xref: /linux/net/wireless/scan.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2025 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28 
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64 
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77 
78 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
79 
80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82 	struct cfg80211_bss_ies *ies;
83 
84 	if (WARN_ON(atomic_read(&bss->hold)))
85 		return;
86 
87 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 	if (ies && !bss->pub.hidden_beacon_bss)
89 		kfree_rcu(ies, rcu_head);
90 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 	if (ies)
92 		kfree_rcu(ies, rcu_head);
93 
94 	/*
95 	 * This happens when the module is removed, it doesn't
96 	 * really matter any more save for completeness
97 	 */
98 	if (!list_empty(&bss->hidden_list))
99 		list_del(&bss->hidden_list);
100 
101 	kfree(bss);
102 }
103 
104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 			       struct cfg80211_internal_bss *bss)
106 {
107 	lockdep_assert_held(&rdev->bss_lock);
108 
109 	bss->refcount++;
110 
111 	if (bss->pub.hidden_beacon_bss)
112 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113 
114 	if (bss->pub.transmitted_bss)
115 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117 
118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 			       struct cfg80211_internal_bss *bss)
120 {
121 	lockdep_assert_held(&rdev->bss_lock);
122 
123 	if (bss->pub.hidden_beacon_bss) {
124 		struct cfg80211_internal_bss *hbss;
125 
126 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 		hbss->refcount--;
128 		if (hbss->refcount == 0)
129 			bss_free(hbss);
130 	}
131 
132 	if (bss->pub.transmitted_bss) {
133 		struct cfg80211_internal_bss *tbss;
134 
135 		tbss = bss_from_pub(bss->pub.transmitted_bss);
136 		tbss->refcount--;
137 		if (tbss->refcount == 0)
138 			bss_free(tbss);
139 	}
140 
141 	bss->refcount--;
142 	if (bss->refcount == 0)
143 		bss_free(bss);
144 }
145 
146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 				  struct cfg80211_internal_bss *bss)
148 {
149 	lockdep_assert_held(&rdev->bss_lock);
150 
151 	if (!list_empty(&bss->hidden_list)) {
152 		/*
153 		 * don't remove the beacon entry if it has
154 		 * probe responses associated with it
155 		 */
156 		if (!bss->pub.hidden_beacon_bss)
157 			return false;
158 		/*
159 		 * if it's a probe response entry break its
160 		 * link to the other entries in the group
161 		 */
162 		list_del_init(&bss->hidden_list);
163 	}
164 
165 	list_del_init(&bss->list);
166 	list_del_init(&bss->pub.nontrans_list);
167 	rb_erase(&bss->rbn, &rdev->bss_tree);
168 	rdev->bss_entries--;
169 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 		  rdev->bss_entries, list_empty(&rdev->bss_list));
172 	bss_ref_put(rdev, bss);
173 	return true;
174 }
175 
176 bool cfg80211_is_element_inherited(const struct element *elem,
177 				   const struct element *non_inherit_elem)
178 {
179 	u8 id_len, ext_id_len, i, loop_len, id;
180 	const u8 *list;
181 
182 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 		return false;
184 
185 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 		return false;
188 
189 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 		return true;
191 
192 	/*
193 	 * non inheritance element format is:
194 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 	 * Both lists are optional. Both lengths are mandatory.
196 	 * This means valid length is:
197 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 	 */
199 	id_len = non_inherit_elem->data[1];
200 	if (non_inherit_elem->datalen < 3 + id_len)
201 		return true;
202 
203 	ext_id_len = non_inherit_elem->data[2 + id_len];
204 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 		return true;
206 
207 	if (elem->id == WLAN_EID_EXTENSION) {
208 		if (!ext_id_len)
209 			return true;
210 		loop_len = ext_id_len;
211 		list = &non_inherit_elem->data[3 + id_len];
212 		id = elem->data[0];
213 	} else {
214 		if (!id_len)
215 			return true;
216 		loop_len = id_len;
217 		list = &non_inherit_elem->data[2];
218 		id = elem->id;
219 	}
220 
221 	for (i = 0; i < loop_len; i++) {
222 		if (list[i] == id)
223 			return false;
224 	}
225 
226 	return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229 
230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 					    const u8 *ie, size_t ie_len,
232 					    u8 **pos, u8 *buf, size_t buf_len)
233 {
234 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 		    elem->data + elem->datalen > ie + ie_len))
236 		return 0;
237 
238 	if (elem->datalen + 2 > buf + buf_len - *pos)
239 		return 0;
240 
241 	memcpy(*pos, elem, elem->datalen + 2);
242 	*pos += elem->datalen + 2;
243 
244 	/* Finish if it is not fragmented  */
245 	if (elem->datalen != 255)
246 		return *pos - buf;
247 
248 	ie_len = ie + ie_len - elem->data - elem->datalen;
249 	ie = (const u8 *)elem->data + elem->datalen;
250 
251 	for_each_element(elem, ie, ie_len) {
252 		if (elem->id != WLAN_EID_FRAGMENT)
253 			break;
254 
255 		if (elem->datalen + 2 > buf + buf_len - *pos)
256 			return 0;
257 
258 		memcpy(*pos, elem, elem->datalen + 2);
259 		*pos += elem->datalen + 2;
260 
261 		if (elem->datalen != 255)
262 			break;
263 	}
264 
265 	return *pos - buf;
266 }
267 
268 VISIBLE_IF_CFG80211_KUNIT size_t
269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 		    const u8 *subie, size_t subie_len,
271 		    u8 *new_ie, size_t new_ie_len)
272 {
273 	const struct element *non_inherit_elem, *parent, *sub;
274 	u8 *pos = new_ie;
275 	const u8 *mbssid_index_ie;
276 	u8 id, ext_id, bssid_index = 255;
277 	unsigned int match_len;
278 
279 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
280 						  subie, subie_len);
281 
282 	mbssid_index_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, subie,
283 					   subie_len);
284 	if (mbssid_index_ie && mbssid_index_ie[1] > 0 &&
285 	    mbssid_index_ie[2] > 0 && mbssid_index_ie[2] <= 46)
286 		bssid_index = mbssid_index_ie[2];
287 
288 	/* We copy the elements one by one from the parent to the generated
289 	 * elements.
290 	 * If they are not inherited (included in subie or in the non
291 	 * inheritance element), then we copy all occurrences the first time
292 	 * we see this element type.
293 	 */
294 	for_each_element(parent, ie, ielen) {
295 		if (parent->id == WLAN_EID_FRAGMENT)
296 			continue;
297 
298 		if (parent->id == WLAN_EID_EXTENSION) {
299 			if (parent->datalen < 1)
300 				continue;
301 
302 			id = WLAN_EID_EXTENSION;
303 			ext_id = parent->data[0];
304 			match_len = 1;
305 		} else {
306 			id = parent->id;
307 			match_len = 0;
308 		}
309 
310 		/* Find first occurrence in subie */
311 		sub = cfg80211_find_elem_match(id, subie, subie_len,
312 					       &ext_id, match_len, 0);
313 
314 		/* Copy from parent if not in subie and inherited */
315 		if (!sub &&
316 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
317 			if (!cfg80211_copy_elem_with_frags(parent,
318 							   ie, ielen,
319 							   &pos, new_ie,
320 							   new_ie_len))
321 				return 0;
322 
323 			continue;
324 		}
325 
326 		/* For ML probe response, match the MLE in the frame body with
327 		 * MLD id being 'bssid_index'
328 		 */
329 		if (parent->id == WLAN_EID_EXTENSION && parent->datalen > 1 &&
330 		    parent->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK &&
331 		    bssid_index == ieee80211_mle_get_mld_id(parent->data + 1)) {
332 			if (!cfg80211_copy_elem_with_frags(parent,
333 							   ie, ielen,
334 							   &pos, new_ie,
335 							   new_ie_len))
336 				return 0;
337 
338 			/* Continue here to prevent processing the MLE in
339 			 * sub-element, which AP MLD should not carry
340 			 */
341 			continue;
342 		}
343 
344 		/* Already copied if an earlier element had the same type */
345 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
346 					     &ext_id, match_len, 0))
347 			continue;
348 
349 		/* Not inheriting, copy all similar elements from subie */
350 		while (sub) {
351 			if (!cfg80211_copy_elem_with_frags(sub,
352 							   subie, subie_len,
353 							   &pos, new_ie,
354 							   new_ie_len))
355 				return 0;
356 
357 			sub = cfg80211_find_elem_match(id,
358 						       sub->data + sub->datalen,
359 						       subie_len + subie -
360 						       (sub->data +
361 							sub->datalen),
362 						       &ext_id, match_len, 0);
363 		}
364 	}
365 
366 	/* The above misses elements that are included in subie but not in the
367 	 * parent, so do a pass over subie and append those.
368 	 * Skip the non-tx BSSID caps and non-inheritance element.
369 	 */
370 	for_each_element(sub, subie, subie_len) {
371 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
372 			continue;
373 
374 		if (sub->id == WLAN_EID_FRAGMENT)
375 			continue;
376 
377 		if (sub->id == WLAN_EID_EXTENSION) {
378 			if (sub->datalen < 1)
379 				continue;
380 
381 			id = WLAN_EID_EXTENSION;
382 			ext_id = sub->data[0];
383 			match_len = 1;
384 
385 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
386 				continue;
387 		} else {
388 			id = sub->id;
389 			match_len = 0;
390 		}
391 
392 		/* Processed if one was included in the parent */
393 		if (cfg80211_find_elem_match(id, ie, ielen,
394 					     &ext_id, match_len, 0))
395 			continue;
396 
397 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
398 						   &pos, new_ie, new_ie_len))
399 			return 0;
400 	}
401 
402 	return pos - new_ie;
403 }
404 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
405 
406 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
407 		   const u8 *ssid, size_t ssid_len)
408 {
409 	const struct cfg80211_bss_ies *ies;
410 	const struct element *ssid_elem;
411 
412 	if (bssid && !ether_addr_equal(a->bssid, bssid))
413 		return false;
414 
415 	if (!ssid)
416 		return true;
417 
418 	ies = rcu_access_pointer(a->ies);
419 	if (!ies)
420 		return false;
421 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
422 	if (!ssid_elem)
423 		return false;
424 	if (ssid_elem->datalen != ssid_len)
425 		return false;
426 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
427 }
428 
429 static int
430 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
431 			   struct cfg80211_bss *nontrans_bss)
432 {
433 	const struct element *ssid_elem;
434 	struct cfg80211_bss *bss = NULL;
435 
436 	rcu_read_lock();
437 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
438 	if (!ssid_elem) {
439 		rcu_read_unlock();
440 		return -EINVAL;
441 	}
442 
443 	/* check if nontrans_bss is in the list */
444 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
445 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
446 			   ssid_elem->datalen)) {
447 			rcu_read_unlock();
448 			return 0;
449 		}
450 	}
451 
452 	rcu_read_unlock();
453 
454 	/*
455 	 * This is a bit weird - it's not on the list, but already on another
456 	 * one! The only way that could happen is if there's some BSSID/SSID
457 	 * shared by multiple APs in their multi-BSSID profiles, potentially
458 	 * with hidden SSID mixed in ... ignore it.
459 	 */
460 	if (!list_empty(&nontrans_bss->nontrans_list))
461 		return -EINVAL;
462 
463 	/* add to the list */
464 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
465 	return 0;
466 }
467 
468 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
469 				  unsigned long expire_time)
470 {
471 	struct cfg80211_internal_bss *bss, *tmp;
472 	bool expired = false;
473 
474 	lockdep_assert_held(&rdev->bss_lock);
475 
476 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
477 		if (atomic_read(&bss->hold))
478 			continue;
479 		if (!time_after(expire_time, bss->ts))
480 			continue;
481 
482 		if (__cfg80211_unlink_bss(rdev, bss))
483 			expired = true;
484 	}
485 
486 	if (expired)
487 		rdev->bss_generation++;
488 }
489 
490 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
491 {
492 	struct cfg80211_internal_bss *bss, *oldest = NULL;
493 	bool ret;
494 
495 	lockdep_assert_held(&rdev->bss_lock);
496 
497 	list_for_each_entry(bss, &rdev->bss_list, list) {
498 		if (atomic_read(&bss->hold))
499 			continue;
500 
501 		if (!list_empty(&bss->hidden_list) &&
502 		    !bss->pub.hidden_beacon_bss)
503 			continue;
504 
505 		if (oldest && time_before(oldest->ts, bss->ts))
506 			continue;
507 		oldest = bss;
508 	}
509 
510 	if (WARN_ON(!oldest))
511 		return false;
512 
513 	/*
514 	 * The callers make sure to increase rdev->bss_generation if anything
515 	 * gets removed (and a new entry added), so there's no need to also do
516 	 * it here.
517 	 */
518 
519 	ret = __cfg80211_unlink_bss(rdev, oldest);
520 	WARN_ON(!ret);
521 	return ret;
522 }
523 
524 static u8 cfg80211_parse_bss_param(u8 data,
525 				   struct cfg80211_colocated_ap *coloc_ap)
526 {
527 	coloc_ap->oct_recommended =
528 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
529 	coloc_ap->same_ssid =
530 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
531 	coloc_ap->multi_bss =
532 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
533 	coloc_ap->transmitted_bssid =
534 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
535 	coloc_ap->unsolicited_probe =
536 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
537 	coloc_ap->colocated_ess =
538 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
539 
540 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
541 }
542 
543 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
544 				    const struct element **elem, u32 *s_ssid)
545 {
546 
547 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
548 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
549 		return -EINVAL;
550 
551 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
552 	return 0;
553 }
554 
555 VISIBLE_IF_CFG80211_KUNIT void
556 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
557 {
558 	struct cfg80211_colocated_ap *ap, *tmp_ap;
559 
560 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
561 		list_del(&ap->list);
562 		kfree(ap);
563 	}
564 }
565 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
566 
567 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
568 				  const u8 *pos, u8 length,
569 				  const struct element *ssid_elem,
570 				  u32 s_ssid_tmp)
571 {
572 	u8 bss_params;
573 
574 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
575 
576 	/* The length is already verified by the caller to contain bss_params */
577 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
578 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
579 
580 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
581 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
582 		entry->short_ssid_valid = true;
583 
584 		bss_params = tbtt_info->bss_params;
585 
586 		/* Ignore disabled links */
587 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
588 			if (le16_get_bits(tbtt_info->mld_params.params,
589 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
590 				return -EINVAL;
591 		}
592 
593 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
594 					  psd_20))
595 			entry->psd_20 = tbtt_info->psd_20;
596 	} else {
597 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
598 
599 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
600 
601 		bss_params = tbtt_info->bss_params;
602 
603 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
604 					  psd_20))
605 			entry->psd_20 = tbtt_info->psd_20;
606 	}
607 
608 	/* ignore entries with invalid BSSID */
609 	if (!is_valid_ether_addr(entry->bssid))
610 		return -EINVAL;
611 
612 	/* skip non colocated APs */
613 	if (!cfg80211_parse_bss_param(bss_params, entry))
614 		return -EINVAL;
615 
616 	/* no information about the short ssid. Consider the entry valid
617 	 * for now. It would later be dropped in case there are explicit
618 	 * SSIDs that need to be matched
619 	 */
620 	if (!entry->same_ssid && !entry->short_ssid_valid)
621 		return 0;
622 
623 	if (entry->same_ssid) {
624 		entry->short_ssid = s_ssid_tmp;
625 		entry->short_ssid_valid = true;
626 
627 		/*
628 		 * This is safe because we validate datalen in
629 		 * cfg80211_parse_colocated_ap(), before calling this
630 		 * function.
