 601 * 602 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 603 */ 604 605 static void tcp_sndbuf_expand(struct sock *sk) 606 { 607 const struct tcp_sock *tp = tcp_sk(sk); 608 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 609 int sndmem, per_mss; 610 u32 nr_segs; 611 612 /* Worst case is non GSO/TSO : each frame consumes one skb 613 * and skb->head is kmalloced using power of two area of memory 614 */ 615 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 616 MAX_TCP_HEADER + 617 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 618 619 per_mss = roundup_pow_of_two(per_mss) + 620 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 621 622 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 623 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 624 625 /* Fast Recovery (RFC 5681 3.2) : 626 * Cubic needs 1.7 factor, rounded to 2 to include 627 * extra cushion (application might react slowly to EPOLLOUT) 628 */ 629 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 630 sndmem *= nr_segs * per_mss; 631 632 if (sk->sk_sndbuf < sndmem) 633 WRITE_ONCE(sk->sk_sndbuf, 634 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 635 } 636 637 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 638 * 639 * All tcp_full_space() is split to two parts: "network" buffer, allocated 640 * forward and advertised in receiver window (tp->rcv_wnd) and 641 * "application buffer", required to isolate scheduling/application 642 * latencies from network. 643 * window_clamp is maximal advertised window. It can be less than 644 * tcp_full_space(), in this case tcp_full_space() - window_clamp 645 * is reserved for "application" buffer. The less window_clamp is 646 * the smoother our behaviour from viewpoint of network, but the lower 647 * throughput and the higher sensitivity of the connection to losses. 8) 648 * 649 * rcv_ssthresh is more strict window_clamp used at "slow start" 650 * phase to predict further behaviour of this connection. 651 * It is used for two goals: 652 * - to enforce header prediction at sender, even when application 653 * requires some significant "application buffer". It is check #1. 654 * - to prevent pruning of receive queue because of misprediction 655 * of receiver window. Check #2. 656 * 657 * The scheme does not work when sender sends good segments opening 658 * window and then starts to feed us spaghetti. But it should work 659 * in common situations. Otherwise, we have to rely on queue collapsing. 660 */ 661 662 /* Slow part of check#2. */ 663 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 664 unsigned int skbtruesize) 665 { 666 const struct tcp_sock *tp = tcp_sk(sk); 667 /* Optimize this! */ 668 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 669 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 670 671 while (tp->rcv_ssthresh <= window) { 672 if (truesize <= skb->len) 673 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 674 675 truesize >>= 1; 676 window >>= 1; 677 } 678 return 0; 679 } 680 681 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 682 * can play nice with us, as sk_buff and skb->head might be either 683 * freed or shared with up to MAX_SKB_FRAGS segments. 684 * Only give a boost to drivers using page frag(s) to hold the frame(s), 685 * and if no payload was pulled in skb->head before reaching us. 686 */ 687 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 688 { 689 u32 truesize = skb->truesize; 690 691 if (adjust && !skb_headlen(skb)) { 692 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 693 /* paranoid check, some drivers might be buggy */ 694 if (unlikely((int)truesize < (int)skb->len)) 695 truesize = skb->truesize; 696 } 697 return truesize; 698 } 699 700 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 701 bool adjust) 702 { 703 struct tcp_sock *tp = tcp_sk(sk); 704 int room; 705 706 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 707 708 if (room <= 0) 709 return; 710 711 /* Check #1 */ 712 if (!tcp_under_memory_pressure(sk)) { 713 unsigned int truesize = truesize_adjust(adjust, skb); 714 int incr; 715 716 /* Check #2. Increase window, if skb with such overhead 717 * will fit to rcvbuf in future. 718 */ 719 if (tcp_win_from_space(sk, truesize) <= skb->len) 720 incr = 2 * tp->advmss; 721 else 722 incr = __tcp_grow_window(sk, skb, truesize); 723 724 if (incr) { 725 incr = max_t(int, incr, 2 * skb->len); 726 tp->rcv_ssthresh += min(room, incr); 727 inet_csk(sk)->icsk_ack.quick |= 1; 728 } 729 } else { 730 /* Under pressure: 731 * Adjust rcv_ssthresh according to reserved mem 732 */ 733 tcp_adjust_rcv_ssthresh(sk); 734 } 735 } 736 737 /* 3. Try to fixup all. It is made immediately after connection enters 738 * established state. 739 */ 740 static void tcp_init_buffer_space(struct sock *sk) 741 { 742 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 743 struct tcp_sock *tp = tcp_sk(sk); 744 int maxwin; 745 746 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 747 tcp_sndbuf_expand(sk); 748 749 tcp_mstamp_refresh(tp); 750 tp->rcvq_space.time = tp->tcp_mstamp; 751 tp->rcvq_space.seq = tp->copied_seq; 752 753 maxwin = tcp_full_space(sk); 754 755 if (tp->window_clamp >= maxwin) { 756 WRITE_ONCE(tp->window_clamp, maxwin); 757 758 if (tcp_app_win && maxwin > 4 * tp->advmss) 759 WRITE_ONCE(tp->window_clamp, 760 max(maxwin - (maxwin >> tcp_app_win), 761 4 * tp->advmss)); 762 } 763 764 /* Force reservation of one segment. */ 765 if (tcp_app_win && 766 tp->window_clamp > 2 * tp->advmss && 767 tp->window_clamp + tp->advmss > maxwin) 768 WRITE_ONCE(tp->window_clamp, 769 max(2 * tp->advmss, maxwin - tp->advmss)); 770 771 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 772 tp->snd_cwnd_stamp = tcp_jiffies32; 773 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 774 (u32)TCP_INIT_CWND * tp->advmss); 775 } 776 777 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 778 static void tcp_clamp_window(struct sock *sk) 779 { 780 struct tcp_sock *tp = tcp_sk(sk); 781 struct inet_connection_sock *icsk = inet_csk(sk); 782 struct net *net = sock_net(sk); 783 int rmem2; 784 785 icsk->icsk_ack.quick = 0; 786 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 787 788 if (sk->sk_rcvbuf < rmem2 && 789 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 790 !tcp_under_memory_pressure(sk) && 791 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 792 WRITE_ONCE(sk->sk_rcvbuf, 793 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 794 } 795 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 796 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 797 } 798 799 /* Initialize RCV_MSS value. 800 * RCV_MSS is an our guess about MSS used by the peer. 801 * We haven't any direct information about the MSS. 802 * It's better to underestimate the RCV_MSS rather than overestimate. 803 * Overestimations make us ACKing less frequently than needed. 804 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 805 */ 806 void tcp_initialize_rcv_mss(struct sock *sk) 807 { 808 const struct tcp_sock *tp = tcp_sk(sk); 809 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 810 811 hint = min(hint, tp->rcv_wnd / 2); 812 hint = min(hint, TCP_MSS_DEFAULT); 813 hint = max(hint, TCP_MIN_MSS); 814 815 inet_csk(sk)->icsk_ack.rcv_mss = hint; 816 } 817 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss); 818 819 /* Receiver "autotuning" code. 820 * 821 * The algorithm for RTT estimation w/o timestamps is based on 822 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 823 * <https://public.lanl.gov/radiant/pubs.html#DRS> 824 * 825 * More detail on this code can be found at 826 * <http://staff.psc.edu/jheffner/>, 827 * though this reference is out of date. A new paper 828 * is pending. 829 */ 830 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 831 { 832 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us; 833 long m = sample << 3; 834 835 if (old_sample == 0 || m < old_sample) { 836 new_sample = m; 837 } else { 838 /* If we sample in larger samples in the non-timestamp 839 * case, we could grossly overestimate the RTT especially 840 * with chatty applications or bulk transfer apps which 841 * are stalled on filesystem I/O. 842 * 843 * Also, since we are only going for a minimum in the 844 * non-timestamp case, we do not smooth things out 845 * else with timestamps disabled convergence takes too 846 * long. 847 */ 848 if (win_dep) 849 return; 850 /* Do not use this sample if receive queue is not empty. */ 851 if (tp->rcv_nxt != tp->copied_seq) 852 return; 853 new_sample = old_sample - (old_sample >> 3) + sample; 854 } 855 856 tp->rcv_rtt_est.rtt_us = new_sample; 857 } 858 859 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 860 { 861 u32 delta_us; 862 863 if (tp->rcv_rtt_est.time == 0) 864 goto new_measure; 865 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 866 return; 867 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 868 if (!delta_us) 869 delta_us = 1; 870 tcp_rcv_rtt_update(tp, delta_us, 1); 871 872 new_measure: 873 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 874 tp->rcv_rtt_est.time = tp->tcp_mstamp; 875 } 876 877 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta) 878 { 879 u32 delta, delta_us; 880 881 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 882 if (tp->tcp_usec_ts) 883 return delta; 884 885 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 886 if (!delta) 887 delta = min_delta; 888 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 889 return delta_us; 890 } 891 return -1; 892 } 893 894 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 895 const struct sk_buff *skb) 896 { 897 struct tcp_sock *tp = tcp_sk(sk); 898 899 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 900 return; 901 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 902 903 if (TCP_SKB_CB(skb)->end_seq - 904 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 905 s32 delta = tcp_rtt_tsopt_us(tp, 0); 906 907 if (delta > 0) 908 tcp_rcv_rtt_update(tp, delta, 0); 909 } 910 } 911 912 void tcp_rcvbuf_grow(struct sock *sk, u32 newval) 913 { 914 const struct net *net = sock_net(sk); 915 struct tcp_sock *tp = tcp_sk(sk); 916 u32 rcvwin, rcvbuf, cap, oldval; 917 u32 rtt_threshold, rtt_us; 918 u64 grow; 919 920 oldval = tp->rcvq_space.space; 921 tp->rcvq_space.space = newval; 922 923 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 924 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 925 return; 926 927 /* DRS is always one RTT late. */ 928 rcvwin = newval << 1; 929 930 rtt_us = tp->rcv_rtt_est.rtt_us >> 3; 931 rtt_threshold = READ_ONCE(net->ipv4.sysctl_tcp_rcvbuf_low_rtt); 932 if (rtt_us < rtt_threshold) { 933 /* For small RTT, we set @grow to rcvwin * rtt_us/rtt_threshold. 934 * It might take few additional ms to reach 'line rate', 935 * but will avoid sk_rcvbuf inflation and poor cache use. 936 */ 937 grow = div_u64((u64)rcvwin * rtt_us, rtt_threshold); 938 } else { 939 /* slow start: allow the sender to double its rate. */ 940 grow = div_u64(((u64)rcvwin << 1) * (newval - oldval), oldval); 941 } 942 rcvwin += grow; 943 944 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) 945 rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt; 946 947 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 948 949 rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap); 950 if (rcvbuf > sk->sk_rcvbuf) { 951 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 952 /* Make the window clamp follow along. */ 953 WRITE_ONCE(tp->window_clamp, 954 tcp_win_from_space(sk, rcvbuf)); 955 } 956 } 957 /* 958 * This function should be called every time data is copied to user space. 959 * It calculates the appropriate TCP receive buffer space. 960 */ 961 void tcp_rcv_space_adjust(struct sock *sk) 962 { 963 struct tcp_sock *tp = tcp_sk(sk); 964 int time, inq, copied; 965 966 trace_tcp_rcv_space_adjust(sk); 967 968 if (unlikely(!tp->rcv_rtt_est.rtt_us)) 969 return; 970 971 /* We do not refresh tp->tcp_mstamp here. 972 * Some platforms have expensive ktime_get() implementations. 973 * Using the last cached value is enough for DRS. 974 */ 975 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 976 if (time < (tp->rcv_rtt_est.rtt_us >> 3)) 977 return; 978 979 /* Number of bytes copied to user in last RTT */ 980 copied = tp->copied_seq - tp->rcvq_space.seq; 981 /* Number of bytes in receive queue. */ 982 inq = tp->rcv_nxt - tp->copied_seq; 983 copied -= inq; 984 if (copied <= tp->rcvq_space.space) 985 goto new_measure; 986 987 trace_tcp_rcvbuf_grow(sk, time); 988 989 tcp_rcvbuf_grow(sk, copied); 990 991 new_measure: 992 tp->rcvq_space.seq = tp->copied_seq; 993 tp->rcvq_space.time = tp->tcp_mstamp; 994 } 995 996 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 997 { 998 #if IS_ENABLED(CONFIG_IPV6) 999 struct inet_connection_sock *icsk = inet_csk(sk); 1000 1001 if (skb->protocol == htons(ETH_P_IPV6)) 1002 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 1003 #endif 1004 } 1005 1006 /* There is something which you must keep in mind when you analyze the 1007 * behavior of the tp->ato delayed ack timeout interval. When a 1008 * connection starts up, we want to ack as quickly as possible. The 1009 * problem is that "good" TCP's do slow start at the beginning of data 1010 * transmission. The means that until we send the first few ACK's the 1011 * sender will sit on his end and only queue most of his data, because 1012 * he can only send snd_cwnd unacked packets at any given time. For 1013 * each ACK we send, he increments snd_cwnd and transmits more of his 1014 * queue. -DaveM 1015 */ 1016 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 1017 { 1018 struct tcp_sock *tp = tcp_sk(sk); 1019 struct inet_connection_sock *icsk = inet_csk(sk); 1020 u32 now; 1021 1022 inet_csk_schedule_ack(sk); 1023 1024 tcp_measure_rcv_mss(sk, skb); 1025 1026 tcp_rcv_rtt_measure(tp); 1027 1028 now = tcp_jiffies32; 1029 1030 if (!icsk->icsk_ack.ato) { 1031 /* The _first_ data packet received, initialize 1032 * delayed ACK engine. 1033 */ 1034 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 1035 icsk->icsk_ack.ato = TCP_ATO_MIN; 1036 } else { 1037 int m = now - icsk->icsk_ack.lrcvtime; 1038 1039 if (m <= TCP_ATO_MIN / 2) { 1040 /* The fastest case is the first. */ 1041 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 1042 } else if (m < icsk->icsk_ack.ato) { 1043 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 1044 if (icsk->icsk_ack.ato > icsk->icsk_rto) 1045 icsk->icsk_ack.ato = icsk->icsk_rto; 1046 } else if (m > icsk->icsk_rto) { 1047 /* Too long gap. Apparently sender failed to 1048 * restart window, so that we send ACKs quickly. 1049 */ 1050 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 1051 } 1052 } 1053 icsk->icsk_ack.lrcvtime = now; 1054 tcp_save_lrcv_flowlabel(sk, skb); 1055 1056 tcp_data_ecn_check(sk, skb); 1057 1058 if (skb->len >= 128) 1059 tcp_grow_window(sk, skb, true); 1060 } 1061 1062 /* Called to compute a smoothed rtt estimate. The data fed to this 1063 * routine either comes from timestamps, or from segments that were 1064 * known _not_ to have been retransmitted [see Karn/Partridge 1065 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 1066 * piece by Van Jacobson. 1067 * NOTE: the next three routines used to be one big routine. 1068 * To save cycles in the RFC 1323 implementation it was better to break 1069 * it up into three procedures. -- erics 1070 */ 1071 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 1072 { 1073 struct tcp_sock *tp = tcp_sk(sk); 1074 long m = mrtt_us; /* RTT */ 1075 u32 srtt = tp->srtt_us; 1076 1077 /* The following amusing code comes from Jacobson's 1078 * article in SIGCOMM '88. Note that rtt and mdev 1079 * are scaled versions of rtt and mean deviation. 1080 * This is designed to be as fast as possible 1081 * m stands for "measurement". 1082 * 1083 * On a 1990 paper the rto value is changed to: 1084 * RTO = rtt + 4 * mdev 1085 * 1086 * Funny. This algorithm seems to be very broken. 1087 * These formulae increase RTO, when it should be decreased, increase 1088 * too slowly, when it should be increased quickly, decrease too quickly 1089 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 1090 * does not matter how to _calculate_ it. Seems, it was trap 1091 * that VJ failed to avoid. 8) 1092 */ 1093 if (srtt != 0) { 1094 m -= (srtt >> 3); /* m is now error in rtt est */ 1095 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 1096 if (m < 0) { 1097 m = -m; /* m is now abs(error) */ 1098 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 1099 /* This is similar to one of Eifel findings. 1100 * Eifel blocks mdev updates when rtt decreases. 1101 * This solution is a bit different: we use finer gain 1102 * for mdev in this case (alpha*beta). 1103 * Like Eifel it also prevents growth of rto, 1104 * but also it limits too fast rto decreases, 1105 * happening in pure Eifel. 1106 */ 1107 if (m > 0) 1108 m >>= 3; 1109 } else { 1110 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 1111 } 1112 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 1113 if (tp->mdev_us > tp->mdev_max_us) { 1114 tp->mdev_max_us = tp->mdev_us; 1115 if (tp->mdev_max_us > tp->rttvar_us) 1116 tp->rttvar_us = tp->mdev_max_us; 1117 } 1118 if (after(tp->snd_una, tp->rtt_seq)) { 1119 if (tp->mdev_max_us < tp->rttvar_us) 1120 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 1121 tp->rtt_seq = tp->snd_nxt; 1122 tp->mdev_max_us = tcp_rto_min_us(sk); 1123 1124 tcp_bpf_rtt(sk, mrtt_us, srtt); 1125 } 1126 } else { 1127 /* no previous measure. */ 1128 srtt = m << 3; /* take the measured time to be rtt */ 1129 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 1130 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 1131 tp->mdev_max_us = tp->rttvar_us; 1132 tp->rtt_seq = tp->snd_nxt; 1133 1134 tcp_bpf_rtt(sk, mrtt_us, srtt); 1135 } 1136 tp->srtt_us = max(1U, srtt); 1137 } 1138 1139 void tcp_update_pacing_rate(struct sock *sk) 1140 { 1141 const struct tcp_sock *tp = tcp_sk(sk); 1142 u64 rate; 1143 1144 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 1145 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 1146 1147 /* current rate is (cwnd * mss) / srtt 1148 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 1149 * In Congestion Avoidance phase, set it to 120 % the current rate. 1150 * 1151 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 1152 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 1153 * end of slow start and should slow down. 1154 */ 1155 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 1156 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 1157 else 1158 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 1159 1160 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 1161 1162 if (likely(tp->srtt_us)) 1163 do_div(rate, tp->srtt_us); 1164 1165 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 1166 * without any lock. We want to make sure compiler wont store 1167 * intermediate values in this location. 1168 */ 1169 WRITE_ONCE(sk->sk_pacing_rate, 1170 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 1171 } 1172 1173 /* Calculate rto without backoff. This is the second half of Van Jacobson's 1174 * routine referred to above. 1175 */ 1176 void tcp_set_rto(struct sock *sk) 1177 { 1178 const struct tcp_sock *tp = tcp_sk(sk); 1179 /* Old crap is replaced with new one. 8) 1180 * 1181 * More seriously: 1182 * 1. If rtt variance happened to be less 50msec, it is hallucination. 1183 * It cannot be less due to utterly erratic ACK generation made 1184 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 1185 * to do with delayed acks, because at cwnd>2 true delack timeout 1186 * is invisible. Actually, Linux-2.4 also generates erratic 1187 * ACKs in some circumstances. 1188 */ 1189 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 1190 1191 /* 2. Fixups made earlier cannot be right. 1192 * If we do not estimate RTO correctly without them, 1193 * all the algo is pure shit and should be replaced 1194 * with correct one. It is exactly, which we pretend to do. 1195 */ 1196 1197 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 1198 * guarantees that rto is higher. 1199 */ 1200 tcp_bound_rto(sk); 1201 } 1202 1203 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1204 { 1205 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1206 1207 if (!cwnd) 1208 cwnd = TCP_INIT_CWND; 1209 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1210 } 1211 1212 struct tcp_sacktag_state { 1213 /* Timestamps for earliest and latest never-retransmitted segment 1214 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1215 * but congestion control should still get an accurate delay signal. 1216 */ 1217 u64 first_sackt; 1218 u64 last_sackt; 1219 u32 reord; 1220 u32 sack_delivered; 1221 u32 delivered_bytes; 1222 int flag; 1223 unsigned int mss_now; 1224 struct rate_sample *rate; 1225 }; 1226 1227 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1228 * and spurious retransmission information if this DSACK is unlikely caused by 1229 * sender's action: 1230 * - DSACKed sequence range is larger than maximum receiver's window. 1231 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1232 */ 1233 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1234 u32 end_seq, struct tcp_sacktag_state *state) 1235 { 1236 u32 seq_len, dup_segs = 1; 1237 1238 if (!before(start_seq, end_seq)) 1239 return 0; 1240 1241 seq_len = end_seq - start_seq; 1242 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1243 if (seq_len > tp->max_window) 1244 return 0; 1245 if (seq_len > tp->mss_cache) 1246 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1247 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1248 state->flag |= FLAG_DSACK_TLP; 1249 1250 tp->dsack_dups += dup_segs; 1251 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1252 if (tp->dsack_dups > tp->total_retrans) 1253 return 0; 1254 1255 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1256 /* We increase the RACK ordering window in rounds where we receive 1257 * DSACKs that may have been due to reordering causing RACK to trigger 1258 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1259 * without having seen reordering, or that match TLP probes (TLP 1260 * is timer-driven, not triggered by RACK). 1261 */ 1262 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1263 tp->rack.dsack_seen = 1; 1264 1265 state->flag |= FLAG_DSACKING_ACK; 1266 /* A spurious retransmission is delivered */ 1267 state->sack_delivered += dup_segs; 1268 1269 return dup_segs; 1270 } 1271 1272 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1273 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1274 * distance is approximated in full-mss packet distance ("reordering"). 1275 */ 1276 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1277 const int ts) 1278 { 1279 struct tcp_sock *tp = tcp_sk(sk); 1280 const u32 mss = tp->mss_cache; 1281 u32 fack, metric; 1282 1283 fack = tcp_highest_sack_seq(tp); 1284 if (!before(low_seq, fack)) 1285 return; 1286 1287 metric = fack - low_seq; 1288 if ((metric > tp->reordering * mss) && mss) { 1289 #if FASTRETRANS_DEBUG > 1 1290 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1291 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1292 tp->reordering, 1293 0, 1294 tp->sacked_out, 1295 tp->undo_marker ? tp->undo_retrans : 0); 1296 #endif 1297 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1298 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1299 } 1300 1301 /* This exciting event is worth to be remembered. 8) */ 1302 tp->reord_seen++; 1303 NET_INC_STATS(sock_net(sk), 1304 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1305 } 1306 1307 /* This must be called before lost_out or retrans_out are updated 1308 * on a new loss, because we want to know if all skbs previously 1309 * known to be lost have already been retransmitted, indicating 1310 * that this newly lost skb is our next skb to retransmit. 1311 */ 1312 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1313 { 1314 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1315 (tp->retransmit_skb_hint && 1316 before(TCP_SKB_CB(skb)->seq, 1317 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1318 tp->retransmit_skb_hint = skb; 1319 } 1320 1321 /* Sum the number of packets on the wire we have marked as lost, and 1322 * notify the congestion control module that the given skb was marked lost. 1323 */ 1324 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1325 { 1326 tp->lost += tcp_skb_pcount(skb); 1327 } 1328 1329 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1330 { 1331 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1332 struct tcp_sock *tp = tcp_sk(sk); 1333 1334 if (sacked & TCPCB_SACKED_ACKED) 1335 return; 1336 1337 tcp_verify_retransmit_hint(tp, skb); 1338 if (sacked & TCPCB_LOST) { 1339 if (sacked & TCPCB_SACKED_RETRANS) { 1340 /* Account for retransmits that are lost again */ 1341 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1342 tp->retrans_out -= tcp_skb_pcount(skb); 1343 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1344 tcp_skb_pcount(skb)); 1345 tcp_notify_skb_loss_event(tp, skb); 1346 } 1347 } else { 1348 tp->lost_out += tcp_skb_pcount(skb); 1349 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1350 tcp_notify_skb_loss_event(tp, skb); 1351 } 1352 } 1353 1354 /* This procedure tags the retransmission queue when SACKs arrive. 1355 * 1356 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1357 * Packets in queue with these bits set are counted in variables 1358 * sacked_out, retrans_out and lost_out, correspondingly. 1359 * 1360 * Valid combinations are: 1361 * Tag InFlight Description 1362 * 0 1 - orig segment is in flight. 1363 * S 0 - nothing flies, orig reached receiver. 1364 * L 0 - nothing flies, orig lost by net. 1365 * R 2 - both orig and retransmit are in flight. 1366 * L|R 1 - orig is lost, retransmit is in flight. 1367 * S|R 1 - orig reached receiver, retrans is still in flight. 1368 * (L|S|R is logically valid, it could occur when L|R is sacked, 1369 * but it is equivalent to plain S and code short-circuits it to S. 1370 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1371 * 1372 * These 6 states form finite state machine, controlled by the following events: 1373 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1374 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1375 * 3. Loss detection event of two flavors: 1376 * A. Scoreboard estimator decided the packet is lost. 1377 * A'. Reno "three dupacks" marks head of queue lost. 1378 * B. SACK arrives sacking SND.NXT at the moment, when the 1379 * segment was retransmitted. 1380 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1381 * 1382 * It is pleasant to note, that state diagram turns out to be commutative, 1383 * so that we are allowed not to be bothered by order of our actions, 1384 * when multiple events arrive simultaneously. (see the function below). 1385 * 1386 * Reordering detection. 1387 * -------------------- 1388 * Reordering metric is maximal distance, which a packet can be displaced 1389 * in packet stream. With SACKs we can estimate it: 1390 * 1391 * 1. SACK fills old hole and the corresponding segment was not 1392 * ever retransmitted -> reordering. Alas, we cannot use it 1393 * when segment was retransmitted. 1394 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1395 * for retransmitted and already SACKed segment -> reordering.. 1396 * Both of these heuristics are not used in Loss state, when we cannot 1397 * account for retransmits accurately. 1398 * 1399 * SACK block validation. 1400 * ---------------------- 1401 * 1402 * SACK block range validation checks that the received SACK block fits to 1403 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1404 * Note that SND.UNA is not included to the range though being valid because 1405 * it means that the receiver is rather inconsistent with itself reporting 1406 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1407 * perfectly valid, however, in light of RFC2018 which explicitly states 1408 * that "SACK block MUST reflect the newest segment. Even if the newest 1409 * segment is going to be discarded ...", not that it looks very clever 1410 * in case of head skb. Due to potentional receiver driven attacks, we 1411 * choose to avoid immediate execution of a walk in write queue due to 1412 * reneging and defer head skb's loss recovery to standard loss recovery 1413 * procedure that will eventually trigger (nothing forbids us doing this). 1414 * 1415 * Implements also blockage to start_seq wrap-around. Problem lies in the 1416 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1417 * there's no guarantee that it will be before snd_nxt (n). The problem 1418 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1419 * wrap (s_w): 1420 * 1421 * <- outs wnd -> <- wrapzone -> 1422 * u e n u_w e_w s n_w 1423 * | | | | | | | 1424 * |<------------+------+----- TCP seqno space --------------+---------->| 1425 * ...-- <2^31 ->| |<--------... 1426 * ...---- >2^31 ------>| |<--------... 