1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3 *
4 * Written by David Howells (dhowells@redhat.com).
5 * Derived from asm-i386/semaphore.h
6 *
7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8 * and Michel Lespinasse <walken@google.com>
9 *
10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12 *
13 * Rwsem count bit fields re-definition and rwsem rearchitecture by
14 * Waiman Long <longman@redhat.com> and
15 * Peter Zijlstra <peterz@infradead.org>.
16 */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34
35 /*
36 * The least significant 2 bits of the owner value has the following
37 * meanings when set.
38 * - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint)
39 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40 *
41 * When the rwsem is reader-owned and a spinning writer has timed out,
42 * the nonspinnable bit will be set to disable optimistic spinning.
43
44 * When a writer acquires a rwsem, it puts its task_struct pointer
45 * into the owner field. It is cleared after an unlock.
46 *
47 * When a reader acquires a rwsem, it will also puts its task_struct
48 * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49 * On unlock, the owner field will largely be left untouched. So
50 * for a free or reader-owned rwsem, the owner value may contain
51 * information about the last reader that acquires the rwsem.
52 *
53 * That information may be helpful in debugging cases where the system
54 * seems to hang on a reader owned rwsem especially if only one reader
55 * is involved. Ideally we would like to track all the readers that own
56 * a rwsem, but the overhead is simply too big.
57 *
58 * A fast path reader optimistic lock stealing is supported when the rwsem
59 * is previously owned by a writer and the following conditions are met:
60 * - rwsem is not currently writer owned
61 * - the handoff isn't set.
62 */
63 #define RWSEM_READER_OWNED (1UL << 0)
64 #define RWSEM_NONSPINNABLE (1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \
69 if (!debug_locks_silent && \
70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71 #c, atomic_long_read(&(sem)->count), \
72 (unsigned long) sem->magic, \
73 atomic_long_read(&(sem)->owner), (long)current, \
74 list_empty(&(sem)->wait_list) ? "" : "not ")) \
75 debug_locks_off(); \
76 } while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80
81 /*
82 * On 64-bit architectures, the bit definitions of the count are:
83 *
84 * Bit 0 - writer locked bit
85 * Bit 1 - waiters present bit
86 * Bit 2 - lock handoff bit
87 * Bits 3-7 - reserved
88 * Bits 8-62 - 55-bit reader count
89 * Bit 63 - read fail bit
90 *
91 * On 32-bit architectures, the bit definitions of the count are:
92 *
93 * Bit 0 - writer locked bit
94 * Bit 1 - waiters present bit
95 * Bit 2 - lock handoff bit
96 * Bits 3-7 - reserved
97 * Bits 8-30 - 23-bit reader count
98 * Bit 31 - read fail bit
99 *
100 * It is not likely that the most significant bit (read fail bit) will ever
101 * be set. This guard bit is still checked anyway in the down_read() fastpath
102 * just in case we need to use up more of the reader bits for other purpose
103 * in the future.
104 *
105 * atomic_long_fetch_add() is used to obtain reader lock, whereas
106 * atomic_long_cmpxchg() will be used to obtain writer lock.
107 *
108 * There are three places where the lock handoff bit may be set or cleared.
109 * 1) rwsem_mark_wake() for readers -- set, clear
110 * 2) rwsem_try_write_lock() for writers -- set, clear
111 * 3) rwsem_del_waiter() -- clear
112 *
113 * For all the above cases, wait_lock will be held. A writer must also
114 * be the first one in the wait_list to be eligible for setting the handoff
115 * bit. So concurrent setting/clearing of handoff bit is not possible.
116 */
117 #define RWSEM_WRITER_LOCKED (1UL << 0)
118 #define RWSEM_FLAG_WAITERS (1UL << 1)
119 #define RWSEM_FLAG_HANDOFF (1UL << 2)
120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1))
121
122 #define RWSEM_READER_SHIFT 8
123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129
130 /*
131 * All writes to owner are protected by WRITE_ONCE() to make sure that
132 * store tearing can't happen as optimistic spinners may read and use
133 * the owner value concurrently without lock. Read from owner, however,
134 * may not need READ_ONCE() as long as the pointer value is only used
135 * for comparison and isn't being dereferenced.
136 *
137 * Both rwsem_{set,clear}_owner() functions should be in the same
138 * preempt disable section as the atomic op that changes sem->count.
139 */
rwsem_set_owner(struct rw_semaphore * sem)140 static inline void rwsem_set_owner(struct rw_semaphore *sem)
141 {
142 lockdep_assert_preemption_disabled();
143 atomic_long_set(&sem->owner, (long)current);
144 }
145
rwsem_clear_owner(struct rw_semaphore * sem)146 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
147 {
148 lockdep_assert_preemption_disabled();
149 atomic_long_set(&sem->owner, 0);
150 }
151
152 /*
153 * Test the flags in the owner field.
154 */
rwsem_test_oflags(struct rw_semaphore * sem,long flags)155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
156 {
157 return atomic_long_read(&sem->owner) & flags;
158 }
159
160 /*
161 * The task_struct pointer of the last owning reader will be left in
162 * the owner field.
163 *
164 * Note that the owner value just indicates the task has owned the rwsem
165 * previously, it may not be the real owner or one of the real owners
166 * anymore when that field is examined, so take it with a grain of salt.
167 *
168 * The reader non-spinnable bit is preserved.
169 */
__rwsem_set_reader_owned(struct rw_semaphore * sem,struct task_struct * owner)170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
171 struct task_struct *owner)
172 {
173 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
174 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
175
176 atomic_long_set(&sem->owner, val);
177 }
178
rwsem_set_reader_owned(struct rw_semaphore * sem)179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
180 {
181 __rwsem_set_reader_owned(sem, current);
182 }
183
184 #ifdef CONFIG_DEBUG_RWSEMS
185 /*
186 * Return just the real task structure pointer of the owner
187 */
rwsem_owner(struct rw_semaphore * sem)188 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
189 {
190 return (struct task_struct *)
191 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
192 }
193
194 /*
195 * Return true if the rwsem is owned by a reader.
196 */
is_rwsem_reader_owned(struct rw_semaphore * sem)197 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
198 {
199 /*
200 * Check the count to see if it is write-locked.
201 */
202 long count = atomic_long_read(&sem->count);
203
204 if (count & RWSEM_WRITER_MASK)
205 return false;
206 return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
207 }
208
209 /*
210 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
211 * is a task pointer in owner of a reader-owned rwsem, it will be the
212 * real owner or one of the real owners. The only exception is when the
213 * unlock is done by up_read_non_owner().
