1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KFENCE guarded object allocator and fault handling.
4 *
5 * Copyright (C) 2020, Google LLC.
6 */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/nodemask.h>
25 #include <linux/notifier.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/random.h>
28 #include <linux/rcupdate.h>
29 #include <linux/sched/clock.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34
35 #include <asm/kfence.h>
36
37 #include "kfence.h"
38
39 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
40 #define KFENCE_WARN_ON(cond) \
41 ({ \
42 const bool __cond = WARN_ON(cond); \
43 if (unlikely(__cond)) { \
44 WRITE_ONCE(kfence_enabled, false); \
45 disabled_by_warn = true; \
46 } \
47 __cond; \
48 })
49
50 /* === Data ================================================================= */
51
52 static bool kfence_enabled __read_mostly;
53 static bool disabled_by_warn __read_mostly;
54
55 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
57
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "kfence."
62
63 static int kfence_enable_late(void);
param_set_sample_interval(const char * val,const struct kernel_param * kp)64 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
65 {
66 unsigned long num;
67 int ret = kstrtoul(val, 0, &num);
68
69 if (ret < 0)
70 return ret;
71
72 /* Using 0 to indicate KFENCE is disabled. */
73 if (!num && READ_ONCE(kfence_enabled)) {
74 pr_info("disabled\n");
75 WRITE_ONCE(kfence_enabled, false);
76 }
77
78 *((unsigned long *)kp->arg) = num;
79
80 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81 return disabled_by_warn ? -EINVAL : kfence_enable_late();
82 return 0;
83 }
84
param_get_sample_interval(char * buffer,const struct kernel_param * kp)85 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
86 {
87 if (!READ_ONCE(kfence_enabled))
88 return sprintf(buffer, "0\n");
89
90 return param_get_ulong(buffer, kp);
91 }
92
93 static const struct kernel_param_ops sample_interval_param_ops = {
94 .set = param_set_sample_interval,
95 .get = param_get_sample_interval,
96 };
97 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
98
99 /* Pool usage% threshold when currently covered allocations are skipped. */
100 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
102
103 /* Allocation burst count: number of excess KFENCE allocations per sample. */
104 static unsigned int kfence_burst __read_mostly;
105 module_param_named(burst, kfence_burst, uint, 0644);
106
107 /* If true, use a deferrable timer. */
108 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
109 module_param_named(deferrable, kfence_deferrable, bool, 0444);
110
111 /* If true, check all canary bytes on panic. */
112 static bool kfence_check_on_panic __read_mostly;
113 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
114
115 /* The pool of pages used for guard pages and objects. */
116 char *__kfence_pool __read_mostly;
117 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
118
119 /*
120 * Per-object metadata, with one-to-one mapping of object metadata to
121 * backing pages (in __kfence_pool).
122 */
123 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
124 struct kfence_metadata *kfence_metadata __read_mostly;
125
126 /*
127 * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
128 * So introduce kfence_metadata_init to initialize metadata, and then make
129 * kfence_metadata visible after initialization is successful. This prevents
130 * potential UAF or access to uninitialized metadata.
131 */
132 static struct kfence_metadata *kfence_metadata_init __read_mostly;
133
134 /* Freelist with available objects. */
135 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
136 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
137
138 /*
139 * The static key to set up a KFENCE allocation; or if static keys are not used
140 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
141 */
142 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
143
144 /* Gates the allocation, ensuring only one succeeds in a given period. */
145 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
146
147 /*
148 * A Counting Bloom filter of allocation coverage: limits currently covered
149 * allocations of the same source filling up the pool.
150 *
151 * Assuming a range of 15%-85% unique allocations in the pool at any point in
152 * time, the below parameters provide a probablity of 0.02-0.33 for false
153 * positive hits respectively:
154 *
155 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
156 */
157 #define ALLOC_COVERED_HNUM 2
158 #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
159 #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
160 #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
161 #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
162 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
163
164 /* Stack depth used to determine uniqueness of an allocation. */
165 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
166
167 /*
168 * Randomness for stack hashes, making the same collisions across reboots and
169 * different machines less likely.
