1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * zsmalloc memory allocator 5 * 6 * Copyright (C) 2011 Nitin Gupta 7 * Copyright (C) 2012, 2013 Minchan Kim 8 * 9 * This code is released using a dual license strategy: BSD/GPL 10 * You can choose the license that better fits your requirements. 11 * 12 * Released under the terms of 3-clause BSD License 13 * Released under the terms of GNU General Public License Version 2.0 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 /* 19 * lock ordering: 20 * page_lock 21 * pool->lock 22 * class->lock 23 * zspage->lock 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/errno.h> 30 #include <linux/highmem.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/spinlock.h> 34 #include <linux/sprintf.h> 35 #include <linux/shrinker.h> 36 #include <linux/types.h> 37 #include <linux/debugfs.h> 38 #include <linux/zsmalloc.h> 39 #include <linux/zpool.h> 40 #include <linux/fs.h> 41 #include <linux/workqueue.h> 42 #include "zpdesc.h" 43 44 #define ZSPAGE_MAGIC 0x58 45 46 /* 47 * This must be power of 2 and greater than or equal to sizeof(link_free). 48 * These two conditions ensure that any 'struct link_free' itself doesn't 49 * span more than 1 page which avoids complex case of mapping 2 pages simply 50 * to restore link_free pointer values. 51 */ 52 #define ZS_ALIGN 8 53 54 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 55 56 /* 57 * Object location (<PFN>, <obj_idx>) is encoded as 58 * a single (unsigned long) handle value. 59 * 60 * Note that object index <obj_idx> starts from 0. 61 * 62 * This is made more complicated by various memory models and PAE. 63 */ 64 65 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 66 #ifdef MAX_PHYSMEM_BITS 67 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 68 #else 69 /* 70 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 71 * be PAGE_SHIFT 72 */ 73 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 74 #endif 75 #endif 76 77 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 78 79 /* 80 * Head in allocated object should have OBJ_ALLOCATED_TAG 81 * to identify the object was allocated or not. 82 * It's okay to add the status bit in the least bit because 83 * header keeps handle which is 4byte-aligned address so we 84 * have room for two bit at least. 85 */ 86 #define OBJ_ALLOCATED_TAG 1 87 88 #define OBJ_TAG_BITS 1 89 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 90 91 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 92 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 93 94 #define HUGE_BITS 1 95 #define FULLNESS_BITS 4 96 #define CLASS_BITS 8 97 #define MAGIC_VAL_BITS 8 98 99 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 100 101 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 102 #define ZS_MIN_ALLOC_SIZE \ 103 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 104 /* each chunk includes extra space to keep handle */ 105 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 106 107 /* 108 * On systems with 4K page size, this gives 255 size classes! There is a 109 * trader-off here: 110 * - Large number of size classes is potentially wasteful as free page are 111 * spread across these classes 112 * - Small number of size classes causes large internal fragmentation 113 * - Probably its better to use specific size classes (empirically 114 * determined). NOTE: all those class sizes must be set as multiple of 115 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 116 * 117 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 118 * (reason above) 119 */ 120 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 121 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 122 ZS_SIZE_CLASS_DELTA) + 1) 123 124 /* 125 * Pages are distinguished by the ratio of used memory (that is the ratio 126 * of ->inuse objects to all objects that page can store). For example, 127 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 128 * 129 * The number of fullness groups is not random. It allows us to keep 130 * difference between the least busy page in the group (minimum permitted 131 * number of ->inuse objects) and the most busy page (maximum permitted 132 * number of ->inuse objects) at a reasonable value. 133 */ 134 enum fullness_group { 135 ZS_INUSE_RATIO_0, 136 ZS_INUSE_RATIO_10, 137 /* NOTE: 8 more fullness groups here */ 138 ZS_INUSE_RATIO_99 = 10, 139 ZS_INUSE_RATIO_100, 140 NR_FULLNESS_GROUPS, 141 }; 142 143 enum class_stat_type { 144 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 145 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 146 ZS_OBJS_INUSE, 147 NR_CLASS_STAT_TYPES, 148 }; 149 150 struct zs_size_stat { 151 unsigned long objs[NR_CLASS_STAT_TYPES]; 152 }; 153 154 #ifdef CONFIG_ZSMALLOC_STAT 155 static struct dentry *zs_stat_root; 156 #endif 157 158 static size_t huge_class_size; 159 160 struct size_class { 161 spinlock_t lock; 162 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 163 /* 164 * Size of objects stored in this class. Must be multiple 165 * of ZS_ALIGN. 166 */ 167 int size; 168 int objs_per_zspage; 169 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 170 int pages_per_zspage; 171 172 unsigned int index; 173 struct zs_size_stat stats; 174 }; 175 176 /* 177 * Placed within free objects to form a singly linked list. 178 * For every zspage, zspage->freeobj gives head of this list. 179 * 180 * This must be power of 2 and less than or equal to ZS_ALIGN 181 */ 182 struct link_free { 183 union { 184 /* 185 * Free object index; 186 * It's valid for non-allocated object 187 */ 188 unsigned long next; 189 /* 190 * Handle of allocated object. 191 */ 192 unsigned long handle; 193 }; 194 }; 195 196 struct zs_pool { 197 const char *name; 198 199 struct size_class *size_class[ZS_SIZE_CLASSES]; 200 struct kmem_cache *handle_cachep; 201 struct kmem_cache *zspage_cachep; 202 203 atomic_long_t pages_allocated; 204 205 struct zs_pool_stats stats; 206 207 /* Compact classes */ 208 struct shrinker *shrinker; 209 210 #ifdef CONFIG_ZSMALLOC_STAT 211 struct dentry *stat_dentry; 212 #endif 213 #ifdef CONFIG_COMPACTION 214 struct work_struct free_work; 215 #endif 216 /* protect zspage migration/compaction */ 217 rwlock_t lock; 218 atomic_t compaction_in_progress; 219 }; 220 221 static inline void zpdesc_set_first(struct zpdesc *zpdesc) 222 { 223 SetPagePrivate(zpdesc_page(zpdesc)); 224 } 225 226 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc) 227 { 228 inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES); 229 } 230 231 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc) 232 { 233 dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES); 234 } 235 236 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid) 237 { 238 struct page *page = alloc_pages_node(nid, gfp, 0); 239 240 return page_zpdesc(page); 241 } 242 243 static inline void free_zpdesc(struct zpdesc *zpdesc) 244 { 245 struct page *page = zpdesc_page(zpdesc); 246 247 /* PageZsmalloc is sticky until the page is freed to the buddy. */ 248 __free_page(page); 249 } 250 251 #define ZS_PAGE_UNLOCKED 0 252 #define ZS_PAGE_WRLOCKED -1 253 254 struct zspage_lock { 255 spinlock_t lock; 256 int cnt; 257 struct lockdep_map dep_map; 258 }; 259 260 struct zspage { 261 struct { 262 unsigned int huge:HUGE_BITS; 263 unsigned int fullness:FULLNESS_BITS; 264 unsigned int class:CLASS_BITS + 1; 265 unsigned int magic:MAGIC_VAL_BITS; 266 }; 267 unsigned int inuse; 268 unsigned int freeobj; 269 struct zpdesc *first_zpdesc; 270 struct list_head list; /* fullness list */ 271 struct zs_pool *pool; 272 struct zspage_lock zsl; 273 }; 274 275 static void zspage_lock_init(struct zspage *zspage) 276 { 277 static struct lock_class_key __key; 278 struct zspage_lock *zsl = &zspage->zsl; 279 280 lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0); 281 spin_lock_init(&zsl->lock); 282 zsl->cnt = ZS_PAGE_UNLOCKED; 283 } 284 285 /* 286 * The zspage lock can be held from atomic contexts, but it needs to remain 287 * preemptible when held for reading because it remains held outside of those 288 * atomic contexts, otherwise we unnecessarily lose preemptibility. 