xref: /linux/kernel/locking/rwsem.c (revision 72b8944f147e151e845d976e7f48beff38967499)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31 
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34 
35 /*
36  * The least significant 2 bits of the owner value has the following
37  * meanings when set.
38  *  - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint)
39  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40  *
41  * When the rwsem is reader-owned and a spinning writer has timed out,
42  * the nonspinnable bit will be set to disable optimistic spinning.
43 
44  * When a writer acquires a rwsem, it puts its task_struct pointer
45  * into the owner field. It is cleared after an unlock.
46  *
47  * When a reader acquires a rwsem, it will also puts its task_struct
48  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49  * On unlock, the owner field will largely be left untouched. So
50  * for a free or reader-owned rwsem, the owner value may contain
51  * information about the last reader that acquires the rwsem.
52  *
53  * That information may be helpful in debugging cases where the system
54  * seems to hang on a reader owned rwsem especially if only one reader
55  * is involved. Ideally we would like to track all the readers that own
56  * a rwsem, but the overhead is simply too big.
57  *
58  * A fast path reader optimistic lock stealing is supported when the rwsem
59  * is previously owned by a writer and the following conditions are met:
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED	(1UL << 0)
64 #define RWSEM_NONSPINNABLE	(1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66 
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
69 	if (!debug_locks_silent &&				\
70 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71 		#c, atomic_long_read(&(sem)->count),		\
72 		(unsigned long) sem->magic,			\
73 		atomic_long_read(&(sem)->owner), (long)current,	\
74 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
75 			debug_locks_off();			\
76 	} while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80 
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers		-- set, clear
110  * 2) rwsem_try_write_lock() for writers	-- set, clear
111  * 3) rwsem_del_waiter()			-- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED	(1UL << 0)
118 #define RWSEM_FLAG_WAITERS	(1UL << 1)
119 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
120 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
121 
122 #define RWSEM_READER_SHIFT	8
123 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129 
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  *
137  * Both rwsem_{set,clear}_owner() functions should be in the same
138  * preempt disable section as the atomic op that changes sem->count.
139  */
rwsem_set_owner(struct rw_semaphore * sem)140 static inline void rwsem_set_owner(struct rw_semaphore *sem)
141 {
142 	lockdep_assert_preemption_disabled();
143 	atomic_long_set(&sem->owner, (long)current);
144 }
145 
rwsem_clear_owner(struct rw_semaphore * sem)146 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
147 {
148 	lockdep_assert_preemption_disabled();
149 	atomic_long_set(&sem->owner, 0);
150 }
151 
152 /*
153  * Test the flags in the owner field.
154  */
rwsem_test_oflags(struct rw_semaphore * sem,long flags)155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
156 {
157 	return atomic_long_read(&sem->owner) & flags;
158 }
159 
160 /*
161  * The task_struct pointer of the last owning reader will be left in
162  * the owner field.
163  *
164  * Note that the owner value just indicates the task has owned the rwsem
165  * previously, it may not be the real owner or one of the real owners
166  * anymore when that field is examined, so take it with a grain of salt.
167  *
168  * The reader non-spinnable bit is preserved.
169  */
__rwsem_set_reader_owned(struct rw_semaphore * sem,struct task_struct * owner)170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
171 					    struct task_struct *owner)
172 {
173 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
174 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
175 
176 	atomic_long_set(&sem->owner, val);
177 }
178 
rwsem_set_reader_owned(struct rw_semaphore * sem)179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
180 {
181 	__rwsem_set_reader_owned(sem, current);
182 }
183 
184 #ifdef CONFIG_DEBUG_RWSEMS
185 /*
186  * Return just the real task structure pointer of the owner
187  */
rwsem_owner(struct rw_semaphore * sem)188 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
189 {
190 	return (struct task_struct *)
191 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
192 }
193 
194 /*
195  * Return true if the rwsem is owned by a reader.
196  */
is_rwsem_reader_owned(struct rw_semaphore * sem)197 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
198 {
199 	/*
200 	 * Check the count to see if it is write-locked.
201 	 */
202 	long count = atomic_long_read(&sem->count);
203 
204 	if (count & RWSEM_WRITER_MASK)
205 		return false;
206 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
207 }
208 
209 /*
210  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
211  * is a task pointer in owner of a reader-owned rwsem, it will be the
212  * real owner or one of the real owners. The only exception is when the
213  * unlock is done by up_read_non_owner().
214  */
rwsem_clear_reader_owned(struct rw_semaphore * sem)215 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
216 {
217 	unsigned long val = atomic_long_read(&sem->owner);
218 
219 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
220 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
221 					    val & RWSEM_OWNER_FLAGS_MASK))
222 			return;
223 	}
224 }
225 #else
rwsem_clear_reader_owned(struct rw_semaphore * sem)226 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
227 {
228 }
229 #endif
230 
231 /*
232  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
233  * remains set. Otherwise, the operation will be aborted.
234  */
rwsem_set_nonspinnable(struct rw_semaphore * sem)235 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
236 {
237 	unsigned long owner = atomic_long_read(&sem->owner);
238 
239 	do {
240 		if (!(owner & RWSEM_READER_OWNED))
241 			break;
242 		if (owner & RWSEM_NONSPINNABLE)
243 			break;
244 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
245 					  owner | RWSEM_NONSPINNABLE));
246 }
247 
rwsem_read_trylock(struct rw_semaphore * sem,long * cntp)248 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
249 {
250 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
251 
252 	if (WARN_ON_ONCE(*cntp < 0))
253 		rwsem_set_nonspinnable(sem);
254 
255 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
256 		rwsem_set_reader_owned(sem);
257 		return true;
258 	}
259 
260 	return false;
261 }
262 
rwsem_write_trylock(struct rw_semaphore * sem)263 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
264 {
265 	long tmp = RWSEM_UNLOCKED_VALUE;
266 
267 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
268 		rwsem_set_owner(sem);
269 		return true;
270 	}
271 
272 	return false;
273 }
274 
275 /*
276  * Return the real task structure pointer of the owner and the embedded
277  * flags in the owner. pflags must be non-NULL.
278  */
279 static inline struct task_struct *
rwsem_owner_flags(struct rw_semaphore * sem,unsigned long * pflags)280 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
281 {
282 	unsigned long owner = atomic_long_read(&sem->owner);
283 
284 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
285 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
286 }
287 
288 /*
289  * Guide to the rw_semaphore's count field.
290  *
291  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
292  * by a writer.
293  *
294  * The lock is owned by readers when
295  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
296  * (2) some of the reader bits are set in count, and
297  * (3) the owner field has RWSEM_READ_OWNED bit set.
298  *
299  * Having some reader bits set is not enough to guarantee a readers owned
300  * lock as the readers may be in the process of backing out from the count
301  * and a writer has just released the lock. So another writer may steal
302  * the lock immediately after that.