1427 * 1428 * Current code wouldn't be vulnerable but it's better still to discard such 1429 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1430 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1431 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1432 * equal to the ideal case (infinite seqno space without wrap caused issues). 1433 * 1434 * With D-SACK the lower bound is extended to cover sequence space below 1435 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1436 * again, D-SACK block must not to go across snd_una (for the same reason as 1437 * for the normal SACK blocks, explained above). But there all simplicity 1438 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1439 * fully below undo_marker they do not affect behavior in anyway and can 1440 * therefore be safely ignored. In rare cases (which are more or less 1441 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1442 * fragmentation and packet reordering past skb's retransmission. To consider 1443 * them correctly, the acceptable range must be extended even more though 1444 * the exact amount is rather hard to quantify. However, tp->max_window can 1445 * be used as an exaggerated estimate. 1446 */ 1447 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1448 u32 start_seq, u32 end_seq) 1449 { 1450 /* Too far in future, or reversed (interpretation is ambiguous) */ 1451 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1452 return false; 1453 1454 /* Nasty start_seq wrap-around check (see comments above) */ 1455 if (!before(start_seq, tp->snd_nxt)) 1456 return false; 1457 1458 /* In outstanding window? ...This is valid exit for D-SACKs too. 1459 * start_seq == snd_una is non-sensical (see comments above) 1460 */ 1461 if (after(start_seq, tp->snd_una)) 1462 return true; 1463 1464 if (!is_dsack || !tp->undo_marker) 1465 return false; 1466 1467 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1468 if (after(end_seq, tp->snd_una)) 1469 return false; 1470 1471 if (!before(start_seq, tp->undo_marker)) 1472 return true; 1473 1474 /* Too old */ 1475 if (!after(end_seq, tp->undo_marker)) 1476 return false; 1477 1478 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1479 * start_seq < undo_marker and end_seq >= undo_marker. 1480 */ 1481 return !before(start_seq, end_seq - tp->max_window); 1482 } 1483 1484 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1485 struct tcp_sack_block_wire *sp, int num_sacks, 1486 u32 prior_snd_una, struct tcp_sacktag_state *state) 1487 { 1488 struct tcp_sock *tp = tcp_sk(sk); 1489 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1490 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1491 u32 dup_segs; 1492 1493 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1494 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1495 } else if (num_sacks > 1) { 1496 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1497 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1498 1499 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1500 return false; 1501 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1502 } else { 1503 return false; 1504 } 1505 1506 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1507 if (!dup_segs) { /* Skip dubious DSACK */ 1508 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1509 return false; 1510 } 1511 1512 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1513 1514 /* D-SACK for already forgotten data... Do dumb counting. */ 1515 if (tp->undo_marker && tp->undo_retrans > 0 && 1516 !after(end_seq_0, prior_snd_una) && 1517 after(end_seq_0, tp->undo_marker)) 1518 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1519 1520 return true; 1521 } 1522 1523 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1524 * the incoming SACK may not exactly match but we can find smaller MSS 1525 * aligned portion of it that matches. Therefore we might need to fragment 1526 * which may fail and creates some hassle (caller must handle error case 1527 * returns). 1528 * 1529 * FIXME: this could be merged to shift decision code 1530 */ 1531 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1532 u32 start_seq, u32 end_seq) 1533 { 1534 int err; 1535 bool in_sack; 1536 unsigned int pkt_len; 1537 unsigned int mss; 1538 1539 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1540 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1541 1542 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1543 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1544 mss = tcp_skb_mss(skb); 1545 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1546 1547 if (!in_sack) { 1548 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1549 if (pkt_len < mss) 1550 pkt_len = mss; 1551 } else { 1552 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1553 if (pkt_len < mss) 1554 return -EINVAL; 1555 } 1556 1557 /* Round if necessary so that SACKs cover only full MSSes 1558 * and/or the remaining small portion (if present) 1559 */ 1560 if (pkt_len > mss) { 1561 unsigned int new_len = (pkt_len / mss) * mss; 1562 if (!in_sack && new_len < pkt_len) 1563 new_len += mss; 1564 pkt_len = new_len; 1565 } 1566 1567 if (pkt_len >= skb->len && !in_sack) 1568 return 0; 1569 1570 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1571 pkt_len, mss, GFP_ATOMIC); 1572 if (err < 0) 1573 return err; 1574 } 1575 1576 return in_sack; 1577 } 1578 1579 /* Record the most recently (re)sent time among the (s)acked packets 1580 * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from 1581 * draft-cheng-tcpm-rack-00.txt 1582 */ 1583 static void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, 1584 u32 end_seq, u64 xmit_time) 1585 { 1586 u32 rtt_us; 1587 1588 rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time); 1589 if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) { 1590 /* If the sacked packet was retransmitted, it's ambiguous 1591 * whether the retransmission or the original (or the prior 1592 * retransmission) was sacked. 1593 * 1594 * If the original is lost, there is no ambiguity. Otherwise 1595 * we assume the original can be delayed up to aRTT + min_rtt. 1596 * the aRTT term is bounded by the fast recovery or timeout, 1597 * so it's at least one RTT (i.e., retransmission is at least 1598 * an RTT later). 1599 */ 1600 return; 1601 } 1602 tp->rack.advanced = 1; 1603 tp->rack.rtt_us = rtt_us; 1604 if (tcp_skb_sent_after(xmit_time, tp->rack.mstamp, 1605 end_seq, tp->rack.end_seq)) { 1606 tp->rack.mstamp = xmit_time; 1607 tp->rack.end_seq = end_seq; 1608 } 1609 } 1610 1611 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1612 static u8 tcp_sacktag_one(struct sock *sk, 1613 struct tcp_sacktag_state *state, u8 sacked, 1614 u32 start_seq, u32 end_seq, 1615 int dup_sack, int pcount, u32 plen, 1616 u64 xmit_time) 1617 { 1618 struct tcp_sock *tp = tcp_sk(sk); 1619 1620 /* Account D-SACK for retransmitted packet. */ 1621 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1622 if (tp->undo_marker && tp->undo_retrans > 0 && 1623 after(end_seq, tp->undo_marker)) 1624 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1625 if ((sacked & TCPCB_SACKED_ACKED) && 1626 before(start_seq, state->reord)) 1627 state->reord = start_seq; 1628 } 1629 1630 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1631 if (!after(end_seq, tp->snd_una)) 1632 return sacked; 1633 1634 if (!(sacked & TCPCB_SACKED_ACKED)) { 1635 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1636 1637 if (sacked & TCPCB_SACKED_RETRANS) { 1638 /* If the segment is not tagged as lost, 1639 * we do not clear RETRANS, believing 1640 * that retransmission is still in flight. 1641 */ 1642 if (sacked & TCPCB_LOST) { 1643 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1644 tp->lost_out -= pcount; 1645 tp->retrans_out -= pcount; 1646 } 1647 } else { 1648 if (!(sacked & TCPCB_RETRANS)) { 1649 /* New sack for not retransmitted frame, 1650 * which was in hole. It is reordering. 1651 */ 1652 if (before(start_seq, 1653 tcp_highest_sack_seq(tp)) && 1654 before(start_seq, state->reord)) 1655 state->reord = start_seq; 1656 1657 if (!after(end_seq, tp->high_seq)) 1658 state->flag |= FLAG_ORIG_SACK_ACKED; 1659 if (state->first_sackt == 0) 1660 state->first_sackt = xmit_time; 1661 state->last_sackt = xmit_time; 1662 } 1663 1664 if (sacked & TCPCB_LOST) { 1665 sacked &= ~TCPCB_LOST; 1666 tp->lost_out -= pcount; 1667 } 1668 } 1669 1670 sacked |= TCPCB_SACKED_ACKED; 1671 state->flag |= FLAG_DATA_SACKED; 1672 tp->sacked_out += pcount; 1673 /* Out-of-order packets delivered */ 1674 state->sack_delivered += pcount; 1675 state->delivered_bytes += plen; 1676 } 1677 1678 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1679 * frames and clear it. undo_retrans is decreased above, L|R frames 1680 * are accounted above as well. 1681 */ 1682 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1683 sacked &= ~TCPCB_SACKED_RETRANS; 1684 tp->retrans_out -= pcount; 1685 } 1686 1687 return sacked; 1688 } 1689 1690 /* The bandwidth estimator estimates the rate at which the network 1691 * can currently deliver outbound data packets for this flow. At a high 1692 * level, it operates by taking a delivery rate sample for each ACK. 1693 * 1694 * A rate sample records the rate at which the network delivered packets 1695 * for this flow, calculated over the time interval between the transmission 1696 * of a data packet and the acknowledgment of that packet. 1697 * 1698 * Specifically, over the interval between each transmit and corresponding ACK, 1699 * the estimator generates a delivery rate sample. Typically it uses the rate 1700 * at which packets were acknowledged. However, the approach of using only the 1701 * acknowledgment rate faces a challenge under the prevalent ACK decimation or 1702 * compression: packets can temporarily appear to be delivered much quicker 1703 * than the bottleneck rate. Since it is physically impossible to do that in a 1704 * sustained fashion, when the estimator notices that the ACK rate is faster 1705 * than the transmit rate, it uses the latter: 1706 * 1707 * send_rate = #pkts_delivered/(last_snd_time - first_snd_time) 1708 * ack_rate = #pkts_delivered/(last_ack_time - first_ack_time) 1709 * bw = min(send_rate, ack_rate) 1710 * 1711 * Notice the estimator essentially estimates the goodput, not always the 1712 * network bottleneck link rate when the sending or receiving is limited by 1713 * other factors like applications or receiver window limits. The estimator 1714 * deliberately avoids using the inter-packet spacing approach because that 1715 * approach requires a large number of samples and sophisticated filtering. 1716 * 1717 * TCP flows can often be application-limited in request/response workloads. 1718 * The estimator marks a bandwidth sample as application-limited if there 1719 * was some moment during the sampled window of packets when there was no data 1720 * ready to send in the write queue. 1721 */ 1722 1723 /* Update the connection delivery information and generate a rate sample. */ 1724 static void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1725 bool is_sack_reneg, struct rate_sample *rs) 1726 { 1727 struct tcp_sock *tp = tcp_sk(sk); 1728 u32 snd_us, ack_us; 1729 1730 /* Clear app limited if bubble is acked and gone. */ 1731 if (tp->app_limited && after(tp->delivered, tp->app_limited)) 1732 tp->app_limited = 0; 1733 1734 /* TODO: there are multiple places throughout tcp_ack() to get 1735 * current time. Refactor the code using a new "tcp_acktag_state" 1736 * to carry current time, flags, stats like "tcp_sacktag_state". 1737 */ 1738 if (delivered) 1739 tp->delivered_mstamp = tp->tcp_mstamp; 1740 1741 rs->acked_sacked = delivered; /* freshly ACKed or SACKed */ 1742 rs->losses = lost; /* freshly marked lost */ 1743 /* Return an invalid sample if no timing information is available or 1744 * in recovery from loss with SACK reneging. Rate samples taken during 1745 * a SACK reneging event may overestimate bw by including packets that 1746 * were SACKed before the reneg. 1747 */ 1748 if (!rs->prior_mstamp || is_sack_reneg) { 1749 rs->delivered = -1; 1750 rs->interval_us = -1; 1751 return; 1752 } 1753 rs->delivered = tp->delivered - rs->prior_delivered; 1754 1755 rs->delivered_ce = tp->delivered_ce - rs->prior_delivered_ce; 1756 /* delivered_ce occupies less than 32 bits in the skb control block */ 1757 rs->delivered_ce &= TCPCB_DELIVERED_CE_MASK; 1758 1759 /* Model sending data and receiving ACKs as separate pipeline phases 1760 * for a window. Usually the ACK phase is longer, but with ACK 1761 * compression the send phase can be longer. To be safe we use the 1762 * longer phase. 1763 */ 1764 snd_us = rs->interval_us; /* send phase */ 1765 ack_us = tcp_stamp_us_delta(tp->tcp_mstamp, 1766 rs->prior_mstamp); /* ack phase */ 1767 rs->interval_us = max(snd_us, ack_us); 1768 1769 /* Record both segment send and ack receive intervals */ 1770 rs->snd_interval_us = snd_us; 1771 rs->rcv_interval_us = ack_us; 1772 1773 /* Normally we expect interval_us >= min-rtt. 1774 * Note that rate may still be over-estimated when a spuriously 1775 * retransmistted skb was first (s)acked because "interval_us" 1776 * is under-estimated (up to an RTT). However continuously 1777 * measuring the delivery rate during loss recovery is crucial 1778 * for connections suffer heavy or prolonged losses. 1779 */ 1780 if (unlikely(rs->interval_us < tcp_min_rtt(tp))) { 1781 if (!rs->is_retrans) 1782 pr_debug("tcp rate: %ld %d %u %u %u\n", 1783 rs->interval_us, rs->delivered, 1784 inet_csk(sk)->icsk_ca_state, 1785 tp->rx_opt.sack_ok, tcp_min_rtt(tp)); 1786 rs->interval_us = -1; 1787 return; 1788 } 1789 1790 /* Record the last non-app-limited or the highest app-limited bw */ 1791 if (!rs->is_app_limited || 1792 ((u64)rs->delivered * tp->rate_interval_us >= 1793 (u64)tp->rate_delivered * rs->interval_us)) { 1794 tp->rate_delivered = rs->delivered; 1795 tp->rate_interval_us = rs->interval_us; 1796 tp->rate_app_limited = rs->is_app_limited; 1797 } 1798 } 1799 1800 /* When an skb is sacked or acked, we fill in the rate sample with the (prior) 1801 * delivery information when the skb was last transmitted. 1802 * 1803 * If an ACK (s)acks multiple skbs (e.g., stretched-acks), this function is 1804 * called multiple times. We favor the information from the most recently 1805 * sent skb, i.e., the skb with the most recently sent time and the highest 1806 * sequence. 1807 */ 1808 static void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1809 struct rate_sample *rs) 1810 { 1811 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 1812 struct tcp_sock *tp = tcp_sk(sk); 1813 u64 tx_tstamp; 1814 1815 if (!scb->tx.delivered_mstamp) 1816 return; 1817 1818 tx_tstamp = tcp_skb_timestamp_us(skb); 1819 if (!rs->prior_delivered || 1820 tcp_skb_sent_after(tx_tstamp, tp->first_tx_mstamp, 1821 scb->end_seq, rs->last_end_seq)) { 1822 rs->prior_delivered_ce = scb->tx.delivered_ce; 1823 rs->prior_delivered = scb->tx.delivered; 1824 rs->prior_mstamp = scb->tx.delivered_mstamp; 1825 rs->is_app_limited = scb->tx.is_app_limited; 1826 rs->is_retrans = scb->sacked & TCPCB_RETRANS; 1827 rs->last_end_seq = scb->end_seq; 1828 1829 /* Record send time of most recently ACKed packet: */ 1830 tp->first_tx_mstamp = tx_tstamp; 1831 /* Find the duration of the "send phase" of this window: */ 1832 rs->interval_us = tcp_stamp_us_delta(tp->first_tx_mstamp, 1833 scb->tx.first_tx_mstamp); 1834 1835 } 1836 /* Mark off the skb delivered once it's sacked to avoid being 1837 * used again when it's cumulatively acked. For acked packets 1838 * we don't need to reset since it'll be freed soon. 1839 */ 1840 if (scb->sacked & TCPCB_SACKED_ACKED) 1841 scb->tx.delivered_mstamp = 0; 1842 } 1843 1844 /* Shift newly-SACKed bytes from this skb to the immediately previous 1845 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1846 */ 1847 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1848 struct sk_buff *skb, 1849 struct tcp_sacktag_state *state, 1850 unsigned int pcount, int shifted, int mss, 1851 bool dup_sack) 1852 { 1853 struct tcp_sock *tp = tcp_sk(sk); 1854 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1855 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1856 1857 BUG_ON(!pcount); 1858 1859 /* Adjust counters and hints for the newly sacked sequence 1860 * range but discard the return value since prev is already 1861 * marked. We must tag the range first because the seq 1862 * advancement below implicitly advances 1863 * tcp_highest_sack_seq() when skb is highest_sack. 1864 */ 1865 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1866 start_seq, end_seq, dup_sack, pcount, skb->len, 1867 tcp_skb_timestamp_us(skb)); 1868 tcp_rate_skb_delivered(sk, skb, state->rate); 1869 1870 TCP_SKB_CB(prev)->end_seq += shifted; 1871 TCP_SKB_CB(skb)->seq += shifted; 1872 1873 tcp_skb_pcount_add(prev, pcount); 1874 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1875 tcp_skb_pcount_add(skb, -pcount); 1876 1877 /* When we're adding to gso_segs == 1, gso_size will be zero, 1878 * in theory this shouldn't be necessary but as long as DSACK 1879 * code can come after this skb later on it's better to keep 1880 * setting gso_size to something. 1881 */ 1882 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1883 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1884 1885 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1886 if (tcp_skb_pcount(skb) <= 1) 1887 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1888 1889 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1890 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1891 1892 if (skb->len > 0) { 1893 BUG_ON(!tcp_skb_pcount(skb)); 1894 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1895 return false; 1896 } 1897 1898 /* Whole SKB was eaten :-) */ 1899 1900 if (skb == tp->retransmit_skb_hint) 1901 tp->retransmit_skb_hint = prev; 1902 1903 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1904 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1905 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1906 TCP_SKB_CB(prev)->end_seq++; 1907 1908 if (skb == tcp_highest_sack(sk)) 1909 tcp_advance_highest_sack(sk, skb); 1910 1911 tcp_skb_collapse_tstamp(prev, skb); 1912 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1913 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1914 1915 tcp_rtx_queue_unlink_and_free(skb, sk); 1916 1917 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1918 1919 return true; 1920 } 1921 1922 /* I wish gso_size would have a bit more sane initialization than 1923 * something-or-zero which complicates things 1924 */ 1925 static int tcp_skb_seglen(const struct sk_buff *skb) 1926 { 1927 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1928 } 1929 1930 /* Shifting pages past head area doesn't work */ 1931 static int skb_can_shift(const struct sk_buff *skb) 1932 { 1933 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1934 } 1935 1936 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1937 int pcount, int shiftlen) 1938 { 1939 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1940 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1941 * to make sure not storing more than 65535 * 8 bytes per skb, 1942 * even if current MSS is bigger. 1943 */ 1944 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1945 return 0; 1946 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1947 return 0; 1948 return skb_shift(to, from, shiftlen); 1949 } 1950 1951 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1952 * skb. 1953 */ 1954 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1955 struct tcp_sacktag_state *state, 1956 u32 start_seq, u32 end_seq, 1957 bool dup_sack) 1958 { 1959 struct tcp_sock *tp = tcp_sk(sk); 1960 struct sk_buff *prev; 1961 int mss; 1962 int pcount = 0; 1963 int len; 1964 int in_sack; 1965 1966 /* Normally R but no L won't result in plain S */ 1967 if (!dup_sack && 1968 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1969 goto fallback; 1970 if (!skb_can_shift(skb)) 1971 goto fallback; 1972 /* This frame is about to be dropped (was ACKed). */ 1973 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1974 goto fallback; 1975 1976 /* Can only happen with delayed DSACK + discard craziness */ 1977 prev = skb_rb_prev(skb); 1978 if (!prev) 1979 goto fallback; 1980 1981 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1982 goto fallback; 1983 1984 if (!tcp_skb_can_collapse(prev, skb)) 1985 goto fallback; 1986 1987 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1988 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1989 1990 if (in_sack) { 1991 len = skb->len; 1992 pcount = tcp_skb_pcount(skb); 1993 mss = tcp_skb_seglen(skb); 1994 1995 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1996 * drop this restriction as unnecessary 1997 */ 1998 if (mss != tcp_skb_seglen(prev)) 1999 goto fallback; 2000 } else { 2001 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 2002 goto noop; 2003 /* CHECKME: This is non-MSS split case only?, this will 2004 * cause skipped skbs due to advancing loop btw, original 2005 * has that feature too 2006 */ 2007 if (tcp_skb_pcount(skb) <= 1) 2008 goto noop; 2009 2010 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 2011 if (!in_sack) { 2012 /* TODO: head merge to next could be attempted here 2013 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 2014 * though it might not be worth of the additional hassle 2015 * 2016 * ...we can probably just fallback to what was done 2017 * previously. We could try merging non-SACKed ones 2018 * as well but it probably isn't going to buy off 2019 * because later SACKs might again split them, and 2020 * it would make skb timestamp tracking considerably 2021 * harder problem. 2022 */ 2023 goto fallback; 2024 } 2025 2026 len = end_seq - TCP_SKB_CB(skb)->seq; 2027 BUG_ON(len < 0); 2028 BUG_ON(len > skb->len); 2029 2030 /* MSS boundaries should be honoured or else pcount will 2031 * severely break even though it makes things bit trickier. 2032 * Optimize common case to avoid most of the divides 2033 */ 2034 mss = tcp_skb_mss(skb); 2035 2036 /* TODO: Fix DSACKs to not fragment already SACKed and we can 2037 * drop this restriction as unnecessary 2038 */ 2039 if (mss != tcp_skb_seglen(prev)) 2040 goto fallback; 2041 2042 if (len == mss) { 2043 pcount = 1; 2044 } else if (len < mss) { 2045 goto noop; 2046 } else { 2047 pcount = len / mss; 2048 len = pcount * mss; 2049 } 2050 } 2051 2052 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 2053 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 2054 goto fallback; 2055 2056 if (!tcp_skb_shift(prev, skb, pcount, len)) 2057 goto fallback; 2058 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 2059 goto out; 2060 2061 /* Hole filled allows collapsing with the next as well, this is very 2062 * useful when hole on every nth skb pattern happens 2063 */ 2064 skb = skb_rb_next(prev); 2065 if (!skb) 2066 goto out; 2067 2068 if (!skb_can_shift(skb) || 2069 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 2070 (mss != tcp_skb_seglen(skb))) 2071 goto out; 2072 2073 if (!tcp_skb_can_collapse(prev, skb)) 2074 goto out; 2075 len = skb->len; 2076 pcount = tcp_skb_pcount(skb); 2077 if (tcp_skb_shift(prev, skb, pcount, len)) 2078 tcp_shifted_skb(sk, prev, skb, state, pcount, 2079 len, mss, 0); 2080 2081 out: 2082 return prev; 2083 2084 noop: 2085 return skb; 2086 2087 fallback: 2088 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 2089 return NULL; 2090 } 2091 2092 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 2093 struct tcp_sack_block *next_dup, 2094 struct tcp_sacktag_state *state, 2095 u32 start_seq, u32 end_seq, 2096 bool dup_sack_in) 2097 { 2098 struct tcp_sock *tp = tcp_sk(sk); 2099 struct sk_buff *tmp; 2100 2101 skb_rbtree_walk_from(skb) { 2102 int in_sack = 0; 2103 bool dup_sack = dup_sack_in; 2104 2105 /* queue is in-order => we can short-circuit the walk early */ 2106 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 2107 break; 2108 2109 if (next_dup && 2110 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 2111 in_sack = tcp_match_skb_to_sack(sk, skb, 2112 next_dup->start_seq, 2113 next_dup->end_seq); 2114 if (in_sack > 0) 2115 dup_sack = true; 2116 } 2117 2118 /* skb reference here is a bit tricky to get right, since 2119 * shifting can eat and free both this skb and the next, 2120 * so not even _safe variant of the loop is enough. 2121 */ 2122 if (in_sack <= 0) { 2123 tmp = tcp_shift_skb_data(sk, skb, state, 2124 start_seq, end_seq, dup_sack); 2125 if (tmp) { 2126 if (tmp != skb) { 2127 skb = tmp; 2128 continue; 2129 } 2130 2131 in_sack = 0; 2132 } else { 2133 in_sack = tcp_match_skb_to_sack(sk, skb, 2134 start_seq, 2135 end_seq); 2136 } 2137 } 2138 2139 if (unlikely(in_sack < 0)) 2140 break; 2141 2142 if (in_sack) { 2143 TCP_SKB_CB(skb)->sacked = 2144 tcp_sacktag_one(sk, 2145 state, 2146 TCP_SKB_CB(skb)->sacked, 2147 TCP_SKB_CB(skb)->seq, 2148 TCP_SKB_CB(skb)->end_seq, 2149 dup_sack, 2150 tcp_skb_pcount(skb), 2151 skb->len, 2152 tcp_skb_timestamp_us(skb)); 2153 tcp_rate_skb_delivered(sk, skb, state->rate); 2154 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2155 list_del_init(&skb->tcp_tsorted_anchor); 2156 2157 if (!before(TCP_SKB_CB(skb)->seq, 2158 tcp_highest_sack_seq(tp))) 2159 tcp_advance_highest_sack(sk, skb); 2160 } 2161 } 2162 return skb; 2163 } 2164 2165 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 2166 { 2167 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 2168 struct sk_buff *skb; 2169 2170 while (*p) { 2171 parent = *p; 2172 skb = rb_to_skb(parent); 2173 if (before(seq, TCP_SKB_CB(skb)->seq)) { 2174 p = &parent->rb_left; 2175 continue; 2176 } 2177 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 2178 p = &parent->rb_right; 2179 continue; 2180 } 2181 return skb; 2182 } 2183 return NULL; 2184 } 2185 2186 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 2187 u32 skip_to_seq) 2188 { 2189 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 2190 return skb; 2191 2192 return tcp_sacktag_bsearch(sk, skip_to_seq); 2193 } 2194 2195 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 2196 struct sock *sk, 2197 struct tcp_sack_block *next_dup, 2198 struct tcp_sacktag_state *state, 2199 u32 skip_to_seq) 2200 { 2201 if (!next_dup) 2202 return skb; 2203 2204 if (before(next_dup->start_seq, skip_to_seq)) { 2205 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 2206 skb = tcp_sacktag_walk(skb, sk, NULL, state, 2207 next_dup->start_seq, next_dup->end_seq, 2208 1); 2209 } 2210 2211 return skb; 2212 } 2213 2214 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 2215 { 2216 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 2217 } 2218 2219 static int 2220 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 2221 u32 prior_snd_una, struct tcp_sacktag_state *state) 2222 { 2223 struct tcp_sock *tp = tcp_sk(sk); 2224 const unsigned char *ptr = (skb_transport_header(ack_skb) + 2225 TCP_SKB_CB(ack_skb)->sacked); 2226 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 2227 struct tcp_sack_block sp[TCP_NUM_SACKS]; 2228 struct tcp_sack_block *cache; 2229 struct sk_buff *skb; 2230 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 2231 int used_sacks; 2232 bool found_dup_sack = false; 2233 int i, j; 2234 int first_sack_index; 2235 2236 state->flag = 0; 2237 state->reord = tp->snd_nxt; 2238 2239 if (!tp->sacked_out) 2240 tcp_highest_sack_reset(sk); 2241 2242 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 2243 num_sacks, prior_snd_una, state); 2244 2245 /* Eliminate too old ACKs, but take into 2246 * account more or less fresh ones, they can 2247 * contain valid SACK info. 2248 */ 2249 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 2250 return 0; 2251 2252 if (!tp->packets_out) 2253 goto out; 2254 2255 used_sacks = 0; 2256 first_sack_index = 0; 2257 for (i = 0; i < num_sacks; i++) { 2258 bool dup_sack = !i && found_dup_sack; 2259 2260 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 2261 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 2262 2263 if (!tcp_is_sackblock_valid(tp, dup_sack, 2264 sp[used_sacks].start_seq, 2265 sp[used_sacks].end_seq)) { 2266 int mib_idx; 2267 2268 if (dup_sack) { 2269 if (!tp->undo_marker) 2270 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 2271 else 2272 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 2273 } else { 2274 /* Don't count olds caused by ACK reordering */ 2275 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 2276 !after(sp[used_sacks].end_seq, tp->snd_una)) 2277 continue; 2278 mib_idx = LINUX_MIB_TCPSACKDISCARD; 2279 } 2280 2281 NET_INC_STATS(sock_net(sk), mib_idx); 2282 if (i == 0) 2283 first_sack_index = -1; 2284 continue; 2285 } 2286 2287 /* Ignore very old stuff early */ 2288 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 2289 if (i == 0) 2290 first_sack_index = -1; 2291 continue; 2292 } 2293 2294 used_sacks++; 2295 } 2296 2297 /* order SACK blocks to allow in order walk of the retrans queue */ 2298 for (i = used_sacks - 1; i > 0; i--) { 2299 for (j = 0; j < i; j++) { 2300 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 2301 swap(sp[j], sp[j + 1]); 2302 2303 /* Track where the first SACK block goes to */ 2304 if (j == first_sack_index) 2305 first_sack_index = j + 1; 2306 } 2307 } 2308 } 2309 2310 state->mss_now = tcp_current_mss(sk); 2311 skb = NULL; 2312 i = 0; 2313 2314 if (!tp->sacked_out) { 2315 /* It's already past, so skip checking against it */ 2316 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 2317 } else { 2318 cache = tp->recv_sack_cache; 2319 /* Skip empty blocks in at head of the cache */ 2320 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 2321 !cache->end_seq) 2322 cache++; 2323 } 2324 2325 while (i < used_sacks) { 2326 u32 start_seq = sp[i].start_seq; 2327 u32 end_seq = sp[i].end_seq; 2328 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 2329 struct tcp_sack_block *next_dup = NULL; 2330 2331 if (found_dup_sack && ((i + 1) == first_sack_index)) 2332 next_dup = &sp[i + 1]; 2333 2334 /* Skip too early cached blocks */ 2335 while (tcp_sack_cache_ok(tp, cache) && 2336 !before(start_seq, cache->end_seq)) 2337 cache++; 2338 2339 /* Can skip some work by looking recv_sack_cache? */ 2340 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 2341 after(end_seq, cache->start_seq)) { 2342 2343 /* Head todo? */ 2344 if (before(start_seq, cache->start_seq)) { 2345 skb = tcp_sacktag_skip(skb, sk, start_seq); 2346 skb = tcp_sacktag_walk(skb, sk, next_dup, 2347 state, 2348 start_seq, 2349 cache->start_seq, 2350 dup_sack); 2351 } 2352 2353 /* Rest of the block already fully processed? */ 2354 if (!after(end_seq, cache->end_seq)) 2355 goto advance_sp; 2356 2357 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 2358 state, 2359 cache->end_seq); 2360 2361 /* ...tail remains todo... */ 2362 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 2363 /* ...but better entrypoint exists! */ 2364 skb = tcp_highest_sack(sk); 2365 if (!skb) 2366 break; 2367 cache++; 2368 goto walk; 2369 } 2370 2371 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2372 /* Check overlap against next cached too (past this one already) */ 2373 cache++; 2374 continue; 2375 } 2376 2377 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2378 skb = tcp_highest_sack(sk); 2379 if (!skb) 2380 break; 2381 } 2382 skb = tcp_sacktag_skip(skb, sk, start_seq); 2383 2384 walk: 2385 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2386 start_seq, end_seq, dup_sack); 2387 2388 advance_sp: 2389 i++; 2390 } 2391 2392 /* Clear the head of the cache sack blocks so we can skip it next time */ 2393 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2394 tp->recv_sack_cache[i].start_seq = 0; 2395 tp->recv_sack_cache[i].end_seq = 0; 2396 } 2397 for (j = 0; j < used_sacks; j++) 2398 tp->recv_sack_cache[i++] = sp[j]; 2399 2400 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2401 tcp_check_sack_reordering(sk, state->reord, 0); 2402 2403 tcp_verify_left_out(tp); 2404 out: 2405 2406 #if FASTRETRANS_DEBUG > 0 2407 WARN_ON((int)tp->sacked_out < 0); 2408 WARN_ON((int)tp->lost_out < 0); 2409 WARN_ON((int)tp->retrans_out < 0); 2410 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2411 #endif 2412 return state->flag; 2413 } 2414 2415 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2416 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2417 */ 2418 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2419 { 2420 u32 holes; 2421 2422 holes = max(tp->lost_out, 1U); 2423 holes = min(holes, tp->packets_out); 2424 2425 if ((tp->sacked_out + holes) > tp->packets_out) { 2426 tp->sacked_out = tp->packets_out - holes; 2427 return true; 2428 } 2429 return false; 2430 } 2431 2432 /* If we receive more dupacks than we expected counting segments 2433 * in assumption of absent reordering, interpret this as reordering. 