1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Detect hard and soft lockups on a system
4 *
5 * started by Don Zickus, Copyright (C) 2010 Red Hat, Inc.
6 *
7 * Note: Most of this code is borrowed heavily from the original softlockup
8 * detector, so thanks to Ingo for the initial implementation.
9 * Some chunks also taken from the old x86-specific nmi watchdog code, thanks
10 * to those contributors as well.
11 */
12
13 #define pr_fmt(fmt) "watchdog: " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/init.h>
17 #include <linux/irq.h>
18 #include <linux/irqdesc.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/kvm_para.h>
21 #include <linux/math64.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/nmi.h>
25 #include <linux/stop_machine.h>
26 #include <linux/sysctl.h>
27 #include <linux/tick.h>
28 #include <linux/sys_info.h>
29
30 #include <linux/sched/clock.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/isolation.h>
33
34 #include <asm/irq_regs.h>
35
36 static DEFINE_MUTEX(watchdog_mutex);
37
38 #if defined(CONFIG_HARDLOCKUP_DETECTOR) || defined(CONFIG_HARDLOCKUP_DETECTOR_SPARC64)
39 # define WATCHDOG_HARDLOCKUP_DEFAULT 1
40 #else
41 # define WATCHDOG_HARDLOCKUP_DEFAULT 0
42 #endif
43
44 #define NUM_SAMPLE_PERIODS 5
45
46 unsigned long __read_mostly watchdog_enabled;
47 int __read_mostly watchdog_user_enabled = 1;
48 static int __read_mostly watchdog_hardlockup_user_enabled = WATCHDOG_HARDLOCKUP_DEFAULT;
49 static int __read_mostly watchdog_softlockup_user_enabled = 1;
50 int __read_mostly watchdog_thresh = 10;
51 static int __read_mostly watchdog_thresh_next;
52 static int __read_mostly watchdog_hardlockup_available;
53
54 struct cpumask watchdog_cpumask __read_mostly;
55 unsigned long *watchdog_cpumask_bits = cpumask_bits(&watchdog_cpumask);
56
57 #ifdef CONFIG_HARDLOCKUP_DETECTOR
58
59 # ifdef CONFIG_SMP
60 int __read_mostly sysctl_hardlockup_all_cpu_backtrace;
61 # endif /* CONFIG_SMP */
62
63 /*
64 * Should we panic when a soft-lockup or hard-lockup occurs:
65 */
66 unsigned int __read_mostly hardlockup_panic =
67 IS_ENABLED(CONFIG_BOOTPARAM_HARDLOCKUP_PANIC);
68
69 /*
70 * bitmasks to control what kinds of system info to be printed when
71 * hard lockup is detected, it could be task, memory, lock etc.
72 * Refer include/linux/sys_info.h for detailed bit definition.
73 */
74 static unsigned long hardlockup_si_mask;
75
76 #ifdef CONFIG_SYSFS
77
78 static unsigned int hardlockup_count;
79
hardlockup_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)80 static ssize_t hardlockup_count_show(struct kobject *kobj, struct kobj_attribute *attr,
81 char *page)
82 {
83 return sysfs_emit(page, "%u\n", hardlockup_count);
84 }
85
86 static struct kobj_attribute hardlockup_count_attr = __ATTR_RO(hardlockup_count);
87
kernel_hardlockup_sysfs_init(void)88 static __init int kernel_hardlockup_sysfs_init(void)
89 {
90 sysfs_add_file_to_group(kernel_kobj, &hardlockup_count_attr.attr, NULL);
91 return 0;
92 }
93
94 late_initcall(kernel_hardlockup_sysfs_init);
95
96 #endif // CONFIG_SYSFS
97
98 /*
99 * We may not want to enable hard lockup detection by default in all cases,
100 * for example when running the kernel as a guest on a hypervisor. In these
101 * cases this function can be called to disable hard lockup detection. This
102 * function should only be executed once by the boot processor before the
103 * kernel command line parameters are parsed, because otherwise it is not
104 * possible to override this in hardlockup_panic_setup().
105 */
hardlockup_detector_disable(void)106 void __init hardlockup_detector_disable(void)
107 {
108 watchdog_hardlockup_user_enabled = 0;
109 }
110
hardlockup_panic_setup(char * str)111 static int __init hardlockup_panic_setup(char *str)
112 {
113 next:
114 if (!strncmp(str, "panic", 5))
115 hardlockup_panic = 1;
116 else if (!strncmp(str, "nopanic", 7))
117 hardlockup_panic = 0;
118 else if (!strncmp(str, "0", 1))
119 watchdog_hardlockup_user_enabled = 0;
120 else if (!strncmp(str, "1", 1))
121 watchdog_hardlockup_user_enabled = 1;
122 else if (!strncmp(str, "r", 1))
123 hardlockup_config_perf_event(str + 1);
124 while (*(str++)) {
125 if (*str == ',') {
126 str++;
127 goto next;
128 }
129 }
130 return 1;
131 }
132 __setup("nmi_watchdog=", hardlockup_panic_setup);
133
134 #endif /* CONFIG_HARDLOCKUP_DETECTOR */
135
136 #if defined(CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER)
137
138 static DEFINE_PER_CPU(atomic_t, hrtimer_interrupts);
139 static DEFINE_PER_CPU(int, hrtimer_interrupts_saved);
140 static DEFINE_PER_CPU(bool, watchdog_hardlockup_warned);
141 static DEFINE_PER_CPU(bool, watchdog_hardlockup_touched);
142 static unsigned long hard_lockup_nmi_warn;
143
arch_touch_nmi_watchdog(void)144 notrace void arch_touch_nmi_watchdog(void)
145 {
146 /*
147 * Using __raw here because some code paths have
148 * preemption enabled. If preemption is enabled
149 * then interrupts should be enabled too, in which
150 * case we shouldn't have to worry about the watchdog
151 * going off.
152 */
153 raw_cpu_write(watchdog_hardlockup_touched, true);
154 }
155 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
156
watchdog_hardlockup_touch_cpu(unsigned int cpu)157 void watchdog_hardlockup_touch_cpu(unsigned int cpu)
158 {
159 per_cpu(watchdog_hardlockup_touched, cpu) = true;
160 }
161
is_hardlockup(unsigned int cpu)162 static bool is_hardlockup(unsigned int cpu)
163 {
164 int hrint = atomic_read(&per_cpu(hrtimer_interrupts, cpu));
165
166 if (per_cpu(hrtimer_interrupts_saved, cpu) == hrint)
167 return true;
168
169 /*
170 * NOTE: we don't need any fancy atomic_t or READ_ONCE/WRITE_ONCE
171 * for hrtimer_interrupts_saved. hrtimer_interrupts_saved is
172 * written/read by a single CPU.
