xref: /linux/arch/s390/mm/gmap.c (revision 954a209f431c06b62718a49b403bd4c549f0d6fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2020
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 #include <asm/page-states.h>
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/page.h>
25 #include <asm/tlb.h>
26 
27 /*
28  * The address is saved in a radix tree directly; NULL would be ambiguous,
29  * since 0 is a valid address, and NULL is returned when nothing was found.
30  * The lower bits are ignored by all users of the macro, so it can be used
31  * to distinguish a valid address 0 from a NULL.
32  */
33 #define VALID_GADDR_FLAG 1
34 #define IS_GADDR_VALID(gaddr) ((gaddr) & VALID_GADDR_FLAG)
35 #define MAKE_VALID_GADDR(gaddr) (((gaddr) & HPAGE_MASK) | VALID_GADDR_FLAG)
36 
37 #define GMAP_SHADOW_FAKE_TABLE 1ULL
38 
gmap_alloc_crst(void)39 static struct page *gmap_alloc_crst(void)
40 {
41 	struct page *page;
42 
43 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
44 	if (!page)
45 		return NULL;
46 	__arch_set_page_dat(page_to_virt(page), 1UL << CRST_ALLOC_ORDER);
47 	return page;
48 }
49 
50 /**
51  * gmap_alloc - allocate and initialize a guest address space
52  * @limit: maximum address of the gmap address space
53  *
54  * Returns a guest address space structure.
55  */
gmap_alloc(unsigned long limit)56 struct gmap *gmap_alloc(unsigned long limit)
57 {
58 	struct gmap *gmap;
59 	struct page *page;
60 	unsigned long *table;
61 	unsigned long etype, atype;
62 
63 	if (limit < _REGION3_SIZE) {
64 		limit = _REGION3_SIZE - 1;
65 		atype = _ASCE_TYPE_SEGMENT;
66 		etype = _SEGMENT_ENTRY_EMPTY;
67 	} else if (limit < _REGION2_SIZE) {
68 		limit = _REGION2_SIZE - 1;
69 		atype = _ASCE_TYPE_REGION3;
70 		etype = _REGION3_ENTRY_EMPTY;
71 	} else if (limit < _REGION1_SIZE) {
72 		limit = _REGION1_SIZE - 1;
73 		atype = _ASCE_TYPE_REGION2;
74 		etype = _REGION2_ENTRY_EMPTY;
75 	} else {
76 		limit = -1UL;
77 		atype = _ASCE_TYPE_REGION1;
78 		etype = _REGION1_ENTRY_EMPTY;
79 	}
80 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
81 	if (!gmap)
82 		goto out;
83 	INIT_LIST_HEAD(&gmap->children);
84 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
85 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
86 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
87 	spin_lock_init(&gmap->guest_table_lock);
88 	spin_lock_init(&gmap->shadow_lock);
89 	refcount_set(&gmap->ref_count, 1);
90 	page = gmap_alloc_crst();
91 	if (!page)
92 		goto out_free;
93 	table = page_to_virt(page);
94 	crst_table_init(table, etype);
95 	gmap->table = table;
96 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
97 		_ASCE_USER_BITS | __pa(table);
98 	gmap->asce_end = limit;
99 	return gmap;
100 
101 out_free:
102 	kfree(gmap);
103 out:
104 	return NULL;
105 }
106 EXPORT_SYMBOL_GPL(gmap_alloc);
107 
108 /**
109  * gmap_create - create a guest address space
110  * @mm: pointer to the parent mm_struct
111  * @limit: maximum size of the gmap address space
112  *
113  * Returns a guest address space structure.
114  */
gmap_create(struct mm_struct * mm,unsigned long limit)115 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
116 {
117 	struct gmap *gmap;
118 	unsigned long gmap_asce;
119 
120 	gmap = gmap_alloc(limit);
121 	if (!gmap)
122 		return NULL;
123 	gmap->mm = mm;
124 	spin_lock(&mm->context.lock);
125 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
126 	if (list_is_singular(&mm->context.gmap_list))
127 		gmap_asce = gmap->asce;
128 	else
129 		gmap_asce = -1UL;
130 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
131 	spin_unlock(&mm->context.lock);
132 	return gmap;
133 }
134 EXPORT_SYMBOL_GPL(gmap_create);
135 
gmap_flush_tlb(struct gmap * gmap)136 static void gmap_flush_tlb(struct gmap *gmap)
137 {
138 	if (MACHINE_HAS_IDTE)
139 		__tlb_flush_idte(gmap->asce);
140 	else
141 		__tlb_flush_global();
142 }
143 
gmap_radix_tree_free(struct radix_tree_root * root)144 static void gmap_radix_tree_free(struct radix_tree_root *root)
145 {
146 	struct radix_tree_iter iter;
147 	unsigned long indices[16];
148 	unsigned long index;
149 	void __rcu **slot;
150 	int i, nr;
151 
152 	/* A radix tree is freed by deleting all of its entries */
153 	index = 0;
154 	do {
155 		nr = 0;
156 		radix_tree_for_each_slot(slot, root, &iter, index) {
157 			indices[nr] = iter.index;
158 			if (++nr == 16)
159 				break;
160 		}
161 		for (i = 0; i < nr; i++) {
162 			index = indices[i];
163 			radix_tree_delete(root, index);
164 		}
165 	} while (nr > 0);
166 }
167 
gmap_rmap_radix_tree_free(struct radix_tree_root * root)168 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
169 {
170 	struct gmap_rmap *rmap, *rnext, *head;
171 	struct radix_tree_iter iter;
172 	unsigned long indices[16];
173 	unsigned long index;
174 	void __rcu **slot;
175 	int i, nr;
176 
177 	/* A radix tree is freed by deleting all of its entries */
178 	index = 0;
179 	do {
180 		nr = 0;
181 		radix_tree_for_each_slot(slot, root, &iter, index) {
182 			indices[nr] = iter.index;
183 			if (++nr == 16)
184 				break;
185 		}
186 		for (i = 0; i < nr; i++) {
187 			index = indices[i];
188 			head = radix_tree_delete(root, index);
189 			gmap_for_each_rmap_safe(rmap, rnext, head)
190 				kfree(rmap);
191 		}
192 	} while (nr > 0);
193 }
194 
gmap_free_crst(unsigned long * table,bool free_ptes)195 static void gmap_free_crst(unsigned long *table, bool free_ptes)
196 {
197 	bool is_segment = (table[0] & _SEGMENT_ENTRY_TYPE_MASK) == 0;
198 	int i;
199 
200 	if (is_segment) {
201 		if (!free_ptes)
202 			goto out;
203 		for (i = 0; i < _CRST_ENTRIES; i++)
204 			if (!(table[i] & _SEGMENT_ENTRY_INVALID))
205 				page_table_free_pgste(page_ptdesc(phys_to_page(table[i])));
206 	} else {
207 		for (i = 0; i < _CRST_ENTRIES; i++)
208 			if (!(table[i] & _REGION_ENTRY_INVALID))
209 				gmap_free_crst(__va(table[i] & PAGE_MASK), free_ptes);
210 	}
211 
212 out:
213 	free_pages((unsigned long)table, CRST_ALLOC_ORDER);
214 }
215 
216 /**
217  * gmap_free - free a guest address space
218  * @gmap: pointer to the guest address space structure
219  *
220  * No locks required. There are no references to this gmap anymore.
221  */
gmap_free(struct gmap * gmap)222 void gmap_free(struct gmap *gmap)
223 {
224 	/* Flush tlb of all gmaps (if not already done for shadows) */
225 	if (!(gmap_is_shadow(gmap) && gmap->removed))
226 		gmap_flush_tlb(gmap);
227 	/* Free all segment & region tables. */
228 	gmap_free_crst(gmap->table, gmap_is_shadow(gmap));
229 
230 	gmap_radix_tree_free(&gmap->guest_to_host);
231 	gmap_radix_tree_free(&gmap->host_to_guest);
232 
233 	/* Free additional data for a shadow gmap */
234 	if (gmap_is_shadow(gmap)) {
235 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
236 		/* Release reference to the parent */
237 		gmap_put(gmap->parent);
238 	}
239 
240 	kfree(gmap);
241 }
242 EXPORT_SYMBOL_GPL(gmap_free);
243 
244 /**
245  * gmap_get - increase reference counter for guest address space
246  * @gmap: pointer to the guest address space structure
247  *
248  * Returns the gmap pointer
249  */
gmap_get(struct gmap * gmap)250 struct gmap *gmap_get(struct gmap *gmap)
251 {
252 	refcount_inc(&gmap->ref_count);
253 	return gmap;
254 }
255 EXPORT_SYMBOL_GPL(gmap_get);
256 
257 /**
258  * gmap_put - decrease reference counter for guest address space
259  * @gmap: pointer to the guest address space structure
260  *
261  * If the reference counter reaches zero the guest address space is freed.
262  */
gmap_put(struct gmap * gmap)263 void gmap_put(struct gmap *gmap)
264 {
265 	if (refcount_dec_and_test(&gmap->ref_count))
266 		gmap_free(gmap);
267 }
268 EXPORT_SYMBOL_GPL(gmap_put);
269 
270 /**
271  * gmap_remove - remove a guest address space but do not free it yet
272  * @gmap: pointer to the guest address space structure
273  */
gmap_remove(struct gmap * gmap)274 void gmap_remove(struct gmap *gmap)
275 {
276 	struct gmap *sg, *next;
277 	unsigned long gmap_asce;
278 
279 	/* Remove all shadow gmaps linked to this gmap */
280 	if (!list_empty(&gmap->children)) {
281 		spin_lock(&gmap->shadow_lock);
282 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
283 			list_del(&sg->list);
284 			gmap_put(sg);
285 		}
286 		spin_unlock(&gmap->shadow_lock);
287 	}
288 	/* Remove gmap from the pre-mm list */
289 	spin_lock(&gmap->mm->context.lock);
290 	list_del_rcu(&gmap->list);
291 	if (list_empty(&gmap->mm->context.gmap_list))
292 		gmap_asce = 0;
293 	else if (list_is_singular(&gmap->mm->context.gmap_list))
294 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
295 					     struct gmap, list)->asce;
296 	else
297 		gmap_asce = -1UL;
298 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
299 	spin_unlock(&gmap->mm->context.lock);
300 	synchronize_rcu();
301 	/* Put reference */
302 	gmap_put(gmap);
303 }
304 EXPORT_SYMBOL_GPL(gmap_remove);
305 
306 /*
307  * gmap_alloc_table is assumed to be called with mmap_lock held
308  */
gmap_alloc_table(struct gmap * gmap,unsigned long * table,unsigned long init,unsigned long gaddr)309 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
310 			    unsigned long init, unsigned long gaddr)
311 {
312 	struct page *page;
313 	unsigned long *new;
314 
315 	/* since we dont free the gmap table until gmap_free we can unlock */
316 	page = gmap_alloc_crst();
317 	if (!page)
318 		return -ENOMEM;
319 	new = page_to_virt(page);
320 	crst_table_init(new, init);
321 	spin_lock(&gmap->guest_table_lock);
322 	if (*table & _REGION_ENTRY_INVALID) {
323 		*table = __pa(new) | _REGION_ENTRY_LENGTH |
324 			(*table & _REGION_ENTRY_TYPE_MASK);
325 		page = NULL;
326 	}
327 	spin_unlock(&gmap->guest_table_lock);
328 	if (page)
329 		__free_pages(page, CRST_ALLOC_ORDER);
330 	return 0;
331 }
332 
host_to_guest_lookup(struct gmap * gmap,unsigned long vmaddr)333 static unsigned long host_to_guest_lookup(struct gmap *gmap, unsigned long vmaddr)
334 {
335 	return (unsigned long)radix_tree_lookup(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
336 }
337 
host_to_guest_delete(struct gmap * gmap,unsigned long vmaddr)338 static unsigned long host_to_guest_delete(struct gmap *gmap, unsigned long vmaddr)
339 {
340 	return (unsigned long)radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
341 }
342 
host_to_guest_pmd_delete(struct gmap * gmap,unsigned long vmaddr,unsigned long * gaddr)343 static pmd_t *host_to_guest_pmd_delete(struct gmap *gmap, unsigned long vmaddr,
344 				       unsigned long *gaddr)
345 {
346 	*gaddr = host_to_guest_delete(gmap, vmaddr);
347 	if (IS_GADDR_VALID(*gaddr))
348 		return (pmd_t *)gmap_table_walk(gmap, *gaddr, 1);
349 	return NULL;
350 }
351 
352 /**
353  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
354  * @gmap: pointer to the guest address space structure
355  * @vmaddr: address in the host process address space
356  *
357  * Returns 1 if a TLB flush is required
358  */
__gmap_unlink_by_vmaddr(struct gmap * gmap,unsigned long vmaddr)359 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
360 {
361 	unsigned long gaddr;
362 	int flush = 0;
363 	pmd_t *pmdp;
364 
365 	BUG_ON(gmap_is_shadow(gmap));
366 	spin_lock(&gmap->guest_table_lock);
367 
368 	pmdp = host_to_guest_pmd_delete(gmap, vmaddr, &gaddr);
369 	if (pmdp) {
370 		flush = (pmd_val(*pmdp) != _SEGMENT_ENTRY_EMPTY);
371 		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
372 	}
373 
374 	spin_unlock(&gmap->guest_table_lock);
375 	return flush;
376 }
377 
378 /**
379  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
380  * @gmap: pointer to the guest address space structure
381  * @gaddr: address in the guest address space
382  *
383  * Returns 1 if a TLB flush is required
384  */
__gmap_unmap_by_gaddr(struct gmap * gmap,unsigned long gaddr)385 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
386 {
387 	unsigned long vmaddr;
388 
389 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
390 						   gaddr >> PMD_SHIFT);
391 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
392 }
393 
394 /**
395  * gmap_unmap_segment - unmap segment from the guest address space
396  * @gmap: pointer to the guest address space structure
397  * @to: address in the guest address space
398  * @len: length of the memory area to unmap
399  *
400  * Returns 0 if the unmap succeeded, -EINVAL if not.