2434 * The only another reason could be bug in receiver TCP. 2435 */ 2436 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2437 { 2438 struct tcp_sock *tp = tcp_sk(sk); 2439 2440 if (!tcp_limit_reno_sacked(tp)) 2441 return; 2442 2443 tp->reordering = min_t(u32, tp->packets_out + addend, 2444 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2445 tp->reord_seen++; 2446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2447 } 2448 2449 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2450 2451 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2452 { 2453 if (num_dupack) { 2454 struct tcp_sock *tp = tcp_sk(sk); 2455 u32 prior_sacked = tp->sacked_out; 2456 s32 delivered; 2457 2458 tp->sacked_out += num_dupack; 2459 tcp_check_reno_reordering(sk, 0); 2460 delivered = tp->sacked_out - prior_sacked; 2461 if (delivered > 0) 2462 tcp_count_delivered(tp, delivered, ece_ack); 2463 tcp_verify_left_out(tp); 2464 } 2465 } 2466 2467 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2468 2469 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2470 { 2471 struct tcp_sock *tp = tcp_sk(sk); 2472 2473 if (acked > 0) { 2474 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2475 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2476 ece_ack); 2477 if (acked - 1 >= tp->sacked_out) 2478 tp->sacked_out = 0; 2479 else 2480 tp->sacked_out -= acked - 1; 2481 } 2482 tcp_check_reno_reordering(sk, acked); 2483 tcp_verify_left_out(tp); 2484 } 2485 2486 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2487 { 2488 tp->sacked_out = 0; 2489 } 2490 2491 void tcp_clear_retrans(struct tcp_sock *tp) 2492 { 2493 tp->retrans_out = 0; 2494 tp->lost_out = 0; 2495 tp->undo_marker = 0; 2496 tp->undo_retrans = -1; 2497 tp->sacked_out = 0; 2498 tp->rto_stamp = 0; 2499 tp->total_rto = 0; 2500 tp->total_rto_recoveries = 0; 2501 tp->total_rto_time = 0; 2502 } 2503 2504 static inline void tcp_init_undo(struct tcp_sock *tp) 2505 { 2506 tp->undo_marker = tp->snd_una; 2507 2508 /* Retransmission still in flight may cause DSACKs later. */ 2509 /* First, account for regular retransmits in flight: */ 2510 tp->undo_retrans = tp->retrans_out; 2511 /* Next, account for TLP retransmits in flight: */ 2512 if (tp->tlp_high_seq && tp->tlp_retrans) 2513 tp->undo_retrans++; 2514 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2515 if (!tp->undo_retrans) 2516 tp->undo_retrans = -1; 2517 } 2518 2519 /* If we detect SACK reneging, forget all SACK information 2520 * and reset tags completely, otherwise preserve SACKs. If receiver 2521 * dropped its ofo queue, we will know this due to reneging detection. 2522 */ 2523 static void tcp_timeout_mark_lost(struct sock *sk) 2524 { 2525 struct tcp_sock *tp = tcp_sk(sk); 2526 struct sk_buff *skb, *head; 2527 bool is_reneg; /* is receiver reneging on SACKs? */ 2528 2529 head = tcp_rtx_queue_head(sk); 2530 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2531 if (is_reneg) { 2532 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2533 tp->sacked_out = 0; 2534 /* Mark SACK reneging until we recover from this loss event. */ 2535 tp->is_sack_reneg = 1; 2536 } else if (tcp_is_reno(tp)) { 2537 tcp_reset_reno_sack(tp); 2538 } 2539 2540 skb = head; 2541 skb_rbtree_walk_from(skb) { 2542 if (is_reneg) 2543 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2544 else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0) 2545 continue; /* Don't mark recently sent ones lost yet */ 2546 tcp_mark_skb_lost(sk, skb); 2547 } 2548 tcp_verify_left_out(tp); 2549 tcp_clear_all_retrans_hints(tp); 2550 } 2551 2552 /* Enter Loss state. */ 2553 void tcp_enter_loss(struct sock *sk) 2554 { 2555 const struct inet_connection_sock *icsk = inet_csk(sk); 2556 struct tcp_sock *tp = tcp_sk(sk); 2557 struct net *net = sock_net(sk); 2558 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2559 u8 reordering; 2560 2561 tcp_timeout_mark_lost(sk); 2562 2563 /* Reduce ssthresh if it has not yet been made inside this window. */ 2564 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2565 !after(tp->high_seq, tp->snd_una) || 2566 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2567 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2568 tp->prior_cwnd = tcp_snd_cwnd(tp); 2569 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2570 tcp_ca_event(sk, CA_EVENT_LOSS); 2571 tcp_init_undo(tp); 2572 } 2573 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2574 tp->snd_cwnd_cnt = 0; 2575 tp->snd_cwnd_stamp = tcp_jiffies32; 2576 2577 /* Timeout in disordered state after receiving substantial DUPACKs 2578 * suggests that the degree of reordering is over-estimated. 2579 */ 2580 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2581 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2582 tp->sacked_out >= reordering) 2583 tp->reordering = min_t(unsigned int, tp->reordering, 2584 reordering); 2585 2586 tcp_set_ca_state(sk, TCP_CA_Loss); 2587 tp->high_seq = tp->snd_nxt; 2588 tp->tlp_high_seq = 0; 2589 tcp_ecn_queue_cwr(tp); 2590 2591 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2592 * loss recovery is underway except recurring timeout(s) on 2593 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2594 */ 2595 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2596 (new_recovery || icsk->icsk_retransmits) && 2597 !inet_csk(sk)->icsk_mtup.probe_size; 2598 } 2599 2600 /* If ACK arrived pointing to a remembered SACK, it means that our 2601 * remembered SACKs do not reflect real state of receiver i.e. 2602 * receiver _host_ is heavily congested (or buggy). 2603 * 2604 * To avoid big spurious retransmission bursts due to transient SACK 2605 * scoreboard oddities that look like reneging, we give the receiver a 2606 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2607 * restore sanity to the SACK scoreboard. If the apparent reneging 2608 * persists until this RTO then we'll clear the SACK scoreboard. 2609 */ 2610 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2611 { 2612 if (*ack_flag & FLAG_SACK_RENEGING && 2613 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2614 struct tcp_sock *tp = tcp_sk(sk); 2615 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2616 msecs_to_jiffies(10)); 2617 2618 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false); 2619 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2620 return true; 2621 } 2622 return false; 2623 } 2624 2625 /* Linux NewReno/SACK/ECN state machine. 2626 * -------------------------------------- 2627 * 2628 * "Open" Normal state, no dubious events, fast path. 2629 * "Disorder" In all the respects it is "Open", 2630 * but requires a bit more attention. It is entered when 2631 * we see some SACKs or dupacks. It is split of "Open" 2632 * mainly to move some processing from fast path to slow one. 2633 * "CWR" CWND was reduced due to some Congestion Notification event. 2634 * It can be ECN, ICMP source quench, local device congestion. 2635 * "Recovery" CWND was reduced, we are fast-retransmitting. 2636 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2637 * 2638 * tcp_fastretrans_alert() is entered: 2639 * - each incoming ACK, if state is not "Open" 2640 * - when arrived ACK is unusual, namely: 2641 * * SACK 2642 * * Duplicate ACK. 2643 * * ECN ECE. 2644 * 2645 * Counting packets in flight is pretty simple. 2646 * 2647 * in_flight = packets_out - left_out + retrans_out 2648 * 2649 * packets_out is SND.NXT-SND.UNA counted in packets. 2650 * 2651 * retrans_out is number of retransmitted segments. 2652 * 2653 * left_out is number of segments left network, but not ACKed yet. 2654 * 2655 * left_out = sacked_out + lost_out 2656 * 2657 * sacked_out: Packets, which arrived to receiver out of order 2658 * and hence not ACKed. With SACKs this number is simply 2659 * amount of SACKed data. Even without SACKs 2660 * it is easy to give pretty reliable estimate of this number, 2661 * counting duplicate ACKs. 2662 * 2663 * lost_out: Packets lost by network. TCP has no explicit 2664 * "loss notification" feedback from network (for now). 2665 * It means that this number can be only _guessed_. 2666 * Actually, it is the heuristics to predict lossage that 2667 * distinguishes different algorithms. 2668 * 2669 * F.e. after RTO, when all the queue is considered as lost, 2670 * lost_out = packets_out and in_flight = retrans_out. 2671 * 2672 * Essentially, we have now a few algorithms detecting 2673 * lost packets. 2674 * 2675 * If the receiver supports SACK: 2676 * 2677 * RACK (RFC8985): RACK is a newer loss detection algorithm 2678 * (2017-) that checks timing instead of counting DUPACKs. 2679 * Essentially a packet is considered lost if it's not S/ACKed 2680 * after RTT + reordering_window, where both metrics are 2681 * dynamically measured and adjusted. This is implemented in 2682 * tcp_rack_mark_lost. 2683 * 2684 * If the receiver does not support SACK: 2685 * 2686 * NewReno (RFC6582): in Recovery we assume that one segment 2687 * is lost (classic Reno). While we are in Recovery and 2688 * a partial ACK arrives, we assume that one more packet 2689 * is lost (NewReno). This heuristics are the same in NewReno 2690 * and SACK. 2691 * 2692 * The really tricky (and requiring careful tuning) part of the algorithm 2693 * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue(). 2694 * The first determines the moment _when_ we should reduce CWND and, 2695 * hence, slow down forward transmission. In fact, it determines the moment 2696 * when we decide that hole is caused by loss, rather than by a reorder. 2697 * 2698 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2699 * holes, caused by lost packets. 2700 * 2701 * And the most logically complicated part of algorithm is undo 2702 * heuristics. We detect false retransmits due to both too early 2703 * fast retransmit (reordering) and underestimated RTO, analyzing 2704 * timestamps and D-SACKs. When we detect that some segments were 2705 * retransmitted by mistake and CWND reduction was wrong, we undo 2706 * window reduction and abort recovery phase. This logic is hidden 2707 * inside several functions named tcp_try_undo_<something>. 2708 */ 2709 2710 /* This function decides, when we should leave Disordered state 2711 * and enter Recovery phase, reducing congestion window. 2712 * 2713 * Main question: may we further continue forward transmission 2714 * with the same cwnd? 2715 */ 2716 static bool tcp_time_to_recover(const struct tcp_sock *tp) 2717 { 2718 /* Has loss detection marked at least one packet lost? */ 2719 return tp->lost_out != 0; 2720 } 2721 2722 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2723 { 2724 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2725 before(tp->rx_opt.rcv_tsecr, when); 2726 } 2727 2728 /* skb is spurious retransmitted if the returned timestamp echo 2729 * reply is prior to the skb transmission time 2730 */ 2731 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2732 const struct sk_buff *skb) 2733 { 2734 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2735 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2736 } 2737 2738 /* Nothing was retransmitted or returned timestamp is less 2739 * than timestamp of the first retransmission. 2740 */ 2741 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2742 { 2743 const struct sock *sk = (const struct sock *)tp; 2744 2745 /* Received an echoed timestamp before the first retransmission? */ 2746 if (tp->retrans_stamp) 2747 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2748 2749 /* We set tp->retrans_stamp upon the first retransmission of a loss 2750 * recovery episode, so normally if tp->retrans_stamp is 0 then no 2751 * retransmission has happened yet (likely due to TSQ, which can cause 2752 * fast retransmits to be delayed). So if snd_una advanced while 2753 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed, 2754 * not lost. But there are exceptions where we retransmit but then 2755 * clear tp->retrans_stamp, so we check for those exceptions. 2756 */ 2757 2758 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen() 2759 * clears tp->retrans_stamp when snd_una == high_seq. 2760 */ 2761 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq)) 2762 return false; 2763 2764 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp 2765 * when setting FLAG_SYN_ACKED is set, even if the SYN was 2766 * retransmitted. 2767 */ 2768 if (sk->sk_state == TCP_SYN_SENT) 2769 return false; 2770 2771 return true; /* tp->retrans_stamp is zero; no retransmit yet */ 2772 } 2773 2774 /* Undo procedures. */ 2775 2776 /* We can clear retrans_stamp when there are no retransmissions in the 2777 * window. It would seem that it is trivially available for us in 2778 * tp->retrans_out, however, that kind of assumptions doesn't consider 2779 * what will happen if errors occur when sending retransmission for the 2780 * second time. ...It could the that such segment has only 2781 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2782 * the head skb is enough except for some reneging corner cases that 2783 * are not worth the effort. 2784 * 2785 * Main reason for all this complexity is the fact that connection dying 2786 * time now depends on the validity of the retrans_stamp, in particular, 2787 * that successive retransmissions of a segment must not advance 2788 * retrans_stamp under any conditions. 2789 */ 2790 static bool tcp_any_retrans_done(const struct sock *sk) 2791 { 2792 const struct tcp_sock *tp = tcp_sk(sk); 2793 struct sk_buff *skb; 2794 2795 if (tp->retrans_out) 2796 return true; 2797 2798 skb = tcp_rtx_queue_head(sk); 2799 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2800 return true; 2801 2802 return false; 2803 } 2804 2805 /* If loss recovery is finished and there are no retransmits out in the 2806 * network, then we clear retrans_stamp so that upon the next loss recovery 2807 * retransmits_timed_out() and timestamp-undo are using the correct value. 2808 */ 2809 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2810 { 2811 if (!tcp_any_retrans_done(sk)) 2812 tcp_sk(sk)->retrans_stamp = 0; 2813 } 2814 2815 static void DBGUNDO(struct sock *sk, const char *msg) 2816 { 2817 #if FASTRETRANS_DEBUG > 1 2818 struct tcp_sock *tp = tcp_sk(sk); 2819 struct inet_sock *inet = inet_sk(sk); 2820 2821 if (sk->sk_family == AF_INET) { 2822 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2823 msg, 2824 &inet->inet_daddr, ntohs(inet->inet_dport), 2825 tcp_snd_cwnd(tp), tcp_left_out(tp), 2826 tp->snd_ssthresh, tp->prior_ssthresh, 2827 tp->packets_out); 2828 } 2829 #if IS_ENABLED(CONFIG_IPV6) 2830 else if (sk->sk_family == AF_INET6) { 2831 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2832 msg, 2833 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2834 tcp_snd_cwnd(tp), tcp_left_out(tp), 2835 tp->snd_ssthresh, tp->prior_ssthresh, 2836 tp->packets_out); 2837 } 2838 #endif 2839 #endif 2840 } 2841 2842 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2843 { 2844 struct tcp_sock *tp = tcp_sk(sk); 2845 2846 if (unmark_loss) { 2847 struct sk_buff *skb; 2848 2849 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2850 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2851 } 2852 tp->lost_out = 0; 2853 tcp_clear_all_retrans_hints(tp); 2854 } 2855 2856 if (tp->prior_ssthresh) { 2857 const struct inet_connection_sock *icsk = inet_csk(sk); 2858 2859 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2860 2861 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2862 tp->snd_ssthresh = tp->prior_ssthresh; 2863 tcp_ecn_withdraw_cwr(tp); 2864 } 2865 } 2866 tp->snd_cwnd_stamp = tcp_jiffies32; 2867 tp->undo_marker = 0; 2868 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2869 } 2870 2871 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2872 { 2873 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2874 } 2875 2876 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2877 { 2878 struct tcp_sock *tp = tcp_sk(sk); 2879 2880 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2881 /* Hold old state until something *above* high_seq 2882 * is ACKed. For Reno it is MUST to prevent false 2883 * fast retransmits (RFC2582). SACK TCP is safe. */ 2884 if (!tcp_any_retrans_done(sk)) 2885 tp->retrans_stamp = 0; 2886 return true; 2887 } 2888 return false; 2889 } 2890 2891 /* People celebrate: "We love our President!" */ 2892 static bool tcp_try_undo_recovery(struct sock *sk) 2893 { 2894 struct tcp_sock *tp = tcp_sk(sk); 2895 2896 if (tcp_may_undo(tp)) { 2897 int mib_idx; 2898 2899 /* Happy end! We did not retransmit anything 2900 * or our original transmission succeeded. 2901 */ 2902 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2903 tcp_undo_cwnd_reduction(sk, false); 2904 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2905 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2906 else 2907 mib_idx = LINUX_MIB_TCPFULLUNDO; 2908 2909 NET_INC_STATS(sock_net(sk), mib_idx); 2910 } else if (tp->rack.reo_wnd_persist) { 2911 tp->rack.reo_wnd_persist--; 2912 } 2913 if (tcp_is_non_sack_preventing_reopen(sk)) 2914 return true; 2915 tcp_set_ca_state(sk, TCP_CA_Open); 2916 tp->is_sack_reneg = 0; 2917 return false; 2918 } 2919 2920 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2921 static bool tcp_try_undo_dsack(struct sock *sk) 2922 { 2923 struct tcp_sock *tp = tcp_sk(sk); 2924 2925 if (tp->undo_marker && !tp->undo_retrans) { 2926 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2927 tp->rack.reo_wnd_persist + 1); 2928 DBGUNDO(sk, "D-SACK"); 2929 tcp_undo_cwnd_reduction(sk, false); 2930 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2931 return true; 2932 } 2933 return false; 2934 } 2935 2936 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2937 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2938 { 2939 struct tcp_sock *tp = tcp_sk(sk); 2940 2941 if (frto_undo || tcp_may_undo(tp)) { 2942 tcp_undo_cwnd_reduction(sk, true); 2943 2944 DBGUNDO(sk, "partial loss"); 2945 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2946 if (frto_undo) 2947 NET_INC_STATS(sock_net(sk), 2948 LINUX_MIB_TCPSPURIOUSRTOS); 2949 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 2950 if (tcp_is_non_sack_preventing_reopen(sk)) 2951 return true; 2952 if (frto_undo || tcp_is_sack(tp)) { 2953 tcp_set_ca_state(sk, TCP_CA_Open); 2954 tp->is_sack_reneg = 0; 2955 } 2956 return true; 2957 } 2958 return false; 2959 } 2960 2961 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2962 * It computes the number of packets to send (sndcnt) based on packets newly 2963 * delivered: 2964 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2965 * cwnd reductions across a full RTT. 2966 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2967 * But when SND_UNA is acked without further losses, 2968 * slow starts cwnd up to ssthresh to speed up the recovery. 2969 */ 2970 static void tcp_init_cwnd_reduction(struct sock *sk) 2971 { 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 2974 tp->high_seq = tp->snd_nxt; 2975 tp->tlp_high_seq = 0; 2976 tp->snd_cwnd_cnt = 0; 2977 tp->prior_cwnd = tcp_snd_cwnd(tp); 2978 tp->prr_delivered = 0; 2979 tp->prr_out = 0; 2980 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2981 tcp_ecn_queue_cwr(tp); 2982 } 2983 2984 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2985 { 2986 struct tcp_sock *tp = tcp_sk(sk); 2987 int sndcnt = 0; 2988 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2989 2990 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2991 return; 2992 2993 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag); 2994 2995 tp->prr_delivered += newly_acked_sacked; 2996 if (delta < 0) { 2997 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2998 tp->prior_cwnd - 1; 2999 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 3000 } else { 3001 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 3002 newly_acked_sacked); 3003 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 3004 sndcnt++; 3005 sndcnt = min(delta, sndcnt); 3006 } 3007 /* Force a fast retransmit upon entering fast recovery */ 3008 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 3009 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 3010 } 3011 3012 static inline void tcp_end_cwnd_reduction(struct sock *sk) 3013 { 3014 struct tcp_sock *tp = tcp_sk(sk); 3015 3016 if (inet_csk(sk)->icsk_ca_ops->cong_control) 3017 return; 3018 3019 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 3020 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 3021 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 3022 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 3023 tp->snd_cwnd_stamp = tcp_jiffies32; 3024 } 3025 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 3026 } 3027 3028 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 3029 void tcp_enter_cwr(struct sock *sk) 3030 { 3031 struct tcp_sock *tp = tcp_sk(sk); 3032 3033 tp->prior_ssthresh = 0; 3034 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 3035 tp->undo_marker = 0; 3036 tcp_init_cwnd_reduction(sk); 3037 tcp_set_ca_state(sk, TCP_CA_CWR); 3038 } 3039 } 3040 EXPORT_SYMBOL(tcp_enter_cwr); 3041 3042 static void tcp_try_keep_open(struct sock *sk) 3043 { 3044 struct tcp_sock *tp = tcp_sk(sk); 3045 int state = TCP_CA_Open; 3046 3047 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 3048 state = TCP_CA_Disorder; 3049 3050 if (inet_csk(sk)->icsk_ca_state != state) { 3051 tcp_set_ca_state(sk, state); 3052 tp->high_seq = tp->snd_nxt; 3053 } 3054 } 3055 3056 static void tcp_try_to_open(struct sock *sk, int flag) 3057 { 3058 struct tcp_sock *tp = tcp_sk(sk); 3059 3060 tcp_verify_left_out(tp); 3061 3062 if (!tcp_any_retrans_done(sk)) 3063 tp->retrans_stamp = 0; 3064 3065 if (flag & FLAG_ECE) 3066 tcp_enter_cwr(sk); 3067 3068 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 3069 tcp_try_keep_open(sk); 3070 } 3071 } 3072 3073 static void tcp_mtup_probe_failed(struct sock *sk) 3074 { 3075 struct inet_connection_sock *icsk = inet_csk(sk); 3076 3077 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 3078 icsk->icsk_mtup.probe_size = 0; 3079 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 3080 } 3081 3082 static void tcp_mtup_probe_success(struct sock *sk) 3083 { 3084 struct tcp_sock *tp = tcp_sk(sk); 3085 struct inet_connection_sock *icsk = inet_csk(sk); 3086 u64 val; 3087 3088 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3089 3090 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 3091 do_div(val, icsk->icsk_mtup.probe_size); 3092 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 3093 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 3094 3095 tp->snd_cwnd_cnt = 0; 3096 tp->snd_cwnd_stamp = tcp_jiffies32; 3097 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3098 3099 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 3100 icsk->icsk_mtup.probe_size = 0; 3101 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 3103 } 3104 3105 /* Sometimes we deduce that packets have been dropped due to reasons other than 3106 * congestion, like path MTU reductions or failed client TFO attempts. In these 3107 * cases we call this function to retransmit as many packets as cwnd allows, 3108 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 3109 * non-zero value (and may do so in a later calling context due to TSQ), we 3110 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 3111 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 3112 * are using the correct retrans_stamp and don't declare ETIMEDOUT 3113 * prematurely). 3114 */ 3115 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 3116 { 3117 const struct inet_connection_sock *icsk = inet_csk(sk); 3118 struct tcp_sock *tp = tcp_sk(sk); 3119 3120 if (icsk->icsk_ca_state != TCP_CA_Loss) { 3121 tp->high_seq = tp->snd_nxt; 3122 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3123 tp->prior_ssthresh = 0; 3124 tp->undo_marker = 0; 3125 tcp_set_ca_state(sk, TCP_CA_Loss); 3126 } 3127 tcp_xmit_retransmit_queue(sk); 3128 } 3129 3130 /* Do a simple retransmit without using the backoff mechanisms in 3131 * tcp_timer. This is used for path mtu discovery. 3132 * The socket is already locked here. 3133 */ 3134 void tcp_simple_retransmit(struct sock *sk) 3135 { 3136 struct tcp_sock *tp = tcp_sk(sk); 3137 struct sk_buff *skb; 3138 int mss; 3139 3140 /* A fastopen SYN request is stored as two separate packets within 3141 * the retransmit queue, this is done by tcp_send_syn_data(). 3142 * As a result simply checking the MSS of the frames in the queue 3143 * will not work for the SYN packet. 