1 /*
2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3 *
4 * Copyright 2004 IDT Inc. (rischelp@idt.com)
5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 * Copyright 2008 Florian Fainelli <florian@openwrt.org>
7 * Copyright 2017 Roman Yeryomin <roman@advem.lv>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
15 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
17 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
20 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 *
29 * Writing to a DMA status register:
30 *
31 * When writing to the status register, you should mask the bit you have
32 * been testing the status register with. Both Tx and Rx DMA registers
33 * should stick to this procedure.
34 */
35
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>
40 #include <linux/ctype.h>
41 #include <linux/types.h>
42 #include <linux/interrupt.h>
43 #include <linux/ioport.h>
44 #include <linux/iopoll.h>
45 #include <linux/in.h>
46 #include <linux/of.h>
47 #include <linux/of_net.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/delay.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/skbuff.h>
54 #include <linux/errno.h>
55 #include <linux/platform_device.h>
56 #include <linux/mii.h>
57 #include <linux/ethtool.h>
58 #include <linux/crc32.h>
59 #include <linux/pgtable.h>
60 #include <linux/clk.h>
61
62 #define DRV_NAME "korina"
63 #define DRV_VERSION "0.20"
64 #define DRV_RELDATE "15Sep2017"
65
66 struct eth_regs {
67 u32 ethintfc;
68 u32 ethfifott;
69 u32 etharc;
70 u32 ethhash0;
71 u32 ethhash1;
72 u32 ethu0[4]; /* Reserved. */
73 u32 ethpfs;
74 u32 ethmcp;
75 u32 eth_u1[10]; /* Reserved. */
76 u32 ethspare;
77 u32 eth_u2[42]; /* Reserved. */
78 u32 ethsal0;
79 u32 ethsah0;
80 u32 ethsal1;
81 u32 ethsah1;
82 u32 ethsal2;
83 u32 ethsah2;
84 u32 ethsal3;
85 u32 ethsah3;
86 u32 ethrbc;
87 u32 ethrpc;
88 u32 ethrupc;
89 u32 ethrfc;
90 u32 ethtbc;
91 u32 ethgpf;
92 u32 eth_u9[50]; /* Reserved. */
93 u32 ethmac1;
94 u32 ethmac2;
95 u32 ethipgt;
96 u32 ethipgr;
97 u32 ethclrt;
98 u32 ethmaxf;
99 u32 eth_u10; /* Reserved. */
100 u32 ethmtest;
101 u32 miimcfg;
102 u32 miimcmd;
103 u32 miimaddr;
104 u32 miimwtd;
105 u32 miimrdd;
106 u32 miimind;
107 u32 eth_u11; /* Reserved. */
108 u32 eth_u12; /* Reserved. */
109 u32 ethcfsa0;
110 u32 ethcfsa1;
111 u32 ethcfsa2;
112 };
113
114 /* Ethernet interrupt registers */
115 #define ETH_INT_FC_EN BIT(0)
116 #define ETH_INT_FC_ITS BIT(1)
117 #define ETH_INT_FC_RIP BIT(2)
118 #define ETH_INT_FC_JAM BIT(3)
119 #define ETH_INT_FC_OVR BIT(4)
120 #define ETH_INT_FC_UND BIT(5)
121 #define ETH_INT_FC_IOC 0x000000c0
122
123 /* Ethernet FIFO registers */
124 #define ETH_FIFI_TT_TTH_BIT 0
125 #define ETH_FIFO_TT_TTH 0x0000007f
126
127 /* Ethernet ARC/multicast registers */
128 #define ETH_ARC_PRO BIT(0)
129 #define ETH_ARC_AM BIT(1)
130 #define ETH_ARC_AFM BIT(2)
131 #define ETH_ARC_AB BIT(3)
132
133 /* Ethernet SAL registers */
134 #define ETH_SAL_BYTE_5 0x000000ff
135 #define ETH_SAL_BYTE_4 0x0000ff00
136 #define ETH_SAL_BYTE_3 0x00ff0000
137 #define ETH_SAL_BYTE_2 0xff000000
138
139 /* Ethernet SAH registers */
140 #define ETH_SAH_BYTE1 0x000000ff
141 #define ETH_SAH_BYTE0 0x0000ff00
142
143 /* Ethernet GPF register */
144 #define ETH_GPF_PTV 0x0000ffff
145
146 /* Ethernet PFG register */
147 #define ETH_PFS_PFD BIT(0)
148
149 /* Ethernet CFSA[0-3] registers */
150 #define ETH_CFSA0_CFSA4 0x000000ff
151 #define ETH_CFSA0_CFSA5 0x0000ff00
152 #define ETH_CFSA1_CFSA2 0x000000ff
153 #define ETH_CFSA1_CFSA3 0x0000ff00
154 #define ETH_CFSA1_CFSA0 0x000000ff
155 #define ETH_CFSA1_CFSA1 0x0000ff00
156
157 /* Ethernet MAC1 registers */
158 #define ETH_MAC1_RE BIT(0)
159 #define ETH_MAC1_PAF BIT(1)
160 #define ETH_MAC1_RFC BIT(2)
161 #define ETH_MAC1_TFC BIT(3)
162 #define ETH_MAC1_LB BIT(4)
163 #define ETH_MAC1_MR BIT(31)
164
165 /* Ethernet MAC2 registers */
166 #define ETH_MAC2_FD BIT(0)
167 #define ETH_MAC2_FLC BIT(1)
168 #define ETH_MAC2_HFE BIT(2)
169 #define ETH_MAC2_DC BIT(3)
170 #define ETH_MAC2_CEN BIT(4)
171 #define ETH_MAC2_PE BIT(5)
172 #define ETH_MAC2_VPE BIT(6)
173 #define ETH_MAC2_APE BIT(7)
174 #define ETH_MAC2_PPE BIT(8)
175 #define ETH_MAC2_LPE BIT(9)
176 #define ETH_MAC2_NB BIT(12)
177 #define ETH_MAC2_BP BIT(13)
178 #define ETH_MAC2_ED BIT(14)
179
180 /* Ethernet IPGT register */
181 #define ETH_IPGT 0x0000007f
182
183 /* Ethernet IPGR registers */
184 #define ETH_IPGR_IPGR2 0x0000007f
185 #define ETH_IPGR_IPGR1 0x00007f00
186
187 /* Ethernet CLRT registers */
188 #define ETH_CLRT_MAX_RET 0x0000000f
189 #define ETH_CLRT_COL_WIN 0x00003f00
190
191 /* Ethernet MAXF register */
192 #define ETH_MAXF 0x0000ffff
193
194 /* Ethernet test registers */
195 #define ETH_TEST_REG BIT(2)
196 #define ETH_MCP_DIV 0x000000ff
197
198 /* MII registers */
199 #define ETH_MII_CFG_RSVD 0x0000000c
200 #define ETH_MII_CMD_RD BIT(0)
201 #define ETH_MII_CMD_SCN BIT(1)
202 #define ETH_MII_REG_ADDR 0x0000001f
203 #define ETH_MII_PHY_ADDR 0x00001f00
204 #define ETH_MII_WTD_DATA 0x0000ffff
205 #define ETH_MII_RDD_DATA 0x0000ffff