401  */
gmap_unmap_segment(struct gmap * gmap,unsigned long to,unsigned long len)402 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
403 {
404 	unsigned long off;
405 	int flush;
406 
407 	BUG_ON(gmap_is_shadow(gmap));
408 	if ((to | len) & (PMD_SIZE - 1))
409 		return -EINVAL;
410 	if (len == 0 || to + len < to)
411 		return -EINVAL;
412 
413 	flush = 0;
414 	mmap_write_lock(gmap->mm);
415 	for (off = 0; off < len; off += PMD_SIZE)
416 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
417 	mmap_write_unlock(gmap->mm);
418 	if (flush)
419 		gmap_flush_tlb(gmap);
420 	return 0;
421 }
422 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
423 
424 /**
425  * gmap_map_segment - map a segment to the guest address space
426  * @gmap: pointer to the guest address space structure
427  * @from: source address in the parent address space
428  * @to: target address in the guest address space
429  * @len: length of the memory area to map
430  *
431  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
432  */
gmap_map_segment(struct gmap * gmap,unsigned long from,unsigned long to,unsigned long len)433 int gmap_map_segment(struct gmap *gmap, unsigned long from,
434 		     unsigned long to, unsigned long len)
435 {
436 	unsigned long off;
437 	int flush;
438 
439 	BUG_ON(gmap_is_shadow(gmap));
440 	if ((from | to | len) & (PMD_SIZE - 1))
441 		return -EINVAL;
442 	if (len == 0 || from + len < from || to + len < to ||
443 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
444 		return -EINVAL;
445 
446 	flush = 0;
447 	mmap_write_lock(gmap->mm);
448 	for (off = 0; off < len; off += PMD_SIZE) {
449 		/* Remove old translation */
450 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
451 		/* Store new translation */
452 		if (radix_tree_insert(&gmap->guest_to_host,
453 				      (to + off) >> PMD_SHIFT,
454 				      (void *) from + off))
455 			break;
456 	}
457 	mmap_write_unlock(gmap->mm);
458 	if (flush)
459 		gmap_flush_tlb(gmap);
460 	if (off >= len)
461 		return 0;
462 	gmap_unmap_segment(gmap, to, len);
463 	return -ENOMEM;
464 }
465 EXPORT_SYMBOL_GPL(gmap_map_segment);
466 
467 /**
468  * __gmap_translate - translate a guest address to a user space address
469  * @gmap: pointer to guest mapping meta data structure
470  * @gaddr: guest address
471  *
472  * Returns user space address which corresponds to the guest address or
473  * -EFAULT if no such mapping exists.
474  * This function does not establish potentially missing page table entries.
475  * The mmap_lock of the mm that belongs to the address space must be held
476  * when this function gets called.
477  *
478  * Note: Can also be called for shadow gmaps.
479  */
__gmap_translate(struct gmap * gmap,unsigned long gaddr)480 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
481 {
482 	unsigned long vmaddr;
483 
484 	vmaddr = (unsigned long)
485 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
486 	/* Note: guest_to_host is empty for a shadow gmap */
487 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
488 }
489 EXPORT_SYMBOL_GPL(__gmap_translate);
490 
491 /**
492  * gmap_unlink - disconnect a page table from the gmap shadow tables
493  * @mm: pointer to the parent mm_struct
494  * @table: pointer to the host page table
495  * @vmaddr: vm address associated with the host page table
496  */
gmap_unlink(struct mm_struct * mm,unsigned long * table,unsigned long vmaddr)497 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
498 		 unsigned long vmaddr)
499 {
500 	struct gmap *gmap;
501 	int flush;
502 
503 	rcu_read_lock();
504 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
505 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
506 		if (flush)
507 			gmap_flush_tlb(gmap);
508 	}
509 	rcu_read_unlock();
510 }
511 
512 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
513 			   unsigned long gaddr);
514 
515 /**
516  * __gmap_link - set up shadow page tables to connect a host to a guest address
517  * @gmap: pointer to guest mapping meta data structure
518  * @gaddr: guest address
519  * @vmaddr: vm address
520  *
521  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
522  * if the vm address is already mapped to a different guest segment.
523  * The mmap_lock of the mm that belongs to the address space must be held
524  * when this function gets called.
525  */
__gmap_link(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr)526 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
527 {
528 	struct mm_struct *mm;
529 	unsigned long *table;
530 	spinlock_t *ptl;
531 	pgd_t *pgd;
532 	p4d_t *p4d;
533 	pud_t *pud;
534 	pmd_t *pmd;
535 	u64 unprot;
536 	int rc;
537 
538 	BUG_ON(gmap_is_shadow(gmap));
539 	/* Create higher level tables in the gmap page table */
540 	table = gmap->table;
541 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
542 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
543 		if ((*table & _REGION_ENTRY_INVALID) &&
544 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
545 				     gaddr & _REGION1_MASK))
546 			return -ENOMEM;
547 		table = __va(*table & _REGION_ENTRY_ORIGIN);
548 	}
549 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
550 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
551 		if ((*table & _REGION_ENTRY_INVALID) &&
552 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
553 				     gaddr & _REGION2_MASK))
554 			return -ENOMEM;
555 		table = __va(*table & _REGION_ENTRY_ORIGIN);
556 	}
557 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
558 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
559 		if ((*table & _REGION_ENTRY_INVALID) &&
560 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
561 				     gaddr & _REGION3_MASK))
562 			return -ENOMEM;
563 		table = __va(*table & _REGION_ENTRY_ORIGIN);
564 	}
565 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
566 	/* Walk the parent mm page table */
567 	mm = gmap->mm;
568 	pgd = pgd_offset(mm, vmaddr);
569 	VM_BUG_ON(pgd_none(*pgd));
570 	p4d = p4d_offset(pgd, vmaddr);
571 	VM_BUG_ON(p4d_none(*p4d));
572 	pud = pud_offset(p4d, vmaddr);
573 	VM_BUG_ON(pud_none(*pud));
574 	/* large puds cannot yet be handled */
575 	if (pud_leaf(*pud))
576 		return -EFAULT;
577 	pmd = pmd_offset(pud, vmaddr);
578 	VM_BUG_ON(pmd_none(*pmd));
579 	/* Are we allowed to use huge pages? */
580 	if (pmd_leaf(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
581 		return -EFAULT;
582 	/* Link gmap segment table entry location to page table. */
583 	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
584 	if (rc)
585 		return rc;
586 	ptl = pmd_lock(mm, pmd);
587 	spin_lock(&gmap->guest_table_lock);
588 	if (*table == _SEGMENT_ENTRY_EMPTY) {
589 		rc = radix_tree_insert(&gmap->host_to_guest,
590 				       vmaddr >> PMD_SHIFT,
591 				       (void *)MAKE_VALID_GADDR(gaddr));
592 		if (!rc) {
593 			if (pmd_leaf(*pmd)) {
594 				*table = (pmd_val(*pmd) &
595 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
596 					| _SEGMENT_ENTRY_GMAP_UC
597 					| _SEGMENT_ENTRY;
598 			} else
599 				*table = pmd_val(*pmd) &
600 					_SEGMENT_ENTRY_HARDWARE_BITS;
601 		}
602 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
603 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
604 		unprot = (u64)*table;
605 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
606 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
607 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
608 	}
609 	spin_unlock(&gmap->guest_table_lock);
610 	spin_unlock(ptl);
611 	radix_tree_preload_end();
612 	return rc;
613 }
614 EXPORT_SYMBOL(__gmap_link);
615 
616 /*
617  * this function is assumed to be called with mmap_lock held
618  */
__gmap_zap(struct gmap * gmap,unsigned long gaddr)619 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
620 {
621 	struct vm_area_struct *vma;
622 	unsigned long vmaddr;
623 	spinlock_t *ptl;
624 	pte_t *ptep;
625 
626 	/* Find the vm address for the guest address */
627 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
628 						   gaddr >> PMD_SHIFT);
629 	if (vmaddr) {
630 		vmaddr |= gaddr & ~PMD_MASK;
631 
632 		vma = vma_lookup(gmap->mm, vmaddr);
633 		if (!vma || is_vm_hugetlb_page(vma))
634 			return;
635 
636 		/* Get pointer to the page table entry */
637 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
638 		if (likely(ptep)) {
639 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
640 			pte_unmap_unlock(ptep, ptl);
641 		}
642 	}
643 }
644 EXPORT_SYMBOL_GPL(__gmap_zap);
645 
gmap_discard(struct gmap * gmap,unsigned long from,unsigned long to)646 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
647 {
648 	unsigned long gaddr, vmaddr, size;
649 	struct vm_area_struct *vma;
650 
651 	mmap_read_lock(gmap->mm);
652 	for (gaddr = from; gaddr < to;
653 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
654 		/* Find the vm address for the guest address */
655 		vmaddr = (unsigned long)
656 			radix_tree_lookup(&gmap->guest_to_host,
657 					  gaddr >> PMD_SHIFT);
658 		if (!vmaddr)
659 			continue;
660 		vmaddr |= gaddr & ~PMD_MASK;
661 		/* Find vma in the parent mm */
662 		vma = find_vma(gmap->mm, vmaddr);
663 		if (!vma)
664 			continue;
665 		/*
666 		 * We do not discard pages that are backed by
667 		 * hugetlbfs, so we don't have to refault them.