3144 * 3145 * Us being here is an indication of a path MTU issue so we can 3146 * assume that the fastopen SYN was lost and just mark all the 3147 * frames in the retransmit queue as lost. We will use an MSS of 3148 * -1 to mark all frames as lost, otherwise compute the current MSS. 3149 */ 3150 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 3151 mss = -1; 3152 else 3153 mss = tcp_current_mss(sk); 3154 3155 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 3156 if (tcp_skb_seglen(skb) > mss) 3157 tcp_mark_skb_lost(sk, skb); 3158 } 3159 3160 if (!tp->lost_out) 3161 return; 3162 3163 if (tcp_is_reno(tp)) 3164 tcp_limit_reno_sacked(tp); 3165 3166 tcp_verify_left_out(tp); 3167 3168 /* Don't muck with the congestion window here. 3169 * Reason is that we do not increase amount of _data_ 3170 * in network, but units changed and effective 3171 * cwnd/ssthresh really reduced now. 3172 */ 3173 tcp_non_congestion_loss_retransmit(sk); 3174 } 3175 EXPORT_IPV6_MOD(tcp_simple_retransmit); 3176 3177 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 3178 { 3179 struct tcp_sock *tp = tcp_sk(sk); 3180 int mib_idx; 3181 3182 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 3183 tcp_retrans_stamp_cleanup(sk); 3184 3185 if (tcp_is_reno(tp)) 3186 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3187 else 3188 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3189 3190 NET_INC_STATS(sock_net(sk), mib_idx); 3191 3192 tp->prior_ssthresh = 0; 3193 tcp_init_undo(tp); 3194 3195 if (!tcp_in_cwnd_reduction(sk)) { 3196 if (!ece_ack) 3197 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3198 tcp_init_cwnd_reduction(sk); 3199 } 3200 tcp_set_ca_state(sk, TCP_CA_Recovery); 3201 } 3202 3203 static void tcp_update_rto_time(struct tcp_sock *tp) 3204 { 3205 if (tp->rto_stamp) { 3206 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 3207 tp->rto_stamp = 0; 3208 } 3209 } 3210 3211 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 3212 * recovered or spurious. Otherwise retransmits more on partial ACKs. 3213 */ 3214 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 3215 int *rexmit) 3216 { 3217 struct tcp_sock *tp = tcp_sk(sk); 3218 bool recovered = !before(tp->snd_una, tp->high_seq); 3219 3220 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 3221 tcp_try_undo_loss(sk, false)) 3222 return; 3223 3224 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 3225 /* Step 3.b. A timeout is spurious if not all data are 3226 * lost, i.e., never-retransmitted data are (s)acked. 3227 */ 3228 if ((flag & FLAG_ORIG_SACK_ACKED) && 3229 tcp_try_undo_loss(sk, true)) 3230 return; 3231 3232 if (after(tp->snd_nxt, tp->high_seq)) { 3233 if (flag & FLAG_DATA_SACKED || num_dupack) 3234 tp->frto = 0; /* Step 3.a. loss was real */ 3235 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 3236 tp->high_seq = tp->snd_nxt; 3237 /* Step 2.b. Try send new data (but deferred until cwnd 3238 * is updated in tcp_ack()). Otherwise fall back to 3239 * the conventional recovery. 3240 */ 3241 if (!tcp_write_queue_empty(sk) && 3242 after(tcp_wnd_end(tp), tp->snd_nxt)) { 3243 *rexmit = REXMIT_NEW; 3244 return; 3245 } 3246 tp->frto = 0; 3247 } 3248 } 3249 3250 if (recovered) { 3251 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 3252 tcp_try_undo_recovery(sk); 3253 return; 3254 } 3255 if (tcp_is_reno(tp)) { 3256 /* A Reno DUPACK means new data in F-RTO step 2.b above are 3257 * delivered. Lower inflight to clock out (re)transmissions. 3258 */ 3259 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 3260 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 3261 else if (flag & FLAG_SND_UNA_ADVANCED) 3262 tcp_reset_reno_sack(tp); 3263 } 3264 *rexmit = REXMIT_LOST; 3265 } 3266 3267 /* Undo during fast recovery after partial ACK. */ 3268 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 3269 { 3270 struct tcp_sock *tp = tcp_sk(sk); 3271 3272 if (tp->undo_marker && tcp_packet_delayed(tp)) { 3273 /* Plain luck! Hole if filled with delayed 3274 * packet, rather than with a retransmit. Check reordering. 3275 */ 3276 tcp_check_sack_reordering(sk, prior_snd_una, 1); 3277 3278 /* We are getting evidence that the reordering degree is higher 3279 * than we realized. If there are no retransmits out then we 3280 * can undo. Otherwise we clock out new packets but do not 3281 * mark more packets lost or retransmit more. 3282 */ 3283 if (tp->retrans_out) 3284 return true; 3285 3286 if (!tcp_any_retrans_done(sk)) 3287 tp->retrans_stamp = 0; 3288 3289 DBGUNDO(sk, "partial recovery"); 3290 tcp_undo_cwnd_reduction(sk, true); 3291 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3292 tcp_try_keep_open(sk); 3293 } 3294 return false; 3295 } 3296 3297 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3298 { 3299 struct tcp_sock *tp = tcp_sk(sk); 3300 3301 if (tcp_rtx_queue_empty(sk)) 3302 return; 3303 3304 if (unlikely(tcp_is_reno(tp))) { 3305 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3306 } else { 3307 u32 prior_retrans = tp->retrans_out; 3308 3309 if (tcp_rack_mark_lost(sk)) 3310 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3311 if (prior_retrans > tp->retrans_out) 3312 *ack_flag |= FLAG_LOST_RETRANS; 3313 } 3314 } 3315 3316 /* Process an event, which can update packets-in-flight not trivially. 3317 * Main goal of this function is to calculate new estimate for left_out, 3318 * taking into account both packets sitting in receiver's buffer and 3319 * packets lost by network. 3320 * 3321 * Besides that it updates the congestion state when packet loss or ECN 3322 * is detected. But it does not reduce the cwnd, it is done by the 3323 * congestion control later. 3324 * 3325 * It does _not_ decide what to send, it is made in function 3326 * tcp_xmit_retransmit_queue(). 3327 */ 3328 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3329 int num_dupack, int *ack_flag, int *rexmit) 3330 { 3331 struct inet_connection_sock *icsk = inet_csk(sk); 3332 struct tcp_sock *tp = tcp_sk(sk); 3333 int flag = *ack_flag; 3334 bool ece_ack = flag & FLAG_ECE; 3335 3336 if (!tp->packets_out && tp->sacked_out) 3337 tp->sacked_out = 0; 3338 3339 /* Now state machine starts. 3340 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3341 if (ece_ack) 3342 tp->prior_ssthresh = 0; 3343 3344 /* B. In all the states check for reneging SACKs. */ 3345 if (tcp_check_sack_reneging(sk, ack_flag)) 3346 return; 3347 3348 /* C. Check consistency of the current state. */ 3349 tcp_verify_left_out(tp); 3350 3351 /* D. Check state exit conditions. State can be terminated 3352 * when high_seq is ACKed. */ 3353 if (icsk->icsk_ca_state == TCP_CA_Open) { 3354 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3355 tp->retrans_stamp = 0; 3356 } else if (!before(tp->snd_una, tp->high_seq)) { 3357 switch (icsk->icsk_ca_state) { 3358 case TCP_CA_CWR: 3359 /* CWR is to be held something *above* high_seq 3360 * is ACKed for CWR bit to reach receiver. */ 3361 if (tp->snd_una != tp->high_seq) { 3362 tcp_end_cwnd_reduction(sk); 3363 tcp_set_ca_state(sk, TCP_CA_Open); 3364 } 3365 break; 3366 3367 case TCP_CA_Recovery: 3368 if (tcp_is_reno(tp)) 3369 tcp_reset_reno_sack(tp); 3370 if (tcp_try_undo_recovery(sk)) 3371 return; 3372 tcp_end_cwnd_reduction(sk); 3373 break; 3374 } 3375 } 3376 3377 /* E. Process state. */ 3378 switch (icsk->icsk_ca_state) { 3379 case TCP_CA_Recovery: 3380 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3381 if (tcp_is_reno(tp)) 3382 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3383 } else if (tcp_try_undo_partial(sk, prior_snd_una)) 3384 return; 3385 3386 if (tcp_try_undo_dsack(sk)) 3387 tcp_try_to_open(sk, flag); 3388 3389 tcp_identify_packet_loss(sk, ack_flag); 3390 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3391 if (!tcp_time_to_recover(tp)) 3392 return; 3393 /* Undo reverts the recovery state. If loss is evident, 3394 * starts a new recovery (e.g. reordering then loss); 3395 */ 3396 tcp_enter_recovery(sk, ece_ack); 3397 } 3398 break; 3399 case TCP_CA_Loss: 3400 tcp_process_loss(sk, flag, num_dupack, rexmit); 3401 if (icsk->icsk_ca_state != TCP_CA_Loss) 3402 tcp_update_rto_time(tp); 3403 tcp_identify_packet_loss(sk, ack_flag); 3404 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3405 (*ack_flag & FLAG_LOST_RETRANS))) 3406 return; 3407 /* Change state if cwnd is undone or retransmits are lost */ 3408 fallthrough; 3409 default: 3410 if (tcp_is_reno(tp)) { 3411 if (flag & FLAG_SND_UNA_ADVANCED) 3412 tcp_reset_reno_sack(tp); 3413 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3414 } 3415 3416 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3417 tcp_try_undo_dsack(sk); 3418 3419 tcp_identify_packet_loss(sk, ack_flag); 3420 if (!tcp_time_to_recover(tp)) { 3421 tcp_try_to_open(sk, flag); 3422 return; 3423 } 3424 3425 /* MTU probe failure: don't reduce cwnd */ 3426 if (icsk->icsk_ca_state < TCP_CA_CWR && 3427 icsk->icsk_mtup.probe_size && 3428 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3429 tcp_mtup_probe_failed(sk); 3430 /* Restores the reduction we did in tcp_mtup_probe() */ 3431 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3432 tcp_simple_retransmit(sk); 3433 return; 3434 } 3435 3436 /* Otherwise enter Recovery state */ 3437 tcp_enter_recovery(sk, ece_ack); 3438 } 3439 3440 *rexmit = REXMIT_LOST; 3441 } 3442 3443 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3444 { 3445 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3446 struct tcp_sock *tp = tcp_sk(sk); 3447 3448 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3449 /* If the remote keeps returning delayed ACKs, eventually 3450 * the min filter would pick it up and overestimate the 3451 * prop. delay when it expires. Skip suspected delayed ACKs. 3452 */ 3453 return; 3454 } 3455 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3456 rtt_us ? : jiffies_to_usecs(1)); 3457 } 3458 3459 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3460 long seq_rtt_us, long sack_rtt_us, 3461 long ca_rtt_us, struct rate_sample *rs) 3462 { 3463 const struct tcp_sock *tp = tcp_sk(sk); 3464 3465 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3466 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3467 * Karn's algorithm forbids taking RTT if some retransmitted data 3468 * is acked (RFC6298). 3469 */ 3470 if (seq_rtt_us < 0) 3471 seq_rtt_us = sack_rtt_us; 3472 3473 /* RTTM Rule: A TSecr value received in a segment is used to 3474 * update the averaged RTT measurement only if the segment 3475 * acknowledges some new data, i.e., only if it advances the 3476 * left edge of the send window. 3477 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3478 */ 3479 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3480 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3481 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1); 3482 3483 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3484 if (seq_rtt_us < 0) 3485 return false; 3486 3487 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3488 * always taken together with ACK, SACK, or TS-opts. Any negative 3489 * values will be skipped with the seq_rtt_us < 0 check above. 3490 */ 3491 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3492 tcp_rtt_estimator(sk, seq_rtt_us); 3493 tcp_set_rto(sk); 3494 3495 /* RFC6298: only reset backoff on valid RTT measurement. */ 3496 inet_csk(sk)->icsk_backoff = 0; 3497 return true; 3498 } 3499 3500 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3501 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3502 { 3503 struct rate_sample rs; 3504 long rtt_us = -1L; 3505 3506 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3507 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3508 3509 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3510 } 3511 3512 3513 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3514 { 3515 const struct inet_connection_sock *icsk = inet_csk(sk); 3516 3517 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3518 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3519 } 3520 3521 /* Restart timer after forward progress on connection. 3522 * RFC2988 recommends to restart timer to now+rto. 3523 */ 3524 void tcp_rearm_rto(struct sock *sk) 3525 { 3526 const struct inet_connection_sock *icsk = inet_csk(sk); 3527 struct tcp_sock *tp = tcp_sk(sk); 3528 3529 /* If the retrans timer is currently being used by Fast Open 3530 * for SYN-ACK retrans purpose, stay put. 3531 */ 3532 if (rcu_access_pointer(tp->fastopen_rsk)) 3533 return; 3534 3535 if (!tp->packets_out) { 3536 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3537 } else { 3538 u32 rto = inet_csk(sk)->icsk_rto; 3539 /* Offset the time elapsed after installing regular RTO */ 3540 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3541 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3542 s64 delta_us = tcp_rto_delta_us(sk); 3543 /* delta_us may not be positive if the socket is locked 3544 * when the retrans timer fires and is rescheduled. 3545 */ 3546 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3547 } 3548 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true); 3549 } 3550 } 3551 3552 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3553 static void tcp_set_xmit_timer(struct sock *sk) 3554 { 3555 if (!tcp_schedule_loss_probe(sk, true)) 3556 tcp_rearm_rto(sk); 3557 } 3558 3559 /* If we get here, the whole TSO packet has not been acked. */ 3560 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3561 { 3562 struct tcp_sock *tp = tcp_sk(sk); 3563 u32 packets_acked; 3564 3565 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3566 3567 packets_acked = tcp_skb_pcount(skb); 3568 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3569 return 0; 3570 packets_acked -= tcp_skb_pcount(skb); 3571 3572 if (packets_acked) { 3573 BUG_ON(tcp_skb_pcount(skb) == 0); 3574 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3575 } 3576 3577 return packets_acked; 3578 } 3579 3580 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3581 const struct sk_buff *ack_skb, u32 prior_snd_una) 3582 { 3583 const struct skb_shared_info *shinfo; 3584 3585 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3586 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3587 return; 3588 3589 shinfo = skb_shinfo(skb); 3590 if (!before(shinfo->tskey, prior_snd_una) && 3591 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3592 tcp_skb_tsorted_save(skb) { 3593 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3594 } tcp_skb_tsorted_restore(skb); 3595 } 3596 } 3597 3598 /* Remove acknowledged frames from the retransmission queue. If our packet 3599 * is before the ack sequence we can discard it as it's confirmed to have 3600 * arrived at the other end. 3601 */ 3602 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3603 u32 prior_fack, u32 prior_snd_una, 3604 struct tcp_sacktag_state *sack, bool ece_ack) 3605 { 3606 const struct inet_connection_sock *icsk = inet_csk(sk); 3607 u64 first_ackt, last_ackt; 3608 struct tcp_sock *tp = tcp_sk(sk); 3609 u32 prior_sacked = tp->sacked_out; 3610 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3611 struct sk_buff *skb, *next; 3612 bool fully_acked = true; 3613 long sack_rtt_us = -1L; 3614 long seq_rtt_us = -1L; 3615 long ca_rtt_us = -1L; 3616 u32 pkts_acked = 0; 3617 bool rtt_update; 3618 int flag = 0; 3619 3620 first_ackt = 0; 3621 3622 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3623 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3624 const u32 start_seq = scb->seq; 3625 u8 sacked = scb->sacked; 3626 u32 acked_pcount; 3627 3628 /* Determine how many packets and what bytes were acked, tso and else */ 3629 if (after(scb->end_seq, tp->snd_una)) { 3630 if (tcp_skb_pcount(skb) == 1 || 3631 !after(tp->snd_una, scb->seq)) 3632 break; 3633 3634 acked_pcount = tcp_tso_acked(sk, skb); 3635 if (!acked_pcount) 3636 break; 3637 fully_acked = false; 3638 } else { 3639 acked_pcount = tcp_skb_pcount(skb); 3640 } 3641 3642 if (unlikely(sacked & TCPCB_RETRANS)) { 3643 if (sacked & TCPCB_SACKED_RETRANS) 3644 tp->retrans_out -= acked_pcount; 3645 flag |= FLAG_RETRANS_DATA_ACKED; 3646 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3647 last_ackt = tcp_skb_timestamp_us(skb); 3648 WARN_ON_ONCE(last_ackt == 0); 3649 if (!first_ackt) 3650 first_ackt = last_ackt; 3651 3652 if (before(start_seq, reord)) 3653 reord = start_seq; 3654 if (!after(scb->end_seq, tp->high_seq)) 3655 flag |= FLAG_ORIG_SACK_ACKED; 3656 } 3657 3658 if (sacked & TCPCB_SACKED_ACKED) { 3659 tp->sacked_out -= acked_pcount; 3660 /* snd_una delta covers these skbs */ 3661 sack->delivered_bytes -= skb->len; 3662 } else if (tcp_is_sack(tp)) { 3663 tcp_count_delivered(tp, acked_pcount, ece_ack); 3664 if (!tcp_skb_spurious_retrans(tp, skb)) 3665 tcp_rack_advance(tp, sacked, scb->end_seq, 3666 tcp_skb_timestamp_us(skb)); 3667 } 3668 if (sacked & TCPCB_LOST) 3669 tp->lost_out -= acked_pcount; 3670 3671 tp->packets_out -= acked_pcount; 3672 pkts_acked += acked_pcount; 3673 tcp_rate_skb_delivered(sk, skb, sack->rate); 3674 3675 /* Initial outgoing SYN's get put onto the write_queue 3676 * just like anything else we transmit. It is not 3677 * true data, and if we misinform our callers that 3678 * this ACK acks real data, we will erroneously exit 3679 * connection startup slow start one packet too 3680 * quickly. This is severely frowned upon behavior. 3681 */ 3682 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3683 flag |= FLAG_DATA_ACKED; 3684 } else { 3685 flag |= FLAG_SYN_ACKED; 3686 tp->retrans_stamp = 0; 3687 } 3688 3689 if (!fully_acked) 3690 break; 3691 3692 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3693 3694 next = skb_rb_next(skb); 3695 if (unlikely(skb == tp->retransmit_skb_hint)) 3696 tp->retransmit_skb_hint = NULL; 3697 tcp_highest_sack_replace(sk, skb, next); 3698 tcp_rtx_queue_unlink_and_free(skb, sk); 3699 } 3700 3701 if (!skb) 3702 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3703 3704 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3705 tp->snd_up = tp->snd_una; 3706 3707 if (skb) { 3708 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3709 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3710 flag |= FLAG_SACK_RENEGING; 3711 } 3712 3713 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3714 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3715 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3716 3717 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3718 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3719 sack->rate->prior_delivered + 1 == tp->delivered && 3720 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3721 /* Conservatively mark a delayed ACK. It's typically 3722 * from a lone runt packet over the round trip to 3723 * a receiver w/o out-of-order or CE events. 3724 */ 3725 flag |= FLAG_ACK_MAYBE_DELAYED; 3726 } 3727 } 3728 if (sack->first_sackt) { 3729 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3730 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3731 } 3732 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3733 ca_rtt_us, sack->rate); 3734 3735 if (flag & FLAG_ACKED) { 3736 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3737 if (unlikely(icsk->icsk_mtup.probe_size && 3738 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3739 tcp_mtup_probe_success(sk); 3740 } 3741 3742 if (tcp_is_reno(tp)) { 3743 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3744 3745 /* If any of the cumulatively ACKed segments was 3746 * retransmitted, non-SACK case cannot confirm that 3747 * progress was due to original transmission due to 3748 * lack of TCPCB_SACKED_ACKED bits even if some of 3749 * the packets may have been never retransmitted. 3750 */ 3751 if (flag & FLAG_RETRANS_DATA_ACKED) 3752 flag &= ~FLAG_ORIG_SACK_ACKED; 3753 } else { 3754 /* Non-retransmitted hole got filled? That's reordering */ 3755 if (before(reord, prior_fack)) 3756 tcp_check_sack_reordering(sk, reord, 0); 3757 } 3758 3759 sack->delivered_bytes = (skb ? 3760 TCP_SKB_CB(skb)->seq : tp->snd_una) - 3761 prior_snd_una; 3762 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3763 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3764 tcp_skb_timestamp_us(skb))) { 3765 /* Do not re-arm RTO if the sack RTT is measured from data sent 3766 * after when the head was last (re)transmitted. Otherwise the 3767 * timeout may continue to extend in loss recovery. 3768 */ 3769 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3770 } 3771 3772 if (icsk->icsk_ca_ops->pkts_acked) { 3773 struct ack_sample sample = { .pkts_acked = pkts_acked, 3774 .rtt_us = sack->rate->rtt_us }; 3775 3776 sample.in_flight = tp->mss_cache * 3777 (tp->delivered - sack->rate->prior_delivered); 3778 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3779 } 3780 3781 #if FASTRETRANS_DEBUG > 0 3782 WARN_ON((int)tp->sacked_out < 0); 3783 WARN_ON((int)tp->lost_out < 0); 3784 WARN_ON((int)tp->retrans_out < 0); 3785 if (!tp->packets_out && tcp_is_sack(tp)) { 3786 icsk = inet_csk(sk); 3787 if (tp->lost_out) { 3788 pr_debug("Leak l=%u %d\n", 3789 tp->lost_out, icsk->icsk_ca_state); 3790 tp->lost_out = 0; 3791 } 3792 if (tp->sacked_out) { 3793 pr_debug("Leak s=%u %d\n", 3794 tp->sacked_out, icsk->icsk_ca_state); 3795 tp->sacked_out = 0; 3796 } 3797 if (tp->retrans_out) { 3798 pr_debug("Leak r=%u %d\n", 3799 tp->retrans_out, icsk->icsk_ca_state); 3800 tp->retrans_out = 0; 3801 } 3802 } 3803 #endif 3804 return flag; 3805 } 3806 3807 static void tcp_ack_probe(struct sock *sk) 3808 { 3809 struct inet_connection_sock *icsk = inet_csk(sk); 3810 struct sk_buff *head = tcp_send_head(sk); 3811 const struct tcp_sock *tp = tcp_sk(sk); 3812 3813 /* Was it a usable window open? */ 3814 if (!head) 3815 return; 3816 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3817 icsk->icsk_backoff = 0; 3818 icsk->icsk_probes_tstamp = 0; 3819 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3820 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3821 * This function is not for random using! 3822 */ 3823 } else { 3824 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk)); 3825 3826 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3827 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true); 3828 } 3829 } 3830 3831 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3832 { 3833 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3834 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3835 } 3836 3837 /* Decide wheather to run the increase function of congestion control. */ 3838 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3839 { 3840 /* If reordering is high then always grow cwnd whenever data is 3841 * delivered regardless of its ordering. Otherwise stay conservative 3842 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3843 * new SACK or ECE mark may first advance cwnd here and later reduce 3844 * cwnd in tcp_fastretrans_alert() based on more states. 3845 */ 3846 if (tcp_sk(sk)->reordering > 3847 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3848 return flag & FLAG_FORWARD_PROGRESS; 3849 3850 return flag & FLAG_DATA_ACKED; 3851 } 3852 3853 /* The "ultimate" congestion control function that aims to replace the rigid 3854 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3855 * It's called toward the end of processing an ACK with precise rate 3856 * information. All transmission or retransmission are delayed afterwards. 3857 */ 3858 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3859 int flag, const struct rate_sample *rs) 3860 { 3861 const struct inet_connection_sock *icsk = inet_csk(sk); 3862 3863 if (icsk->icsk_ca_ops->cong_control) { 3864 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3865 return; 3866 } 3867 3868 if (tcp_in_cwnd_reduction(sk)) { 3869 /* Reduce cwnd if state mandates */ 3870 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3871 } else if (tcp_may_raise_cwnd(sk, flag)) { 3872 /* Advance cwnd if state allows */ 3873 tcp_cong_avoid(sk, ack, acked_sacked); 3874 } 3875 tcp_update_pacing_rate(sk); 3876 } 3877 3878 /* Check that window update is acceptable. 3879 * The function assumes that snd_una<=ack<=snd_next. 3880 */ 3881 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3882 const u32 ack, const u32 ack_seq, 3883 const u32 nwin) 3884 { 3885 return after(ack, tp->snd_una) || 3886 after(ack_seq, tp->snd_wl1) || 3887 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3888 } 3889 3890 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3891 { 3892 #ifdef CONFIG_TCP_AO 3893 struct tcp_ao_info *ao; 3894 3895 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3896 return; 3897 3898 ao = rcu_dereference_protected(tp->ao_info, 3899 lockdep_sock_is_held((struct sock *)tp)); 3900 if (ao && ack < tp->snd_una) { 3901 ao->snd_sne++; 3902 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3903 } 3904 #endif 3905 } 3906 3907 /* If we update tp->snd_una, also update tp->bytes_acked */ 3908 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3909 { 3910 u32 delta = ack - tp->snd_una; 3911 3912 sock_owned_by_me((struct sock *)tp); 3913 tp->bytes_acked += delta; 3914 tcp_snd_sne_update(tp, ack); 3915 tp->snd_una = ack; 3916 } 3917 3918 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3919 { 3920 #ifdef CONFIG_TCP_AO 3921 struct tcp_ao_info *ao; 3922 3923 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3924 return; 3925 3926 ao = rcu_dereference_protected(tp->ao_info, 3927 lockdep_sock_is_held((struct sock *)tp)); 3928 if (ao && seq < tp->rcv_nxt) { 3929 ao->rcv_sne++; 3930 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3931 } 3932 #endif 3933 } 3934 3935 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3936 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3937 { 3938 u32 delta = seq - tp->rcv_nxt; 3939 3940 sock_owned_by_me((struct sock *)tp); 3941 tp->bytes_received += delta; 3942 tcp_rcv_sne_update(tp, seq); 3943 WRITE_ONCE(tp->rcv_nxt, seq); 3944 } 3945 3946 /* Update our send window. 3947 * 3948 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3949 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3950 */ 3951 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3952 u32 ack_seq) 3953 { 3954 struct tcp_sock *tp = tcp_sk(sk); 3955 int flag = 0; 3956 u32 nwin = ntohs(tcp_hdr(skb)->window); 3957 3958 if (likely(!tcp_hdr(skb)->syn)) 3959 nwin <<= tp->rx_opt.snd_wscale; 3960 3961 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3962 flag |= FLAG_WIN_UPDATE; 3963 tcp_update_wl(tp, ack_seq); 3964 3965 if (tp->snd_wnd != nwin) { 3966 tp->snd_wnd = nwin; 3967 3968 /* Note, it is the only place, where 3969 * fast path is recovered for sending TCP. 3970 */ 3971 tp->pred_flags = 0; 3972 tcp_fast_path_check(sk); 3973 3974 if (!tcp_write_queue_empty(sk)) 3975 tcp_slow_start_after_idle_check(sk); 3976 3977 if (nwin > tp->max_window) { 3978 tp->max_window = nwin; 3979 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3980 } 3981 } 3982 } 3983 3984 tcp_snd_una_update(tp, ack); 3985 3986 return flag; 3987 } 3988 3989 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3990 u32 *last_oow_ack_time) 3991 { 3992 /* Paired with the WRITE_ONCE() in this function. */ 3993 u32 val = READ_ONCE(*last_oow_ack_time); 3994 3995 if (val) { 3996 s32 elapsed = (s32)(tcp_jiffies32 - val); 3997 3998 if (0 <= elapsed && 3999 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 4000 NET_INC_STATS(net, mib_idx); 4001 return true; /* rate-limited: don't send yet! */ 4002 } 4003 } 4004 4005 /* Paired with the prior READ_ONCE() and with itself, 4006 * as we might be lockless. 4007 */ 4008 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 4009 4010 return false; /* not rate-limited: go ahead, send dupack now! */ 4011 } 4012 4013 /* Return true if we're currently rate-limiting out-of-window ACKs and 4014 * thus shouldn't send a dupack right now. We rate-limit dupacks in 4015 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 4016 * attacks that send repeated SYNs or ACKs for the same connection. To 4017 * do this, we do not send a duplicate SYNACK or ACK if the remote 4018 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 4019 */ 4020 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 4021 int mib_idx, u32 *last_oow_ack_time) 4022 { 4023 /* Data packets without SYNs are not likely part of an ACK loop. */ 4024 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 4025 !tcp_hdr(skb)->syn) 4026 return false; 4027 4028 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 4029 } 4030 4031 static void tcp_send_ack_reflect_ect(struct sock *sk, bool accecn_reflector) 4032 { 4033 struct tcp_sock *tp = tcp_sk(sk); 4034 u16 flags = 0; 4035 4036 if (accecn_reflector) 4037 flags = tcp_accecn_reflector_flags(tp->syn_ect_rcv); 4038 __tcp_send_ack(sk, tp->rcv_nxt, flags); 4039 } 4040 4041 /* RFC 5961 7 [ACK Throttling] */ 4042 static void tcp_send_challenge_ack(struct sock *sk, bool accecn_reflector) 4043 { 4044 struct tcp_sock *tp = tcp_sk(sk); 4045 struct net *net = sock_net(sk); 4046 u32 count, now, ack_limit; 4047 4048 /* First check our per-socket dupack rate limit. */ 4049 if (__tcp_oow_rate_limited(net, 4050 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 4051 &tp->last_oow_ack_time)) 4052 return; 4053 4054 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 4055 if (ack_limit == INT_MAX) 4056 goto send_ack; 4057 4058 /* Then check host-wide RFC 5961 rate limit. */ 4059 now = jiffies / HZ; 4060 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 4061 u32 half = (ack_limit + 1) >> 1; 4062 4063 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 4064 WRITE_ONCE(net->ipv4.tcp_challenge_count, 4065 get_random_u32_inclusive(half, ack_limit + half - 1)); 4066 } 4067 count = READ_ONCE(net->ipv4.tcp_challenge_count); 4068 if (count > 0) { 4069 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 4070 send_ack: 4071 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 4072 tcp_send_ack_reflect_ect(sk, accecn_reflector); 4073 } 4074 } 4075 4076 static void tcp_store_ts_recent(struct tcp_sock *tp) 4077 { 4078 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 4079 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 4080 } 4081 4082 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta) 4083 { 4084 tcp_store_ts_recent(tp); 4085 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0; 4086 } 4087 4088 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 4089 { 4090 s32 delta; 4091 4092 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 4093 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 4094 * extra check below makes sure this can only happen 4095 * for pure ACK frames. -DaveM 4096 * 4097 * Not only, also it occurs for expired timestamps. 