289 * 290 * To achieve this, the following rules are enforced on readers and writers: 291 * 292 * - Writers are blocked by both writers and readers, while readers are only 293 * blocked by writers (i.e. normal rwlock semantics). 294 * 295 * - Writers are always atomic (to allow readers to spin waiting for them). 296 * 297 * - Writers always use trylock (as the lock may be held be sleeping readers). 298 * 299 * - Readers may spin on the lock (as they can only wait for atomic writers). 300 * 301 * - Readers may sleep while holding the lock (as writes only use trylock). 302 */ 303 static void zspage_read_lock(struct zspage *zspage) 304 { 305 struct zspage_lock *zsl = &zspage->zsl; 306 307 rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_); 308 309 spin_lock(&zsl->lock); 310 zsl->cnt++; 311 spin_unlock(&zsl->lock); 312 313 lock_acquired(&zsl->dep_map, _RET_IP_); 314 } 315 316 static void zspage_read_unlock(struct zspage *zspage) 317 { 318 struct zspage_lock *zsl = &zspage->zsl; 319 320 rwsem_release(&zsl->dep_map, _RET_IP_); 321 322 spin_lock(&zsl->lock); 323 zsl->cnt--; 324 spin_unlock(&zsl->lock); 325 } 326 327 static __must_check bool zspage_write_trylock(struct zspage *zspage) 328 { 329 struct zspage_lock *zsl = &zspage->zsl; 330 331 spin_lock(&zsl->lock); 332 if (zsl->cnt == ZS_PAGE_UNLOCKED) { 333 zsl->cnt = ZS_PAGE_WRLOCKED; 334 rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_); 335 lock_acquired(&zsl->dep_map, _RET_IP_); 336 return true; 337 } 338 339 spin_unlock(&zsl->lock); 340 return false; 341 } 342 343 static void zspage_write_unlock(struct zspage *zspage) 344 { 345 struct zspage_lock *zsl = &zspage->zsl; 346 347 rwsem_release(&zsl->dep_map, _RET_IP_); 348 349 zsl->cnt = ZS_PAGE_UNLOCKED; 350 spin_unlock(&zsl->lock); 351 } 352 353 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 354 static void SetZsHugePage(struct zspage *zspage) 355 { 356 zspage->huge = 1; 357 } 358 359 static bool ZsHugePage(struct zspage *zspage) 360 { 361 return zspage->huge; 362 } 363 364 #ifdef CONFIG_COMPACTION 365 static void kick_deferred_free(struct zs_pool *pool); 366 static void init_deferred_free(struct zs_pool *pool); 367 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 368 #else 369 static void kick_deferred_free(struct zs_pool *pool) {} 370 static void init_deferred_free(struct zs_pool *pool) {} 371 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 372 #endif 373 374 static int create_cache(struct zs_pool *pool) 375 { 376 char *name; 377 378 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name); 379 if (!name) 380 return -ENOMEM; 381 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE, 382 0, 0, NULL); 383 kfree(name); 384 if (!pool->handle_cachep) 385 return -EINVAL; 386 387 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name); 388 if (!name) 389 return -ENOMEM; 390 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage), 391 0, 0, NULL); 392 kfree(name); 393 if (!pool->zspage_cachep) { 394 kmem_cache_destroy(pool->handle_cachep); 395 pool->handle_cachep = NULL; 396 return -EINVAL; 397 } 398 399 return 0; 400 } 401 402 static void destroy_cache(struct zs_pool *pool) 403 { 404 kmem_cache_destroy(pool->handle_cachep); 405 kmem_cache_destroy(pool->zspage_cachep); 406 } 407 408 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 409 { 410 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 411 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 412 } 413 414 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 415 { 416 kmem_cache_free(pool->handle_cachep, (void *)handle); 417 } 418 419 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 420 { 421 return kmem_cache_zalloc(pool->zspage_cachep, 422 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 423 } 424 425 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 426 { 427 kmem_cache_free(pool->zspage_cachep, zspage); 428 } 429 430 /* class->lock(which owns the handle) synchronizes races */ 431 static void record_obj(unsigned long handle, unsigned long obj) 432 { 433 *(unsigned long *)handle = obj; 434 } 435 436 /* zpool driver */ 437 438 #ifdef CONFIG_ZPOOL 439 440 static void *zs_zpool_create(const char *name, gfp_t gfp) 441 { 442 /* 443 * Ignore global gfp flags: zs_malloc() may be invoked from 444 * different contexts and its caller must provide a valid 445 * gfp mask. 446 */ 447 return zs_create_pool(name); 448 } 449 450 static void zs_zpool_destroy(void *pool) 451 { 452 zs_destroy_pool(pool); 453 } 454 455 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 456 unsigned long *handle, const int nid) 457 { 458 *handle = zs_malloc(pool, size, gfp, nid); 459 460 if (IS_ERR_VALUE(*handle)) 461 return PTR_ERR((void *)*handle); 462 return 0; 463 } 464 static void zs_zpool_free(void *pool, unsigned long handle) 465 { 466 zs_free(pool, handle); 467 } 468 469 static void *zs_zpool_obj_read_begin(void *pool, unsigned long handle, 470 void *local_copy) 471 { 472 return zs_obj_read_begin(pool, handle, local_copy); 473 } 474 475 static void zs_zpool_obj_read_end(void *pool, unsigned long handle, 476 void *handle_mem) 477 { 478 zs_obj_read_end(pool, handle, handle_mem); 479 } 480 481 static void zs_zpool_obj_write(void *pool, unsigned long handle, 482 void *handle_mem, size_t mem_len) 483 { 484 zs_obj_write(pool, handle, handle_mem, mem_len); 485 } 486 487 static u64 zs_zpool_total_pages(void *pool) 488 { 489 return zs_get_total_pages(pool); 490 } 491 492 static struct zpool_driver zs_zpool_driver = { 493 .type = "zsmalloc", 494 .owner = THIS_MODULE, 495 .create = zs_zpool_create, 496 .destroy = zs_zpool_destroy, 497 .malloc = zs_zpool_malloc, 498 .free = zs_zpool_free, 499 .obj_read_begin = zs_zpool_obj_read_begin, 500 .obj_read_end = zs_zpool_obj_read_end, 501 .obj_write = zs_zpool_obj_write, 502 .total_pages = zs_zpool_total_pages, 503 }; 504 505 MODULE_ALIAS("zpool-zsmalloc"); 506 #endif /* CONFIG_ZPOOL */ 507 508 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc) 509 { 510 return PagePrivate(zpdesc_page(zpdesc)); 511 } 512 513 /* Protected by class->lock */ 514 static inline int get_zspage_inuse(struct zspage *zspage) 515 { 516 return zspage->inuse; 517 } 518 519 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 520 { 521 zspage->inuse += val; 522 } 523 524 static struct zpdesc *get_first_zpdesc(struct zspage *zspage) 525 { 526 struct zpdesc *first_zpdesc = zspage->first_zpdesc; 527 528 VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc)); 529 return first_zpdesc; 530 } 531 532 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff 533 534 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc) 535 { 536 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc))); 537 return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK; 538 } 539 540 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset) 541 { 542 /* With 24 bits available, we can support offsets into 16 MiB pages. */ 543 BUILD_BUG_ON(PAGE_SIZE > SZ_16M); 544 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc))); 545 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK); 546 zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK; 547 zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK; 548 } 549 550 static inline unsigned int get_freeobj(struct zspage *zspage) 551 { 552 return zspage->freeobj; 553 } 554 555 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 556 { 557 zspage->freeobj = obj; 558 } 559 560 static struct size_class *zspage_class(struct zs_pool *pool, 561 struct zspage *zspage) 562 { 563 return pool->size_class[zspage->class]; 564 } 565 566 /* 567 * zsmalloc divides the pool into various size classes where each 568 * class maintains a list of zspages