631 		 */
632 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
633 		entry->ssid_len = ssid_elem->datalen;
634 	}
635 
636 	return 0;
637 }
638 
639 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
640 		       enum cfg80211_rnr_iter_ret
641 		       (*iter)(void *data, u8 type,
642 			       const struct ieee80211_neighbor_ap_info *info,
643 			       const u8 *tbtt_info, u8 tbtt_info_len),
644 		       void *iter_data)
645 {
646 	const struct element *rnr;
647 	const u8 *pos, *end;
648 
649 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
650 			    elems, elems_len) {
651 		const struct ieee80211_neighbor_ap_info *info;
652 
653 		pos = rnr->data;
654 		end = rnr->data + rnr->datalen;
655 
656 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
657 		while (sizeof(*info) <= end - pos) {
658 			u8 length, i, count;
659 			u8 type;
660 
661 			info = (void *)pos;
662 			count = u8_get_bits(info->tbtt_info_hdr,
663 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
664 				1;
665 			length = info->tbtt_info_len;
666 
667 			pos += sizeof(*info);
668 
669 			if (count * length > end - pos)
670 				return false;
671 
672 			type = u8_get_bits(info->tbtt_info_hdr,
673 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
674 
675 			for (i = 0; i < count; i++) {
676 				switch (iter(iter_data, type, info,
677 					     pos, length)) {
678 				case RNR_ITER_CONTINUE:
679 					break;
680 				case RNR_ITER_BREAK:
681 					return true;
682 				case RNR_ITER_ERROR:
683 					return false;
684 				}
685 
686 				pos += length;
687 			}
688 		}
689 
690 		if (pos != end)
691 			return false;
692 	}
693 
694 	return true;
695 }
696 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
697 
698 struct colocated_ap_data {
699 	const struct element *ssid_elem;
700 	struct list_head ap_list;
701 	u32 s_ssid_tmp;
702 	int n_coloc;
703 };
704 
705 static enum cfg80211_rnr_iter_ret
706 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
707 				 const struct ieee80211_neighbor_ap_info *info,
708 				 const u8 *tbtt_info, u8 tbtt_info_len)
709 {
710 	struct colocated_ap_data *data = _data;
711 	struct cfg80211_colocated_ap *entry;
712 	enum nl80211_band band;
713 
714 	if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
715 		return RNR_ITER_CONTINUE;
716 
717 	if (!ieee80211_operating_class_to_band(info->op_class, &band))
718 		return RNR_ITER_CONTINUE;
719 
720 	/* TBTT info must include bss param + BSSID + (short SSID or
721 	 * same_ssid bit to be set). Ignore other options, and move to
722 	 * the next AP info
723 	 */
724 	if (band != NL80211_BAND_6GHZ ||
725 	    !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
726 					   bss_params) ||
727 	      tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
728 	      tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
729 					   bss_params)))
730 		return RNR_ITER_CONTINUE;
731 
732 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
733 	if (!entry)
734 		return RNR_ITER_ERROR;
735 
736 	entry->center_freq =
737 		ieee80211_channel_to_frequency(info->channel, band);
738 
739 	if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
740 				    data->ssid_elem, data->s_ssid_tmp)) {
741 		struct cfg80211_colocated_ap *tmp;
742 
743 		/* Don't add duplicate BSSIDs on the same channel. */
744 		list_for_each_entry(tmp, &data->ap_list, list) {
745 			if (ether_addr_equal(tmp->bssid, entry->bssid) &&
746 			    tmp->center_freq == entry->center_freq) {
747 				kfree(entry);
748 				return RNR_ITER_CONTINUE;
749 			}
750 		}
751 
752 		data->n_coloc++;
753 		list_add_tail(&entry->list, &data->ap_list);
754 	} else {
755 		kfree(entry);
756 	}
757 
758 	return RNR_ITER_CONTINUE;
759 }
760 
761 VISIBLE_IF_CFG80211_KUNIT int
762 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
763 			    struct list_head *list)
764 {
765 	struct colocated_ap_data data = {};
766 	int ret;
767 
768 	INIT_LIST_HEAD(&data.ap_list);
769 
770 	ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
771 	if (ret)
772 		return 0;
773 
774 	if (!cfg80211_iter_rnr(ies->data, ies->len,
775 			       cfg80211_parse_colocated_ap_iter, &data)) {
776 		cfg80211_free_coloc_ap_list(&data.ap_list);
777 		return 0;
778 	}
779 
780 	list_splice_tail(&data.ap_list, list);
781 	return data.n_coloc;
782 }
783 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
784 
785 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
786 				       struct ieee80211_channel *chan,
787 				       bool add_to_6ghz)
788 {
789 	int i;
790 	u32 n_channels = request->n_channels;
791 	struct cfg80211_scan_6ghz_params *params =
792 		&request->scan_6ghz_params[request->n_6ghz_params];
793 
794 	for (i = 0; i < n_channels; i++) {
795 		if (request->channels[i] == chan) {
796 			if (add_to_6ghz)
797 				params->channel_idx = i;
798 			return;
799 		}
800 	}
801 
802 	request->n_channels++;
803 	request->channels[n_channels] = chan;
804 	if (add_to_6ghz)
805 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
806 			n_channels;
807 }
808 
809 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
810 				     struct cfg80211_scan_request *request)
811 {
812 	int i;
813 	u32 s_ssid;
814 
815 	for (i = 0; i < request->n_ssids; i++) {
816 		/* wildcard ssid in the scan request */
817 		if (!request->ssids[i].ssid_len) {
818 			if (ap->multi_bss && !ap->transmitted_bssid)
819 				continue;
820 
821 			return true;
822 		}
823 
824 		if (ap->ssid_len &&
825 		    ap->ssid_len == request->ssids[i].ssid_len) {
826 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
827 				    ap->ssid_len))
828 				return true;
829 		} else if (ap->short_ssid_valid) {
830 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
831 					   request->ssids[i].ssid_len);
832 
833 			if (ap->short_ssid == s_ssid)
834 				return true;
835 		}
836 	}
837 
838 	return false;
839 }
840 
841 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev,
842 			      bool first_part)
843 {
844 	u8 i;
845 	struct cfg80211_colocated_ap *ap;
846 	int n_channels, count = 0, err;
847 	struct cfg80211_scan_request_int *request, *rdev_req = rdev->scan_req;
848 	LIST_HEAD(coloc_ap_list);
849 	bool need_scan_psc = true;
850 	const struct ieee80211_sband_iftype_data *iftd;
851 	size_t size, offs_ssids, offs_6ghz_params, offs_ies;
852 
853 	rdev_req->req.scan_6ghz = true;
854 	rdev_req->req.first_part = first_part;
855 
856 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
857 		return -EOPNOTSUPP;
858 
859 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
860 					       rdev_req->req.wdev->iftype);
861 	if (!iftd || !iftd->he_cap.has_he)
862 		return -EOPNOTSUPP;
863 
864 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
865 
866 	if (rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
867 		struct cfg80211_internal_bss *intbss;
868 
869 		spin_lock_bh(&rdev->bss_lock);
870 		list_for_each_entry(intbss, &rdev->bss_list, list) {
871 			struct cfg80211_bss *res = &intbss->pub;
872 			const struct cfg80211_bss_ies *ies;
873 			const struct element *ssid_elem;
874 			struct cfg80211_colocated_ap *entry;
875 			u32 s_ssid_tmp;
876 			int ret;
877 
878 			ies = rcu_access_pointer(res->ies);
879 			count += cfg80211_parse_colocated_ap(ies,
880 							     &coloc_ap_list);
881 
882 			/* In case the scan request specified a specific BSSID
883 			 * and the BSS is found and operating on 6GHz band then
884 			 * add this AP to the collocated APs list.
885 			 * This is relevant for ML probe requests when the lower
886 			 * band APs have not been discovered.
887 			 */
888 			if (is_broadcast_ether_addr(rdev_req->req.bssid) ||
889 			    !ether_addr_equal(rdev_req->req.bssid, res->bssid) ||
890 			    res->channel->band != NL80211_BAND_6GHZ)
891 				continue;
892 
893 			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
894 						       &s_ssid_tmp);
895 			if (ret)
896 				continue;
897 
898 			entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
899 			if (!entry)
900 				continue;
901 
902 			memcpy(entry->bssid, res->bssid, ETH_ALEN);
903 			entry->short_ssid = s_ssid_tmp;
904 			memcpy(entry->ssid, ssid_elem->data,
905 			       ssid_elem->datalen);
906 			entry->ssid_len = ssid_elem->datalen;
907 			entry->short_ssid_valid = true;
908 			entry->center_freq = res->channel->center_freq;
909 
910 			list_add_tail(&entry->list, &coloc_ap_list);
911 			count++;
912 		}
913 		spin_unlock_bh(&rdev->bss_lock);
914 	}
915 
916 	size = struct_size(request, req.channels, n_channels);
917 	offs_ssids = size;
918 	size += sizeof(*request->req.ssids) * rdev_req->req.n_ssids;
919 	offs_6ghz_params = size;
920 	size += sizeof(*request->req.scan_6ghz_params) * count;
921 	offs_ies = size;
922 	size += rdev_req->req.ie_len;
923 
924 	request = kzalloc(size, GFP_KERNEL);
925 	if (!request) {
926 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
927 		return -ENOMEM;
928 	}
929 
930 	*request = *rdev_req;
931 	request->req.n_channels = 0;
932 	request->req.n_6ghz_params = 0;
933 	if (rdev_req->req.n_ssids) {
934 		/*
935 		 * Add the ssids from the parent scan request to the new
936 		 * scan request, so the driver would be able to use them
937 		 * in its probe requests to discover hidden APs on PSC
938 		 * channels.
939 		 */
940 		request->req.ssids = (void *)request + offs_ssids;
941 		memcpy(request->req.ssids, rdev_req->req.ssids,
942 		       sizeof(*request->req.ssids) * request->req.n_ssids);
943 	}
944 	request->req.scan_6ghz_params = (void *)request + offs_6ghz_params;
945 
946 	if (rdev_req->req.ie_len) {
947 		void *ie = (void *)request + offs_ies;
948 
949 		memcpy(ie, rdev_req->req.ie, rdev_req->req.ie_len);
950 		request->req.ie = ie;
951 	}
952 
953 	/*
954 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
955 	 * and at least one of the reported co-located APs with same SSID
956 	 * indicating that all APs in the same ESS are co-located
957 	 */
958 	if (count &&
959 	    request->req.n_ssids == 1 &&
960 	    request->req.ssids[0].ssid_len) {
961 		list_for_each_entry(ap, &coloc_ap_list, list) {
962 			if (ap->colocated_ess &&
963 			    cfg80211_find_ssid_match(ap, &request->req)) {
964 				need_scan_psc = false;
965 				break;
966 			}
967 		}
968 	}
969 
970 	/*
971 	 * add to the scan request the channels that need to be scanned
972 	 * regardless of the collocated APs (PSC channels or all channels
973 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
974 	 */
975 	for (i = 0; i < rdev_req->req.n_channels; i++) {
976 		if (rdev_req->req.channels[i]->band == NL80211_BAND_6GHZ &&
977 		    ((need_scan_psc &&
978 		      cfg80211_channel_is_psc(rdev_req->req.channels[i])) ||
979 		     !(rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
980 			cfg80211_scan_req_add_chan(&request->req,
981 						   rdev_req->req.channels[i],
982 						   false);
983 		}
984 	}
985 
986 	if (!(rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
987 		goto skip;
988 
989 	list_for_each_entry(ap, &coloc_ap_list, list) {
990 		bool found = false;
991 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
992 			&request->req.scan_6ghz_params[request->req.n_6ghz_params];
993 		struct ieee80211_channel *chan =
994 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
995 
996 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
997 		    !cfg80211_wdev_channel_allowed(rdev_req->req.wdev, chan))
998 			continue;
999 
1000 		for (i = 0; i < rdev_req->req.n_channels; i++) {
1001 			if (rdev_req->req.channels[i] == chan)
1002 				found = true;
1003 		}
1004 
1005 		if (!found)
1006 			continue;
1007 
1008 		if (request->req.n_ssids > 0 &&
1009 		    !cfg80211_find_ssid_match(ap, &request->req))
1010 			continue;
1011 
1012 		if (!is_broadcast_ether_addr(request->req.bssid) &&
1013 		    !ether_addr_equal(request->req.bssid, ap->bssid))
1014 			continue;
1015 
1016 		if (!request->req.n_ssids && ap->multi_bss &&
1017 		    !ap->transmitted_bssid)
1018 			continue;
1019 
1020 		cfg80211_scan_req_add_chan(&request->req, chan, true);
1021 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
1022 		scan_6ghz_params->short_ssid = ap->short_ssid;
1023 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
1024 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
1025 		scan_6ghz_params->psd_20 = ap->psd_20;
1026 
1027 		/*
1028 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
1029 		 * set to false, then all the APs that the scan logic is
1030 		 * interested with on the channel are collocated and thus there
1031 		 * is no need to perform the initial PSC channel listen.
1032 		 */
1033 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
1034 			scan_6ghz_params->psc_no_listen = true;
1035 
1036 		request->req.n_6ghz_params++;
1037 	}
1038 
1039 skip:
1040 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
1041 
1042 	if (request->req.n_channels) {
1043 		struct cfg80211_scan_request_int *old = rdev->int_scan_req;
1044 
1045 		rdev->int_scan_req = request;
1046 
1047 		/*
1048 		 * If this scan follows a previous scan, save the scan start
1049 		 * info from the first part of the scan
1050 		 */
1051 		if (!first_part && !WARN_ON(!old))
1052 			rdev->int_scan_req->info = old->info;
1053 
1054 		err = rdev_scan(rdev, request);
1055 		if (err) {
1056 			rdev->int_scan_req = old;
1057 			kfree(request);
1058 		} else {
1059 			kfree(old);
1060 		}
1061 
1062 		return err;
1063 	}
1064 
1065 	kfree(request);
1066 	return -EINVAL;
1067 }
1068 
1069 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1070 {
1071 	struct cfg80211_scan_request_int *request;
1072 	struct cfg80211_scan_request_int *rdev_req = rdev->scan_req;
1073 	u32 n_channels = 0, idx, i;
1074 
1075 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) {
1076 		rdev_req->req.first_part = true;
1077 		return rdev_scan(rdev, rdev_req);
1078 	}
1079 
1080 	for (i = 0; i < rdev_req->req.n_channels; i++) {
1081 		if (rdev_req->req.channels[i]->band != NL80211_BAND_6GHZ)
1082 			n_channels++;
1083 	}
1084 
1085 	if (!n_channels)
1086 		return cfg80211_scan_6ghz(rdev, true);
1087 
1088 	request = kzalloc(struct_size(request, req.channels, n_channels),
1089 			  GFP_KERNEL);
1090 	if (!request)
1091 		return -ENOMEM;
1092 
1093 	*request = *rdev_req;
1094 	request->req.n_channels = n_channels;
1095 
1096 	for (i = idx = 0; i < rdev_req->req.n_channels; i++) {
1097 		if (rdev_req->req.channels[i]->band != NL80211_BAND_6GHZ)
1098 			request->req.channels[idx++] =
1099 				rdev_req->req.channels[i];
1100 	}
1101 
1102 	rdev_req->req.scan_6ghz = false;
1103 	rdev_req->req.first_part = true;
1104 	rdev->int_scan_req = request;
1105 	return rdev_scan(rdev, request);
1106 }
1107 
1108 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1109 			   bool send_message)
1110 {
1111 	struct cfg80211_scan_request_int *request, *rdev_req;
1112 	struct wireless_dev *wdev;
1113 	struct sk_buff *msg;
1114 #ifdef CONFIG_CFG80211_WEXT
1115 	union iwreq_data wrqu;
1116 #endif
1117 
1118 	lockdep_assert_held(&rdev->wiphy.mtx);
1119 
1120 	if (rdev->scan_msg) {
1121 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1122 		rdev->scan_msg = NULL;
1123 		return;
1124 	}
1125 
1126 	rdev_req = rdev->scan_req;
1127 	if (!rdev_req)
1128 		return;
1129 
1130 	wdev = rdev_req->req.wdev;
1131 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1132 
1133 	if (wdev_running(wdev) &&
1134 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1135 	    !rdev_req->req.scan_6ghz && !request->info.aborted &&
1136 	    !cfg80211_scan_6ghz(rdev, false))
1137 		return;
1138 
1139 	/*
1140 	 * This must be before sending the other events!