668 		 */
669 		if (is_vm_hugetlb_page(vma))
670 			continue;
671 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
672 		zap_page_range_single(vma, vmaddr, size, NULL);
673 	}
674 	mmap_read_unlock(gmap->mm);
675 }
676 EXPORT_SYMBOL_GPL(gmap_discard);
677 
678 static LIST_HEAD(gmap_notifier_list);
679 static DEFINE_SPINLOCK(gmap_notifier_lock);
680 
681 /**
682  * gmap_register_pte_notifier - register a pte invalidation callback
683  * @nb: pointer to the gmap notifier block
684  */
gmap_register_pte_notifier(struct gmap_notifier * nb)685 void gmap_register_pte_notifier(struct gmap_notifier *nb)
686 {
687 	spin_lock(&gmap_notifier_lock);
688 	list_add_rcu(&nb->list, &gmap_notifier_list);
689 	spin_unlock(&gmap_notifier_lock);
690 }
691 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
692 
693 /**
694  * gmap_unregister_pte_notifier - remove a pte invalidation callback
695  * @nb: pointer to the gmap notifier block
696  */
gmap_unregister_pte_notifier(struct gmap_notifier * nb)697 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
698 {
699 	spin_lock(&gmap_notifier_lock);
700 	list_del_rcu(&nb->list);
701 	spin_unlock(&gmap_notifier_lock);
702 	synchronize_rcu();
703 }
704 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
705 
706 /**
707  * gmap_call_notifier - call all registered invalidation callbacks
708  * @gmap: pointer to guest mapping meta data structure
709  * @start: start virtual address in the guest address space
710  * @end: end virtual address in the guest address space
711  */
gmap_call_notifier(struct gmap * gmap,unsigned long start,unsigned long end)712 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
713 			       unsigned long end)
714 {
715 	struct gmap_notifier *nb;
716 
717 	list_for_each_entry(nb, &gmap_notifier_list, list)
718 		nb->notifier_call(gmap, start, end);
719 }
720 
721 /**
722  * gmap_table_walk - walk the gmap page tables
723  * @gmap: pointer to guest mapping meta data structure
724  * @gaddr: virtual address in the guest address space
725  * @level: page table level to stop at
726  *
727  * Returns a table entry pointer for the given guest address and @level
728  * @level=0 : returns a pointer to a page table table entry (or NULL)
729  * @level=1 : returns a pointer to a segment table entry (or NULL)
730  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
731  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
732  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
733  *
734  * Returns NULL if the gmap page tables could not be walked to the
735  * requested level.
736  *
737  * Note: Can also be called for shadow gmaps.
738  */
gmap_table_walk(struct gmap * gmap,unsigned long gaddr,int level)739 unsigned long *gmap_table_walk(struct gmap *gmap, unsigned long gaddr, int level)
740 {
741 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
742 	unsigned long *table = gmap->table;
743 
744 	if (gmap_is_shadow(gmap) && gmap->removed)
745 		return NULL;
746 
747 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
748 		return NULL;
749 
750 	if (asce_type != _ASCE_TYPE_REGION1 &&
751 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
752 		return NULL;
753 
754 	switch (asce_type) {
755 	case _ASCE_TYPE_REGION1:
756 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
757 		if (level == 4)
758 			break;
759 		if (*table & _REGION_ENTRY_INVALID)
760 			return NULL;
761 		table = __va(*table & _REGION_ENTRY_ORIGIN);
762 		fallthrough;
763 	case _ASCE_TYPE_REGION2:
764 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
765 		if (level == 3)
766 			break;
767 		if (*table & _REGION_ENTRY_INVALID)
768 			return NULL;
769 		table = __va(*table & _REGION_ENTRY_ORIGIN);
770 		fallthrough;
771 	case _ASCE_TYPE_REGION3:
772 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
773 		if (level == 2)
774 			break;
775 		if (*table & _REGION_ENTRY_INVALID)
776 			return NULL;
777 		table = __va(*table & _REGION_ENTRY_ORIGIN);
778 		fallthrough;
779 	case _ASCE_TYPE_SEGMENT:
780 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
781 		if (level == 1)
782 			break;
783 		if (*table & _REGION_ENTRY_INVALID)
784 			return NULL;
785 		table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
786 		table += (gaddr & _PAGE_INDEX) >> PAGE_SHIFT;
787 	}
788 	return table;
789 }
790 EXPORT_SYMBOL(gmap_table_walk);
791 
792 /**
793  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
794  *		      and return the pte pointer
795  * @gmap: pointer to guest mapping meta data structure
796  * @gaddr: virtual address in the guest address space
797  * @ptl: pointer to the spinlock pointer
798  *
799  * Returns a pointer to the locked pte for a guest address, or NULL
800  */
gmap_pte_op_walk(struct gmap * gmap,unsigned long gaddr,spinlock_t ** ptl)801 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
802 			       spinlock_t **ptl)
803 {
804 	unsigned long *table;
805 
806 	BUG_ON(gmap_is_shadow(gmap));
807 	/* Walk the gmap page table, lock and get pte pointer */
808 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
809 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
810 		return NULL;
811 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
812 }
813 
814 /**
815  * gmap_pte_op_fixup - force a page in and connect the gmap page table
816  * @gmap: pointer to guest mapping meta data structure
817  * @gaddr: virtual address in the guest address space
818  * @vmaddr: address in the host process address space
819  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
820  *
821  * Returns 0 if the caller can retry __gmap_translate (might fail again),
822  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
823  * up or connecting the gmap page table.
824  */
gmap_pte_op_fixup(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr,int prot)825 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
826 			     unsigned long vmaddr, int prot)
827 {
828 	struct mm_struct *mm = gmap->mm;
829 	unsigned int fault_flags;
830 	bool unlocked = false;
831 
832 	BUG_ON(gmap_is_shadow(gmap));
833 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
834 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
835 		return -EFAULT;
836 	if (unlocked)
837 		/* lost mmap_lock, caller has to retry __gmap_translate */
838 		return 0;
839 	/* Connect the page tables */
840 	return __gmap_link(gmap, gaddr, vmaddr);
841 }
842 
843 /**
844  * gmap_pte_op_end - release the page table lock
845  * @ptep: pointer to the locked pte
846  * @ptl: pointer to the page table spinlock
847  */
gmap_pte_op_end(pte_t * ptep,spinlock_t * ptl)848 static void gmap_pte_op_end(pte_t *ptep, spinlock_t *ptl)
849 {
850 	pte_unmap_unlock(ptep, ptl);
851 }
852 
853 /**
854  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
855  *		      and return the pmd pointer
856  * @gmap: pointer to guest mapping meta data structure
857  * @gaddr: virtual address in the guest address space
858  *
859  * Returns a pointer to the pmd for a guest address, or NULL
860  */
gmap_pmd_op_walk(struct gmap * gmap,unsigned long gaddr)861 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
862 {
863 	pmd_t *pmdp;
864 
865 	BUG_ON(gmap_is_shadow(gmap));
866 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
867 	if (!pmdp)
868 		return NULL;
869 
870 	/* without huge pages, there is no need to take the table lock */
871 	if (!gmap->mm->context.allow_gmap_hpage_1m)
872 		return pmd_none(*pmdp) ? NULL : pmdp;
873 
874 	spin_lock(&gmap->guest_table_lock);
875 	if (pmd_none(*pmdp)) {
876 		spin_unlock(&gmap->guest_table_lock);
877 		return NULL;
878 	}
879 
880 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
881 	if (!pmd_leaf(*pmdp))
882 		spin_unlock(&gmap->guest_table_lock);
883 	return pmdp;
884 }
885 
886 /**
887  * gmap_pmd_op_end - release the guest_table_lock if needed
888  * @gmap: pointer to the guest mapping meta data structure
889  * @pmdp: pointer to the pmd
890  */
gmap_pmd_op_end(struct gmap * gmap,pmd_t * pmdp)891 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
892 {
893 	if (pmd_leaf(*pmdp))
894 		spin_unlock(&gmap->guest_table_lock);
895 }
896 
897 /*
898  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
899  * @pmdp: pointer to the pmd to be protected
900  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
901  * @bits: notification bits to set
902  *
903  * Returns:
904  * 0 if successfully protected
905  * -EAGAIN if a fixup is needed
906  * -EINVAL if unsupported notifier bits have been specified
907  *
908  * Expected to be called with sg->mm->mmap_lock in read and
909  * guest_table_lock held.
910  */
gmap_protect_pmd(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)911 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
912 			    pmd_t *pmdp, int prot, unsigned long bits)
913 {
914 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
915 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
916 	pmd_t new = *pmdp;
917 
918 	/* Fixup needed */
919 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
920 		return -EAGAIN;
921 
922 	if (prot == PROT_NONE && !pmd_i) {
923 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
924 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
925 	}
926 
927 	if (prot == PROT_READ && !pmd_p) {
928 		new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
929 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
930 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
931 	}
932 
933 	if (bits & GMAP_NOTIFY_MPROT)
934 		set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
935 
936 	/* Shadow GMAP protection needs split PMDs */
937 	if (bits & GMAP_NOTIFY_SHADOW)
938 		return -EINVAL;
939 
940 	return 0;
941 }
942 
943 /*
944  * gmap_protect_pte - remove access rights to memory and set pgste bits
945  * @gmap: pointer to guest mapping meta data structure
946  * @gaddr: virtual address in the guest address space
947  * @pmdp: pointer to the pmd associated with the pte
948  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
949  * @bits: notification bits to set
950  *
951  * Returns 0 if successfully protected, -ENOMEM if out of memory and
952  * -EAGAIN if a fixup is needed.
953  *
954  * Expected to be called with sg->mm->mmap_lock in read
955  */
gmap_protect_pte(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)956 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
957 			    pmd_t *pmdp, int prot, unsigned long bits)
958 {
959 	int rc;
960 	pte_t *ptep;
961 	spinlock_t *ptl;
962 	unsigned long pbits = 0;
963 
964 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
965 		return -EAGAIN;
966 
967 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
968 	if (!ptep)
969 		return -ENOMEM;
970 
971 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
972 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
973 	/* Protect and unlock. */
974 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
975 	gmap_pte_op_end(ptep, ptl);
976 	return rc;
977 }
978 
979 /*
980  * gmap_protect_range - remove access rights to memory and set pgste bits
981  * @gmap: pointer to guest mapping meta data structure
982  * @gaddr: virtual address in the guest address space
983  * @len: size of area
984  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
985  * @bits: pgste notification bits to set
986  *
987  * Returns:
988  *   PAGE_SIZE if a small page was successfully protected;
989  *   HPAGE_SIZE if a large page was successfully protected;
990  *   -ENOMEM if out of memory;
991  *   -EFAULT if gaddr is invalid (or mapping for shadows is missing);
992  *   -EAGAIN if the guest mapping is missing and should be fixed by the caller.
993  *
994  * Context: Called with sg->mm->mmap_lock in read.
995  */
gmap_protect_one(struct gmap * gmap,unsigned long gaddr,int prot,unsigned long bits)996 int gmap_protect_one(struct gmap *gmap, unsigned long gaddr, int prot, unsigned long bits)
997 {
998 	pmd_t *pmdp;
999 	int rc = 0;
1000 
1001 	BUG_ON(gmap_is_shadow(gmap));
1002 
1003 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
1004 	if (!pmdp)
1005 		return -EAGAIN;
1006 
1007 	if (!pmd_leaf(*pmdp)) {
1008 		rc = gmap_protect_pte(gmap, gaddr, pmdp, prot, bits);
1009 		if (!rc)
1010 			rc = PAGE_SIZE;
1011 	} else {
1012 		rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot, bits);
1013 		if (!rc)
1014 			rc = HPAGE_SIZE;
1015 	}
1016 	gmap_pmd_op_end(gmap, pmdp);
1017 
1018 	return rc;
1019 }
1020 EXPORT_SYMBOL_GPL(gmap_protect_one);
1021 
1022 /**
1023  * gmap_read_table - get an unsigned long value from a guest page table using
1024  *                   absolute addressing, without marking the page referenced.