303  */
304 
305 /*
306  * Initialize an rwsem:
307  */
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)308 void __init_rwsem(struct rw_semaphore *sem, const char *name,
309 		  struct lock_class_key *key)
310 {
311 #ifdef CONFIG_DEBUG_LOCK_ALLOC
312 	/*
313 	 * Make sure we are not reinitializing a held semaphore:
314 	 */
315 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
316 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
317 #endif
318 #ifdef CONFIG_DEBUG_RWSEMS
319 	sem->magic = sem;
320 #endif
321 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
322 	raw_spin_lock_init(&sem->wait_lock);
323 	INIT_LIST_HEAD(&sem->wait_list);
324 	atomic_long_set(&sem->owner, 0L);
325 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
326 	osq_lock_init(&sem->osq);
327 #endif
328 }
329 EXPORT_SYMBOL(__init_rwsem);
330 
331 enum rwsem_waiter_type {
332 	RWSEM_WAITING_FOR_WRITE,
333 	RWSEM_WAITING_FOR_READ
334 };
335 
336 struct rwsem_waiter {
337 	struct list_head list;
338 	struct task_struct *task;
339 	enum rwsem_waiter_type type;
340 	unsigned long timeout;
341 	bool handoff_set;
342 };
343 #define rwsem_first_waiter(sem) \
344 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
345 
346 enum rwsem_wake_type {
347 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
348 	RWSEM_WAKE_READERS,	/* Wake readers only */
349 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
350 };
351 
352 /*
353  * The typical HZ value is either 250 or 1000. So set the minimum waiting
354  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
355  * queue before initiating the handoff protocol.
356  */
357 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
358 
359 /*
360  * Magic number to batch-wakeup waiting readers, even when writers are
361  * also present in the queue. This both limits the amount of work the
362  * waking thread must do and also prevents any potential counter overflow,
363  * however unlikely.
364  */
365 #define MAX_READERS_WAKEUP	0x100
366 
367 static inline void
rwsem_add_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter)368 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
369 {
370 	lockdep_assert_held(&sem->wait_lock);
371 	list_add_tail(&waiter->list, &sem->wait_list);
372 	/* caller will set RWSEM_FLAG_WAITERS */
373 }
374 
375 /*
376  * Remove a waiter from the wait_list and clear flags.
377  *
378  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
379  * this function. Modify with care.
380  *
381  * Return: true if wait_list isn't empty and false otherwise
382  */
383 static inline bool
rwsem_del_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter)384 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
385 {
386 	lockdep_assert_held(&sem->wait_lock);
387 	list_del(&waiter->list);
388 	if (likely(!list_empty(&sem->wait_list)))
389 		return true;
390 
391 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
392 	return false;
393 }
394 
395 /*
396  * handle the lock release when processes blocked on it that can now run
397  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
398  *   have been set.
399  * - there must be someone on the queue
400  * - the wait_lock must be held by the caller
401  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
402  *   to actually wakeup the blocked task(s) and drop the reference count,
403  *   preferably when the wait_lock is released
404  * - woken process blocks are discarded from the list after having task zeroed
405  * - writers are only marked woken if downgrading is false
406  *
407  * Implies rwsem_del_waiter() for all woken readers.
408  */
rwsem_mark_wake(struct rw_semaphore * sem,enum rwsem_wake_type wake_type,struct wake_q_head * wake_q)409 static void rwsem_mark_wake(struct rw_semaphore *sem,
410 			    enum rwsem_wake_type wake_type,
411 			    struct wake_q_head *wake_q)
412 {
413 	struct rwsem_waiter *waiter, *tmp;
414 	long oldcount, woken = 0, adjustment = 0;
415 	struct list_head wlist;
416 
417 	lockdep_assert_held(&sem->wait_lock);
418 
419 	/*
420 	 * Take a peek at the queue head waiter such that we can determine
421 	 * the wakeup(s) to perform.
422 	 */
423 	waiter = rwsem_first_waiter(sem);
424 
425 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
426 		if (wake_type == RWSEM_WAKE_ANY) {
427 			/*
428 			 * Mark writer at the front of the queue for wakeup.
429 			 * Until the task is actually later awoken later by
430 			 * the caller, other writers are able to steal it.
431 			 * Readers, on the other hand, will block as they
432 			 * will notice the queued writer.
433 			 */
434 			wake_q_add(wake_q, waiter->task);
435 			lockevent_inc(rwsem_wake_writer);
436 		}
437 
438 		return;
439 	}
440 
441 	/*
442 	 * No reader wakeup if there are too many of them already.
443 	 */
444 	if (unlikely(atomic_long_read(&sem->count) < 0))
445 		return;
446 
447 	/*
448 	 * Writers might steal the lock before we grant it to the next reader.
449 	 * We prefer to do the first reader grant before counting readers
450 	 * so we can bail out early if a writer stole the lock.
451 	 */
452 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
453 		struct task_struct *owner;
454 
455 		adjustment = RWSEM_READER_BIAS;
456 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
457 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
458 			/*
459 			 * When we've been waiting "too" long (for writers
460 			 * to give up the lock), request a HANDOFF to
461 			 * force the issue.
462 			 */
463 			if (time_after(jiffies, waiter->timeout)) {
464 				if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
465 					adjustment -= RWSEM_FLAG_HANDOFF;
466 					lockevent_inc(rwsem_rlock_handoff);
467 				}
468 				waiter->handoff_set = true;
469 			}
470 
471 			atomic_long_add(-adjustment, &sem->count);
472 			return;
473 		}
474 		/*
475 		 * Set it to reader-owned to give spinners an early
476 		 * indication that readers now have the lock.
477 		 * The reader nonspinnable bit seen at slowpath entry of
478 		 * the reader is copied over.
479 		 */
480 		owner = waiter->task;
481 		__rwsem_set_reader_owned(sem, owner);
482 	}
483 
484 	/*
485 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
486 	 * queue. We know that the woken will be at least 1 as we accounted
487 	 * for above. Note we increment the 'active part' of the count by the
488 	 * number of readers before waking any processes up.
489 	 *
490 	 * This is an adaptation of the phase-fair R/W locks where at the
491 	 * reader phase (first waiter is a reader), all readers are eligible
492 	 * to acquire the lock at the same time irrespective of their order
493 	 * in the queue. The writers acquire the lock according to their
494 	 * order in the queue.
495 	 *
496 	 * We have to do wakeup in 2 passes to prevent the possibility that
497 	 * the reader count may be decremented before it is incremented. It
498 	 * is because the to-be-woken waiter may not have slept yet. So it
499 	 * may see waiter->task got cleared, finish its critical section and
500 	 * do an unlock before the reader count increment.