4098 */ 4099 4100 if (tcp_paws_check(&tp->rx_opt, 0)) { 4101 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent; 4102 return __tcp_replace_ts_recent(tp, delta); 4103 } 4104 } 4105 4106 return 0; 4107 } 4108 4109 /* This routine deals with acks during a TLP episode and ends an episode by 4110 * resetting tlp_high_seq. Ref: TLP algorithm in RFC8985 4111 */ 4112 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 4113 { 4114 struct tcp_sock *tp = tcp_sk(sk); 4115 4116 if (before(ack, tp->tlp_high_seq)) 4117 return; 4118 4119 if (!tp->tlp_retrans) { 4120 /* TLP of new data has been acknowledged */ 4121 tp->tlp_high_seq = 0; 4122 } else if (flag & FLAG_DSACK_TLP) { 4123 /* This DSACK means original and TLP probe arrived; no loss */ 4124 tp->tlp_high_seq = 0; 4125 } else if (after(ack, tp->tlp_high_seq)) { 4126 /* ACK advances: there was a loss, so reduce cwnd. Reset 4127 * tlp_high_seq in tcp_init_cwnd_reduction() 4128 */ 4129 tcp_init_cwnd_reduction(sk); 4130 tcp_set_ca_state(sk, TCP_CA_CWR); 4131 tcp_end_cwnd_reduction(sk); 4132 tcp_try_keep_open(sk); 4133 NET_INC_STATS(sock_net(sk), 4134 LINUX_MIB_TCPLOSSPROBERECOVERY); 4135 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 4136 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 4137 /* Pure dupack: original and TLP probe arrived; no loss */ 4138 tp->tlp_high_seq = 0; 4139 } 4140 } 4141 4142 static void tcp_in_ack_event(struct sock *sk, int flag) 4143 { 4144 const struct inet_connection_sock *icsk = inet_csk(sk); 4145 4146 if (icsk->icsk_ca_ops->in_ack_event) { 4147 u32 ack_ev_flags = 0; 4148 4149 if (flag & FLAG_WIN_UPDATE) 4150 ack_ev_flags |= CA_ACK_WIN_UPDATE; 4151 if (flag & FLAG_SLOWPATH) { 4152 ack_ev_flags |= CA_ACK_SLOWPATH; 4153 if (flag & FLAG_ECE) 4154 ack_ev_flags |= CA_ACK_ECE; 4155 } 4156 4157 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags); 4158 } 4159 } 4160 4161 /* Congestion control has updated the cwnd already. So if we're in 4162 * loss recovery then now we do any new sends (for FRTO) or 4163 * retransmits (for CA_Loss or CA_recovery) that make sense. 4164 */ 4165 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 4166 { 4167 struct tcp_sock *tp = tcp_sk(sk); 4168 4169 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 4170 return; 4171 4172 if (unlikely(rexmit == REXMIT_NEW)) { 4173 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 4174 TCP_NAGLE_OFF); 4175 if (after(tp->snd_nxt, tp->high_seq)) 4176 return; 4177 tp->frto = 0; 4178 } 4179 tcp_xmit_retransmit_queue(sk); 4180 } 4181 4182 /* Returns the number of packets newly acked or sacked by the current ACK */ 4183 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, 4184 u32 ecn_count, int flag) 4185 { 4186 const struct net *net = sock_net(sk); 4187 struct tcp_sock *tp = tcp_sk(sk); 4188 u32 delivered; 4189 4190 delivered = tp->delivered - prior_delivered; 4191 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 4192 4193 if (flag & FLAG_ECE) { 4194 if (tcp_ecn_mode_rfc3168(tp)) 4195 ecn_count = delivered; 4196 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, ecn_count); 4197 } 4198 4199 return delivered; 4200 } 4201 4202 /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries. 4203 * 4204 * If a DSACK is received that seems like it may have been due to reordering 4205 * triggering fast recovery, increment reo_wnd by min_rtt/4 (upper bounded 4206 * by srtt), since there is possibility that spurious retransmission was 4207 * due to reordering delay longer than reo_wnd. 4208 * 4209 * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16) 4210 * no. of successful recoveries (accounts for full DSACK-based loss 4211 * recovery undo). After that, reset it to default (min_rtt/4). 4212 * 4213 * At max, reo_wnd is incremented only once per rtt. So that the new 4214 * DSACK on which we are reacting, is due to the spurious retx (approx) 4215 * after the reo_wnd has been updated last time. 4216 * 4217 * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than 4218 * absolute value to account for change in rtt. 4219 */ 4220 static void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs) 4221 { 4222 struct tcp_sock *tp = tcp_sk(sk); 4223 4224 if ((READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 4225 TCP_RACK_STATIC_REO_WND) || 4226 !rs->prior_delivered) 4227 return; 4228 4229 /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */ 4230 if (before(rs->prior_delivered, tp->rack.last_delivered)) 4231 tp->rack.dsack_seen = 0; 4232 4233 /* Adjust the reo_wnd if update is pending */ 4234 if (tp->rack.dsack_seen) { 4235 tp->rack.reo_wnd_steps = min_t(u32, 0xFF, 4236 tp->rack.reo_wnd_steps + 1); 4237 tp->rack.dsack_seen = 0; 4238 tp->rack.last_delivered = tp->delivered; 4239 tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH; 4240 } else if (!tp->rack.reo_wnd_persist) { 4241 tp->rack.reo_wnd_steps = 1; 4242 } 4243 } 4244 4245 /* This routine deals with incoming acks, but not outgoing ones. */ 4246 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 4247 { 4248 struct inet_connection_sock *icsk = inet_csk(sk); 4249 struct tcp_sock *tp = tcp_sk(sk); 4250 struct tcp_sacktag_state sack_state; 4251 struct rate_sample rs = { .prior_delivered = 0 }; 4252 u32 prior_snd_una = tp->snd_una; 4253 bool is_sack_reneg = tp->is_sack_reneg; 4254 u32 ack_seq = TCP_SKB_CB(skb)->seq; 4255 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4256 int num_dupack = 0; 4257 int prior_packets = tp->packets_out; 4258 u32 delivered = tp->delivered; 4259 u32 lost = tp->lost; 4260 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 4261 u32 ecn_count = 0; /* Did we receive ECE/an AccECN ACE update? */ 4262 u32 prior_fack; 4263 4264 sack_state.first_sackt = 0; 4265 sack_state.rate = &rs; 4266 sack_state.sack_delivered = 0; 4267 sack_state.delivered_bytes = 0; 4268 4269 /* We very likely will need to access rtx queue. */ 4270 prefetch(sk->tcp_rtx_queue.rb_node); 4271 4272 /* If the ack is older than previous acks 4273 * then we can probably ignore it. 4274 */ 4275 if (before(ack, prior_snd_una)) { 4276 u32 max_window; 4277 4278 /* do not accept ACK for bytes we never sent. */ 4279 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 4280 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 4281 if (before(ack, prior_snd_una - max_window)) { 4282 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 4283 tcp_send_challenge_ack(sk, false); 4284 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 4285 } 4286 goto old_ack; 4287 } 4288 4289 /* If the ack includes data we haven't sent yet, discard 4290 * this segment (RFC793 Section 3.9). 4291 */ 4292 if (after(ack, tp->snd_nxt)) 4293 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 4294 4295 if (after(ack, prior_snd_una)) { 4296 flag |= FLAG_SND_UNA_ADVANCED; 4297 WRITE_ONCE(icsk->icsk_retransmits, 0); 4298 4299 #if IS_ENABLED(CONFIG_TLS_DEVICE) 4300 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 4301 if (tp->tcp_clean_acked) 4302 tp->tcp_clean_acked(sk, ack); 4303 #endif 4304 } 4305 4306 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 4307 rs.prior_in_flight = tcp_packets_in_flight(tp); 4308 4309 /* ts_recent update must be made after we are sure that the packet 4310 * is in window. 4311 */ 4312 if (flag & FLAG_UPDATE_TS_RECENT) 4313 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4314 4315 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 4316 FLAG_SND_UNA_ADVANCED) { 4317 /* Window is constant, pure forward advance. 4318 * No more checks are required. 4319 * Note, we use the fact that SND.UNA>=SND.WL2. 4320 */ 4321 tcp_update_wl(tp, ack_seq); 4322 tcp_snd_una_update(tp, ack); 4323 flag |= FLAG_WIN_UPDATE; 4324 4325 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 4326 } else { 4327 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 4328 flag |= FLAG_DATA; 4329 else 4330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 4331 4332 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 4333 4334 if (TCP_SKB_CB(skb)->sacked) 4335 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4336 &sack_state); 4337 4338 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) 4339 flag |= FLAG_ECE; 4340 4341 if (sack_state.sack_delivered) 4342 tcp_count_delivered(tp, sack_state.sack_delivered, 4343 flag & FLAG_ECE); 4344 } 4345 4346 /* This is a deviation from RFC3168 since it states that: 4347 * "When the TCP data sender is ready to set the CWR bit after reducing 4348 * the congestion window, it SHOULD set the CWR bit only on the first 4349 * new data packet that it transmits." 4350 * We accept CWR on pure ACKs to be more robust 4351 * with widely-deployed TCP implementations that do this. 4352 */ 4353 tcp_ecn_accept_cwr(sk, skb); 4354 4355 /* We passed data and got it acked, remove any soft error 4356 * log. Something worked... 4357 */ 4358 if (READ_ONCE(sk->sk_err_soft)) 4359 WRITE_ONCE(sk->sk_err_soft, 0); 4360 WRITE_ONCE(icsk->icsk_probes_out, 0); 4361 tp->rcv_tstamp = tcp_jiffies32; 4362 if (!prior_packets) 4363 goto no_queue; 4364 4365 /* See if we can take anything off of the retransmit queue. */ 4366 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 4367 &sack_state, flag & FLAG_ECE); 4368 4369 tcp_rack_update_reo_wnd(sk, &rs); 4370 4371 if (tcp_ecn_mode_accecn(tp)) 4372 ecn_count = tcp_accecn_process(sk, skb, 4373 tp->delivered - delivered, 4374 sack_state.delivered_bytes, 4375 &flag); 4376 4377 tcp_in_ack_event(sk, flag); 4378 4379 if (unlikely(tp->tlp_high_seq)) 4380 tcp_process_tlp_ack(sk, ack, flag); 4381 4382 if (tcp_ack_is_dubious(sk, flag)) { 4383 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4384 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4385 num_dupack = 1; 4386 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4387 if (!(flag & FLAG_DATA)) 4388 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4389 } 4390 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4391 &rexmit); 4392 } 4393 4394 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4395 if (flag & FLAG_SET_XMIT_TIMER) 4396 tcp_set_xmit_timer(sk); 4397 4398 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4399 sk_dst_confirm(sk); 4400 4401 delivered = tcp_newly_delivered(sk, delivered, ecn_count, flag); 4402 4403 lost = tp->lost - lost; /* freshly marked lost */ 4404 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4405 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4406 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4407 tcp_xmit_recovery(sk, rexmit); 4408 return 1; 4409 4410 no_queue: 4411 if (tcp_ecn_mode_accecn(tp)) 4412 ecn_count = tcp_accecn_process(sk, skb, 4413 tp->delivered - delivered, 4414 sack_state.delivered_bytes, 4415 &flag); 4416 tcp_in_ack_event(sk, flag); 4417 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4418 if (flag & FLAG_DSACKING_ACK) { 4419 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4420 &rexmit); 4421 tcp_newly_delivered(sk, delivered, ecn_count, flag); 4422 } 4423 /* If this ack opens up a zero window, clear backoff. It was 4424 * being used to time the probes, and is probably far higher than 4425 * it needs to be for normal retransmission. 4426 */ 4427 tcp_ack_probe(sk); 4428 4429 if (unlikely(tp->tlp_high_seq)) 4430 tcp_process_tlp_ack(sk, ack, flag); 4431 return 1; 4432 4433 old_ack: 4434 /* If data was SACKed, tag it and see if we should send more data. 4435 * If data was DSACKed, see if we can undo a cwnd reduction. 4436 */ 4437 if (TCP_SKB_CB(skb)->sacked) { 4438 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4439 &sack_state); 4440 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4441 &rexmit); 4442 tcp_newly_delivered(sk, delivered, ecn_count, flag); 4443 tcp_xmit_recovery(sk, rexmit); 4444 } 4445 4446 return 0; 4447 } 4448 4449 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4450 bool syn, struct tcp_fastopen_cookie *foc, 4451 bool exp_opt) 4452 { 4453 /* Valid only in SYN or SYN-ACK with an even length. */ 4454 if (!foc || !syn || len < 0 || (len & 1)) 4455 return; 4456 4457 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4458 len <= TCP_FASTOPEN_COOKIE_MAX) 4459 memcpy(foc->val, cookie, len); 4460 else if (len != 0) 4461 len = -1; 4462 foc->len = len; 4463 foc->exp = exp_opt; 4464 } 4465 4466 static bool smc_parse_options(const struct tcphdr *th, 4467 struct tcp_options_received *opt_rx, 4468 const unsigned char *ptr, 4469 int opsize) 4470 { 4471 #if IS_ENABLED(CONFIG_SMC) 4472 if (static_branch_unlikely(&tcp_have_smc)) { 4473 if (th->syn && !(opsize & 1) && 4474 opsize >= TCPOLEN_EXP_SMC_BASE && 4475 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4476 opt_rx->smc_ok = 1; 4477 return true; 4478 } 4479 } 4480 #endif 4481 return false; 4482 } 4483 4484 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4485 * value on success. 4486 */ 4487 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4488 { 4489 const unsigned char *ptr = (const unsigned char *)(th + 1); 4490 int length = (th->doff * 4) - sizeof(struct tcphdr); 4491 u16 mss = 0; 4492 4493 while (length > 0) { 4494 int opcode = *ptr++; 4495 int opsize; 4496 4497 switch (opcode) { 4498 case TCPOPT_EOL: 4499 return mss; 4500 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4501 length--; 4502 continue; 4503 default: 4504 if (length < 2) 4505 return mss; 4506 opsize = *ptr++; 4507 if (opsize < 2) /* "silly options" */ 4508 return mss; 4509 if (opsize > length) 4510 return mss; /* fail on partial options */ 4511 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4512 u16 in_mss = get_unaligned_be16(ptr); 4513 4514 if (in_mss) { 4515 if (user_mss && user_mss < in_mss) 4516 in_mss = user_mss; 4517 mss = in_mss; 4518 } 4519 } 4520 ptr += opsize - 2; 4521 length -= opsize; 4522 } 4523 } 4524 return mss; 4525 } 4526 4527 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4528 * But, this can also be called on packets in the established flow when 4529 * the fast version below fails. 4530 */ 4531 void tcp_parse_options(const struct net *net, 4532 const struct sk_buff *skb, 4533 struct tcp_options_received *opt_rx, int estab, 4534 struct tcp_fastopen_cookie *foc) 4535 { 4536 const unsigned char *ptr; 4537 const struct tcphdr *th = tcp_hdr(skb); 4538 int length = (th->doff * 4) - sizeof(struct tcphdr); 4539 4540 ptr = (const unsigned char *)(th + 1); 4541 opt_rx->saw_tstamp = 0; 4542 opt_rx->accecn = 0; 4543 opt_rx->saw_unknown = 0; 4544 4545 while (length > 0) { 4546 int opcode = *ptr++; 4547 int opsize; 4548 4549 switch (opcode) { 4550 case TCPOPT_EOL: 4551 return; 4552 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4553 length--; 4554 continue; 4555 default: 4556 if (length < 2) 4557 return; 4558 opsize = *ptr++; 4559 if (opsize < 2) /* "silly options" */ 4560 return; 4561 if (opsize > length) 4562 return; /* don't parse partial options */ 4563 switch (opcode) { 4564 case TCPOPT_MSS: 4565 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4566 u16 in_mss = get_unaligned_be16(ptr); 4567 if (in_mss) { 4568 if (opt_rx->user_mss && 4569 opt_rx->user_mss < in_mss) 4570 in_mss = opt_rx->user_mss; 4571 opt_rx->mss_clamp = in_mss; 4572 } 4573 } 4574 break; 4575 case TCPOPT_WINDOW: 4576 if (opsize == TCPOLEN_WINDOW && th->syn && 4577 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4578 __u8 snd_wscale = *(__u8 *)ptr; 4579 opt_rx->wscale_ok = 1; 4580 if (snd_wscale > TCP_MAX_WSCALE) { 4581 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4582 __func__, 4583 snd_wscale, 4584 TCP_MAX_WSCALE); 4585 snd_wscale = TCP_MAX_WSCALE; 4586 } 4587 opt_rx->snd_wscale = snd_wscale; 4588 } 4589 break; 4590 case TCPOPT_TIMESTAMP: 4591 if ((opsize == TCPOLEN_TIMESTAMP) && 4592 ((estab && opt_rx->tstamp_ok) || 4593 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4594 opt_rx->saw_tstamp = 1; 4595 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4596 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4597 } 4598 break; 4599 case TCPOPT_SACK_PERM: 4600 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4601 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4602 opt_rx->sack_ok = TCP_SACK_SEEN; 4603 tcp_sack_reset(opt_rx); 4604 } 4605 break; 4606 4607 case TCPOPT_SACK: 4608 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4609 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4610 opt_rx->sack_ok) { 4611 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4612 } 4613 break; 4614 #ifdef CONFIG_TCP_MD5SIG 4615 case TCPOPT_MD5SIG: 4616 /* The MD5 Hash has already been 4617 * checked (see tcp_v{4,6}_rcv()). 4618 */ 4619 break; 4620 #endif 4621 #ifdef CONFIG_TCP_AO 4622 case TCPOPT_AO: 4623 /* TCP AO has already been checked 4624 * (see tcp_inbound_ao_hash()). 4625 */ 4626 break; 4627 #endif 4628 case TCPOPT_FASTOPEN: 4629 tcp_parse_fastopen_option( 4630 opsize - TCPOLEN_FASTOPEN_BASE, 4631 ptr, th->syn, foc, false); 4632 break; 4633 4634 case TCPOPT_ACCECN0: 4635 case TCPOPT_ACCECN1: 4636 /* Save offset of AccECN option in TCP header */ 4637 opt_rx->accecn = (ptr - 2) - (__u8 *)th; 4638 break; 4639 4640 case TCPOPT_EXP: 4641 /* Fast Open option shares code 254 using a 4642 * 16 bits magic number. 4643 */ 4644 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4645 get_unaligned_be16(ptr) == 4646 TCPOPT_FASTOPEN_MAGIC) { 4647 tcp_parse_fastopen_option(opsize - 4648 TCPOLEN_EXP_FASTOPEN_BASE, 4649 ptr + 2, th->syn, foc, true); 4650 break; 4651 } 4652 4653 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4654 break; 4655 4656 opt_rx->saw_unknown = 1; 4657 break; 4658 4659 default: 4660 opt_rx->saw_unknown = 1; 4661 } 4662 ptr += opsize-2; 4663 length -= opsize; 4664 } 4665 } 4666 } 4667 EXPORT_SYMBOL(tcp_parse_options); 4668 4669 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4670 { 4671 const __be32 *ptr = (const __be32 *)(th + 1); 4672 4673 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4674 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4675 tp->rx_opt.saw_tstamp = 1; 4676 ++ptr; 4677 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4678 ++ptr; 4679 if (*ptr) 4680 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4681 else 4682 tp->rx_opt.rcv_tsecr = 0; 4683 return true; 4684 } 4685 return false; 4686 } 4687 4688 /* Fast parse options. This hopes to only see timestamps. 4689 * If it is wrong it falls back on tcp_parse_options(). 4690 */ 4691 static bool tcp_fast_parse_options(const struct net *net, 4692 const struct sk_buff *skb, 4693 const struct tcphdr *th, struct tcp_sock *tp) 4694 { 4695 /* In the spirit of fast parsing, compare doff directly to constant 4696 * values. Because equality is used, short doff can be ignored here. 4697 */ 4698 if (th->doff == (sizeof(*th) / 4)) { 4699 tp->rx_opt.saw_tstamp = 0; 4700 tp->rx_opt.accecn = 0; 4701 return false; 4702 } else if (tp->rx_opt.tstamp_ok && 4703 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4704 if (tcp_parse_aligned_timestamp(tp, th)) { 4705 tp->rx_opt.accecn = 0; 4706 return true; 4707 } 4708 } 4709 4710 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4711 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4712 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4713 4714 return true; 4715 } 4716 4717 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4718 /* 4719 * Parse Signature options 4720 */ 4721 int tcp_do_parse_auth_options(const struct tcphdr *th, 4722 const u8 **md5_hash, const u8 **ao_hash) 4723 { 4724 int length = (th->doff << 2) - sizeof(*th); 4725 const u8 *ptr = (const u8 *)(th + 1); 4726 unsigned int minlen = TCPOLEN_MD5SIG; 4727 4728 if (IS_ENABLED(CONFIG_TCP_AO)) 4729 minlen = sizeof(struct tcp_ao_hdr) + 1; 4730 4731 *md5_hash = NULL; 4732 *ao_hash = NULL; 4733 4734 /* If not enough data remaining, we can short cut */ 4735 while (length >= minlen) { 4736 int opcode = *ptr++; 4737 int opsize; 4738 4739 switch (opcode) { 4740 case TCPOPT_EOL: 4741 return 0; 4742 case TCPOPT_NOP: 4743 length--; 4744 continue; 4745 default: 4746 opsize = *ptr++; 4747 if (opsize < 2 || opsize > length) 4748 return -EINVAL; 4749 if (opcode == TCPOPT_MD5SIG) { 4750 if (opsize != TCPOLEN_MD5SIG) 4751 return -EINVAL; 4752 if (unlikely(*md5_hash || *ao_hash)) 4753 return -EEXIST; 4754 *md5_hash = ptr; 4755 } else if (opcode == TCPOPT_AO) { 4756 if (opsize <= sizeof(struct tcp_ao_hdr)) 4757 return -EINVAL; 4758 if (unlikely(*md5_hash || *ao_hash)) 4759 return -EEXIST; 4760 *ao_hash = ptr; 4761 } 4762 } 4763 ptr += opsize - 2; 4764 length -= opsize; 4765 } 4766 return 0; 4767 } 4768 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4769 #endif 4770 4771 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4772 * 4773 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4774 * it can pass through stack. So, the following predicate verifies that 4775 * this segment is not used for anything but congestion avoidance or 4776 * fast retransmit. Moreover, we even are able to eliminate most of such 4777 * second order effects, if we apply some small "replay" window (~RTO) 4778 * to timestamp space. 4779 * 4780 * All these measures still do not guarantee that we reject wrapped ACKs 4781 * on networks with high bandwidth, when sequence space is recycled fastly, 4782 * but it guarantees that such events will be very rare and do not affect 4783 * connection seriously. This doesn't look nice, but alas, PAWS is really 4784 * buggy extension. 4785 * 4786 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4787 * states that events when retransmit arrives after original data are rare. 4788 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4789 * the biggest problem on large power networks even with minor reordering. 4790 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4791 * up to bandwidth of 18Gigabit/sec. 8) ] 4792 */ 4793 4794 /* Estimates max number of increments of remote peer TSval in 4795 * a replay window (based on our current RTO estimation). 4796 */ 4797 static u32 tcp_tsval_replay(const struct sock *sk) 4798 { 4799 /* If we use usec TS resolution, 4800 * then expect the remote peer to use the same resolution. 4801 */ 4802 if (tcp_sk(sk)->tcp_usec_ts) 4803 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4804 4805 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4806 * We know that some OS (including old linux) can use 1200 Hz. 4807 */ 4808 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4809 } 4810 4811 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk, 4812 const struct sk_buff *skb) 4813 { 4814 const struct tcp_sock *tp = tcp_sk(sk); 4815 const struct tcphdr *th = tcp_hdr(skb); 4816 SKB_DR_INIT(reason, TCP_RFC7323_PAWS); 4817 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4818 u32 seq = TCP_SKB_CB(skb)->seq; 4819 4820 /* 1. Is this not a pure ACK ? */ 4821 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq) 4822 return reason; 4823 4824 /* 2. Is its sequence not the expected one ? */ 4825 if (seq != tp->rcv_nxt) 4826 return before(seq, tp->rcv_nxt) ? 4827 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK : 4828 reason; 4829 4830 /* 3. Is this not a duplicate ACK ? */ 4831 if (ack != tp->snd_una) 4832 return reason; 4833 4834 /* 4. Is this updating the window ? */ 4835 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) << 4836 tp->rx_opt.snd_wscale)) 4837 return reason; 4838 4839 /* 5. Is this not in the replay window ? */ 4840 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > 4841 tcp_tsval_replay(sk)) 4842 return reason; 4843 4844 return 0; 4845 } 4846 4847 /* Check segment sequence number for validity. 4848 * 4849 * Segment controls are considered valid, if the segment 4850 * fits to the window after truncation to the window. Acceptability 4851 * of data (and SYN, FIN, of course) is checked separately. 4852 * See tcp_data_queue(), for example. 4853 * 4854 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4855 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4856 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4857 * (borrowed from freebsd) 4858 */ 4859 4860 static enum skb_drop_reason tcp_sequence(const struct sock *sk, 4861 u32 seq, u32 end_seq) 4862 { 4863 const struct tcp_sock *tp = tcp_sk(sk); 4864 4865 if (before(end_seq, tp->rcv_wup)) 4866 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4867 4868 if (after(end_seq, tp->rcv_nxt + tcp_receive_window(tp))) { 4869 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4870 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4871 4872 /* Only accept this packet if receive queue is empty. */ 4873 if (skb_queue_len(&sk->sk_receive_queue)) 4874 return SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE; 4875 } 4876 4877 return SKB_NOT_DROPPED_YET; 4878 } 4879 4880 4881 void tcp_done_with_error(struct sock *sk, int err) 4882 { 4883 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4884 WRITE_ONCE(sk->sk_err, err); 4885 smp_wmb(); 4886 4887 tcp_write_queue_purge(sk); 4888 tcp_done(sk); 4889 4890 if (!sock_flag(sk, SOCK_DEAD)) 4891 sk_error_report(sk); 4892 } 4893 EXPORT_IPV6_MOD(tcp_done_with_error); 4894 4895 /* When we get a reset we do this. */ 4896 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4897 { 4898 int err; 4899 4900 trace_tcp_receive_reset(sk); 4901 4902 /* mptcp can't tell us to ignore reset pkts, 4903 * so just ignore the return value of mptcp_incoming_options(). 4904 */ 4905 if (sk_is_mptcp(sk)) 4906 mptcp_incoming_options(sk, skb); 4907 4908 /* We want the right error as BSD sees it (and indeed as we do). */ 4909 switch (sk->sk_state) { 4910 case TCP_SYN_SENT: 4911 err = ECONNREFUSED; 4912 break; 4913 case TCP_CLOSE_WAIT: 4914 err = EPIPE; 4915 break; 4916 case TCP_CLOSE: 4917 return; 4918 default: 4919 err = ECONNRESET; 4920 } 4921 tcp_done_with_error(sk, err); 4922 } 4923 4924 /* 4925 * Process the FIN bit. This now behaves as it is supposed to work 4926 * and the FIN takes effect when it is validly part of sequence 4927 * space. Not before when we get holes. 4928 * 4929 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4930 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4931 * TIME-WAIT) 4932 * 4933 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4934 * close and we go into CLOSING (and later onto TIME-WAIT) 4935 * 4936 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4937 */ 4938 void tcp_fin(struct sock *sk) 4939 { 4940 struct tcp_sock *tp = tcp_sk(sk); 4941 4942 inet_csk_schedule_ack(sk); 4943 4944 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4945 sock_set_flag(sk, SOCK_DONE); 4946 4947 switch (sk->sk_state) { 4948 case TCP_SYN_RECV: 4949 case TCP_ESTABLISHED: 4950 /* Move to CLOSE_WAIT */ 4951 tcp_set_state(sk, TCP_CLOSE_WAIT); 4952 inet_csk_enter_pingpong_mode(sk); 4953 break; 4954 4955 case TCP_CLOSE_WAIT: 4956 case TCP_CLOSING: 4957 /* Received a retransmission of the FIN, do 4958 * nothing. 4959 */ 4960 break; 4961 case TCP_LAST_ACK: 4962 /* RFC793: Remain in the LAST-ACK state. */ 4963 break; 4964 4965 case TCP_FIN_WAIT1: 4966 /* This case occurs when a simultaneous close 4967 * happens, we must ack the received FIN and 4968 * enter the CLOSING state. 4969 */ 4970 tcp_send_ack(sk); 4971 tcp_set_state(sk, TCP_CLOSING); 4972 break; 4973 case TCP_FIN_WAIT2: 4974 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4975 tcp_send_ack(sk); 4976 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4977 break; 4978 default: 4979 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4980 * cases we should never reach this piece of code. 4981 */ 4982 pr_err("%s: Impossible, sk->sk_state=%d\n", 4983 __func__, sk->sk_state); 4984 break; 4985 } 4986 4987 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4988 * Probably, we should reset in this case. For now drop them. 4989 */ 4990 skb_rbtree_purge(&tp->out_of_order_queue); 4991 if (tcp_is_sack(tp)) 4992 tcp_sack_reset(&tp->rx_opt); 4993 4994 if (!sock_flag(sk, SOCK_DEAD)) { 4995 sk->sk_state_change(sk); 4996 4997 /* Do not send POLL_HUP for half duplex close. */ 4998 if (sk->sk_shutdown == SHUTDOWN_MASK || 4999 sk->sk_state == TCP_CLOSE) 5000 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 5001 else 5002 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 5003 } 5004 } 5005 5006 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 5007 u32 end_seq) 5008 { 5009 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 5010 if (before(seq, sp->start_seq)) 5011 sp->start_seq = seq; 5012 if (after(end_seq, sp->end_seq)) 5013 sp->end_seq = end_seq; 5014 return true; 5015 } 5016 return false; 5017 } 5018 5019 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 5020 { 5021 struct tcp_sock *tp = tcp_sk(sk); 5022 5023 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 5024 int mib_idx; 5025 5026 if (before(seq, tp->rcv_nxt)) 5027 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 5028 else 5029 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 5030 5031 NET_INC_STATS(sock_net(sk), mib_idx); 5032 5033 tp->rx_opt.dsack = 1; 5034 tp->duplicate_sack[0].start_seq = seq; 5035 tp->duplicate_sack[0].end_seq = end_seq; 5036 } 5037 } 5038 5039 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 5040 { 5041 struct tcp_sock *tp = tcp_sk(sk); 5042 5043 if (!tp->rx_opt.dsack) 5044 tcp_dsack_set(sk, seq, end_seq); 5045 else 5046 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 5047 } 5048 5049 static void tcp_rcv_spurious_retrans(struct sock *sk, 5050 const struct sk_buff *skb) 5051 { 5052 struct tcp_sock *tp = tcp_sk(sk); 5053 5054 /* When the ACK path fails or drops most ACKs, the sender would 5055 * timeout and spuriously retransmit the same segment repeatedly. 