214 */
rwsem_clear_reader_owned(struct rw_semaphore * sem)215 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
216 {
217 unsigned long val = atomic_long_read(&sem->owner);
218
219 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
220 if (atomic_long_try_cmpxchg(&sem->owner, &val,
221 val & RWSEM_OWNER_FLAGS_MASK))
222 return;
223 }
224 }
225 #else
rwsem_clear_reader_owned(struct rw_semaphore * sem)226 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
227 {
228 }
229 #endif
230
231 /*
232 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
233 * remains set. Otherwise, the operation will be aborted.
234 */
rwsem_set_nonspinnable(struct rw_semaphore * sem)235 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
236 {
237 unsigned long owner = atomic_long_read(&sem->owner);
238
239 do {
240 if (!(owner & RWSEM_READER_OWNED))
241 break;
242 if (owner & RWSEM_NONSPINNABLE)
243 break;
244 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
245 owner | RWSEM_NONSPINNABLE));
246 }
247
rwsem_read_trylock(struct rw_semaphore * sem,long * cntp)248 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
249 {
250 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
251
252 if (WARN_ON_ONCE(*cntp < 0))
253 rwsem_set_nonspinnable(sem);
254
255 if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
256 rwsem_set_reader_owned(sem);
257 return true;
258 }
259
260 return false;
261 }
262
rwsem_write_trylock(struct rw_semaphore * sem)263 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
264 {
265 long tmp = RWSEM_UNLOCKED_VALUE;
266
267 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
268 rwsem_set_owner(sem);
269 return true;
270 }
271
272 return false;
273 }
274
275 /*
276 * Return the real task structure pointer of the owner and the embedded
277 * flags in the owner. pflags must be non-NULL.
278 */
279 static inline struct task_struct *
rwsem_owner_flags(struct rw_semaphore * sem,unsigned long * pflags)280 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
281 {
282 unsigned long owner = atomic_long_read(&sem->owner);
283
284 *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
285 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
286 }
287
288 /*
289 * Guide to the rw_semaphore's count field.
290 *
291 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
292 * by a writer.
293 *
294 * The lock is owned by readers when
295 * (1) the RWSEM_WRITER_LOCKED isn't set in count,
296 * (2) some of the reader bits are set in count, and
297 * (3) the owner field has RWSEM_READ_OWNED bit set.
298 *
299 * Having some reader bits set is not enough to guarantee a readers owned
300 * lock as the readers may be in the process of backing out from the count
301 * and a writer has just released the lock. So another writer may steal
302 * the lock immediately after that.
303 */
304
305 /*
306 * Initialize an rwsem:
307 */
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)308 void __init_rwsem(struct rw_semaphore *sem, const char *name,
309 struct lock_class_key *key)
310 {
311 #ifdef CONFIG_DEBUG_LOCK_ALLOC
312 /*
313 * Make sure we are not reinitializing a held semaphore:
314 */
315 debug_check_no_locks_freed((void *)sem, sizeof(*sem));
316 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
317 #endif
318 #ifdef CONFIG_DEBUG_RWSEMS
319 sem->magic = sem;
320 #endif
321 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
322 raw_spin_lock_init(&sem->wait_lock);
323 INIT_LIST_HEAD(&sem->wait_list);
324 atomic_long_set(&sem->owner, 0L);
325 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
326 osq_lock_init(&sem->osq);
327 #endif
328 }
329 EXPORT_SYMBOL(__init_rwsem);
330
331 enum rwsem_waiter_type {
332 RWSEM_WAITING_FOR_WRITE,
333 RWSEM_WAITING_FOR_READ
334 };
335
336 struct rwsem_waiter {
337 struct list_head list;
338 struct task_struct *task;
339 enum rwsem_waiter_type type;
340 unsigned long timeout;
341 bool handoff_set;
342 };
343 #define rwsem_first_waiter(sem) \
344 list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
345
346 enum rwsem_wake_type {
347 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */
348 RWSEM_WAKE_READERS, /* Wake readers only */
349 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */
350 };
351
352 /*
353 * The typical HZ value is either 250 or 1000. So set the minimum waiting
354 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
355 * queue before initiating the handoff protocol.
356 */
357 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250)
358
359 /*
360 * Magic number to batch-wakeup waiting readers, even when writers are
361 * also present in the queue. This both limits the amount of work the
362 * waking thread must do and also prevents any potential counter overflow,
363 * however unlikely.
364 */
365 #define MAX_READERS_WAKEUP 0x100
366
367 static inline void
rwsem_add_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter)368 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
369 {
370 lockdep_assert_held(&sem->wait_lock);
371 list_add_tail(&waiter->list, &sem->wait_list);
372 /* caller will set RWSEM_FLAG_WAITERS */
373 }
374
375 /*
376 * Remove a waiter from the wait_list and clear flags.
377 *
378 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
379 * this function. Modify with care.
380 *
381 * Return: true if wait_list isn't empty and false otherwise
382 */
383 static inline bool
rwsem_del_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter)384 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
385 {
386 lockdep_assert_held(&sem->wait_lock);
387 list_del(&waiter->list);
388 if (likely(!list_empty(&sem->wait_list)))
389 return true;
390
391 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
392 return false;
393 }
394
395 /*
396 * handle the lock release when processes blocked on it that can now run
397 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
398 * have been set.
399 * - there must be someone on the queue
400 * - the wait_lock must be held by the caller
401 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
402 * to actually wakeup the blocked task(s) and drop the reference count,
403 * preferably when the wait_lock is released
404 * - woken process blocks are discarded from the list after having task zeroed
405 * - writers are only marked woken if downgrading is false
406 *
407 * Implies rwsem_del_waiter() for all woken readers.
408 */
rwsem_mark_wake(struct rw_semaphore * sem,enum rwsem_wake_type wake_type,struct wake_q_head * wake_q)409 static void rwsem_mark_wake(struct rw_semaphore *sem,
410 enum rwsem_wake_type wake_type,
411 struct wake_q_head *wake_q)
412 {
413 struct rwsem_waiter *waiter, *tmp;
414 long oldcount, woken = 0, adjustment = 0;
415 struct list_head wlist;
416
417 lockdep_assert_held(&sem->wait_lock);
418
419 /*
420 * Take a peek at the queue head waiter such that we can determine
421 * the wakeup(s) to perform.
422 */
423 waiter = rwsem_first_waiter(sem);
424
425 if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
426 if (wake_type == RWSEM_WAKE_ANY) {
427 /*
428 * Mark writer at the front of the queue for wakeup.
429 * Until the task is actually later awoken later by
430 * the caller, other writers are able to steal it.
431 * Readers, on the other hand, will block as they
432 * will notice the queued writer.
433 */
434 wake_q_add(wake_q, waiter->task);
435 lockevent_inc(rwsem_wake_writer);
436 }
437
438 return;
439 }
440
441 /*
442 * No reader wakeup if there are too many of them already.
443 */
444 if (unlikely(atomic_long_read(&sem->count) < 0))
445 return;
446
447 /*
448 * Writers might steal the lock before we grant it to the next reader.