501 	 *
502 	 * 1) Collect the read-waiters in a separate list, count them and
503 	 *    fully increment the reader count in rwsem.
504 	 * 2) For each waiters in the new list, clear waiter->task and
505 	 *    put them into wake_q to be woken up later.
506 	 */
507 	INIT_LIST_HEAD(&wlist);
508 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
509 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
510 			continue;
511 
512 		woken++;
513 		list_move_tail(&waiter->list, &wlist);
514 
515 		/*
516 		 * Limit # of readers that can be woken up per wakeup call.
517 		 */
518 		if (unlikely(woken >= MAX_READERS_WAKEUP))
519 			break;
520 	}
521 
522 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
523 	lockevent_cond_inc(rwsem_wake_reader, woken);
524 
525 	oldcount = atomic_long_read(&sem->count);
526 	if (list_empty(&sem->wait_list)) {
527 		/*
528 		 * Combined with list_move_tail() above, this implies
529 		 * rwsem_del_waiter().
530 		 */
531 		adjustment -= RWSEM_FLAG_WAITERS;
532 		if (oldcount & RWSEM_FLAG_HANDOFF)
533 			adjustment -= RWSEM_FLAG_HANDOFF;
534 	} else if (woken) {
535 		/*
536 		 * When we've woken a reader, we no longer need to force
537 		 * writers to give up the lock and we can clear HANDOFF.
538 		 */
539 		if (oldcount & RWSEM_FLAG_HANDOFF)
540 			adjustment -= RWSEM_FLAG_HANDOFF;
541 	}
542 
543 	if (adjustment)
544 		atomic_long_add(adjustment, &sem->count);
545 
546 	/* 2nd pass */
547 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
548 		struct task_struct *tsk;
549 
550 		tsk = waiter->task;
551 		get_task_struct(tsk);
552 
553 		/*
554 		 * Ensure calling get_task_struct() before setting the reader
555 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
556 		 * race with do_exit() by always holding a reference count
557 		 * to the task to wakeup.
558 		 */
559 		smp_store_release(&waiter->task, NULL);
560 		/*
561 		 * Ensure issuing the wakeup (either by us or someone else)
562 		 * after setting the reader waiter to nil.
563 		 */
564 		wake_q_add_safe(wake_q, tsk);
565 	}
566 }
567 
568 /*
569  * Remove a waiter and try to wake up other waiters in the wait queue
570  * This function is called from the out_nolock path of both the reader and
571  * writer slowpaths with wait_lock held. It releases the wait_lock and
572  * optionally wake up waiters before it returns.
573  */
574 static inline void
rwsem_del_wake_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter,struct wake_q_head * wake_q)575 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
576 		      struct wake_q_head *wake_q)
577 		      __releases(&sem->wait_lock)
578 {
579 	bool first = rwsem_first_waiter(sem) == waiter;
580 
581 	wake_q_init(wake_q);
582 
583 	/*
584 	 * If the wait_list isn't empty and the waiter to be deleted is
585 	 * the first waiter, we wake up the remaining waiters as they may
586 	 * be eligible to acquire or spin on the lock.
587 	 */
588 	if (rwsem_del_waiter(sem, waiter) && first)
589 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
590 	raw_spin_unlock_irq(&sem->wait_lock);
591 	if (!wake_q_empty(wake_q))
592 		wake_up_q(wake_q);
593 }
594 
595 /*
596  * This function must be called with the sem->wait_lock held to prevent
597  * race conditions between checking the rwsem wait list and setting the
598  * sem->count accordingly.
599  *
600  * Implies rwsem_del_waiter() on success.
601  */
rwsem_try_write_lock(struct rw_semaphore * sem,struct rwsem_waiter * waiter)602 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
603 					struct rwsem_waiter *waiter)
604 {
605 	struct rwsem_waiter *first = rwsem_first_waiter(sem);
606 	long count, new;
607 
608 	lockdep_assert_held(&sem->wait_lock);
609 
610 	count = atomic_long_read(&sem->count);
611 	do {
612 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
613 
614 		if (has_handoff) {
615 			/*
616 			 * Honor handoff bit and yield only when the first
617 			 * waiter is the one that set it. Otherwisee, we
618 			 * still try to acquire the rwsem.
619 			 */
620 			if (first->handoff_set && (waiter != first))
621 				return false;
622 		}
623 
624 		new = count;
625 
626 		if (count & RWSEM_LOCK_MASK) {
627 			/*
628 			 * A waiter (first or not) can set the handoff bit
629 			 * if it is an RT task or wait in the wait queue
630 			 * for too long.
631 			 */
632 			if (has_handoff || (!rt_or_dl_task(waiter->task) &&
633 					    !time_after(jiffies, waiter->timeout)))
634 				return false;
635 
636 			new |= RWSEM_FLAG_HANDOFF;
637 		} else {
638 			new |= RWSEM_WRITER_LOCKED;
639 			new &= ~RWSEM_FLAG_HANDOFF;
640 
641 			if (list_is_singular(&sem->wait_list))
642 				new &= ~RWSEM_FLAG_WAITERS;
643 		}
644 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
645 
646 	/*
647 	 * We have either acquired the lock with handoff bit cleared or set
648 	 * the handoff bit. Only the first waiter can have its handoff_set
649 	 * set here to enable optimistic spinning in slowpath loop.
650 	 */
651 	if (new & RWSEM_FLAG_HANDOFF) {
652 		first->handoff_set = true;
653 		lockevent_inc(rwsem_wlock_handoff);
654 		return false;
655 	}
656 
657 	/*
658 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
659 	 * success.
660 	 */
661 	list_del(&waiter->list);
662 	rwsem_set_owner(sem);
663 	return true;
664 }
665 
666 /*
667  * The rwsem_spin_on_owner() function returns the following 4 values
668  * depending on the lock owner state.
669  *   OWNER_NULL  : owner is currently NULL
670  *   OWNER_WRITER: when owner changes and is a writer
671  *   OWNER_READER: when owner changes and the new owner may be a reader.
672  *   OWNER_NONSPINNABLE:
673  *		   when optimistic spinning has to stop because either the
674  *		   owner stops running, is unknown, or its timeslice has
675  *		   been used up.
676  */
677 enum owner_state {
678 	OWNER_NULL		= 1 << 0,
679 	OWNER_WRITER		= 1 << 1,
680 	OWNER_READER		= 1 << 2,
681 	OWNER_NONSPINNABLE	= 1 << 3,
682 };
683 
684 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
685 /*
686  * Try to acquire write lock before the writer has been put on wait queue.