173 */
174 per_cpu(hrtimer_interrupts_saved, cpu) = hrint;
175
176 return false;
177 }
178
watchdog_hardlockup_kick(void)179 static void watchdog_hardlockup_kick(void)
180 {
181 int new_interrupts;
182
183 new_interrupts = atomic_inc_return(this_cpu_ptr(&hrtimer_interrupts));
184 watchdog_buddy_check_hardlockup(new_interrupts);
185 }
186
watchdog_hardlockup_check(unsigned int cpu,struct pt_regs * regs)187 void watchdog_hardlockup_check(unsigned int cpu, struct pt_regs *regs)
188 {
189 int hardlockup_all_cpu_backtrace;
190
191 if (per_cpu(watchdog_hardlockup_touched, cpu)) {
192 per_cpu(watchdog_hardlockup_touched, cpu) = false;
193 return;
194 }
195
196 hardlockup_all_cpu_backtrace = (hardlockup_si_mask & SYS_INFO_ALL_BT) ?
197 1 : sysctl_hardlockup_all_cpu_backtrace;
198 /*
199 * Check for a hardlockup by making sure the CPU's timer
200 * interrupt is incrementing. The timer interrupt should have
201 * fired multiple times before we overflow'd. If it hasn't
202 * then this is a good indication the cpu is stuck
203 */
204 if (is_hardlockup(cpu)) {
205 unsigned int this_cpu = smp_processor_id();
206 unsigned long flags;
207
208 #ifdef CONFIG_SYSFS
209 ++hardlockup_count;
210 #endif
211 /*
212 * A poorly behaving BPF scheduler can trigger hard lockup by
213 * e.g. putting numerous affinitized tasks in a single queue and
214 * directing all CPUs at it. The following call can return true
215 * only once when sched_ext is enabled and will immediately
216 * abort the BPF scheduler and print out a warning message.
217 */
218 if (scx_hardlockup(cpu))
219 return;
220
221 /* Only print hardlockups once. */
222 if (per_cpu(watchdog_hardlockup_warned, cpu))
223 return;
224
225 /*
226 * Prevent multiple hard-lockup reports if one cpu is already
227 * engaged in dumping all cpu back traces.
228 */
229 if (hardlockup_all_cpu_backtrace) {
230 if (test_and_set_bit_lock(0, &hard_lockup_nmi_warn))
231 return;
232 }
233
234 /*
235 * NOTE: we call printk_cpu_sync_get_irqsave() after printing
236 * the lockup message. While it would be nice to serialize
237 * that printout, we really want to make sure that if some
238 * other CPU somehow locked up while holding the lock associated
239 * with printk_cpu_sync_get_irqsave() that we can still at least
240 * get the message about the lockup out.
241 */
242 pr_emerg("CPU%u: Watchdog detected hard LOCKUP on cpu %u\n", this_cpu, cpu);
243 printk_cpu_sync_get_irqsave(flags);
244
245 print_modules();
246 print_irqtrace_events(current);
247 if (cpu == this_cpu) {
248 if (regs)
249 show_regs(regs);
250 else
251 dump_stack();
252 printk_cpu_sync_put_irqrestore(flags);
253 } else {
254 printk_cpu_sync_put_irqrestore(flags);
255 trigger_single_cpu_backtrace(cpu);
256 }
257
258 if (hardlockup_all_cpu_backtrace) {
259 trigger_allbutcpu_cpu_backtrace(cpu);
260 if (!hardlockup_panic)
261 clear_bit_unlock(0, &hard_lockup_nmi_warn);
262 }
263
264 sys_info(hardlockup_si_mask & ~SYS_INFO_ALL_BT);
265 if (hardlockup_panic)
266 nmi_panic(regs, "Hard LOCKUP");
267
268 per_cpu(watchdog_hardlockup_warned, cpu) = true;
269 } else {
270 per_cpu(watchdog_hardlockup_warned, cpu) = false;
271 }
272 }
273
274 #else /* CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER */
275
watchdog_hardlockup_kick(void)276 static inline void watchdog_hardlockup_kick(void) { }
277
278 #endif /* !CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER */
279
280 /*
281 * These functions can be overridden based on the configured hardlockdup detector.
282 *
283 * watchdog_hardlockup_enable/disable can be implemented to start and stop when
284 * softlockup watchdog start and stop. The detector must select the
285 * SOFTLOCKUP_DETECTOR Kconfig.
286 */
watchdog_hardlockup_enable(unsigned int cpu)287 void __weak watchdog_hardlockup_enable(unsigned int cpu) { }
288
watchdog_hardlockup_disable(unsigned int cpu)289 void __weak watchdog_hardlockup_disable(unsigned int cpu) { }
290
291 /*
292 * Watchdog-detector specific API.
293 *
294 * Return 0 when hardlockup watchdog is available, negative value otherwise.
295 * Note that the negative value means that a delayed probe might
296 * succeed later.
297 */
watchdog_hardlockup_probe(void)298 int __weak __init watchdog_hardlockup_probe(void)
299 {
300 return -ENODEV;
301 }
302
303 /**
304 * watchdog_hardlockup_stop - Stop the watchdog for reconfiguration
305 *
306 * The reconfiguration steps are:
307 * watchdog_hardlockup_stop();
308 * update_variables();
309 * watchdog_hardlockup_start();
310 */
watchdog_hardlockup_stop(void)311 void __weak watchdog_hardlockup_stop(void) { }
312
313 /**
314 * watchdog_hardlockup_start - Start the watchdog after reconfiguration
315 *
316 * Counterpart to watchdog_hardlockup_stop().
317 *
318 * The following variables have been updated in update_variables() and
319 * contain the currently valid configuration:
320 * - watchdog_enabled
321 * - watchdog_thresh
322 * - watchdog_cpumask
323 */
watchdog_hardlockup_start(void)324 void __weak watchdog_hardlockup_start(void) { }
325
326 /**
327 * lockup_detector_update_enable - Update the sysctl enable bit
328 *
329 * Caller needs to make sure that the hard watchdogs are off, so this
330 * can't race with watchdog_hardlockup_disable().
331 */
lockup_detector_update_enable(void)332 static void lockup_detector_update_enable(void)
333 {
334 watchdog_enabled = 0;
335 if (!watchdog_user_enabled)
336 return;
337 if (watchdog_hardlockup_available && watchdog_hardlockup_user_enabled)
338 watchdog_enabled |= WATCHDOG_HARDLOCKUP_ENABLED;
339 if (watchdog_softlockup_user_enabled)
340 watchdog_enabled |= WATCHDOG_SOFTOCKUP_ENABLED;
341 }
342
343 #ifdef CONFIG_SOFTLOCKUP_DETECTOR
344
345 /*
346 * Delay the soflockup report when running a known slow code.