170 */
171 static u32 stack_hash_seed __ro_after_init;
172
173 /* Statistics counters for debugfs. */
174 enum kfence_counter_id {
175 KFENCE_COUNTER_ALLOCATED,
176 KFENCE_COUNTER_ALLOCS,
177 KFENCE_COUNTER_FREES,
178 KFENCE_COUNTER_ZOMBIES,
179 KFENCE_COUNTER_BUGS,
180 KFENCE_COUNTER_SKIP_INCOMPAT,
181 KFENCE_COUNTER_SKIP_CAPACITY,
182 KFENCE_COUNTER_SKIP_COVERED,
183 KFENCE_COUNTER_COUNT,
184 };
185 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
186 static const char *const counter_names[] = {
187 [KFENCE_COUNTER_ALLOCATED] = "currently allocated",
188 [KFENCE_COUNTER_ALLOCS] = "total allocations",
189 [KFENCE_COUNTER_FREES] = "total frees",
190 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
191 [KFENCE_COUNTER_BUGS] = "total bugs",
192 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
193 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
194 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
195 };
196 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
197
198 /* === Internals ============================================================ */
199
should_skip_covered(void)200 static inline bool should_skip_covered(void)
201 {
202 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
203
204 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
205 }
206
get_alloc_stack_hash(unsigned long * stack_entries,size_t num_entries)207 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
208 {
209 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
210 num_entries = filter_irq_stacks(stack_entries, num_entries);
211 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
212 }
213
214 /*
215 * Adds (or subtracts) count @val for allocation stack trace hash
216 * @alloc_stack_hash from Counting Bloom filter.
217 */
alloc_covered_add(u32 alloc_stack_hash,int val)218 static void alloc_covered_add(u32 alloc_stack_hash, int val)
219 {
220 int i;
221
222 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
223 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
224 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
225 }
226 }
227
228 /*
229 * Returns true if the allocation stack trace hash @alloc_stack_hash is
230 * currently contained (non-zero count) in Counting Bloom filter.
231 */
alloc_covered_contains(u32 alloc_stack_hash)232 static bool alloc_covered_contains(u32 alloc_stack_hash)
233 {
234 int i;
235
236 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
237 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
238 return false;
239 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
240 }
241
242 return true;
243 }
244
kfence_protect(unsigned long addr)245 static bool kfence_protect(unsigned long addr)
246 {
247 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
248 }
249
kfence_unprotect(unsigned long addr)250 static bool kfence_unprotect(unsigned long addr)
251 {
252 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
253 }
254
metadata_to_pageaddr(const struct kfence_metadata * meta)255 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
256 {
257 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
258 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
259
260 /* The checks do not affect performance; only called from slow-paths. */
261
262 /* Only call with a pointer into kfence_metadata. */
263 if (KFENCE_WARN_ON(meta < kfence_metadata ||
264 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
265 return 0;
266
267 /*
268 * This metadata object only ever maps to 1 page; verify that the stored
269 * address is in the expected range.
270 */
271 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
272 return 0;
273
274 return pageaddr;
275 }
276
kfence_obj_allocated(const struct kfence_metadata * meta)277 static inline bool kfence_obj_allocated(const struct kfence_metadata *meta)
278 {
279 enum kfence_object_state state = READ_ONCE(meta->state);
280
281 return state == KFENCE_OBJECT_ALLOCATED || state == KFENCE_OBJECT_RCU_FREEING;
282 }
283
284 /*
285 * Update the object's metadata state, including updating the alloc/free stacks
286 * depending on the state transition.
287 */
288 static noinline void
metadata_update_state(struct kfence_metadata * meta,enum kfence_object_state next,unsigned long * stack_entries,size_t num_stack_entries)289 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
290 unsigned long *stack_entries, size_t num_stack_entries)
291 {
292 struct kfence_track *track =
293 next == KFENCE_OBJECT_ALLOCATED ? &meta->alloc_track : &meta->free_track;
294
295 lockdep_assert_held(&meta->lock);
296
297 /* Stack has been saved when calling rcu, skip. */
298 if (READ_ONCE(meta->state) == KFENCE_OBJECT_RCU_FREEING)
299 goto out;
300
301 if (stack_entries) {
302 memcpy(track->stack_entries, stack_entries,
303 num_stack_entries * sizeof(stack_entries[0]));
304 } else {
305 /*
306 * Skip over 1 (this) functions; noinline ensures we do not
307 * accidentally skip over the caller by never inlining.
308 */
309 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
310 }
311 track->num_stack_entries = num_stack_entries;
312 track->pid = task_pid_nr(current);
313 track->cpu = raw_smp_processor_id();
314 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
315
316 out:
317 /*
318 * Pairs with READ_ONCE() in
319 * kfence_shutdown_cache(),
320 * kfence_handle_page_fault().