687  */
rwsem_try_write_lock_unqueued(struct rw_semaphore * sem)688 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
689 {
690 	long count = atomic_long_read(&sem->count);
691 
692 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
693 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
694 					count | RWSEM_WRITER_LOCKED)) {
695 			rwsem_set_owner(sem);
696 			lockevent_inc(rwsem_opt_lock);
697 			return true;
698 		}
699 	}
700 	return false;
701 }
702 
rwsem_can_spin_on_owner(struct rw_semaphore * sem)703 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
704 {
705 	struct task_struct *owner;
706 	unsigned long flags;
707 	bool ret = true;
708 
709 	if (need_resched()) {
710 		lockevent_inc(rwsem_opt_fail);
711 		return false;
712 	}
713 
714 	/*
715 	 * Disable preemption is equal to the RCU read-side crital section,
716 	 * thus the task_strcut structure won't go away.
717 	 */
718 	owner = rwsem_owner_flags(sem, &flags);
719 	/*
720 	 * Don't check the read-owner as the entry may be stale.
721 	 */
722 	if ((flags & RWSEM_NONSPINNABLE) ||
723 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
724 		ret = false;
725 
726 	lockevent_cond_inc(rwsem_opt_fail, !ret);
727 	return ret;
728 }
729 
730 static inline enum owner_state
rwsem_owner_state(struct task_struct * owner,unsigned long flags)731 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
732 {
733 	if (flags & RWSEM_NONSPINNABLE)
734 		return OWNER_NONSPINNABLE;
735 
736 	if (flags & RWSEM_READER_OWNED)
737 		return OWNER_READER;
738 
739 	return owner ? OWNER_WRITER : OWNER_NULL;
740 }
741 
742 static noinline enum owner_state
rwsem_spin_on_owner(struct rw_semaphore * sem)743 rwsem_spin_on_owner(struct rw_semaphore *sem)
744 {
745 	struct task_struct *new, *owner;
746 	unsigned long flags, new_flags;
747 	enum owner_state state;
748 
749 	lockdep_assert_preemption_disabled();
750 
751 	owner = rwsem_owner_flags(sem, &flags);
752 	state = rwsem_owner_state(owner, flags);
753 	if (state != OWNER_WRITER)
754 		return state;
755 
756 	for (;;) {
757 		/*
758 		 * When a waiting writer set the handoff flag, it may spin
759 		 * on the owner as well. Once that writer acquires the lock,
760 		 * we can spin on it. So we don't need to quit even when the
761 		 * handoff bit is set.
762 		 */
763 		new = rwsem_owner_flags(sem, &new_flags);
764 		if ((new != owner) || (new_flags != flags)) {
765 			state = rwsem_owner_state(new, new_flags);
766 			break;
767 		}
768 
769 		/*
770 		 * Ensure we emit the owner->on_cpu, dereference _after_
771 		 * checking sem->owner still matches owner, if that fails,
772 		 * owner might point to free()d memory, if it still matches,
773 		 * our spinning context already disabled preemption which is
774 		 * equal to RCU read-side crital section ensures the memory
775 		 * stays valid.
776 		 */
777 		barrier();
778 
779 		if (need_resched() || !owner_on_cpu(owner)) {
780 			state = OWNER_NONSPINNABLE;
781 			break;
782 		}
783 
784 		cpu_relax();
785 	}
786 
787 	return state;
788 }
789 
790 /*
791  * Calculate reader-owned rwsem spinning threshold for writer
792  *
793  * The more readers own the rwsem, the longer it will take for them to
794  * wind down and free the rwsem. So the empirical formula used to
795  * determine the actual spinning time limit here is:
796  *
797  *   Spinning threshold = (10 + nr_readers/2)us
798  *
799  * The limit is capped to a maximum of 25us (30 readers). This is just
800  * a heuristic and is subjected to change in the future.
801  */
rwsem_rspin_threshold(struct rw_semaphore * sem)802 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
803 {
804 	long count = atomic_long_read(&sem->count);
805 	int readers = count >> RWSEM_READER_SHIFT;
806 	u64 delta;
807 
808 	if (readers > 30)
809 		readers = 30;
810 	delta = (20 + readers) * NSEC_PER_USEC / 2;
811 
812 	return sched_clock() + delta;
813 }
814 
rwsem_optimistic_spin(struct rw_semaphore * sem)815 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
816 {
817 	bool taken = false;
818 	int prev_owner_state = OWNER_NULL;
819 	int loop = 0;
820 	u64 rspin_threshold = 0;
821 
822 	/* sem->wait_lock should not be held when doing optimistic spinning */
823 	if (!osq_lock(&sem->osq))
824 		goto done;
825 
826 	/*
827 	 * Optimistically spin on the owner field and attempt to acquire the
828 	 * lock whenever the owner changes. Spinning will be stopped when:
829 	 *  1) the owning writer isn't running; or
830 	 *  2) readers own the lock and spinning time has exceeded limit.
831 	 */
832 	for (;;) {
833 		enum owner_state owner_state;
834 
835 		owner_state = rwsem_spin_on_owner(sem);
836 		if (owner_state == OWNER_NONSPINNABLE)
837 			break;
838 
839 		/*
840 		 * Try to acquire the lock
841 		 */
842 		taken = rwsem_try_write_lock_unqueued(sem);
843 
844 		if (taken)
845 			break;
846 
847 		/*
848 		 * Time-based reader-owned rwsem optimistic spinning
849 		 */
850 		if (owner_state == OWNER_READER) {
851 			/*
852 			 * Re-initialize rspin_threshold every time when
853 			 * the owner state changes from non-reader to reader.
854 			 * This allows a writer to steal the lock in between
855 			 * 2 reader phases and have the threshold reset at
856 			 * the beginning of the 2nd reader phase.
857 			 */
858 			if (prev_owner_state != OWNER_READER) {
859 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
860 					break;
861 				rspin_threshold = rwsem_rspin_threshold(sem);
862 				loop = 0;
863 			}
864 
865 			/*
866 			 * Check time threshold once every 16 iterations to
867 			 * avoid calling sched_clock() too frequently so
868 			 * as to reduce the average latency between the times
869 			 * when the lock becomes free and when the spinner
870 			 * is ready to do a trylock.
871 			 */
872 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
873 				rwsem_set_nonspinnable(sem);
874 				lockevent_inc(rwsem_opt_nospin);
875 				break;
876 			}
877 		}
878 
879 		/*
880 		 * An RT task cannot do optimistic spinning if it cannot
881 		 * be sure the lock holder is running or live-lock may
882 		 * happen if the current task and the lock holder happen
883 		 * to run in the same CPU. However, aborting optimistic
884 		 * spinning while a NULL owner is detected may miss some
885 		 * opportunity where spinning can continue without causing
886 		 * problem.
887 		 *
888 		 * There are 2 possible cases where an RT task may be able
889 		 * to continue spinning.
890 		 *
891 		 * 1) The lock owner is in the process of releasing the
892 		 *    lock, sem->owner is cleared but the lock has not
893 		 *    been released yet.