347 * It does _not_ affect the timestamp of the last successdul reschedule.
348 */
349 #define SOFTLOCKUP_DELAY_REPORT ULONG_MAX
350
351 #ifdef CONFIG_SMP
352 int __read_mostly sysctl_softlockup_all_cpu_backtrace;
353 #endif
354
355 /*
356 * bitmasks to control what kinds of system info to be printed when
357 * soft lockup is detected, it could be task, memory, lock etc.
358 * Refer include/linux/sys_info.h for detailed bit definition.
359 */
360 static unsigned long softlockup_si_mask;
361
362 static struct cpumask watchdog_allowed_mask __read_mostly;
363
364 /* Global variables, exported for sysctl */
365 unsigned int __read_mostly softlockup_panic =
366 IS_ENABLED(CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC);
367
368 static bool softlockup_initialized __read_mostly;
369 static u64 __read_mostly sample_period;
370
371 #ifdef CONFIG_SYSFS
372
373 static unsigned int softlockup_count;
374
softlockup_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)375 static ssize_t softlockup_count_show(struct kobject *kobj, struct kobj_attribute *attr,
376 char *page)
377 {
378 return sysfs_emit(page, "%u\n", softlockup_count);
379 }
380
381 static struct kobj_attribute softlockup_count_attr = __ATTR_RO(softlockup_count);
382
kernel_softlockup_sysfs_init(void)383 static __init int kernel_softlockup_sysfs_init(void)
384 {
385 sysfs_add_file_to_group(kernel_kobj, &softlockup_count_attr.attr, NULL);
386 return 0;
387 }
388
389 late_initcall(kernel_softlockup_sysfs_init);
390
391 #endif // CONFIG_SYSFS
392
393 /* Timestamp taken after the last successful reschedule. */
394 static DEFINE_PER_CPU(unsigned long, watchdog_touch_ts);
395 /* Timestamp of the last softlockup report. */
396 static DEFINE_PER_CPU(unsigned long, watchdog_report_ts);
397 static DEFINE_PER_CPU(struct hrtimer, watchdog_hrtimer);
398 static DEFINE_PER_CPU(bool, softlockup_touch_sync);
399 static unsigned long soft_lockup_nmi_warn;
400
softlockup_panic_setup(char * str)401 static int __init softlockup_panic_setup(char *str)
402 {
403 softlockup_panic = simple_strtoul(str, NULL, 0);
404 return 1;
405 }
406 __setup("softlockup_panic=", softlockup_panic_setup);
407
nowatchdog_setup(char * str)408 static int __init nowatchdog_setup(char *str)
409 {
410 watchdog_user_enabled = 0;
411 return 1;
412 }
413 __setup("nowatchdog", nowatchdog_setup);
414
nosoftlockup_setup(char * str)415 static int __init nosoftlockup_setup(char *str)
416 {
417 watchdog_softlockup_user_enabled = 0;
418 return 1;
419 }
420 __setup("nosoftlockup", nosoftlockup_setup);
421
watchdog_thresh_setup(char * str)422 static int __init watchdog_thresh_setup(char *str)
423 {
424 get_option(&str, &watchdog_thresh);
425 return 1;
426 }
427 __setup("watchdog_thresh=", watchdog_thresh_setup);
428
429 #ifdef CONFIG_SOFTLOCKUP_DETECTOR_INTR_STORM
430 enum stats_per_group {
431 STATS_SYSTEM,
432 STATS_SOFTIRQ,
433 STATS_HARDIRQ,
434 STATS_IDLE,
435 NUM_STATS_PER_GROUP,
436 };
437
438 static const enum cpu_usage_stat tracked_stats[NUM_STATS_PER_GROUP] = {
439 CPUTIME_SYSTEM,
440 CPUTIME_SOFTIRQ,
441 CPUTIME_IRQ,
442 CPUTIME_IDLE,
443 };
444
445 static DEFINE_PER_CPU(u16, cpustat_old[NUM_STATS_PER_GROUP]);
446 static DEFINE_PER_CPU(u8, cpustat_util[NUM_SAMPLE_PERIODS][NUM_STATS_PER_GROUP]);
447 static DEFINE_PER_CPU(u8, cpustat_tail);
448
449 /*
450 * We don't need nanosecond resolution. A granularity of 16ms is
451 * sufficient for our precision, allowing us to use u16 to store
452 * cpustats, which will roll over roughly every ~1000 seconds.
453 * 2^24 ~= 16 * 10^6
454 */
get_16bit_precision(u64 data_ns)455 static u16 get_16bit_precision(u64 data_ns)
456 {
457 /*
458 * 2^24ns ~= 16.8ms
459 * Round to the nearest multiple of 16.8 milliseconds.
460 */
461 return (data_ns + (1 << 23)) >> 24LL;
462 }
463
update_cpustat(void)464 static void update_cpustat(void)
465 {
466 int i;
467 u8 util;
468 u16 old_stat, new_stat;
469 struct kernel_cpustat kcpustat;
470 u64 *cpustat = kcpustat.cpustat;
471 u8 tail = __this_cpu_read(cpustat_tail);
472 u16 sample_period_16 = get_16bit_precision(sample_period);
473
474 kcpustat_cpu_fetch(&kcpustat, smp_processor_id());
475
476 for (i = 0; i < NUM_STATS_PER_GROUP; i++) {
477 old_stat = __this_cpu_read(cpustat_old[i]);
478 new_stat = get_16bit_precision(cpustat[tracked_stats[i]]);
479 util = DIV_ROUND_UP(100 * (new_stat - old_stat), sample_period_16);
480 /*
481 * Since we use 16-bit precision, the raw data will undergo
482 * integer division, which may sometimes result in data loss,
483 * and then result might exceed 100%. To avoid confusion,
484 * we enforce a 100% display cap when calculations exceed this threshold.
485 */
486 if (util > 100)
487 util = 100;
488 __this_cpu_write(cpustat_util[tail][i], util);
489 __this_cpu_write(cpustat_old[i], new_stat);
490 }
491
492 __this_cpu_write(cpustat_tail, (tail + 1) % NUM_SAMPLE_PERIODS);
493 }
494
print_cpustat(void)495 static void print_cpustat(void)
496 {
497 int i, group;
498 u8 tail = __this_cpu_read(cpustat_tail);
499 u64 sample_period_msecond = sample_period;
500
501 do_div(sample_period_msecond, NSEC_PER_MSEC);
502
503 /*
504 * Outputting the "watchdog" prefix on every line is redundant and not
505 * concise, and the original alarm information is sufficient for
506 * positioning in logs, hence here printk() is used instead of pr_crit().