where each zspage is divided 569 * into equal sized chunks. Each allocation falls into one of these 570 * classes depending on its size. This function returns index of the 571 * size class which has chunk size big enough to hold the given size. 572 */ 573 static int get_size_class_index(int size) 574 { 575 int idx = 0; 576 577 if (likely(size > ZS_MIN_ALLOC_SIZE)) 578 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 579 ZS_SIZE_CLASS_DELTA); 580 581 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 582 } 583 584 static inline void class_stat_add(struct size_class *class, int type, 585 unsigned long cnt) 586 { 587 class->stats.objs[type] += cnt; 588 } 589 590 static inline void class_stat_sub(struct size_class *class, int type, 591 unsigned long cnt) 592 { 593 class->stats.objs[type] -= cnt; 594 } 595 596 static inline unsigned long class_stat_read(struct size_class *class, int type) 597 { 598 return class->stats.objs[type]; 599 } 600 601 #ifdef CONFIG_ZSMALLOC_STAT 602 603 static void __init zs_stat_init(void) 604 { 605 if (!debugfs_initialized()) { 606 pr_warn("debugfs not available, stat dir not created\n"); 607 return; 608 } 609 610 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 611 } 612 613 static void __exit zs_stat_exit(void) 614 { 615 debugfs_remove_recursive(zs_stat_root); 616 } 617 618 static unsigned long zs_can_compact(struct size_class *class); 619 620 static int zs_stats_size_show(struct seq_file *s, void *v) 621 { 622 int i, fg; 623 struct zs_pool *pool = s->private; 624 struct size_class *class; 625 int objs_per_zspage; 626 unsigned long obj_allocated, obj_used, pages_used, freeable; 627 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 628 unsigned long total_freeable = 0; 629 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 630 631 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 632 "class", "size", "10%", "20%", "30%", "40%", 633 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 634 "obj_allocated", "obj_used", "pages_used", 635 "pages_per_zspage", "freeable"); 636 637 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 638 639 class = pool->size_class[i]; 640 641 if (class->index != i) 642 continue; 643 644 spin_lock(&class->lock); 645 646 seq_printf(s, " %5u %5u ", i, class->size); 647 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 648 inuse_totals[fg] += class_stat_read(class, fg); 649 seq_printf(s, "%9lu ", class_stat_read(class, fg)); 650 } 651 652 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 653 obj_used = class_stat_read(class, ZS_OBJS_INUSE); 654 freeable = zs_can_compact(class); 655 spin_unlock(&class->lock); 656 657 objs_per_zspage = class->objs_per_zspage; 658 pages_used = obj_allocated / objs_per_zspage * 659 class->pages_per_zspage; 660 661 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 662 obj_allocated, obj_used, pages_used, 663 class->pages_per_zspage, freeable); 664 665 total_objs += obj_allocated; 666 total_used_objs += obj_used; 667 total_pages += pages_used; 668 total_freeable += freeable; 669 } 670 671 seq_puts(s, "\n"); 672 seq_printf(s, " %5s %5s ", "Total", ""); 673 674 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 675 seq_printf(s, "%9lu ", inuse_totals[fg]); 676 677 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 678 total_objs, total_used_objs, total_pages, "", 679 total_freeable); 680 681 return 0; 682 } 683 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 684 685 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 686 { 687 if (!zs_stat_root) { 688 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 689 return; 690 } 691 692 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 693 694 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 695 &zs_stats_size_fops); 696 } 697 698 static void zs_pool_stat_destroy(struct zs_pool *pool) 699 { 700 debugfs_remove_recursive(pool->stat_dentry); 701 } 702 703 #else /* CONFIG_ZSMALLOC_STAT */ 704 static void __init zs_stat_init(void) 705 { 706 } 707 708 static void __exit zs_stat_exit(void) 709 { 710 } 711 712 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 713 { 714 } 715 716 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 717 { 718 } 719 #endif 720 721 722 /* 723 * For each size class, zspages are divided into different groups 724 * depending on their usage ratio. This function returns fullness 725 * status of the given page. 726 */ 727 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 728 { 729 int inuse, objs_per_zspage, ratio; 730 731 inuse = get_zspage_inuse(zspage); 732 objs_per_zspage = class->objs_per_zspage; 733 734 if (inuse == 0) 735 return ZS_INUSE_RATIO_0; 736 if (inuse == objs_per_zspage) 737 return ZS_INUSE_RATIO_100; 738 739 ratio = 100 * inuse / objs_per_zspage; 740 /* 741 * Take integer division into consideration: a page with one inuse 742 * object out of 127 possible, will end up having 0 usage ratio, 743 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 744 */ 745 return ratio / 10 + 1; 746 } 747 748 /* 749 * Each size class maintains various freelists and zspages are assigned 750 * to one of these freelists based on the number of live objects they 751 * have. This functions inserts the given zspage into the freelist 752 * identified by <class, fullness_group>. 753 */ 754 static void insert_zspage(struct size_class *class, 755 struct zspage *zspage, 756 int fullness) 757 { 758 class_stat_add(class, fullness, 1); 759 list_add(&zspage->list, &class->fullness_list[fullness]); 760 zspage->fullness = fullness; 761 } 762 763 /* 764 * This function removes the given zspage from the freelist identified 765 * by <class, fullness_group>. 766 */ 767 static void remove_zspage(struct size_class *class, struct zspage *zspage) 768 { 769 int fullness = zspage->fullness; 770 771 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 772 773 list_del_init(&zspage->list); 774 class_stat_sub(class, fullness, 1); 775 } 776 777 /* 778 * Each size class maintains zspages in different fullness groups depending 779 * on the number of live objects they contain. When allocating or freeing 780 * objects, the fullness status of the page can change, for instance, from 781 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 782 * checks if such a status change has occurred for the given page and 783 * accordingly moves the page from the list of the old fullness group to that 784 * of the new fullness group. 785 */ 786 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 787 { 788 int newfg; 789 790 newfg = get_fullness_group(class, zspage); 791 if (newfg == zspage->fullness) 792 goto out; 793 794 remove_zspage(class, zspage); 795 insert_zspage(class, zspage, newfg); 796 out: 797 return newfg; 798 } 799 800 static struct zspage *get_zspage(struct zpdesc *zpdesc) 801 { 802 struct zspage *zspage = zpdesc->zspage; 803 804 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 805 return zspage; 806 } 807 808 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc) 809 { 810 struct zspage *zspage = get_zspage(zpdesc); 811 812 if (unlikely(ZsHugePage(zspage))) 813 return NULL; 814 815 return zpdesc->next; 816 } 817 818 /** 819 * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value 820 * @obj: the encoded object value 821 * @zpdesc: zpdesc object resides in zspage 822 * @obj_idx: object index 823 */ 824 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc, 825 unsigned int *obj_idx) 826 { 827 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS); 828 *obj_idx = (obj & OBJ_INDEX_MASK); 829 } 830 831 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc) 832 { 833 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS); 834 } 835 836 /** 837 * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>) 838 * @zpdesc: zpdesc object resides in zspage 839 * @obj_idx: object index 840 */ 841 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx) 842 { 843 unsigned long obj; 844 845 obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS; 846 obj |= obj_idx & OBJ_INDEX_MASK; 847 848 return obj; 849 } 850 851 static unsigned long handle_to_obj(unsigned long handle) 852 { 853 return *(unsigned long *)handle; 854 } 855 856 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj, 857 unsigned long *phandle) 858 { 859 unsigned long handle; 860 struct zspage *zspage = get_zspage(zpdesc); 861 862 if (unlikely(ZsHugePage(zspage))) { 863 VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc)); 864 handle = zpdesc->handle; 865 } else 866 handle = *(unsigned long *)obj; 867 868 if (!