5056 * If it seems our ACKs are not reaching the other side, 5057 * based on receiving a duplicate data segment with new flowlabel 5058 * (suggesting the sender suffered an RTO), and we are not already 5059 * repathing due to our own RTO, then rehash the socket to repath our 5060 * packets. 5061 */ 5062 #if IS_ENABLED(CONFIG_IPV6) 5063 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 5064 skb->protocol == htons(ETH_P_IPV6) && 5065 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 5066 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 5067 sk_rethink_txhash(sk)) 5068 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 5069 5070 /* Save last flowlabel after a spurious retrans. */ 5071 tcp_save_lrcv_flowlabel(sk, skb); 5072 #endif 5073 /* Check DSACK info to detect that the previous ACK carrying the 5074 * AccECN option was lost after the second retransmision, and then 5075 * stop sending AccECN option in all subsequent ACKs. 5076 */ 5077 if (tcp_ecn_mode_accecn(tp) && 5078 tp->accecn_opt_sent_w_dsack && 5079 TCP_SKB_CB(skb)->seq == tp->duplicate_sack[0].start_seq) 5080 tcp_accecn_fail_mode_set(tp, TCP_ACCECN_OPT_FAIL_SEND); 5081 } 5082 5083 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 5084 { 5085 struct tcp_sock *tp = tcp_sk(sk); 5086 5087 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5088 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5089 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5090 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5091 5092 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 5093 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 5094 5095 tcp_rcv_spurious_retrans(sk, skb); 5096 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 5097 end_seq = tp->rcv_nxt; 5098 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 5099 } 5100 } 5101 5102 tcp_send_ack(sk); 5103 } 5104 5105 /* These routines update the SACK block as out-of-order packets arrive or 5106 * in-order packets close up the sequence space. 5107 */ 5108 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 5109 { 5110 int this_sack; 5111 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5112 struct tcp_sack_block *swalk = sp + 1; 5113 5114 /* See if the recent change to the first SACK eats into 5115 * or hits the sequence space of other SACK blocks, if so coalesce. 5116 */ 5117 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 5118 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 5119 int i; 5120 5121 /* Zap SWALK, by moving every further SACK up by one slot. 5122 * Decrease num_sacks. 5123 */ 5124 tp->rx_opt.num_sacks--; 5125 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 5126 sp[i] = sp[i + 1]; 5127 continue; 5128 } 5129 this_sack++; 5130 swalk++; 5131 } 5132 } 5133 5134 void tcp_sack_compress_send_ack(struct sock *sk) 5135 { 5136 struct tcp_sock *tp = tcp_sk(sk); 5137 5138 if (!tp->compressed_ack) 5139 return; 5140 5141 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 5142 __sock_put(sk); 5143 5144 /* Since we have to send one ack finally, 5145 * substract one from tp->compressed_ack to keep 5146 * LINUX_MIB_TCPACKCOMPRESSED accurate. 5147 */ 5148 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 5149 tp->compressed_ack - 1); 5150 5151 tp->compressed_ack = 0; 5152 tcp_send_ack(sk); 5153 } 5154 5155 /* Reasonable amount of sack blocks included in TCP SACK option 5156 * The max is 4, but this becomes 3 if TCP timestamps are there. 5157 * Given that SACK packets might be lost, be conservative and use 2. 5158 */ 5159 #define TCP_SACK_BLOCKS_EXPECTED 2 5160 5161 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 5162 { 5163 struct tcp_sock *tp = tcp_sk(sk); 5164 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5165 int cur_sacks = tp->rx_opt.num_sacks; 5166 int this_sack; 5167 5168 if (!cur_sacks) 5169 goto new_sack; 5170 5171 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 5172 if (tcp_sack_extend(sp, seq, end_seq)) { 5173 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 5174 tcp_sack_compress_send_ack(sk); 5175 /* Rotate this_sack to the first one. */ 5176 for (; this_sack > 0; this_sack--, sp--) 5177 swap(*sp, *(sp - 1)); 5178 if (cur_sacks > 1) 5179 tcp_sack_maybe_coalesce(tp); 5180 return; 5181 } 5182 } 5183 5184 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 5185 tcp_sack_compress_send_ack(sk); 5186 5187 /* Could not find an adjacent existing SACK, build a new one, 5188 * put it at the front, and shift everyone else down. We 5189 * always know there is at least one SACK present already here. 5190 * 5191 * If the sack array is full, forget about the last one. 5192 */ 5193 if (this_sack >= TCP_NUM_SACKS) { 5194 this_sack--; 5195 tp->rx_opt.num_sacks--; 5196 sp--; 5197 } 5198 for (; this_sack > 0; this_sack--, sp--) 5199 *sp = *(sp - 1); 5200 5201 new_sack: 5202 /* Build the new head SACK, and we're done. */ 5203 sp->start_seq = seq; 5204 sp->end_seq = end_seq; 5205 tp->rx_opt.num_sacks++; 5206 } 5207 5208 /* RCV.NXT advances, some SACKs should be eaten. */ 5209 5210 static void tcp_sack_remove(struct tcp_sock *tp) 5211 { 5212 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5213 int num_sacks = tp->rx_opt.num_sacks; 5214 int this_sack; 5215 5216 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 5217 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5218 tp->rx_opt.num_sacks = 0; 5219 return; 5220 } 5221 5222 for (this_sack = 0; this_sack < num_sacks;) { 5223 /* Check if the start of the sack is covered by RCV.NXT. */ 5224 if (!before(tp->rcv_nxt, sp->start_seq)) { 5225 int i; 5226 5227 /* RCV.NXT must cover all the block! */ 5228 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 5229 5230 /* Zap this SACK, by moving forward any other SACKS. */ 5231 for (i = this_sack+1; i < num_sacks; i++) 5232 tp->selective_acks[i-1] = tp->selective_acks[i]; 5233 num_sacks--; 5234 continue; 5235 } 5236 this_sack++; 5237 sp++; 5238 } 5239 tp->rx_opt.num_sacks = num_sacks; 5240 } 5241 5242 /** 5243 * tcp_try_coalesce - try to merge skb to prior one 5244 * @sk: socket 5245 * @to: prior buffer 5246 * @from: buffer to add in queue 5247 * @fragstolen: pointer to boolean 5248 * 5249 * Before queueing skb @from after @to, try to merge them 5250 * to reduce overall memory use and queue lengths, if cost is small. 5251 * Packets in ofo or receive queues can stay a long time. 5252 * Better try to coalesce them right now to avoid future collapses. 5253 * Returns true if caller should free @from instead of queueing it 5254 */ 5255 static bool tcp_try_coalesce(struct sock *sk, 5256 struct sk_buff *to, 5257 struct sk_buff *from, 5258 bool *fragstolen) 5259 { 5260 int delta; 5261 5262 *fragstolen = false; 5263 5264 /* Its possible this segment overlaps with prior segment in queue */ 5265 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 5266 return false; 5267 5268 if (!tcp_skb_can_collapse_rx(to, from)) 5269 return false; 5270 5271 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 5272 return false; 5273 5274 atomic_add(delta, &sk->sk_rmem_alloc); 5275 sk_mem_charge(sk, delta); 5276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 5277 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 5278 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 5279 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 5280 5281 if (TCP_SKB_CB(from)->has_rxtstamp) { 5282 TCP_SKB_CB(to)->has_rxtstamp = true; 5283 to->tstamp = from->tstamp; 5284 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 5285 } 5286 5287 return true; 5288 } 5289 5290 static bool tcp_ooo_try_coalesce(struct sock *sk, 5291 struct sk_buff *to, 5292 struct sk_buff *from, 5293 bool *fragstolen) 5294 { 5295 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 5296 5297 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 5298 if (res) { 5299 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 5300 max_t(u16, 1, skb_shinfo(from)->gso_segs); 5301 5302 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 5303 } 5304 return res; 5305 } 5306 5307 noinline_for_tracing static void 5308 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 5309 { 5310 sk_drops_skbadd(sk, skb); 5311 sk_skb_reason_drop(sk, skb, reason); 5312 } 5313 5314 /* This one checks to see if we can put data from the 5315 * out_of_order queue into the receive_queue. 5316 */ 5317 static void tcp_ofo_queue(struct sock *sk) 5318 { 5319 struct tcp_sock *tp = tcp_sk(sk); 5320 __u32 dsack_high = tp->rcv_nxt; 5321 bool fin, fragstolen, eaten; 5322 struct sk_buff *skb, *tail; 5323 struct rb_node *p; 5324 5325 p = rb_first(&tp->out_of_order_queue); 5326 while (p) { 5327 skb = rb_to_skb(p); 5328 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5329 break; 5330 5331 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 5332 __u32 dsack = dsack_high; 5333 5334 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 5335 dsack = TCP_SKB_CB(skb)->end_seq; 5336 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 5337 } 5338 p = rb_next(p); 5339 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 5340 5341 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 5342 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 5343 continue; 5344 } 5345 5346 tail = skb_peek_tail(&sk->sk_receive_queue); 5347 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 5348 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5349 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 5350 if (!eaten) 5351 tcp_add_receive_queue(sk, skb); 5352 else 5353 kfree_skb_partial(skb, fragstolen); 5354 5355 if (unlikely(fin)) { 5356 tcp_fin(sk); 5357 /* tcp_fin() purges tp->out_of_order_queue, 5358 * so we must end this loop right now. 5359 */ 5360 break; 5361 } 5362 } 5363 } 5364 5365 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 5366 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 5367 5368 /* Check if this incoming skb can be added to socket receive queues 5369 * while satisfying sk->sk_rcvbuf limit. 5370 * 5371 * In theory we should use skb->truesize, but this can cause problems 5372 * when applications use too small SO_RCVBUF values. 5373 * When LRO / hw gro is used, the socket might have a high tp->scaling_ratio, 5374 * allowing RWIN to be close to available space. 5375 * Whenever the receive queue gets full, we can receive a small packet 5376 * filling RWIN, but with a high skb->truesize, because most NIC use 4K page 5377 * plus sk_buff metadata even when receiving less than 1500 bytes of payload. 5378 * 5379 * Note that we use skb->len to decide to accept or drop this packet, 5380 * but sk->sk_rmem_alloc is the sum of all skb->truesize. 5381 */ 5382 static bool tcp_can_ingest(const struct sock *sk, const struct sk_buff *skb) 5383 { 5384 unsigned int rmem = atomic_read(&sk->sk_rmem_alloc); 5385 5386 return rmem + skb->len <= sk->sk_rcvbuf; 5387 } 5388 5389 static int tcp_try_rmem_schedule(struct sock *sk, const struct sk_buff *skb, 5390 unsigned int size) 5391 { 5392 if (!tcp_can_ingest(sk, skb) || 5393 !sk_rmem_schedule(sk, skb, size)) { 5394 5395 if (tcp_prune_queue(sk, skb) < 0) 5396 return -1; 5397 5398 while (!sk_rmem_schedule(sk, skb, size)) { 5399 if (!tcp_prune_ofo_queue(sk, skb)) 5400 return -1; 5401 } 5402 } 5403 return 0; 5404 } 5405 5406 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 5407 { 5408 struct tcp_sock *tp = tcp_sk(sk); 5409 struct rb_node **p, *parent; 5410 struct sk_buff *skb1; 5411 u32 seq, end_seq; 5412 bool fragstolen; 5413 5414 tcp_save_lrcv_flowlabel(sk, skb); 5415 tcp_data_ecn_check(sk, skb); 5416 5417 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 5418 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 5419 sk->sk_data_ready(sk); 5420 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 5421 return; 5422 } 5423 5424 tcp_measure_rcv_mss(sk, skb); 5425 /* Disable header prediction. */ 5426 tp->pred_flags = 0; 5427 inet_csk_schedule_ack(sk); 5428 5429 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 5430 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 5431 seq = TCP_SKB_CB(skb)->seq; 5432 end_seq = TCP_SKB_CB(skb)->end_seq; 5433 5434 p = &tp->out_of_order_queue.rb_node; 5435 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5436 /* Initial out of order segment, build 1 SACK. */ 5437 if (tcp_is_sack(tp)) { 5438 tp->rx_opt.num_sacks = 1; 5439 tp->selective_acks[0].start_seq = seq; 5440 tp->selective_acks[0].end_seq = end_seq; 5441 } 5442 rb_link_node(&skb->rbnode, NULL, p); 5443 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5444 tp->ooo_last_skb = skb; 5445 goto end; 5446 } 5447 5448 /* In the typical case, we are adding an skb to the end of the list. 5449 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 5450 */ 5451 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 5452 skb, &fragstolen)) { 5453 coalesce_done: 5454 /* For non sack flows, do not grow window to force DUPACK 5455 * and trigger fast retransmit. 5456 */ 5457 if (tcp_is_sack(tp)) 5458 tcp_grow_window(sk, skb, true); 5459 kfree_skb_partial(skb, fragstolen); 5460 skb = NULL; 5461 goto add_sack; 5462 } 5463 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 5464 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 5465 parent = &tp->ooo_last_skb->rbnode; 5466 p = &parent->rb_right; 5467 goto insert; 5468 } 5469 5470 /* Find place to insert this segment. Handle overlaps on the way. */ 5471 parent = NULL; 5472 while (*p) { 5473 parent = *p; 5474 skb1 = rb_to_skb(parent); 5475 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 5476 p = &parent->rb_left; 5477 continue; 5478 } 5479 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 5480 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5481 /* All the bits are present. Drop. */ 5482 NET_INC_STATS(sock_net(sk), 5483 LINUX_MIB_TCPOFOMERGE); 5484 tcp_drop_reason(sk, skb, 5485 SKB_DROP_REASON_TCP_OFOMERGE); 5486 skb = NULL; 5487 tcp_dsack_set(sk, seq, end_seq); 5488 goto add_sack; 5489 } 5490 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5491 /* Partial overlap. */ 5492 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5493 } else { 5494 /* skb's seq == skb1's seq and skb covers skb1. 5495 * Replace skb1 with skb. 5496 */ 5497 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5498 &tp->out_of_order_queue); 5499 tcp_dsack_extend(sk, 5500 TCP_SKB_CB(skb1)->seq, 5501 TCP_SKB_CB(skb1)->end_seq); 5502 NET_INC_STATS(sock_net(sk), 5503 LINUX_MIB_TCPOFOMERGE); 5504 tcp_drop_reason(sk, skb1, 5505 SKB_DROP_REASON_TCP_OFOMERGE); 5506 goto merge_right; 5507 } 5508 } else if (tcp_ooo_try_coalesce(sk, skb1, 5509 skb, &fragstolen)) { 5510 goto coalesce_done; 5511 } 5512 p = &parent->rb_right; 5513 } 5514 insert: 5515 /* Insert segment into RB tree. */ 5516 rb_link_node(&skb->rbnode, parent, p); 5517 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5518 5519 merge_right: 5520 /* Remove other segments covered by skb. */ 5521 while ((skb1 = skb_rb_next(skb)) != NULL) { 5522 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5523 break; 5524 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5525 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5526 end_seq); 5527 break; 5528 } 5529 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5530 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5531 TCP_SKB_CB(skb1)->end_seq); 5532 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5533 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5534 } 5535 /* If there is no skb after us, we are the last_skb ! */ 5536 if (!skb1) 5537 tp->ooo_last_skb = skb; 5538 5539 add_sack: 5540 if (tcp_is_sack(tp)) 5541 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5542 end: 5543 if (skb) { 5544 /* For non sack flows, do not grow window to force DUPACK 5545 * and trigger fast retransmit. 5546 */ 5547 if (tcp_is_sack(tp)) 5548 tcp_grow_window(sk, skb, false); 5549 skb_condense(skb); 5550 skb_set_owner_r(skb, sk); 5551 } 5552 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 5553 if (sk->sk_socket) 5554 tcp_rcvbuf_grow(sk, tp->rcvq_space.space); 5555 } 5556 5557 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5558 bool *fragstolen) 5559 { 5560 int eaten; 5561 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5562 5563 eaten = (tail && 5564 tcp_try_coalesce(sk, tail, 5565 skb, fragstolen)) ? 1 : 0; 5566 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5567 if (!eaten) { 5568 tcp_add_receive_queue(sk, skb); 5569 skb_set_owner_r(skb, sk); 5570 } 5571 return eaten; 5572 } 5573 5574 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5575 { 5576 struct sk_buff *skb; 5577 int err = -ENOMEM; 5578 int data_len = 0; 5579 bool fragstolen; 5580 5581 if (size == 0) 5582 return 0; 5583 5584 if (size > PAGE_SIZE) { 5585 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5586 5587 data_len = npages << PAGE_SHIFT; 5588 size = data_len + (size & ~PAGE_MASK); 5589 } 5590 skb = alloc_skb_with_frags(size - data_len, data_len, 5591 PAGE_ALLOC_COSTLY_ORDER, 5592 &err, sk->sk_allocation); 5593 if (!skb) 5594 goto err; 5595 5596 skb_put(skb, size - data_len); 5597 skb->data_len = data_len; 5598 skb->len = size; 5599 5600 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5601 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5602 goto err_free; 5603 } 5604 5605 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5606 if (err) 5607 goto err_free; 5608 5609 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5610 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5611 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5612 5613 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5614 WARN_ON_ONCE(fragstolen); /* should not happen */ 5615 __kfree_skb(skb); 5616 } 5617 return size; 5618 5619 err_free: 5620 kfree_skb(skb); 5621 err: 5622 return err; 5623 5624 } 5625 5626 void tcp_data_ready(struct sock *sk) 5627 { 5628 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5629 sk->sk_data_ready(sk); 5630 } 5631 5632 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5633 { 5634 struct tcp_sock *tp = tcp_sk(sk); 5635 enum skb_drop_reason reason; 5636 bool fragstolen; 5637 int eaten; 5638 5639 /* If a subflow has been reset, the packet should not continue 5640 * to be processed, drop the packet. 5641 */ 5642 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5643 __kfree_skb(skb); 5644 return; 5645 } 5646 5647 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5648 __kfree_skb(skb); 5649 return; 5650 } 5651 tcp_cleanup_skb(skb); 5652 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5653 5654 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5655 tp->rx_opt.dsack = 0; 5656 5657 /* Queue data for delivery to the user. 5658 * Packets in sequence go to the receive queue. 5659 * Out of sequence packets to the out_of_order_queue. 5660 */ 5661 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5662 if (tcp_receive_window(tp) == 0) { 5663 /* Some stacks are known to send bare FIN packets 5664 * in a loop even if we send RWIN 0 in our ACK. 5665 * Accepting this FIN does not hurt memory pressure 5666 * because the FIN flag will simply be merged to the 5667 * receive queue tail skb in most cases. 5668 */ 5669 if (!skb->len && 5670 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5671 goto queue_and_out; 5672 5673 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5674 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5675 goto out_of_window; 5676 } 5677 5678 /* Ok. In sequence. In window. */ 5679 queue_and_out: 5680 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5681 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5682 inet_csk(sk)->icsk_ack.pending |= 5683 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5684 inet_csk_schedule_ack(sk); 5685 sk->sk_data_ready(sk); 5686 5687 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5688 reason = SKB_DROP_REASON_PROTO_MEM; 5689 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5690 goto drop; 5691 } 5692 sk_forced_mem_schedule(sk, skb->truesize); 5693 } 5694 5695 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5696 if (skb->len) 5697 tcp_event_data_recv(sk, skb); 5698 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5699 tcp_fin(sk); 5700 5701 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5702 tcp_ofo_queue(sk); 5703 5704 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5705 * gap in queue is filled. 5706 */ 5707 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5708 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5709 } 5710 5711 if (tp->rx_opt.num_sacks) 5712 tcp_sack_remove(tp); 5713 5714 tcp_fast_path_check(sk); 5715 5716 if (eaten > 0) 5717 kfree_skb_partial(skb, fragstolen); 5718 if (!sock_flag(sk, SOCK_DEAD)) 5719 tcp_data_ready(sk); 5720 return; 5721 } 5722 5723 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5724 tcp_rcv_spurious_retrans(sk, skb); 5725 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5726 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5727 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5728 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5729 5730 out_of_window: 5731 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5732 inet_csk_schedule_ack(sk); 5733 drop: 5734 tcp_drop_reason(sk, skb, reason); 5735 return; 5736 } 5737 5738 /* Out of window. F.e. zero window probe. */ 5739 if (!before(TCP_SKB_CB(skb)->seq, 5740 tp->rcv_nxt + tcp_receive_window(tp))) { 5741 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5742 goto out_of_window; 5743 } 5744 5745 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5746 /* Partial packet, seq < rcv_next < end_seq */ 5747 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5748 5749 /* If window is closed, drop tail of packet. But after 5750 * remembering D-SACK for its head made in previous line. 5751 */ 5752 if (!tcp_receive_window(tp)) { 5753 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5754 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5755 goto out_of_window; 5756 } 5757 goto queue_and_out; 5758 } 5759 5760 tcp_data_queue_ofo(sk, skb); 5761 } 5762 5763 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5764 { 5765 if (list) 5766 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5767 5768 return skb_rb_next(skb); 5769 } 5770 5771 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5772 struct sk_buff_head *list, 5773 struct rb_root *root) 5774 { 5775 struct sk_buff *next = tcp_skb_next(skb, list); 5776 5777 if (list) 5778 __skb_unlink(skb, list); 5779 else 5780 rb_erase(&skb->rbnode, root); 5781 5782 __kfree_skb(skb); 5783 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5784 5785 return next; 5786 } 5787 5788 /* Collapse contiguous sequence of skbs head..tail with 5789 * sequence numbers start..end. 5790 * 5791 * If tail is NULL, this means until the end of the queue. 5792 * 5793 * Segments with FIN/SYN are not collapsed (only because this 5794 * simplifies code) 5795 */ 5796 static void 5797 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5798 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5799 { 5800 struct sk_buff *skb = head, *n; 5801 struct sk_buff_head tmp; 5802 bool end_of_skbs; 5803 5804 /* First, check that queue is collapsible and find 5805 * the point where collapsing can be useful. 5806 */ 5807 restart: 5808 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5809 n = tcp_skb_next(skb, list); 5810 5811 if (!skb_frags_readable(skb)) 5812 goto skip_this; 5813 5814 /* No new bits? It is possible on ofo queue. */ 5815 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5816 skb = tcp_collapse_one(sk, skb, list, root); 5817 if (!skb) 5818 break; 5819 goto restart; 5820 } 5821 5822 /* The first skb to collapse is: 5823 * - not SYN/FIN and 5824 * - bloated or contains data before "start" or 5825 * overlaps to the next one and mptcp allow collapsing. 5826 */ 5827 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5828 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5829 before(TCP_SKB_CB(skb)->seq, start))) { 5830 end_of_skbs = false; 5831 break; 5832 } 5833 5834 if (n && n != tail && skb_frags_readable(n) && 5835 tcp_skb_can_collapse_rx(skb, n) && 5836 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5837 end_of_skbs = false; 5838 break; 5839 } 5840 5841 skip_this: 5842 /* Decided to skip this, advance start seq. */ 5843 start = TCP_SKB_CB(skb)->end_seq; 5844 } 5845 if (end_of_skbs || 5846 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5847 !skb_frags_readable(skb)) 5848 return; 5849 5850 __skb_queue_head_init(&tmp); 5851 5852 while (before(start, end)) { 5853 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5854 struct sk_buff *nskb; 5855 5856 nskb = alloc_skb(copy, GFP_ATOMIC); 5857 if (!nskb) 5858 break; 5859 5860 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5861 skb_copy_decrypted(nskb, skb); 5862 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5863 if (list) 5864 __skb_queue_before(list, skb, nskb); 5865 else 5866 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5867 skb_set_owner_r(nskb, sk); 5868 mptcp_skb_ext_move(nskb, skb); 5869 5870 /* Copy data, releasing collapsed skbs. */ 5871 while (copy > 0) { 5872 int offset = start - TCP_SKB_CB(skb)->seq; 5873 int size = TCP_SKB_CB(skb)->end_seq - start; 5874 5875 BUG_ON(offset < 0); 5876 if (size > 0) { 5877 size = min(copy, size); 5878 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5879 BUG(); 5880 TCP_SKB_CB(nskb)->end_seq += size; 5881 copy -= size; 5882 start += size; 5883 } 5884 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5885 skb = tcp_collapse_one(sk, skb, list, root); 5886 if (!skb || 5887 skb == tail || 5888 !tcp_skb_can_collapse_rx(nskb, skb) || 5889 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5890 !skb_frags_readable(skb)) 5891 goto end; 5892 } 5893 } 5894 } 5895 end: 5896 skb_queue_walk_safe(&tmp, skb, n) 5897 tcp_rbtree_insert(root, skb); 5898 } 5899 5900 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5901 * and tcp_collapse() them until all the queue is collapsed. 5902 */ 5903 static void tcp_collapse_ofo_queue(struct sock *sk) 5904 { 5905 struct tcp_sock *tp = tcp_sk(sk); 5906 u32 range_truesize, sum_tiny = 0; 5907 struct sk_buff *skb, *head; 5908 u32 start, end; 5909 5910 skb = skb_rb_first(&tp->out_of_order_queue); 5911 new_range: 5912 if (!skb) { 5913 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5914 return; 5915 } 5916 start = TCP_SKB_CB(skb)->seq; 5917 end = TCP_SKB_CB(skb)->end_seq; 5918 range_truesize = skb->truesize; 5919 5920 for (head = skb;;) { 5921 skb = skb_rb_next(skb); 5922 5923 /* Range is terminated when we see a gap or when 5924 * we are at the queue end. 5925 */ 5926 if (!skb || 5927 after(TCP_SKB_CB(skb)->seq, end) || 5928 before(TCP_SKB_CB(skb)->end_seq, start)) { 5929 /* Do not attempt collapsing tiny skbs */ 5930 if (range_truesize != head->truesize || 5931 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5932 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5933 head, skb, start, end); 5934 } else { 5935 sum_tiny += range_truesize; 5936 if (sum_tiny > sk->sk_rcvbuf >> 3) 5937 return; 5938 } 5939 goto new_range; 5940 } 5941 5942 range_truesize += skb->truesize; 5943 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5944 start = TCP_SKB_CB(skb)->seq; 5945 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5946 end = TCP_SKB_CB(skb)->end_seq; 5947 } 5948 } 5949 5950 /* 5951 * Clean the out-of-order queue to make room. 5952 * We drop high sequences packets to : 5953 * 1) Let a chance for holes to be filled. 5954 * This means we do not drop packets from ooo queue if their sequence 5955 * is before incoming packet sequence. 5956 * 2) not add too big latencies if thousands of packets sit there. 5957 * (But if application shrinks SO_RCVBUF, we could still end up 5958 * freeing whole queue here) 5959 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5960 * 5961 * Return true if queue has shrunk. 