507 */
508 printk(KERN_CRIT "CPU#%d Utilization every %llums during lockup:\n",
509 smp_processor_id(), sample_period_msecond);
510
511 for (i = 0; i < NUM_SAMPLE_PERIODS; i++) {
512 group = (tail + i) % NUM_SAMPLE_PERIODS;
513 printk(KERN_CRIT "\t#%d: %3u%% system,\t%3u%% softirq,\t"
514 "%3u%% hardirq,\t%3u%% idle\n", i + 1,
515 __this_cpu_read(cpustat_util[group][STATS_SYSTEM]),
516 __this_cpu_read(cpustat_util[group][STATS_SOFTIRQ]),
517 __this_cpu_read(cpustat_util[group][STATS_HARDIRQ]),
518 __this_cpu_read(cpustat_util[group][STATS_IDLE]));
519 }
520 }
521
522 #define HARDIRQ_PERCENT_THRESH 50
523 #define NUM_HARDIRQ_REPORT 5
524 struct irq_counts {
525 int irq;
526 u32 counts;
527 };
528
529 static DEFINE_PER_CPU(bool, snapshot_taken);
530
531 /* Tabulate the most frequent interrupts. */
tabulate_irq_count(struct irq_counts * irq_counts,int irq,u32 counts,int rank)532 static void tabulate_irq_count(struct irq_counts *irq_counts, int irq, u32 counts, int rank)
533 {
534 int i;
535 struct irq_counts new_count = {irq, counts};
536
537 for (i = 0; i < rank; i++) {
538 if (counts > irq_counts[i].counts)
539 swap(new_count, irq_counts[i]);
540 }
541 }
542
543 /*
544 * If the hardirq time exceeds HARDIRQ_PERCENT_THRESH% of the sample_period,
545 * then the cause of softlockup might be interrupt storm. In this case, it
546 * would be useful to start interrupt counting.
547 */
need_counting_irqs(void)548 static bool need_counting_irqs(void)
549 {
550 u8 util;
551 int tail = __this_cpu_read(cpustat_tail);
552
553 tail = (tail + NUM_HARDIRQ_REPORT - 1) % NUM_HARDIRQ_REPORT;
554 util = __this_cpu_read(cpustat_util[tail][STATS_HARDIRQ]);
555 return util > HARDIRQ_PERCENT_THRESH;
556 }
557
start_counting_irqs(void)558 static void start_counting_irqs(void)
559 {
560 if (!__this_cpu_read(snapshot_taken)) {
561 kstat_snapshot_irqs();
562 __this_cpu_write(snapshot_taken, true);
563 }
564 }
565
stop_counting_irqs(void)566 static void stop_counting_irqs(void)
567 {
568 __this_cpu_write(snapshot_taken, false);
569 }
570
print_irq_counts(void)571 static void print_irq_counts(void)
572 {
573 unsigned int i, count;
574 struct irq_counts irq_counts_sorted[NUM_HARDIRQ_REPORT] = {
575 {-1, 0}, {-1, 0}, {-1, 0}, {-1, 0}, {-1, 0}
576 };
577
578 if (__this_cpu_read(snapshot_taken)) {
579 for_each_active_irq(i) {
580 count = kstat_get_irq_since_snapshot(i);
581 tabulate_irq_count(irq_counts_sorted, i, count, NUM_HARDIRQ_REPORT);
582 }
583
584 /*
585 * Outputting the "watchdog" prefix on every line is redundant and not
586 * concise, and the original alarm information is sufficient for
587 * positioning in logs, hence here printk() is used instead of pr_crit().
588 */
589 printk(KERN_CRIT "CPU#%d Detect HardIRQ Time exceeds %d%%. Most frequent HardIRQs:\n",
590 smp_processor_id(), HARDIRQ_PERCENT_THRESH);
591
592 for (i = 0; i < NUM_HARDIRQ_REPORT; i++) {
593 if (irq_counts_sorted[i].irq == -1)
594 break;
595
596 printk(KERN_CRIT "\t#%u: %-10u\tirq#%d\n",
597 i + 1, irq_counts_sorted[i].counts,
598 irq_counts_sorted[i].irq);
599 }
600
601 /*
602 * If the hardirq time is less than HARDIRQ_PERCENT_THRESH% in the last
603 * sample_period, then we suspect the interrupt storm might be subsiding.
604 */
605 if (!need_counting_irqs())
606 stop_counting_irqs();
607 }
608 }
609
report_cpu_status(void)610 static void report_cpu_status(void)
611 {
612 print_cpustat();
613 print_irq_counts();
614 }
615 #else
update_cpustat(void)616 static inline void update_cpustat(void) { }
report_cpu_status(void)617 static inline void report_cpu_status(void) { }
need_counting_irqs(void)618 static inline bool need_counting_irqs(void) { return false; }
start_counting_irqs(void)619 static inline void start_counting_irqs(void) { }
stop_counting_irqs(void)620 static inline void stop_counting_irqs(void) { }
621 #endif
622
623 /*
624 * Hard-lockup warnings should be triggered after just a few seconds. Soft-
625 * lockups can have false positives under extreme conditions. So we generally
626 * want a higher threshold for soft lockups than for hard lockups. So we couple
627 * the thresholds with a factor: we make the soft threshold twice the amount of
628 * time the hard threshold is.
629 */
get_softlockup_thresh(void)630 static int get_softlockup_thresh(void)
631 {
632 return watchdog_thresh * 2;
633 }
634
635 /*
636 * Returns seconds, approximately. We don't need nanosecond
637 * resolution, and we don't need to waste time with a big divide when
638 * 2^30ns == 1.074s.
639 */
get_timestamp(void)640 static unsigned long get_timestamp(void)
641 {
642 return running_clock() >> 30LL; /* 2^30 ~= 10^9 */
643 }
644
set_sample_period(void)645 static void set_sample_period(void)
646 {
647 /*
648 * convert watchdog_thresh from seconds to ns
649 * the divide by 5 is to give hrtimer several chances (two
650 * or three with the current relation between the soft
651 * and hard thresholds) to increment before the
652 * hardlockup detector generates a warning
653 */
654 sample_period = get_softlockup_thresh() * ((u64)NSEC_PER_SEC / NUM_SAMPLE_PERIODS);
655 watchdog_update_hrtimer_threshold(sample_period);
656 }
657
update_report_ts(void)658 static void update_report_ts(void)
659 {
660 __this_cpu_write(watchdog_report_ts, get_timestamp());
661 }
662
663 /* Commands for resetting the watchdog */
update_touch_ts(void)664 static void update_touch_ts(void)
665 {
666 __this_cpu_write(watchdog_touch_ts, get_timestamp());
667 update_report_ts();
668 }
669
670 /**
671 * touch_softlockup_watchdog_sched - touch watchdog on scheduler stalls
672 *
673 * Call when the scheduler may have stalled for legitimate reasons
674 * preventing the watchdog task from executing - e.g. the scheduler
675 * entering idle state. This should only be used for scheduler events.