(handle & OBJ_ALLOCATED_TAG)) 869 return false; 870 871 /* Clear all tags before returning the handle */ 872 *phandle = handle & ~OBJ_TAG_MASK; 873 return true; 874 } 875 876 static void reset_zpdesc(struct zpdesc *zpdesc) 877 { 878 struct page *page = zpdesc_page(zpdesc); 879 880 ClearPagePrivate(page); 881 zpdesc->zspage = NULL; 882 zpdesc->next = NULL; 883 /* PageZsmalloc is sticky until the page is freed to the buddy. */ 884 } 885 886 static int trylock_zspage(struct zspage *zspage) 887 { 888 struct zpdesc *cursor, *fail; 889 890 for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor = 891 get_next_zpdesc(cursor)) { 892 if (!zpdesc_trylock(cursor)) { 893 fail = cursor; 894 goto unlock; 895 } 896 } 897 898 return 1; 899 unlock: 900 for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor = 901 get_next_zpdesc(cursor)) 902 zpdesc_unlock(cursor); 903 904 return 0; 905 } 906 907 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 908 struct zspage *zspage) 909 { 910 struct zpdesc *zpdesc, *next; 911 912 assert_spin_locked(&class->lock); 913 914 VM_BUG_ON(get_zspage_inuse(zspage)); 915 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0); 916 917 next = zpdesc = get_first_zpdesc(zspage); 918 do { 919 VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc)); 920 next = get_next_zpdesc(zpdesc); 921 reset_zpdesc(zpdesc); 922 zpdesc_unlock(zpdesc); 923 zpdesc_dec_zone_page_state(zpdesc); 924 zpdesc_put(zpdesc); 925 zpdesc = next; 926 } while (zpdesc != NULL); 927 928 cache_free_zspage(pool, zspage); 929 930 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 931 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 932 } 933 934 static void free_zspage(struct zs_pool *pool, struct size_class *class, 935 struct zspage *zspage) 936 { 937 VM_BUG_ON(get_zspage_inuse(zspage)); 938 VM_BUG_ON(list_empty(&zspage->list)); 939 940 /* 941 * Since zs_free couldn't be sleepable, this function cannot call 942 * lock_page. The page locks trylock_zspage got will be released 943 * by __free_zspage. 944 */ 945 if (!trylock_zspage(zspage)) { 946 kick_deferred_free(pool); 947 return; 948 } 949 950 remove_zspage(class, zspage); 951 __free_zspage(pool, class, zspage); 952 } 953 954 /* Initialize a newly allocated zspage */ 955 static void init_zspage(struct size_class *class, struct zspage *zspage) 956 { 957 unsigned int freeobj = 1; 958 unsigned long off = 0; 959 struct zpdesc *zpdesc = get_first_zpdesc(zspage); 960 961 while (zpdesc) { 962 struct zpdesc *next_zpdesc; 963 struct link_free *link; 964 void *vaddr; 965 966 set_first_obj_offset(zpdesc, off); 967 968 vaddr = kmap_local_zpdesc(zpdesc); 969 link = (struct link_free *)vaddr + off / sizeof(*link); 970 971 while ((off += class->size) < PAGE_SIZE) { 972 link->next = freeobj++ << OBJ_TAG_BITS; 973 link += class->size / sizeof(*link); 974 } 975 976 /* 977 * We now come to the last (full or partial) object on this 978 * page, which must point to the first object on the next 979 * page (if present) 980 */ 981 next_zpdesc = get_next_zpdesc(zpdesc); 982 if (next_zpdesc) { 983 link->next = freeobj++ << OBJ_TAG_BITS; 984 } else { 985 /* 986 * Reset OBJ_TAG_BITS bit to last link to tell 987 * whether it's allocated object or not. 988 */ 989 link->next = -1UL << OBJ_TAG_BITS; 990 } 991 kunmap_local(vaddr); 992 zpdesc = next_zpdesc; 993 off %= PAGE_SIZE; 994 } 995 996 set_freeobj(zspage, 0); 997 } 998 999 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1000 struct zpdesc *zpdescs[]) 1001 { 1002 int i; 1003 struct zpdesc *zpdesc; 1004 struct zpdesc *prev_zpdesc = NULL; 1005 int nr_zpdescs = class->pages_per_zspage; 1006 1007 /* 1008 * Allocate individual pages and link them together as: 1009 * 1. all pages are linked together using zpdesc->next 1010 * 2. each sub-page point to zspage using zpdesc->zspage 1011 * 1012 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc 1013 * has this flag set). 1014 */ 1015 for (i = 0; i < nr_zpdescs; i++) { 1016 zpdesc = zpdescs[i]; 1017 zpdesc->zspage = zspage; 1018 zpdesc->next = NULL; 1019 if (i == 0) { 1020 zspage->first_zpdesc = zpdesc; 1021 zpdesc_set_first(zpdesc); 1022 if (unlikely(class->objs_per_zspage == 1 && 1023 class->pages_per_zspage == 1)) 1024 SetZsHugePage(zspage); 1025 } else { 1026 prev_zpdesc->next = zpdesc; 1027 } 1028 prev_zpdesc = zpdesc; 1029 } 1030 } 1031 1032 /* 1033 * Allocate a zspage for the given size class 1034 */ 1035 static struct zspage *alloc_zspage(struct zs_pool *pool, 1036 struct size_class *class, 1037 gfp_t gfp, const int nid) 1038 { 1039 int i; 1040 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE]; 1041 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1042 1043 if (!zspage) 1044 return NULL; 1045 1046 if (!IS_ENABLED(CONFIG_COMPACTION)) 1047 gfp &= ~__GFP_MOVABLE; 1048 1049 zspage->magic = ZSPAGE_MAGIC; 1050 zspage->pool = pool; 1051 zspage->class = class->index; 1052 zspage_lock_init(zspage); 1053 1054 for (i = 0; i < class->pages_per_zspage; i++) { 1055 struct zpdesc *zpdesc; 1056 1057 zpdesc = alloc_zpdesc(gfp, nid); 1058 if (!zpdesc) { 1059 while (--i >= 0) { 1060 zpdesc_dec_zone_page_state(zpdescs[i]); 1061 free_zpdesc(zpdescs[i]); 1062 } 1063 cache_free_zspage(pool, zspage); 1064 return NULL; 1065 } 1066 __zpdesc_set_zsmalloc(zpdesc); 1067 1068 zpdesc_inc_zone_page_state(zpdesc); 1069 zpdescs[i] = zpdesc; 1070 } 1071 1072 create_page_chain(class, zspage, zpdescs); 1073 init_zspage(class, zspage); 1074 1075 return zspage; 1076 } 1077 1078 static struct zspage *find_get_zspage(struct size_class *class) 1079 { 1080 int i; 1081 struct zspage *zspage; 1082 1083 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 1084 zspage = list_first_entry_or_null(&class->fullness_list[i], 1085 struct zspage, list); 1086 if (zspage) 1087 break; 1088 } 1089 1090 return zspage; 1091 } 1092 1093 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1094 int objs_per_zspage) 1095 { 1096 if (prev->pages_per_zspage == pages_per_zspage && 1097 prev->objs_per_zspage == objs_per_zspage) 1098 return true; 1099 1100 return false; 1101 } 1102 1103 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1104 { 1105 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1106 } 1107 1108 static bool zspage_empty(struct zspage *zspage) 1109 { 1110 return get_zspage_inuse(zspage) == 0; 1111 } 1112 1113 /** 1114 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1115 * that hold objects of the provided size. 1116 * @pool: zsmalloc pool to use 1117 * @size: object size 1118 * 1119 * Context: Any context. 