894 		 * 2) The lock was free and owner cleared, but another
895 		 *    task just comes in and acquire the lock before
896 		 *    we try to get it. The new owner may be a spinnable
897 		 *    writer.
898 		 *
899 		 * To take advantage of two scenarios listed above, the RT
900 		 * task is made to retry one more time to see if it can
901 		 * acquire the lock or continue spinning on the new owning
902 		 * writer. Of course, if the time lag is long enough or the
903 		 * new owner is not a writer or spinnable, the RT task will
904 		 * quit spinning.
905 		 *
906 		 * If the owner is a writer, the need_resched() check is
907 		 * done inside rwsem_spin_on_owner(). If the owner is not
908 		 * a writer, need_resched() check needs to be done here.
909 		 */
910 		if (owner_state != OWNER_WRITER) {
911 			if (need_resched())
912 				break;
913 			if (rt_or_dl_task(current) &&
914 			   (prev_owner_state != OWNER_WRITER))
915 				break;
916 		}
917 		prev_owner_state = owner_state;
918 
919 		/*
920 		 * The cpu_relax() call is a compiler barrier which forces
921 		 * everything in this loop to be re-loaded. We don't need
922 		 * memory barriers as we'll eventually observe the right
923 		 * values at the cost of a few extra spins.
924 		 */
925 		cpu_relax();
926 	}
927 	osq_unlock(&sem->osq);
928 done:
929 	lockevent_cond_inc(rwsem_opt_fail, !taken);
930 	return taken;
931 }
932 
933 /*
934  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
935  * only be called when the reader count reaches 0.
936  */
clear_nonspinnable(struct rw_semaphore * sem)937 static inline void clear_nonspinnable(struct rw_semaphore *sem)
938 {
939 	if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
940 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
941 }
942 
943 #else
rwsem_can_spin_on_owner(struct rw_semaphore * sem)944 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
945 {
946 	return false;
947 }
948 
rwsem_optimistic_spin(struct rw_semaphore * sem)949 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
950 {
951 	return false;
952 }
953 
clear_nonspinnable(struct rw_semaphore * sem)954 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
955 
956 static inline enum owner_state
rwsem_spin_on_owner(struct rw_semaphore * sem)957 rwsem_spin_on_owner(struct rw_semaphore *sem)
958 {
959 	return OWNER_NONSPINNABLE;
960 }
961 #endif
962 
963 /*
964  * Prepare to wake up waiter(s) in the wait queue by putting them into the
965  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
966  * reader-owned, wake up read lock waiters in queue front or wake up any
967  * front waiter otherwise.
968 
969  * This is being called from both reader and writer slow paths.
970  */
rwsem_cond_wake_waiter(struct rw_semaphore * sem,long count,struct wake_q_head * wake_q)971 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
972 					  struct wake_q_head *wake_q)
973 {
974 	enum rwsem_wake_type wake_type;
975 
976 	if (count & RWSEM_WRITER_MASK)
977 		return;
978 
979 	if (count & RWSEM_READER_MASK) {
980 		wake_type = RWSEM_WAKE_READERS;
981 	} else {
982 		wake_type = RWSEM_WAKE_ANY;
983 		clear_nonspinnable(sem);
984 	}
985 	rwsem_mark_wake(sem, wake_type, wake_q);
986 }
987 
988 /*
989  * Wait for the read lock to be granted
990  */
991 static struct rw_semaphore __sched *
rwsem_down_read_slowpath(struct rw_semaphore * sem,long count,unsigned int state)992 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
993 {
994 	long adjustment = -RWSEM_READER_BIAS;
995 	long rcnt = (count >> RWSEM_READER_SHIFT);
996 	struct rwsem_waiter waiter;
997 	DEFINE_WAKE_Q(wake_q);
998 
999 	/*
1000 	 * To prevent a constant stream of readers from starving a sleeping
1001 	 * writer, don't attempt optimistic lock stealing if the lock is
1002 	 * very likely owned by readers.
1003 	 */
1004 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1005 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1006 		goto queue;
1007 
1008 	/*
1009 	 * Reader optimistic lock stealing.
1010 	 */
1011 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1012 		rwsem_set_reader_owned(sem);
1013 		lockevent_inc(rwsem_rlock_steal);
1014 
1015 		/*
1016 		 * Wake up other readers in the wait queue if it is
1017 		 * the first reader.
1018 		 */
1019 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1020 			raw_spin_lock_irq(&sem->wait_lock);
1021 			if (!list_empty(&sem->wait_list))
1022 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1023 						&wake_q);
1024 			raw_spin_unlock_irq(&sem->wait_lock);
1025 			wake_up_q(&wake_q);
1026 		}
1027 		return sem;
1028 	}
1029 
1030 queue:
1031 	waiter.task = current;
1032 	waiter.type = RWSEM_WAITING_FOR_READ;
1033 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1034 	waiter.handoff_set = false;
1035 
1036 	raw_spin_lock_irq(&sem->wait_lock);
1037 	if (list_empty(&sem->wait_list)) {
1038 		/*
1039 		 * In case the wait queue is empty and the lock isn't owned
1040 		 * by a writer, this reader can exit the slowpath and return
1041 		 * immediately as its RWSEM_READER_BIAS has already been set
1042 		 * in the count.
1043 		 */
1044 		if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1045 			/* Provide lock ACQUIRE */
1046 			smp_acquire__after_ctrl_dep();
1047 			raw_spin_unlock_irq(&sem->wait_lock);
1048 			rwsem_set_reader_owned(sem);
1049 			lockevent_inc(rwsem_rlock_fast);
1050 			return sem;
1051 		}
1052 		adjustment += RWSEM_FLAG_WAITERS;
1053 	}
1054 	rwsem_add_waiter(sem, &waiter);
1055 
1056 	/* we're now waiting on the lock, but no longer actively locking */
1057 	count = atomic_long_add_return(adjustment, &sem->count);
1058 
1059 	rwsem_cond_wake_waiter(sem, count, &wake_q);
1060 	raw_spin_unlock_irq(&sem->wait_lock);
1061 
1062 	if (!wake_q_empty(&wake_q))
1063 		wake_up_q(&wake_q);
1064 
1065 	trace_contention_begin(sem, LCB_F_READ);
1066 
1067 	/* wait to be given the lock */
1068 	for (;;) {
1069 		set_current_state(state);
1070 		if (!smp_load_acquire(&waiter.task)) {
1071 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1072 			break;
1073 		}
1074 		if (signal_pending_state(state, current)) {
1075 			raw_spin_lock_irq(&sem->wait_lock);
1076 			if (waiter.task)
1077 				goto out_nolock;
1078 			raw_spin_unlock_irq(&sem->wait_lock);
1079 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1080 			break;
1081 		}
1082 		schedule_preempt_disabled();
1083 		lockevent_inc(rwsem_sleep_reader);
1084 	}
1085 
1086 	__set_current_state(TASK_RUNNING);
1087 	lockevent_inc(rwsem_rlock);
1088 	trace_contention_end(sem, 0);
1089 	return sem;
1090 
1091 out_nolock:
1092 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1093 	__set_current_state(TASK_RUNNING);
1094 	lockevent_inc(rwsem_rlock_fail);
1095 	trace_contention_end(sem, -EINTR);
1096 	return ERR_PTR(-EINTR);
1097 }
1098 
1099 /*
1100  * Wait until we successfully acquire the write lock
1101  */
1102 static struct rw_semaphore __sched *
rwsem_down_write_slowpath(struct rw_semaphore * sem,int state)1103 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1104 {
1105 	struct rwsem_waiter waiter;
1106 	DEFINE_WAKE_Q(wake_q);
1107 
1108 	/* do optimistic spinning and steal lock if possible */
1109 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1110 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1111 		return sem;
1112 	}
1113 
1114 	/*
1115 	 * Optimistic spinning failed, proceed to the slowpath
1116 	 * and block until we can acquire the sem.