1141 	 * Otherwise, wpa_supplicant gets completely confused with
1142 	 * wext events.
1143 	 */
1144 	if (wdev->netdev)
1145 		cfg80211_sme_scan_done(wdev->netdev);
1146 
1147 	if (!request->info.aborted &&
1148 	    request->req.flags & NL80211_SCAN_FLAG_FLUSH) {
1149 		/* flush entries from previous scans */
1150 		spin_lock_bh(&rdev->bss_lock);
1151 		__cfg80211_bss_expire(rdev, request->req.scan_start);
1152 		spin_unlock_bh(&rdev->bss_lock);
1153 	}
1154 
1155 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1156 
1157 #ifdef CONFIG_CFG80211_WEXT
1158 	if (wdev->netdev && !request->info.aborted) {
1159 		memset(&wrqu, 0, sizeof(wrqu));
1160 
1161 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1162 	}
1163 #endif
1164 
1165 	dev_put(wdev->netdev);
1166 
1167 	kfree(rdev->int_scan_req);
1168 	rdev->int_scan_req = NULL;
1169 
1170 	kfree(rdev->scan_req);
1171 	rdev->scan_req = NULL;
1172 
1173 	if (!send_message)
1174 		rdev->scan_msg = msg;
1175 	else
1176 		nl80211_send_scan_msg(rdev, msg);
1177 }
1178 
1179 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1180 {
1181 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1182 }
1183 
1184 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1185 			struct cfg80211_scan_info *info)
1186 {
1187 	struct cfg80211_scan_request_int *intreq =
1188 		container_of(request, struct cfg80211_scan_request_int, req);
1189 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(request->wiphy);
1190 	struct cfg80211_scan_info old_info = intreq->info;
1191 
1192 	trace_cfg80211_scan_done(intreq, info);
1193 	WARN_ON(intreq != rdev->scan_req &&
1194 		intreq != rdev->int_scan_req);
1195 
1196 	intreq->info = *info;
1197 
1198 	/*
1199 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1200 	 * be of the first part. In such a case old_info.scan_start_tsf should
1201 	 * be non zero.
1202 	 */
1203 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1204 		intreq->info.scan_start_tsf = old_info.scan_start_tsf;
1205 		memcpy(intreq->info.tsf_bssid, old_info.tsf_bssid,
1206 		       sizeof(intreq->info.tsf_bssid));
1207 	}
1208 
1209 	intreq->notified = true;
1210 	wiphy_work_queue(request->wiphy, &rdev->scan_done_wk);
1211 }
1212 EXPORT_SYMBOL(cfg80211_scan_done);
1213 
1214 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1215 				 struct cfg80211_sched_scan_request *req)
1216 {
1217 	lockdep_assert_held(&rdev->wiphy.mtx);
1218 
1219 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1220 }
1221 
1222 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1223 					struct cfg80211_sched_scan_request *req)
1224 {
1225 	lockdep_assert_held(&rdev->wiphy.mtx);
1226 
1227 	list_del_rcu(&req->list);
1228 	kfree_rcu(req, rcu_head);
1229 }
1230 
1231 static struct cfg80211_sched_scan_request *
1232 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1233 {
1234 	struct cfg80211_sched_scan_request *pos;
1235 
1236 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1237 				lockdep_is_held(&rdev->wiphy.mtx)) {
1238 		if (pos->reqid == reqid)
1239 			return pos;
1240 	}
1241 	return NULL;
1242 }
1243 
1244 /*
1245  * Determines if a scheduled scan request can be handled. When a legacy
1246  * scheduled scan is running no other scheduled scan is allowed regardless
1247  * whether the request is for legacy or multi-support scan. When a multi-support
1248  * scheduled scan is running a request for legacy scan is not allowed. In this
1249  * case a request for multi-support scan can be handled if resources are
1250  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1251  */
1252 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1253 				     bool want_multi)
1254 {
1255 	struct cfg80211_sched_scan_request *pos;
1256 	int i = 0;
1257 
1258 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1259 		/* request id zero means legacy in progress */
1260 		if (!i && !pos->reqid)
1261 			return -EINPROGRESS;
1262 		i++;
1263 	}
1264 
1265 	if (i) {
1266 		/* no legacy allowed when multi request(s) are active */
1267 		if (!want_multi)
1268 			return -EINPROGRESS;
1269 
1270 		/* resource limit reached */
1271 		if (i == rdev->wiphy.max_sched_scan_reqs)
1272 			return -ENOSPC;
1273 	}
1274 	return 0;
1275 }
1276 
1277 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1278 {
1279 	struct cfg80211_registered_device *rdev;
1280 	struct cfg80211_sched_scan_request *req, *tmp;
1281 
1282 	rdev = container_of(work, struct cfg80211_registered_device,
1283 			   sched_scan_res_wk);
1284 
1285 	guard(wiphy)(&rdev->wiphy);
1286 
1287 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1288 		if (req->report_results) {
1289 			req->report_results = false;
1290 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1291 				/* flush entries from previous scans */
1292 				spin_lock_bh(&rdev->bss_lock);
1293 				__cfg80211_bss_expire(rdev, req->scan_start);
1294 				spin_unlock_bh(&rdev->bss_lock);
1295 				req->scan_start = jiffies;
1296 			}
1297 			nl80211_send_sched_scan(req,
1298 						NL80211_CMD_SCHED_SCAN_RESULTS);
1299 		}
1300 	}
1301 }
1302 
1303 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1304 {
1305 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1306 	struct cfg80211_sched_scan_request *request;
1307 
1308 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1309 	/* ignore if we're not scanning */
1310 
1311 	rcu_read_lock();
1312 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1313 	if (request) {
1314 		request->report_results = true;
1315 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1316 	}
1317 	rcu_read_unlock();
1318 }
1319 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1320 
1321 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1322 {
1323 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1324 
1325 	lockdep_assert_held(&wiphy->mtx);
1326 
1327 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1328 
1329 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1330 }
1331 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1332 
1333 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1334 {
1335 	guard(wiphy)(wiphy);
1336 
1337 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1338 }
1339 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1340 
1341 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1342 				 struct cfg80211_sched_scan_request *req,
1343 				 bool driver_initiated)
1344 {
1345 	lockdep_assert_held(&rdev->wiphy.mtx);
1346 
1347 	if (!driver_initiated) {
1348 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1349 		if (err)
1350 			return err;
1351 	}
1352 
1353 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1354 
1355 	cfg80211_del_sched_scan_req(rdev, req);
1356 
1357 	return 0;
1358 }
1359 
1360 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1361 			       u64 reqid, bool driver_initiated)
1362 {
1363 	struct cfg80211_sched_scan_request *sched_scan_req;
1364 
1365 	lockdep_assert_held(&rdev->wiphy.mtx);
1366 
1367 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1368 	if (!sched_scan_req)
1369 		return -ENOENT;
1370 
1371 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1372 					    driver_initiated);
1373 }
1374 
1375 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1376                       unsigned long age_secs)
1377 {
1378 	struct cfg80211_internal_bss *bss;
1379 	unsigned long age_jiffies = secs_to_jiffies(age_secs);
1380 
1381 	spin_lock_bh(&rdev->bss_lock);
1382 	list_for_each_entry(bss, &rdev->bss_list, list)
1383 		bss->ts -= age_jiffies;
1384 	spin_unlock_bh(&rdev->bss_lock);
1385 }
1386 
1387 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1388 {
1389 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1390 }
1391 
1392 void cfg80211_bss_flush(struct wiphy *wiphy)
1393 {
1394 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1395 
1396 	spin_lock_bh(&rdev->bss_lock);
1397 	__cfg80211_bss_expire(rdev, jiffies);
1398 	spin_unlock_bh(&rdev->bss_lock);
1399 }
1400 EXPORT_SYMBOL(cfg80211_bss_flush);
1401 
1402 const struct element *
1403 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1404 			 const u8 *match, unsigned int match_len,
1405 			 unsigned int match_offset)
1406 {
1407 	const struct element *elem;
1408 
1409 	for_each_element_id(elem, eid, ies, len) {
1410 		if (elem->datalen >= match_offset + match_len &&
1411 		    !memcmp(elem->data + match_offset, match, match_len))
1412 			return elem;
1413 	}
1414 
1415 	return NULL;
1416 }
1417 EXPORT_SYMBOL(cfg80211_find_elem_match);
1418 
1419 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1420 						const u8 *ies,
1421 						unsigned int len)
1422 {
1423 	const struct element *elem;
1424 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1425 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1426 
1427 	if (WARN_ON(oui_type > 0xff))
1428 		return NULL;
1429 
1430 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1431 					match, match_len, 0);
1432 
1433 	if (!elem || elem->datalen < 4)
1434 		return NULL;
1435 
1436 	return elem;
1437 }
1438 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1439 
1440 /**
1441  * enum bss_compare_mode - BSS compare mode
1442  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1443  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1444  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1445  */
1446 enum bss_compare_mode {
1447 	BSS_CMP_REGULAR,
1448 	BSS_CMP_HIDE_ZLEN,
1449 	BSS_CMP_HIDE_NUL,
1450 };
1451 
1452 static int cmp_bss(struct cfg80211_bss *a,
1453 		   struct cfg80211_bss *b,
1454 		   enum bss_compare_mode mode)
1455 {
1456 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1457 	const u8 *ie1 = NULL;
1458 	const u8 *ie2 = NULL;
1459 	int i, r;
1460 
1461 	if (a->channel != b->channel)
1462 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1463 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1464 
1465 	a_ies = rcu_access_pointer(a->ies);
1466 	if (!a_ies)
1467 		return -1;
1468 	b_ies = rcu_access_pointer(b->ies);
1469 	if (!b_ies)
1470 		return 1;
1471 
1472 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1473 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1474 				       a_ies->data, a_ies->len);
1475 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1476 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1477 				       b_ies->data, b_ies->len);
1478 	if (ie1 && ie2) {
1479 		int mesh_id_cmp;
1480 
1481 		if (ie1[1] == ie2[1])
1482 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1483 		else
1484 			mesh_id_cmp = ie2[1] - ie1[1];
1485 
1486 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1487 				       a_ies->data, a_ies->len);
1488 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1489 				       b_ies->data, b_ies->len);
1490 		if (ie1 && ie2) {
1491 			if (mesh_id_cmp)
1492 				return mesh_id_cmp;
1493 			if (ie1[1] != ie2[1])
1494 				return ie2[1] - ie1[1];
1495 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1496 		}
1497 	}
1498 
1499 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1500 	if (r)
1501 		return r;
1502 
1503 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1504 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1505 
1506 	if (!ie1 && !ie2)
1507 		return 0;
1508 
1509 	/*
1510 	 * Note that with "hide_ssid", the function returns a match if
1511 	 * the already-present BSS ("b") is a hidden SSID beacon for
1512 	 * the new BSS ("a").
1513 	 */
1514 
1515 	/* sort missing IE before (left of) present IE */
1516 	if (!ie1)
1517 		return -1;
1518 	if (!ie2)
1519 		return 1;
1520 
1521 	switch (mode) {
1522 	case BSS_CMP_HIDE_ZLEN:
1523 		/*
1524 		 * In ZLEN mode we assume the BSS entry we're
1525 		 * looking for has a zero-length SSID. So if
1526 		 * the one we're looking at right now has that,
1527 		 * return 0. Otherwise, return the difference
1528 		 * in length, but since we're looking for the
1529 		 * 0-length it's really equivalent to returning
1530 		 * the length of the one we're looking at.
1531 		 *
1532 		 * No content comparison is needed as we assume
1533 		 * the content length is zero.