321 */
322 WRITE_ONCE(meta->state, next);
323 }
324
325 #ifdef CONFIG_KMSAN
326 #define check_canary_attributes noinline __no_kmsan_checks
327 #else
328 #define check_canary_attributes inline
329 #endif
330
331 /* Check canary byte at @addr. */
check_canary_byte(u8 * addr)332 static check_canary_attributes bool check_canary_byte(u8 *addr)
333 {
334 struct kfence_metadata *meta;
335 unsigned long flags;
336
337 if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
338 return true;
339
340 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
341
342 meta = addr_to_metadata((unsigned long)addr);
343 raw_spin_lock_irqsave(&meta->lock, flags);
344 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
345 raw_spin_unlock_irqrestore(&meta->lock, flags);
346
347 return false;
348 }
349
set_canary(const struct kfence_metadata * meta)350 static inline void set_canary(const struct kfence_metadata *meta)
351 {
352 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
353 unsigned long addr = pageaddr;
354
355 /*
356 * The canary may be written to part of the object memory, but it does
357 * not affect it. The user should initialize the object before using it.
358 */
359 for (; addr < meta->addr; addr += sizeof(u64))
360 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
361
362 addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
363 for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
364 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
365 }
366
367 static check_canary_attributes void
check_canary(const struct kfence_metadata * meta)368 check_canary(const struct kfence_metadata *meta)
369 {
370 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
371 unsigned long addr = pageaddr;
372
373 /*
374 * We'll iterate over each canary byte per-side until a corrupted byte
375 * is found. However, we'll still iterate over the canary bytes to the
376 * right of the object even if there was an error in the canary bytes to
377 * the left of the object. Specifically, if check_canary_byte()
378 * generates an error, showing both sides might give more clues as to
379 * what the error is about when displaying which bytes were corrupted.
380 */
381
382 /* Apply to left of object. */
383 for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
384 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
385 break;
386 }
387
388 /*
389 * If the canary is corrupted in a certain 64 bytes, or the canary
390 * memory cannot be completely covered by multiple consecutive 64 bytes,
391 * it needs to be checked one by one.
392 */
393 for (; addr < meta->addr; addr++) {
394 if (unlikely(!check_canary_byte((u8 *)addr)))
395 break;
396 }
397
398 /* Apply to right of object. */
399 for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
400 if (unlikely(!check_canary_byte((u8 *)addr)))
401 return;
402 }
403 for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
404 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
405
406 for (; addr - pageaddr < PAGE_SIZE; addr++) {
407 if (!check_canary_byte((u8 *)addr))
408 return;
409 }
410 }
411 }
412 }
413
kfence_guarded_alloc(struct kmem_cache * cache,size_t size,gfp_t gfp,unsigned long * stack_entries,size_t num_stack_entries,u32 alloc_stack_hash)414 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
415 unsigned long *stack_entries, size_t num_stack_entries,
416 u32 alloc_stack_hash)
417 {
418 struct kfence_metadata *meta = NULL;
419 unsigned long flags;
420 struct slab *slab;
421 void *addr;
422 const bool random_right_allocate = get_random_u32_below(2);
423 const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
424 !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
425
426 /* Try to obtain a free object. */
427 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
428 if (!list_empty(&kfence_freelist)) {
429 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
430 list_del_init(&meta->list);
431 }
432 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
433 if (!meta) {
434 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
435 return NULL;
436 }
437
438 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
439 /*
440 * This is extremely unlikely -- we are reporting on a
441 * use-after-free, which locked meta->lock, and the reporting
442 * code via printk calls kmalloc() which ends up in
443 * kfence_alloc() and tries to grab the same object that we're
444 * reporting on. While it has never been observed, lockdep does
445 * report that there is a possibility of deadlock. Fix it by
446 * using trylock and bailing out gracefully.
447 */
448 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
449 /* Put the object back on the freelist. */
450 list_add_tail(&meta->list, &kfence_freelist);
451 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
452
453 return NULL;
454 }
455
456 meta->addr = metadata_to_pageaddr(meta);
457 /* Unprotect if we're reusing this page. */
458 if (meta->state == KFENCE_OBJECT_FREED)
459 kfence_unprotect(meta->addr);
460
461 /*
462 * Note: for allocations made before RNG initialization, will always
463 * return zero. We still benefit from enabling KFENCE as early as
464 * possible, even when the RNG is not yet available, as this will allow
465 * KFENCE to detect bugs due to earlier allocations. The only downside
466 * is that the out-of-bounds accesses detected are deterministic for
467 * such allocations.
468 */
469 if (random_right_allocate) {
470 /* Allocate on the "right" side, re-calculate address. */
471 meta->addr += PAGE_SIZE - size;
472 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
473 }
474
475 addr = (void *)meta->addr;
476
477 /* Update remaining metadata. */
478 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
479 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
480 WRITE_ONCE(meta->cache, cache);
481 meta->size = size;
482 meta->alloc_stack_hash = alloc_stack_hash;
483 raw_spin_unlock_irqrestore(&meta->lock, flags);
484
485 alloc_covered_add(alloc_stack_hash, 1);
486
487 /* Set required slab fields. */
488 slab = virt_to_slab((void *)meta->addr);
489 slab->slab_cache = cache;
490 slab->objects = 1;
491
492 /* Memory initialization. */
493 set_canary(meta);
494
495 /*
496 * We check slab_want_init_on_alloc() ourselves, rather than letting
497 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
498 * redzone.