1117 	 */
1118 	waiter.task = current;
1119 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1120 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1121 	waiter.handoff_set = false;
1122 
1123 	raw_spin_lock_irq(&sem->wait_lock);
1124 	rwsem_add_waiter(sem, &waiter);
1125 
1126 	/* we're now waiting on the lock */
1127 	if (rwsem_first_waiter(sem) != &waiter) {
1128 		rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1129 				       &wake_q);
1130 		if (!wake_q_empty(&wake_q)) {
1131 			/*
1132 			 * We want to minimize wait_lock hold time especially
1133 			 * when a large number of readers are to be woken up.
1134 			 */
1135 			raw_spin_unlock_irq(&sem->wait_lock);
1136 			wake_up_q(&wake_q);
1137 			raw_spin_lock_irq(&sem->wait_lock);
1138 		}
1139 	} else {
1140 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1141 	}
1142 
1143 	/* wait until we successfully acquire the lock */
1144 	set_current_state(state);
1145 	trace_contention_begin(sem, LCB_F_WRITE);
1146 
1147 	for (;;) {
1148 		if (rwsem_try_write_lock(sem, &waiter)) {
1149 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1150 			break;
1151 		}
1152 
1153 		raw_spin_unlock_irq(&sem->wait_lock);
1154 
1155 		if (signal_pending_state(state, current))
1156 			goto out_nolock;
1157 
1158 		/*
1159 		 * After setting the handoff bit and failing to acquire
1160 		 * the lock, attempt to spin on owner to accelerate lock
1161 		 * transfer. If the previous owner is a on-cpu writer and it
1162 		 * has just released the lock, OWNER_NULL will be returned.
1163 		 * In this case, we attempt to acquire the lock again
1164 		 * without sleeping.
1165 		 */
1166 		if (waiter.handoff_set) {
1167 			enum owner_state owner_state;
1168 
1169 			owner_state = rwsem_spin_on_owner(sem);
1170 			if (owner_state == OWNER_NULL)
1171 				goto trylock_again;
1172 		}
1173 
1174 		schedule_preempt_disabled();
1175 		lockevent_inc(rwsem_sleep_writer);
1176 		set_current_state(state);
1177 trylock_again:
1178 		raw_spin_lock_irq(&sem->wait_lock);
1179 	}
1180 	__set_current_state(TASK_RUNNING);
1181 	raw_spin_unlock_irq(&sem->wait_lock);
1182 	lockevent_inc(rwsem_wlock);
1183 	trace_contention_end(sem, 0);
1184 	return sem;
1185 
1186 out_nolock:
1187 	__set_current_state(TASK_RUNNING);
1188 	raw_spin_lock_irq(&sem->wait_lock);
1189 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1190 	lockevent_inc(rwsem_wlock_fail);
1191 	trace_contention_end(sem, -EINTR);
1192 	return ERR_PTR(-EINTR);
1193 }
1194 
1195 /*
1196  * handle waking up a waiter on the semaphore
1197  * - up_read/up_write has decremented the active part of count if we come here
1198  */
rwsem_wake(struct rw_semaphore * sem)1199 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1200 {
1201 	unsigned long flags;
1202 	DEFINE_WAKE_Q(wake_q);
1203 
1204 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1205 
1206 	if (!list_empty(&sem->wait_list))
1207 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1208 
1209 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1210 	wake_up_q(&wake_q);
1211 
1212 	return sem;
1213 }
1214 
1215 /*
1216  * downgrade a write lock into a read lock
1217  * - caller incremented waiting part of count and discovered it still negative
1218  * - just wake up any readers at the front of the queue
1219  */
rwsem_downgrade_wake(struct rw_semaphore * sem)1220 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1221 {
1222 	unsigned long flags;
1223 	DEFINE_WAKE_Q(wake_q);
1224 
1225 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1226 
1227 	if (!list_empty(&sem->wait_list))
1228 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1229 
1230 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1231 	wake_up_q(&wake_q);
1232 
1233 	return sem;
1234 }
1235 
1236 /*
1237  * lock for reading
1238  */
__down_read_common(struct rw_semaphore * sem,int state)1239 static __always_inline int __down_read_common(struct rw_semaphore *sem, int state)
1240 {
1241 	int ret = 0;
1242 	long count;
1243 
1244 	preempt_disable();
1245 	if (!rwsem_read_trylock(sem, &count)) {
1246 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) {
1247 			ret = -EINTR;
1248 			goto out;
1249 		}
1250 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1251 	}
1252 out:
1253 	preempt_enable();
1254 	return ret;
1255 }
1256 
__down_read(struct rw_semaphore * sem)1257 static __always_inline void __down_read(struct rw_semaphore *sem)
1258 {
1259 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1260 }
1261 
__down_read_interruptible(struct rw_semaphore * sem)1262 static __always_inline int __down_read_interruptible(struct rw_semaphore *sem)
1263 {
1264 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1265 }
1266 
__down_read_killable(struct rw_semaphore * sem)1267 static __always_inline int __down_read_killable(struct rw_semaphore *sem)
1268 {
1269 	return __down_read_common(sem, TASK_KILLABLE);
1270 }
1271 
__down_read_trylock(struct rw_semaphore * sem)1272 static inline int __down_read_trylock(struct rw_semaphore *sem)
1273 {
1274 	int ret = 0;
1275 	long tmp;
1276 
1277 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1278 
1279 	preempt_disable();
1280 	tmp = atomic_long_read(&sem->count);
1281 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1282 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1283 						    tmp + RWSEM_READER_BIAS)) {
1284 			rwsem_set_reader_owned(sem);
1285 			ret = 1;
1286 			break;
1287 		}
1288 	}
1289 	preempt_enable();
1290 	return ret;
1291 }
1292 
1293 /*
1294  * lock for writing
1295  */
__down_write_common(struct rw_semaphore * sem,int state)1296 static __always_inline int __down_write_common(struct rw_semaphore *sem, int state)
1297 {
1298 	int ret = 0;
1299 
1300 	preempt_disable();
1301 	if (unlikely(!rwsem_write_trylock(sem))) {
1302 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1303 			ret = -EINTR;
1304 	}
1305 	preempt_enable();
1306 	return ret;
1307 }
1308 
__down_write(struct rw_semaphore * sem)1309 static __always_inline void __down_write(struct rw_semaphore *sem)
1310 {
1311 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1312 }
1313 
__down_write_killable(struct rw_semaphore * sem)1314 static __always_inline int __down_write_killable(struct rw_semaphore *sem)
1315 {
1316 	return __down_write_common(sem, TASK_KILLABLE);
1317 }