1534 		 */
1535 		return ie2[1];
1536 	case BSS_CMP_REGULAR:
1537 	default:
1538 		/* sort by length first, then by contents */
1539 		if (ie1[1] != ie2[1])
1540 			return ie2[1] - ie1[1];
1541 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1542 	case BSS_CMP_HIDE_NUL:
1543 		if (ie1[1] != ie2[1])
1544 			return ie2[1] - ie1[1];
1545 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1546 		for (i = 0; i < ie2[1]; i++)
1547 			if (ie2[i + 2])
1548 				return -1;
1549 		return 0;
1550 	}
1551 }
1552 
1553 static bool cfg80211_bss_type_match(u16 capability,
1554 				    enum nl80211_band band,
1555 				    enum ieee80211_bss_type bss_type)
1556 {
1557 	bool ret = true;
1558 	u16 mask, val;
1559 
1560 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1561 		return ret;
1562 
1563 	if (band == NL80211_BAND_60GHZ) {
1564 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1565 		switch (bss_type) {
1566 		case IEEE80211_BSS_TYPE_ESS:
1567 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1568 			break;
1569 		case IEEE80211_BSS_TYPE_PBSS:
1570 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1571 			break;
1572 		case IEEE80211_BSS_TYPE_IBSS:
1573 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1574 			break;
1575 		default:
1576 			return false;
1577 		}
1578 	} else {
1579 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1580 		switch (bss_type) {
1581 		case IEEE80211_BSS_TYPE_ESS:
1582 			val = WLAN_CAPABILITY_ESS;
1583 			break;
1584 		case IEEE80211_BSS_TYPE_IBSS:
1585 			val = WLAN_CAPABILITY_IBSS;
1586 			break;
1587 		case IEEE80211_BSS_TYPE_MBSS:
1588 			val = 0;
1589 			break;
1590 		default:
1591 			return false;
1592 		}
1593 	}
1594 
1595 	ret = ((capability & mask) == val);
1596 	return ret;
1597 }
1598 
1599 /* Returned bss is reference counted and must be cleaned up appropriately. */
1600 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1601 					struct ieee80211_channel *channel,
1602 					const u8 *bssid,
1603 					const u8 *ssid, size_t ssid_len,
1604 					enum ieee80211_bss_type bss_type,
1605 					enum ieee80211_privacy privacy,
1606 					u32 use_for)
1607 {
1608 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1609 	struct cfg80211_internal_bss *bss, *res = NULL;
1610 	unsigned long now = jiffies;
1611 	int bss_privacy;
1612 
1613 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1614 			       privacy);
1615 
1616 	spin_lock_bh(&rdev->bss_lock);
1617 
1618 	list_for_each_entry(bss, &rdev->bss_list, list) {
1619 		if (!cfg80211_bss_type_match(bss->pub.capability,
1620 					     bss->pub.channel->band, bss_type))
1621 			continue;
1622 
1623 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1624 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1625 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1626 			continue;
1627 		if (channel && bss->pub.channel != channel)
1628 			continue;
1629 		if (!is_valid_ether_addr(bss->pub.bssid))
1630 			continue;
1631 		if ((bss->pub.use_for & use_for) != use_for)
1632 			continue;
1633 		/* Don't get expired BSS structs */
1634 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1635 		    !atomic_read(&bss->hold))
1636 			continue;
1637 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1638 			res = bss;
1639 			bss_ref_get(rdev, res);
1640 			break;
1641 		}
1642 	}
1643 
1644 	spin_unlock_bh(&rdev->bss_lock);
1645 	if (!res)
1646 		return NULL;
1647 	trace_cfg80211_return_bss(&res->pub);
1648 	return &res->pub;
1649 }
1650 EXPORT_SYMBOL(__cfg80211_get_bss);
1651 
1652 static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1653 			  struct cfg80211_internal_bss *bss)
1654 {
1655 	struct rb_node **p = &rdev->bss_tree.rb_node;
1656 	struct rb_node *parent = NULL;
1657 	struct cfg80211_internal_bss *tbss;
1658 	int cmp;
1659 
1660 	while (*p) {
1661 		parent = *p;
1662 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1663 
1664 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1665 
1666 		if (WARN_ON(!cmp)) {
1667 			/* will sort of leak this BSS */
1668 			return false;
1669 		}
1670 
1671 		if (cmp < 0)
1672 			p = &(*p)->rb_left;
1673 		else
1674 			p = &(*p)->rb_right;
1675 	}
1676 
1677 	rb_link_node(&bss->rbn, parent, p);
1678 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1679 	return true;
1680 }
1681 
1682 static struct cfg80211_internal_bss *
1683 rb_find_bss(struct cfg80211_registered_device *rdev,
1684 	    struct cfg80211_internal_bss *res,
1685 	    enum bss_compare_mode mode)
1686 {
1687 	struct rb_node *n = rdev->bss_tree.rb_node;
1688 	struct cfg80211_internal_bss *bss;
1689 	int r;
1690 
1691 	while (n) {
1692 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1693 		r = cmp_bss(&res->pub, &bss->pub, mode);
1694 
1695 		if (r == 0)
1696 			return bss;
1697 		else if (r < 0)
1698 			n = n->rb_left;
1699 		else
1700 			n = n->rb_right;
1701 	}
1702 
1703 	return NULL;
1704 }
1705 
1706 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1707 				struct cfg80211_internal_bss *bss)
1708 {
1709 	lockdep_assert_held(&rdev->bss_lock);
1710 
1711 	if (!rb_insert_bss(rdev, bss))
1712 		return;
1713 	list_add_tail(&bss->list, &rdev->bss_list);
1714 	rdev->bss_entries++;
1715 }
1716 
1717 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1718                                 struct cfg80211_internal_bss *bss)
1719 {
1720 	lockdep_assert_held(&rdev->bss_lock);
1721 
1722 	rb_erase(&bss->rbn, &rdev->bss_tree);
1723 	if (!rb_insert_bss(rdev, bss)) {
1724 		list_del(&bss->list);
1725 		if (!list_empty(&bss->hidden_list))
1726 			list_del_init(&bss->hidden_list);
1727 		if (!list_empty(&bss->pub.nontrans_list))
1728 			list_del_init(&bss->pub.nontrans_list);
1729 		rdev->bss_entries--;
1730 	}
1731 	rdev->bss_generation++;
1732 }
1733 
1734 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1735 				   struct cfg80211_internal_bss *new)
1736 {
1737 	const struct cfg80211_bss_ies *ies;
1738 	struct cfg80211_internal_bss *bss;
1739 	const u8 *ie;
1740 	int i, ssidlen;
1741 	u8 fold = 0;
1742 	u32 n_entries = 0;
1743 
1744 	ies = rcu_access_pointer(new->pub.beacon_ies);
1745 	if (WARN_ON(!ies))
1746 		return false;
1747 
1748 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1749 	if (!ie) {
1750 		/* nothing to do */
1751 		return true;
1752 	}
1753 
1754 	ssidlen = ie[1];
1755 	for (i = 0; i < ssidlen; i++)
1756 		fold |= ie[2 + i];
1757 
1758 	if (fold) {
1759 		/* not a hidden SSID */
1760 		return true;
1761 	}
1762 
1763 	/* This is the bad part ... */
1764 
1765 	list_for_each_entry(bss, &rdev->bss_list, list) {
1766 		/*
1767 		 * we're iterating all the entries anyway, so take the
1768 		 * opportunity to validate the list length accounting
1769 		 */
1770 		n_entries++;
1771 
1772 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1773 			continue;
1774 		if (bss->pub.channel != new->pub.channel)
1775 			continue;
1776 		if (rcu_access_pointer(bss->pub.beacon_ies))
1777 			continue;
1778 		ies = rcu_access_pointer(bss->pub.ies);
1779 		if (!ies)
1780 			continue;
1781 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1782 		if (!ie)
1783 			continue;
1784 		if (ssidlen && ie[1] != ssidlen)
1785 			continue;
1786 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1787 			continue;
1788 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1789 			list_del(&bss->hidden_list);
1790 		/* combine them */
1791 		list_add(&bss->hidden_list, &new->hidden_list);
1792 		bss->pub.hidden_beacon_bss = &new->pub;
1793 		new->refcount += bss->refcount;
1794 		rcu_assign_pointer(bss->pub.beacon_ies,
1795 				   new->pub.beacon_ies);
1796 	}
1797 
1798 	WARN_ONCE(n_entries != rdev->bss_entries,
1799 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1800 		  rdev->bss_entries, n_entries);
1801 
1802 	return true;
1803 }
1804 
1805 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1806 					 const struct cfg80211_bss_ies *new_ies,
1807 					 const struct cfg80211_bss_ies *old_ies)
1808 {
1809 	struct cfg80211_internal_bss *bss;
1810 
1811 	/* Assign beacon IEs to all sub entries */
1812 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1813 		const struct cfg80211_bss_ies *ies;
1814 
1815 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1816 		WARN_ON(ies != old_ies);
1817 
1818 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1819 
1820 		bss->ts = known->ts;
1821 		bss->pub.ts_boottime = known->pub.ts_boottime;
1822 	}
1823 }
1824 
1825 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1826 				      struct cfg80211_internal_bss *known,
1827 				      const struct cfg80211_bss_ies *old)
1828 {
1829 	const struct ieee80211_ext_chansw_ie *ecsa;
1830 	const struct element *elem_new, *elem_old;
1831 	const struct cfg80211_bss_ies *new, *bcn;
1832 
1833 	if (known->pub.proberesp_ecsa_stuck)
1834 		return;
1835 
1836 	new = rcu_dereference_protected(known->pub.proberesp_ies,
1837 					lockdep_is_held(&rdev->bss_lock));
1838 	if (WARN_ON(!new))
1839 		return;
1840 
1841 	if (new->tsf - old->tsf < USEC_PER_SEC)
1842 		return;
1843 
1844 	elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1845 				      old->data, old->len);
1846 	if (!elem_old)
1847 		return;
1848 
1849 	elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1850 				      new->data, new->len);
1851 	if (!elem_new)
1852 		return;
1853 
1854 	bcn = rcu_dereference_protected(known->pub.beacon_ies,
1855 					lockdep_is_held(&rdev->bss_lock));
1856 	if (bcn &&
1857 	    cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1858 			       bcn->data, bcn->len))
1859 		return;
1860 
1861 	if (elem_new->datalen != elem_old->datalen)
1862 		return;
1863 	if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1864 		return;
1865 	if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1866 		return;
1867 
1868 	ecsa = (void *)elem_new->data;
1869 
1870 	if (!ecsa->mode)
1871 		return;
1872 
1873 	if (ecsa->new_ch_num !=
1874 	    ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1875 		return;
1876 
1877 	known->pub.proberesp_ecsa_stuck = 1;
1878 }
1879 
1880 static bool
1881 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1882 			  struct cfg80211_internal_bss *known,
1883 			  struct cfg80211_internal_bss *new,
1884 			  bool signal_valid)
1885 {
1886 	lockdep_assert_held(&rdev->bss_lock);
1887 
1888 	/* Update time stamps */
1889 	known->ts = new->ts;
1890 	known->pub.ts_boottime = new->pub.ts_boottime;
1891 
1892 	/* Update IEs */
1893 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1894 		const struct cfg80211_bss_ies *old;
1895 
1896 		old = rcu_access_pointer(known->pub.proberesp_ies);
1897 
1898 		rcu_assign_pointer(known->pub.proberesp_ies,
1899 				   new->pub.proberesp_ies);
1900 		/* Override possible earlier Beacon frame IEs */
1901 		rcu_assign_pointer(known->pub.ies,
1902 				   new->pub.proberesp_ies);
1903 		if (old) {
1904 			cfg80211_check_stuck_ecsa(rdev, known, old);
1905 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1906 		}
1907 	}
1908 
1909 	if (rcu_access_pointer(new->pub.beacon_ies)) {
1910 		const struct cfg80211_bss_ies *old;
1911 
1912 		if (known->pub.hidden_beacon_bss &&
1913 		    !list_empty(&known->hidden_list)) {
1914 			const struct cfg80211_bss_ies *f;
1915 
1916 			/* The known BSS struct is one of the probe
1917 			 * response members of a group, but we're
1918 			 * receiving a beacon (beacon_ies in the new
1919 			 * bss is used). This can only mean that the
1920 			 * AP changed its beacon from not having an
1921 			 * SSID to showing it, which is confusing so
1922 			 * drop this information.
1923 			 */
1924 
1925 			f = rcu_access_pointer(new->pub.beacon_ies);
1926 			if (!new->pub.hidden_beacon_bss)
1927 				kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1928 			return false;
1929 		}
1930 
1931 		old = rcu_access_pointer(known->pub.beacon_ies);
1932 
1933 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1934 
1935 		/* Override IEs if they were from a beacon before */
1936 		if (old == rcu_access_pointer(known->pub.ies))
1937 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1938 
1939 		cfg80211_update_hidden_bsses(known,
1940 					     rcu_access_pointer(new->pub.beacon_ies),
1941 					     old);
1942 
1943 		if (old)
1944 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1945 	}
1946 
1947 	known->pub.beacon_interval = new->pub.beacon_interval;
1948 
1949 	/* don't update the signal if beacon was heard on
1950 	 * adjacent channel.
1951 	 */
1952 	if (signal_valid)
1953 		known->pub.signal = new->pub.signal;
1954 	known->pub.capability = new->pub.capability;
1955 	known->parent_tsf = new->parent_tsf;
1956 	known->pub.chains = new->pub.chains;
1957 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1958 	       IEEE80211_MAX_CHAINS);
1959 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1960 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1961 	known->pub.bssid_index = new->pub.bssid_index;
1962 	known->pub.use_for &= new->pub.use_for;
1963 	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1964 	known->bss_source = new->bss_source;
1965 
1966 	return true;
1967 }
1968 
1969 /* Returned bss is reference counted and must be cleaned up appropriately. */
1970 static struct cfg80211_internal_bss *
1971 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1972 		      struct cfg80211_internal_bss *tmp,
1973 		      bool signal_valid, unsigned long ts)
1974 {
1975 	struct cfg80211_internal_bss *found = NULL;
1976 	struct cfg80211_bss_ies *ies;
1977 
1978 	if (WARN_ON(!tmp->pub.channel))
1979 		goto free_ies;
1980 
1981 	tmp->ts = ts;
1982 
1983 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1984 		goto free_ies;
1985 
1986 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1987 
1988 	if (found) {
1989 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1990 			return NULL;
1991 	} else {
1992 		struct cfg80211_internal_bss *new;
1993 		struct cfg80211_internal_bss *hidden;
1994 
1995 		/*
1996 		 * create a copy -- the "res" variable that is passed in
1997 		 * is allocated on the stack since it's not needed in the
1998 		 * more common case of an update
1999 		 */
2000 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
2001 			      GFP_ATOMIC);
2002 		if (!new)
2003 			goto free_ies;
2004 		memcpy(new, tmp, sizeof(*new));
2005 		new->refcount = 1;
2006 		INIT_LIST_HEAD(&new->hidden_list);
2007 		INIT_LIST_HEAD(&new->pub.nontrans_list);
2008 		/* we'll set this later if it was non-NULL */
2009 		new->pub.transmitted_bss = NULL;
2010 
2011 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
2012 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
2013 			if (!hidden)
2014 				hidden = rb_find_bss(rdev, tmp,
2015 						     BSS_CMP_HIDE_NUL);
2016 			if (hidden) {
2017 				new->pub.hidden_beacon_bss = &hidden->pub;
2018 				list_add(&new->hidden_list,
2019 					 &hidden->hidden_list);
2020 				hidden->refcount++;
2021 
2022 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
2023 				rcu_assign_pointer(new->pub.beacon_ies,
2024 						   hidden->pub.beacon_ies);
2025 				if (ies)
2026 					kfree_rcu(ies, rcu_head);
2027 			}
2028 		} else {
2029 			/*
2030 			 * Ok so we found a beacon, and don't have an entry. If
2031 			 * it's a beacon with hidden SSID, we might be in for an
2032 			 * expensive search for any probe responses that should
2033 			 * be grouped with this beacon for updates ...
2034 			 */
2035 			if (!cfg80211_combine_bsses(rdev, new)) {
2036 				bss_ref_put(rdev, new);
2037 				return NULL;
2038 			}
2039 		}
2040 
2041 		if (rdev->bss_entries >= bss_entries_limit &&
2042 		    !cfg80211_bss_expire_oldest(rdev)) {
2043 			bss_ref_put(rdev, new);
2044 			return NULL;
2045 		}
2046 
2047 		/* This must be before the call to bss_ref_get */
2048 		if (tmp->pub.transmitted_bss) {
2049 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
2050 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
2051 		}
2052 
2053 		cfg80211_insert_bss(rdev, new);
2054 		found = new;
2055 	}
2056 
2057 	rdev->bss_generation++;
2058 	bss_ref_get(rdev, found);
2059 
2060 	return found;
2061 
2062 free_ies:
2063 	ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2064 	if (ies)
2065 		kfree_rcu(ies, rcu_head);
2066 	ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2067 	if (ies)
2068 		kfree_rcu(ies, rcu_head);
2069 
2070 	return NULL;
2071 }
2072 
2073 struct cfg80211_internal_bss *
2074 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2075 		    struct cfg80211_internal_bss *tmp,
2076 		    bool signal_valid, unsigned long ts)
2077 {
2078 	struct cfg80211_internal_bss *res;
2079 
2080 	spin_lock_bh(&rdev->bss_lock);
2081 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2082 	spin_unlock_bh(&rdev->bss_lock);
2083 
2084 	return res;
2085 }
2086 
2087 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2088 				    enum nl80211_band band)
2089 {
2090 	const struct element *tmp;
2091 
2092 	if (band == NL80211_BAND_6GHZ) {
2093 		struct ieee80211_he_operation *he_oper;
2094 
2095 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2096 					     ielen);
2097 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2098 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2099 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2100 
2101 			he_oper = (void *)&tmp->data[1];
2102 
2103 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2104 			if (!he_6ghz_oper)
2105 				return -1;
2106 
2107 			return he_6ghz_oper->primary;
2108 		}
2109 	} else if (band == NL80211_BAND_S1GHZ) {
2110 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2111 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2112 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2113 
2114 			return s1gop->oper_ch;
2115 		}
2116 	} else {
2117 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2118 		if (tmp && tmp->datalen == 1)
2119 			return tmp->data[0];
2120 
2121 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2122 		if (tmp &&
2123 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2124 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
2125 
2126 			return htop->primary_chan;
2127 		}
2128 	}
2129 
2130 	return -1;
2131 }
2132 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2133 
2134 /*
2135  * Update RX channel information based on the available frame payload
2136  * information. This is mainly for the 2.4 GHz band where frames can be received
2137  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2138  * element to indicate the current (transmitting) channel, but this might also
2139  * be needed on other bands if RX frequency does not match with the actual
2140  * operating channel of a BSS, or if the AP reports a different primary channel.