499 */
500 if (unlikely(slab_want_init_on_alloc(gfp, cache)))
501 memzero_explicit(addr, size);
502 if (cache->ctor)
503 cache->ctor(addr);
504
505 if (random_fault)
506 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
507
508 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
509 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
510
511 return addr;
512 }
513
kfence_guarded_free(void * addr,struct kfence_metadata * meta,bool zombie)514 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
515 {
516 struct kcsan_scoped_access assert_page_exclusive;
517 unsigned long flags;
518 bool init;
519
520 raw_spin_lock_irqsave(&meta->lock, flags);
521
522 if (!kfence_obj_allocated(meta) || meta->addr != (unsigned long)addr) {
523 /* Invalid or double-free, bail out. */
524 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
525 kfence_report_error((unsigned long)addr, false, NULL, meta,
526 KFENCE_ERROR_INVALID_FREE);
527 raw_spin_unlock_irqrestore(&meta->lock, flags);
528 return;
529 }
530
531 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
532 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
533 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
534 &assert_page_exclusive);
535
536 if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
537 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
538
539 /* Restore page protection if there was an OOB access. */
540 if (meta->unprotected_page) {
541 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
542 kfence_protect(meta->unprotected_page);
543 meta->unprotected_page = 0;
544 }
545
546 /* Mark the object as freed. */
547 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
548 init = slab_want_init_on_free(meta->cache);
549 raw_spin_unlock_irqrestore(&meta->lock, flags);
550
551 alloc_covered_add(meta->alloc_stack_hash, -1);
552
553 /* Check canary bytes for memory corruption. */
554 check_canary(meta);
555
556 /*
557 * Clear memory if init-on-free is set. While we protect the page, the
558 * data is still there, and after a use-after-free is detected, we
559 * unprotect the page, so the data is still accessible.
560 */
561 if (!zombie && unlikely(init))
562 memzero_explicit(addr, meta->size);
563
564 /* Protect to detect use-after-frees. */
565 kfence_protect((unsigned long)addr);
566
567 kcsan_end_scoped_access(&assert_page_exclusive);
568 if (!zombie) {
569 /* Add it to the tail of the freelist for reuse. */
570 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
571 KFENCE_WARN_ON(!list_empty(&meta->list));
572 list_add_tail(&meta->list, &kfence_freelist);
573 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
574
575 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
576 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
577 } else {
578 /* See kfence_shutdown_cache(). */
579 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
580 }
581 }
582
rcu_guarded_free(struct rcu_head * h)583 static void rcu_guarded_free(struct rcu_head *h)
584 {
585 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
586
587 kfence_guarded_free((void *)meta->addr, meta, false);
588 }
589
590 /*
591 * Initialization of the KFENCE pool after its allocation.
592 * Returns 0 on success; otherwise returns the address up to
593 * which partial initialization succeeded.
594 */
kfence_init_pool(void)595 static unsigned long kfence_init_pool(void)
596 {
597 unsigned long addr;
598 struct page *pages;
599 int i;
600
601 if (!arch_kfence_init_pool())
602 return (unsigned long)__kfence_pool;
603
604 addr = (unsigned long)__kfence_pool;
605 pages = virt_to_page(__kfence_pool);
606
607 /*
608 * Set up object pages: they must have PG_slab set, to avoid freeing
609 * these as real pages.
610 *
611 * We also want to avoid inserting kfence_free() in the kfree()
612 * fast-path in SLUB, and therefore need to ensure kfree() correctly
613 * enters __slab_free() slow-path.
614 */
615 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
616 struct slab *slab = page_slab(nth_page(pages, i));
617
618 if (!i || (i % 2))
619 continue;
620
621 __folio_set_slab(slab_folio(slab));
622 #ifdef CONFIG_MEMCG
623 slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
624 MEMCG_DATA_OBJEXTS;
625 #endif
626 }
627
628 /*
629 * Protect the first 2 pages. The first page is mostly unnecessary, and
630 * merely serves as an extended guard page. However, adding one
631 * additional page in the beginning gives us an even number of pages,
632 * which simplifies the mapping of address to metadata index.