206 #define ETH_MII_IND_BSY BIT(0)
207 #define ETH_MII_IND_SCN BIT(1)
208 #define ETH_MII_IND_NV BIT(2)
209
210 /* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
211 #define ETH_RX_FD BIT(0)
212 #define ETH_RX_LD BIT(1)
213 #define ETH_RX_ROK BIT(2)
214 #define ETH_RX_FM BIT(3)
215 #define ETH_RX_MP BIT(4)
216 #define ETH_RX_BP BIT(5)
217 #define ETH_RX_VLT BIT(6)
218 #define ETH_RX_CF BIT(7)
219 #define ETH_RX_OVR BIT(8)
220 #define ETH_RX_CRC BIT(9)
221 #define ETH_RX_CV BIT(10)
222 #define ETH_RX_DB BIT(11)
223 #define ETH_RX_LE BIT(12)
224 #define ETH_RX_LOR BIT(13)
225 #define ETH_RX_CES BIT(14)
226 #define ETH_RX_LEN_BIT 16
227 #define ETH_RX_LEN 0xffff0000
228
229 #define ETH_TX_FD BIT(0)
230 #define ETH_TX_LD BIT(1)
231 #define ETH_TX_OEN BIT(2)
232 #define ETH_TX_PEN BIT(3)
233 #define ETH_TX_CEN BIT(4)
234 #define ETH_TX_HEN BIT(5)
235 #define ETH_TX_TOK BIT(6)
236 #define ETH_TX_MP BIT(7)
237 #define ETH_TX_BP BIT(8)
238 #define ETH_TX_UND BIT(9)
239 #define ETH_TX_OF BIT(10)
240 #define ETH_TX_ED BIT(11)
241 #define ETH_TX_EC BIT(12)
242 #define ETH_TX_LC BIT(13)
243 #define ETH_TX_TD BIT(14)
244 #define ETH_TX_CRC BIT(15)
245 #define ETH_TX_LE BIT(16)
246 #define ETH_TX_CC 0x001E0000
247
248 /* DMA descriptor (in physical memory). */
249 struct dma_desc {
250 u32 control; /* Control. use DMAD_* */
251 u32 ca; /* Current Address. */
252 u32 devcs; /* Device control and status. */
253 u32 link; /* Next descriptor in chain. */
254 };
255
256 #define DMA_DESC_COUNT_BIT 0
257 #define DMA_DESC_COUNT_MSK 0x0003ffff
258 #define DMA_DESC_DS_BIT 20
259 #define DMA_DESC_DS_MSK 0x00300000
260
261 #define DMA_DESC_DEV_CMD_BIT 22
262 #define DMA_DESC_DEV_CMD_MSK 0x01c00000
263
264 /* DMA descriptors interrupts */
265 #define DMA_DESC_COF BIT(25) /* Chain on finished */
266 #define DMA_DESC_COD BIT(26) /* Chain on done */
267 #define DMA_DESC_IOF BIT(27) /* Interrupt on finished */
268 #define DMA_DESC_IOD BIT(28) /* Interrupt on done */
269 #define DMA_DESC_TERM BIT(29) /* Terminated */
270 #define DMA_DESC_DONE BIT(30) /* Done */
271 #define DMA_DESC_FINI BIT(31) /* Finished */
272
273 /* DMA register (within Internal Register Map). */
274 struct dma_reg {
275 u32 dmac; /* Control. */
276 u32 dmas; /* Status. */
277 u32 dmasm; /* Mask. */
278 u32 dmadptr; /* Descriptor pointer. */
279 u32 dmandptr; /* Next descriptor pointer. */
280 };
281
282 /* DMA channels specific registers */
283 #define DMA_CHAN_RUN_BIT BIT(0)
284 #define DMA_CHAN_DONE_BIT BIT(1)
285 #define DMA_CHAN_MODE_BIT BIT(2)
286 #define DMA_CHAN_MODE_MSK 0x0000000c
287 #define DMA_CHAN_MODE_AUTO 0
288 #define DMA_CHAN_MODE_BURST 1
289 #define DMA_CHAN_MODE_XFRT 2
290 #define DMA_CHAN_MODE_RSVD 3
291 #define DMA_CHAN_ACT_BIT BIT(4)
292
293 /* DMA status registers */
294 #define DMA_STAT_FINI BIT(0)
295 #define DMA_STAT_DONE BIT(1)
296 #define DMA_STAT_CHAIN BIT(2)
297 #define DMA_STAT_ERR BIT(3)
298 #define DMA_STAT_HALT BIT(4)
299
300 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
301 ((dev)->dev_addr[1]))
302 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
303 ((dev)->dev_addr[3] << 16) | \
304 ((dev)->dev_addr[4] << 8) | \
305 ((dev)->dev_addr[5]))
306
307 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
308
309 /* the following must be powers of two */
310 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
311 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
312
313 /* KORINA_RBSIZE is the hardware's default maximum receive
314 * frame size in bytes. Having this hardcoded means that there
315 * is no support for MTU sizes greater than 1500. */
316 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
317 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
318 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
319 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
320 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
321
322 #define TX_TIMEOUT (6000 * HZ / 1000)
323
324 enum chain_status {
325 desc_filled,
326 desc_is_empty
327 };
328
329 #define DMA_COUNT(count) ((count) & DMA_DESC_COUNT_MSK)
330 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
331 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
332 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
333
334 /* Information that need to be kept for each board. */
335 struct korina_private {
336 struct eth_regs __iomem *eth_regs;
337 struct dma_reg __iomem *rx_dma_regs;
338 struct dma_reg __iomem *tx_dma_regs;
339 struct dma_desc *td_ring; /* transmit descriptor ring */
340 struct dma_desc *rd_ring; /* receive descriptor ring */
341 dma_addr_t td_dma;
342 dma_addr_t rd_dma;
343
344 struct sk_buff *tx_skb[KORINA_NUM_TDS];
345 struct sk_buff *rx_skb[KORINA_NUM_RDS];
346
347 dma_addr_t rx_skb_dma[KORINA_NUM_RDS];
348 dma_addr_t tx_skb_dma[KORINA_NUM_TDS];
349
350 int rx_next_done;
351 int rx_chain_head;
352 int rx_chain_tail;
353 enum chain_status rx_chain_status;
354
355 int tx_next_done;
356 int tx_chain_head;
357 int tx_chain_tail;
358 enum chain_status tx_chain_status;