2141  */
2142 static struct ieee80211_channel *
2143 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2144 			 struct ieee80211_channel *channel)
2145 {
2146 	u32 freq;
2147 	int channel_number;
2148 	struct ieee80211_channel *alt_channel;
2149 
2150 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2151 							 channel->band);
2152 
2153 	if (channel_number < 0) {
2154 		/* No channel information in frame payload */
2155 		return channel;
2156 	}
2157 
2158 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2159 
2160 	/*
2161 	 * Frame info (beacon/prob res) is the same as received channel,
2162 	 * no need for further processing.
2163 	 */
2164 	if (freq == ieee80211_channel_to_khz(channel))
2165 		return channel;
2166 
2167 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2168 	if (!alt_channel) {
2169 		if (channel->band == NL80211_BAND_2GHZ ||
2170 		    channel->band == NL80211_BAND_6GHZ) {
2171 			/*
2172 			 * Better not allow unexpected channels when that could
2173 			 * be going beyond the 1-11 range (e.g., discovering
2174 			 * BSS on channel 12 when radio is configured for
2175 			 * channel 11) or beyond the 6 GHz channel range.
2176 			 */
2177 			return NULL;
2178 		}
2179 
2180 		/* No match for the payload channel number - ignore it */
2181 		return channel;
2182 	}
2183 
2184 	/*
2185 	 * Use the channel determined through the payload channel number
2186 	 * instead of the RX channel reported by the driver.
2187 	 */
2188 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2189 		return NULL;
2190 	return alt_channel;
2191 }
2192 
2193 struct cfg80211_inform_single_bss_data {
2194 	struct cfg80211_inform_bss *drv_data;
2195 	enum cfg80211_bss_frame_type ftype;
2196 	struct ieee80211_channel *channel;
2197 	u8 bssid[ETH_ALEN];
2198 	u64 tsf;
2199 	u16 capability;
2200 	u16 beacon_interval;
2201 	const u8 *ie;
2202 	size_t ielen;
2203 
2204 	enum bss_source_type bss_source;
2205 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2206 	struct cfg80211_bss *source_bss;
2207 	u8 max_bssid_indicator;
2208 	u8 bssid_index;
2209 
2210 	u8 use_for;
2211 	u64 cannot_use_reasons;
2212 };
2213 
2214 enum ieee80211_ap_reg_power
2215 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2216 {
2217 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2218 	struct ieee80211_he_operation *he_oper;
2219 	const struct element *tmp;
2220 
2221 	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2222 				     elems, elems_len);
2223 	if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2224 	    tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2225 		return IEEE80211_REG_UNSET_AP;
2226 
2227 	he_oper = (void *)&tmp->data[1];
2228 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2229 
2230 	if (!he_6ghz_oper)
2231 		return IEEE80211_REG_UNSET_AP;
2232 
2233 	switch (u8_get_bits(he_6ghz_oper->control,
2234 			    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2235 	case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2236 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2237 		return IEEE80211_REG_LPI_AP;
2238 	case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2239 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2240 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP_OLD:
2241 		return IEEE80211_REG_SP_AP;
2242 	case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2243 		return IEEE80211_REG_VLP_AP;
2244 	default:
2245 		return IEEE80211_REG_UNSET_AP;
2246 	}
2247 }
2248 
2249 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2250 					   const u32 flags)
2251 {
2252 	switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2253 	case IEEE80211_REG_LPI_AP:
2254 		return true;
2255 	case IEEE80211_REG_SP_AP:
2256 		return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2257 	case IEEE80211_REG_VLP_AP:
2258 		return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2259 	default:
2260 		return false;
2261 	}
2262 }
2263 
2264 /* Returned bss is reference counted and must be cleaned up appropriately. */
2265 static struct cfg80211_bss *
2266 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2267 				struct cfg80211_inform_single_bss_data *data,
2268 				gfp_t gfp)
2269 {
2270 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2271 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2272 	struct cfg80211_bss_ies *ies;
2273 	struct ieee80211_channel *channel;
2274 	struct cfg80211_internal_bss tmp = {}, *res;
2275 	int bss_type;
2276 	bool signal_valid;
2277 	unsigned long ts;
2278 
2279 	if (WARN_ON(!wiphy))
2280 		return NULL;
2281 
2282 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2283 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2284 		return NULL;
2285 
2286 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2287 		return NULL;
2288 
2289 	channel = data->channel;
2290 	if (!channel)
2291 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2292 						   drv_data->chan);
2293 	if (!channel)
2294 		return NULL;
2295 
2296 	if (channel->band == NL80211_BAND_6GHZ &&
2297 	    !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2298 					    channel->flags)) {
2299 		data->use_for = 0;
2300 		data->cannot_use_reasons =
2301 			NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2302 	}
2303 
2304 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2305 	tmp.pub.channel = channel;
2306 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2307 		tmp.pub.signal = drv_data->signal;
2308 	else
2309 		tmp.pub.signal = 0;
2310 	tmp.pub.beacon_interval = data->beacon_interval;
2311 	tmp.pub.capability = data->capability;
2312 	tmp.pub.ts_boottime = drv_data->boottime_ns;
2313 	tmp.parent_tsf = drv_data->parent_tsf;
2314 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2315 	tmp.pub.chains = drv_data->chains;
2316 	memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2317 	       IEEE80211_MAX_CHAINS);
2318 	tmp.pub.use_for = data->use_for;
2319 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2320 	tmp.bss_source = data->bss_source;
2321 
2322 	switch (data->bss_source) {
2323 	case BSS_SOURCE_MBSSID:
2324 		tmp.pub.transmitted_bss = data->source_bss;
2325 		fallthrough;
2326 	case BSS_SOURCE_STA_PROFILE:
2327 		ts = bss_from_pub(data->source_bss)->ts;
2328 		tmp.pub.bssid_index = data->bssid_index;
2329 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2330 		break;
2331 	case BSS_SOURCE_DIRECT:
2332 		ts = jiffies;
2333 
2334 		if (channel->band == NL80211_BAND_60GHZ) {
2335 			bss_type = data->capability &
2336 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2337 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2338 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2339 				regulatory_hint_found_beacon(wiphy, channel,
2340 							     gfp);
2341 		} else {
2342 			if (data->capability & WLAN_CAPABILITY_ESS)
2343 				regulatory_hint_found_beacon(wiphy, channel,
2344 							     gfp);
2345 		}
2346 		break;
2347 	}
2348 
2349 	/*
2350 	 * If we do not know here whether the IEs are from a Beacon or Probe
2351 	 * Response frame, we need to pick one of the options and only use it
2352 	 * with the driver that does not provide the full Beacon/Probe Response
2353 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2354 	 * override the IEs pointer should we have received an earlier
2355 	 * indication of Probe Response data.
2356 	 */
2357 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2358 	if (!ies)
2359 		return NULL;
2360 	ies->len = data->ielen;
2361 	ies->tsf = data->tsf;
2362 	ies->from_beacon = false;
2363 	memcpy(ies->data, data->ie, data->ielen);
2364 
2365 	switch (data->ftype) {
2366 	case CFG80211_BSS_FTYPE_BEACON:
2367 	case CFG80211_BSS_FTYPE_S1G_BEACON:
2368 		ies->from_beacon = true;
2369 		fallthrough;
2370 	case CFG80211_BSS_FTYPE_UNKNOWN:
2371 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2372 		break;
2373 	case CFG80211_BSS_FTYPE_PRESP:
2374 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2375 		break;
2376 	}
2377 	rcu_assign_pointer(tmp.pub.ies, ies);
2378 
2379 	signal_valid = drv_data->chan == channel;
2380 	spin_lock_bh(&rdev->bss_lock);
2381 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2382 	if (!res)
2383 		goto drop;
2384 
2385 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2386 
2387 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2388 		/* this is a nontransmitting bss, we need to add it to
2389 		 * transmitting bss' list if it is not there
2390 		 */
2391 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2392 			if (__cfg80211_unlink_bss(rdev, res)) {
2393 				rdev->bss_generation++;
2394 				res = NULL;
2395 			}
2396 		}
2397 
2398 		if (!res)
2399 			goto drop;
2400 	}
2401 	spin_unlock_bh(&rdev->bss_lock);
2402 
2403 	trace_cfg80211_return_bss(&res->pub);
2404 	/* __cfg80211_bss_update gives us a referenced result */
2405 	return &res->pub;
2406 
2407 drop:
2408 	spin_unlock_bh(&rdev->bss_lock);
2409 	return NULL;
2410 }
2411 
2412 static const struct element
2413 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2414 				   const struct element *mbssid_elem,
2415 				   const struct element *sub_elem)
2416 {
2417 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2418 	const struct element *next_mbssid;
2419 	const struct element *next_sub;
2420 
2421 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2422 					 mbssid_end,
2423 					 ielen - (mbssid_end - ie));
2424 
2425 	/*
2426 	 * If it is not the last subelement in current MBSSID IE or there isn't
2427 	 * a next MBSSID IE - profile is complete.
2428 	*/
2429 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2430 	    !next_mbssid)
2431 		return NULL;
2432 
2433 	/* For any length error, just return NULL */
2434 
2435 	if (next_mbssid->datalen < 4)
2436 		return NULL;
2437 
2438 	next_sub = (void *)&next_mbssid->data[1];
2439 
2440 	if (next_mbssid->data + next_mbssid->datalen <
2441 	    next_sub->data + next_sub->datalen)
2442 		return NULL;
2443 
2444 	if (next_sub->id != 0 || next_sub->datalen < 2)
2445 		return NULL;
2446 
2447 	/*
2448 	 * Check if the first element in the next sub element is a start
2449 	 * of a new profile
2450 	 */
2451 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2452 	       NULL : next_mbssid;
2453 }
2454 
2455 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2456 			      const struct element *mbssid_elem,
2457 			      const struct element *sub_elem,
2458 			      u8 *merged_ie, size_t max_copy_len)
2459 {
2460 	size_t copied_len = sub_elem->datalen;
2461 	const struct element *next_mbssid;
2462 
2463 	if (sub_elem->datalen > max_copy_len)
2464 		return 0;
2465 
2466 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2467 
2468 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2469 								mbssid_elem,
2470 								sub_elem))) {
2471 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2472 
2473 		if (copied_len + next_sub->datalen > max_copy_len)
2474 			break;
2475 		memcpy(merged_ie + copied_len, next_sub->data,
2476 		       next_sub->datalen);
2477 		copied_len += next_sub->datalen;
2478 	}
2479 
2480 	return copied_len;
2481 }
2482 EXPORT_SYMBOL(cfg80211_merge_profile);
2483 
2484 static void
2485 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2486 			   struct cfg80211_inform_single_bss_data *tx_data,
2487 			   struct cfg80211_bss *source_bss,
2488 			   gfp_t gfp)
2489 {
2490 	struct cfg80211_inform_single_bss_data data = {
2491 		.drv_data = tx_data->drv_data,
2492 		.ftype = tx_data->ftype,
2493 		.tsf = tx_data->tsf,
2494 		.beacon_interval = tx_data->beacon_interval,
2495 		.source_bss = source_bss,
2496 		.bss_source = BSS_SOURCE_MBSSID,
2497 		.use_for = tx_data->use_for,
2498 		.cannot_use_reasons = tx_data->cannot_use_reasons,
2499 	};
2500 	const u8 *mbssid_index_ie;
2501 	const struct element *elem, *sub;
2502 	u8 *new_ie, *profile;
2503 	u64 seen_indices = 0;
2504 	struct cfg80211_bss *bss;
2505 
2506 	if (!source_bss)
2507 		return;
2508 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2509 				tx_data->ie, tx_data->ielen))
2510 		return;
2511 	if (!wiphy->support_mbssid)
2512 		return;
2513 	if (wiphy->support_only_he_mbssid &&
2514 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2515 				    tx_data->ie, tx_data->ielen))
2516 		return;
2517 
2518 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2519 	if (!new_ie)
2520 		return;
2521 
2522 	profile = kmalloc(tx_data->ielen, gfp);
2523 	if (!profile)
2524 		goto out;
2525 
2526 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2527 			    tx_data->ie, tx_data->ielen) {
2528 		if (elem->datalen < 4)
2529 			continue;
2530 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2531 			continue;
2532 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2533 			u8 profile_len;
2534 
2535 			if (sub->id != 0 || sub->datalen < 4) {
2536 				/* not a valid BSS profile */
2537 				continue;
2538 			}
2539 
2540 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2541 			    sub->data[1] != 2) {
2542 				/* The first element within the Nontransmitted
2543 				 * BSSID Profile is not the Nontransmitted
2544 				 * BSSID Capability element.