1120 * 1121 * Return: the index of the zsmalloc &size_class that hold objects of the 1122 * provided size. 1123 */ 1124 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1125 { 1126 struct size_class *class; 1127 1128 class = pool->size_class[get_size_class_index(size)]; 1129 1130 return class->index; 1131 } 1132 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1133 1134 unsigned long zs_get_total_pages(struct zs_pool *pool) 1135 { 1136 return atomic_long_read(&pool->pages_allocated); 1137 } 1138 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1139 1140 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle, 1141 void *local_copy) 1142 { 1143 struct zspage *zspage; 1144 struct zpdesc *zpdesc; 1145 unsigned long obj, off; 1146 unsigned int obj_idx; 1147 struct size_class *class; 1148 void *addr; 1149 1150 /* Guarantee we can get zspage from handle safely */ 1151 read_lock(&pool->lock); 1152 obj = handle_to_obj(handle); 1153 obj_to_location(obj, &zpdesc, &obj_idx); 1154 zspage = get_zspage(zpdesc); 1155 1156 /* Make sure migration doesn't move any pages in this zspage */ 1157 zspage_read_lock(zspage); 1158 read_unlock(&pool->lock); 1159 1160 class = zspage_class(pool, zspage); 1161 off = offset_in_page(class->size * obj_idx); 1162 1163 if (off + class->size <= PAGE_SIZE) { 1164 /* this object is contained entirely within a page */ 1165 addr = kmap_local_zpdesc(zpdesc); 1166 addr += off; 1167 } else { 1168 size_t sizes[2]; 1169 1170 /* this object spans two pages */ 1171 sizes[0] = PAGE_SIZE - off; 1172 sizes[1] = class->size - sizes[0]; 1173 addr = local_copy; 1174 1175 memcpy_from_page(addr, zpdesc_page(zpdesc), 1176 off, sizes[0]); 1177 zpdesc = get_next_zpdesc(zpdesc); 1178 memcpy_from_page(addr + sizes[0], 1179 zpdesc_page(zpdesc), 1180 0, sizes[1]); 1181 } 1182 1183 if (!ZsHugePage(zspage)) 1184 addr += ZS_HANDLE_SIZE; 1185 1186 return addr; 1187 } 1188 EXPORT_SYMBOL_GPL(zs_obj_read_begin); 1189 1190 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle, 1191 void *handle_mem) 1192 { 1193 struct zspage *zspage; 1194 struct zpdesc *zpdesc; 1195 unsigned long obj, off; 1196 unsigned int obj_idx; 1197 struct size_class *class; 1198 1199 obj = handle_to_obj(handle); 1200 obj_to_location(obj, &zpdesc, &obj_idx); 1201 zspage = get_zspage(zpdesc); 1202 class = zspage_class(pool, zspage); 1203 off = offset_in_page(class->size * obj_idx); 1204 1205 if (off + class->size <= PAGE_SIZE) { 1206 if (!ZsHugePage(zspage)) 1207 off += ZS_HANDLE_SIZE; 1208 handle_mem -= off; 1209 kunmap_local(handle_mem); 1210 } 1211 1212 zspage_read_unlock(zspage); 1213 } 1214 EXPORT_SYMBOL_GPL(zs_obj_read_end); 1215 1216 void zs_obj_write(struct zs_pool *pool, unsigned long handle, 1217 void *handle_mem, size_t mem_len) 1218 { 1219 struct zspage *zspage; 1220 struct zpdesc *zpdesc; 1221 unsigned long obj, off; 1222 unsigned int obj_idx; 1223 struct size_class *class; 1224 1225 /* Guarantee we can get zspage from handle safely */ 1226 read_lock(&pool->lock); 1227 obj = handle_to_obj(handle); 1228 obj_to_location(obj, &zpdesc, &obj_idx); 1229 zspage = get_zspage(zpdesc); 1230 1231 /* Make sure migration doesn't move any pages in this zspage */ 1232 zspage_read_lock(zspage); 1233 read_unlock(&pool->lock); 1234 1235 class = zspage_class(pool, zspage); 1236 off = offset_in_page(class->size * obj_idx); 1237 1238 if (!ZsHugePage(zspage)) 1239 off += ZS_HANDLE_SIZE; 1240 1241 if (off + mem_len <= PAGE_SIZE) { 1242 /* this object is contained entirely within a page */ 1243 void *dst = kmap_local_zpdesc(zpdesc); 1244 1245 memcpy(dst + off, handle_mem, mem_len); 1246 kunmap_local(dst); 1247 } else { 1248 /* this object spans two pages */ 1249 size_t sizes[2]; 1250 1251 sizes[0] = PAGE_SIZE - off; 1252 sizes[1] = mem_len - sizes[0]; 1253 1254 memcpy_to_page(zpdesc_page(zpdesc), off, 1255 handle_mem, sizes[0]); 1256 zpdesc = get_next_zpdesc(zpdesc); 1257 memcpy_to_page(zpdesc_page(zpdesc), 0, 1258 handle_mem + sizes[0], sizes[1]); 1259 } 1260 1261 zspage_read_unlock(zspage); 1262 } 1263 EXPORT_SYMBOL_GPL(zs_obj_write); 1264 1265 /** 1266 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1267 * zsmalloc &size_class. 1268 * @pool: zsmalloc pool to use 1269 * 1270 * The function returns the size of the first huge class - any object of equal 1271 * or bigger size will be stored in zspage consisting of a single physical 1272 * page. 1273 * 1274 * Context: Any context. 1275 * 1276 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1277 */ 1278 size_t zs_huge_class_size(struct zs_pool *pool) 1279 { 1280 return huge_class_size; 1281 } 1282 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1283 1284 static unsigned long obj_malloc(struct zs_pool *pool, 1285 struct zspage *zspage, unsigned long handle) 1286 { 1287 int i, nr_zpdesc, offset; 1288 unsigned long obj; 1289 struct link_free *link; 1290 struct size_class *class; 1291 1292 struct zpdesc *m_zpdesc; 1293 unsigned long m_offset; 1294 void *vaddr; 1295 1296 class = pool->size_class[zspage->class]; 1297 obj = get_freeobj(zspage); 1298 1299 offset = obj * class->size; 1300 nr_zpdesc = offset >> PAGE_SHIFT; 1301 m_offset = offset_in_page(offset); 1302 m_zpdesc = get_first_zpdesc(zspage); 1303 1304 for (i = 0; i < nr_zpdesc; i++) 1305 m_zpdesc = get_next_zpdesc(m_zpdesc); 1306 1307 vaddr = kmap_local_zpdesc(m_zpdesc); 1308 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1309 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1310 if (likely(!ZsHugePage(zspage))) 1311 /* record handle in the header of allocated chunk */ 1312 link->handle = handle | OBJ_ALLOCATED_TAG; 1313 else 1314 zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG; 1315 1316 kunmap_local(vaddr); 1317 mod_zspage_inuse(zspage, 1); 1318 1319 obj = location_to_obj(m_zpdesc, obj); 1320 record_obj(handle, obj); 1321 1322 return obj; 1323 } 1324 1325 1326 /** 1327 * zs_malloc - Allocate block of given size from pool. 1328 * @pool: pool to allocate from 1329 * @size: size of block to allocate 1330 * @gfp: gfp flags when allocating object 1331 * @nid: The preferred node id to allocate new zspage (if needed) 1332 * 1333 * On success, handle to the allocated object is returned, 1334 * otherwise an ERR_PTR(). 1335 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1336 */ 1337 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp, 1338 const int nid) 1339 { 1340 unsigned long handle; 1341 struct size_class *class; 1342 int newfg; 1343 struct zspage *zspage; 1344 1345 if (unlikely(!size)) 1346 return (unsigned long)ERR_PTR(-EINVAL); 1347 1348 if (unlikely(size > ZS_MAX_ALLOC_SIZE)) 1349 return (unsigned long)ERR_PTR(-ENOSPC); 1350 1351 handle = cache_alloc_handle(pool, gfp); 1352 if (!handle) 1353 return (unsigned long)ERR_PTR(-ENOMEM); 1354 1355 /* extra space in chunk to keep the handle */ 1356 size += ZS_HANDLE_SIZE; 1357 class = pool->size_class[get_size_class_index(size)]; 1358 1359 /* class->lock effectively protects the zpage migration */ 1360 spin_lock(&class->lock); 1361 zspage = find_get_zspage(class); 1362 if (likely(zspage)) { 1363 obj_malloc(pool, zspage, handle); 1364 /* Now move the zspage to another fullness group, if required */ 1365 fix_fullness_group(class, zspage); 1366 class_stat_add(class, ZS_OBJS_INUSE, 1); 1367 1368 goto out; 1369 } 1370 1371 spin_unlock(&class->lock); 1372 1373 zspage = alloc_zspage(pool, class, gfp, nid); 1374 if (!zspage) { 1375 cache_free_handle(pool, handle); 1376 return (unsigned long)ERR_PTR(-ENOMEM); 1377 } 1378 1379 spin_lock(&class->lock); 1380 obj_malloc(pool, zspage, handle); 1381 newfg = get_fullness_group(class, zspage); 1382 insert_zspage(class, zspage, newfg); 1383 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1384 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1385 class_stat_add(class, ZS_OBJS_INUSE, 1); 1386 1387 /* We completely set up zspage so mark them as movable */ 1388 SetZsPageMovable(pool, zspage); 1389 out: 1390 spin_unlock(&class->lock); 1391 1392 return handle; 1393 } 1394 EXPORT_SYMBOL_GPL(zs_malloc); 1395 1396 static void obj_free(int class_size, unsigned long obj) 1397 { 1398 struct link_free *link; 1399 struct zspage *zspage; 1400 struct zpdesc *f_zpdesc; 1401 unsigned long f_offset; 1402 unsigned int f_objidx; 1403 void *vaddr; 1404 1405 1406 obj_to_location(obj, &f_zpdesc, &f_objidx); 1407 f_offset = offset_in_page(class_size * f_objidx); 1408 zspage = get_zspage(f_zpdesc); 1409 1410 vaddr = kmap_local_zpdesc(f_zpdesc); 1411 link = (struct link_free *)(vaddr + f_offset); 1412 1413 /* Insert this object in containing zspage's freelist */ 1414 if (likely(!ZsHugePage(zspage))) 1415 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1416 else 1417 f_zpdesc->handle = 0; 1418 set_freeobj(zspage, f_objidx); 1419 1420 kunmap_local(vaddr); 1421 mod_zspage_inuse(zspage, -1); 1422 } 1423 1424 void zs_free(struct zs_pool *pool, unsigned long handle) 1425 { 1426 struct zspage *zspage; 1427 struct zpdesc *f_zpdesc; 1428 unsigned long obj; 1429 struct size_class *class; 1430 int fullness; 1431 1432 if (IS_ERR_OR_NULL((void *)handle)) 1433 return; 1434 1435 /* 1436 * The pool->lock protects the race with zpage's migration 1437 * so it's safe to get the page from handle. 