676 * Use touch_softlockup_watchdog() for everything else.
677 */
touch_softlockup_watchdog_sched(void)678 notrace void touch_softlockup_watchdog_sched(void)
679 {
680 /*
681 * Preemption can be enabled. It doesn't matter which CPU's watchdog
682 * report period gets restarted here, so use the raw_ operation.
683 */
684 raw_cpu_write(watchdog_report_ts, SOFTLOCKUP_DELAY_REPORT);
685 }
686
touch_softlockup_watchdog(void)687 notrace void touch_softlockup_watchdog(void)
688 {
689 touch_softlockup_watchdog_sched();
690 wq_watchdog_touch(raw_smp_processor_id());
691 }
692 EXPORT_SYMBOL(touch_softlockup_watchdog);
693
touch_all_softlockup_watchdogs(void)694 void touch_all_softlockup_watchdogs(void)
695 {
696 int cpu;
697
698 /*
699 * watchdog_mutex cannpt be taken here, as this might be called
700 * from (soft)interrupt context, so the access to
701 * watchdog_allowed_cpumask might race with a concurrent update.
702 *
703 * The watchdog time stamp can race against a concurrent real
704 * update as well, the only side effect might be a cycle delay for
705 * the softlockup check.
706 */
707 for_each_cpu(cpu, &watchdog_allowed_mask) {
708 per_cpu(watchdog_report_ts, cpu) = SOFTLOCKUP_DELAY_REPORT;
709 wq_watchdog_touch(cpu);
710 }
711 }
712
touch_softlockup_watchdog_sync(void)713 void touch_softlockup_watchdog_sync(void)
714 {
715 __this_cpu_write(softlockup_touch_sync, true);
716 __this_cpu_write(watchdog_report_ts, SOFTLOCKUP_DELAY_REPORT);
717 }
718
is_softlockup(unsigned long touch_ts,unsigned long period_ts,unsigned long now)719 static int is_softlockup(unsigned long touch_ts,
720 unsigned long period_ts,
721 unsigned long now)
722 {
723 if ((watchdog_enabled & WATCHDOG_SOFTOCKUP_ENABLED) && watchdog_thresh) {
724 /*
725 * If period_ts has not been updated during a sample_period, then
726 * in the subsequent few sample_periods, period_ts might also not
727 * be updated, which could indicate a potential softlockup. In
728 * this case, if we suspect the cause of the potential softlockup
729 * might be interrupt storm, then we need to count the interrupts
730 * to find which interrupt is storming.
731 */
732 if (time_after_eq(now, period_ts + get_softlockup_thresh() / NUM_SAMPLE_PERIODS) &&
733 need_counting_irqs())
734 start_counting_irqs();
735
736 /*
737 * A poorly behaving BPF scheduler can live-lock the system into
738 * soft lockups. Tell sched_ext to try ejecting the BPF
739 * scheduler when close to a soft lockup.
740 */
741 if (time_after_eq(now, period_ts + get_softlockup_thresh() * 3 / 4))
742 scx_softlockup(now - touch_ts);
743
744 /* Warn about unreasonable delays. */
745 if (time_after(now, period_ts + get_softlockup_thresh()))
746 return now - touch_ts;
747 }
748 return 0;
749 }
750
751 /* watchdog detector functions */
752 static DEFINE_PER_CPU(struct completion, softlockup_completion);
753 static DEFINE_PER_CPU(struct cpu_stop_work, softlockup_stop_work);
754
755 /*
756 * The watchdog feed function - touches the timestamp.
757 *
758 * It only runs once every sample_period seconds (4 seconds by
759 * default) to reset the softlockup timestamp. If this gets delayed
760 * for more than 2*watchdog_thresh seconds then the debug-printout
761 * triggers in watchdog_timer_fn().
762 */
softlockup_fn(void * data)763 static int softlockup_fn(void *data)
764 {
765 update_touch_ts();
766 stop_counting_irqs();
767 complete(this_cpu_ptr(&softlockup_completion));
768
769 return 0;
770 }
771
772 /* watchdog kicker functions */
watchdog_timer_fn(struct hrtimer * hrtimer)773 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
774 {
775 unsigned long touch_ts, period_ts, now;
776 struct pt_regs *regs = get_irq_regs();
777 int duration;
778 int softlockup_all_cpu_backtrace;
779 unsigned long flags;
780
781 if (!watchdog_enabled)
782 return HRTIMER_NORESTART;
783
784 /*
785 * pass the buddy check if a panic is in process
786 */
787 if (panic_in_progress())
788 return HRTIMER_NORESTART;
789
790 softlockup_all_cpu_backtrace = (softlockup_si_mask & SYS_INFO_ALL_BT) ?
791 1 : sysctl_softlockup_all_cpu_backtrace;
792
793 watchdog_hardlockup_kick();
794
795 /* kick the softlockup detector */
796 if (completion_done(this_cpu_ptr(&softlockup_completion))) {
797 reinit_completion(this_cpu_ptr(&softlockup_completion));
798 stop_one_cpu_nowait(smp_processor_id(),
799 softlockup_fn, NULL,
800 this_cpu_ptr(&softlockup_stop_work));
801 }
802
803 /* .. and repeat */
804 hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period));
805
806 /*
807 * Read the current timestamp first. It might become invalid anytime
808 * when a virtual machine is stopped by the host or when the watchog
809 * is touched from NMI.
810 */
811 now = get_timestamp();
812 /*
813 * If a virtual machine is stopped by the host it can look to
814 * the watchdog like a soft lockup. This function touches the watchdog.
815 */
816 kvm_check_and_clear_guest_paused();
817 /*
818 * The stored timestamp is comparable with @now only when not touched.
819 * It might get touched anytime from NMI. Make sure that is_softlockup()
820 * uses the same (valid) value.
821 */
822 period_ts = READ_ONCE(*this_cpu_ptr(&watchdog_report_ts));
823
824 update_cpustat();
825
826 /* Reset the interval when touched by known problematic code. */
827 if (period_ts == SOFTLOCKUP_DELAY_REPORT) {
828 if (unlikely(__this_cpu_read(softlockup_touch_sync))) {
829 /*
830 * If the time stamp was touched atomically
831 * make sure the scheduler tick is up to date.
832 */
833 __this_cpu_write(softlockup_touch_sync, false);
834 sched_clock_tick();
835 }
836
837 update_report_ts();
838 return HRTIMER_RESTART;
839 }
840
841 /* Check for a softlockup. */
842 touch_ts = __this_cpu_read(watchdog_touch_ts);
843 duration = is_softlockup(touch_ts, period_ts, now);
844 if (unlikely(duration)) {
845 #ifdef CONFIG_SYSFS
846 ++softlockup_count;
847 #endif
848
849 /*
850 * Prevent multiple soft-lockup reports if one cpu is already
851 * engaged in dumping all cpu back traces.