1025  * @gmap: pointer to guest mapping meta data structure
1026  * @gaddr: virtual address in the guest address space
1027  * @val: pointer to the unsigned long value to return
1028  *
1029  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1030  * if reading using the virtual address failed. -EINVAL if called on a gmap
1031  * shadow.
1032  *
1033  * Called with gmap->mm->mmap_lock in read.
1034  */
gmap_read_table(struct gmap * gmap,unsigned long gaddr,unsigned long * val)1035 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1036 {
1037 	unsigned long address, vmaddr;
1038 	spinlock_t *ptl;
1039 	pte_t *ptep, pte;
1040 	int rc;
1041 
1042 	if (gmap_is_shadow(gmap))
1043 		return -EINVAL;
1044 
1045 	while (1) {
1046 		rc = -EAGAIN;
1047 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1048 		if (ptep) {
1049 			pte = *ptep;
1050 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1051 				address = pte_val(pte) & PAGE_MASK;
1052 				address += gaddr & ~PAGE_MASK;
1053 				*val = *(unsigned long *)__va(address);
1054 				set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1055 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1056 				rc = 0;
1057 			}
1058 			gmap_pte_op_end(ptep, ptl);
1059 		}
1060 		if (!rc)
1061 			break;
1062 		vmaddr = __gmap_translate(gmap, gaddr);
1063 		if (IS_ERR_VALUE(vmaddr)) {
1064 			rc = vmaddr;
1065 			break;
1066 		}
1067 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1068 		if (rc)
1069 			break;
1070 	}
1071 	return rc;
1072 }
1073 EXPORT_SYMBOL_GPL(gmap_read_table);
1074 
1075 /**
1076  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1077  * @sg: pointer to the shadow guest address space structure
1078  * @vmaddr: vm address associated with the rmap
1079  * @rmap: pointer to the rmap structure
1080  *
1081  * Called with the sg->guest_table_lock
1082  */
gmap_insert_rmap(struct gmap * sg,unsigned long vmaddr,struct gmap_rmap * rmap)1083 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1084 				    struct gmap_rmap *rmap)
1085 {
1086 	struct gmap_rmap *temp;
1087 	void __rcu **slot;
1088 
1089 	BUG_ON(!gmap_is_shadow(sg));
1090 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1091 	if (slot) {
1092 		rmap->next = radix_tree_deref_slot_protected(slot,
1093 							&sg->guest_table_lock);
1094 		for (temp = rmap->next; temp; temp = temp->next) {
1095 			if (temp->raddr == rmap->raddr) {
1096 				kfree(rmap);
1097 				return;
1098 			}
1099 		}
1100 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1101 	} else {
1102 		rmap->next = NULL;
1103 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1104 				  rmap);
1105 	}
1106 }
1107 
1108 /**
1109  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1110  * @sg: pointer to the shadow guest address space structure
1111  * @raddr: rmap address in the shadow gmap
1112  * @paddr: address in the parent guest address space
1113  * @len: length of the memory area to protect
1114  *
1115  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1116  * if out of memory and -EFAULT if paddr is invalid.
1117  */
gmap_protect_rmap(struct gmap * sg,unsigned long raddr,unsigned long paddr,unsigned long len)1118 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1119 			     unsigned long paddr, unsigned long len)
1120 {
1121 	struct gmap *parent;
1122 	struct gmap_rmap *rmap;
1123 	unsigned long vmaddr;
1124 	spinlock_t *ptl;
1125 	pte_t *ptep;
1126 	int rc;
1127 
1128 	BUG_ON(!gmap_is_shadow(sg));
1129 	parent = sg->parent;
1130 	while (len) {
1131 		vmaddr = __gmap_translate(parent, paddr);
1132 		if (IS_ERR_VALUE(vmaddr))
1133 			return vmaddr;
1134 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1135 		if (!rmap)
1136 			return -ENOMEM;
1137 		rmap->raddr = raddr;
1138 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1139 		if (rc) {
1140 			kfree(rmap);
1141 			return rc;
1142 		}
1143 		rc = -EAGAIN;
1144 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1145 		if (ptep) {
1146 			spin_lock(&sg->guest_table_lock);
1147 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1148 					     PGSTE_VSIE_BIT);
1149 			if (!rc)
1150 				gmap_insert_rmap(sg, vmaddr, rmap);
1151 			spin_unlock(&sg->guest_table_lock);
1152 			gmap_pte_op_end(ptep, ptl);
1153 		}
1154 		radix_tree_preload_end();
1155 		if (rc) {
1156 			kfree(rmap);
1157 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1158 			if (rc)
1159 				return rc;
1160 			continue;
1161 		}
1162 		paddr += PAGE_SIZE;
1163 		len -= PAGE_SIZE;
1164 	}
1165 	return 0;
1166 }
1167 
1168 #define _SHADOW_RMAP_MASK	0x7
1169 #define _SHADOW_RMAP_REGION1	0x5
1170 #define _SHADOW_RMAP_REGION2	0x4
1171 #define _SHADOW_RMAP_REGION3	0x3
1172 #define _SHADOW_RMAP_SEGMENT	0x2
1173 #define _SHADOW_RMAP_PGTABLE	0x1
1174 
1175 /**
1176  * gmap_idte_one - invalidate a single region or segment table entry
1177  * @asce: region or segment table *origin* + table-type bits
1178  * @vaddr: virtual address to identify the table entry to flush
1179  *
1180  * The invalid bit of a single region or segment table entry is set
1181  * and the associated TLB entries depending on the entry are flushed.
1182  * The table-type of the @asce identifies the portion of the @vaddr
1183  * that is used as the invalidation index.
1184  */
gmap_idte_one(unsigned long asce,unsigned long vaddr)1185 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1186 {
1187 	asm volatile(
1188 		"	idte	%0,0,%1"
1189 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1190 }
1191 
1192 /**
1193  * gmap_unshadow_page - remove a page from a shadow page table
1194  * @sg: pointer to the shadow guest address space structure
1195  * @raddr: rmap address in the shadow guest address space
1196  *
1197  * Called with the sg->guest_table_lock
1198  */
gmap_unshadow_page(struct gmap * sg,unsigned long raddr)1199 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1200 {
1201 	unsigned long *table;
1202 
1203 	BUG_ON(!gmap_is_shadow(sg));
1204 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1205 	if (!table || *table & _PAGE_INVALID)
1206 		return;
1207 	gmap_call_notifier(sg, raddr, raddr + PAGE_SIZE - 1);
1208 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1209 }
1210 
1211 /**
1212  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1213  * @sg: pointer to the shadow guest address space structure
1214  * @raddr: rmap address in the shadow guest address space
1215  * @pgt: pointer to the start of a shadow page table
1216  *
1217  * Called with the sg->guest_table_lock
1218  */
__gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr,unsigned long * pgt)1219 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1220 				unsigned long *pgt)
1221 {
1222 	int i;
1223 
1224 	BUG_ON(!gmap_is_shadow(sg));
1225 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += PAGE_SIZE)
1226 		pgt[i] = _PAGE_INVALID;
1227 }
1228 
1229 /**
1230  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1231  * @sg: pointer to the shadow guest address space structure
1232  * @raddr: address in the shadow guest address space
1233  *
1234  * Called with the sg->guest_table_lock
1235  */
gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr)1236 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1237 {
1238 	unsigned long *ste;
1239 	phys_addr_t sto, pgt;
1240 	struct ptdesc *ptdesc;
1241 
1242 	BUG_ON(!gmap_is_shadow(sg));
1243 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1244 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1245 		return;
1246 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1247 	sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1248 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1249 	pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1250 	*ste = _SEGMENT_ENTRY_EMPTY;
1251 	__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1252 	/* Free page table */
1253 	ptdesc = page_ptdesc(phys_to_page(pgt));
1254 	page_table_free_pgste(ptdesc);
1255 }
1256 
1257 /**
1258  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1259  * @sg: pointer to the shadow guest address space structure
1260  * @raddr: rmap address in the shadow guest address space
1261  * @sgt: pointer to the start of a shadow segment table
1262  *
1263  * Called with the sg->guest_table_lock
1264  */
__gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr,unsigned long * sgt)1265 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1266 				unsigned long *sgt)
1267 {
1268 	struct ptdesc *ptdesc;
1269 	phys_addr_t pgt;
1270 	int i;
1271 
1272 	BUG_ON(!gmap_is_shadow(sg));
1273 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1274 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1275 			continue;
1276 		pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1277 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1278 		__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1279 		/* Free page table */
1280 		ptdesc = page_ptdesc(phys_to_page(pgt));
1281 		page_table_free_pgste(ptdesc);
1282 	}
1283 }
1284 
1285 /**
1286  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1287  * @sg: pointer to the shadow guest address space structure
1288  * @raddr: rmap address in the shadow guest address space
1289  *
1290  * Called with the shadow->guest_table_lock
1291  */
gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr)1292 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1293 {
1294 	unsigned long r3o, *r3e;
1295 	phys_addr_t sgt;
1296 	struct page *page;
1297 
1298 	BUG_ON(!gmap_is_shadow(sg));
1299 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1300 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1301 		return;
1302 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1303 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1304 	gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1305 	sgt = *r3e & _REGION_ENTRY_ORIGIN;
1306 	*r3e = _REGION3_ENTRY_EMPTY;
1307 	__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1308 	/* Free segment table */
1309 	page = phys_to_page(sgt);
1310 	__free_pages(page, CRST_ALLOC_ORDER);
1311 }
1312 
1313 /**
1314  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1315  * @sg: pointer to the shadow guest address space structure
1316  * @raddr: address in the shadow guest address space
1317  * @r3t: pointer to the start of a shadow region-3 table
1318  *
1319  * Called with the sg->guest_table_lock
1320  */
__gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr,unsigned long * r3t)1321 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1322 				unsigned long *r3t)
1323 {
1324 	struct page *page;
1325 	phys_addr_t sgt;
1326 	int i;
1327 
1328 	BUG_ON(!gmap_is_shadow(sg));
1329 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1330 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1331 			continue;
1332 		sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1333 		r3t[i] = _REGION3_ENTRY_EMPTY;
1334 		__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1335 		/* Free segment table */
1336 		page = phys_to_page(sgt);
1337 		__free_pages(page, CRST_ALLOC_ORDER);
1338 	}
1339 }
1340 
1341 /**
1342  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1343  * @sg: pointer to the shadow guest address space structure
1344  * @raddr: rmap address in the shadow guest address space
1345  *
1346  * Called with the sg->guest_table_lock
1347  */
gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr)1348 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1349 {
1350 	unsigned long r2o, *r2e;
1351 	phys_addr_t r3t;
1352 	struct page *page;
1353 
1354 	BUG_ON(!gmap_is_shadow(sg));
1355 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1356 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1357 		return;