449 * We prefer to do the first reader grant before counting readers
450 * so we can bail out early if a writer stole the lock.
451 */
452 if (wake_type != RWSEM_WAKE_READ_OWNED) {
453 struct task_struct *owner;
454
455 adjustment = RWSEM_READER_BIAS;
456 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
457 if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
458 /*
459 * When we've been waiting "too" long (for writers
460 * to give up the lock), request a HANDOFF to
461 * force the issue.
462 */
463 if (time_after(jiffies, waiter->timeout)) {
464 if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
465 adjustment -= RWSEM_FLAG_HANDOFF;
466 lockevent_inc(rwsem_rlock_handoff);
467 }
468 waiter->handoff_set = true;
469 }
470
471 atomic_long_add(-adjustment, &sem->count);
472 return;
473 }
474 /*
475 * Set it to reader-owned to give spinners an early
476 * indication that readers now have the lock.
477 * The reader nonspinnable bit seen at slowpath entry of
478 * the reader is copied over.
479 */
480 owner = waiter->task;
481 __rwsem_set_reader_owned(sem, owner);
482 }
483
484 /*
485 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
486 * queue. We know that the woken will be at least 1 as we accounted
487 * for above. Note we increment the 'active part' of the count by the
488 * number of readers before waking any processes up.
489 *
490 * This is an adaptation of the phase-fair R/W locks where at the
491 * reader phase (first waiter is a reader), all readers are eligible
492 * to acquire the lock at the same time irrespective of their order
493 * in the queue. The writers acquire the lock according to their
494 * order in the queue.
495 *
496 * We have to do wakeup in 2 passes to prevent the possibility that
497 * the reader count may be decremented before it is incremented. It
498 * is because the to-be-woken waiter may not have slept yet. So it
499 * may see waiter->task got cleared, finish its critical section and
500 * do an unlock before the reader count increment.
501 *
502 * 1) Collect the read-waiters in a separate list, count them and
503 * fully increment the reader count in rwsem.
504 * 2) For each waiters in the new list, clear waiter->task and
505 * put them into wake_q to be woken up later.
506 */
507 INIT_LIST_HEAD(&wlist);
508 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
509 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
510 continue;
511
512 woken++;
513 list_move_tail(&waiter->list, &wlist);
514
515 /*
516 * Limit # of readers that can be woken up per wakeup call.
517 */
518 if (unlikely(woken >= MAX_READERS_WAKEUP))
519 break;
520 }
521
522 adjustment = woken * RWSEM_READER_BIAS - adjustment;
523 lockevent_cond_inc(rwsem_wake_reader, woken);
524
525 oldcount = atomic_long_read(&sem->count);
526 if (list_empty(&sem->wait_list)) {
527 /*
528 * Combined with list_move_tail() above, this implies
529 * rwsem_del_waiter().
530 */
531 adjustment -= RWSEM_FLAG_WAITERS;
532 if (oldcount & RWSEM_FLAG_HANDOFF)
533 adjustment -= RWSEM_FLAG_HANDOFF;
534 } else if (woken) {
535 /*
536 * When we've woken a reader, we no longer need to force
537 * writers to give up the lock and we can clear HANDOFF.
538 */
539 if (oldcount & RWSEM_FLAG_HANDOFF)
540 adjustment -= RWSEM_FLAG_HANDOFF;
541 }
542
543 if (adjustment)
544 atomic_long_add(adjustment, &sem->count);
545
546 /* 2nd pass */
547 list_for_each_entry_safe(waiter, tmp, &wlist, list) {
548 struct task_struct *tsk;
549
550 tsk = waiter->task;
551 get_task_struct(tsk);
552
553 /*
554 * Ensure calling get_task_struct() before setting the reader
555 * waiter to nil such that rwsem_down_read_slowpath() cannot
556 * race with do_exit() by always holding a reference count
557 * to the task to wakeup.
558 */
559 smp_store_release(&waiter->task, NULL);
560 /*
561 * Ensure issuing the wakeup (either by us or someone else)
562 * after setting the reader waiter to nil.
563 */
564 wake_q_add_safe(wake_q, tsk);
565 }
566 }
567
568 /*
569 * Remove a waiter and try to wake up other waiters in the wait queue
570 * This function is called from the out_nolock path of both the reader and
571 * writer slowpaths with wait_lock held. It releases the wait_lock and
572 * optionally wake up waiters before it returns.
573 */
574 static inline void
rwsem_del_wake_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter,struct wake_q_head * wake_q)575 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
576 struct wake_q_head *wake_q)
577 __releases(&sem->wait_lock)
578 {
579 bool first = rwsem_first_waiter(sem) == waiter;
580
581 wake_q_init(wake_q);
582
583 /*
584 * If the wait_list isn't empty and the waiter to be deleted is
585 * the first waiter, we wake up the remaining waiters as they may
586 * be eligible to acquire or spin on the lock.
587 */
588 if (rwsem_del_waiter(sem, waiter) && first)
589 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
590 raw_spin_unlock_irq(&sem->wait_lock);
591 if (!wake_q_empty(wake_q))
592 wake_up_q(wake_q);
593 }
594
595 /*
596 * This function must be called with the sem->wait_lock held to prevent
597 * race conditions between checking the rwsem wait list and setting the
598 * sem->count accordingly.
599 *
600 * Implies rwsem_del_waiter() on success.
601 */
rwsem_try_write_lock(struct rw_semaphore * sem,struct rwsem_waiter * waiter)602 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
603 struct rwsem_waiter *waiter)
604 {
605 struct rwsem_waiter *first = rwsem_first_waiter(sem);
606 long count, new;
607
608 lockdep_assert_held(&sem->wait_lock);
609
610 count = atomic_long_read(&sem->count);
611 do {
612 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
613
614 if (has_handoff) {
615 /*
616 * Honor handoff bit and yield only when the first
617 * waiter is the one that set it. Otherwisee, we
618 * still try to acquire the rwsem.
619 */
620 if (first->handoff_set && (waiter != first))
621 return false;
622 }
623
624 new = count;
625
626 if (count & RWSEM_LOCK_MASK) {
627 /*
628 * A waiter (first or not) can set the handoff bit
629 * if it is an RT task or wait in the wait queue
630 * for too long.
631 */
632 if (has_handoff || (!rt_or_dl_task(waiter->task) &&
633 !time_after(jiffies, waiter->timeout)))
634 return false;
635
636 new |= RWSEM_FLAG_HANDOFF;
637 } else {
638 new |= RWSEM_WRITER_LOCKED;
639 new &= ~RWSEM_FLAG_HANDOFF;
640
641 if (list_is_singular(&sem->wait_list))
642 new &= ~RWSEM_FLAG_WAITERS;
643 }
644 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
645
646 /*
647 * We have either acquired the lock with handoff bit cleared or set
648 * the handoff bit. Only the first waiter can have its handoff_set
649 * set here to enable optimistic spinning in slowpath loop.