1438 */ 1439 read_lock(&pool->lock); 1440 obj = handle_to_obj(handle); 1441 obj_to_zpdesc(obj, &f_zpdesc); 1442 zspage = get_zspage(f_zpdesc); 1443 class = zspage_class(pool, zspage); 1444 spin_lock(&class->lock); 1445 read_unlock(&pool->lock); 1446 1447 class_stat_sub(class, ZS_OBJS_INUSE, 1); 1448 obj_free(class->size, obj); 1449 1450 fullness = fix_fullness_group(class, zspage); 1451 if (fullness == ZS_INUSE_RATIO_0) 1452 free_zspage(pool, class, zspage); 1453 1454 spin_unlock(&class->lock); 1455 cache_free_handle(pool, handle); 1456 } 1457 EXPORT_SYMBOL_GPL(zs_free); 1458 1459 static void zs_object_copy(struct size_class *class, unsigned long dst, 1460 unsigned long src) 1461 { 1462 struct zpdesc *s_zpdesc, *d_zpdesc; 1463 unsigned int s_objidx, d_objidx; 1464 unsigned long s_off, d_off; 1465 void *s_addr, *d_addr; 1466 int s_size, d_size, size; 1467 int written = 0; 1468 1469 s_size = d_size = class->size; 1470 1471 obj_to_location(src, &s_zpdesc, &s_objidx); 1472 obj_to_location(dst, &d_zpdesc, &d_objidx); 1473 1474 s_off = offset_in_page(class->size * s_objidx); 1475 d_off = offset_in_page(class->size * d_objidx); 1476 1477 if (s_off + class->size > PAGE_SIZE) 1478 s_size = PAGE_SIZE - s_off; 1479 1480 if (d_off + class->size > PAGE_SIZE) 1481 d_size = PAGE_SIZE - d_off; 1482 1483 s_addr = kmap_local_zpdesc(s_zpdesc); 1484 d_addr = kmap_local_zpdesc(d_zpdesc); 1485 1486 while (1) { 1487 size = min(s_size, d_size); 1488 memcpy(d_addr + d_off, s_addr + s_off, size); 1489 written += size; 1490 1491 if (written == class->size) 1492 break; 1493 1494 s_off += size; 1495 s_size -= size; 1496 d_off += size; 1497 d_size -= size; 1498 1499 /* 1500 * Calling kunmap_local(d_addr) is necessary. kunmap_local() 1501 * calls must occurs in reverse order of calls to kmap_local_page(). 1502 * So, to call kunmap_local(s_addr) we should first call 1503 * kunmap_local(d_addr). For more details see 1504 * Documentation/mm/highmem.rst. 1505 */ 1506 if (s_off >= PAGE_SIZE) { 1507 kunmap_local(d_addr); 1508 kunmap_local(s_addr); 1509 s_zpdesc = get_next_zpdesc(s_zpdesc); 1510 s_addr = kmap_local_zpdesc(s_zpdesc); 1511 d_addr = kmap_local_zpdesc(d_zpdesc); 1512 s_size = class->size - written; 1513 s_off = 0; 1514 } 1515 1516 if (d_off >= PAGE_SIZE) { 1517 kunmap_local(d_addr); 1518 d_zpdesc = get_next_zpdesc(d_zpdesc); 1519 d_addr = kmap_local_zpdesc(d_zpdesc); 1520 d_size = class->size - written; 1521 d_off = 0; 1522 } 1523 } 1524 1525 kunmap_local(d_addr); 1526 kunmap_local(s_addr); 1527 } 1528 1529 /* 1530 * Find alloced object in zspage from index object and 1531 * return handle. 1532 */ 1533 static unsigned long find_alloced_obj(struct size_class *class, 1534 struct zpdesc *zpdesc, int *obj_idx) 1535 { 1536 unsigned int offset; 1537 int index = *obj_idx; 1538 unsigned long handle = 0; 1539 void *addr = kmap_local_zpdesc(zpdesc); 1540 1541 offset = get_first_obj_offset(zpdesc); 1542 offset += class->size * index; 1543 1544 while (offset < PAGE_SIZE) { 1545 if (obj_allocated(zpdesc, addr + offset, &handle)) 1546 break; 1547 1548 offset += class->size; 1549 index++; 1550 } 1551 1552 kunmap_local(addr); 1553 1554 *obj_idx = index; 1555 1556 return handle; 1557 } 1558 1559 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, 1560 struct zspage *dst_zspage) 1561 { 1562 unsigned long used_obj, free_obj; 1563 unsigned long handle; 1564 int obj_idx = 0; 1565 struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage); 1566 struct size_class *class = pool->size_class[src_zspage->class]; 1567 1568 while (1) { 1569 handle = find_alloced_obj(class, s_zpdesc, &obj_idx); 1570 if (!handle) { 1571 s_zpdesc = get_next_zpdesc(s_zpdesc); 1572 if (!s_zpdesc) 1573 break; 1574 obj_idx = 0; 1575 continue; 1576 } 1577 1578 used_obj = handle_to_obj(handle); 1579 free_obj = obj_malloc(pool, dst_zspage, handle); 1580 zs_object_copy(class, free_obj, used_obj); 1581 obj_idx++; 1582 obj_free(class->size, used_obj); 1583 1584 /* Stop if there is no more space */ 1585 if (zspage_full(class, dst_zspage)) 1586 break; 1587 1588 /* Stop if there are no more objects to migrate */ 1589 if (zspage_empty(src_zspage)) 1590 break; 1591 } 1592 } 1593 1594 static struct zspage *isolate_src_zspage(struct size_class *class) 1595 { 1596 struct zspage *zspage; 1597 int fg; 1598 1599 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1600 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1601 struct zspage, list); 1602 if (zspage) { 1603 remove_zspage(class, zspage); 1604 return zspage; 1605 } 1606 } 1607 1608 return zspage; 1609 } 1610 1611 static struct zspage *isolate_dst_zspage(struct size_class *class) 1612 { 1613 struct zspage *zspage; 1614 int fg; 1615 1616 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1617 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1618 struct zspage, list); 1619 if (zspage) { 1620 remove_zspage(class, zspage); 1621 return zspage; 1622 } 1623 } 1624 1625 return zspage; 1626 } 1627 1628 /* 1629 * putback_zspage - add @zspage into right class's fullness list 1630 * @class: destination class 1631 * @zspage: target page 1632 * 1633 * Return @zspage's fullness status 1634 */ 1635 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1636 { 1637 int fullness; 1638 1639 fullness = get_fullness_group(class, zspage); 1640 insert_zspage(class, zspage, fullness); 1641 1642 return fullness; 1643 } 1644 1645 #ifdef CONFIG_COMPACTION 1646 /* 1647 * To prevent zspage destroy during migration, zspage freeing should 1648 * hold locks of all pages in the zspage. 1649 */ 1650 static void lock_zspage(struct zspage *zspage) 1651 { 1652 struct zpdesc *curr_zpdesc, *zpdesc; 1653 1654 /* 1655 * Pages we haven't locked yet can be migrated off the list while we're 1656 * trying to lock them, so we need to be careful and only attempt to 1657 * lock each page under zspage_read_lock(). Otherwise, the page we lock 1658 * may no longer belong to the zspage. This means that we may wait for 1659 * the wrong page to unlock, so we must take a reference to the page 1660 * prior to waiting for it to unlock outside zspage_read_lock(). 1661 */ 1662 while (1) { 1663 zspage_read_lock(zspage); 1664 zpdesc = get_first_zpdesc(zspage); 1665 if (zpdesc_trylock(zpdesc)) 1666 break; 1667 zpdesc_get(zpdesc); 1668 zspage_read_unlock(zspage); 1669 zpdesc_wait_locked(zpdesc); 1670 zpdesc_put(zpdesc); 1671 } 1672 1673 curr_zpdesc = zpdesc; 1674 while ((zpdesc = get_next_zpdesc(curr_zpdesc))) { 1675 if (zpdesc_trylock(zpdesc)) { 1676 curr_zpdesc = zpdesc; 1677 } else { 1678 zpdesc_get(zpdesc); 1679 zspage_read_unlock(zspage); 1680 zpdesc_wait_locked(zpdesc); 1681 zpdesc_put(zpdesc); 1682 zspage_read_lock(zspage); 1683 } 1684 } 1685 zspage_read_unlock(zspage); 1686 } 1687 #endif /* CONFIG_COMPACTION */ 1688 1689 #ifdef CONFIG_COMPACTION 1690 1691 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1692 struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc) 1693 { 1694 struct zpdesc *zpdesc; 1695 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1696 unsigned int first_obj_offset; 1697 int idx = 0; 1698 1699 zpdesc = get_first_zpdesc(zspage); 1700 do { 1701 if (zpdesc == oldzpdesc) 1702 zpdescs[idx] = newzpdesc; 1703 else 1704 zpdescs[idx] = zpdesc; 1705 idx++; 1706 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL); 1707 1708 create_page_chain(class, zspage, zpdescs); 