2545 				 */
2546 				continue;
2547 			}
2548 
2549 			memset(profile, 0, tx_data->ielen);
2550 			profile_len = cfg80211_merge_profile(tx_data->ie,
2551 							     tx_data->ielen,
2552 							     elem,
2553 							     sub,
2554 							     profile,
2555 							     tx_data->ielen);
2556 
2557 			/* found a Nontransmitted BSSID Profile */
2558 			mbssid_index_ie = cfg80211_find_ie
2559 				(WLAN_EID_MULTI_BSSID_IDX,
2560 				 profile, profile_len);
2561 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2562 			    mbssid_index_ie[2] == 0 ||
2563 			    mbssid_index_ie[2] > 46 ||
2564 			    mbssid_index_ie[2] >= (1 << elem->data[0])) {
2565 				/* No valid Multiple BSSID-Index element */
2566 				continue;
2567 			}
2568 
2569 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2570 				/* We don't support legacy split of a profile */
2571 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2572 						    mbssid_index_ie[2]);
2573 
2574 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2575 
2576 			data.bssid_index = mbssid_index_ie[2];
2577 			data.max_bssid_indicator = elem->data[0];
2578 
2579 			cfg80211_gen_new_bssid(tx_data->bssid,
2580 					       data.max_bssid_indicator,
2581 					       data.bssid_index,
2582 					       data.bssid);
2583 
2584 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2585 			data.ie = new_ie;
2586 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2587 							 tx_data->ielen,
2588 							 profile,
2589 							 profile_len,
2590 							 new_ie,
2591 							 IEEE80211_MAX_DATA_LEN);
2592 			if (!data.ielen)
2593 				continue;
2594 
2595 			data.capability = get_unaligned_le16(profile + 2);
2596 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2597 			if (!bss)
2598 				break;
2599 			cfg80211_put_bss(wiphy, bss);
2600 		}
2601 	}
2602 
2603 out:
2604 	kfree(new_ie);
2605 	kfree(profile);
2606 }
2607 
2608 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2609 				    size_t ieslen, u8 *data, size_t data_len,
2610 				    u8 frag_id)
2611 {
2612 	const struct element *next;
2613 	ssize_t copied;
2614 	u8 elem_datalen;
2615 
2616 	if (!elem)
2617 		return -EINVAL;
2618 
2619 	/* elem might be invalid after the memmove */
2620 	next = (void *)(elem->data + elem->datalen);
2621 	elem_datalen = elem->datalen;
2622 
2623 	if (elem->id == WLAN_EID_EXTENSION) {
2624 		copied = elem->datalen - 1;
2625 
2626 		if (data) {
2627 			if (copied > data_len)
2628 				return -ENOSPC;
2629 
2630 			memmove(data, elem->data + 1, copied);
2631 		}
2632 	} else {
2633 		copied = elem->datalen;
2634 
2635 		if (data) {
2636 			if (copied > data_len)
2637 				return -ENOSPC;
2638 
2639 			memmove(data, elem->data, copied);
2640 		}
2641 	}
2642 
2643 	/* Fragmented elements must have 255 bytes */
2644 	if (elem_datalen < 255)
2645 		return copied;
2646 
2647 	for (elem = next;
2648 	     elem->data < ies + ieslen &&
2649 		elem->data + elem->datalen <= ies + ieslen;
2650 	     elem = next) {
2651 		/* elem might be invalid after the memmove */
2652 		next = (void *)(elem->data + elem->datalen);
2653 
2654 		if (elem->id != frag_id)
2655 			break;
2656 
2657 		elem_datalen = elem->datalen;
2658 
2659 		if (data) {
2660 			if (copied + elem_datalen > data_len)
2661 				return -ENOSPC;
2662 
2663 			memmove(data + copied, elem->data, elem_datalen);
2664 		}
2665 
2666 		copied += elem_datalen;
2667 
2668 		/* Only the last fragment may be short */
2669 		if (elem_datalen != 255)
2670 			break;
2671 	}
2672 
2673 	return copied;
2674 }
2675 EXPORT_SYMBOL(cfg80211_defragment_element);
2676 
2677 struct cfg80211_mle {
2678 	struct ieee80211_multi_link_elem *mle;
2679 	struct ieee80211_mle_per_sta_profile
2680 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2681 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2682 
2683 	u8 data[];
2684 };
2685 
2686 static struct cfg80211_mle *
2687 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2688 		    gfp_t gfp)
2689 {
2690 	const struct element *elem;
2691 	struct cfg80211_mle *res;
2692 	size_t buf_len;
2693 	ssize_t mle_len;
2694 	u8 common_size, idx;
2695 
2696 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2697 		return NULL;
2698 
2699 	/* Required length for first defragmentation */
2700 	buf_len = mle->datalen - 1;
2701 	for_each_element(elem, mle->data + mle->datalen,
2702 			 ie + ielen - mle->data - mle->datalen) {
2703 		if (elem->id != WLAN_EID_FRAGMENT)
2704 			break;
2705 
2706 		buf_len += elem->datalen;
2707 	}
2708 
2709 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2710 	if (!res)
2711 		return NULL;
2712 
2713 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2714 					      res->data, buf_len,
2715 					      WLAN_EID_FRAGMENT);
2716 	if (mle_len < 0)
2717 		goto error;
2718 
2719 	res->mle = (void *)res->data;
2720 
2721 	/* Find the sub-element area in the buffer */
2722 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2723 	ie = res->data + common_size;
2724 	ielen = mle_len - common_size;
2725 
2726 	idx = 0;
2727 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2728 			    ie, ielen) {
2729 		res->sta_prof[idx] = (void *)elem->data;
2730 		res->sta_prof_len[idx] = elem->datalen;
2731 
2732 		idx++;
2733 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2734 			break;
2735 	}
2736 	if (!for_each_element_completed(elem, ie, ielen))
2737 		goto error;
2738 
2739 	/* Defragment sta_info in-place */
2740 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2741 	     idx++) {
2742 		if (res->sta_prof_len[idx] < 255)
2743 			continue;
2744 
2745 		elem = (void *)res->sta_prof[idx] - 2;
2746 
2747 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2748 		    res->sta_prof[idx + 1])
2749 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2750 				  (u8 *)res->sta_prof[idx];
2751 		else
2752 			buf_len = ielen + ie - (u8 *)elem;
2753 
2754 		res->sta_prof_len[idx] =
2755 			cfg80211_defragment_element(elem,
2756 						    (u8 *)elem, buf_len,
2757 						    (u8 *)res->sta_prof[idx],
2758 						    buf_len,
2759 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2760 		if (res->sta_prof_len[idx] < 0)
2761 			goto error;
2762 	}
2763 
2764 	return res;
2765 
2766 error:
2767 	kfree(res);
2768 	return NULL;
2769 }
2770 
2771 struct tbtt_info_iter_data {
2772 	const struct ieee80211_neighbor_ap_info *ap_info;
2773 	u8 param_ch_count;
2774 	u32 use_for;
2775 	u8 mld_id, link_id;
2776 	bool non_tx;
2777 };
2778 
2779 static enum cfg80211_rnr_iter_ret
2780 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2781 			  const struct ieee80211_neighbor_ap_info *info,
2782 			  const u8 *tbtt_info, u8 tbtt_info_len)
2783 {
2784 	const struct ieee80211_rnr_mld_params *mld_params;
2785 	struct tbtt_info_iter_data *data = _data;
2786 	u8 link_id;
2787 	bool non_tx = false;
2788 
2789 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2790 	    tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2791 					 mld_params)) {
2792 		const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2793 			(void *)tbtt_info;
2794 
2795 		non_tx = (tbtt_info_ge_11->bss_params &
2796 			  (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2797 			   IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2798 			 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2799 		mld_params = &tbtt_info_ge_11->mld_params;
2800 	} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2801 		 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2802 		mld_params = (void *)tbtt_info;
2803 	else
2804 		return RNR_ITER_CONTINUE;
2805 
2806 	link_id = le16_get_bits(mld_params->params,
2807 				IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2808 
2809 	if (data->mld_id != mld_params->mld_id)
2810 		return RNR_ITER_CONTINUE;
2811 
2812 	if (data->link_id != link_id)
2813 		return RNR_ITER_CONTINUE;
2814 
2815 	data->ap_info = info;
2816 	data->param_ch_count =
2817 		le16_get_bits(mld_params->params,
2818 			      IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2819 	data->non_tx = non_tx;
2820 
2821 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2822 		data->use_for = NL80211_BSS_USE_FOR_ALL;
2823 	else
2824 		data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2825 	return RNR_ITER_BREAK;
2826 }
2827 
2828 static u8
2829 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2830 			     const struct ieee80211_neighbor_ap_info **ap_info,
2831 			     u8 *param_ch_count, bool *non_tx)
2832 {
2833 	struct tbtt_info_iter_data data = {
2834 		.mld_id = mld_id,
2835 		.link_id = link_id,
2836 	};
2837 
2838 	cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2839 
2840 	*ap_info = data.ap_info;
2841 	*param_ch_count = data.param_ch_count;
2842 	*non_tx = data.non_tx;
2843 
2844 	return data.use_for;
2845 }
2846 
2847 static struct element *
2848 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2849 			  bool same_mld, u8 link_id, u8 bss_change_count,
2850 			  gfp_t gfp)
2851 {
2852 	const struct cfg80211_bss_ies *ies;
2853 	struct ieee80211_neighbor_ap_info ap_info;
2854 	struct ieee80211_tbtt_info_ge_11 tbtt_info;
2855 	u32 short_ssid;
2856 	const struct element *elem;
2857 	struct element *res;
2858 
2859 	/*
2860 	 * We only generate the RNR to permit ML lookups. For that we do not
2861 	 * need an entry for the corresponding transmitting BSS, lets just skip
2862 	 * it even though it would be easy to add.
2863 	 */
2864 	if (!same_mld)
2865 		return NULL;
2866 
2867 	/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2868 	rcu_read_lock();
2869 	ies = rcu_dereference(source_bss->ies);
2870 
2871 	ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2872 	ap_info.tbtt_info_hdr =
2873 			u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2874 				       IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2875 			u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2876 
2877 	ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2878 
2879 	/* operating class */
2880 	elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2881 				  ies->data, ies->len);
2882 	if (elem && elem->datalen >= 1) {
2883 		ap_info.op_class = elem->data[0];
2884 	} else {
2885 		struct cfg80211_chan_def chandef;
2886 
2887 		/* The AP is not providing us with anything to work with. So
2888 		 * make up a somewhat reasonable operating class, but don't
2889 		 * bother with it too much as no one will ever use the
2890 		 * information.
2891 		 */
2892 		cfg80211_chandef_create(&chandef, source_bss->channel,
2893 					NL80211_CHAN_NO_HT);
2894 
2895 		if (!ieee80211_chandef_to_operating_class(&chandef,
2896 							  &ap_info.op_class))
2897 			goto out_unlock;
2898 	}
2899 
2900 	/* Just set TBTT offset and PSD 20 to invalid/unknown */
2901 	tbtt_info.tbtt_offset = 255;
2902 	tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2903 
2904 	memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2905 	if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2906 		goto out_unlock;
2907 
2908 	rcu_read_unlock();
2909 
2910 	tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2911 
2912 	tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2913 
2914 	if (is_mbssid) {
2915 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2916 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2917 	}
2918 
2919 	tbtt_info.mld_params.mld_id = 0;
2920 	tbtt_info.mld_params.params =
2921 		le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2922 		le16_encode_bits(bss_change_count,
2923 				 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2924 
2925 	res = kzalloc(struct_size(res, data,
2926 				  sizeof(ap_info) + ap_info.tbtt_info_len),
2927 		      gfp);
2928 	if (!res)
2929 		return NULL;
2930 
2931 	/* Copy the data */
2932 	res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2933 	res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2934 	memcpy(res->data, &ap_info, sizeof(ap_info));
2935 	memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2936 
2937 	return res;
2938 
2939 out_unlock:
2940 	rcu_read_unlock();
2941 	return NULL;
2942 }
2943 
2944 static void
2945 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2946 				struct cfg80211_inform_single_bss_data *tx_data,
2947 				struct cfg80211_bss *source_bss,
2948 				const struct element *elem,
2949 				gfp_t gfp)
2950 {
2951 	struct cfg80211_inform_single_bss_data data = {
2952 		.drv_data = tx_data->drv_data,
2953 		.ftype = tx_data->ftype,
2954 		.source_bss = source_bss,
2955 		.bss_source = BSS_SOURCE_STA_PROFILE,
2956 	};
2957 	struct element *reporter_rnr = NULL;
2958 	struct ieee80211_multi_link_elem *ml_elem;
2959 	struct cfg80211_mle *mle;
2960 	const struct element *ssid_elem;
2961 	const u8 *ssid = NULL;
2962 	size_t ssid_len = 0;
2963 	u16 control;
2964 	u8 ml_common_len;
2965 	u8 *new_ie = NULL;
2966 	struct cfg80211_bss *bss;
2967 	u8 mld_id, reporter_link_id, bss_change_count;
2968 	u16 seen_links = 0;
2969 	u8 i;
2970 
2971 	if (!ieee80211_mle_type_ok(elem->data + 1,
2972 				   IEEE80211_ML_CONTROL_TYPE_BASIC,
2973 				   elem->datalen - 1))
2974 		return;
2975 
2976 	ml_elem = (void *)(elem->data + 1);
2977 	control = le16_to_cpu(ml_elem->control);
2978 	ml_common_len = ml_elem->variable[0];
2979 
2980 	/* Must be present when transmitted by an AP (in a probe response) */
2981 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2982 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2983 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2984 		return;
2985 
2986 	reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2987 	bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2988 
2989 	/*
2990 	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2991 	 * is part of an MBSSID set and will be non-zero for ML Elements
2992 	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2993 	 * Draft P802.11be_D3.2, 35.3.4.2)
2994 	 */
2995 	mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2996 
2997 	/* Fully defrag the ML element for sta information/profile iteration */
2998 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2999 	if (!mle)
3000 		return;
3001 
3002 	/* No point in doing anything if there is no per-STA profile */
3003 	if (!mle->sta_prof[0])
3004 		goto out;
3005 
3006 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
3007 	if (!new_ie)
3008 		goto out;
3009 
3010 	reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
3011 						 u16_get_bits(control,
3012 							      IEEE80211_MLC_BASIC_PRES_MLD_ID),
3013 						 mld_id == 0, reporter_link_id,
3014 						 bss_change_count,
3015 						 gfp);
3016 
3017 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
3018 				       tx_data->ielen);
3019 	if (ssid_elem) {
3020 		ssid = ssid_elem->data;
3021 		ssid_len = ssid_elem->datalen;
3022 	}
3023 
3024 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
3025 		const struct ieee80211_neighbor_ap_info *ap_info;
3026 		enum nl80211_band band;
3027 		u32 freq;
3028 		const u8 *profile;
3029 		ssize_t profile_len;
3030 		u8 param_ch_count;
3031 		u8 link_id, use_for;
3032 		bool non_tx;
3033 
3034 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
3035 							  mle->sta_prof_len[i]))
3036 			continue;
3037 
3038 		control = le16_to_cpu(mle->sta_prof[i]->control);
3039 
3040 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
3041 			continue;
3042 
3043 		link_id = u16_get_bits(control,
3044 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
3045 		if (seen_links & BIT(link_id))
3046 			break;
3047 		seen_links |= BIT(link_id);
3048 
3049 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
3050 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
3051 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
3052 			continue;
3053 
3054 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3055 		data.beacon_interval =
3056 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3057 		data.tsf = tx_data->tsf +
3058 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3059 
3060 		/* sta_info_len counts itself */
3061 		profile = mle->sta_prof[i]->variable +
3062 			  mle->sta_prof[i]->sta_info_len - 1;
3063 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3064 			      profile;
3065 
3066 		if (profile_len < 2)
3067 			continue;
3068 
3069 		data.capability = get_unaligned_le16(profile);
3070 		profile += 2;
3071 		profile_len -= 2;
3072 
3073 		/* Find in RNR to look up channel information */
3074 		use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3075 						       tx_data->ielen,
3076 						       mld_id, link_id,
3077 						       &ap_info,
3078 						       &param_ch_count,
3079 						       &non_tx);
3080 		if (!use_for)
3081 			continue;
3082 
3083 		/*
3084 		 * As of 802.11be_D5.0, the specification does not give us any
3085 		 * way of discovering both the MaxBSSID and the Multiple-BSSID
3086 		 * Index. It does seem like the Multiple-BSSID Index element
3087 		 * may be provided, but section 9.4.2.45 explicitly forbids
3088 		 * including a Multiple-BSSID Element (in this case without any
3089 		 * subelements).
3090 		 * Without both pieces of information we cannot calculate the
3091 		 * reference BSSID, so simply ignore the BSS.
3092 		 */
3093 		if (non_tx)
3094 			continue;
3095 
3096 		/* We could sanity check the BSSID is included */
3097 
3098 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
3099 						       &band))
3100 			continue;
3101 
3102 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3103 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
3104 
3105 		/* Skip if RNR element specifies an unsupported channel */
3106 		if (!data.channel)
3107 			continue;
3108 
3109 		/* Skip if BSS entry generated from MBSSID or DIRECT source
3110 		 * frame data available already.