650 */
651 if (new & RWSEM_FLAG_HANDOFF) {
652 first->handoff_set = true;
653 lockevent_inc(rwsem_wlock_handoff);
654 return false;
655 }
656
657 /*
658 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
659 * success.
660 */
661 list_del(&waiter->list);
662 rwsem_set_owner(sem);
663 return true;
664 }
665
666 /*
667 * The rwsem_spin_on_owner() function returns the following 4 values
668 * depending on the lock owner state.
669 * OWNER_NULL : owner is currently NULL
670 * OWNER_WRITER: when owner changes and is a writer
671 * OWNER_READER: when owner changes and the new owner may be a reader.
672 * OWNER_NONSPINNABLE:
673 * when optimistic spinning has to stop because either the
674 * owner stops running, is unknown, or its timeslice has
675 * been used up.
676 */
677 enum owner_state {
678 OWNER_NULL = 1 << 0,
679 OWNER_WRITER = 1 << 1,
680 OWNER_READER = 1 << 2,
681 OWNER_NONSPINNABLE = 1 << 3,
682 };
683
684 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
685 /*
686 * Try to acquire write lock before the writer has been put on wait queue.
687 */
rwsem_try_write_lock_unqueued(struct rw_semaphore * sem)688 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
689 {
690 long count = atomic_long_read(&sem->count);
691
692 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
693 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
694 count | RWSEM_WRITER_LOCKED)) {
695 rwsem_set_owner(sem);
696 lockevent_inc(rwsem_opt_lock);
697 return true;
698 }
699 }
700 return false;
701 }
702
rwsem_can_spin_on_owner(struct rw_semaphore * sem)703 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
704 {
705 struct task_struct *owner;
706 unsigned long flags;
707 bool ret = true;
708
709 if (need_resched()) {
710 lockevent_inc(rwsem_opt_fail);
711 return false;
712 }
713
714 /*
715 * Disable preemption is equal to the RCU read-side crital section,
716 * thus the task_strcut structure won't go away.
717 */
718 owner = rwsem_owner_flags(sem, &flags);
719 /*
720 * Don't check the read-owner as the entry may be stale.
721 */
722 if ((flags & RWSEM_NONSPINNABLE) ||
723 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
724 ret = false;
725
726 lockevent_cond_inc(rwsem_opt_fail, !ret);
727 return ret;
728 }
729
730 static inline enum owner_state
rwsem_owner_state(struct task_struct * owner,unsigned long flags)731 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
732 {
733 if (flags & RWSEM_NONSPINNABLE)
734 return OWNER_NONSPINNABLE;
735
736 if (flags & RWSEM_READER_OWNED)
737 return OWNER_READER;
738
739 return owner ? OWNER_WRITER : OWNER_NULL;
740 }
741
742 static noinline enum owner_state
rwsem_spin_on_owner(struct rw_semaphore * sem)743 rwsem_spin_on_owner(struct rw_semaphore *sem)
744 {
745 struct task_struct *new, *owner;
746 unsigned long flags, new_flags;
747 enum owner_state state;
748
749 lockdep_assert_preemption_disabled();
750
751 owner = rwsem_owner_flags(sem, &flags);
752 state = rwsem_owner_state(owner, flags);
753 if (state != OWNER_WRITER)
754 return state;
755
756 for (;;) {
757 /*
758 * When a waiting writer set the handoff flag, it may spin
759 * on the owner as well. Once that writer acquires the lock,
760 * we can spin on it. So we don't need to quit even when the
761 * handoff bit is set.
762 */
763 new = rwsem_owner_flags(sem, &new_flags);
764 if ((new != owner) || (new_flags != flags)) {
765 state = rwsem_owner_state(new, new_flags);
766 break;
767 }
768
769 /*
770 * Ensure we emit the owner->on_cpu, dereference _after_
771 * checking sem->owner still matches owner, if that fails,
772 * owner might point to free()d memory, if it still matches,
773 * our spinning context already disabled preemption which is
774 * equal to RCU read-side crital section ensures the memory
775 * stays valid.
776 */
777 barrier();
778
779 if (need_resched() || !owner_on_cpu(owner)) {
780 state = OWNER_NONSPINNABLE;
781 break;
782 }
783
784 cpu_relax();
785 }
786
787 return state;
788 }
789
790 /*
791 * Calculate reader-owned rwsem spinning threshold for writer
792 *
793 * The more readers own the rwsem, the longer it will take for them to
794 * wind down and free the rwsem. So the empirical formula used to
795 * determine the actual spinning time limit here is:
796 *
797 * Spinning threshold = (10 + nr_readers/2)us
798 *
799 * The limit is capped to a maximum of 25us (30 readers). This is just
800 * a heuristic and is subjected to change in the future.
801 */
rwsem_rspin_threshold(struct rw_semaphore * sem)802 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
803 {
804 long count = atomic_long_read(&sem->count);
805 int readers = count >> RWSEM_READER_SHIFT;
806 u64 delta;
807
808 if (readers > 30)
809 readers = 30;
810 delta = (20 + readers) * NSEC_PER_USEC / 2;
811
812 return sched_clock() + delta;
813 }
814
rwsem_optimistic_spin(struct rw_semaphore * sem)815 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
816 {
817 bool taken = false;
818 int prev_owner_state = OWNER_NULL;
819 int loop = 0;
820 u64 rspin_threshold = 0;
821
822 /* sem->wait_lock should not be held when doing optimistic spinning */
823 if (!osq_lock(&sem->osq))
824 goto done;
825
826 /*
827 * Optimistically spin on the owner field and attempt to acquire the
828 * lock whenever the owner changes. Spinning will be stopped when:
829 * 1) the owning writer isn't running; or
830 * 2) readers own the lock and spinning time has exceeded limit.
831 */
832 for (;;) {
833 enum owner_state owner_state;
834
835 owner_state = rwsem_spin_on_owner(sem);
836 if (owner_state == OWNER_NONSPINNABLE)
837 break;
838
839 /*
840 * Try to acquire the lock
841 */
842 taken = rwsem_try_write_lock_unqueued(sem);
843
844 if (taken)
845 break;
846
847 /*
848 * Time-based reader-owned rwsem optimistic spinning
849 */
850 if (owner_state == OWNER_READER) {
851 /*
852 * Re-initialize rspin_threshold every time when
853 * the owner state changes from non-reader to reader.
854 * This allows a writer to steal the lock in between
855 * 2 reader phases and have the threshold reset at
856 * the beginning of the 2nd reader phase.
857 */
858 if (prev_owner_state != OWNER_READER) {
859 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
860 break;
861 rspin_threshold = rwsem_rspin_threshold(sem);
862 loop = 0;
863 }
864
865 /*
866 * Check time threshold once every 16 iterations to
867 * avoid calling sched_clock() too frequently so
868 * as to reduce the average latency between the times
869 * when the lock becomes free and when the spinner
870 * is ready to do a trylock.