1318 
__down_write_trylock(struct rw_semaphore * sem)1319 static inline int __down_write_trylock(struct rw_semaphore *sem)
1320 {
1321 	int ret;
1322 
1323 	preempt_disable();
1324 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1325 	ret = rwsem_write_trylock(sem);
1326 	preempt_enable();
1327 
1328 	return ret;
1329 }
1330 
1331 /*
1332  * unlock after reading
1333  */
__up_read(struct rw_semaphore * sem)1334 static inline void __up_read(struct rw_semaphore *sem)
1335 {
1336 	long tmp;
1337 
1338 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1339 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1340 
1341 	preempt_disable();
1342 	rwsem_clear_reader_owned(sem);
1343 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1344 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1345 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1346 		      RWSEM_FLAG_WAITERS)) {
1347 		clear_nonspinnable(sem);
1348 		rwsem_wake(sem);
1349 	}
1350 	preempt_enable();
1351 }
1352 
1353 /*
1354  * unlock after writing
1355  */
__up_write(struct rw_semaphore * sem)1356 static inline void __up_write(struct rw_semaphore *sem)
1357 {
1358 	long tmp;
1359 
1360 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1361 	/*
1362 	 * sem->owner may differ from current if the ownership is transferred
1363 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1364 	 */
1365 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1366 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1367 
1368 	preempt_disable();
1369 	rwsem_clear_owner(sem);
1370 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1371 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1372 		rwsem_wake(sem);
1373 	preempt_enable();
1374 }
1375 
1376 /*
1377  * downgrade write lock to read lock
1378  */
__downgrade_write(struct rw_semaphore * sem)1379 static inline void __downgrade_write(struct rw_semaphore *sem)
1380 {
1381 	long tmp;
1382 
1383 	/*
1384 	 * When downgrading from exclusive to shared ownership,
1385 	 * anything inside the write-locked region cannot leak
1386 	 * into the read side. In contrast, anything in the
1387 	 * read-locked region is ok to be re-ordered into the
1388 	 * write side. As such, rely on RELEASE semantics.
1389 	 */
1390 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1391 	preempt_disable();
1392 	tmp = atomic_long_fetch_add_release(
1393 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1394 	rwsem_set_reader_owned(sem);
1395 	if (tmp & RWSEM_FLAG_WAITERS)
1396 		rwsem_downgrade_wake(sem);
1397 	preempt_enable();
1398 }
1399 
1400 #else /* !CONFIG_PREEMPT_RT */
1401 
1402 #define RT_MUTEX_BUILD_MUTEX
1403 #include "rtmutex.c"
1404 
1405 #define rwbase_set_and_save_current_state(state)	\
1406 	set_current_state(state)
1407 
1408 #define rwbase_restore_current_state()			\
1409 	__set_current_state(TASK_RUNNING)
1410 
1411 #define rwbase_rtmutex_lock_state(rtm, state)		\
1412 	__rt_mutex_lock(rtm, state)
1413 
1414 #define rwbase_rtmutex_slowlock_locked(rtm, state, wq)	\
1415 	__rt_mutex_slowlock_locked(rtm, NULL, state, wq)
1416 
1417 #define rwbase_rtmutex_unlock(rtm)			\
1418 	__rt_mutex_unlock(rtm)
1419 
1420 #define rwbase_rtmutex_trylock(rtm)			\
1421 	__rt_mutex_trylock(rtm)
1422 
1423 #define rwbase_signal_pending_state(state, current)	\
1424 	signal_pending_state(state, current)
1425 
1426 #define rwbase_pre_schedule()				\
1427 	rt_mutex_pre_schedule()
1428 
1429 #define rwbase_schedule()				\
1430 	rt_mutex_schedule()
1431 
1432 #define rwbase_post_schedule()				\
1433 	rt_mutex_post_schedule()
1434 
1435 #include "rwbase_rt.c"
1436 
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)1437 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1438 		  struct lock_class_key *key)
1439 {
1440 	init_rwbase_rt(&(sem)->rwbase);
1441 
1442 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1443 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1444 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1445 #endif
1446 }
1447 EXPORT_SYMBOL(__init_rwsem);
1448 
__down_read(struct rw_semaphore * sem)1449 static inline void __down_read(struct rw_semaphore *sem)
1450 {
1451 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1452 }
1453 
__down_read_interruptible(struct rw_semaphore * sem)1454 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1455 {
1456 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1457 }
1458 
__down_read_killable(struct rw_semaphore * sem)1459 static inline int __down_read_killable(struct rw_semaphore *sem)
1460 {
1461 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1462 }
1463 
__down_read_trylock(struct rw_semaphore * sem)1464 static inline int __down_read_trylock(struct rw_semaphore *sem)
1465 {
1466 	return rwbase_read_trylock(&sem->rwbase);
1467 }
1468 
__up_read(struct rw_semaphore * sem)1469 static inline void __up_read(struct rw_semaphore *sem)
1470 {
1471 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1472 }
1473 
__down_write(struct rw_semaphore * sem)1474 static inline void __sched __down_write(struct rw_semaphore *sem)
1475 {
1476 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1477 }
1478 
__down_write_killable(struct rw_semaphore * sem)1479 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1480 {
1481 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1482 }
1483 
__down_write_trylock(struct rw_semaphore * sem)1484 static inline int __down_write_trylock(struct rw_semaphore *sem)
1485 {
1486 	return rwbase_write_trylock(&sem->rwbase);
1487 }
1488 
__up_write(struct rw_semaphore * sem)1489 static inline void __up_write(struct rw_semaphore *sem)
1490 {
1491 	rwbase_write_unlock(&sem->rwbase);
1492 }
1493 
__downgrade_write(struct rw_semaphore * sem)1494 static inline void __downgrade_write(struct rw_semaphore *sem)
1495 {
1496 	rwbase_write_downgrade(&sem->rwbase);
1497 }
1498 
1499 /* Debug stubs for the common API */
1500 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1501 
__rwsem_set_reader_owned(struct rw_semaphore * sem,struct task_struct * owner)1502 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1503 					    struct task_struct *owner)
1504 {
1505 }
1506 
is_rwsem_reader_owned(struct rw_semaphore * sem)1507 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1508 {
1509 	int count = atomic_read(&sem->rwbase.readers);
1510 