1358 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1359 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1360 	gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1361 	r3t = *r2e & _REGION_ENTRY_ORIGIN;
1362 	*r2e = _REGION2_ENTRY_EMPTY;
1363 	__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1364 	/* Free region 3 table */
1365 	page = phys_to_page(r3t);
1366 	__free_pages(page, CRST_ALLOC_ORDER);
1367 }
1368 
1369 /**
1370  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1371  * @sg: pointer to the shadow guest address space structure
1372  * @raddr: rmap address in the shadow guest address space
1373  * @r2t: pointer to the start of a shadow region-2 table
1374  *
1375  * Called with the sg->guest_table_lock
1376  */
__gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr,unsigned long * r2t)1377 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1378 				unsigned long *r2t)
1379 {
1380 	phys_addr_t r3t;
1381 	struct page *page;
1382 	int i;
1383 
1384 	BUG_ON(!gmap_is_shadow(sg));
1385 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1386 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1387 			continue;
1388 		r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1389 		r2t[i] = _REGION2_ENTRY_EMPTY;
1390 		__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1391 		/* Free region 3 table */
1392 		page = phys_to_page(r3t);
1393 		__free_pages(page, CRST_ALLOC_ORDER);
1394 	}
1395 }
1396 
1397 /**
1398  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1399  * @sg: pointer to the shadow guest address space structure
1400  * @raddr: rmap address in the shadow guest address space
1401  *
1402  * Called with the sg->guest_table_lock
1403  */
gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr)1404 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1405 {
1406 	unsigned long r1o, *r1e;
1407 	struct page *page;
1408 	phys_addr_t r2t;
1409 
1410 	BUG_ON(!gmap_is_shadow(sg));
1411 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1412 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1413 		return;
1414 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1415 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1416 	gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1417 	r2t = *r1e & _REGION_ENTRY_ORIGIN;
1418 	*r1e = _REGION1_ENTRY_EMPTY;
1419 	__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1420 	/* Free region 2 table */
1421 	page = phys_to_page(r2t);
1422 	__free_pages(page, CRST_ALLOC_ORDER);
1423 }
1424 
1425 /**
1426  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1427  * @sg: pointer to the shadow guest address space structure
1428  * @raddr: rmap address in the shadow guest address space
1429  * @r1t: pointer to the start of a shadow region-1 table
1430  *
1431  * Called with the shadow->guest_table_lock
1432  */
__gmap_unshadow_r1t(struct gmap * sg,unsigned long raddr,unsigned long * r1t)1433 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1434 				unsigned long *r1t)
1435 {
1436 	unsigned long asce;
1437 	struct page *page;
1438 	phys_addr_t r2t;
1439 	int i;
1440 
1441 	BUG_ON(!gmap_is_shadow(sg));
1442 	asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1443 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1444 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1445 			continue;
1446 		r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1447 		__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1448 		/* Clear entry and flush translation r1t -> r2t */
1449 		gmap_idte_one(asce, raddr);
1450 		r1t[i] = _REGION1_ENTRY_EMPTY;
1451 		/* Free region 2 table */
1452 		page = phys_to_page(r2t);
1453 		__free_pages(page, CRST_ALLOC_ORDER);
1454 	}
1455 }
1456 
1457 /**
1458  * gmap_unshadow - remove a shadow page table completely
1459  * @sg: pointer to the shadow guest address space structure
1460  *
1461  * Called with sg->guest_table_lock
1462  */
gmap_unshadow(struct gmap * sg)1463 void gmap_unshadow(struct gmap *sg)
1464 {
1465 	unsigned long *table;
1466 
1467 	BUG_ON(!gmap_is_shadow(sg));
1468 	if (sg->removed)
1469 		return;
1470 	sg->removed = 1;
1471 	gmap_call_notifier(sg, 0, -1UL);
1472 	gmap_flush_tlb(sg);
1473 	table = __va(sg->asce & _ASCE_ORIGIN);
1474 	switch (sg->asce & _ASCE_TYPE_MASK) {
1475 	case _ASCE_TYPE_REGION1:
1476 		__gmap_unshadow_r1t(sg, 0, table);
1477 		break;
1478 	case _ASCE_TYPE_REGION2:
1479 		__gmap_unshadow_r2t(sg, 0, table);
1480 		break;
1481 	case _ASCE_TYPE_REGION3:
1482 		__gmap_unshadow_r3t(sg, 0, table);
1483 		break;
1484 	case _ASCE_TYPE_SEGMENT:
1485 		__gmap_unshadow_sgt(sg, 0, table);
1486 		break;
1487 	}
1488 }
1489 EXPORT_SYMBOL(gmap_unshadow);
1490 
1491 /**
1492  * gmap_shadow_r2t - create an empty shadow region 2 table
1493  * @sg: pointer to the shadow guest address space structure
1494  * @saddr: faulting address in the shadow gmap
1495  * @r2t: parent gmap address of the region 2 table to get shadowed
1496  * @fake: r2t references contiguous guest memory block, not a r2t
1497  *
1498  * The r2t parameter specifies the address of the source table. The
1499  * four pages of the source table are made read-only in the parent gmap
1500  * address space. A write to the source table area @r2t will automatically
1501  * remove the shadow r2 table and all of its descendants.
1502  *
1503  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1504  * shadow table structure is incomplete, -ENOMEM if out of memory and
1505  * -EFAULT if an address in the parent gmap could not be resolved.
1506  *
1507  * Called with sg->mm->mmap_lock in read.
1508  */
gmap_shadow_r2t(struct gmap * sg,unsigned long saddr,unsigned long r2t,int fake)1509 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1510 		    int fake)
1511 {
1512 	unsigned long raddr, origin, offset, len;
1513 	unsigned long *table;
1514 	phys_addr_t s_r2t;
1515 	struct page *page;
1516 	int rc;
1517 
1518 	BUG_ON(!gmap_is_shadow(sg));
1519 	/* Allocate a shadow region second table */
1520 	page = gmap_alloc_crst();
1521 	if (!page)
1522 		return -ENOMEM;
1523 	s_r2t = page_to_phys(page);
1524 	/* Install shadow region second table */
1525 	spin_lock(&sg->guest_table_lock);
1526 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1527 	if (!table) {
1528 		rc = -EAGAIN;		/* Race with unshadow */
1529 		goto out_free;
1530 	}
1531 	if (!(*table & _REGION_ENTRY_INVALID)) {
1532 		rc = 0;			/* Already established */
1533 		goto out_free;
1534 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1535 		rc = -EAGAIN;		/* Race with shadow */
1536 		goto out_free;
1537 	}
1538 	crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1539 	/* mark as invalid as long as the parent table is not protected */
1540 	*table = s_r2t | _REGION_ENTRY_LENGTH |
1541 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1542 	if (sg->edat_level >= 1)
1543 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1544 	if (fake) {
1545 		/* nothing to protect for fake tables */
1546 		*table &= ~_REGION_ENTRY_INVALID;
1547 		spin_unlock(&sg->guest_table_lock);
1548 		return 0;
1549 	}
1550 	spin_unlock(&sg->guest_table_lock);
1551 	/* Make r2t read-only in parent gmap page table */
1552 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1553 	origin = r2t & _REGION_ENTRY_ORIGIN;
1554 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1555 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1556 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1557 	spin_lock(&sg->guest_table_lock);
1558 	if (!rc) {
1559 		table = gmap_table_walk(sg, saddr, 4);
1560 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
1561 			rc = -EAGAIN;		/* Race with unshadow */
1562 		else
1563 			*table &= ~_REGION_ENTRY_INVALID;
1564 	} else {
1565 		gmap_unshadow_r2t(sg, raddr);
1566 	}
1567 	spin_unlock(&sg->guest_table_lock);
1568 	return rc;
1569 out_free:
1570 	spin_unlock(&sg->guest_table_lock);
1571 	__free_pages(page, CRST_ALLOC_ORDER);
1572 	return rc;
1573 }
1574 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1575 
1576 /**
1577  * gmap_shadow_r3t - create a shadow region 3 table
1578  * @sg: pointer to the shadow guest address space structure
1579  * @saddr: faulting address in the shadow gmap
1580  * @r3t: parent gmap address of the region 3 table to get shadowed
1581  * @fake: r3t references contiguous guest memory block, not a r3t
1582  *
1583  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1584  * shadow table structure is incomplete, -ENOMEM if out of memory and
1585  * -EFAULT if an address in the parent gmap could not be resolved.
1586  *
1587  * Called with sg->mm->mmap_lock in read.
1588  */
gmap_shadow_r3t(struct gmap * sg,unsigned long saddr,unsigned long r3t,int fake)1589 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1590 		    int fake)
1591 {
1592 	unsigned long raddr, origin, offset, len;
1593 	unsigned long *table;
1594 	phys_addr_t s_r3t;
1595 	struct page *page;
1596 	int rc;
1597 
1598 	BUG_ON(!gmap_is_shadow(sg));
1599 	/* Allocate a shadow region second table */
1600 	page = gmap_alloc_crst();
1601 	if (!page)
1602 		return -ENOMEM;
1603 	s_r3t = page_to_phys(page);
1604 	/* Install shadow region second table */
1605 	spin_lock(&sg->guest_table_lock);
1606 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1607 	if (!table) {
1608 		rc = -EAGAIN;		/* Race with unshadow */
1609 		goto out_free;
1610 	}
1611 	if (!(*table & _REGION_ENTRY_INVALID)) {
1612 		rc = 0;			/* Already established */
1613 		goto out_free;
1614 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1615 		rc = -EAGAIN;		/* Race with shadow */
1616 		goto out_free;
1617 	}
1618 	crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1619 	/* mark as invalid as long as the parent table is not protected */
1620 	*table = s_r3t | _REGION_ENTRY_LENGTH |
1621 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1622 	if (sg->edat_level >= 1)
1623 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1624 	if (fake) {
1625 		/* nothing to protect for fake tables */
1626 		*table &= ~_REGION_ENTRY_INVALID;
1627 		spin_unlock(&sg->guest_table_lock);
1628 		return 0;
1629 	}
1630 	spin_unlock(&sg->guest_table_lock);
1631 	/* Make r3t read-only in parent gmap page table */
1632 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1633 	origin = r3t & _REGION_ENTRY_ORIGIN;
1634 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1635 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1636 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1637 	spin_lock(&sg->guest_table_lock);
1638 	if (!rc) {
1639 		table = gmap_table_walk(sg, saddr, 3);
1640 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
1641 			rc = -EAGAIN;		/* Race with unshadow */
1642 		else
1643 			*table &= ~_REGION_ENTRY_INVALID;
1644 	} else {
1645 		gmap_unshadow_r3t(sg, raddr);
1646 	}
1647 	spin_unlock(&sg->guest_table_lock);
1648 	return rc;
1649 out_free:
1650 	spin_unlock(&sg->guest_table_lock);
1651 	__free_pages(page, CRST_ALLOC_ORDER);
1652 	return rc;
1653 }
1654 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1655 
1656 /**
1657  * gmap_shadow_sgt - create a shadow segment table
1658  * @sg: pointer to the shadow guest address space structure
1659  * @saddr: faulting address in the shadow gmap
1660  * @sgt: parent gmap address of the segment table to get shadowed
1661  * @fake: sgt references contiguous guest memory block, not a sgt
1662  *
1663  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1664  * shadow table structure is incomplete, -ENOMEM if out of memory and
1665  * -EFAULT if an address in the parent gmap could not be resolved.
1666  *
1667  * Called with sg->mm->mmap_lock in read.