852 */
853 if (softlockup_all_cpu_backtrace) {
854 if (test_and_set_bit_lock(0, &soft_lockup_nmi_warn))
855 return HRTIMER_RESTART;
856 }
857
858 /* Start period for the next softlockup warning. */
859 update_report_ts();
860
861 printk_cpu_sync_get_irqsave(flags);
862 pr_emerg("BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n",
863 smp_processor_id(), duration,
864 current->comm, task_pid_nr(current));
865 report_cpu_status();
866 print_modules();
867 print_irqtrace_events(current);
868 if (regs)
869 show_regs(regs);
870 else
871 dump_stack();
872 printk_cpu_sync_put_irqrestore(flags);
873
874 if (softlockup_all_cpu_backtrace) {
875 trigger_allbutcpu_cpu_backtrace(smp_processor_id());
876 if (!softlockup_panic)
877 clear_bit_unlock(0, &soft_lockup_nmi_warn);
878 }
879
880 add_taint(TAINT_SOFTLOCKUP, LOCKDEP_STILL_OK);
881 sys_info(softlockup_si_mask & ~SYS_INFO_ALL_BT);
882 if (softlockup_panic)
883 panic("softlockup: hung tasks");
884 }
885
886 return HRTIMER_RESTART;
887 }
888
watchdog_enable(unsigned int cpu)889 static void watchdog_enable(unsigned int cpu)
890 {
891 struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer);
892 struct completion *done = this_cpu_ptr(&softlockup_completion);
893
894 WARN_ON_ONCE(cpu != smp_processor_id());
895
896 init_completion(done);
897 complete(done);
898
899 /*
900 * Start the timer first to prevent the hardlockup watchdog triggering
901 * before the timer has a chance to fire.
902 */
903 hrtimer_setup(hrtimer, watchdog_timer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
904 hrtimer_start(hrtimer, ns_to_ktime(sample_period),
905 HRTIMER_MODE_REL_PINNED_HARD);
906
907 /* Initialize timestamp */
908 update_touch_ts();
909 /* Enable the hardlockup detector */
910 if (watchdog_enabled & WATCHDOG_HARDLOCKUP_ENABLED)
911 watchdog_hardlockup_enable(cpu);
912 }
913
watchdog_disable(unsigned int cpu)914 static void watchdog_disable(unsigned int cpu)
915 {
916 struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer);
917
918 WARN_ON_ONCE(cpu != smp_processor_id());
919
920 /*
921 * Disable the hardlockup detector first. That prevents that a large
922 * delay between disabling the timer and disabling the hardlockup
923 * detector causes a false positive.
924 */
925 watchdog_hardlockup_disable(cpu);
926 hrtimer_cancel(hrtimer);
927 wait_for_completion(this_cpu_ptr(&softlockup_completion));
928 }
929
softlockup_stop_fn(void * data)930 static int softlockup_stop_fn(void *data)
931 {
932 watchdog_disable(smp_processor_id());
933 return 0;
934 }
935
softlockup_stop_all(void)936 static void softlockup_stop_all(void)
937 {
938 int cpu;
939
940 if (!softlockup_initialized)
941 return;
942
943 for_each_cpu(cpu, &watchdog_allowed_mask)
944 smp_call_on_cpu(cpu, softlockup_stop_fn, NULL, false);
945
946 cpumask_clear(&watchdog_allowed_mask);
947 }
948
softlockup_start_fn(void * data)949 static int softlockup_start_fn(void *data)
950 {
951 watchdog_enable(smp_processor_id());
952 return 0;
953 }
954
softlockup_start_all(void)955 static void softlockup_start_all(void)
956 {
957 int cpu;
958
959 cpumask_copy(&watchdog_allowed_mask, &watchdog_cpumask);
960 for_each_cpu(cpu, &watchdog_allowed_mask)
961 smp_call_on_cpu(cpu, softlockup_start_fn, NULL, false);
962 }
963
lockup_detector_online_cpu(unsigned int cpu)964 int lockup_detector_online_cpu(unsigned int cpu)
965 {
966 if (cpumask_test_cpu(cpu, &watchdog_allowed_mask))
967 watchdog_enable(cpu);
968 return 0;
969 }
970
lockup_detector_offline_cpu(unsigned int cpu)971 int lockup_detector_offline_cpu(unsigned int cpu)
972 {
973 if (cpumask_test_cpu(cpu, &watchdog_allowed_mask))
974 watchdog_disable(cpu);
975 return 0;
976 }
977
__lockup_detector_reconfigure(bool thresh_changed)978 static void __lockup_detector_reconfigure(bool thresh_changed)
979 {
980 cpus_read_lock();
981 watchdog_hardlockup_stop();
982
983 softlockup_stop_all();
984 /*
985 * To prevent watchdog_timer_fn from using the old interval and
986 * the new watchdog_thresh at the same time, which could lead to
987 * false softlockup reports, it is necessary to update the
988 * watchdog_thresh after the softlockup is completed.
989 */
990 if (thresh_changed)
991 watchdog_thresh = READ_ONCE(watchdog_thresh_next);
992 set_sample_period();
993 lockup_detector_update_enable();
994 if (watchdog_enabled && watchdog_thresh)
995 softlockup_start_all();
996
997 watchdog_hardlockup_start();
998 cpus_read_unlock();
999 }
1000
lockup_detector_reconfigure(void)1001 void lockup_detector_reconfigure(void)
1002 {
1003 mutex_lock(&watchdog_mutex);
1004 __lockup_detector_reconfigure(false);
1005 mutex_unlock(&watchdog_mutex);
1006 }
1007
1008 /*
1009 * Create the watchdog infrastructure and configure the detector(s).
1010 */
lockup_detector_setup(void)1011 static __init void lockup_detector_setup(void)
1012 {
1013 /*
1014 * If sysctl is off and watchdog got disabled on the command line,
1015 * nothing to do here.