871 */
872 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
873 rwsem_set_nonspinnable(sem);
874 lockevent_inc(rwsem_opt_nospin);
875 break;
876 }
877 }
878
879 /*
880 * An RT task cannot do optimistic spinning if it cannot
881 * be sure the lock holder is running or live-lock may
882 * happen if the current task and the lock holder happen
883 * to run in the same CPU. However, aborting optimistic
884 * spinning while a NULL owner is detected may miss some
885 * opportunity where spinning can continue without causing
886 * problem.
887 *
888 * There are 2 possible cases where an RT task may be able
889 * to continue spinning.
890 *
891 * 1) The lock owner is in the process of releasing the
892 * lock, sem->owner is cleared but the lock has not
893 * been released yet.
894 * 2) The lock was free and owner cleared, but another
895 * task just comes in and acquire the lock before
896 * we try to get it. The new owner may be a spinnable
897 * writer.
898 *
899 * To take advantage of two scenarios listed above, the RT
900 * task is made to retry one more time to see if it can
901 * acquire the lock or continue spinning on the new owning
902 * writer. Of course, if the time lag is long enough or the
903 * new owner is not a writer or spinnable, the RT task will
904 * quit spinning.
905 *
906 * If the owner is a writer, the need_resched() check is
907 * done inside rwsem_spin_on_owner(). If the owner is not
908 * a writer, need_resched() check needs to be done here.
909 */
910 if (owner_state != OWNER_WRITER) {
911 if (need_resched())
912 break;
913 if (rt_or_dl_task(current) &&
914 (prev_owner_state != OWNER_WRITER))
915 break;
916 }
917 prev_owner_state = owner_state;
918
919 /*
920 * The cpu_relax() call is a compiler barrier which forces
921 * everything in this loop to be re-loaded. We don't need
922 * memory barriers as we'll eventually observe the right
923 * values at the cost of a few extra spins.
924 */
925 cpu_relax();
926 }
927 osq_unlock(&sem->osq);
928 done:
929 lockevent_cond_inc(rwsem_opt_fail, !taken);
930 return taken;
931 }
932
933 /*
934 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
935 * only be called when the reader count reaches 0.
936 */
clear_nonspinnable(struct rw_semaphore * sem)937 static inline void clear_nonspinnable(struct rw_semaphore *sem)
938 {
939 if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
940 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
941 }
942
943 #else
rwsem_can_spin_on_owner(struct rw_semaphore * sem)944 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
945 {
946 return false;
947 }
948
rwsem_optimistic_spin(struct rw_semaphore * sem)949 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
950 {
951 return false;
952 }
953
clear_nonspinnable(struct rw_semaphore * sem)954 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
955
956 static inline enum owner_state
rwsem_spin_on_owner(struct rw_semaphore * sem)957 rwsem_spin_on_owner(struct rw_semaphore *sem)
958 {
959 return OWNER_NONSPINNABLE;
960 }
961 #endif
962
963 /*
964 * Prepare to wake up waiter(s) in the wait queue by putting them into the
965 * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
966 * reader-owned, wake up read lock waiters in queue front or wake up any
967 * front waiter otherwise.
968
969 * This is being called from both reader and writer slow paths.
970 */
rwsem_cond_wake_waiter(struct rw_semaphore * sem,long count,struct wake_q_head * wake_q)971 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
972 struct wake_q_head *wake_q)
973 {
974 enum rwsem_wake_type wake_type;
975
976 if (count & RWSEM_WRITER_MASK)
977 return;
978
979 if (count & RWSEM_READER_MASK) {
980 wake_type = RWSEM_WAKE_READERS;
981 } else {
982 wake_type = RWSEM_WAKE_ANY;
983 clear_nonspinnable(sem);
984 }
985 rwsem_mark_wake(sem, wake_type, wake_q);
986 }
987
988 /*
989 * Wait for the read lock to be granted
990 */
991 static struct rw_semaphore __sched *
rwsem_down_read_slowpath(struct rw_semaphore * sem,long count,unsigned int state)992 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
993 {
994 long adjustment = -RWSEM_READER_BIAS;
995 long rcnt = (count >> RWSEM_READER_SHIFT);
996 struct rwsem_waiter waiter;
997 DEFINE_WAKE_Q(wake_q);
998
999 /*
1000 * To prevent a constant stream of readers from starving a sleeping
1001 * writer, don't attempt optimistic lock stealing if the lock is
1002 * very likely owned by readers.
1003 */
1004 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1005 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1006 goto queue;
1007
1008 /*
1009 * Reader optimistic lock stealing.
1010 */
1011 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1012 rwsem_set_reader_owned(sem);
1013 lockevent_inc(rwsem_rlock_steal);
1014
1015 /*
1016 * Wake up other readers in the wait queue if it is
1017 * the first reader.
1018 */
1019 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1020 raw_spin_lock_irq(&sem->wait_lock);
1021 if (!list_empty(&sem->wait_list))
1022 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1023 &wake_q);
1024 raw_spin_unlock_irq(&sem->wait_lock);
1025 wake_up_q(&wake_q);
1026 }
1027 return sem;
1028 }
1029
1030 queue:
1031 waiter.task = current;
1032 waiter.type = RWSEM_WAITING_FOR_READ;
1033 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1034 waiter.handoff_set = false;
1035
1036 raw_spin_lock_irq(&sem->wait_lock);
1037 if (list_empty(&sem->wait_list)) {
1038 /*
1039 * In case the wait queue is empty and the lock isn't owned
1040 * by a writer, this reader can exit the slowpath and return
1041 * immediately as its RWSEM_READER_BIAS has already been set
1042 * in the count.