1668  */
gmap_shadow_sgt(struct gmap * sg,unsigned long saddr,unsigned long sgt,int fake)1669 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1670 		    int fake)
1671 {
1672 	unsigned long raddr, origin, offset, len;
1673 	unsigned long *table;
1674 	phys_addr_t s_sgt;
1675 	struct page *page;
1676 	int rc;
1677 
1678 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1679 	/* Allocate a shadow segment table */
1680 	page = gmap_alloc_crst();
1681 	if (!page)
1682 		return -ENOMEM;
1683 	s_sgt = page_to_phys(page);
1684 	/* Install shadow region second table */
1685 	spin_lock(&sg->guest_table_lock);
1686 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1687 	if (!table) {
1688 		rc = -EAGAIN;		/* Race with unshadow */
1689 		goto out_free;
1690 	}
1691 	if (!(*table & _REGION_ENTRY_INVALID)) {
1692 		rc = 0;			/* Already established */
1693 		goto out_free;
1694 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1695 		rc = -EAGAIN;		/* Race with shadow */
1696 		goto out_free;
1697 	}
1698 	crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
1699 	/* mark as invalid as long as the parent table is not protected */
1700 	*table = s_sgt | _REGION_ENTRY_LENGTH |
1701 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1702 	if (sg->edat_level >= 1)
1703 		*table |= sgt & _REGION_ENTRY_PROTECT;
1704 	if (fake) {
1705 		/* nothing to protect for fake tables */
1706 		*table &= ~_REGION_ENTRY_INVALID;
1707 		spin_unlock(&sg->guest_table_lock);
1708 		return 0;
1709 	}
1710 	spin_unlock(&sg->guest_table_lock);
1711 	/* Make sgt read-only in parent gmap page table */
1712 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1713 	origin = sgt & _REGION_ENTRY_ORIGIN;
1714 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1715 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1716 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1717 	spin_lock(&sg->guest_table_lock);
1718 	if (!rc) {
1719 		table = gmap_table_walk(sg, saddr, 2);
1720 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
1721 			rc = -EAGAIN;		/* Race with unshadow */
1722 		else
1723 			*table &= ~_REGION_ENTRY_INVALID;
1724 	} else {
1725 		gmap_unshadow_sgt(sg, raddr);
1726 	}
1727 	spin_unlock(&sg->guest_table_lock);
1728 	return rc;
1729 out_free:
1730 	spin_unlock(&sg->guest_table_lock);
1731 	__free_pages(page, CRST_ALLOC_ORDER);
1732 	return rc;
1733 }
1734 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1735 
gmap_pgste_set_pgt_addr(struct ptdesc * ptdesc,unsigned long pgt_addr)1736 static void gmap_pgste_set_pgt_addr(struct ptdesc *ptdesc, unsigned long pgt_addr)
1737 {
1738 	unsigned long *pgstes = page_to_virt(ptdesc_page(ptdesc));
1739 
1740 	pgstes += _PAGE_ENTRIES;
1741 
1742 	pgstes[0] &= ~PGSTE_ST2_MASK;
1743 	pgstes[1] &= ~PGSTE_ST2_MASK;
1744 	pgstes[2] &= ~PGSTE_ST2_MASK;
1745 	pgstes[3] &= ~PGSTE_ST2_MASK;
1746 
1747 	pgstes[0] |= (pgt_addr >> 16) & PGSTE_ST2_MASK;
1748 	pgstes[1] |= pgt_addr & PGSTE_ST2_MASK;
1749 	pgstes[2] |= (pgt_addr << 16) & PGSTE_ST2_MASK;
1750 	pgstes[3] |= (pgt_addr << 32) & PGSTE_ST2_MASK;
1751 }
1752 
1753 /**
1754  * gmap_shadow_pgt - instantiate a shadow page table
1755  * @sg: pointer to the shadow guest address space structure
1756  * @saddr: faulting address in the shadow gmap
1757  * @pgt: parent gmap address of the page table to get shadowed
1758  * @fake: pgt references contiguous guest memory block, not a pgtable
1759  *
1760  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1761  * shadow table structure is incomplete, -ENOMEM if out of memory,
1762  * -EFAULT if an address in the parent gmap could not be resolved and
1763  *
1764  * Called with gmap->mm->mmap_lock in read
1765  */
gmap_shadow_pgt(struct gmap * sg,unsigned long saddr,unsigned long pgt,int fake)1766 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
1767 		    int fake)
1768 {
1769 	unsigned long raddr, origin;
1770 	unsigned long *table;
1771 	struct ptdesc *ptdesc;
1772 	phys_addr_t s_pgt;
1773 	int rc;
1774 
1775 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
1776 	/* Allocate a shadow page table */
1777 	ptdesc = page_table_alloc_pgste(sg->mm);
1778 	if (!ptdesc)
1779 		return -ENOMEM;
1780 	origin = pgt & _SEGMENT_ENTRY_ORIGIN;
1781 	if (fake)
1782 		origin |= GMAP_SHADOW_FAKE_TABLE;
1783 	gmap_pgste_set_pgt_addr(ptdesc, origin);
1784 	s_pgt = page_to_phys(ptdesc_page(ptdesc));
1785 	/* Install shadow page table */
1786 	spin_lock(&sg->guest_table_lock);
1787 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1788 	if (!table) {
1789 		rc = -EAGAIN;		/* Race with unshadow */
1790 		goto out_free;
1791 	}
1792 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
1793 		rc = 0;			/* Already established */
1794 		goto out_free;
1795 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
1796 		rc = -EAGAIN;		/* Race with shadow */
1797 		goto out_free;
1798 	}
1799 	/* mark as invalid as long as the parent table is not protected */
1800 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
1801 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
1802 	if (fake) {
1803 		/* nothing to protect for fake tables */
1804 		*table &= ~_SEGMENT_ENTRY_INVALID;
1805 		spin_unlock(&sg->guest_table_lock);
1806 		return 0;
1807 	}
1808 	spin_unlock(&sg->guest_table_lock);
1809 	/* Make pgt read-only in parent gmap page table (not the pgste) */
1810 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
1811 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
1812 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
1813 	spin_lock(&sg->guest_table_lock);
1814 	if (!rc) {
1815 		table = gmap_table_walk(sg, saddr, 1);
1816 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
1817 			rc = -EAGAIN;		/* Race with unshadow */
1818 		else
1819 			*table &= ~_SEGMENT_ENTRY_INVALID;
1820 	} else {
1821 		gmap_unshadow_pgt(sg, raddr);
1822 	}
1823 	spin_unlock(&sg->guest_table_lock);
1824 	return rc;
1825 out_free:
1826 	spin_unlock(&sg->guest_table_lock);
1827 	page_table_free_pgste(ptdesc);
1828 	return rc;
1829 
1830 }
1831 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
1832 
1833 /**
1834  * gmap_shadow_page - create a shadow page mapping
1835  * @sg: pointer to the shadow guest address space structure
1836  * @saddr: faulting address in the shadow gmap
1837  * @pte: pte in parent gmap address space to get shadowed
1838  *
1839  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1840  * shadow table structure is incomplete, -ENOMEM if out of memory and
1841  * -EFAULT if an address in the parent gmap could not be resolved.
1842  *
1843  * Called with sg->mm->mmap_lock in read.
1844  */
gmap_shadow_page(struct gmap * sg,unsigned long saddr,pte_t pte)1845 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
1846 {
1847 	struct gmap *parent;
1848 	struct gmap_rmap *rmap;
1849 	unsigned long vmaddr, paddr;
1850 	spinlock_t *ptl;
1851 	pte_t *sptep, *tptep;
1852 	int prot;
1853 	int rc;
1854 
1855 	BUG_ON(!gmap_is_shadow(sg));
1856 	parent = sg->parent;
1857 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
1858 
1859 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1860 	if (!rmap)
1861 		return -ENOMEM;
1862 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
1863 
1864 	while (1) {
1865 		paddr = pte_val(pte) & PAGE_MASK;
1866 		vmaddr = __gmap_translate(parent, paddr);
1867 		if (IS_ERR_VALUE(vmaddr)) {
1868 			rc = vmaddr;
1869 			break;
1870 		}
1871 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1872 		if (rc)
1873 			break;
1874 		rc = -EAGAIN;
1875 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
1876 		if (sptep) {
1877 			spin_lock(&sg->guest_table_lock);
1878 			/* Get page table pointer */
1879 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
1880 			if (!tptep) {
1881 				spin_unlock(&sg->guest_table_lock);
1882 				gmap_pte_op_end(sptep, ptl);
1883 				radix_tree_preload_end();
1884 				break;
1885 			}
1886 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
1887 			if (rc > 0) {
1888 				/* Success and a new mapping */
1889 				gmap_insert_rmap(sg, vmaddr, rmap);
1890 				rmap = NULL;
1891 				rc = 0;
1892 			}
1893 			gmap_pte_op_end(sptep, ptl);
1894 			spin_unlock(&sg->guest_table_lock);
1895 		}
1896 		radix_tree_preload_end();
1897 		if (!rc)
1898 			break;
1899 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
1900 		if (rc)
1901 			break;
1902 	}
1903 	kfree(rmap);
1904 	return rc;
1905 }
1906 EXPORT_SYMBOL_GPL(gmap_shadow_page);
1907 
1908 /*
1909  * gmap_shadow_notify - handle notifications for shadow gmap
1910  *
1911  * Called with sg->parent->shadow_lock.
1912  */
gmap_shadow_notify(struct gmap * sg,unsigned long vmaddr,unsigned long gaddr)1913 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
1914 			       unsigned long gaddr)
1915 {
1916 	struct gmap_rmap *rmap, *rnext, *head;
1917 	unsigned long start, end, bits, raddr;
1918 
1919 	BUG_ON(!gmap_is_shadow(sg));
1920 
1921 	spin_lock(&sg->guest_table_lock);
1922 	if (sg->removed) {
1923 		spin_unlock(&sg->guest_table_lock);
1924 		return;
1925 	}
1926 	/* Check for top level table */
1927 	start = sg->orig_asce & _ASCE_ORIGIN;
1928 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
1929 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
1930 	    gaddr < end) {
1931 		/* The complete shadow table has to go */
1932 		gmap_unshadow(sg);
1933 		spin_unlock(&sg->guest_table_lock);
1934 		list_del(&sg->list);
1935 		gmap_put(sg);
1936 		return;
1937 	}
1938 	/* Remove the page table tree from on specific entry */
1939 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1940 	gmap_for_each_rmap_safe(rmap, rnext, head) {
1941 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
1942 		raddr = rmap->raddr ^ bits;
1943 		switch (bits) {
1944 		case _SHADOW_RMAP_REGION1:
1945 			gmap_unshadow_r2t(sg, raddr);
1946 			break;
1947 		case _SHADOW_RMAP_REGION2:
1948 			gmap_unshadow_r3t(sg, raddr);
1949 			break;
1950 		case _SHADOW_RMAP_REGION3:
1951 			gmap_unshadow_sgt(sg, raddr);
1952 			break;
1953 		case _SHADOW_RMAP_SEGMENT:
1954 			gmap_unshadow_pgt(sg, raddr);
1955 			break;
1956 		case _SHADOW_RMAP_PGTABLE:
1957 			gmap_unshadow_page(sg, raddr);
1958 			break;
1959 		}
1960 		kfree(rmap);
1961 	}
1962 	spin_unlock(&sg->guest_table_lock);
1963 }
1964 
1965 /**
1966  * ptep_notify - call all invalidation callbacks for a specific pte.
1967  * @mm: pointer to the process mm_struct
1968  * @vmaddr: virtual address in the process address space
1969  * @pte: pointer to the page table entry
1970  * @bits: bits from the pgste that caused the notify call
1971  *
1972  * This function is assumed to be called with the page table lock held
1973  * for the pte to notify.
1974  */
ptep_notify(struct mm_struct * mm,unsigned long vmaddr,pte_t * pte,unsigned long bits)1975 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
1976 		 pte_t *pte, unsigned long bits)
1977 {
1978 	unsigned long offset, gaddr = 0;
1979 	struct gmap *gmap, *sg, *next;
1980 
1981 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
1982 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
1983 	rcu_read_lock();
1984 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
1985 		spin_lock(&gmap->guest_table_lock);
1986 		gaddr = host_to_guest_lookup(gmap, vmaddr) + offset;
1987 		spin_unlock(&gmap->guest_table_lock);
1988 		if (!IS_GADDR_VALID(gaddr))
1989 			continue;
1990 
1991 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
1992 			spin_lock(&gmap->shadow_lock);
1993 			list_for_each_entry_safe(sg, next,
1994 						 &gmap->children, list)
1995 				gmap_shadow_notify(sg, vmaddr, gaddr);
1996 			spin_unlock(&gmap->shadow_lock);
1997 		}
1998 		if (bits & PGSTE_IN_BIT)
1999 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2000 	}
2001 	rcu_read_unlock();
2002 }
2003 EXPORT_SYMBOL_GPL(ptep_notify);
2004 
pmdp_notify_gmap(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2005 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2006 			     unsigned long gaddr)
2007 {
2008 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2009 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2010 }
2011 
2012 /**
2013  * gmap_pmdp_xchg - exchange a gmap pmd with another
2014  * @gmap: pointer to the guest address space structure
2015  * @pmdp: pointer to the pmd entry
2016  * @new: replacement entry
2017  * @gaddr: the affected guest address
2018  *
2019  * This function is assumed to be called with the guest_table_lock
2020  * held.