1016 */
1017 lockup_detector_update_enable();
1018
1019 if (!IS_ENABLED(CONFIG_SYSCTL) &&
1020 !(watchdog_enabled && watchdog_thresh))
1021 return;
1022
1023 mutex_lock(&watchdog_mutex);
1024 __lockup_detector_reconfigure(false);
1025 softlockup_initialized = true;
1026 mutex_unlock(&watchdog_mutex);
1027 }
1028
1029 #else /* CONFIG_SOFTLOCKUP_DETECTOR */
__lockup_detector_reconfigure(bool thresh_changed)1030 static void __lockup_detector_reconfigure(bool thresh_changed)
1031 {
1032 cpus_read_lock();
1033 watchdog_hardlockup_stop();
1034 if (thresh_changed)
1035 watchdog_thresh = READ_ONCE(watchdog_thresh_next);
1036 lockup_detector_update_enable();
1037 watchdog_hardlockup_start();
1038 cpus_read_unlock();
1039 }
lockup_detector_reconfigure(void)1040 void lockup_detector_reconfigure(void)
1041 {
1042 __lockup_detector_reconfigure(false);
1043 }
lockup_detector_setup(void)1044 static inline void lockup_detector_setup(void)
1045 {
1046 __lockup_detector_reconfigure(false);
1047 }
1048 #endif /* !CONFIG_SOFTLOCKUP_DETECTOR */
1049
1050 /**
1051 * lockup_detector_soft_poweroff - Interface to stop lockup detector(s)
1052 *
1053 * Special interface for parisc. It prevents lockup detector warnings from
1054 * the default pm_poweroff() function which busy loops forever.
1055 */
lockup_detector_soft_poweroff(void)1056 void lockup_detector_soft_poweroff(void)
1057 {
1058 watchdog_enabled = 0;
1059 }
1060
1061 #ifdef CONFIG_SYSCTL
1062
1063 /* Propagate any changes to the watchdog infrastructure */
proc_watchdog_update(bool thresh_changed)1064 static void proc_watchdog_update(bool thresh_changed)
1065 {
1066 /* Remove impossible cpus to keep sysctl output clean. */
1067 cpumask_and(&watchdog_cpumask, &watchdog_cpumask, cpu_possible_mask);
1068 __lockup_detector_reconfigure(thresh_changed);
1069 }
1070
1071 /*
1072 * common function for watchdog, nmi_watchdog and soft_watchdog parameter
1073 *
1074 * caller | table->data points to | 'which'
1075 * -------------------|----------------------------------|-------------------------------
1076 * proc_watchdog | watchdog_user_enabled | WATCHDOG_HARDLOCKUP_ENABLED |
1077 * | | WATCHDOG_SOFTOCKUP_ENABLED
1078 * -------------------|----------------------------------|-------------------------------
1079 * proc_nmi_watchdog | watchdog_hardlockup_user_enabled | WATCHDOG_HARDLOCKUP_ENABLED
1080 * -------------------|----------------------------------|-------------------------------
1081 * proc_soft_watchdog | watchdog_softlockup_user_enabled | WATCHDOG_SOFTOCKUP_ENABLED
1082 */
proc_watchdog_common(int which,const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1083 static int proc_watchdog_common(int which, const struct ctl_table *table, int write,
1084 void *buffer, size_t *lenp, loff_t *ppos)
1085 {
1086 int err, old, *param = table->data;
1087
1088 mutex_lock(&watchdog_mutex);
1089
1090 old = *param;
1091 if (!write) {
1092 /*
1093 * On read synchronize the userspace interface. This is a
1094 * racy snapshot.
1095 */
1096 *param = (watchdog_enabled & which) != 0;
1097 err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1098 *param = old;
1099 } else {
1100 err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1101 if (!err && old != READ_ONCE(*param))
1102 proc_watchdog_update(false);
1103 }
1104 mutex_unlock(&watchdog_mutex);
1105 return err;
1106 }
1107
1108 /*
1109 * /proc/sys/kernel/watchdog
1110 */
proc_watchdog(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1111 static int proc_watchdog(const struct ctl_table *table, int write,
1112 void *buffer, size_t *lenp, loff_t *ppos)
1113 {
1114 return proc_watchdog_common(WATCHDOG_HARDLOCKUP_ENABLED |
1115 WATCHDOG_SOFTOCKUP_ENABLED,
1116 table, write, buffer, lenp, ppos);
1117 }
1118
1119 /*
1120 * /proc/sys/kernel/nmi_watchdog
1121 */
proc_nmi_watchdog(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1122 static int proc_nmi_watchdog(const struct ctl_table *table, int write,
1123 void *buffer, size_t *lenp, loff_t *ppos)
1124 {
1125 if (!watchdog_hardlockup_available && write)
1126 return -ENOTSUPP;
1127 return proc_watchdog_common(WATCHDOG_HARDLOCKUP_ENABLED,
1128 table, write, buffer, lenp, ppos);
1129 }
1130
1131 #ifdef CONFIG_SOFTLOCKUP_DETECTOR
1132 /*
1133 * /proc/sys/kernel/soft_watchdog
1134 */
proc_soft_watchdog(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1135 static int proc_soft_watchdog(const struct ctl_table *table, int write,
1136 void *buffer, size_t *lenp, loff_t *ppos)
1137 {
1138 return proc_watchdog_common(WATCHDOG_SOFTOCKUP_ENABLED,
1139 table, write, buffer, lenp, ppos);
1140 }
1141 #endif
1142
1143 /*
1144 * /proc/sys/kernel/watchdog_thresh
1145 */
proc_watchdog_thresh(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1146 static int proc_watchdog_thresh(const struct ctl_table *table, int write,
1147 void *buffer, size_t *lenp, loff_t *ppos)
1148 {
1149 int err, old;
1150
1151 mutex_lock(&watchdog_mutex);
1152
1153 watchdog_thresh_next = READ_ONCE(watchdog_thresh);
1154
1155 old = watchdog_thresh_next;
1156 err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1157
1158 if (!err && write && old != READ_ONCE(watchdog_thresh_next))
1159 proc_watchdog_update(true);
1160
1161 mutex_unlock(&watchdog_mutex);
1162 return err;
1163 }
1164
1165 /*
1166 * The cpumask is the mask of possible cpus that the watchdog can run
1167 * on, not the mask of cpus it is actually running on. This allows the
1168 * user to specify a mask that will include cpus that have not yet
1169 * been brought online, if desired.