1043 */
1044 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1045 /* Provide lock ACQUIRE */
1046 smp_acquire__after_ctrl_dep();
1047 raw_spin_unlock_irq(&sem->wait_lock);
1048 rwsem_set_reader_owned(sem);
1049 lockevent_inc(rwsem_rlock_fast);
1050 return sem;
1051 }
1052 adjustment += RWSEM_FLAG_WAITERS;
1053 }
1054 rwsem_add_waiter(sem, &waiter);
1055
1056 /* we're now waiting on the lock, but no longer actively locking */
1057 count = atomic_long_add_return(adjustment, &sem->count);
1058
1059 rwsem_cond_wake_waiter(sem, count, &wake_q);
1060 raw_spin_unlock_irq(&sem->wait_lock);
1061
1062 if (!wake_q_empty(&wake_q))
1063 wake_up_q(&wake_q);
1064
1065 trace_contention_begin(sem, LCB_F_READ);
1066
1067 /* wait to be given the lock */
1068 for (;;) {
1069 set_current_state(state);
1070 if (!smp_load_acquire(&waiter.task)) {
1071 /* Matches rwsem_mark_wake()'s smp_store_release(). */
1072 break;
1073 }
1074 if (signal_pending_state(state, current)) {
1075 raw_spin_lock_irq(&sem->wait_lock);
1076 if (waiter.task)
1077 goto out_nolock;
1078 raw_spin_unlock_irq(&sem->wait_lock);
1079 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1080 break;
1081 }
1082 schedule_preempt_disabled();
1083 lockevent_inc(rwsem_sleep_reader);
1084 }
1085
1086 __set_current_state(TASK_RUNNING);
1087 lockevent_inc(rwsem_rlock);
1088 trace_contention_end(sem, 0);
1089 return sem;
1090
1091 out_nolock:
1092 rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1093 __set_current_state(TASK_RUNNING);
1094 lockevent_inc(rwsem_rlock_fail);
1095 trace_contention_end(sem, -EINTR);
1096 return ERR_PTR(-EINTR);
1097 }
1098
1099 /*
1100 * Wait until we successfully acquire the write lock
1101 */
1102 static struct rw_semaphore __sched *
rwsem_down_write_slowpath(struct rw_semaphore * sem,int state)1103 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1104 {
1105 struct rwsem_waiter waiter;
1106 DEFINE_WAKE_Q(wake_q);
1107
1108 /* do optimistic spinning and steal lock if possible */
1109 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1110 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1111 return sem;
1112 }
1113
1114 /*
1115 * Optimistic spinning failed, proceed to the slowpath
1116 * and block until we can acquire the sem.
1117 */
1118 waiter.task = current;
1119 waiter.type = RWSEM_WAITING_FOR_WRITE;
1120 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1121 waiter.handoff_set = false;
1122
1123 raw_spin_lock_irq(&sem->wait_lock);
1124 rwsem_add_waiter(sem, &waiter);
1125
1126 /* we're now waiting on the lock */
1127 if (rwsem_first_waiter(sem) != &waiter) {
1128 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1129 &wake_q);
1130 if (!wake_q_empty(&wake_q)) {
1131 /*
1132 * We want to minimize wait_lock hold time especially
1133 * when a large number of readers are to be woken up.
1134 */
1135 raw_spin_unlock_irq(&sem->wait_lock);
1136 wake_up_q(&wake_q);
1137 raw_spin_lock_irq(&sem->wait_lock);
1138 }
1139 } else {
1140 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1141 }
1142
1143 /* wait until we successfully acquire the lock */
1144 set_current_state(state);
1145 trace_contention_begin(sem, LCB_F_WRITE);
1146
1147 for (;;) {
1148 if (rwsem_try_write_lock(sem, &waiter)) {
1149 /* rwsem_try_write_lock() implies ACQUIRE on success */
1150 break;
1151 }
1152
1153 raw_spin_unlock_irq(&sem->wait_lock);
1154
1155 if (signal_pending_state(state, current))
1156 goto out_nolock;
1157
1158 /*
1159 * After setting the handoff bit and failing to acquire
1160 * the lock, attempt to spin on owner to accelerate lock
1161 * transfer. If the previous owner is a on-cpu writer and it
1162 * has just released the lock, OWNER_NULL will be returned.
1163 * In this case, we attempt to acquire the lock again
1164 * without sleeping.
1165 */
1166 if (waiter.handoff_set) {
1167 enum owner_state owner_state;
1168
1169 owner_state = rwsem_spin_on_owner(sem);
1170 if (owner_state == OWNER_NULL)
1171 goto trylock_again;
1172 }
1173
1174 schedule_preempt_disabled();
1175 lockevent_inc(rwsem_sleep_writer);
1176 set_current_state(state);
1177 trylock_again:
1178 raw_spin_lock_irq(&sem->wait_lock);
1179 }
1180 __set_current_state(TASK_RUNNING);
1181 raw_spin_unlock_irq(&sem->wait_lock);
1182 lockevent_inc(rwsem_wlock);
1183 trace_contention_end(sem, 0);
1184 return sem;
1185
1186 out_nolock:
1187 __set_current_state(TASK_RUNNING);
1188 raw_spin_lock_irq(&sem->wait_lock);
1189 rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1190 lockevent_inc(rwsem_wlock_fail);
1191 trace_contention_end(sem, -EINTR);
1192 return ERR_PTR(-EINTR);
1193 }
1194
1195 /*
1196 * handle waking up a waiter on the semaphore
1197 * - up_read/up_write has decremented the active part of count if we come here
1198 */
rwsem_wake(struct rw_semaphore * sem)1199 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1200 {
1201 unsigned long flags;
1202 DEFINE_WAKE_Q(wake_q);
1203
1204 raw_spin_lock_irqsave(&sem->wait_lock, flags);
1205
1206 if (!list_empty(&sem->wait_list))
1207 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1208
1209 raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1210 wake_up_q(&wake_q);
1211
1212 return sem;
1213 }
1214
1215 /*
1216 * downgrade a write lock into a read lock
1217 * - caller incremented waiting part of count and discovered it still negative
1218 * - just wake up any readers at the front of the queue
1219 */
rwsem_downgrade_wake(struct rw_semaphore * sem)1220 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1221 {
1222 unsigned long flags;
1223 DEFINE_WAKE_Q(wake_q);
1224
1225 raw_spin_lock_irqsave(&sem->wait_lock, flags);
1226
1227 if (!list_empty(&sem->wait_list))
1228 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1229
1230 raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1231 wake_up_q(&wake_q);
1232
1233 return sem;
1234 }
1235
1236 /*
1237 * lock for reading
1238 */
__down_read_common(struct rw_semaphore * sem,int state)1239 static __always_inline int __down_read_common(struct rw_semaphore *sem, int state)
1240 {
1241 int ret = 0;
1242 long count;
1243
1244 preempt_disable();
1245 if (!rwsem_read_trylock(sem, &count)) {
1246 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) {
1247 ret = -EINTR;
1248 goto out;
1249 }
1250 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1251 }
1252 out:
1253 preempt_enable();
1254 return ret;
1255 }
1256
__down_read(struct rw_semaphore * sem)1257 static __always_inline void __down_read(struct rw_semaphore *sem)
1258 {
1259 __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1260 }
1261
__down_read_interruptible(struct rw_semaphore * sem)1262 static __always_inline int __down_read_interruptible(struct rw_semaphore *sem)
1263 {
1264 return __down_read_common(sem, TASK_INTERRUPTIBLE);
1265 }
1266
__down_read_killable(struct rw_semaphore * sem)1267 static __always_inline int __down_read_killable(struct rw_semaphore *sem)
1268 {