3111 		 */
3112 		bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3113 				       ssid_len, IEEE80211_BSS_TYPE_ANY,
3114 				       IEEE80211_PRIVACY_ANY);
3115 		if (bss) {
3116 			struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3117 
3118 			if (data.capability == bss->capability &&
3119 			    ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3120 				cfg80211_put_bss(wiphy, bss);
3121 				continue;
3122 			}
3123 			cfg80211_put_bss(wiphy, bss);
3124 		}
3125 
3126 		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3127 		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3128 			use_for = 0;
3129 			data.cannot_use_reasons =
3130 				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3131 		}
3132 		data.use_for = use_for;
3133 
3134 		/* Generate new elements */
3135 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3136 		data.ie = new_ie;
3137 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3138 						 profile, profile_len,
3139 						 new_ie,
3140 						 IEEE80211_MAX_DATA_LEN);
3141 		if (!data.ielen)
3142 			continue;
3143 
3144 		/* The generated elements do not contain:
3145 		 *  - Basic ML element
3146 		 *  - A TBTT entry in the RNR for the transmitting AP
3147 		 *
3148 		 * This information is needed both internally and in userspace
3149 		 * as such, we should append it here.
3150 		 */
3151 		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3152 		    IEEE80211_MAX_DATA_LEN)
3153 			continue;
3154 
3155 		/* Copy the Basic Multi-Link element including the common
3156 		 * information, and then fix up the link ID and BSS param
3157 		 * change count.
3158 		 * Note that the ML element length has been verified and we
3159 		 * also checked that it contains the link ID.
3160 		 */
3161 		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3162 		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3163 		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3164 		memcpy(new_ie + data.ielen, ml_elem,
3165 		       sizeof(*ml_elem) + ml_common_len);
3166 
3167 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3168 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3169 			param_ch_count;
3170 
3171 		data.ielen += sizeof(*ml_elem) + ml_common_len;
3172 
3173 		if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3174 			if (data.ielen + sizeof(struct element) +
3175 			    reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3176 				continue;
3177 
3178 			memcpy(new_ie + data.ielen, reporter_rnr,
3179 			       sizeof(struct element) + reporter_rnr->datalen);
3180 			data.ielen += sizeof(struct element) +
3181 				      reporter_rnr->datalen;
3182 		}
3183 
3184 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3185 		if (!bss)
3186 			break;
3187 		cfg80211_put_bss(wiphy, bss);
3188 	}
3189 
3190 out:
3191 	kfree(reporter_rnr);
3192 	kfree(new_ie);
3193 	kfree(mle);
3194 }
3195 
3196 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3197 				       struct cfg80211_inform_single_bss_data *tx_data,
3198 				       struct cfg80211_bss *source_bss,
3199 				       gfp_t gfp)
3200 {
3201 	const struct element *elem;
3202 
3203 	if (!source_bss)
3204 		return;
3205 
3206 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3207 		return;
3208 
3209 	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3210 			       tx_data->ie, tx_data->ielen)
3211 		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3212 						elem, gfp);
3213 }
3214 
3215 struct cfg80211_bss *
3216 cfg80211_inform_bss_data(struct wiphy *wiphy,
3217 			 struct cfg80211_inform_bss *data,
3218 			 enum cfg80211_bss_frame_type ftype,
3219 			 const u8 *bssid, u64 tsf, u16 capability,
3220 			 u16 beacon_interval, const u8 *ie, size_t ielen,
3221 			 gfp_t gfp)
3222 {
3223 	struct cfg80211_inform_single_bss_data inform_data = {
3224 		.drv_data = data,
3225 		.ftype = ftype,
3226 		.tsf = tsf,
3227 		.capability = capability,
3228 		.beacon_interval = beacon_interval,
3229 		.ie = ie,
3230 		.ielen = ielen,
3231 		.use_for = data->restrict_use ?
3232 				data->use_for :
3233 				NL80211_BSS_USE_FOR_ALL,
3234 		.cannot_use_reasons = data->cannot_use_reasons,
3235 	};
3236 	struct cfg80211_bss *res;
3237 
3238 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
3239 
3240 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3241 	if (!res)
3242 		return NULL;
3243 
3244 	/* don't do any further MBSSID/ML handling for S1G */
3245 	if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3246 		return res;
3247 
3248 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3249 
3250 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3251 
3252 	return res;
3253 }
3254 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3255 
3256 struct cfg80211_bss *
3257 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3258 			       struct cfg80211_inform_bss *data,
3259 			       struct ieee80211_mgmt *mgmt, size_t len,
3260 			       gfp_t gfp)
3261 {
3262 	size_t min_hdr_len;
3263 	struct ieee80211_ext *ext = NULL;
3264 	enum cfg80211_bss_frame_type ftype;
3265 	u16 beacon_interval;
3266 	const u8 *bssid;
3267 	u16 capability;
3268 	const u8 *ie;
3269 	size_t ielen;
3270 	u64 tsf;
3271 	size_t s1g_optional_len;
3272 
3273 	if (WARN_ON(!mgmt))
3274 		return NULL;
3275 
3276 	if (WARN_ON(!wiphy))
3277 		return NULL;
3278 
3279 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3280 		     offsetof(struct ieee80211_mgmt, u.beacon.variable));
3281 
3282 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3283 
3284 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3285 		ext = (void *) mgmt;
3286 		s1g_optional_len =
3287 			ieee80211_s1g_optional_len(ext->frame_control);
3288 		min_hdr_len =
3289 			offsetof(struct ieee80211_ext, u.s1g_beacon.variable) +
3290 			s1g_optional_len;
3291 	} else {
3292 		/* same for beacons */
3293 		min_hdr_len = offsetof(struct ieee80211_mgmt,
3294 				       u.probe_resp.variable);
3295 	}
3296 
3297 	if (WARN_ON(len < min_hdr_len))
3298 		return NULL;
3299 
3300 	ielen = len - min_hdr_len;
3301 	ie = mgmt->u.probe_resp.variable;
3302 	if (ext) {
3303 		const struct ieee80211_s1g_bcn_compat_ie *compat;
3304 		const struct element *elem;
3305 
3306 		ie = ext->u.s1g_beacon.variable + s1g_optional_len;
3307 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3308 		if (!elem)
3309 			return NULL;
3310 		if (elem->datalen < sizeof(*compat))
3311 			return NULL;
3312 		compat = (void *)elem->data;
3313 		bssid = ext->u.s1g_beacon.sa;
3314 		capability = le16_to_cpu(compat->compat_info);
3315 		beacon_interval = le16_to_cpu(compat->beacon_int);
3316 	} else {
3317 		bssid = mgmt->bssid;
3318 		beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3319 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3320 	}
3321 
3322 	tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3323 
3324 	if (ieee80211_is_probe_resp(mgmt->frame_control))
3325 		ftype = CFG80211_BSS_FTYPE_PRESP;
3326 	else if (ext)
3327 		ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3328 	else
3329 		ftype = CFG80211_BSS_FTYPE_BEACON;
3330 
3331 	return cfg80211_inform_bss_data(wiphy, data, ftype,
3332 					bssid, tsf, capability,
3333 					beacon_interval, ie, ielen,
3334 					gfp);
3335 }
3336 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3337 
3338 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3339 {
3340 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3341 
3342 	if (!pub)
3343 		return;
3344 
3345 	spin_lock_bh(&rdev->bss_lock);
3346 	bss_ref_get(rdev, bss_from_pub(pub));
3347 	spin_unlock_bh(&rdev->bss_lock);
3348 }
3349 EXPORT_SYMBOL(cfg80211_ref_bss);
3350 
3351 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3352 {
3353 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3354 
3355 	if (!pub)
3356 		return;
3357 
3358 	spin_lock_bh(&rdev->bss_lock);
3359 	bss_ref_put(rdev, bss_from_pub(pub));
3360 	spin_unlock_bh(&rdev->bss_lock);
3361 }
3362 EXPORT_SYMBOL(cfg80211_put_bss);
3363 
3364 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3365 {
3366 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3367 	struct cfg80211_internal_bss *bss, *tmp1;
3368 	struct cfg80211_bss *nontrans_bss, *tmp;
3369 
3370 	if (WARN_ON(!pub))
3371 		return;
3372 
3373 	bss = bss_from_pub(pub);
3374 
3375 	spin_lock_bh(&rdev->bss_lock);
3376 	if (list_empty(&bss->list))
3377 		goto out;
3378 
3379 	list_for_each_entry_safe(nontrans_bss, tmp,
3380 				 &pub->nontrans_list,
3381 				 nontrans_list) {
3382 		tmp1 = bss_from_pub(nontrans_bss);
3383 		if (__cfg80211_unlink_bss(rdev, tmp1))
3384 			rdev->bss_generation++;
3385 	}
3386 
3387 	if (__cfg80211_unlink_bss(rdev, bss))
3388 		rdev->bss_generation++;
3389 out:
3390 	spin_unlock_bh(&rdev->bss_lock);
3391 }
3392 EXPORT_SYMBOL(cfg80211_unlink_bss);
3393 
3394 void cfg80211_bss_iter(struct wiphy *wiphy,
3395 		       struct cfg80211_chan_def *chandef,
3396 		       void (*iter)(struct wiphy *wiphy,
3397 				    struct cfg80211_bss *bss,
3398 				    void *data),
3399 		       void *iter_data)
3400 {
3401 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3402 	struct cfg80211_internal_bss *bss;
3403 
3404 	spin_lock_bh(&rdev->bss_lock);
3405 
3406 	list_for_each_entry(bss, &rdev->bss_list, list) {
3407 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3408 						     false))
3409 			iter(wiphy, &bss->pub, iter_data);
3410 	}
3411 
3412 	spin_unlock_bh(&rdev->bss_lock);
3413 }
3414 EXPORT_SYMBOL(cfg80211_bss_iter);
3415 
3416 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3417 				     unsigned int link_id,
3418 				     struct ieee80211_channel *chan)
3419 {
3420 	struct wiphy *wiphy = wdev->wiphy;
3421 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3422 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3423 	struct cfg80211_internal_bss *new = NULL;
3424 	struct cfg80211_internal_bss *bss;
3425 	struct cfg80211_bss *nontrans_bss;
3426 	struct cfg80211_bss *tmp;
3427 
3428 	spin_lock_bh(&rdev->bss_lock);
3429 
3430 	/*
3431 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3432 	 * changing the control channel, so no need to update in such a case.
3433 	 */
3434 	if (cbss->pub.channel == chan)
3435 		goto done;
3436 
3437 	/* use transmitting bss */
3438 	if (cbss->pub.transmitted_bss)
3439 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3440 
3441 	cbss->pub.channel = chan;
3442 
3443 	list_for_each_entry(bss, &rdev->bss_list, list) {
3444 		if (!cfg80211_bss_type_match(bss->pub.capability,
3445 					     bss->pub.channel->band,
3446 					     wdev->conn_bss_type))
3447 			continue;
3448 
3449 		if (bss == cbss)
3450 			continue;
3451 
3452 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3453 			new = bss;
3454 			break;
3455 		}
3456 	}
3457 
3458 	if (new) {
3459 		/* to save time, update IEs for transmitting bss only */
3460 		cfg80211_update_known_bss(rdev, cbss, new, false);
3461 		new->pub.proberesp_ies = NULL;
3462 		new->pub.beacon_ies = NULL;
3463 
3464 		list_for_each_entry_safe(nontrans_bss, tmp,
3465 					 &new->pub.nontrans_list,
3466 					 nontrans_list) {
3467 			bss = bss_from_pub(nontrans_bss);
3468 			if (__cfg80211_unlink_bss(rdev, bss))
3469 				rdev->bss_generation++;
3470 		}
3471 
3472 		WARN_ON(atomic_read(&new->hold));
3473 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3474 			rdev->bss_generation++;
3475 	}
3476 	cfg80211_rehash_bss(rdev, cbss);
3477 
3478 	list_for_each_entry_safe(nontrans_bss, tmp,
3479 				 &cbss->pub.nontrans_list,
3480 				 nontrans_list) {
3481 		bss = bss_from_pub(nontrans_bss);
3482 		bss->pub.channel = chan;
3483 		cfg80211_rehash_bss(rdev, bss);
3484 	}
3485 
3486 done:
3487 	spin_unlock_bh(&rdev->bss_lock);
3488 }
3489 
3490 #ifdef CONFIG_CFG80211_WEXT
3491 static struct cfg80211_registered_device *
3492 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3493 {
3494 	struct cfg80211_registered_device *rdev;
3495 	struct net_device *dev;
3496 
3497 	ASSERT_RTNL();
3498 
3499 	dev = dev_get_by_index(net, ifindex);
3500 	if (!dev)
3501 		return ERR_PTR(-ENODEV);
3502 	if (dev->ieee80211_ptr)
3503 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3504 	else
3505 		rdev = ERR_PTR(-ENODEV);
3506 	dev_put(dev);
3507 	return rdev;
3508 }
3509 
3510 int cfg80211_wext_siwscan(struct net_device *dev,
3511 			  struct iw_request_info *info,
3512 			  union iwreq_data *wrqu, char *extra)
3513 {
3514 	struct cfg80211_registered_device *rdev;
3515 	struct wiphy *wiphy;
3516 	struct iw_scan_req *wreq = NULL;
3517 	struct cfg80211_scan_request_int *creq;
3518 	int i, err, n_channels = 0;
3519 	enum nl80211_band band;
3520 
3521 	if (!netif_running(dev))
3522 		return -ENETDOWN;
3523 
3524 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3525 		wreq = (struct iw_scan_req *)extra;
3526 
3527 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3528 
3529 	if (IS_ERR(rdev))
3530 		return PTR_ERR(rdev);
3531 
3532 	if (rdev->scan_req || rdev->scan_msg)
3533 		return -EBUSY;
3534 
3535 	wiphy = &rdev->wiphy;
3536 
3537 	/* Determine number of channels, needed to allocate creq */
3538 	if (wreq && wreq->num_channels) {
3539 		/* Passed from userspace so should be checked */
3540 		if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3541 			return -EINVAL;
3542 		n_channels = wreq->num_channels;
3543 	} else {
3544 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3545 	}
3546 
3547 	creq = kzalloc(struct_size(creq, req.channels, n_channels) +
3548 		       sizeof(struct cfg80211_ssid),
3549 		       GFP_ATOMIC);
3550 	if (!creq)
3551 		return -ENOMEM;
3552 
3553 	creq->req.wiphy = wiphy;
3554 	creq->req.wdev = dev->ieee80211_ptr;
3555 	/* SSIDs come after channels */
3556 	creq->req.ssids = (void *)creq +
3557 			  struct_size(creq, req.channels, n_channels);
3558 	creq->req.n_channels = n_channels;
3559 	creq->req.n_ssids = 1;
3560 	creq->req.scan_start = jiffies;
3561 
3562 	/* translate "Scan on frequencies" request */
3563 	i = 0;
3564 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3565 		int j;
3566 
3567 		if (!wiphy->bands[band])
3568 			continue;
3569 
3570 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3571 			struct ieee80211_channel *chan;
3572 
3573 			/* ignore disabled channels */
3574 			chan = &wiphy->bands[band]->channels[j];
3575 			if (chan->flags & IEEE80211_CHAN_DISABLED ||
3576 			    !cfg80211_wdev_channel_allowed(creq->req.wdev, chan))
3577 				continue;
3578 
3579 			/* If we have a wireless request structure and the
3580 			 * wireless request specifies frequencies, then search
3581 			 * for the matching hardware channel.