359 int tx_count;
360 int tx_full;
361
362 int rx_irq;
363 int tx_irq;
364
365 spinlock_t lock; /* NIC xmit lock */
366
367 int dma_halt_cnt;
368 int dma_run_cnt;
369 struct napi_struct napi;
370 struct timer_list media_check_timer;
371 struct mii_if_info mii_if;
372 struct work_struct restart_task;
373 struct net_device *dev;
374 struct device *dmadev;
375 int mii_clock_freq;
376 };
377
korina_tx_dma(struct korina_private * lp,int idx)378 static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx)
379 {
380 return lp->td_dma + (idx * sizeof(struct dma_desc));
381 }
382
korina_rx_dma(struct korina_private * lp,int idx)383 static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx)
384 {
385 return lp->rd_dma + (idx * sizeof(struct dma_desc));
386 }
387
korina_abort_dma(struct net_device * dev,struct dma_reg * ch)388 static inline void korina_abort_dma(struct net_device *dev,
389 struct dma_reg *ch)
390 {
391 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
392 writel(0x10, &ch->dmac);
393
394 while (!(readl(&ch->dmas) & DMA_STAT_HALT))
395 netif_trans_update(dev);
396
397 writel(0, &ch->dmas);
398 }
399
400 writel(0, &ch->dmadptr);
401 writel(0, &ch->dmandptr);
402 }
403
korina_abort_tx(struct net_device * dev)404 static void korina_abort_tx(struct net_device *dev)
405 {
406 struct korina_private *lp = netdev_priv(dev);
407
408 korina_abort_dma(dev, lp->tx_dma_regs);
409 }
410
korina_abort_rx(struct net_device * dev)411 static void korina_abort_rx(struct net_device *dev)
412 {
413 struct korina_private *lp = netdev_priv(dev);
414
415 korina_abort_dma(dev, lp->rx_dma_regs);
416 }
417
418 /* transmit packet */
korina_send_packet(struct sk_buff * skb,struct net_device * dev)419 static netdev_tx_t korina_send_packet(struct sk_buff *skb,
420 struct net_device *dev)
421 {
422 struct korina_private *lp = netdev_priv(dev);
423 u32 chain_prev, chain_next;
424 unsigned long flags;
425 struct dma_desc *td;
426 dma_addr_t ca;
427 u32 length;
428 int idx;
429
430 spin_lock_irqsave(&lp->lock, flags);
431
432 idx = lp->tx_chain_tail;
433 td = &lp->td_ring[idx];
434
435 /* stop queue when full, drop pkts if queue already full */
436 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
437 lp->tx_full = 1;
438
439 if (lp->tx_count == (KORINA_NUM_TDS - 2))
440 netif_stop_queue(dev);
441 else
442 goto drop_packet;
443 }
444
445 lp->tx_count++;
446
447 lp->tx_skb[idx] = skb;
448
449 length = skb->len;
450
451 /* Setup the transmit descriptor. */
452 ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE);
453 if (dma_mapping_error(lp->dmadev, ca))
454 goto drop_packet;
455
456 lp->tx_skb_dma[idx] = ca;
457 td->ca = ca;
458
459 chain_prev = (idx - 1) & KORINA_TDS_MASK;
460 chain_next = (idx + 1) & KORINA_TDS_MASK;
461
462 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
463 if (lp->tx_chain_status == desc_is_empty) {
464 /* Update tail */
465 td->control = DMA_COUNT(length) |
466 DMA_DESC_COF | DMA_DESC_IOF;
467 /* Move tail */
468 lp->tx_chain_tail = chain_next;
469 /* Write to NDPTR */
470 writel(korina_tx_dma(lp, lp->tx_chain_head),
471 &lp->tx_dma_regs->dmandptr);
472 /* Move head to tail */
473 lp->tx_chain_head = lp->tx_chain_tail;
474 } else {
475 /* Update tail */
476 td->control = DMA_COUNT(length) |
477 DMA_DESC_COF | DMA_DESC_IOF;
478 /* Link to prev */
479 lp->td_ring[chain_prev].control &=
480 ~DMA_DESC_COF;
481 /* Link to prev */
482 lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
483 /* Move tail */
484 lp->tx_chain_tail = chain_next;
485 /* Write to NDPTR */
486 writel(korina_tx_dma(lp, lp->tx_chain_head),
487 &lp->tx_dma_regs->dmandptr);
488 /* Move head to tail */
489 lp->tx_chain_head = lp->tx_chain_tail;
490 lp->tx_chain_status = desc_is_empty;
491 }
492 } else {
493 if (lp->tx_chain_status == desc_is_empty) {
494 /* Update tail */
495 td->control = DMA_COUNT(length) |
496 DMA_DESC_COF | DMA_DESC_IOF;
497 /* Move tail */
498 lp->tx_chain_tail = chain_next;
499 lp->tx_chain_status = desc_filled;
500 } else {
501 /* Update tail */
502 td->control = DMA_COUNT(length) |
503 DMA_DESC_COF | DMA_DESC_IOF;
504 lp->td_ring[chain_prev].control &=
505 ~DMA_DESC_COF;
506 lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
507 lp->tx_chain_tail = chain_next;
508 }
509 }
510
511 netif_trans_update(dev);
512 spin_unlock_irqrestore(&lp->lock, flags);
513
514 return NETDEV_TX_OK;
515
516 drop_packet:
517 dev->stats.tx_dropped++;
518 dev_kfree_skb_any(skb);
519 spin_unlock_irqrestore(&lp->lock, flags);
520
521 return NETDEV_TX_OK;
522 }
523
korina_mdio_wait(struct korina_private * lp)524 static int korina_mdio_wait(struct korina_private *lp)
525 {
526 u32 value;
527
528 return readl_poll_timeout_atomic(&lp->eth_regs->miimind,
529 value, value & ETH_MII_IND_BSY,
530 1, 1000);
531 }
532
korina_mdio_read(struct net_device * dev,int phy,int reg)533 static int korina_mdio_read(struct net_device *dev, int phy, int reg)
534 {
535 struct korina_private *lp = netdev_priv(dev);
536 int ret;
537
538 ret = korina_mdio_wait(lp);
539 if (ret < 0)