1269 return __down_read_common(sem, TASK_KILLABLE);
1270 }
1271
__down_read_trylock(struct rw_semaphore * sem)1272 static inline int __down_read_trylock(struct rw_semaphore *sem)
1273 {
1274 int ret = 0;
1275 long tmp;
1276
1277 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1278
1279 preempt_disable();
1280 tmp = atomic_long_read(&sem->count);
1281 while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1282 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1283 tmp + RWSEM_READER_BIAS)) {
1284 rwsem_set_reader_owned(sem);
1285 ret = 1;
1286 break;
1287 }
1288 }
1289 preempt_enable();
1290 return ret;
1291 }
1292
1293 /*
1294 * lock for writing
1295 */
__down_write_common(struct rw_semaphore * sem,int state)1296 static __always_inline int __down_write_common(struct rw_semaphore *sem, int state)
1297 {
1298 int ret = 0;
1299
1300 preempt_disable();
1301 if (unlikely(!rwsem_write_trylock(sem))) {
1302 if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1303 ret = -EINTR;
1304 }
1305 preempt_enable();
1306 return ret;
1307 }
1308
__down_write(struct rw_semaphore * sem)1309 static __always_inline void __down_write(struct rw_semaphore *sem)
1310 {
1311 __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1312 }
1313
__down_write_killable(struct rw_semaphore * sem)1314 static __always_inline int __down_write_killable(struct rw_semaphore *sem)
1315 {
1316 return __down_write_common(sem, TASK_KILLABLE);
1317 }
1318
__down_write_trylock(struct rw_semaphore * sem)1319 static inline int __down_write_trylock(struct rw_semaphore *sem)
1320 {
1321 int ret;
1322
1323 preempt_disable();
1324 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1325 ret = rwsem_write_trylock(sem);
1326 preempt_enable();
1327
1328 return ret;
1329 }
1330
1331 /*
1332 * unlock after reading
1333 */
__up_read(struct rw_semaphore * sem)1334 static inline void __up_read(struct rw_semaphore *sem)
1335 {
1336 long tmp;
1337
1338 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1339 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1340
1341 preempt_disable();
1342 rwsem_clear_reader_owned(sem);
1343 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1344 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1345 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1346 RWSEM_FLAG_WAITERS)) {
1347 clear_nonspinnable(sem);
1348 rwsem_wake(sem);
1349 }
1350 preempt_enable();
1351 }
1352
1353 /*
1354 * unlock after writing
1355 */
__up_write(struct rw_semaphore * sem)1356 static inline void __up_write(struct rw_semaphore *sem)
1357 {
1358 long tmp;
1359
1360 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1361 /*
1362 * sem->owner may differ from current if the ownership is transferred
1363 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1364 */
1365 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1366 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1367
1368 preempt_disable();
1369 rwsem_clear_owner(sem);
1370 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1371 if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1372 rwsem_wake(sem);
1373 preempt_enable();
1374 }
1375
1376 /*
1377 * downgrade write lock to read lock
1378 */
__downgrade_write(struct rw_semaphore * sem)1379 static inline void __downgrade_write(struct rw_semaphore *sem)
1380 {
1381 long tmp;
1382
1383 /*
1384 * When downgrading from exclusive to shared ownership,
1385 * anything inside the write-locked region cannot leak
1386 * into the read side. In contrast, anything in the
1387 * read-locked region is ok to be re-ordered into the
1388 * write side. As such, rely on RELEASE semantics.
1389 */
1390 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1391 preempt_disable();
1392 tmp = atomic_long_fetch_add_release(
1393 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1394 rwsem_set_reader_owned(sem);
1395 if (tmp & RWSEM_FLAG_WAITERS)
1396 rwsem_downgrade_wake(sem);
1397 preempt_enable();
1398 }
1399
1400 #else /* !CONFIG_PREEMPT_RT */
1401
1402 #define RT_MUTEX_BUILD_MUTEX
1403 #include "rtmutex.c"
1404
1405 #define rwbase_set_and_save_current_state(state) \
1406 set_current_state(state)
1407
1408 #define rwbase_restore_current_state() \
1409 __set_current_state(TASK_RUNNING)
1410
1411 #define rwbase_rtmutex_lock_state(rtm, state) \
1412 __rt_mutex_lock(rtm, state)
1413
1414 #define rwbase_rtmutex_slowlock_locked(rtm, state, wq) \
1415 __rt_mutex_slowlock_locked(rtm, NULL, state, wq)
1416
1417 #define rwbase_rtmutex_unlock(rtm) \
1418 __rt_mutex_unlock(rtm)
1419
1420 #define rwbase_rtmutex_trylock(rtm) \
1421 __rt_mutex_trylock(rtm)
1422
1423 #define rwbase_signal_pending_state(state, current) \
1424 signal_pending_state(state, current)
1425
1426 #define rwbase_pre_schedule() \
1427 rt_mutex_pre_schedule()
1428
1429 #define rwbase_schedule() \
1430 rt_mutex_schedule()
1431
1432 #define rwbase_post_schedule() \
1433 rt_mutex_post_schedule()
1434
1435 #include "rwbase_rt.c"
1436
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)1437 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1438 struct lock_class_key *key)
1439 {
1440 init_rwbase_rt(&(sem)->rwbase);
1441
1442 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1443 debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1444 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1445 #endif
1446 }
1447 EXPORT_SYMBOL(__init_rwsem);
1448
__down_read(struct rw_semaphore * sem)1449 static inline void __down_read(struct rw_semaphore *sem)
1450 {
1451 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1452 }
1453
__down_read_interruptible(struct rw_semaphore * sem)1454 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1455 {
1456 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1457 }
1458
__down_read_killable(struct rw_semaphore * sem)1459 static inline int __down_read_killable(struct rw_semaphore *sem)
1460 {
1461 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1462 }
1463
__down_read_trylock(struct rw_semaphore * sem)1464 static inline int __down_read_trylock(struct rw_semaphore *sem)
1465 {
1466 return rwbase_read_trylock(&sem->rwbase);
1467 }
1468
__up_read(struct rw_semaphore * sem)1469 static inline void __up_read(struct rw_semaphore *sem)
1470 {
1471 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1472 }
1473
__down_write(struct rw_semaphore * sem)1474 static inline void __sched __down_write(struct rw_semaphore *sem)
1475 {
1476 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1477 }
1478
__down_write_killable(struct rw_semaphore * sem)1479 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1480 {
1481 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1482 }
1483
__down_write_trylock(struct rw_semaphore * sem)1484 static inline int __down_write_trylock(struct rw_semaphore *sem)
1485 {
1486 return rwbase_write_trylock(&sem->rwbase);
1487 }
1488
__up_write(struct rw_semaphore * sem)1489 static inline void __up_write(struct rw_semaphore *sem)
1490 {