633 */
634 for (i = 0; i < 2; i++) {
635 if (unlikely(!kfence_protect(addr)))
636 return addr;
637
638 addr += PAGE_SIZE;
639 }
640
641 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
642 struct kfence_metadata *meta = &kfence_metadata_init[i];
643
644 /* Initialize metadata. */
645 INIT_LIST_HEAD(&meta->list);
646 raw_spin_lock_init(&meta->lock);
647 meta->state = KFENCE_OBJECT_UNUSED;
648 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
649 list_add_tail(&meta->list, &kfence_freelist);
650
651 /* Protect the right redzone. */
652 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
653 goto reset_slab;
654
655 addr += 2 * PAGE_SIZE;
656 }
657
658 /*
659 * Make kfence_metadata visible only when initialization is successful.
660 * Otherwise, if the initialization fails and kfence_metadata is freed,
661 * it may cause UAF in kfence_shutdown_cache().
662 */
663 smp_store_release(&kfence_metadata, kfence_metadata_init);
664 return 0;
665
666 reset_slab:
667 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
668 struct slab *slab = page_slab(nth_page(pages, i));
669
670 if (!i || (i % 2))
671 continue;
672 #ifdef CONFIG_MEMCG
673 slab->obj_exts = 0;
674 #endif
675 __folio_clear_slab(slab_folio(slab));
676 }
677
678 return addr;
679 }
680
kfence_init_pool_early(void)681 static bool __init kfence_init_pool_early(void)
682 {
683 unsigned long addr;
684
685 if (!__kfence_pool)
686 return false;
687
688 addr = kfence_init_pool();
689
690 if (!addr) {
691 /*
692 * The pool is live and will never be deallocated from this point on.
693 * Ignore the pool object from the kmemleak phys object tree, as it would
694 * otherwise overlap with allocations returned by kfence_alloc(), which
695 * are registered with kmemleak through the slab post-alloc hook.
696 */
697 kmemleak_ignore_phys(__pa(__kfence_pool));
698 return true;
699 }
700
701 /*
702 * Only release unprotected pages, and do not try to go back and change
703 * page attributes due to risk of failing to do so as well. If changing
704 * page attributes for some pages fails, it is very likely that it also
705 * fails for the first page, and therefore expect addr==__kfence_pool in
706 * most failure cases.
707 */
708 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
709 __kfence_pool = NULL;
710
711 memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
712 kfence_metadata_init = NULL;
713
714 return false;
715 }
716
717 /* === DebugFS Interface ==================================================== */
718
stats_show(struct seq_file * seq,void * v)719 static int stats_show(struct seq_file *seq, void *v)
720 {
721 int i;
722
723 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
724 for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
725 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
726
727 return 0;
728 }
729 DEFINE_SHOW_ATTRIBUTE(stats);
730
731 /*
732 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
733 * start_object() and next_object() return the object index + 1, because NULL is used
734 * to stop iteration.
735 */
start_object(struct seq_file * seq,loff_t * pos)736 static void *start_object(struct seq_file *seq, loff_t *pos)
737 {
738 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
739 return (void *)((long)*pos + 1);
740 return NULL;
741 }
742
stop_object(struct seq_file * seq,void * v)743 static void stop_object(struct seq_file *seq, void *v)
744 {
745 }
746
next_object(struct seq_file * seq,void * v,loff_t * pos)747 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
748 {
749 ++*pos;
750 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
751 return (void *)((long)*pos + 1);
752 return NULL;
753 }
754
show_object(struct seq_file * seq,void * v)755 static int show_object(struct seq_file *seq, void *v)
756 {
757 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
758 unsigned long flags;
759
760 raw_spin_lock_irqsave(&meta->lock, flags);
761 kfence_print_object(seq, meta);
762 raw_spin_unlock_irqrestore(&meta->lock, flags);
763 seq_puts(seq, "---------------------------------\n");
764
765 return 0;
766 }
767
768 static const struct seq_operations objects_sops = {
769 .start = start_object,
770 .next = next_object,
771 .stop = stop_object,
772 .show = show_object,
773 };
774 DEFINE_SEQ_ATTRIBUTE(objects);
775
kfence_debugfs_init(void)776 static int kfence_debugfs_init(void)
777 {
778 struct dentry *kfence_dir;
779
780 if (!READ_ONCE(kfence_enabled))
781 return 0;
782
783 kfence_dir = debugfs_create_dir("kfence", NULL);
784 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
785 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
786 return 0;
787 }
788
789 late_initcall(kfence_debugfs_init);
790
791 /* === Panic Notifier ====================================================== */
792
kfence_check_all_canary(void)793 static void kfence_check_all_canary(void)
794 {
795 int i;
796
797 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
798 struct kfence_metadata *meta = &kfence_metadata[i];
799
800 if (kfence_obj_allocated(meta))
801 check_canary(meta);
802 }
803 }
804
kfence_check_canary_callback(struct notifier_block * nb,unsigned long reason,void * arg)805 static int kfence_check_canary_callback(struct notifier_block *nb,
806 unsigned long reason, void *arg)
807 {
808 kfence_check_all_canary();
809 return NOTIFY_OK;
810 }
811
812 static struct notifier_block kfence_check_canary_notifier = {
813 .notifier_call = kfence_check_canary_callback,
814 };
815
816 /* === Allocation Gate Timer ================================================ */
817
818 static struct delayed_work kfence_timer;
819
820 #ifdef CONFIG_KFENCE_STATIC_KEYS
821 /* Wait queue to wake up allocation-gate timer task. */
822 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
823
wake_up_kfence_timer(struct irq_work * work)824 static void wake_up_kfence_timer(struct irq_work *work)
825 {
826 wake_up(&allocation_wait);
827 }
828 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
829 #endif
830
831 /*
832 * Set up delayed work, which will enable and disable the static key. We need to
833 * use a work queue (rather than a simple timer), since enabling and disabling a
834 * static key cannot be done from an interrupt.