5962 */ 5963 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5964 { 5965 struct tcp_sock *tp = tcp_sk(sk); 5966 struct rb_node *node, *prev; 5967 bool pruned = false; 5968 int goal; 5969 5970 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5971 return false; 5972 5973 goal = sk->sk_rcvbuf >> 3; 5974 node = &tp->ooo_last_skb->rbnode; 5975 5976 do { 5977 struct sk_buff *skb = rb_to_skb(node); 5978 5979 /* If incoming skb would land last in ofo queue, stop pruning. */ 5980 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5981 break; 5982 pruned = true; 5983 prev = rb_prev(node); 5984 rb_erase(node, &tp->out_of_order_queue); 5985 goal -= skb->truesize; 5986 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5987 tp->ooo_last_skb = rb_to_skb(prev); 5988 if (!prev || goal <= 0) { 5989 if (tcp_can_ingest(sk, in_skb) && 5990 !tcp_under_memory_pressure(sk)) 5991 break; 5992 goal = sk->sk_rcvbuf >> 3; 5993 } 5994 node = prev; 5995 } while (node); 5996 5997 if (pruned) { 5998 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5999 /* Reset SACK state. A conforming SACK implementation will 6000 * do the same at a timeout based retransmit. When a connection 6001 * is in a sad state like this, we care only about integrity 6002 * of the connection not performance. 6003 */ 6004 if (tp->rx_opt.sack_ok) 6005 tcp_sack_reset(&tp->rx_opt); 6006 } 6007 return pruned; 6008 } 6009 6010 /* Reduce allocated memory if we can, trying to get 6011 * the socket within its memory limits again. 6012 * 6013 * Return less than zero if we should start dropping frames 6014 * until the socket owning process reads some of the data 6015 * to stabilize the situation. 6016 */ 6017 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 6018 { 6019 struct tcp_sock *tp = tcp_sk(sk); 6020 6021 /* Do nothing if our queues are empty. */ 6022 if (!atomic_read(&sk->sk_rmem_alloc)) 6023 return -1; 6024 6025 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 6026 6027 if (!tcp_can_ingest(sk, in_skb)) 6028 tcp_clamp_window(sk); 6029 else if (tcp_under_memory_pressure(sk)) 6030 tcp_adjust_rcv_ssthresh(sk); 6031 6032 if (tcp_can_ingest(sk, in_skb)) 6033 return 0; 6034 6035 tcp_collapse_ofo_queue(sk); 6036 if (!skb_queue_empty(&sk->sk_receive_queue)) 6037 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 6038 skb_peek(&sk->sk_receive_queue), 6039 NULL, 6040 tp->copied_seq, tp->rcv_nxt); 6041 6042 if (tcp_can_ingest(sk, in_skb)) 6043 return 0; 6044 6045 /* Collapsing did not help, destructive actions follow. 6046 * This must not ever occur. */ 6047 6048 tcp_prune_ofo_queue(sk, in_skb); 6049 6050 if (tcp_can_ingest(sk, in_skb)) 6051 return 0; 6052 6053 /* If we are really being abused, tell the caller to silently 6054 * drop receive data on the floor. It will get retransmitted 6055 * and hopefully then we'll have sufficient space. 6056 */ 6057 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 6058 6059 /* Massive buffer overcommit. */ 6060 tp->pred_flags = 0; 6061 return -1; 6062 } 6063 6064 static bool tcp_should_expand_sndbuf(struct sock *sk) 6065 { 6066 const struct tcp_sock *tp = tcp_sk(sk); 6067 6068 /* If the user specified a specific send buffer setting, do 6069 * not modify it. 6070 */ 6071 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 6072 return false; 6073 6074 /* If we are under global TCP memory pressure, do not expand. */ 6075 if (tcp_under_memory_pressure(sk)) { 6076 int unused_mem = sk_unused_reserved_mem(sk); 6077 6078 /* Adjust sndbuf according to reserved mem. But make sure 6079 * it never goes below SOCK_MIN_SNDBUF. 6080 * See sk_stream_moderate_sndbuf() for more details. 6081 */ 6082 if (unused_mem > SOCK_MIN_SNDBUF) 6083 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 6084 6085 return false; 6086 } 6087 6088 /* If we are under soft global TCP memory pressure, do not expand. */ 6089 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 6090 return false; 6091 6092 /* If we filled the congestion window, do not expand. */ 6093 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 6094 return false; 6095 6096 return true; 6097 } 6098 6099 static void tcp_new_space(struct sock *sk) 6100 { 6101 struct tcp_sock *tp = tcp_sk(sk); 6102 6103 if (tcp_should_expand_sndbuf(sk)) { 6104 tcp_sndbuf_expand(sk); 6105 tp->snd_cwnd_stamp = tcp_jiffies32; 6106 } 6107 6108 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 6109 } 6110 6111 /* Caller made space either from: 6112 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 6113 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 6114 * 6115 * We might be able to generate EPOLLOUT to the application if: 6116 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 6117 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 6118 * small enough that tcp_stream_memory_free() decides it 6119 * is time to generate EPOLLOUT. 6120 */ 6121 void __tcp_check_space(struct sock *sk) 6122 { 6123 tcp_new_space(sk); 6124 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 6125 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 6126 } 6127 6128 static inline void tcp_data_snd_check(struct sock *sk) 6129 { 6130 tcp_push_pending_frames(sk); 6131 tcp_check_space(sk); 6132 } 6133 6134 /* 6135 * Check if sending an ack is needed. 6136 */ 6137 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 6138 { 6139 struct tcp_sock *tp = tcp_sk(sk); 6140 struct net *net = sock_net(sk); 6141 unsigned long rtt; 6142 u64 delay; 6143 6144 /* More than one full frame received... */ 6145 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 6146 /* ... and right edge of window advances far enough. 6147 * (tcp_recvmsg() will send ACK otherwise). 6148 * If application uses SO_RCVLOWAT, we want send ack now if 6149 * we have not received enough bytes to satisfy the condition. 6150 */ 6151 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 6152 __tcp_select_window(sk) >= tp->rcv_wnd)) || 6153 /* We ACK each frame or... */ 6154 tcp_in_quickack_mode(sk) || 6155 /* Protocol state mandates a one-time immediate ACK */ 6156 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 6157 /* If we are running from __release_sock() in user context, 6158 * Defer the ack until tcp_release_cb(). 6159 */ 6160 if (sock_owned_by_user_nocheck(sk) && 6161 READ_ONCE(net->ipv4.sysctl_tcp_backlog_ack_defer)) { 6162 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 6163 return; 6164 } 6165 send_now: 6166 tcp_send_ack(sk); 6167 return; 6168 } 6169 6170 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 6171 tcp_send_delayed_ack(sk); 6172 return; 6173 } 6174 6175 if (!tcp_is_sack(tp) || 6176 tp->compressed_ack >= READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_nr)) 6177 goto send_now; 6178 6179 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 6180 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 6181 tp->dup_ack_counter = 0; 6182 } 6183 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 6184 tp->dup_ack_counter++; 6185 goto send_now; 6186 } 6187 tp->compressed_ack++; 6188 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 6189 return; 6190 6191 /* compress ack timer : comp_sack_rtt_percent of rtt, 6192 * but no more than tcp_comp_sack_delay_ns. 6193 */ 6194 6195 rtt = tp->rcv_rtt_est.rtt_us; 6196 if (tp->srtt_us && tp->srtt_us < rtt) 6197 rtt = tp->srtt_us; 6198 6199 /* delay = (rtt >> 3) * NSEC_PER_USEC * comp_sack_rtt_percent / 100 6200 * -> 6201 * delay = rtt * 1.25 * comp_sack_rtt_percent 6202 */ 6203 delay = (u64)(rtt + (rtt >> 2)) * 6204 READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_rtt_percent); 6205 6206 delay = min(delay, READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_delay_ns)); 6207 6208 sock_hold(sk); 6209 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 6210 READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_slack_ns), 6211 HRTIMER_MODE_REL_PINNED_SOFT); 6212 } 6213 6214 static inline void tcp_ack_snd_check(struct sock *sk) 6215 { 6216 if (!inet_csk_ack_scheduled(sk)) { 6217 /* We sent a data segment already. */ 6218 return; 6219 } 6220 __tcp_ack_snd_check(sk, 1); 6221 } 6222 6223 /* 6224 * This routine is only called when we have urgent data 6225 * signaled. Its the 'slow' part of tcp_urg. It could be 6226 * moved inline now as tcp_urg is only called from one 6227 * place. We handle URGent data wrong. We have to - as 6228 * BSD still doesn't use the correction from RFC961. 6229 * For 1003.1g we should support a new option TCP_STDURG to permit 6230 * either form (or just set the sysctl tcp_stdurg). 6231 */ 6232 6233 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 6234 { 6235 struct tcp_sock *tp = tcp_sk(sk); 6236 u32 ptr = ntohs(th->urg_ptr); 6237 6238 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 6239 ptr--; 6240 ptr += ntohl(th->seq); 6241 6242 /* Ignore urgent data that we've already seen and read. */ 6243 if (after(tp->copied_seq, ptr)) 6244 return; 6245 6246 /* Do not replay urg ptr. 6247 * 6248 * NOTE: interesting situation not covered by specs. 6249 * Misbehaving sender may send urg ptr, pointing to segment, 6250 * which we already have in ofo queue. We are not able to fetch 6251 * such data and will stay in TCP_URG_NOTYET until will be eaten 6252 * by recvmsg(). Seems, we are not obliged to handle such wicked 6253 * situations. But it is worth to think about possibility of some 6254 * DoSes using some hypothetical application level deadlock. 6255 */ 6256 if (before(ptr, tp->rcv_nxt)) 6257 return; 6258 6259 /* Do we already have a newer (or duplicate) urgent pointer? */ 6260 if (tp->urg_data && !after(ptr, tp->urg_seq)) 6261 return; 6262 6263 /* Tell the world about our new urgent pointer. */ 6264 sk_send_sigurg(sk); 6265 6266 /* We may be adding urgent data when the last byte read was 6267 * urgent. To do this requires some care. We cannot just ignore 6268 * tp->copied_seq since we would read the last urgent byte again 6269 * as data, nor can we alter copied_seq until this data arrives 6270 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 6271 * 6272 * NOTE. Double Dutch. Rendering to plain English: author of comment 6273 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 6274 * and expect that both A and B disappear from stream. This is _wrong_. 6275 * Though this happens in BSD with high probability, this is occasional. 6276 * Any application relying on this is buggy. Note also, that fix "works" 6277 * only in this artificial test. Insert some normal data between A and B and we will 6278 * decline of BSD again. Verdict: it is better to remove to trap 6279 * buggy users. 6280 */ 6281 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 6282 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 6283 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 6284 tp->copied_seq++; 6285 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 6286 __skb_unlink(skb, &sk->sk_receive_queue); 6287 __kfree_skb(skb); 6288 } 6289 } 6290 6291 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 6292 WRITE_ONCE(tp->urg_seq, ptr); 6293 6294 /* Disable header prediction. */ 6295 tp->pred_flags = 0; 6296 } 6297 6298 /* This is the 'fast' part of urgent handling. */ 6299 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 6300 { 6301 struct tcp_sock *tp = tcp_sk(sk); 6302 6303 /* Check if we get a new urgent pointer - normally not. */ 6304 if (unlikely(th->urg)) 6305 tcp_check_urg(sk, th); 6306 6307 /* Do we wait for any urgent data? - normally not... */ 6308 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 6309 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 6310 th->syn; 6311 6312 /* Is the urgent pointer pointing into this packet? */ 6313 if (ptr < skb->len) { 6314 u8 tmp; 6315 if (skb_copy_bits(skb, ptr, &tmp, 1)) 6316 BUG(); 6317 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 6318 if (!sock_flag(sk, SOCK_DEAD)) 6319 sk->sk_data_ready(sk); 6320 } 6321 } 6322 } 6323 6324 /* Accept RST for rcv_nxt - 1 after a FIN. 6325 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 6326 * FIN is sent followed by a RST packet. The RST is sent with the same 6327 * sequence number as the FIN, and thus according to RFC 5961 a challenge 6328 * ACK should be sent. However, Mac OSX rate limits replies to challenge 6329 * ACKs on the closed socket. In addition middleboxes can drop either the 6330 * challenge ACK or a subsequent RST. 6331 */ 6332 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 6333 { 6334 const struct tcp_sock *tp = tcp_sk(sk); 6335 6336 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 6337 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 6338 TCPF_CLOSING)); 6339 } 6340 6341 /* Does PAWS and seqno based validation of an incoming segment, flags will 6342 * play significant role here. 6343 */ 6344 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 6345 const struct tcphdr *th, int syn_inerr) 6346 { 6347 struct tcp_sock *tp = tcp_sk(sk); 6348 bool accecn_reflector = false; 6349 SKB_DR(reason); 6350 6351 /* RFC1323: H1. Apply PAWS check first. */ 6352 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) || 6353 !tp->rx_opt.saw_tstamp || 6354 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW)) 6355 goto step1; 6356 6357 reason = tcp_disordered_ack_check(sk, skb); 6358 if (!reason) 6359 goto step1; 6360 /* Reset is accepted even if it did not pass PAWS. */ 6361 if (th->rst) 6362 goto step1; 6363 if (unlikely(th->syn)) 6364 goto syn_challenge; 6365 6366 /* Old ACK are common, increment PAWS_OLD_ACK 6367 * and do not send a dupack. 6368 */ 6369 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) { 6370 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK); 6371 goto discard; 6372 } 6373 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 6374 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6375 LINUX_MIB_TCPACKSKIPPEDPAWS, 6376 &tp->last_oow_ack_time)) 6377 tcp_send_dupack(sk, skb); 6378 goto discard; 6379 6380 step1: 6381 /* Step 1: check sequence number */ 6382 reason = tcp_sequence(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 6383 if (reason) { 6384 /* RFC793, page 37: "In all states except SYN-SENT, all reset 6385 * (RST) segments are validated by checking their SEQ-fields." 6386 * And page 69: "If an incoming segment is not acceptable, 6387 * an acknowledgment should be sent in reply (unless the RST 6388 * bit is set, if so drop the segment and return)". 6389 */ 6390 if (!th->rst) { 6391 if (th->syn) 6392 goto syn_challenge; 6393 6394 if (reason == SKB_DROP_REASON_TCP_INVALID_SEQUENCE || 6395 reason == SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE) 6396 NET_INC_STATS(sock_net(sk), 6397 LINUX_MIB_BEYOND_WINDOW); 6398 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6399 LINUX_MIB_TCPACKSKIPPEDSEQ, 6400 &tp->last_oow_ack_time)) 6401 tcp_send_dupack(sk, skb); 6402 } else if (tcp_reset_check(sk, skb)) { 6403 goto reset; 6404 } 6405 goto discard; 6406 } 6407 6408 /* Step 2: check RST bit */ 6409 if (th->rst) { 6410 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 6411 * FIN and SACK too if available): 6412 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 6413 * the right-most SACK block, 6414 * then 6415 * RESET the connection 6416 * else 6417 * Send a challenge ACK 6418 */ 6419 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 6420 tcp_reset_check(sk, skb)) 6421 goto reset; 6422 6423 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 6424 struct tcp_sack_block *sp = &tp->selective_acks[0]; 6425 int max_sack = sp[0].end_seq; 6426 int this_sack; 6427 6428 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 6429 ++this_sack) { 6430 max_sack = after(sp[this_sack].end_seq, 6431 max_sack) ? 6432 sp[this_sack].end_seq : max_sack; 6433 } 6434 6435 if (TCP_SKB_CB(skb)->seq == max_sack) 6436 goto reset; 6437 } 6438 6439 /* Disable TFO if RST is out-of-order 6440 * and no data has been received 6441 * for current active TFO socket 6442 */ 6443 if (tp->syn_fastopen && !tp->data_segs_in && 6444 sk->sk_state == TCP_ESTABLISHED) 6445 tcp_fastopen_active_disable(sk); 6446 tcp_send_challenge_ack(sk, false); 6447 SKB_DR_SET(reason, TCP_RESET); 6448 goto discard; 6449 } 6450 6451 /* step 3: check security and precedence [ignored] */ 6452 6453 /* step 4: Check for a SYN 6454 * RFC 5961 4.2 : Send a challenge ack 6455 */ 6456 if (th->syn) { 6457 if (tcp_ecn_mode_accecn(tp)) { 6458 accecn_reflector = true; 6459 tp->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield & 6460 INET_ECN_MASK; 6461 if (tp->rx_opt.accecn && 6462 tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) { 6463 u8 saw_opt = tcp_accecn_option_init(skb, tp->rx_opt.accecn); 6464 6465 tcp_accecn_saw_opt_fail_recv(tp, saw_opt); 6466 tcp_accecn_opt_demand_min(sk, 1); 6467 } 6468 } 6469 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 6470 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 6471 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 6472 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 6473 goto pass; 6474 syn_challenge: 6475 if (syn_inerr) 6476 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6477 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 6478 tcp_send_challenge_ack(sk, accecn_reflector); 6479 SKB_DR_SET(reason, TCP_INVALID_SYN); 6480 goto discard; 6481 } 6482 6483 pass: 6484 bpf_skops_parse_hdr(sk, skb); 6485 6486 return true; 6487 6488 discard: 6489 tcp_drop_reason(sk, skb, reason); 6490 return false; 6491 6492 reset: 6493 tcp_reset(sk, skb); 6494 __kfree_skb(skb); 6495 return false; 6496 } 6497 6498 /* 6499 * TCP receive function for the ESTABLISHED state. 6500 * 6501 * It is split into a fast path and a slow path. The fast path is 6502 * disabled when: 6503 * - A zero window was announced from us - zero window probing 6504 * is only handled properly in the slow path. 6505 * - Out of order segments arrived. 6506 * - Urgent data is expected. 6507 * - There is no buffer space left 6508 * - Unexpected TCP flags/window values/header lengths are received 6509 * (detected by checking the TCP header against pred_flags) 6510 * - Data is sent in both directions. Fast path only supports pure senders 6511 * or pure receivers (this means either the sequence number or the ack 6512 * value must stay constant) 6513 * - Unexpected TCP option. 6514 * 6515 * When these conditions are not satisfied it drops into a standard 6516 * receive procedure patterned after RFC793 to handle all cases. 6517 * The first three cases are guaranteed by proper pred_flags setting, 6518 * the rest is checked inline. Fast processing is turned on in 6519 * tcp_data_queue when everything is OK. 6520 */ 6521 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6522 { 6523 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6524 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6525 struct tcp_sock *tp = tcp_sk(sk); 6526 unsigned int len = skb->len; 6527 6528 /* TCP congestion window tracking */ 6529 trace_tcp_probe(sk, skb); 6530 6531 tcp_mstamp_refresh(tp); 6532 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6533 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6534 /* 6535 * Header prediction. 6536 * The code loosely follows the one in the famous 6537 * "30 instruction TCP receive" Van Jacobson mail. 6538 * 6539 * Van's trick is to deposit buffers into socket queue 6540 * on a device interrupt, to call tcp_recv function 6541 * on the receive process context and checksum and copy 6542 * the buffer to user space. smart... 6543 * 6544 * Our current scheme is not silly either but we take the 6545 * extra cost of the net_bh soft interrupt processing... 6546 * We do checksum and copy also but from device to kernel. 6547 */ 6548 6549 tp->rx_opt.saw_tstamp = 0; 6550 tp->rx_opt.accecn = 0; 6551 6552 /* pred_flags is 0xS?10 << 16 + snd_wnd 6553 * if header_prediction is to be made 6554 * 'S' will always be tp->tcp_header_len >> 2 6555 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6556 * turn it off (when there are holes in the receive 6557 * space for instance) 6558 * PSH flag is ignored. 6559 */ 6560 6561 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6562 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6563 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6564 int tcp_header_len = tp->tcp_header_len; 6565 s32 delta = 0; 6566 int flag = 0; 6567 6568 /* Timestamp header prediction: tcp_header_len 6569 * is automatically equal to th->doff*4 due to pred_flags 6570 * match. 6571 */ 6572 6573 /* Check timestamp */ 6574 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6575 /* No? Slow path! */ 6576 if (!tcp_parse_aligned_timestamp(tp, th)) 6577 goto slow_path; 6578 6579 delta = tp->rx_opt.rcv_tsval - 6580 tp->rx_opt.ts_recent; 6581 /* If PAWS failed, check it more carefully in slow path */ 6582 if (delta < 0) 6583 goto slow_path; 6584 6585 /* DO NOT update ts_recent here, if checksum fails 6586 * and timestamp was corrupted part, it will result 6587 * in a hung connection since we will drop all 6588 * future packets due to the PAWS test. 6589 */ 6590 } 6591 6592 if (len <= tcp_header_len) { 6593 /* Bulk data transfer: sender */ 6594 if (len == tcp_header_len) { 6595 /* Predicted packet is in window by definition. 6596 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6597 * Hence, check seq<=rcv_wup reduces to: 6598 */ 6599 if (tcp_header_len == 6600 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6601 tp->rcv_nxt == tp->rcv_wup) 6602 flag |= __tcp_replace_ts_recent(tp, 6603 delta); 6604 6605 tcp_ecn_received_counters(sk, skb, 0); 6606 6607 /* We know that such packets are checksummed 6608 * on entry. 6609 */ 6610 tcp_ack(sk, skb, flag); 6611 __kfree_skb(skb); 6612 tcp_data_snd_check(sk); 6613 /* When receiving pure ack in fast path, update 6614 * last ts ecr directly instead of calling 6615 * tcp_rcv_rtt_measure_ts() 6616 */ 6617 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6618 return; 6619 } else { /* Header too small */ 6620 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6621 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6622 goto discard; 6623 } 6624 } else { 6625 int eaten = 0; 6626 bool fragstolen = false; 6627 6628 if (tcp_checksum_complete(skb)) 6629 goto csum_error; 6630 6631 if (after(TCP_SKB_CB(skb)->end_seq, 6632 tp->rcv_nxt + tcp_receive_window(tp))) 6633 goto validate; 6634 6635 if ((int)skb->truesize > sk->sk_forward_alloc) 6636 goto step5; 6637 6638 /* Predicted packet is in window by definition. 6639 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6640 * Hence, check seq<=rcv_wup reduces to: 6641 */ 6642 if (tcp_header_len == 6643 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6644 tp->rcv_nxt == tp->rcv_wup) 6645 flag |= __tcp_replace_ts_recent(tp, 6646 delta); 6647 6648 tcp_rcv_rtt_measure_ts(sk, skb); 6649 6650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6651 6652 /* Bulk data transfer: receiver */ 6653 tcp_cleanup_skb(skb); 6654 __skb_pull(skb, tcp_header_len); 6655 tcp_ecn_received_counters(sk, skb, 6656 len - tcp_header_len); 6657 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6658 6659 tcp_event_data_recv(sk, skb); 6660 6661 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6662 /* Well, only one small jumplet in fast path... */ 6663 tcp_ack(sk, skb, flag | FLAG_DATA); 6664 tcp_data_snd_check(sk); 6665 if (!inet_csk_ack_scheduled(sk)) 6666 goto no_ack; 6667 } else { 6668 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6669 } 6670 6671 __tcp_ack_snd_check(sk, 0); 6672 no_ack: 6673 if (eaten) 6674 kfree_skb_partial(skb, fragstolen); 6675 tcp_data_ready(sk); 6676 return; 6677 } 6678 } 6679 6680 slow_path: 6681 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6682 goto csum_error; 6683 6684 if (!th->ack && !th->rst && !th->syn) { 6685 reason = SKB_DROP_REASON_TCP_FLAGS; 6686 goto discard; 6687 } 6688 6689 /* 6690 * Standard slow path. 6691 */ 6692 validate: 6693 if (!tcp_validate_incoming(sk, skb, th, 1)) 6694 return; 6695 6696 step5: 6697 tcp_ecn_received_counters_payload(sk, skb); 6698 6699 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6700 if ((int)reason < 0) { 6701 reason = -reason; 6702 goto discard; 6703 } 6704 tcp_rcv_rtt_measure_ts(sk, skb); 6705 6706 /* Process urgent data. */ 6707 tcp_urg(sk, skb, th); 6708 6709 /* step 7: process the segment text */ 6710 tcp_data_queue(sk, skb); 6711 6712 tcp_data_snd_check(sk); 6713 tcp_ack_snd_check(sk); 6714 return; 6715 6716 csum_error: 6717 reason = SKB_DROP_REASON_TCP_CSUM; 6718 trace_tcp_bad_csum(skb); 6719 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6720 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6721 6722 discard: 6723 tcp_drop_reason(sk, skb, reason); 6724 } 6725 EXPORT_IPV6_MOD(tcp_rcv_established); 6726 6727 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6728 { 6729 struct inet_connection_sock *icsk = inet_csk(sk); 6730 struct tcp_sock *tp = tcp_sk(sk); 6731 6732 tcp_mtup_init(sk); 6733 icsk->icsk_af_ops->rebuild_header(sk); 6734 tcp_init_metrics(sk); 6735 6736 /* Initialize the congestion window to start the transfer. 6737 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6738 * retransmitted. In light of RFC6298 more aggressive 1sec 6739 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6740 * retransmission has occurred. 6741 */ 6742 if (tp->total_retrans > 1 && tp->undo_marker) 6743 tcp_snd_cwnd_set(tp, 1); 6744 else 6745 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6746 tp->snd_cwnd_stamp = tcp_jiffies32; 6747 6748 bpf_skops_established(sk, bpf_op, skb); 6749 /* Initialize congestion control unless BPF initialized it already: */ 6750 if (!icsk->icsk_ca_initialized) 6751 tcp_init_congestion_control(sk); 6752 tcp_init_buffer_space(sk); 6753 } 6754 6755 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6756 { 6757 struct tcp_sock *tp = tcp_sk(sk); 6758 struct inet_connection_sock *icsk = inet_csk(sk); 6759 6760 tcp_ao_finish_connect(sk, skb); 6761 tcp_set_state(sk, TCP_ESTABLISHED); 6762 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6763 6764 if (skb) { 6765 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6766 security_inet_conn_established(sk, skb); 6767 sk_mark_napi_id(sk, skb); 6768 } 6769 6770 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6771 6772 /* Prevent spurious tcp_cwnd_restart() on first data 6773 * packet. 6774 */ 6775 tp->lsndtime = tcp_jiffies32; 6776 6777 if (sock_flag(sk, SOCK_KEEPOPEN)) 6778 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6779 6780 if (!tp->rx_opt.snd_wscale) 6781 __tcp_fast_path_on(tp, tp->snd_wnd); 6782 else 6783 tp->pred_flags = 0; 6784 } 6785 6786 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6787 struct tcp_fastopen_cookie *cookie) 6788 { 6789 struct tcp_sock *tp = tcp_sk(sk); 6790 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6791 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6792 bool syn_drop = false; 6793 6794 if (mss == READ_ONCE(tp->rx_opt.user_mss)) { 6795 struct tcp_options_received opt; 6796 6797 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6798 tcp_clear_options(&opt); 6799 opt.user_mss = opt.mss_clamp = 0; 6800 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6801 mss = opt.mss_clamp; 6802 } 6803 6804 if (!tp->syn_fastopen) { 6805 /* Ignore an unsolicited cookie */ 6806 cookie->len = -1; 6807 } else if (tp->total_retrans) { 6808 /* SYN timed out and the SYN-ACK neither has a cookie nor 6809 * acknowledges data. Presumably the remote received only 6810 * the retransmitted (regular) SYNs: either the original 6811 * SYN-data or the corresponding SYN-ACK was dropped. 6812 */ 6813 syn_drop = (cookie->len < 0 && data); 6814 } else if (cookie->len < 0 && !tp->syn_data) { 6815 /* We requested a cookie but didn't get it. If we did not use 6816 * the (old) exp opt format then try so next time (try_exp=1). 6817 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6818 */ 6819 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6820 } 6821 6822 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6823 6824 if (data) { /* Retransmit unacked data in SYN */ 6825 if (tp->total_retrans) 6826 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6827 else 6828 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6829 skb_rbtree_walk_from(data) 6830 tcp_mark_skb_lost(sk, data); 6831 tcp_non_congestion_loss_retransmit(sk); 6832 NET_INC_STATS(sock_net(sk), 6833 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6834 return true; 6835 } 6836 tp->syn_data_acked = tp->syn_data; 6837 if (tp->syn_data_acked) { 6838 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6839 /* SYN-data is counted as two separate packets in tcp_ack() */ 6840 if (tp->delivered > 1) 6841 --tp->delivered; 6842 } 6843 6844 tcp_fastopen_add_skb(sk, synack); 6845 6846 return false; 6847 } 6848 6849 static void smc_check_reset_syn(struct tcp_sock *tp) 6850 { 6851 #if IS_ENABLED(CONFIG_SMC) 6852 if (static_branch_unlikely(&tcp_have_smc)) { 6853 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6854 tp->syn_smc = 0; 6855 } 6856 #endif 6857 } 6858 6859 static void tcp_try_undo_spurious_syn(struct sock *sk) 6860 { 6861 struct tcp_sock *tp = tcp_sk(sk); 6862 u32 syn_stamp; 6863 6864 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6865 * spurious if the ACK's timestamp option echo value matches the 6866 * original SYN timestamp. 