540 return ret;
541
542 writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
543 writel(1, &lp->eth_regs->miimcmd);
544
545 ret = korina_mdio_wait(lp);
546 if (ret < 0)
547 return ret;
548
549 if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV)
550 return -EINVAL;
551
552 ret = readl(&lp->eth_regs->miimrdd);
553 writel(0, &lp->eth_regs->miimcmd);
554 return ret;
555 }
556
korina_mdio_write(struct net_device * dev,int phy,int reg,int val)557 static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val)
558 {
559 struct korina_private *lp = netdev_priv(dev);
560
561 if (korina_mdio_wait(lp))
562 return;
563
564 writel(0, &lp->eth_regs->miimcmd);
565 writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
566 writel(val, &lp->eth_regs->miimwtd);
567 }
568
569 /* Ethernet Rx DMA interrupt */
korina_rx_dma_interrupt(int irq,void * dev_id)570 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
571 {
572 struct net_device *dev = dev_id;
573 struct korina_private *lp = netdev_priv(dev);
574 u32 dmas, dmasm;
575 irqreturn_t retval;
576
577 dmas = readl(&lp->rx_dma_regs->dmas);
578 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
579 dmasm = readl(&lp->rx_dma_regs->dmasm);
580 writel(dmasm | (DMA_STAT_DONE |
581 DMA_STAT_HALT | DMA_STAT_ERR),
582 &lp->rx_dma_regs->dmasm);
583
584 napi_schedule(&lp->napi);
585
586 if (dmas & DMA_STAT_ERR)
587 printk(KERN_ERR "%s: DMA error\n", dev->name);
588
589 retval = IRQ_HANDLED;
590 } else
591 retval = IRQ_NONE;
592
593 return retval;
594 }
595
korina_rx(struct net_device * dev,int limit)596 static int korina_rx(struct net_device *dev, int limit)
597 {
598 struct korina_private *lp = netdev_priv(dev);
599 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
600 struct sk_buff *skb, *skb_new;
601 u32 devcs, pkt_len, dmas;
602 dma_addr_t ca;
603 int count;
604
605 for (count = 0; count < limit; count++) {
606 skb = lp->rx_skb[lp->rx_next_done];
607 skb_new = NULL;
608
609 devcs = rd->devcs;
610
611 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
612 break;
613
614 /* check that this is a whole packet
615 * WARNING: DMA_FD bit incorrectly set
616 * in Rc32434 (errata ref #077) */
617 if (!(devcs & ETH_RX_LD))
618 goto next;
619
620 if (!(devcs & ETH_RX_ROK)) {
621 /* Update statistics counters */
622 dev->stats.rx_errors++;
623 dev->stats.rx_dropped++;
624 if (devcs & ETH_RX_CRC)
625 dev->stats.rx_crc_errors++;
626 if (devcs & ETH_RX_LE)
627 dev->stats.rx_length_errors++;
628 if (devcs & ETH_RX_OVR)
629 dev->stats.rx_fifo_errors++;
630 if (devcs & ETH_RX_CV)
631 dev->stats.rx_frame_errors++;
632 if (devcs & ETH_RX_CES)
633 dev->stats.rx_frame_errors++;
634
635 goto next;
636 }
637
638 /* Malloc up new buffer. */
639 skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
640 if (!skb_new)
641 break;
642
643 ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE,
644 DMA_FROM_DEVICE);
645 if (dma_mapping_error(lp->dmadev, ca)) {
646 dev_kfree_skb_any(skb_new);
647 break;
648 }
649
650 pkt_len = RCVPKT_LENGTH(devcs);
651 dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done],
652 pkt_len, DMA_FROM_DEVICE);
653
654 /* Do not count the CRC */
655 skb_put(skb, pkt_len - 4);
656 skb->protocol = eth_type_trans(skb, dev);
657
658 /* Pass the packet to upper layers */
659 napi_gro_receive(&lp->napi, skb);
660 dev->stats.rx_packets++;
661 dev->stats.rx_bytes += pkt_len;
662
663 /* Update the mcast stats */
664 if (devcs & ETH_RX_MP)
665 dev->stats.multicast++;
666
667 lp->rx_skb[lp->rx_next_done] = skb_new;
668 lp->rx_skb_dma[lp->rx_next_done] = ca;
669
670 next:
671 rd->devcs = 0;
672
673 /* Restore descriptor's curr_addr */
674 rd->ca = lp->rx_skb_dma[lp->rx_next_done];
675
676 rd->control = DMA_COUNT(KORINA_RBSIZE) |
677 DMA_DESC_COD | DMA_DESC_IOD;
678 lp->rd_ring[(lp->rx_next_done - 1) &
679 KORINA_RDS_MASK].control &=
680 ~DMA_DESC_COD;
681
682 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
683 rd = &lp->rd_ring[lp->rx_next_done];
684 writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
685 }
686
687 dmas = readl(&lp->rx_dma_regs->dmas);
688
689 if (dmas & DMA_STAT_HALT) {
690 writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR),
691 &lp->rx_dma_regs->dmas);
692
693 lp->dma_halt_cnt++;
694 rd->devcs = 0;
695 rd->ca = lp->rx_skb_dma[lp->rx_next_done];
696 writel(korina_rx_dma(lp, rd - lp->rd_ring),
697 &lp->rx_dma_regs->dmandptr);
698 }
699
700 return count;
701 }
702
korina_poll(struct napi_struct * napi,int budget)703 static int korina_poll(struct napi_struct *napi, int budget)
704 {
705 struct korina_private *lp =
706 container_of(napi, struct korina_private, napi);
707 struct net_device *dev = lp->dev;
708 int work_done;
709
710 work_done = korina_rx(dev, budget);
711 if (work_done < budget) {
712 napi_complete_done(napi, work_done);
713
714 writel(readl(&lp->rx_dma_regs->dmasm) &
715 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
716 &lp->rx_dma_regs->dmasm);
717 }
718 return work_done;
719 }
720
721 /*
722 * Set or clear the multicast filter for this adaptor.