1511 	return count < 0 && count != READER_BIAS;
1512 }
1513 
1514 #endif /* CONFIG_PREEMPT_RT */
1515 
1516 /*
1517  * lock for reading
1518  */
down_read(struct rw_semaphore * sem)1519 void __sched down_read(struct rw_semaphore *sem)
1520 {
1521 	might_sleep();
1522 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1523 
1524 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1525 }
1526 EXPORT_SYMBOL(down_read);
1527 
down_read_interruptible(struct rw_semaphore * sem)1528 int __sched down_read_interruptible(struct rw_semaphore *sem)
1529 {
1530 	might_sleep();
1531 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1532 
1533 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1534 		rwsem_release(&sem->dep_map, _RET_IP_);
1535 		return -EINTR;
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL(down_read_interruptible);
1541 
down_read_killable(struct rw_semaphore * sem)1542 int __sched down_read_killable(struct rw_semaphore *sem)
1543 {
1544 	might_sleep();
1545 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1546 
1547 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1548 		rwsem_release(&sem->dep_map, _RET_IP_);
1549 		return -EINTR;
1550 	}
1551 
1552 	return 0;
1553 }
1554 EXPORT_SYMBOL(down_read_killable);
1555 
1556 /*
1557  * trylock for reading -- returns 1 if successful, 0 if contention
1558  */
down_read_trylock(struct rw_semaphore * sem)1559 int down_read_trylock(struct rw_semaphore *sem)
1560 {
1561 	int ret = __down_read_trylock(sem);
1562 
1563 	if (ret == 1)
1564 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1565 	return ret;
1566 }
1567 EXPORT_SYMBOL(down_read_trylock);
1568 
1569 /*
1570  * lock for writing
1571  */
down_write(struct rw_semaphore * sem)1572 void __sched down_write(struct rw_semaphore *sem)
1573 {
1574 	might_sleep();
1575 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1576 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1577 }
1578 EXPORT_SYMBOL(down_write);
1579 
1580 /*
1581  * lock for writing
1582  */
down_write_killable(struct rw_semaphore * sem)1583 int __sched down_write_killable(struct rw_semaphore *sem)
1584 {
1585 	might_sleep();
1586 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1587 
1588 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1589 				  __down_write_killable)) {
1590 		rwsem_release(&sem->dep_map, _RET_IP_);
1591 		return -EINTR;
1592 	}
1593 
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL(down_write_killable);
1597 
1598 /*
1599  * trylock for writing -- returns 1 if successful, 0 if contention
1600  */
down_write_trylock(struct rw_semaphore * sem)1601 int down_write_trylock(struct rw_semaphore *sem)
1602 {
1603 	int ret = __down_write_trylock(sem);
1604 
1605 	if (ret == 1)
1606 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1607 
1608 	return ret;
1609 }
1610 EXPORT_SYMBOL(down_write_trylock);
1611 
1612 /*
1613  * release a read lock
1614  */
up_read(struct rw_semaphore * sem)1615 void up_read(struct rw_semaphore *sem)
1616 {
1617 	rwsem_release(&sem->dep_map, _RET_IP_);
1618 	__up_read(sem);
1619 }
1620 EXPORT_SYMBOL(up_read);
1621 
1622 /*
1623  * release a write lock
1624  */
up_write(struct rw_semaphore * sem)1625 void up_write(struct rw_semaphore *sem)
1626 {
1627 	rwsem_release(&sem->dep_map, _RET_IP_);
1628 	__up_write(sem);
1629 }
1630 EXPORT_SYMBOL(up_write);
1631 
1632 /*
1633  * downgrade write lock to read lock
1634  */
downgrade_write(struct rw_semaphore * sem)1635 void downgrade_write(struct rw_semaphore *sem)
1636 {
1637 	lock_downgrade(&sem->dep_map, _RET_IP_);
1638 	__downgrade_write(sem);
1639 }
1640 EXPORT_SYMBOL(downgrade_write);
1641 
1642 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1643 
down_read_nested(struct rw_semaphore * sem,int subclass)1644 void down_read_nested(struct rw_semaphore *sem, int subclass)
1645 {
1646 	might_sleep();
1647 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1648 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1649 }
1650 EXPORT_SYMBOL(down_read_nested);
1651 
down_read_killable_nested(struct rw_semaphore * sem,int subclass)1652 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1653 {
1654 	might_sleep();
1655 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1656 
1657 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1658 		rwsem_release(&sem->dep_map, _RET_IP_);
1659 		return -EINTR;
1660 	}
1661 
1662 	return 0;
1663 }
1664 EXPORT_SYMBOL(down_read_killable_nested);
1665 
_down_write_nest_lock(struct rw_semaphore * sem,struct lockdep_map * nest)1666 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1667 {
1668 	might_sleep();
1669 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1670 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1671 }
1672 EXPORT_SYMBOL(_down_write_nest_lock);
1673 
down_read_non_owner(struct rw_semaphore * sem)1674 void down_read_non_owner(struct rw_semaphore *sem)
1675 {
1676 	might_sleep();
1677 	__down_read(sem);
1678 	/*
1679 	 * The owner value for a reader-owned lock is mostly for debugging
1680 	 * purpose only and is not critical to the correct functioning of
1681 	 * rwsem. So it is perfectly fine to set it in a preempt-enabled
1682 	 * context here.
1683 	 */
1684 	__rwsem_set_reader_owned(sem, NULL);
1685 }
1686 EXPORT_SYMBOL(down_read_non_owner);
1687 
down_write_nested(struct rw_semaphore * sem,int subclass)1688 void down_write_nested(struct rw_semaphore *sem, int subclass)
1689 {
1690 	might_sleep();
1691 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1692 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1693 }
1694 EXPORT_SYMBOL(down_write_nested);
1695 
down_write_killable_nested(struct rw_semaphore * sem,int subclass)1696 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1697 {
1698 	might_sleep();
1699 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1700 
1701 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1702 				  __down_write_killable)) {
1703 		rwsem_release(&sem->dep_map, _RET_IP_);
1704 		return -EINTR;
1705 	}
1706 
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL(down_write_killable_nested);
1710 
up_read_non_owner(struct rw_semaphore * sem)1711 void up_read_non_owner(struct rw_semaphore *sem)
1712 {
1713 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1714 	__up_read(sem);
1715 }
1716 EXPORT_SYMBOL(up_read_non_owner);
1717 
1718 #endif
1719