1709 first_obj_offset = get_first_obj_offset(oldzpdesc); 1710 set_first_obj_offset(newzpdesc, first_obj_offset); 1711 if (unlikely(ZsHugePage(zspage))) 1712 newzpdesc->handle = oldzpdesc->handle; 1713 __zpdesc_set_movable(newzpdesc); 1714 } 1715 1716 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1717 { 1718 /* 1719 * Page is locked so zspage can't be destroyed concurrently 1720 * (see free_zspage()). But if the page was already destroyed 1721 * (see reset_zpdesc()), refuse isolation here. 1722 */ 1723 return page_zpdesc(page)->zspage; 1724 } 1725 1726 static int zs_page_migrate(struct page *newpage, struct page *page, 1727 enum migrate_mode mode) 1728 { 1729 struct zs_pool *pool; 1730 struct size_class *class; 1731 struct zspage *zspage; 1732 struct zpdesc *dummy; 1733 struct zpdesc *newzpdesc = page_zpdesc(newpage); 1734 struct zpdesc *zpdesc = page_zpdesc(page); 1735 void *s_addr, *d_addr, *addr; 1736 unsigned int offset; 1737 unsigned long handle; 1738 unsigned long old_obj, new_obj; 1739 unsigned int obj_idx; 1740 1741 /* 1742 * TODO: nothing prevents a zspage from getting destroyed while 1743 * it is isolated for migration, as the page lock is temporarily 1744 * dropped after zs_page_isolate() succeeded: we should rework that 1745 * and defer destroying such pages once they are un-isolated (putback) 1746 * instead. 1747 */ 1748 if (!zpdesc->zspage) 1749 return MIGRATEPAGE_SUCCESS; 1750 1751 /* The page is locked, so this pointer must remain valid */ 1752 zspage = get_zspage(zpdesc); 1753 pool = zspage->pool; 1754 1755 /* 1756 * The pool migrate_lock protects the race between zpage migration 1757 * and zs_free. 1758 */ 1759 write_lock(&pool->lock); 1760 class = zspage_class(pool, zspage); 1761 1762 /* 1763 * the class lock protects zpage alloc/free in the zspage. 1764 */ 1765 spin_lock(&class->lock); 1766 /* the zspage write_lock protects zpage access via zs_obj_read/write() */ 1767 if (!zspage_write_trylock(zspage)) { 1768 spin_unlock(&class->lock); 1769 write_unlock(&pool->lock); 1770 return -EINVAL; 1771 } 1772 1773 /* We're committed, tell the world that this is a Zsmalloc page. */ 1774 __zpdesc_set_zsmalloc(newzpdesc); 1775 1776 offset = get_first_obj_offset(zpdesc); 1777 s_addr = kmap_local_zpdesc(zpdesc); 1778 1779 /* 1780 * Here, any user cannot access all objects in the zspage so let's move. 1781 */ 1782 d_addr = kmap_local_zpdesc(newzpdesc); 1783 copy_page(d_addr, s_addr); 1784 kunmap_local(d_addr); 1785 1786 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 1787 addr += class->size) { 1788 if (obj_allocated(zpdesc, addr, &handle)) { 1789 1790 old_obj = handle_to_obj(handle); 1791 obj_to_location(old_obj, &dummy, &obj_idx); 1792 new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx); 1793 record_obj(handle, new_obj); 1794 } 1795 } 1796 kunmap_local(s_addr); 1797 1798 replace_sub_page(class, zspage, newzpdesc, zpdesc); 1799 /* 1800 * Since we complete the data copy and set up new zspage structure, 1801 * it's okay to release migration_lock. 1802 */ 1803 write_unlock(&pool->lock); 1804 spin_unlock(&class->lock); 1805 zspage_write_unlock(zspage); 1806 1807 zpdesc_get(newzpdesc); 1808 if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) { 1809 zpdesc_dec_zone_page_state(zpdesc); 1810 zpdesc_inc_zone_page_state(newzpdesc); 1811 } 1812 1813 reset_zpdesc(zpdesc); 1814 zpdesc_put(zpdesc); 1815 1816 return MIGRATEPAGE_SUCCESS; 1817 } 1818 1819 static void zs_page_putback(struct page *page) 1820 { 1821 } 1822 1823 const struct movable_operations zsmalloc_mops = { 1824 .isolate_page = zs_page_isolate, 1825 .migrate_page = zs_page_migrate, 1826 .putback_page = zs_page_putback, 1827 }; 1828 1829 /* 1830 * Caller should hold page_lock of all pages in the zspage 1831 * In here, we cannot use zspage meta data. 1832 */ 1833 static void async_free_zspage(struct work_struct *work) 1834 { 1835 int i; 1836 struct size_class *class; 1837 struct zspage *zspage, *tmp; 1838 LIST_HEAD(free_pages); 1839 struct zs_pool *pool = container_of(work, struct zs_pool, 1840 free_work); 1841 1842 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 1843 class = pool->size_class[i]; 1844 if (class->index != i) 1845 continue; 1846 1847 spin_lock(&class->lock); 1848 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 1849 &free_pages); 1850 spin_unlock(&class->lock); 1851 } 1852 1853 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 1854 list_del(&zspage->list); 1855 lock_zspage(zspage); 1856 1857 class = zspage_class(pool, zspage); 1858 spin_lock(&class->lock); 1859 class_stat_sub(class, ZS_INUSE_RATIO_0, 1); 1860 __free_zspage(pool, class, zspage); 1861 spin_unlock(&class->lock); 1862 } 1863 }; 1864 1865 static void kick_deferred_free(struct zs_pool *pool) 1866 { 1867 schedule_work(&pool->free_work); 1868 } 1869 1870 static void zs_flush_migration(struct zs_pool *pool) 1871 { 1872 flush_work(&pool->free_work); 1873 } 1874 1875 static void init_deferred_free(struct zs_pool *pool) 1876 { 1877 INIT_WORK(&pool->free_work, async_free_zspage); 1878 } 1879 1880 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 1881 { 1882 struct zpdesc *zpdesc = get_first_zpdesc(zspage); 1883 1884 do { 1885 WARN_ON(!zpdesc_trylock(zpdesc)); 1886 __zpdesc_set_movable(zpdesc); 1887 zpdesc_unlock(zpdesc); 1888 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL); 1889 } 1890 #else 1891 static inline void zs_flush_migration(struct zs_pool *pool) { } 1892 #endif 1893 1894 /* 1895 * 1896 * Based on the number of unused allocated objects calculate 1897 * and return the number of pages that we can free. 1898 */ 1899 static unsigned long zs_can_compact(struct size_class *class) 1900 { 1901 unsigned long obj_wasted; 1902 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 1903 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE); 1904 1905 if (obj_allocated <= obj_used) 1906 return 0; 1907 1908 obj_wasted = obj_allocated - obj_used; 1909 obj_wasted /= class->objs_per_zspage; 1910 1911 return obj_wasted * class->pages_per_zspage; 1912 } 1913 1914 static unsigned long __zs_compact(struct zs_pool *pool, 1915 struct size_class *class) 1916 { 1917 struct zspage *src_zspage = NULL; 1918 struct zspage *dst_zspage = NULL; 1919 unsigned long pages_freed = 0; 1920 1921 /* 1922 * protect the race between zpage migration and zs_free 1923 * as well as zpage allocation/free 1924 */ 1925 write_lock(&pool->lock); 1926 spin_lock(&class->lock); 1927 while (zs_can_compact(class)) { 1928 int fg; 1929 1930 if (!dst_zspage) { 1931 dst_zspage = isolate_dst_zspage(class); 1932 if (!dst_zspage) 1933 break; 1934 } 1935 1936 src_zspage = isolate_src_zspage(class); 1937 if (!src_zspage) 1938 break; 1939 1940 if (!zspage_write_trylock(src_zspage)) 1941 break; 1942 1943 migrate_zspage(pool, src_zspage, dst_zspage); 1944 zspage_write_unlock(src_zspage); 1945 1946 fg = putback_zspage(class, src_zspage); 1947 if (fg == ZS_INUSE_RATIO_0) { 1948 free_zspage(pool, class, src_zspage); 1949 pages_freed += class->pages_per_zspage; 1950 } 1951 src_zspage = NULL; 1952 1953 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 1954 || rwlock_is_contended(&pool->lock)) { 1955 putback_zspage(class, dst_zspage); 1956 dst_zspage = NULL; 1957 1958 spin_unlock(&class->lock); 1959 write_unlock(&pool->lock); 1960 cond_resched(); 1961 write_lock(&pool->lock); 1962 spin_lock(&class->lock); 1963 } 1964 } 1965 1966 if (src_zspage) 1967 putback_zspage(class, src_zspage); 1968 1969 if (dst_zspage) 1970 putback_zspage(class, dst_zspage); 1971 1972 spin_unlock(&class->lock); 1973 write_unlock(&pool->lock); 1974 1975 return pages_freed; 1976 } 1977 1978 unsigned long zs_compact(struct zs_pool *pool) 1979 { 1980 int i; 1981 struct size_class *class; 1982 unsigned long pages_freed = 0; 1983 1984 /* 1985 * Pool compaction is performed under pool->lock so it is basically 1986 * single-threaded. Having more than one thread in __zs_compact() 1987 * will increase pool->lock contention, which will impact other 1988 * zsmalloc operations that need pool->lock. 1989 */ 1990 if (atomic_xchg(&pool->compaction_in_progress, 1)) 1991 return 0; 1992 1993 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 1994 class = pool->size_class[i]; 1995 if (class->index != i) 1996 continue; 1997 pages_freed += __zs_compact(pool, class); 1998 } 1999 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2000 atomic_set(&pool->compaction_in_progress, 0); 2001 2002 return pages_freed; 2003 } 2004 EXPORT_SYMBOL_GPL(zs_compact); 2005 2006 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2007 { 2008 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2009 } 2010 EXPORT_SYMBOL_GPL(zs_pool_stats); 2011 2012 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2013 struct shrink_control *sc) 2014 { 2015 unsigned long pages_freed; 2016 struct zs_pool *pool = shrinker->private_data; 2017 2018 /* 2019 * Compact classes and calculate compaction delta. 