3582 			 */
3583 			if (wreq && wreq->num_channels) {
3584 				int k;
3585 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3586 				for (k = 0; k < wreq->num_channels; k++) {
3587 					struct iw_freq *freq =
3588 						&wreq->channel_list[k];
3589 					int wext_freq =
3590 						cfg80211_wext_freq(freq);
3591 
3592 					if (wext_freq == wiphy_freq)
3593 						goto wext_freq_found;
3594 				}
3595 				goto wext_freq_not_found;
3596 			}
3597 
3598 		wext_freq_found:
3599 			creq->req.channels[i] =
3600 				&wiphy->bands[band]->channels[j];
3601 			i++;
3602 		wext_freq_not_found: ;
3603 		}
3604 	}
3605 	/* No channels found? */
3606 	if (!i) {
3607 		err = -EINVAL;
3608 		goto out;
3609 	}
3610 
3611 	/* Set real number of channels specified in creq->req.channels[] */
3612 	creq->req.n_channels = i;
3613 
3614 	/* translate "Scan for SSID" request */
3615 	if (wreq) {
3616 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3617 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN)
3618 				return -EINVAL;
3619 			memcpy(creq->req.ssids[0].ssid, wreq->essid,
3620 			       wreq->essid_len);
3621 			creq->req.ssids[0].ssid_len = wreq->essid_len;
3622 		}
3623 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3624 			creq->req.ssids = NULL;
3625 			creq->req.n_ssids = 0;
3626 		}
3627 	}
3628 
3629 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3630 		if (wiphy->bands[i])
3631 			creq->req.rates[i] =
3632 				(1 << wiphy->bands[i]->n_bitrates) - 1;
3633 
3634 	eth_broadcast_addr(creq->req.bssid);
3635 
3636 	scoped_guard(wiphy, &rdev->wiphy) {
3637 		rdev->scan_req = creq;
3638 		err = rdev_scan(rdev, creq);
3639 		if (err) {
3640 			rdev->scan_req = NULL;
3641 			/* creq will be freed below */
3642 		} else {
3643 			nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3644 			/* creq now owned by driver */
3645 			creq = NULL;
3646 			dev_hold(dev);
3647 		}
3648 	}
3649 
3650  out:
3651 	kfree(creq);
3652 	return err;
3653 }
3654 
3655 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3656 				    const struct cfg80211_bss_ies *ies,
3657 				    char *current_ev, char *end_buf)
3658 {
3659 	const u8 *pos, *end, *next;
3660 	struct iw_event iwe;
3661 
3662 	if (!ies)
3663 		return current_ev;
3664 
3665 	/*
3666 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3667 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3668 	 */
3669 	pos = ies->data;
3670 	end = pos + ies->len;
3671 
3672 	while (end - pos > IW_GENERIC_IE_MAX) {
3673 		next = pos + 2 + pos[1];
3674 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3675 			next = next + 2 + next[1];
3676 
3677 		memset(&iwe, 0, sizeof(iwe));
3678 		iwe.cmd = IWEVGENIE;
3679 		iwe.u.data.length = next - pos;
3680 		current_ev = iwe_stream_add_point_check(info, current_ev,
3681 							end_buf, &iwe,
3682 							(void *)pos);
3683 		if (IS_ERR(current_ev))
3684 			return current_ev;
3685 		pos = next;
3686 	}
3687 
3688 	if (end > pos) {
3689 		memset(&iwe, 0, sizeof(iwe));
3690 		iwe.cmd = IWEVGENIE;
3691 		iwe.u.data.length = end - pos;
3692 		current_ev = iwe_stream_add_point_check(info, current_ev,
3693 							end_buf, &iwe,
3694 							(void *)pos);
3695 		if (IS_ERR(current_ev))
3696 			return current_ev;
3697 	}
3698 
3699 	return current_ev;
3700 }
3701 
3702 static char *
3703 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3704 	      struct cfg80211_internal_bss *bss, char *current_ev,
3705 	      char *end_buf)
3706 {
3707 	const struct cfg80211_bss_ies *ies;
3708 	struct iw_event iwe;
3709 	const u8 *ie;
3710 	u8 buf[50];
3711 	u8 *cfg, *p, *tmp;
3712 	int rem, i, sig;
3713 	bool ismesh = false;
3714 
3715 	memset(&iwe, 0, sizeof(iwe));
3716 	iwe.cmd = SIOCGIWAP;
3717 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3718 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3719 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3720 						IW_EV_ADDR_LEN);
3721 	if (IS_ERR(current_ev))
3722 		return current_ev;
3723 
3724 	memset(&iwe, 0, sizeof(iwe));
3725 	iwe.cmd = SIOCGIWFREQ;
3726 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3727 	iwe.u.freq.e = 0;
3728 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3729 						IW_EV_FREQ_LEN);
3730 	if (IS_ERR(current_ev))
3731 		return current_ev;
3732 
3733 	memset(&iwe, 0, sizeof(iwe));
3734 	iwe.cmd = SIOCGIWFREQ;
3735 	iwe.u.freq.m = bss->pub.channel->center_freq;
3736 	iwe.u.freq.e = 6;
3737 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3738 						IW_EV_FREQ_LEN);
3739 	if (IS_ERR(current_ev))
3740 		return current_ev;
3741 
3742 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3743 		memset(&iwe, 0, sizeof(iwe));
3744 		iwe.cmd = IWEVQUAL;
3745 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3746 				     IW_QUAL_NOISE_INVALID |
3747 				     IW_QUAL_QUAL_UPDATED;
3748 		switch (wiphy->signal_type) {
3749 		case CFG80211_SIGNAL_TYPE_MBM:
3750 			sig = bss->pub.signal / 100;
3751 			iwe.u.qual.level = sig;
3752 			iwe.u.qual.updated |= IW_QUAL_DBM;
3753 			if (sig < -110)		/* rather bad */
3754 				sig = -110;
3755 			else if (sig > -40)	/* perfect */
3756 				sig = -40;
3757 			/* will give a range of 0 .. 70 */
3758 			iwe.u.qual.qual = sig + 110;
3759 			break;
3760 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3761 			iwe.u.qual.level = bss->pub.signal;
3762 			/* will give range 0 .. 100 */
3763 			iwe.u.qual.qual = bss->pub.signal;
3764 			break;
3765 		default:
3766 			/* not reached */
3767 			break;
3768 		}
3769 		current_ev = iwe_stream_add_event_check(info, current_ev,
3770 							end_buf, &iwe,
3771 							IW_EV_QUAL_LEN);
3772 		if (IS_ERR(current_ev))
3773 			return current_ev;
3774 	}
3775 
3776 	memset(&iwe, 0, sizeof(iwe));
3777 	iwe.cmd = SIOCGIWENCODE;
3778 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3779 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3780 	else
3781 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3782 	iwe.u.data.length = 0;
3783 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3784 						&iwe, "");
3785 	if (IS_ERR(current_ev))
3786 		return current_ev;
3787 
3788 	rcu_read_lock();
3789 	ies = rcu_dereference(bss->pub.ies);
3790 	rem = ies->len;
3791 	ie = ies->data;
3792 
3793 	while (rem >= 2) {
3794 		/* invalid data */
3795 		if (ie[1] > rem - 2)
3796 			break;
3797 
3798 		switch (ie[0]) {
3799 		case WLAN_EID_SSID:
3800 			memset(&iwe, 0, sizeof(iwe));
3801 			iwe.cmd = SIOCGIWESSID;
3802 			iwe.u.data.length = ie[1];
3803 			iwe.u.data.flags = 1;
3804 			current_ev = iwe_stream_add_point_check(info,
3805 								current_ev,
3806 								end_buf, &iwe,
3807 								(u8 *)ie + 2);
3808 			if (IS_ERR(current_ev))
3809 				goto unlock;
3810 			break;
3811 		case WLAN_EID_MESH_ID:
3812 			memset(&iwe, 0, sizeof(iwe));
3813 			iwe.cmd = SIOCGIWESSID;
3814 			iwe.u.data.length = ie[1];
3815 			iwe.u.data.flags = 1;
3816 			current_ev = iwe_stream_add_point_check(info,
3817 								current_ev,
3818 								end_buf, &iwe,
3819 								(u8 *)ie + 2);
3820 			if (IS_ERR(current_ev))
3821 				goto unlock;
3822 			break;
3823 		case WLAN_EID_MESH_CONFIG:
3824 			ismesh = true;
3825 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3826 				break;
3827 			cfg = (u8 *)ie + 2;
3828 			memset(&iwe, 0, sizeof(iwe));
3829 			iwe.cmd = IWEVCUSTOM;
3830 			iwe.u.data.length = sprintf(buf,
3831 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3832 						    cfg[0]);
3833 			current_ev = iwe_stream_add_point_check(info,
3834 								current_ev,
3835 								end_buf,
3836 								&iwe, buf);
3837 			if (IS_ERR(current_ev))
3838 				goto unlock;
3839 			iwe.u.data.length = sprintf(buf,
3840 						    "Path Selection Metric ID: 0x%02X",
3841 						    cfg[1]);
3842 			current_ev = iwe_stream_add_point_check(info,
3843 								current_ev,
3844 								end_buf,
3845 								&iwe, buf);
3846 			if (IS_ERR(current_ev))
3847 				goto unlock;
3848 			iwe.u.data.length = sprintf(buf,
3849 						    "Congestion Control Mode ID: 0x%02X",
3850 						    cfg[2]);
3851 			current_ev = iwe_stream_add_point_check(info,
3852 								current_ev,
3853 								end_buf,
3854 								&iwe, buf);
3855 			if (IS_ERR(current_ev))
3856 				goto unlock;
3857 			iwe.u.data.length = sprintf(buf,
3858 						    "Synchronization ID: 0x%02X",
3859 						    cfg[3]);
3860 			current_ev = iwe_stream_add_point_check(info,
3861 								current_ev,
3862 								end_buf,
3863 								&iwe, buf);
3864 			if (IS_ERR(current_ev))
3865 				goto unlock;
3866 			iwe.u.data.length = sprintf(buf,
3867 						    "Authentication ID: 0x%02X",
3868 						    cfg[4]);
3869 			current_ev = iwe_stream_add_point_check(info,
3870 								current_ev,
3871 								end_buf,
3872 								&iwe, buf);
3873 			if (IS_ERR(current_ev))
3874 				goto unlock;
3875 			iwe.u.data.length = sprintf(buf,
3876 						    "Formation Info: 0x%02X",
3877 						    cfg[5]);
3878 			current_ev = iwe_stream_add_point_check(info,
3879 								current_ev,
3880 								end_buf,
3881 								&iwe, buf);
3882 			if (IS_ERR(current_ev))
3883 				goto unlock;
3884 			iwe.u.data.length = sprintf(buf,
3885 						    "Capabilities: 0x%02X",
3886 						    cfg[6]);
3887 			current_ev = iwe_stream_add_point_check(info,
3888 								current_ev,
3889 								end_buf,
3890 								&iwe, buf);
3891 			if (IS_ERR(current_ev))
3892 				goto unlock;
3893 			break;
3894 		case WLAN_EID_SUPP_RATES:
3895 		case WLAN_EID_EXT_SUPP_RATES:
3896 			/* display all supported rates in readable format */
3897 			p = current_ev + iwe_stream_lcp_len(info);
3898 
3899 			memset(&iwe, 0, sizeof(iwe));
3900 			iwe.cmd = SIOCGIWRATE;
3901 			/* Those two flags are ignored... */
3902 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3903 
3904 			for (i = 0; i < ie[1]; i++) {
3905 				iwe.u.bitrate.value =
3906 					((ie[i + 2] & 0x7f) * 500000);
3907 				tmp = p;
3908 				p = iwe_stream_add_value(info, current_ev, p,
3909 							 end_buf, &iwe,
3910 							 IW_EV_PARAM_LEN);
3911 				if (p == tmp) {
3912 					current_ev = ERR_PTR(-E2BIG);
3913 					goto unlock;
3914 				}
3915 			}
3916 			current_ev = p;
3917 			break;
3918 		}
3919 		rem -= ie[1] + 2;
3920 		ie += ie[1] + 2;
3921 	}
3922 
3923 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3924 	    ismesh) {
3925 		memset(&iwe, 0, sizeof(iwe));
3926 		iwe.cmd = SIOCGIWMODE;
3927 		if (ismesh)
3928 			iwe.u.mode = IW_MODE_MESH;
3929 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3930 			iwe.u.mode = IW_MODE_MASTER;
3931 		else
3932 			iwe.u.mode = IW_MODE_ADHOC;
3933 		current_ev = iwe_stream_add_event_check(info, current_ev,
3934 							end_buf, &iwe,
3935 							IW_EV_UINT_LEN);
3936 		if (IS_ERR(current_ev))
3937 			goto unlock;
3938 	}
3939 
3940 	memset(&iwe, 0, sizeof(iwe));
3941 	iwe.cmd = IWEVCUSTOM;
3942 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3943 				    (unsigned long long)(ies->tsf));
3944 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3945 						&iwe, buf);
3946 	if (IS_ERR(current_ev))
3947 		goto unlock;
3948 	memset(&iwe, 0, sizeof(iwe));
3949 	iwe.cmd = IWEVCUSTOM;
3950 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3951 				    elapsed_jiffies_msecs(bss->ts));
3952 	current_ev = iwe_stream_add_point_check(info, current_ev,
3953 						end_buf, &iwe, buf);
3954 	if (IS_ERR(current_ev))
3955 		goto unlock;
3956 
3957 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3958 
3959  unlock:
3960 	rcu_read_unlock();
3961 	return current_ev;
3962 }
3963 
3964 
3965 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3966 				  struct iw_request_info *info,
3967 				  char *buf, size_t len)
3968 {
3969 	char *current_ev = buf;
3970 	char *end_buf = buf + len;
3971 	struct cfg80211_internal_bss *bss;
3972 	int err = 0;
3973 
3974 	spin_lock_bh(&rdev->bss_lock);
3975 	cfg80211_bss_expire(rdev);
3976 
3977 	list_for_each_entry(bss, &rdev->bss_list, list) {
3978 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3979 			err = -E2BIG;
3980 			break;
3981 		}
3982 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3983 					   current_ev, end_buf);
3984 		if (IS_ERR(current_ev)) {
3985 			err = PTR_ERR(current_ev);
3986 			break;
3987 		}
3988 	}
3989 	spin_unlock_bh(&rdev->bss_lock);
3990 
3991 	if (err)
3992 		return err;
3993 	return current_ev - buf;
3994 }
3995 
3996 
3997 int cfg80211_wext_giwscan(struct net_device *dev,
3998 			  struct iw_request_info *info,
3999 			  union iwreq_data *wrqu, char *extra)
4000 {
4001 	struct iw_point *data = &wrqu->data;
4002 	struct cfg80211_registered_device *rdev;
4003 	int res;
4004 
4005 	if (!netif_running(dev))
4006 		return -ENETDOWN;
4007 
4008 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
4009 
4010 	if (IS_ERR(rdev))
4011 		return PTR_ERR(rdev);
4012 
4013 	if (rdev->scan_req || rdev->scan_msg)
4014 		return -EAGAIN;
4015 
4016 	res = ieee80211_scan_results(rdev, info, extra, data->length);
4017 	data->length = 0;
4018 	if (res >= 0) {
4019 		data->length = res;
4020 		res = 0;
4021 	}
4022 
4023 	return res;
4024 }
4025 #endif
4026