835 *
836 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
837 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
838 * more aggressive sampling intervals), we could get away with a variant that
839 * avoids IPIs, at the cost of not immediately capturing allocations if the
840 * instructions remain cached.
841 */
toggle_allocation_gate(struct work_struct * work)842 static void toggle_allocation_gate(struct work_struct *work)
843 {
844 if (!READ_ONCE(kfence_enabled))
845 return;
846
847 atomic_set(&kfence_allocation_gate, -kfence_burst);
848 #ifdef CONFIG_KFENCE_STATIC_KEYS
849 /* Enable static key, and await allocation to happen. */
850 static_branch_enable(&kfence_allocation_key);
851
852 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate) > 0);
853
854 /* Disable static key and reset timer. */
855 static_branch_disable(&kfence_allocation_key);
856 #endif
857 queue_delayed_work(system_unbound_wq, &kfence_timer,
858 msecs_to_jiffies(kfence_sample_interval));
859 }
860
861 /* === Public interface ===================================================== */
862
kfence_alloc_pool_and_metadata(void)863 void __init kfence_alloc_pool_and_metadata(void)
864 {
865 if (!kfence_sample_interval)
866 return;
867
868 /*
869 * If the pool has already been initialized by arch, there is no need to
870 * re-allocate the memory pool.
871 */
872 if (!__kfence_pool)
873 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
874
875 if (!__kfence_pool) {
876 pr_err("failed to allocate pool\n");
877 return;
878 }
879
880 /* The memory allocated by memblock has been zeroed out. */
881 kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
882 if (!kfence_metadata_init) {
883 pr_err("failed to allocate metadata\n");
884 memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
885 __kfence_pool = NULL;
886 }
887 }
888
kfence_init_enable(void)889 static void kfence_init_enable(void)
890 {
891 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
892 static_branch_enable(&kfence_allocation_key);
893
894 if (kfence_deferrable)
895 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
896 else
897 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
898
899 if (kfence_check_on_panic)
900 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
901
902 WRITE_ONCE(kfence_enabled, true);
903 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
904
905 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
906 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
907 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
908 }
909
kfence_init(void)910 void __init kfence_init(void)
911 {
912 stack_hash_seed = get_random_u32();
913
914 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
915 if (!kfence_sample_interval)
916 return;
917
918 if (!kfence_init_pool_early()) {
919 pr_err("%s failed\n", __func__);
920 return;
921 }
922
923 kfence_init_enable();
924 }
925
kfence_init_late(void)926 static int kfence_init_late(void)
927 {
928 const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
929 const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
930 unsigned long addr = (unsigned long)__kfence_pool;
931 unsigned long free_size = KFENCE_POOL_SIZE;
932 int err = -ENOMEM;
933
934 #ifdef CONFIG_CONTIG_ALLOC
935 struct page *pages;
936
937 pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
938 NULL);
939 if (!pages)
940 return -ENOMEM;
941
942 __kfence_pool = page_to_virt(pages);
943 pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
944 NULL);
945 if (pages)
946 kfence_metadata_init = page_to_virt(pages);
947 #else
948 if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
949 nr_pages_meta > MAX_ORDER_NR_PAGES) {
950 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
951 return -EINVAL;
952 }
953
954 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
955 if (!__kfence_pool)
956 return -ENOMEM;
957
958 kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
959 #endif
960
961 if (!kfence_metadata_init)
962 goto free_pool;
963
964 memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
965 addr = kfence_init_pool();
966 if (!addr) {
967 kfence_init_enable();
968 kfence_debugfs_init();
969 return 0;
970 }
971
972 pr_err("%s failed\n", __func__);
973 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
974 err = -EBUSY;
975
976 #ifdef CONFIG_CONTIG_ALLOC
977 free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
978 nr_pages_meta);