1170 */
proc_watchdog_cpumask(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1171 static int proc_watchdog_cpumask(const struct ctl_table *table, int write,
1172 void *buffer, size_t *lenp, loff_t *ppos)
1173 {
1174 int err;
1175
1176 mutex_lock(&watchdog_mutex);
1177
1178 err = proc_do_large_bitmap(table, write, buffer, lenp, ppos);
1179 if (!err && write)
1180 proc_watchdog_update(false);
1181
1182 mutex_unlock(&watchdog_mutex);
1183 return err;
1184 }
1185
1186 static const int sixty = 60;
1187
1188 static const struct ctl_table watchdog_sysctls[] = {
1189 {
1190 .procname = "watchdog",
1191 .data = &watchdog_user_enabled,
1192 .maxlen = sizeof(int),
1193 .mode = 0644,
1194 .proc_handler = proc_watchdog,
1195 .extra1 = SYSCTL_ZERO,
1196 .extra2 = SYSCTL_ONE,
1197 },
1198 {
1199 .procname = "watchdog_thresh",
1200 .data = &watchdog_thresh_next,
1201 .maxlen = sizeof(int),
1202 .mode = 0644,
1203 .proc_handler = proc_watchdog_thresh,
1204 .extra1 = SYSCTL_ZERO,
1205 .extra2 = (void *)&sixty,
1206 },
1207 {
1208 .procname = "watchdog_cpumask",
1209 .data = &watchdog_cpumask_bits,
1210 .maxlen = NR_CPUS,
1211 .mode = 0644,
1212 .proc_handler = proc_watchdog_cpumask,
1213 },
1214 #ifdef CONFIG_SOFTLOCKUP_DETECTOR
1215 {
1216 .procname = "soft_watchdog",
1217 .data = &watchdog_softlockup_user_enabled,
1218 .maxlen = sizeof(int),
1219 .mode = 0644,
1220 .proc_handler = proc_soft_watchdog,
1221 .extra1 = SYSCTL_ZERO,
1222 .extra2 = SYSCTL_ONE,
1223 },
1224 {
1225 .procname = "softlockup_panic",
1226 .data = &softlockup_panic,
1227 .maxlen = sizeof(int),
1228 .mode = 0644,
1229 .proc_handler = proc_dointvec_minmax,
1230 .extra1 = SYSCTL_ZERO,
1231 .extra2 = SYSCTL_ONE,
1232 },
1233 {
1234 .procname = "softlockup_sys_info",
1235 .data = &softlockup_si_mask,
1236 .maxlen = sizeof(softlockup_si_mask),
1237 .mode = 0644,
1238 .proc_handler = sysctl_sys_info_handler,
1239 },
1240 #ifdef CONFIG_SMP
1241 {
1242 .procname = "softlockup_all_cpu_backtrace",
1243 .data = &sysctl_softlockup_all_cpu_backtrace,
1244 .maxlen = sizeof(int),
1245 .mode = 0644,
1246 .proc_handler = proc_dointvec_minmax,
1247 .extra1 = SYSCTL_ZERO,
1248 .extra2 = SYSCTL_ONE,
1249 },
1250 #endif /* CONFIG_SMP */
1251 #endif
1252 #ifdef CONFIG_HARDLOCKUP_DETECTOR
1253 {
1254 .procname = "hardlockup_panic",
1255 .data = &hardlockup_panic,
1256 .maxlen = sizeof(int),
1257 .mode = 0644,
1258 .proc_handler = proc_dointvec_minmax,
1259 .extra1 = SYSCTL_ZERO,
1260 .extra2 = SYSCTL_ONE,
1261 },
1262 {
1263 .procname = "hardlockup_sys_info",
1264 .data = &hardlockup_si_mask,
1265 .maxlen = sizeof(hardlockup_si_mask),
1266 .mode = 0644,
1267 .proc_handler = sysctl_sys_info_handler,
1268 },
1269 #ifdef CONFIG_SMP
1270 {
1271 .procname = "hardlockup_all_cpu_backtrace",
1272 .data = &sysctl_hardlockup_all_cpu_backtrace,
1273 .maxlen = sizeof(int),
1274 .mode = 0644,
1275 .proc_handler = proc_dointvec_minmax,
1276 .extra1 = SYSCTL_ZERO,
1277 .extra2 = SYSCTL_ONE,
1278 },
1279 #endif /* CONFIG_SMP */
1280 #endif
1281 {
1282 .procname = "nmi_watchdog",
1283 .data = &watchdog_hardlockup_user_enabled,
1284 .maxlen = sizeof(int),
1285 .mode = 0644,
1286 .proc_handler = proc_nmi_watchdog,
1287 .extra1 = SYSCTL_ZERO,
1288 .extra2 = SYSCTL_ONE,
1289 },
1290 };
1291
watchdog_sysctl_init(void)1292 static void __init watchdog_sysctl_init(void)
1293 {
1294 register_sysctl_init("kernel", watchdog_sysctls);
1295 }
1296
1297 #else
1298 #define watchdog_sysctl_init() do { } while (0)
1299 #endif /* CONFIG_SYSCTL */
1300
1301 static void __init lockup_detector_delay_init(struct work_struct *work);
1302 static bool allow_lockup_detector_init_retry __initdata;
1303
1304 static struct work_struct detector_work __initdata =
1305 __WORK_INITIALIZER(detector_work, lockup_detector_delay_init);
1306
lockup_detector_delay_init(struct work_struct * work)1307 static void __init lockup_detector_delay_init(struct work_struct *work)
1308 {
1309 int ret;
1310
1311 ret = watchdog_hardlockup_probe();
1312 if (ret) {
1313 if (ret == -ENODEV)
1314 pr_info("NMI not fully supported\n");
1315 else
1316 pr_info("Delayed init of the lockup detector failed: %d\n", ret);
1317 pr_info("Hard watchdog permanently disabled\n");
1318 return;
1319 }
1320
1321 allow_lockup_detector_init_retry = false;
1322
1323 watchdog_hardlockup_available = true;
1324 lockup_detector_setup();
1325 }
1326
1327 /*
1328 * lockup_detector_retry_init - retry init lockup detector if possible.
1329 *
1330 * Retry hardlockup detector init. It is useful when it requires some
1331 * functionality that has to be initialized later on a particular
1332 * platform.
1333 */
lockup_detector_retry_init(void)1334 void __init lockup_detector_retry_init(void)
1335 {
1336 /* Must be called before late init calls */
1337 if (!allow_lockup_detector_init_retry)
1338 return;
1339
1340 schedule_work(&detector_work);
1341 }
1342
1343 /*
1344 * Ensure that optional delayed hardlockup init is proceed before
1345 * the init code and memory is freed.
1346 */
lockup_detector_check(void)1347 static int __init lockup_detector_check(void)
1348 {
1349 /* Prevent any later retry. */
1350 allow_lockup_detector_init_retry = false;
1351
1352 /* Make sure no work is pending. */
1353 flush_work(&detector_work);
1354
1355 watchdog_sysctl_init();
1356
1357 return 0;
1358
1359 }
1360 late_initcall_sync(lockup_detector_check);
1361
lockup_detector_init(void)1362 void __init lockup_detector_init(void)
1363 {
1364 if (tick_nohz_full_enabled())
1365 pr_info("Disabling watchdog on nohz_full cores by default\n");
1366
1367 cpumask_copy(&watchdog_cpumask,
1368 housekeeping_cpumask(HK_TYPE_TIMER));
1369
1370 if (!watchdog_hardlockup_probe())
1371 watchdog_hardlockup_available = true;
1372 else
1373 allow_lockup_detector_init_retry = true;
1374
1375 lockup_detector_setup();
1376 }
1377