1491 rwbase_write_unlock(&sem->rwbase);
1492 }
1493
__downgrade_write(struct rw_semaphore * sem)1494 static inline void __downgrade_write(struct rw_semaphore *sem)
1495 {
1496 rwbase_write_downgrade(&sem->rwbase);
1497 }
1498
1499 /* Debug stubs for the common API */
1500 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1501
__rwsem_set_reader_owned(struct rw_semaphore * sem,struct task_struct * owner)1502 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1503 struct task_struct *owner)
1504 {
1505 }
1506
is_rwsem_reader_owned(struct rw_semaphore * sem)1507 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1508 {
1509 int count = atomic_read(&sem->rwbase.readers);
1510
1511 return count < 0 && count != READER_BIAS;
1512 }
1513
1514 #endif /* CONFIG_PREEMPT_RT */
1515
1516 /*
1517 * lock for reading
1518 */
down_read(struct rw_semaphore * sem)1519 void __sched down_read(struct rw_semaphore *sem)
1520 {
1521 might_sleep();
1522 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1523
1524 LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1525 }
1526 EXPORT_SYMBOL(down_read);
1527
down_read_interruptible(struct rw_semaphore * sem)1528 int __sched down_read_interruptible(struct rw_semaphore *sem)
1529 {
1530 might_sleep();
1531 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1532
1533 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1534 rwsem_release(&sem->dep_map, _RET_IP_);
1535 return -EINTR;
1536 }
1537
1538 return 0;
1539 }
1540 EXPORT_SYMBOL(down_read_interruptible);
1541
down_read_killable(struct rw_semaphore * sem)1542 int __sched down_read_killable(struct rw_semaphore *sem)
1543 {
1544 might_sleep();
1545 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1546
1547 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1548 rwsem_release(&sem->dep_map, _RET_IP_);
1549 return -EINTR;
1550 }
1551
1552 return 0;
1553 }
1554 EXPORT_SYMBOL(down_read_killable);
1555
1556 /*
1557 * trylock for reading -- returns 1 if successful, 0 if contention
1558 */
down_read_trylock(struct rw_semaphore * sem)1559 int down_read_trylock(struct rw_semaphore *sem)
1560 {
1561 int ret = __down_read_trylock(sem);
1562
1563 if (ret == 1)
1564 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1565 return ret;
1566 }
1567 EXPORT_SYMBOL(down_read_trylock);
1568
1569 /*
1570 * lock for writing
1571 */
down_write(struct rw_semaphore * sem)1572 void __sched down_write(struct rw_semaphore *sem)
1573 {
1574 might_sleep();
1575 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1576 LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1577 }
1578 EXPORT_SYMBOL(down_write);
1579
1580 /*
1581 * lock for writing
1582 */
down_write_killable(struct rw_semaphore * sem)1583 int __sched down_write_killable(struct rw_semaphore *sem)
1584 {
1585 might_sleep();
1586 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1587
1588 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1589 __down_write_killable)) {
1590 rwsem_release(&sem->dep_map, _RET_IP_);
1591 return -EINTR;
1592 }
1593
1594 return 0;
1595 }
1596 EXPORT_SYMBOL(down_write_killable);
1597
1598 /*
1599 * trylock for writing -- returns 1 if successful, 0 if contention
1600 */
down_write_trylock(struct rw_semaphore * sem)1601 int down_write_trylock(struct rw_semaphore *sem)
1602 {
1603 int ret = __down_write_trylock(sem);
1604
1605 if (ret == 1)
1606 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1607
1608 return ret;
1609 }
1610 EXPORT_SYMBOL(down_write_trylock);
1611
1612 /*
1613 * release a read lock
1614 */
up_read(struct rw_semaphore * sem)1615 void up_read(struct rw_semaphore *sem)
1616 {
1617 rwsem_release(&sem->dep_map, _RET_IP_);
1618 __up_read(sem);
1619 }
1620 EXPORT_SYMBOL(up_read);
1621
1622 /*
1623 * release a write lock
1624 */
up_write(struct rw_semaphore * sem)1625 void up_write(struct rw_semaphore *sem)
1626 {
1627 rwsem_release(&sem->dep_map, _RET_IP_);
1628 __up_write(sem);
1629 }
1630 EXPORT_SYMBOL(up_write);
1631
1632 /*
1633 * downgrade write lock to read lock
1634 */
downgrade_write(struct rw_semaphore * sem)1635 void downgrade_write(struct rw_semaphore *sem)
1636 {
1637 lock_downgrade(&sem->dep_map, _RET_IP_);
1638 __downgrade_write(sem);
1639 }
1640 EXPORT_SYMBOL(downgrade_write);
1641
1642 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1643
down_read_nested(struct rw_semaphore * sem,int subclass)1644 void down_read_nested(struct rw_semaphore *sem, int subclass)
1645 {
1646 might_sleep();
1647 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1648 LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1649 }
1650 EXPORT_SYMBOL(down_read_nested);
1651
down_read_killable_nested(struct rw_semaphore * sem,int subclass)1652 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1653 {
1654 might_sleep();
1655 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1656
1657 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1658 rwsem_release(&sem->dep_map, _RET_IP_);
1659 return -EINTR;
1660 }
1661
1662 return 0;
1663 }
1664 EXPORT_SYMBOL(down_read_killable_nested);
1665
_down_write_nest_lock(struct rw_semaphore * sem,struct lockdep_map * nest)1666 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1667 {
1668 might_sleep();
1669 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1670 LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1671 }
1672 EXPORT_SYMBOL(_down_write_nest_lock);
1673
down_read_non_owner(struct rw_semaphore * sem)1674 void down_read_non_owner(struct rw_semaphore *sem)
1675 {
1676 might_sleep();
1677 __down_read(sem);
1678 /*
1679 * The owner value for a reader-owned lock is mostly for debugging
1680 * purpose only and is not critical to the correct functioning of
1681 * rwsem. So it is perfectly fine to set it in a preempt-enabled
1682 * context here.
1683 */
1684 __rwsem_set_reader_owned(sem, NULL);
1685 }
1686 EXPORT_SYMBOL(down_read_non_owner);
1687
down_write_nested(struct rw_semaphore * sem,int subclass)1688 void down_write_nested(struct rw_semaphore *sem, int subclass)
1689 {
1690 might_sleep();
1691 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1692 LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1693 }
1694 EXPORT_SYMBOL(down_write_nested);
1695
down_write_killable_nested(struct rw_semaphore * sem,int subclass)1696 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1697 {
1698 might_sleep();
1699 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1700
1701 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1702 __down_write_killable)) {
1703 rwsem_release(&sem->dep_map, _RET_IP_);
1704 return -EINTR;
1705 }
1706
1707 return 0;
1708 }
1709 EXPORT_SYMBOL(down_write_killable_nested);
1710
up_read_non_owner(struct rw_semaphore * sem)1711 void up_read_non_owner(struct rw_semaphore *sem)
1712 {
1713 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1714 __up_read(sem);
1715 }
1716 EXPORT_SYMBOL(up_read_non_owner);
1717
1718 #endif
1719