6867 */ 6868 syn_stamp = tp->retrans_stamp; 6869 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6870 syn_stamp == tp->rx_opt.rcv_tsecr) 6871 tp->undo_marker = 0; 6872 } 6873 6874 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6875 const struct tcphdr *th) 6876 { 6877 struct inet_connection_sock *icsk = inet_csk(sk); 6878 struct tcp_sock *tp = tcp_sk(sk); 6879 struct tcp_fastopen_cookie foc = { .len = -1 }; 6880 int saved_clamp = tp->rx_opt.mss_clamp; 6881 bool fastopen_fail; 6882 SKB_DR(reason); 6883 6884 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6885 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6886 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6887 6888 if (th->ack) { 6889 /* rfc793: 6890 * "If the state is SYN-SENT then 6891 * first check the ACK bit 6892 * If the ACK bit is set 6893 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6894 * a reset (unless the RST bit is set, if so drop 6895 * the segment and return)" 6896 */ 6897 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6898 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6899 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6900 if (icsk->icsk_retransmits == 0) 6901 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 6902 TCP_TIMEOUT_MIN, false); 6903 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6904 goto reset_and_undo; 6905 } 6906 6907 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6908 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6909 tcp_time_stamp_ts(tp))) { 6910 NET_INC_STATS(sock_net(sk), 6911 LINUX_MIB_PAWSACTIVEREJECTED); 6912 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6913 goto reset_and_undo; 6914 } 6915 6916 /* Now ACK is acceptable. 6917 * 6918 * "If the RST bit is set 6919 * If the ACK was acceptable then signal the user "error: 6920 * connection reset", drop the segment, enter CLOSED state, 6921 * delete TCB, and return." 6922 */ 6923 6924 if (th->rst) { 6925 tcp_reset(sk, skb); 6926 consume: 6927 __kfree_skb(skb); 6928 return 0; 6929 } 6930 6931 /* rfc793: 6932 * "fifth, if neither of the SYN or RST bits is set then 6933 * drop the segment and return." 6934 * 6935 * See note below! 6936 * --ANK(990513) 6937 */ 6938 if (!th->syn) { 6939 SKB_DR_SET(reason, TCP_FLAGS); 6940 goto discard_and_undo; 6941 } 6942 /* rfc793: 6943 * "If the SYN bit is on ... 6944 * are acceptable then ... 6945 * (our SYN has been ACKed), change the connection 6946 * state to ESTABLISHED..." 6947 */ 6948 6949 if (tcp_ecn_mode_any(tp)) 6950 tcp_ecn_rcv_synack(sk, skb, th, 6951 TCP_SKB_CB(skb)->ip_dsfield); 6952 6953 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6954 tcp_try_undo_spurious_syn(sk); 6955 tcp_ack(sk, skb, FLAG_SLOWPATH); 6956 6957 /* Ok.. it's good. Set up sequence numbers and 6958 * move to established. 6959 */ 6960 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6961 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6962 6963 /* RFC1323: The window in SYN & SYN/ACK segments is 6964 * never scaled. 6965 */ 6966 tp->snd_wnd = ntohs(th->window); 6967 6968 if (!tp->rx_opt.wscale_ok) { 6969 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6970 WRITE_ONCE(tp->window_clamp, 6971 min(tp->window_clamp, 65535U)); 6972 } 6973 6974 if (tp->rx_opt.saw_tstamp) { 6975 tp->rx_opt.tstamp_ok = 1; 6976 tp->tcp_header_len = 6977 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6978 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6979 tcp_store_ts_recent(tp); 6980 } else { 6981 tp->tcp_header_len = sizeof(struct tcphdr); 6982 } 6983 6984 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6985 tcp_initialize_rcv_mss(sk); 6986 6987 /* Remember, tcp_poll() does not lock socket! 6988 * Change state from SYN-SENT only after copied_seq 6989 * is initialized. */ 6990 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6991 6992 smc_check_reset_syn(tp); 6993 6994 smp_mb(); 6995 6996 tcp_finish_connect(sk, skb); 6997 6998 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6999 tcp_rcv_fastopen_synack(sk, skb, &foc); 7000 7001 if (!sock_flag(sk, SOCK_DEAD)) { 7002 sk->sk_state_change(sk); 7003 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 7004 } 7005 if (fastopen_fail) 7006 return -1; 7007 if (sk->sk_write_pending || 7008 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 7009 inet_csk_in_pingpong_mode(sk)) { 7010 /* Save one ACK. Data will be ready after 7011 * several ticks, if write_pending is set. 7012 * 7013 * It may be deleted, but with this feature tcpdumps 7014 * look so _wonderfully_ clever, that I was not able 7015 * to stand against the temptation 8) --ANK 7016 */ 7017 inet_csk_schedule_ack(sk); 7018 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 7019 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, 7020 TCP_DELACK_MAX, false); 7021 goto consume; 7022 } 7023 tcp_send_ack_reflect_ect(sk, tcp_ecn_mode_accecn(tp)); 7024 return -1; 7025 } 7026 7027 /* No ACK in the segment */ 7028 7029 if (th->rst) { 7030 /* rfc793: 7031 * "If the RST bit is set 7032 * 7033 * Otherwise (no ACK) drop the segment and return." 7034 */ 7035 SKB_DR_SET(reason, TCP_RESET); 7036 goto discard_and_undo; 7037 } 7038 7039 /* PAWS check. */ 7040 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 7041 tcp_paws_reject(&tp->rx_opt, 0)) { 7042 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 7043 goto discard_and_undo; 7044 } 7045 if (th->syn) { 7046 /* We see SYN without ACK. It is attempt of 7047 * simultaneous connect with crossed SYNs. 7048 * Particularly, it can be connect to self. 7049 */ 7050 #ifdef CONFIG_TCP_AO 7051 struct tcp_ao_info *ao; 7052 7053 ao = rcu_dereference_protected(tp->ao_info, 7054 lockdep_sock_is_held(sk)); 7055 if (ao) { 7056 WRITE_ONCE(ao->risn, th->seq); 7057 ao->rcv_sne = 0; 7058 } 7059 #endif 7060 tcp_set_state(sk, TCP_SYN_RECV); 7061 7062 if (tp->rx_opt.saw_tstamp) { 7063 tp->rx_opt.tstamp_ok = 1; 7064 tcp_store_ts_recent(tp); 7065 tp->tcp_header_len = 7066 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 7067 } else { 7068 tp->tcp_header_len = sizeof(struct tcphdr); 7069 } 7070 7071 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 7072 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 7073 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 7074 7075 /* RFC1323: The window in SYN & SYN/ACK segments is 7076 * never scaled. 7077 */ 7078 tp->snd_wnd = ntohs(th->window); 7079 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 7080 tp->max_window = tp->snd_wnd; 7081 7082 tcp_ecn_rcv_syn(sk, th, skb); 7083 7084 tcp_mtup_init(sk); 7085 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 7086 tcp_initialize_rcv_mss(sk); 7087 7088 tcp_send_synack(sk); 7089 #if 0 7090 /* Note, we could accept data and URG from this segment. 7091 * There are no obstacles to make this (except that we must 7092 * either change tcp_recvmsg() to prevent it from returning data 7093 * before 3WHS completes per RFC793, or employ TCP Fast Open). 7094 * 7095 * However, if we ignore data in ACKless segments sometimes, 7096 * we have no reasons to accept it sometimes. 7097 * Also, seems the code doing it in step6 of tcp_rcv_state_process 7098 * is not flawless. So, discard packet for sanity. 7099 * Uncomment this return to process the data. 7100 */ 7101 return -1; 7102 #else 7103 goto consume; 7104 #endif 7105 } 7106 /* "fifth, if neither of the SYN or RST bits is set then 7107 * drop the segment and return." 7108 */ 7109 7110 discard_and_undo: 7111 tcp_clear_options(&tp->rx_opt); 7112 tp->rx_opt.mss_clamp = saved_clamp; 7113 tcp_drop_reason(sk, skb, reason); 7114 return 0; 7115 7116 reset_and_undo: 7117 tcp_clear_options(&tp->rx_opt); 7118 tp->rx_opt.mss_clamp = saved_clamp; 7119 /* we can reuse/return @reason to its caller to handle the exception */ 7120 return reason; 7121 } 7122 7123 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 7124 { 7125 struct tcp_sock *tp = tcp_sk(sk); 7126 struct request_sock *req; 7127 7128 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 7129 * undo. If peer SACKs triggered fast recovery, we can't undo here. 7130 */ 7131 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 7132 tcp_try_undo_recovery(sk); 7133 7134 tcp_update_rto_time(tp); 7135 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 7136 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 7137 * retrans_stamp but don't enter CA_Loss, so in case that happened we 7138 * need to zero retrans_stamp here to prevent spurious 7139 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 7140 * to enter CA_Recovery then we need to leave retrans_stamp as it was 7141 * set entering CA_Recovery, for correct retransmits_timed_out() and 7142 * undo behavior. 7143 */ 7144 tcp_retrans_stamp_cleanup(sk); 7145 7146 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 7147 * we no longer need req so release it. 7148 */ 7149 req = rcu_dereference_protected(tp->fastopen_rsk, 7150 lockdep_sock_is_held(sk)); 7151 reqsk_fastopen_remove(sk, req, false); 7152 7153 /* Re-arm the timer because data may have been sent out. 7154 * This is similar to the regular data transmission case 7155 * when new data has just been ack'ed. 7156 * 7157 * (TFO) - we could try to be more aggressive and 7158 * retransmitting any data sooner based on when they 7159 * are sent out. 7160 */ 7161 tcp_rearm_rto(sk); 7162 } 7163 7164 /* 7165 * This function implements the receiving procedure of RFC 793 for 7166 * all states except ESTABLISHED and TIME_WAIT. 7167 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 7168 * address independent. 7169 */ 7170 7171 enum skb_drop_reason 7172 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 7173 { 7174 struct tcp_sock *tp = tcp_sk(sk); 7175 struct inet_connection_sock *icsk = inet_csk(sk); 7176 const struct tcphdr *th = tcp_hdr(skb); 7177 struct request_sock *req; 7178 int queued = 0; 7179 SKB_DR(reason); 7180 7181 switch (sk->sk_state) { 7182 case TCP_CLOSE: 7183 SKB_DR_SET(reason, TCP_CLOSE); 7184 goto discard; 7185 7186 case TCP_LISTEN: 7187 if (th->ack) 7188 return SKB_DROP_REASON_TCP_FLAGS; 7189 7190 if (th->rst) { 7191 SKB_DR_SET(reason, TCP_RESET); 7192 goto discard; 7193 } 7194 if (th->syn) { 7195 if (th->fin) { 7196 SKB_DR_SET(reason, TCP_FLAGS); 7197 goto discard; 7198 } 7199 /* It is possible that we process SYN packets from backlog, 7200 * so we need to make sure to disable BH and RCU right there. 7201 */ 7202 rcu_read_lock(); 7203 local_bh_disable(); 7204 icsk->icsk_af_ops->conn_request(sk, skb); 7205 local_bh_enable(); 7206 rcu_read_unlock(); 7207 7208 consume_skb(skb); 7209 return 0; 7210 } 7211 SKB_DR_SET(reason, TCP_FLAGS); 7212 goto discard; 7213 7214 case TCP_SYN_SENT: 7215 tp->rx_opt.saw_tstamp = 0; 7216 tcp_mstamp_refresh(tp); 7217 queued = tcp_rcv_synsent_state_process(sk, skb, th); 7218 if (queued >= 0) 7219 return queued; 7220 7221 /* Do step6 onward by hand. */ 7222 tcp_urg(sk, skb, th); 7223 __kfree_skb(skb); 7224 tcp_data_snd_check(sk); 7225 return 0; 7226 } 7227 7228 tcp_mstamp_refresh(tp); 7229 tp->rx_opt.saw_tstamp = 0; 7230 req = rcu_dereference_protected(tp->fastopen_rsk, 7231 lockdep_sock_is_held(sk)); 7232 if (req) { 7233 bool req_stolen; 7234 7235 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 7236 sk->sk_state != TCP_FIN_WAIT1); 7237 7238 SKB_DR_SET(reason, TCP_FASTOPEN); 7239 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason)) 7240 goto discard; 7241 } 7242 7243 if (!th->ack && !th->rst && !th->syn) { 7244 SKB_DR_SET(reason, TCP_FLAGS); 7245 goto discard; 7246 } 7247 if (!tcp_validate_incoming(sk, skb, th, 0)) 7248 return 0; 7249 7250 /* step 5: check the ACK field */ 7251 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 7252 FLAG_UPDATE_TS_RECENT | 7253 FLAG_NO_CHALLENGE_ACK); 7254 7255 if ((int)reason <= 0) { 7256 if (sk->sk_state == TCP_SYN_RECV) { 7257 /* send one RST */ 7258 if (!reason) 7259 return SKB_DROP_REASON_TCP_OLD_ACK; 7260 return -reason; 7261 } 7262 /* accept old ack during closing */ 7263 if ((int)reason < 0) { 7264 tcp_send_challenge_ack(sk, false); 7265 reason = -reason; 7266 goto discard; 7267 } 7268 } 7269 SKB_DR_SET(reason, NOT_SPECIFIED); 7270 switch (sk->sk_state) { 7271 case TCP_SYN_RECV: 7272 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 7273 if (!tp->srtt_us) 7274 tcp_synack_rtt_meas(sk, req); 7275 7276 if (tp->rx_opt.tstamp_ok) 7277 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 7278 7279 if (req) { 7280 tcp_rcv_synrecv_state_fastopen(sk); 7281 } else { 7282 tcp_try_undo_spurious_syn(sk); 7283 tp->retrans_stamp = 0; 7284 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 7285 skb); 7286 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 7287 } 7288 tcp_ao_established(sk); 7289 smp_mb(); 7290 tcp_set_state(sk, TCP_ESTABLISHED); 7291 sk->sk_state_change(sk); 7292 7293 /* Note, that this wakeup is only for marginal crossed SYN case. 7294 * Passively open sockets are not waked up, because 7295 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 7296 */ 7297 if (sk->sk_socket) 7298 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 7299 7300 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 7301 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 7302 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 7303 7304 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 7305 tcp_update_pacing_rate(sk); 7306 7307 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 7308 tp->lsndtime = tcp_jiffies32; 7309 7310 tcp_initialize_rcv_mss(sk); 7311 if (tcp_ecn_mode_accecn(tp)) 7312 tcp_accecn_third_ack(sk, skb, tp->syn_ect_snt); 7313 tcp_fast_path_on(tp); 7314 if (sk->sk_shutdown & SEND_SHUTDOWN) 7315 tcp_shutdown(sk, SEND_SHUTDOWN); 7316 7317 break; 7318 7319 case TCP_FIN_WAIT1: { 7320 int tmo; 7321 7322 if (req) 7323 tcp_rcv_synrecv_state_fastopen(sk); 7324 7325 if (tp->snd_una != tp->write_seq) 7326 break; 7327 7328 tcp_set_state(sk, TCP_FIN_WAIT2); 7329 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 7330 7331 sk_dst_confirm(sk); 7332 7333 if (!sock_flag(sk, SOCK_DEAD)) { 7334 /* Wake up lingering close() */ 7335 sk->sk_state_change(sk); 7336 break; 7337 } 7338 7339 if (READ_ONCE(tp->linger2) < 0) { 7340 tcp_done(sk); 7341 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7342 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7343 } 7344 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 7345 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 7346 /* Receive out of order FIN after close() */ 7347 if (tp->syn_fastopen && th->fin) 7348 tcp_fastopen_active_disable(sk); 7349 tcp_done(sk); 7350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7351 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7352 } 7353 7354 tmo = tcp_fin_time(sk); 7355 if (tmo > TCP_TIMEWAIT_LEN) { 7356 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 7357 } else if (th->fin || sock_owned_by_user(sk)) { 7358 /* Bad case. We could lose such FIN otherwise. 7359 * It is not a big problem, but it looks confusing 7360 * and not so rare event. We still can lose it now, 7361 * if it spins in bh_lock_sock(), but it is really 7362 * marginal case. 7363 */ 7364 tcp_reset_keepalive_timer(sk, tmo); 7365 } else { 7366 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 7367 goto consume; 7368 } 7369 break; 7370 } 7371 7372 case TCP_CLOSING: 7373 if (tp->snd_una == tp->write_seq) { 7374 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 7375 goto consume; 7376 } 7377 break; 7378 7379 case TCP_LAST_ACK: 7380 if (tp->snd_una == tp->write_seq) { 7381 tcp_update_metrics(sk); 7382 tcp_done(sk); 7383 goto consume; 7384 } 7385 break; 7386 } 7387 7388 /* step 6: check the URG bit */ 7389 tcp_urg(sk, skb, th); 7390 7391 /* step 7: process the segment text */ 7392 switch (sk->sk_state) { 7393 case TCP_CLOSE_WAIT: 7394 case TCP_CLOSING: 7395 case TCP_LAST_ACK: 7396 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 7397 /* If a subflow has been reset, the packet should not 7398 * continue to be processed, drop the packet. 7399 */ 7400 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 7401 goto discard; 7402 break; 7403 } 7404 fallthrough; 7405 case TCP_FIN_WAIT1: 7406 case TCP_FIN_WAIT2: 7407 /* RFC 793 says to queue data in these states, 7408 * RFC 1122 says we MUST send a reset. 7409 * BSD 4.4 also does reset. 7410 */ 7411 if (sk->sk_shutdown & RCV_SHUTDOWN) { 7412 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 7413 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 7414 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7415 tcp_reset(sk, skb); 7416 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7417 } 7418 } 7419 fallthrough; 7420 case TCP_ESTABLISHED: 7421 tcp_data_queue(sk, skb); 7422 queued = 1; 7423 break; 7424 } 7425 7426 /* tcp_data could move socket to TIME-WAIT */ 7427 if (sk->sk_state != TCP_CLOSE) { 7428 tcp_data_snd_check(sk); 7429 tcp_ack_snd_check(sk); 7430 } 7431 7432 if (!queued) { 7433 discard: 7434 tcp_drop_reason(sk, skb, reason); 7435 } 7436 return 0; 7437 7438 consume: 7439 __kfree_skb(skb); 7440 return 0; 7441 } 7442 EXPORT_IPV6_MOD(tcp_rcv_state_process); 7443 7444 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 7445 { 7446 struct inet_request_sock *ireq = inet_rsk(req); 7447 7448 if (family == AF_INET) 7449 net_dbg_ratelimited("drop open request from %pI4/%u\n", 7450 &ireq->ir_rmt_addr, port); 7451 #if IS_ENABLED(CONFIG_IPV6) 7452 else if (family == AF_INET6) 7453 net_dbg_ratelimited("drop open request from %pI6/%u\n", 7454 &ireq->ir_v6_rmt_addr, port); 7455 #endif 7456 } 7457 7458 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 7459 * 7460 * If we receive a SYN packet with these bits set, it means a 7461 * network is playing bad games with TOS bits. In order to 7462 * avoid possible false congestion notifications, we disable 7463 * TCP ECN negotiation. 7464 * 7465 * Exception: tcp_ca wants ECN. This is required for DCTCP 7466 * congestion control: Linux DCTCP asserts ECT on all packets, 7467 * including SYN, which is most optimal solution; however, 7468 * others, such as FreeBSD do not. 7469 * 7470 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 7471 * set, indicating the use of a future TCP extension (such as AccECN). See 7472 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 7473 * extensions. 7474 */ 7475 static void tcp_ecn_create_request(struct request_sock *req, 7476 const struct sk_buff *skb, 7477 const struct sock *listen_sk, 7478 const struct dst_entry *dst) 7479 { 7480 const struct tcphdr *th = tcp_hdr(skb); 7481 const struct net *net = sock_net(listen_sk); 7482 bool th_ecn = th->ece && th->cwr; 7483 bool ect, ecn_ok; 7484 u32 ecn_ok_dst; 7485 7486 if (tcp_accecn_syn_requested(th) && 7487 (READ_ONCE(net->ipv4.sysctl_tcp_ecn) >= 3 || 7488 tcp_ca_needs_accecn(listen_sk))) { 7489 inet_rsk(req)->ecn_ok = 1; 7490 tcp_rsk(req)->accecn_ok = 1; 7491 tcp_rsk(req)->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield & 7492 INET_ECN_MASK; 7493 return; 7494 } 7495 7496 if (!th_ecn) 7497 return; 7498 7499 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 7500 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 7501 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 7502 7503 if (((!ect || th->res1 || th->ae) && ecn_ok) || 7504 tcp_ca_needs_ecn(listen_sk) || 7505 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 7506 tcp_bpf_ca_needs_ecn((struct sock *)req)) 7507 inet_rsk(req)->ecn_ok = 1; 7508 } 7509 7510 static void tcp_openreq_init(struct request_sock *req, 7511 const struct tcp_options_received *rx_opt, 7512 struct sk_buff *skb, const struct sock *sk) 7513 { 7514 struct inet_request_sock *ireq = inet_rsk(req); 7515 7516 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 7517 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 7518 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 7519 tcp_rsk(req)->snt_synack = 0; 7520 tcp_rsk(req)->snt_tsval_first = 0; 7521 tcp_rsk(req)->last_oow_ack_time = 0; 7522 tcp_rsk(req)->accecn_ok = 0; 7523 tcp_rsk(req)->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN; 7524 tcp_rsk(req)->accecn_fail_mode = 0; 7525 tcp_rsk(req)->syn_ect_rcv = 0; 7526 tcp_rsk(req)->syn_ect_snt = 0; 7527 req->mss = rx_opt->mss_clamp; 7528 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 7529 ireq->tstamp_ok = rx_opt->tstamp_ok; 7530 ireq->sack_ok = rx_opt->sack_ok; 7531 ireq->snd_wscale = rx_opt->snd_wscale; 7532 ireq->wscale_ok = rx_opt->wscale_ok; 7533 ireq->acked = 0; 7534 ireq->ecn_ok = 0; 7535 ireq->ir_rmt_port = tcp_hdr(skb)->source; 7536 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 7537 ireq->ir_mark = inet_request_mark(sk, skb); 7538 #if IS_ENABLED(CONFIG_SMC) 7539 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 7540 tcp_sk(sk)->smc_hs_congested(sk)); 7541 #endif 7542 } 7543 7544 /* 7545 * Return true if a syncookie should be sent 7546 */ 7547 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7548 { 7549 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7550 const char *msg = "Dropping request"; 7551 struct net *net = sock_net(sk); 7552 bool want_cookie = false; 7553 u8 syncookies; 7554 7555 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7556 7557 #ifdef CONFIG_SYN_COOKIES 7558 if (syncookies) { 7559 msg = "Sending cookies"; 7560 want_cookie = true; 7561 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7562 } else 7563 #endif 7564 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7565 7566 if (syncookies != 2 && !READ_ONCE(queue->synflood_warned)) { 7567 WRITE_ONCE(queue->synflood_warned, 1); 7568 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7569 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7570 proto, inet6_rcv_saddr(sk), 7571 sk->sk_num, msg); 7572 } else { 7573 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7574 proto, &sk->sk_rcv_saddr, 7575 sk->sk_num, msg); 7576 } 7577 } 7578 7579 return want_cookie; 7580 } 7581 7582 static void tcp_reqsk_record_syn(const struct sock *sk, 7583 struct request_sock *req, 7584 const struct sk_buff *skb) 7585 { 7586 if (tcp_sk(sk)->save_syn) { 7587 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7588 struct saved_syn *saved_syn; 7589 u32 mac_hdrlen; 7590 void *base; 7591 7592 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7593 base = skb_mac_header(skb); 7594 mac_hdrlen = skb_mac_header_len(skb); 7595 len += mac_hdrlen; 7596 } else { 7597 base = skb_network_header(skb); 7598 mac_hdrlen = 0; 7599 } 7600 7601 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7602 GFP_ATOMIC); 7603 if (saved_syn) { 7604 saved_syn->mac_hdrlen = mac_hdrlen; 7605 saved_syn->network_hdrlen = skb_network_header_len(skb); 7606 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7607 memcpy(saved_syn->data, base, len); 7608 req->saved_syn = saved_syn; 7609 } 7610 } 7611 } 7612 7613 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7614 * used for SYN cookie generation. 7615 */ 7616 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7617 const struct tcp_request_sock_ops *af_ops, 7618 struct sock *sk, struct tcphdr *th) 7619 { 7620 struct tcp_sock *tp = tcp_sk(sk); 7621 u16 mss; 7622 7623 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7624 !inet_csk_reqsk_queue_is_full(sk)) 7625 return 0; 7626 7627 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7628 return 0; 7629 7630 if (sk_acceptq_is_full(sk)) { 7631 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7632 return 0; 7633 } 7634 7635 mss = tcp_parse_mss_option(th, READ_ONCE(tp->rx_opt.user_mss)); 7636 if (!mss) 7637 mss = af_ops->mss_clamp; 7638 7639 return mss; 7640 } 7641 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss); 7642 7643 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7644 const struct tcp_request_sock_ops *af_ops, 7645 struct sock *sk, struct sk_buff *skb) 7646 { 7647 struct tcp_fastopen_cookie foc = { .len = -1 }; 7648 struct tcp_options_received tmp_opt; 7649 const struct tcp_sock *tp = tcp_sk(sk); 7650 struct net *net = sock_net(sk); 7651 struct sock *fastopen_sk = NULL; 7652 struct request_sock *req; 7653 bool want_cookie = false; 7654 struct dst_entry *dst; 7655 struct flowi fl; 7656 u8 syncookies; 7657 u32 isn; 7658 7659 #ifdef CONFIG_TCP_AO 7660 const struct tcp_ao_hdr *aoh; 7661 #endif 7662 7663 isn = __this_cpu_read(tcp_tw_isn); 7664 if (isn) { 7665 /* TW buckets are converted to open requests without 7666 * limitations, they conserve resources and peer is 7667 * evidently real one. 7668 */ 7669 __this_cpu_write(tcp_tw_isn, 0); 7670 } else { 7671 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7672 7673 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7674 want_cookie = tcp_syn_flood_action(sk, 7675 rsk_ops->slab_name); 7676 if (!want_cookie) 7677 goto drop; 7678 } 7679 } 7680 7681 if (sk_acceptq_is_full(sk)) { 7682 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7683 goto drop; 7684 } 7685 7686 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7687 if (!req) 7688 goto drop; 7689 7690 req->syncookie = want_cookie; 7691 tcp_rsk(req)->af_specific = af_ops; 7692 tcp_rsk(req)->ts_off = 0; 7693 tcp_rsk(req)->req_usec_ts = false; 7694 #if IS_ENABLED(CONFIG_MPTCP) 7695 tcp_rsk(req)->is_mptcp = 0; 7696 #endif 7697 7698 tcp_clear_options(&tmp_opt); 7699 tmp_opt.mss_clamp = af_ops->mss_clamp; 7700 tmp_opt.user_mss = READ_ONCE(tp->rx_opt.user_mss); 7701 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7702 want_cookie ? NULL : &foc); 7703 7704 if (want_cookie && !tmp_opt.saw_tstamp) 7705 tcp_clear_options(&tmp_opt); 7706 7707 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7708 tmp_opt.smc_ok = 0; 7709 7710 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7711 tcp_openreq_init(req, &tmp_opt, skb, sk); 7712 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7713 7714 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7715 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7716 7717 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7718 if (!dst) 7719 goto drop_and_free; 7720 7721 if (tmp_opt.tstamp_ok) { 7722 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7723 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7724 } 7725 if (!want_cookie && !isn) { 7726 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7727 7728 /* Kill the following clause, if you dislike this way. */ 7729 if (!syncookies && 7730 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7731 (max_syn_backlog >> 2)) && 7732 !tcp_peer_is_proven(req, dst)) { 7733 /* Without syncookies last quarter of 7734 * backlog is filled with destinations, 7735 * proven to be alive. 7736 * It means that we continue to communicate 7737 * to destinations, already remembered 7738 * to the moment of synflood. 7739 */ 7740 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7741 rsk_ops->family); 7742 goto drop_and_release; 7743 } 7744 7745 isn = af_ops->init_seq(skb); 7746 } 7747 7748 tcp_ecn_create_request(req, skb, sk, dst); 7749 7750 if (want_cookie) { 7751 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7752 if (!tmp_opt.tstamp_ok) 7753 inet_rsk(req)->ecn_ok = 0; 7754 } 7755 7756 #ifdef CONFIG_TCP_AO 7757 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7758 goto drop_and_release; /* Invalid TCP options */ 7759 if (aoh) { 7760 tcp_rsk(req)->used_tcp_ao = true; 7761 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7762 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7763 7764 } else { 7765 tcp_rsk(req)->used_tcp_ao = false; 7766 } 7767 #endif 7768 tcp_rsk(req)->snt_isn = isn; 7769 tcp_rsk(req)->txhash = net_tx_rndhash(); 7770 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7771 tcp_openreq_init_rwin(req, sk, dst); 7772 sk_rx_queue_set(req_to_sk(req), skb); 7773 if (!want_cookie) { 7774 tcp_reqsk_record_syn(sk, req, skb); 7775 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7776 } 7777 if (fastopen_sk) { 7778 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7779 &foc, TCP_SYNACK_FASTOPEN, skb); 7780 /* Add the child socket directly into the accept queue */ 7781 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7782 bh_unlock_sock(fastopen_sk); 7783 sock_put(fastopen_sk); 7784 goto drop_and_free; 7785 } 7786 sk->sk_data_ready(sk); 7787 bh_unlock_sock(fastopen_sk); 7788 sock_put(fastopen_sk); 7789 } else { 7790 tcp_rsk(req)->tfo_listener = false; 7791 if (!want_cookie && 7792 unlikely(!inet_csk_reqsk_queue_hash_add(sk, req))) { 7793 reqsk_free(req); 7794 dst_release(dst); 7795 return 0; 7796 } 7797 af_ops->send_synack(sk, dst, &fl, req, &foc, 7798 !want_cookie ? TCP_SYNACK_NORMAL : 7799 TCP_SYNACK_COOKIE, 7800 skb); 7801 if (want_cookie) { 7802 reqsk_free(req); 7803 return 0; 7804 } 7805 } 7806 reqsk_put(req); 7807 return 0; 7808 7809 drop_and_release: 7810 dst_release(dst); 7811 drop_and_free: 7812 __reqsk_free(req); 7813 drop: 7814 tcp_listendrop(sk); 7815 return 0; 7816 } 7817 EXPORT_IPV6_MOD(tcp_conn_request); 7818