979 free_pool:
980 free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
981 free_size / PAGE_SIZE);
982 #else
983 free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
984 free_pool:
985 free_pages_exact((void *)addr, free_size);
986 #endif
987
988 kfence_metadata_init = NULL;
989 __kfence_pool = NULL;
990 return err;
991 }
992
kfence_enable_late(void)993 static int kfence_enable_late(void)
994 {
995 if (!__kfence_pool)
996 return kfence_init_late();
997
998 WRITE_ONCE(kfence_enabled, true);
999 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
1000 pr_info("re-enabled\n");
1001 return 0;
1002 }
1003
kfence_shutdown_cache(struct kmem_cache * s)1004 void kfence_shutdown_cache(struct kmem_cache *s)
1005 {
1006 unsigned long flags;
1007 struct kfence_metadata *meta;
1008 int i;
1009
1010 /* Pairs with release in kfence_init_pool(). */
1011 if (!smp_load_acquire(&kfence_metadata))
1012 return;
1013
1014 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1015 bool in_use;
1016
1017 meta = &kfence_metadata[i];
1018
1019 /*
1020 * If we observe some inconsistent cache and state pair where we
1021 * should have returned false here, cache destruction is racing
1022 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1023 * the lock will not help, as different critical section
1024 * serialization will have the same outcome.
1025 */
1026 if (READ_ONCE(meta->cache) != s || !kfence_obj_allocated(meta))
1027 continue;
1028
1029 raw_spin_lock_irqsave(&meta->lock, flags);
1030 in_use = meta->cache == s && kfence_obj_allocated(meta);
1031 raw_spin_unlock_irqrestore(&meta->lock, flags);
1032
1033 if (in_use) {
1034 /*
1035 * This cache still has allocations, and we should not
1036 * release them back into the freelist so they can still
1037 * safely be used and retain the kernel's default
1038 * behaviour of keeping the allocations alive (leak the
1039 * cache); however, they effectively become "zombie
1040 * allocations" as the KFENCE objects are the only ones
1041 * still in use and the owning cache is being destroyed.
1042 *
1043 * We mark them freed, so that any subsequent use shows
1044 * more useful error messages that will include stack
1045 * traces of the user of the object, the original
1046 * allocation, and caller to shutdown_cache().
1047 */
1048 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1049 }
1050 }
1051
1052 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1053 meta = &kfence_metadata[i];
1054
1055 /* See above. */
1056 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1057 continue;
1058
1059 raw_spin_lock_irqsave(&meta->lock, flags);
1060 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1061 meta->cache = NULL;
1062 raw_spin_unlock_irqrestore(&meta->lock, flags);
1063 }
1064 }
1065
__kfence_alloc(struct kmem_cache * s,size_t size,gfp_t flags)1066 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1067 {
1068 unsigned long stack_entries[KFENCE_STACK_DEPTH];
1069 size_t num_stack_entries;
1070 u32 alloc_stack_hash;
1071 int allocation_gate;
1072
1073 /*
1074 * Perform size check before switching kfence_allocation_gate, so that
1075 * we don't disable KFENCE without making an allocation.
1076 */
1077 if (size > PAGE_SIZE) {
1078 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1079 return NULL;
1080 }
1081
1082 /*
1083 * Skip allocations from non-default zones, including DMA. We cannot
1084 * guarantee that pages in the KFENCE pool will have the requested
1085 * properties (e.g. reside in DMAable memory).
1086 */
1087 if ((flags & GFP_ZONEMASK) ||
1088 ((flags & __GFP_THISNODE) && num_online_nodes() > 1) ||
1089 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1090 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1091 return NULL;
1092 }
1093
1094 /*
1095 * Skip allocations for this slab, if KFENCE has been disabled for
1096 * this slab.
1097 */
1098 if (s->flags & SLAB_SKIP_KFENCE)
1099 return NULL;
1100
1101 allocation_gate = atomic_inc_return(&kfence_allocation_gate);
1102 if (allocation_gate > 1)
1103 return NULL;
1104 #ifdef CONFIG_KFENCE_STATIC_KEYS
1105 /*
1106 * waitqueue_active() is fully ordered after the update of
1107 * kfence_allocation_gate per atomic_inc_return().
1108 */
1109 if (allocation_gate == 1 && waitqueue_active(&allocation_wait)) {
1110 /*
1111 * Calling wake_up() here may deadlock when allocations happen
1112 * from within timer code. Use an irq_work to defer it.