723 */
korina_multicast_list(struct net_device * dev)724 static void korina_multicast_list(struct net_device *dev)
725 {
726 struct korina_private *lp = netdev_priv(dev);
727 unsigned long flags;
728 struct netdev_hw_addr *ha;
729 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
730
731 /* Set promiscuous mode */
732 if (dev->flags & IFF_PROMISC)
733 recognise |= ETH_ARC_PRO;
734
735 else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
736 /* All multicast and broadcast */
737 recognise |= ETH_ARC_AM;
738
739 /* Build the hash table */
740 if (netdev_mc_count(dev) > 4) {
741 u16 hash_table[4] = { 0 };
742 u32 crc;
743
744 netdev_for_each_mc_addr(ha, dev) {
745 crc = ether_crc_le(6, ha->addr);
746 crc >>= 26;
747 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
748 }
749 /* Accept filtered multicast */
750 recognise |= ETH_ARC_AFM;
751
752 /* Fill the MAC hash tables with their values */
753 writel((u32)(hash_table[1] << 16 | hash_table[0]),
754 &lp->eth_regs->ethhash0);
755 writel((u32)(hash_table[3] << 16 | hash_table[2]),
756 &lp->eth_regs->ethhash1);
757 }
758
759 spin_lock_irqsave(&lp->lock, flags);
760 writel(recognise, &lp->eth_regs->etharc);
761 spin_unlock_irqrestore(&lp->lock, flags);
762 }
763
korina_tx(struct net_device * dev)764 static void korina_tx(struct net_device *dev)
765 {
766 struct korina_private *lp = netdev_priv(dev);
767 struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
768 u32 devcs;
769 u32 dmas;
770
771 spin_lock(&lp->lock);
772
773 /* Process all desc that are done */
774 while (IS_DMA_FINISHED(td->control)) {
775 if (lp->tx_full == 1) {
776 netif_wake_queue(dev);
777 lp->tx_full = 0;
778 }
779
780 devcs = lp->td_ring[lp->tx_next_done].devcs;
781 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
782 (ETH_TX_FD | ETH_TX_LD)) {
783 dev->stats.tx_errors++;
784 dev->stats.tx_dropped++;
785
786 /* Should never happen */
787 printk(KERN_ERR "%s: split tx ignored\n",
788 dev->name);
789 } else if (devcs & ETH_TX_TOK) {
790 dev->stats.tx_packets++;
791 dev->stats.tx_bytes +=
792 lp->tx_skb[lp->tx_next_done]->len;
793 } else {
794 dev->stats.tx_errors++;
795 dev->stats.tx_dropped++;
796
797 /* Underflow */
798 if (devcs & ETH_TX_UND)
799 dev->stats.tx_fifo_errors++;
800
801 /* Oversized frame */
802 if (devcs & ETH_TX_OF)
803 dev->stats.tx_aborted_errors++;
804
805 /* Excessive deferrals */
806 if (devcs & ETH_TX_ED)
807 dev->stats.tx_carrier_errors++;
808
809 /* Collisions: medium busy */
810 if (devcs & ETH_TX_EC)
811 dev->stats.collisions++;
812
813 /* Late collision */
814 if (devcs & ETH_TX_LC)
815 dev->stats.tx_window_errors++;
816 }
817
818 /* We must always free the original skb */
819 if (lp->tx_skb[lp->tx_next_done]) {
820 dma_unmap_single(lp->dmadev,
821 lp->tx_skb_dma[lp->tx_next_done],
822 lp->tx_skb[lp->tx_next_done]->len,
823 DMA_TO_DEVICE);
824 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
825 lp->tx_skb[lp->tx_next_done] = NULL;
826 }
827
828 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
829 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
830 lp->td_ring[lp->tx_next_done].link = 0;
831 lp->td_ring[lp->tx_next_done].ca = 0;
832 lp->tx_count--;
833
834 /* Go on to next transmission */
835 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
836 td = &lp->td_ring[lp->tx_next_done];
837
838 }
839
840 /* Clear the DMA status register */
841 dmas = readl(&lp->tx_dma_regs->dmas);
842 writel(~dmas, &lp->tx_dma_regs->dmas);
843
844 writel(readl(&lp->tx_dma_regs->dmasm) &
845 ~(DMA_STAT_FINI | DMA_STAT_ERR),
846 &lp->tx_dma_regs->dmasm);
847
848 spin_unlock(&lp->lock);
849 }
850
851 static irqreturn_t
korina_tx_dma_interrupt(int irq,void * dev_id)852 korina_tx_dma_interrupt(int irq, void *dev_id)
853 {
854 struct net_device *dev = dev_id;
855 struct korina_private *lp = netdev_priv(dev);
856 u32 dmas, dmasm;
857 irqreturn_t retval;
858
859 dmas = readl(&lp->tx_dma_regs->dmas);
860
861 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
862 dmasm = readl(&lp->tx_dma_regs->dmasm);
863 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
864 &lp->tx_dma_regs->dmasm);
865
866 korina_tx(dev);
867
868 if (lp->tx_chain_status == desc_filled &&
869 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
870 writel(korina_tx_dma(lp, lp->tx_chain_head),
871 &lp->tx_dma_regs->dmandptr);
872 lp->tx_chain_status = desc_is_empty;
873 lp->tx_chain_head = lp->tx_chain_tail;
874 netif_trans_update(dev);
875 }
876 if (dmas & DMA_STAT_ERR)
877 printk(KERN_ERR "%s: DMA error\n", dev->name);
878
879 retval = IRQ_HANDLED;
880 } else
881 retval = IRQ_NONE;
882
883 return retval;
884 }
885
886
korina_check_media(struct net_device * dev,unsigned int init_media)887 static void korina_check_media(struct net_device *dev, unsigned int init_media)
888 {
889 struct korina_private *lp = netdev_priv(dev);
890
891 mii_check_media(&lp->mii_if, 1, init_media);
892
893 if (lp->mii_if.full_duplex)
894 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
895 &lp->eth_regs->ethmac2);
896 else
897 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
898 &lp->eth_regs->ethmac2);
899 }
900