2021  */
gmap_pmdp_xchg(struct gmap * gmap,pmd_t * pmdp,pmd_t new,unsigned long gaddr)2022 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2023 			   unsigned long gaddr)
2024 {
2025 	gaddr &= HPAGE_MASK;
2026 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2027 	new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2028 	if (MACHINE_HAS_TLB_GUEST)
2029 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2030 			    IDTE_GLOBAL);
2031 	else if (MACHINE_HAS_IDTE)
2032 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2033 	else
2034 		__pmdp_csp(pmdp);
2035 	set_pmd(pmdp, new);
2036 }
2037 
gmap_pmdp_clear(struct mm_struct * mm,unsigned long vmaddr,int purge)2038 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2039 			    int purge)
2040 {
2041 	pmd_t *pmdp;
2042 	struct gmap *gmap;
2043 	unsigned long gaddr;
2044 
2045 	rcu_read_lock();
2046 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2047 		spin_lock(&gmap->guest_table_lock);
2048 		pmdp = host_to_guest_pmd_delete(gmap, vmaddr, &gaddr);
2049 		if (pmdp) {
2050 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2051 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2052 						   _SEGMENT_ENTRY_GMAP_UC |
2053 						   _SEGMENT_ENTRY));
2054 			if (purge)
2055 				__pmdp_csp(pmdp);
2056 			set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2057 		}
2058 		spin_unlock(&gmap->guest_table_lock);
2059 	}
2060 	rcu_read_unlock();
2061 }
2062 
2063 /**
2064  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2065  *                        flushing
2066  * @mm: pointer to the process mm_struct
2067  * @vmaddr: virtual address in the process address space
2068  */
gmap_pmdp_invalidate(struct mm_struct * mm,unsigned long vmaddr)2069 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2070 {
2071 	gmap_pmdp_clear(mm, vmaddr, 0);
2072 }
2073 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2074 
2075 /**
2076  * gmap_pmdp_csp - csp all affected guest pmd entries
2077  * @mm: pointer to the process mm_struct
2078  * @vmaddr: virtual address in the process address space
2079  */
gmap_pmdp_csp(struct mm_struct * mm,unsigned long vmaddr)2080 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2081 {
2082 	gmap_pmdp_clear(mm, vmaddr, 1);
2083 }
2084 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2085 
2086 /**
2087  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2088  * @mm: pointer to the process mm_struct
2089  * @vmaddr: virtual address in the process address space
2090  */
gmap_pmdp_idte_local(struct mm_struct * mm,unsigned long vmaddr)2091 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2092 {
2093 	unsigned long gaddr;
2094 	struct gmap *gmap;
2095 	pmd_t *pmdp;
2096 
2097 	rcu_read_lock();
2098 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2099 		spin_lock(&gmap->guest_table_lock);
2100 		pmdp = host_to_guest_pmd_delete(gmap, vmaddr, &gaddr);
2101 		if (pmdp) {
2102 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2103 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2104 						   _SEGMENT_ENTRY_GMAP_UC |
2105 						   _SEGMENT_ENTRY));
2106 			if (MACHINE_HAS_TLB_GUEST)
2107 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2108 					    gmap->asce, IDTE_LOCAL);
2109 			else if (MACHINE_HAS_IDTE)
2110 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2111 			*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
2112 		}
2113 		spin_unlock(&gmap->guest_table_lock);
2114 	}
2115 	rcu_read_unlock();
2116 }
2117 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2118 
2119 /**
2120  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2121  * @mm: pointer to the process mm_struct
2122  * @vmaddr: virtual address in the process address space
2123  */
gmap_pmdp_idte_global(struct mm_struct * mm,unsigned long vmaddr)2124 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2125 {
2126 	unsigned long gaddr;
2127 	struct gmap *gmap;
2128 	pmd_t *pmdp;
2129 
2130 	rcu_read_lock();
2131 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2132 		spin_lock(&gmap->guest_table_lock);
2133 		pmdp = host_to_guest_pmd_delete(gmap, vmaddr, &gaddr);
2134 		if (pmdp) {
2135 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2136 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2137 						   _SEGMENT_ENTRY_GMAP_UC |
2138 						   _SEGMENT_ENTRY));
2139 			if (MACHINE_HAS_TLB_GUEST)
2140 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2141 					    gmap->asce, IDTE_GLOBAL);
2142 			else if (MACHINE_HAS_IDTE)
2143 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2144 			else
2145 				__pmdp_csp(pmdp);
2146 			*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
2147 		}
2148 		spin_unlock(&gmap->guest_table_lock);
2149 	}
2150 	rcu_read_unlock();
2151 }
2152 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2153 
2154 /**
2155  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2156  * @gmap: pointer to guest address space
2157  * @pmdp: pointer to the pmd to be tested
2158  * @gaddr: virtual address in the guest address space
2159  *
2160  * This function is assumed to be called with the guest_table_lock
2161  * held.
2162  */
gmap_test_and_clear_dirty_pmd(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2163 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2164 					  unsigned long gaddr)
2165 {
2166 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2167 		return false;
2168 
2169 	/* Already protected memory, which did not change is clean */
2170 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2171 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2172 		return false;
2173 
2174 	/* Clear UC indication and reset protection */
2175 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2176 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2177 	return true;
2178 }
2179 
2180 /**
2181  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2182  * @gmap: pointer to guest address space
2183  * @bitmap: dirty bitmap for this pmd
2184  * @gaddr: virtual address in the guest address space
2185  * @vmaddr: virtual address in the host address space
2186  *
2187  * This function is assumed to be called with the guest_table_lock
2188  * held.
2189  */
gmap_sync_dirty_log_pmd(struct gmap * gmap,unsigned long bitmap[4],unsigned long gaddr,unsigned long vmaddr)2190 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2191 			     unsigned long gaddr, unsigned long vmaddr)
2192 {
2193 	int i;
2194 	pmd_t *pmdp;
2195 	pte_t *ptep;
2196 	spinlock_t *ptl;
2197 
2198 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2199 	if (!pmdp)
2200 		return;
2201 
2202 	if (pmd_leaf(*pmdp)) {
2203 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2204 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2205 	} else {
2206 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2207 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2208 			if (!ptep)
2209 				continue;
2210 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2211 				set_bit(i, bitmap);
2212 			pte_unmap_unlock(ptep, ptl);
2213 		}
2214 	}
2215 	gmap_pmd_op_end(gmap, pmdp);
2216 }
2217 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2218 
2219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
thp_split_walk_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)2220 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2221 				    unsigned long end, struct mm_walk *walk)
2222 {
2223 	struct vm_area_struct *vma = walk->vma;
2224 
2225 	split_huge_pmd(vma, pmd, addr);
2226 	return 0;
2227 }
2228 
2229 static const struct mm_walk_ops thp_split_walk_ops = {
2230 	.pmd_entry	= thp_split_walk_pmd_entry,
2231 	.walk_lock	= PGWALK_WRLOCK_VERIFY,
2232 };
2233 
thp_split_mm(struct mm_struct * mm)2234 static inline void thp_split_mm(struct mm_struct *mm)
2235 {
2236 	struct vm_area_struct *vma;
2237 	VMA_ITERATOR(vmi, mm, 0);
2238 
2239 	for_each_vma(vmi, vma) {
2240 		vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE);
2241 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2242 	}
2243 	mm->def_flags |= VM_NOHUGEPAGE;
2244 }
2245 #else
thp_split_mm(struct mm_struct * mm)2246 static inline void thp_split_mm(struct mm_struct *mm)
2247 {
2248 }
2249 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2250 
2251 /*
2252  * switch on pgstes for its userspace process (for kvm)
2253  */
s390_enable_sie(void)2254 int s390_enable_sie(void)
2255 {
2256 	struct mm_struct *mm = current->mm;
2257 
2258 	/* Do we have pgstes? if yes, we are done */
2259 	if (mm_has_pgste(mm))
2260 		return 0;
2261 	/* Fail if the page tables are 2K */
2262 	if (!mm_alloc_pgste(mm))
2263 		return -EINVAL;
2264 	mmap_write_lock(mm);
2265 	mm->context.has_pgste = 1;
2266 	/* split thp mappings and disable thp for future mappings */
2267 	thp_split_mm(mm);
2268 	mmap_write_unlock(mm);
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL_GPL(s390_enable_sie);
2272 
find_zeropage_pte_entry(pte_t * pte,unsigned long addr,unsigned long end,struct mm_walk * walk)2273 static int find_zeropage_pte_entry(pte_t *pte, unsigned long addr,
2274 				   unsigned long end, struct mm_walk *walk)
2275 {
2276 	unsigned long *found_addr = walk->private;
2277 
2278 	/* Return 1 of the page is a zeropage. */
2279 	if (is_zero_pfn(pte_pfn(*pte))) {
2280 		/*
2281 		 * Shared zeropage in e.g., a FS DAX mapping? We cannot do the
2282 		 * right thing and likely don't care: FAULT_FLAG_UNSHARE
2283 		 * currently only works in COW mappings, which is also where
2284 		 * mm_forbids_zeropage() is checked.
2285 		 */
2286 		if (!is_cow_mapping(walk->vma->vm_flags))
2287 			return -EFAULT;
2288 
2289 		*found_addr = addr;
2290 		return 1;
2291 	}
2292 	return 0;
2293 }
2294 
2295 static const struct mm_walk_ops find_zeropage_ops = {
2296 	.pte_entry	= find_zeropage_pte_entry,
2297 	.walk_lock	= PGWALK_WRLOCK,
2298 };
2299 
2300 /*
2301  * Unshare all shared zeropages, replacing them by anonymous pages. Note that
2302  * we cannot simply zap all shared zeropages, because this could later
2303  * trigger unexpected userfaultfd missing events.
2304  *
2305  * This must be called after mm->context.allow_cow_sharing was
2306  * set to 0, to avoid future mappings of shared zeropages.
2307  *
2308  * mm contracts with s390, that even if mm were to remove a page table,
2309  * and racing with walk_page_range_vma() calling pte_offset_map_lock()
2310  * would fail, it will never insert a page table containing empty zero
2311  * pages once mm_forbids_zeropage(mm) i.e.
2312  * mm->context.allow_cow_sharing is set to 0.
2313  */
__s390_unshare_zeropages(struct mm_struct * mm)2314 static int __s390_unshare_zeropages(struct mm_struct *mm)
2315 {
2316 	struct vm_area_struct *vma;
2317 	VMA_ITERATOR(vmi, mm, 0);
2318 	unsigned long addr;
2319 	vm_fault_t fault;
2320 	int rc;
2321 
2322 	for_each_vma(vmi, vma) {
2323 		/*
2324 		 * We could only look at COW mappings, but it's more future
2325 		 * proof to catch unexpected zeropages in other mappings and
2326 		 * fail.