2020 * Can run concurrently with a manually triggered 2021 * (by user) compaction. 2022 */ 2023 pages_freed = zs_compact(pool); 2024 2025 return pages_freed ? pages_freed : SHRINK_STOP; 2026 } 2027 2028 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2029 struct shrink_control *sc) 2030 { 2031 int i; 2032 struct size_class *class; 2033 unsigned long pages_to_free = 0; 2034 struct zs_pool *pool = shrinker->private_data; 2035 2036 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2037 class = pool->size_class[i]; 2038 if (class->index != i) 2039 continue; 2040 2041 pages_to_free += zs_can_compact(class); 2042 } 2043 2044 return pages_to_free; 2045 } 2046 2047 static void zs_unregister_shrinker(struct zs_pool *pool) 2048 { 2049 shrinker_free(pool->shrinker); 2050 } 2051 2052 static int zs_register_shrinker(struct zs_pool *pool) 2053 { 2054 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name); 2055 if (!pool->shrinker) 2056 return -ENOMEM; 2057 2058 pool->shrinker->scan_objects = zs_shrinker_scan; 2059 pool->shrinker->count_objects = zs_shrinker_count; 2060 pool->shrinker->batch = 0; 2061 pool->shrinker->private_data = pool; 2062 2063 shrinker_register(pool->shrinker); 2064 2065 return 0; 2066 } 2067 2068 static int calculate_zspage_chain_size(int class_size) 2069 { 2070 int i, min_waste = INT_MAX; 2071 int chain_size = 1; 2072 2073 if (is_power_of_2(class_size)) 2074 return chain_size; 2075 2076 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2077 int waste; 2078 2079 waste = (i * PAGE_SIZE) % class_size; 2080 if (waste < min_waste) { 2081 min_waste = waste; 2082 chain_size = i; 2083 } 2084 } 2085 2086 return chain_size; 2087 } 2088 2089 /** 2090 * zs_create_pool - Creates an allocation pool to work from. 2091 * @name: pool name to be created 2092 * 2093 * This function must be called before anything when using 2094 * the zsmalloc allocator. 2095 * 2096 * On success, a pointer to the newly created pool is returned, 2097 * otherwise NULL. 2098 */ 2099 struct zs_pool *zs_create_pool(const char *name) 2100 { 2101 int i; 2102 struct zs_pool *pool; 2103 struct size_class *prev_class = NULL; 2104 2105 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2106 if (!pool) 2107 return NULL; 2108 2109 init_deferred_free(pool); 2110 rwlock_init(&pool->lock); 2111 atomic_set(&pool->compaction_in_progress, 0); 2112 2113 pool->name = kstrdup(name, GFP_KERNEL); 2114 if (!pool->name) 2115 goto err; 2116 2117 if (create_cache(pool)) 2118 goto err; 2119 2120 /* 2121 * Iterate reversely, because, size of size_class that we want to use 2122 * for merging should be larger or equal to current size. 2123 */ 2124 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2125 int size; 2126 int pages_per_zspage; 2127 int objs_per_zspage; 2128 struct size_class *class; 2129 int fullness; 2130 2131 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2132 if (size > ZS_MAX_ALLOC_SIZE) 2133 size = ZS_MAX_ALLOC_SIZE; 2134 pages_per_zspage = calculate_zspage_chain_size(size); 2135 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2136 2137 /* 2138 * We iterate from biggest down to smallest classes, 2139 * so huge_class_size holds the size of the first huge 2140 * class. Any object bigger than or equal to that will 2141 * endup in the huge class. 2142 */ 2143 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2144 !huge_class_size) { 2145 huge_class_size = size; 2146 /* 2147 * The object uses ZS_HANDLE_SIZE bytes to store the 2148 * handle. We need to subtract it, because zs_malloc() 2149 * unconditionally adds handle size before it performs 2150 * size class search - so object may be smaller than 2151 * huge class size, yet it still can end up in the huge 2152 * class because it grows by ZS_HANDLE_SIZE extra bytes 2153 * right before class lookup. 2154 */ 2155 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2156 } 2157 2158 /* 2159 * size_class is used for normal zsmalloc operation such 2160 * as alloc/free for that size. Although it is natural that we 2161 * have one size_class for each size, there is a chance that we 2162 * can get more memory utilization if we use one size_class for 2163 * many different sizes whose size_class have same 2164 * characteristics. So, we makes size_class point to 2165 * previous size_class if possible. 2166 */ 2167 if (prev_class) { 2168 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2169 pool->size_class[i] = prev_class; 2170 continue; 2171 } 2172 } 2173 2174 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2175 if (!class) 2176 goto err; 2177 2178 class->size = size; 2179 class->index = i; 2180 class->pages_per_zspage = pages_per_zspage; 2181 class->objs_per_zspage = objs_per_zspage; 2182 spin_lock_init(&class->lock); 2183 pool->size_class[i] = class; 2184 2185 fullness = ZS_INUSE_RATIO_0; 2186 while (fullness < NR_FULLNESS_GROUPS) { 2187 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2188 fullness++; 2189 } 2190 2191 prev_class = class; 2192 } 2193 2194 /* debug only, don't abort if it fails */ 2195 zs_pool_stat_create(pool, name); 2196 2197 /* 2198 * Not critical since shrinker is only used to trigger internal 2199 * defragmentation of the pool which is pretty optional thing. If 2200 * registration fails we still can use the pool normally and user can 2201 * trigger compaction manually. Thus, ignore return code. 2202 */ 2203 zs_register_shrinker(pool); 2204 2205 return pool; 2206 2207 err: 2208 zs_destroy_pool(pool); 2209 return NULL; 2210 } 2211 EXPORT_SYMBOL_GPL(zs_create_pool); 2212 2213 void zs_destroy_pool(struct zs_pool *pool) 2214 { 2215 int i; 2216 2217 zs_unregister_shrinker(pool); 2218 zs_flush_migration(pool); 2219 zs_pool_stat_destroy(pool); 2220 2221 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2222 int fg; 2223 struct size_class *class = pool->size_class[i]; 2224 2225 if (!class) 2226 continue; 2227 2228 if (class->index != i) 2229 continue; 2230 2231 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2232 if (list_empty(&class->fullness_list[fg])) 2233 continue; 2234 2235 pr_err("Class-%d fullness group %d is not empty\n", 2236 class->size, fg); 2237 } 2238 kfree(class); 2239 } 2240 2241 destroy_cache(pool); 2242 kfree(pool->name); 2243 kfree(pool); 2244 } 2245 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2246 2247 static int __init zs_init(void) 2248 { 2249 #ifdef CONFIG_ZPOOL 2250 zpool_register_driver(&zs_zpool_driver); 2251 #endif 2252 zs_stat_init(); 2253 return 0; 2254 } 2255 2256 static void __exit zs_exit(void) 2257 { 2258 #ifdef CONFIG_ZPOOL 2259 zpool_unregister_driver(&zs_zpool_driver); 2260 #endif 2261 zs_stat_exit(); 2262 } 2263 2264 module_init(zs_init); 2265 module_exit(zs_exit); 2266 2267 MODULE_LICENSE("Dual BSD/GPL"); 2268 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2269 MODULE_DESCRIPTION("zsmalloc memory allocator"); 2270