korina_poll_media(struct timer_list * t)901 static void korina_poll_media(struct timer_list *t)
902 {
903 struct korina_private *lp = from_timer(lp, t, media_check_timer);
904 struct net_device *dev = lp->dev;
905
906 korina_check_media(dev, 0);
907 mod_timer(&lp->media_check_timer, jiffies + HZ);
908 }
909
korina_set_carrier(struct mii_if_info * mii)910 static void korina_set_carrier(struct mii_if_info *mii)
911 {
912 if (mii->force_media) {
913 /* autoneg is off: Link is always assumed to be up */
914 if (!netif_carrier_ok(mii->dev))
915 netif_carrier_on(mii->dev);
916 } else /* Let MMI library update carrier status */
917 korina_check_media(mii->dev, 0);
918 }
919
korina_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)920 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
921 {
922 struct korina_private *lp = netdev_priv(dev);
923 struct mii_ioctl_data *data = if_mii(rq);
924 int rc;
925
926 if (!netif_running(dev))
927 return -EINVAL;
928 spin_lock_irq(&lp->lock);
929 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
930 spin_unlock_irq(&lp->lock);
931 korina_set_carrier(&lp->mii_if);
932
933 return rc;
934 }
935
936 /* ethtool helpers */
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)937 static void netdev_get_drvinfo(struct net_device *dev,
938 struct ethtool_drvinfo *info)
939 {
940 struct korina_private *lp = netdev_priv(dev);
941
942 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
943 strscpy(info->version, DRV_VERSION, sizeof(info->version));
944 strscpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
945 }
946
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)947 static int netdev_get_link_ksettings(struct net_device *dev,
948 struct ethtool_link_ksettings *cmd)
949 {
950 struct korina_private *lp = netdev_priv(dev);
951
952 spin_lock_irq(&lp->lock);
953 mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
954 spin_unlock_irq(&lp->lock);
955
956 return 0;
957 }
958
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)959 static int netdev_set_link_ksettings(struct net_device *dev,
960 const struct ethtool_link_ksettings *cmd)
961 {
962 struct korina_private *lp = netdev_priv(dev);
963 int rc;
964
965 spin_lock_irq(&lp->lock);
966 rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
967 spin_unlock_irq(&lp->lock);
968 korina_set_carrier(&lp->mii_if);
969
970 return rc;
971 }
972
netdev_get_link(struct net_device * dev)973 static u32 netdev_get_link(struct net_device *dev)
974 {
975 struct korina_private *lp = netdev_priv(dev);
976
977 return mii_link_ok(&lp->mii_if);
978 }
979
980 static const struct ethtool_ops netdev_ethtool_ops = {
981 .get_drvinfo = netdev_get_drvinfo,
982 .get_link = netdev_get_link,
983 .get_link_ksettings = netdev_get_link_ksettings,
984 .set_link_ksettings = netdev_set_link_ksettings,
985 };
986
korina_alloc_ring(struct net_device * dev)987 static int korina_alloc_ring(struct net_device *dev)
988 {
989 struct korina_private *lp = netdev_priv(dev);
990 struct sk_buff *skb;
991 dma_addr_t ca;
992 int i;
993
994 /* Initialize the transmit descriptors */
995 for (i = 0; i < KORINA_NUM_TDS; i++) {
996 lp->td_ring[i].control = DMA_DESC_IOF;
997 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
998 lp->td_ring[i].ca = 0;
999 lp->td_ring[i].link = 0;
1000 }
1001 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
1002 lp->tx_full = lp->tx_count = 0;
1003 lp->tx_chain_status = desc_is_empty;
1004
1005 /* Initialize the receive descriptors */
1006 for (i = 0; i < KORINA_NUM_RDS; i++) {
1007 skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
1008 if (!skb)
1009 return -ENOMEM;
1010 lp->rx_skb[i] = skb;
1011 lp->rd_ring[i].control = DMA_DESC_IOD |
1012 DMA_COUNT(KORINA_RBSIZE);
1013 lp->rd_ring[i].devcs = 0;
1014 ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE,
1015 DMA_FROM_DEVICE);
1016 if (dma_mapping_error(lp->dmadev, ca))
1017 return -ENOMEM;
1018 lp->rd_ring[i].ca = ca;
1019 lp->rx_skb_dma[i] = ca;
1020 lp->rd_ring[i].link = korina_rx_dma(lp, i + 1);
1021 }
1022
1023 /* loop back receive descriptors, so the last
1024 * descriptor points to the first one */
1025 lp->rd_ring[i - 1].link = lp->rd_dma;
1026 lp->rd_ring[i - 1].control |= DMA_DESC_COD;
1027
1028 lp->rx_next_done = 0;
1029 lp->rx_chain_head = 0;
1030 lp->rx_chain_tail = 0;
1031 lp->rx_chain_status = desc_is_empty;
1032
1033 return 0;
1034 }
1035
korina_free_ring(struct net_device * dev)1036 static void korina_free_ring(struct net_device *dev)
1037 {
1038 struct korina_private *lp = netdev_priv(dev);
1039 int i;
1040
1041 for (i = 0; i < KORINA_NUM_RDS; i++) {
1042 lp->rd_ring[i].control = 0;
1043 if (lp->rx_skb[i]) {
1044 dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i],
1045 KORINA_RBSIZE, DMA_FROM_DEVICE);
1046 dev_kfree_skb_any(lp->rx_skb[i]);
1047 lp->rx_skb[i] = NULL;
1048 }
1049 }
1050
1051 for (i = 0; i < KORINA_NUM_TDS; i++) {
1052 lp->td_ring[i].control = 0;
1053 if (lp->tx_skb[i]) {
1054 dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i],
1055 lp->tx_skb[i]->len, DMA_TO_DEVICE);
1056 dev_kfree_skb_any(lp->tx_skb[i]);
1057 lp->tx_skb[i] = NULL;
1058 }
1059 }
1060 }
1061
1062 /*
1063 * Initialize the RC32434 ethernet controller.