2327 		 */
2328 		if ((vma->vm_flags & VM_PFNMAP) || is_vm_hugetlb_page(vma))
2329 			continue;
2330 		addr = vma->vm_start;
2331 
2332 retry:
2333 		rc = walk_page_range_vma(vma, addr, vma->vm_end,
2334 					 &find_zeropage_ops, &addr);
2335 		if (rc < 0)
2336 			return rc;
2337 		else if (!rc)
2338 			continue;
2339 
2340 		/* addr was updated by find_zeropage_pte_entry() */
2341 		fault = handle_mm_fault(vma, addr,
2342 					FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
2343 					NULL);
2344 		if (fault & VM_FAULT_OOM)
2345 			return -ENOMEM;
2346 		/*
2347 		 * See break_ksm(): even after handle_mm_fault() returned 0, we
2348 		 * must start the lookup from the current address, because
2349 		 * handle_mm_fault() may back out if there's any difficulty.
2350 		 *
2351 		 * VM_FAULT_SIGBUS and VM_FAULT_SIGSEGV are unexpected but
2352 		 * maybe they could trigger in the future on concurrent
2353 		 * truncation. In that case, the shared zeropage would be gone
2354 		 * and we can simply retry and make progress.
2355 		 */
2356 		cond_resched();
2357 		goto retry;
2358 	}
2359 
2360 	return 0;
2361 }
2362 
__s390_disable_cow_sharing(struct mm_struct * mm)2363 static int __s390_disable_cow_sharing(struct mm_struct *mm)
2364 {
2365 	int rc;
2366 
2367 	if (!mm->context.allow_cow_sharing)
2368 		return 0;
2369 
2370 	mm->context.allow_cow_sharing = 0;
2371 
2372 	/* Replace all shared zeropages by anonymous pages. */
2373 	rc = __s390_unshare_zeropages(mm);
2374 	/*
2375 	 * Make sure to disable KSM (if enabled for the whole process or
2376 	 * individual VMAs). Note that nothing currently hinders user space
2377 	 * from re-enabling it.
2378 	 */
2379 	if (!rc)
2380 		rc = ksm_disable(mm);
2381 	if (rc)
2382 		mm->context.allow_cow_sharing = 1;
2383 	return rc;
2384 }
2385 
2386 /*
2387  * Disable most COW-sharing of memory pages for the whole process:
2388  * (1) Disable KSM and unmerge/unshare any KSM pages.
2389  * (2) Disallow shared zeropages and unshare any zerpages that are mapped.
2390  *
2391  * Not that we currently don't bother with COW-shared pages that are shared
2392  * with parent/child processes due to fork().
2393  */
s390_disable_cow_sharing(void)2394 int s390_disable_cow_sharing(void)
2395 {
2396 	int rc;
2397 
2398 	mmap_write_lock(current->mm);
2399 	rc = __s390_disable_cow_sharing(current->mm);
2400 	mmap_write_unlock(current->mm);
2401 	return rc;
2402 }
2403 EXPORT_SYMBOL_GPL(s390_disable_cow_sharing);
2404 
2405 /*
2406  * Enable storage key handling from now on and initialize the storage
2407  * keys with the default key.
2408  */
__s390_enable_skey_pte(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2409 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2410 				  unsigned long next, struct mm_walk *walk)
2411 {
2412 	/* Clear storage key */
2413 	ptep_zap_key(walk->mm, addr, pte);
2414 	return 0;
2415 }
2416 
2417 /*
2418  * Give a chance to schedule after setting a key to 256 pages.
2419  * We only hold the mm lock, which is a rwsem and the kvm srcu.
2420  * Both can sleep.
2421  */
__s390_enable_skey_pmd(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)2422 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2423 				  unsigned long next, struct mm_walk *walk)
2424 {
2425 	cond_resched();
2426 	return 0;
2427 }
2428 
__s390_enable_skey_hugetlb(pte_t * pte,unsigned long addr,unsigned long hmask,unsigned long next,struct mm_walk * walk)2429 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2430 				      unsigned long hmask, unsigned long next,
2431 				      struct mm_walk *walk)
2432 {
2433 	pmd_t *pmd = (pmd_t *)pte;
2434 	unsigned long start, end;
2435 	struct folio *folio = page_folio(pmd_page(*pmd));
2436 
2437 	/*
2438 	 * The write check makes sure we do not set a key on shared
2439 	 * memory. This is needed as the walker does not differentiate
2440 	 * between actual guest memory and the process executable or
2441 	 * shared libraries.
2442 	 */
2443 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2444 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2445 		return 0;
2446 
2447 	start = pmd_val(*pmd) & HPAGE_MASK;
2448 	end = start + HPAGE_SIZE;
2449 	__storage_key_init_range(start, end);
2450 	set_bit(PG_arch_1, &folio->flags);
2451 	cond_resched();
2452 	return 0;
2453 }
2454 
2455 static const struct mm_walk_ops enable_skey_walk_ops = {
2456 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2457 	.pte_entry		= __s390_enable_skey_pte,
2458 	.pmd_entry		= __s390_enable_skey_pmd,
2459 	.walk_lock		= PGWALK_WRLOCK,
2460 };
2461 
s390_enable_skey(void)2462 int s390_enable_skey(void)
2463 {
2464 	struct mm_struct *mm = current->mm;
2465 	int rc = 0;
2466 
2467 	mmap_write_lock(mm);
2468 	if (mm_uses_skeys(mm))
2469 		goto out_up;
2470 
2471 	mm->context.uses_skeys = 1;
2472 	rc = __s390_disable_cow_sharing(mm);
2473 	if (rc) {
2474 		mm->context.uses_skeys = 0;
2475 		goto out_up;
2476 	}
2477 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2478 
2479 out_up:
2480 	mmap_write_unlock(mm);
2481 	return rc;
2482 }
2483 EXPORT_SYMBOL_GPL(s390_enable_skey);
2484 
2485 /*
2486  * Reset CMMA state, make all pages stable again.
2487  */
__s390_reset_cmma(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2488 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2489 			     unsigned long next, struct mm_walk *walk)
2490 {
2491 	ptep_zap_unused(walk->mm, addr, pte, 1);
2492 	return 0;
2493 }
2494 
2495 static const struct mm_walk_ops reset_cmma_walk_ops = {
2496 	.pte_entry		= __s390_reset_cmma,
2497 	.walk_lock		= PGWALK_WRLOCK,
2498 };
2499 
s390_reset_cmma(struct mm_struct * mm)2500 void s390_reset_cmma(struct mm_struct *mm)
2501 {
2502 	mmap_write_lock(mm);
2503 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2504 	mmap_write_unlock(mm);
2505 }
2506 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2507 
2508 #define GATHER_GET_PAGES 32
2509 
2510 struct reset_walk_state {
2511 	unsigned long next;
2512 	unsigned long count;
2513 	unsigned long pfns[GATHER_GET_PAGES];
2514 };
2515 
s390_gather_pages(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)2516 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2517 			     unsigned long next, struct mm_walk *walk)
2518 {
2519 	struct reset_walk_state *p = walk->private;
2520 	pte_t pte = READ_ONCE(*ptep);
2521 
2522 	if (pte_present(pte)) {
2523 		/* we have a reference from the mapping, take an extra one */
2524 		get_page(phys_to_page(pte_val(pte)));
2525 		p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2526 		p->next = next;
2527 		p->count++;
2528 	}
2529 	return p->count >= GATHER_GET_PAGES;
2530 }
2531 
2532 static const struct mm_walk_ops gather_pages_ops = {
2533 	.pte_entry = s390_gather_pages,
2534 	.walk_lock = PGWALK_RDLOCK,
2535 };
2536 
2537 /*
2538  * Call the Destroy secure page UVC on each page in the given array of PFNs.
2539  * Each page needs to have an extra reference, which will be released here.
2540  */
s390_uv_destroy_pfns(unsigned long count,unsigned long * pfns)2541 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2542 {
2543 	struct folio *folio;
2544 	unsigned long i;
2545 
2546 	for (i = 0; i < count; i++) {
2547 		folio = pfn_folio(pfns[i]);
2548 		/* we always have an extra reference */
2549 		uv_destroy_folio(folio);
2550 		/* get rid of the extra reference */
2551 		folio_put(folio);
2552 		cond_resched();
2553 	}
2554 }
2555 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2556 
2557 /**
2558  * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2559  * in the given range of the given address space.
2560  * @mm: the mm to operate on
2561  * @start: the start of the range
2562  * @end: the end of the range
2563  * @interruptible: if not 0, stop when a fatal signal is received
2564  *
2565  * Walk the given range of the given address space and call the destroy
2566  * secure page UVC on each page. Optionally exit early if a fatal signal is
2567  * pending.
2568  *
2569  * Return: 0 on success, -EINTR if the function stopped before completing
2570  */
__s390_uv_destroy_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool interruptible)2571 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2572 			    unsigned long end, bool interruptible)
2573 {
2574 	struct reset_walk_state state = { .next = start };
2575 	int r = 1;
2576 
2577 	while (r > 0) {
2578 		state.count = 0;
2579 		mmap_read_lock(mm);
2580 		r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2581 		mmap_read_unlock(mm);
2582 		cond_resched();
2583 		s390_uv_destroy_pfns(state.count, state.pfns);
2584 		if (interruptible && fatal_signal_pending(current))
2585 			return -EINTR;
2586 	}
2587 	return 0;
2588 }
2589 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2590 
2591 /**
2592  * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2593  * @gmap: the gmap whose ASCE needs to be replaced
2594  *
2595  * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2596  * otherwise the pointers in the host_to_guest radix tree will keep pointing
2597  * to the wrong pages, causing use-after-free and memory corruption.
2598  * If the allocation of the new top level page table fails, the ASCE is not
2599  * replaced.
2600  * In any case, the old ASCE is always removed from the gmap CRST list.
2601  * Therefore the caller has to make sure to save a pointer to it
2602  * beforehand, unless a leak is actually intended.
2603  */
s390_replace_asce(struct gmap * gmap)2604 int s390_replace_asce(struct gmap *gmap)
2605 {
2606 	unsigned long asce;
2607 	struct page *page;
2608 	void *table;
2609 
2610 	/* Replacing segment type ASCEs would cause serious issues */
2611 	if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
2612 		return -EINVAL;
2613 
2614 	page = gmap_alloc_crst();
2615 	if (!page)
2616 		return -ENOMEM;
2617 	table = page_to_virt(page);
2618 	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2619 
2620 	/* Set new table origin while preserving existing ASCE control bits */
2621 	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2622 	WRITE_ONCE(gmap->asce, asce);
2623 	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2624 	WRITE_ONCE(gmap->table, table);
2625 
2626 	return 0;
2627 }
2628 EXPORT_SYMBOL_GPL(s390_replace_asce);
2629 
2630 /**
2631  * kvm_s390_wiggle_split_folio() - try to drain extra references to a folio and optionally split
2632  * @mm:    the mm containing the folio to work on
2633  * @folio: the folio
2634  * @split: whether to split a large folio
2635  *
2636  * Context: Must be called while holding an extra reference to the folio;
2637  *          the mm lock should not be held.
2638  */
kvm_s390_wiggle_split_folio(struct mm_struct * mm,struct folio * folio,bool split)2639 int kvm_s390_wiggle_split_folio(struct mm_struct *mm, struct folio *folio, bool split)
2640 {
2641 	int rc;
2642 
2643 	lockdep_assert_not_held(&mm->mmap_lock);
2644 	folio_wait_writeback(folio);
2645 	lru_add_drain_all();
2646 	if (split) {
2647 		folio_lock(folio);
2648 		rc = split_folio(folio);
2649 		folio_unlock(folio);
2650 
2651 		if (rc != -EBUSY)
2652 			return rc;
2653 	}
2654 	return -EAGAIN;
2655 }
2656 EXPORT_SYMBOL_GPL(kvm_s390_wiggle_split_folio);
2657