1113 */
1114 irq_work_queue(&wake_up_kfence_timer_work);
1115 }
1116 #endif
1117
1118 if (!READ_ONCE(kfence_enabled))
1119 return NULL;
1120
1121 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1122
1123 /*
1124 * Do expensive check for coverage of allocation in slow-path after
1125 * allocation_gate has already become non-zero, even though it might
1126 * mean not making any allocation within a given sample interval.
1127 *
1128 * This ensures reasonable allocation coverage when the pool is almost
1129 * full, including avoiding long-lived allocations of the same source
1130 * filling up the pool (e.g. pagecache allocations).
1131 */
1132 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1133 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1134 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1135 return NULL;
1136 }
1137
1138 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1139 alloc_stack_hash);
1140 }
1141
kfence_ksize(const void * addr)1142 size_t kfence_ksize(const void *addr)
1143 {
1144 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1145
1146 /*
1147 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1148 * either a use-after-free or invalid access.
1149 */
1150 return meta ? meta->size : 0;
1151 }
1152
kfence_object_start(const void * addr)1153 void *kfence_object_start(const void *addr)
1154 {
1155 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1156
1157 /*
1158 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1159 * either a use-after-free or invalid access.
1160 */
1161 return meta ? (void *)meta->addr : NULL;
1162 }
1163
__kfence_free(void * addr)1164 void __kfence_free(void *addr)
1165 {
1166 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1167
1168 #ifdef CONFIG_MEMCG
1169 KFENCE_WARN_ON(meta->obj_exts.objcg);
1170 #endif
1171 /*
1172 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1173 * the object, as the object page may be recycled for other-typed
1174 * objects once it has been freed. meta->cache may be NULL if the cache
1175 * was destroyed.
1176 * Save the stack trace here so that reports show where the user freed
1177 * the object.
1178 */
1179 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) {
1180 unsigned long flags;
1181
1182 raw_spin_lock_irqsave(&meta->lock, flags);
1183 metadata_update_state(meta, KFENCE_OBJECT_RCU_FREEING, NULL, 0);
1184 raw_spin_unlock_irqrestore(&meta->lock, flags);
1185 call_rcu(&meta->rcu_head, rcu_guarded_free);
1186 } else {
1187 kfence_guarded_free(addr, meta, false);
1188 }
1189 }
1190
kfence_handle_page_fault(unsigned long addr,bool is_write,struct pt_regs * regs)1191 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1192 {
1193 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1194 struct kfence_metadata *to_report = NULL;
1195 enum kfence_error_type error_type;
1196 unsigned long flags;
1197
1198 if (!is_kfence_address((void *)addr))
1199 return false;
1200
1201 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1202 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1203
1204 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1205
1206 if (page_index % 2) {
1207 /* This is a redzone, report a buffer overflow. */
1208 struct kfence_metadata *meta;
1209 int distance = 0;
1210
1211 meta = addr_to_metadata(addr - PAGE_SIZE);
1212 if (meta && kfence_obj_allocated(meta)) {
1213 to_report = meta;
1214 /* Data race ok; distance calculation approximate. */
1215 distance = addr - data_race(meta->addr + meta->size);
1216 }
1217
1218 meta = addr_to_metadata(addr + PAGE_SIZE);
1219 if (meta && kfence_obj_allocated(meta)) {
1220 /* Data race ok; distance calculation approximate. */
1221 if (!to_report || distance > data_race(meta->addr) - addr)
1222 to_report = meta;
1223 }
1224
1225 if (!to_report)
1226 goto out;
1227
1228 raw_spin_lock_irqsave(&to_report->lock, flags);
1229 to_report->unprotected_page = addr;
1230 error_type = KFENCE_ERROR_OOB;
1231
1232 /*
1233 * If the object was freed before we took the look we can still
1234 * report this as an OOB -- the report will simply show the
1235 * stacktrace of the free as well.
1236 */
1237 } else {
1238 to_report = addr_to_metadata(addr);
1239 if (!to_report)
1240 goto out;
1241
1242 raw_spin_lock_irqsave(&to_report->lock, flags);
1243 error_type = KFENCE_ERROR_UAF;
1244 /*
1245 * We may race with __kfence_alloc(), and it is possible that a
1246 * freed object may be reallocated. We simply report this as a
1247 * use-after-free, with the stack trace showing the place where
1248 * the object was re-allocated.
1249 */
1250 }
1251
1252 out:
1253 if (to_report) {
1254 kfence_report_error(addr, is_write, regs, to_report, error_type);
1255 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1256 } else {
1257 /* This may be a UAF or OOB access, but we can't be sure. */
1258 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1259 }
1260
1261 return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1262 }
1263