1064 */
korina_init(struct net_device * dev)1065 static int korina_init(struct net_device *dev)
1066 {
1067 struct korina_private *lp = netdev_priv(dev);
1068
1069 /* Disable DMA */
1070 korina_abort_tx(dev);
1071 korina_abort_rx(dev);
1072
1073 /* reset ethernet logic */
1074 writel(0, &lp->eth_regs->ethintfc);
1075 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
1076 netif_trans_update(dev);
1077
1078 /* Enable Ethernet Interface */
1079 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
1080
1081 /* Allocate rings */
1082 if (korina_alloc_ring(dev)) {
1083 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
1084 korina_free_ring(dev);
1085 return -ENOMEM;
1086 }
1087
1088 writel(0, &lp->rx_dma_regs->dmas);
1089 /* Start Rx DMA */
1090 writel(0, &lp->rx_dma_regs->dmandptr);
1091 writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr);
1092
1093 writel(readl(&lp->tx_dma_regs->dmasm) &
1094 ~(DMA_STAT_FINI | DMA_STAT_ERR),
1095 &lp->tx_dma_regs->dmasm);
1096 writel(readl(&lp->rx_dma_regs->dmasm) &
1097 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
1098 &lp->rx_dma_regs->dmasm);
1099
1100 /* Accept only packets destined for this Ethernet device address */
1101 writel(ETH_ARC_AB, &lp->eth_regs->etharc);
1102
1103 /* Set all Ether station address registers to their initial values */
1104 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
1105 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
1106
1107 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
1108 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
1109
1110 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
1111 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
1112
1113 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
1114 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
1115
1116
1117 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
1118 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
1119 &lp->eth_regs->ethmac2);
1120
1121 /* Back to back inter-packet-gap */
1122 writel(0x15, &lp->eth_regs->ethipgt);
1123 /* Non - Back to back inter-packet-gap */
1124 writel(0x12, &lp->eth_regs->ethipgr);
1125
1126 /* Management Clock Prescaler Divisor
1127 * Clock independent setting */
1128 writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1,
1129 &lp->eth_regs->ethmcp);
1130 writel(0, &lp->eth_regs->miimcfg);
1131
1132 /* don't transmit until fifo contains 48b */
1133 writel(48, &lp->eth_regs->ethfifott);
1134
1135 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
1136
1137 korina_check_media(dev, 1);
1138
1139 napi_enable(&lp->napi);
1140 netif_start_queue(dev);
1141
1142 return 0;
1143 }
1144
1145 /*
1146 * Restart the RC32434 ethernet controller.
1147 */
korina_restart_task(struct work_struct * work)1148 static void korina_restart_task(struct work_struct *work)
1149 {
1150 struct korina_private *lp = container_of(work,
1151 struct korina_private, restart_task);
1152 struct net_device *dev = lp->dev;
1153
1154 /*
1155 * Disable interrupts
1156 */
1157 disable_irq(lp->rx_irq);
1158 disable_irq(lp->tx_irq);
1159
1160 writel(readl(&lp->tx_dma_regs->dmasm) |
1161 DMA_STAT_FINI | DMA_STAT_ERR,
1162 &lp->tx_dma_regs->dmasm);
1163 writel(readl(&lp->rx_dma_regs->dmasm) |
1164 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
1165 &lp->rx_dma_regs->dmasm);
1166
1167 napi_disable(&lp->napi);
1168
1169 korina_free_ring(dev);
1170
1171 if (korina_init(dev) < 0) {
1172 printk(KERN_ERR "%s: cannot restart device\n", dev->name);
1173 return;
1174 }
1175 korina_multicast_list(dev);
1176
1177 enable_irq(lp->tx_irq);
1178 enable_irq(lp->rx_irq);
1179 }
1180
korina_tx_timeout(struct net_device * dev,unsigned int txqueue)1181 static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue)
1182 {
1183 struct korina_private *lp = netdev_priv(dev);
1184
1185 schedule_work(&lp->restart_task);
1186 }
1187
1188 #ifdef CONFIG_NET_POLL_CONTROLLER
korina_poll_controller(struct net_device * dev)1189 static void korina_poll_controller(struct net_device *dev)
1190 {
1191 disable_irq(dev->irq);
1192 korina_tx_dma_interrupt(dev->irq, dev);
1193 enable_irq(dev->irq);
1194 }
1195 #endif
1196
korina_open(struct net_device * dev)1197 static int korina_open(struct net_device *dev)
1198 {
1199 struct korina_private *lp = netdev_priv(dev);
1200 int ret;
1201
1202 /* Initialize */
1203 ret = korina_init(dev);
1204 if (ret < 0) {
1205 printk(KERN_ERR "%s: cannot open device\n", dev->name);
1206 goto out;
1207 }
1208
1209 /* Install the interrupt handler
1210 * that handles the Done Finished */
1211 ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1212 0, "Korina ethernet Rx", dev);
1213 if (ret < 0) {
1214 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1215 dev->name, lp->rx_irq);
1216 goto err_release;
1217 }
1218 ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1219 0, "Korina ethernet Tx", dev);
1220 if (ret < 0) {
1221 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1222 dev->name, lp->tx_irq);
1223 goto err_free_rx_irq;
1224 }
1225
1226 mod_timer(&lp->media_check_timer, jiffies + 1);
1227 out:
1228 return ret;
1229
1230 err_free_rx_irq:
1231 free_irq(lp->rx_irq, dev);
1232 err_release:
1233 korina_free_ring(dev);
1234 goto out;
1235 }
1236
korina_close(struct net_device * dev)1237 static int korina_close(struct net_device *dev)
1238 {
1239 struct korina_private *lp = netdev_priv(dev);
1240 u32 tmp;
1241
1242 del_timer(&lp->media_check_timer);
1243
1244 /* Disable interrupts */
1245 disable_irq(lp->rx_irq);
1246 disable_irq(lp->tx_irq);
1247
1248 korina_abort_tx(dev);
1249 tmp = readl(&lp->tx_dma_regs->dmasm);
1250 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1251 writel(tmp, &lp->tx_dma_regs->dmasm);
1252
1253 korina_abort_rx(dev);
1254 tmp = readl(&lp->rx_dma_regs->dmasm);
1255 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1256 writel(tmp, &lp->rx_dma_regs->dmasm);
1257
1258 napi_disable(&lp->napi);
1259
1260 cancel_work_sync(&lp->restart_task);
1261
1262 korina_free_ring(dev);
1263
1264 free_irq(lp->rx_irq, dev);
1265 free_irq(lp->tx_irq, dev);
1266
1267 return 0;
1268 }
1269
1270 static const struct net_device_ops korina_netdev_ops = {
1271 .ndo_open = korina_open,
1272 .ndo_stop = korina_close,
1273 .ndo_start_xmit = korina_send_packet,
1274 .ndo_set_rx_mode = korina_multicast_list,
1275 .ndo_tx_timeout = korina_tx_timeout,
1276 .ndo_eth_ioctl = korina_ioctl,
1277 .ndo_validate_addr = eth_validate_addr,
1278 .ndo_set_mac_address = eth_mac_addr,
1279 #ifdef CONFIG_NET_POLL_CONTROLLER
1280 .ndo_poll_controller = korina_poll_controller,
1281 #endif
1282 };
1283
korina_probe(struct platform_device * pdev)1284 static int korina_probe(struct platform_device *pdev)
1285 {
1286 u8 *mac_addr = dev_get_platdata(&pdev->dev);
1287 struct korina_private *lp;
1288 struct net_device *dev;
1289 struct clk *clk;
1290 void __iomem *p;
1291 int rc;
1292
1293 dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private));
1294 if (!dev)
1295 return -ENOMEM;
1296
1297 SET_NETDEV_DEV(dev, &pdev->dev);
1298 lp = netdev_priv(dev);
1299
1300 if (mac_addr)
1301 eth_hw_addr_set(dev, mac_addr);
1302 else if (of_get_ethdev_address(pdev->dev.of_node, dev) < 0)
1303 eth_hw_addr_random(dev);
1304
1305 clk = devm_clk_get_optional_enabled(&pdev->dev, "mdioclk");
1306 if (IS_ERR(clk))
1307 return PTR_ERR(clk);
1308 if (clk) {
1309 lp->mii_clock_freq = clk_get_rate(clk);
1310 } else {
1311 lp->mii_clock_freq = 200000000; /* max possible input clk */
1312 }
1313
1314 lp->rx_irq = platform_get_irq_byname(pdev, "rx");
1315 lp->tx_irq = platform_get_irq_byname(pdev, "tx");
1316
1317 p = devm_platform_ioremap_resource_byname(pdev, "emac");
1318 if (IS_ERR(p)) {
1319 printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1320 return PTR_ERR(p);
1321 }
1322 lp->eth_regs = p;
1323
1324 p = devm_platform_ioremap_resource_byname(pdev, "dma_rx");
1325 if (IS_ERR(p)) {
1326 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1327 return PTR_ERR(p);
1328 }
1329 lp->rx_dma_regs = p;
1330
1331 p = devm_platform_ioremap_resource_byname(pdev, "dma_tx");
1332 if (IS_ERR(p)) {
1333 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1334 return PTR_ERR(p);
1335 }
1336 lp->tx_dma_regs = p;
1337
1338 lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE,
1339 &lp->td_dma, GFP_KERNEL);
1340 if (!lp->td_ring)
1341 return -ENOMEM;
1342
1343 lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE,
1344 &lp->rd_dma, GFP_KERNEL);
1345 if (!lp->rd_ring)
1346 return -ENOMEM;
1347
1348 spin_lock_init(&lp->lock);
1349 /* just use the rx dma irq */
1350 dev->irq = lp->rx_irq;
1351 lp->dev = dev;
1352 lp->dmadev = &pdev->dev;
1353
1354 dev->netdev_ops = &korina_netdev_ops;
1355 dev->ethtool_ops = &netdev_ethtool_ops;
1356 dev->watchdog_timeo = TX_TIMEOUT;
1357 netif_napi_add(dev, &lp->napi, korina_poll);
1358
1359 lp->mii_if.dev = dev;
1360 lp->mii_if.mdio_read = korina_mdio_read;
1361 lp->mii_if.mdio_write = korina_mdio_write;
1362 lp->mii_if.phy_id = 1;
1363 lp->mii_if.phy_id_mask = 0x1f;
1364 lp->mii_if.reg_num_mask = 0x1f;
1365
1366 platform_set_drvdata(pdev, dev);
1367
1368 rc = register_netdev(dev);
1369 if (rc < 0) {
1370 printk(KERN_ERR DRV_NAME
1371 ": cannot register net device: %d\n", rc);
1372 return rc;
1373 }
1374 timer_setup(&lp->media_check_timer, korina_poll_media, 0);
1375
1376 INIT_WORK(&lp->restart_task, korina_restart_task);
1377
1378 printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1379 dev->name);
1380 return rc;
1381 }
1382
korina_remove(struct platform_device * pdev)1383 static void korina_remove(struct platform_device *pdev)
1384 {
1385 struct net_device *dev = platform_get_drvdata(pdev);
1386
1387 unregister_netdev(dev);
1388 }
1389
1390 #ifdef CONFIG_OF
1391 static const struct of_device_id korina_match[] = {
1392 {
1393 .compatible = "idt,3243x-emac",
1394 },
1395 { }
1396 };
1397 MODULE_DEVICE_TABLE(of, korina_match);
1398 #endif
1399
1400 static struct platform_driver korina_driver = {
1401 .driver = {
1402 .name = "korina",
1403 .of_match_table = of_match_ptr(korina_match),
1404 },
1405 .probe = korina_probe,
1406 .remove_new = korina_remove,
1407 };
1408
1409 module_platform_driver(korina_driver);
1410
1411 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1412 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1413 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1414 MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>");
1415 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1416 MODULE_LICENSE("GPL");
1417