1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/fs.h>
5 #include <linux/wait.h>
6 #include <linux/slab.h>
7 #include <linux/gfp.h>
8 #include <linux/sched.h>
9 #include <linux/debugfs.h>
10 #include <linux/seq_file.h>
11 #include <linux/ratelimit.h>
12 #include <linux/bits.h>
13 #include <linux/ktime.h>
14 #include <linux/bitmap.h>
15 #include <linux/mnt_idmapping.h>
16
17 #include "super.h"
18 #include "mds_client.h"
19 #include "crypto.h"
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/messenger.h>
23 #include <linux/ceph/decode.h>
24 #include <linux/ceph/pagelist.h>
25 #include <linux/ceph/auth.h>
26 #include <linux/ceph/debugfs.h>
27
28 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE)
29
30 /*
31 * A cluster of MDS (metadata server) daemons is responsible for
32 * managing the file system namespace (the directory hierarchy and
33 * inodes) and for coordinating shared access to storage. Metadata is
34 * partitioning hierarchically across a number of servers, and that
35 * partition varies over time as the cluster adjusts the distribution
36 * in order to balance load.
37 *
38 * The MDS client is primarily responsible to managing synchronous
39 * metadata requests for operations like open, unlink, and so forth.
40 * If there is a MDS failure, we find out about it when we (possibly
41 * request and) receive a new MDS map, and can resubmit affected
42 * requests.
43 *
44 * For the most part, though, we take advantage of a lossless
45 * communications channel to the MDS, and do not need to worry about
46 * timing out or resubmitting requests.
47 *
48 * We maintain a stateful "session" with each MDS we interact with.
49 * Within each session, we sent periodic heartbeat messages to ensure
50 * any capabilities or leases we have been issues remain valid. If
51 * the session times out and goes stale, our leases and capabilities
52 * are no longer valid.
53 */
54
55 struct ceph_reconnect_state {
56 struct ceph_mds_session *session;
57 int nr_caps, nr_realms;
58 struct ceph_pagelist *pagelist;
59 unsigned msg_version;
60 bool allow_multi;
61 };
62
63 static void __wake_requests(struct ceph_mds_client *mdsc,
64 struct list_head *head);
65 static void ceph_cap_release_work(struct work_struct *work);
66 static void ceph_cap_reclaim_work(struct work_struct *work);
67
68 static const struct ceph_connection_operations mds_con_ops;
69
70
71 /*
72 * mds reply parsing
73 */
74
parse_reply_info_quota(void ** p,void * end,struct ceph_mds_reply_info_in * info)75 static int parse_reply_info_quota(void **p, void *end,
76 struct ceph_mds_reply_info_in *info)
77 {
78 u8 struct_v, struct_compat;
79 u32 struct_len;
80
81 ceph_decode_8_safe(p, end, struct_v, bad);
82 ceph_decode_8_safe(p, end, struct_compat, bad);
83 /* struct_v is expected to be >= 1. we only
84 * understand encoding with struct_compat == 1. */
85 if (!struct_v || struct_compat != 1)
86 goto bad;
87 ceph_decode_32_safe(p, end, struct_len, bad);
88 ceph_decode_need(p, end, struct_len, bad);
89 end = *p + struct_len;
90 ceph_decode_64_safe(p, end, info->max_bytes, bad);
91 ceph_decode_64_safe(p, end, info->max_files, bad);
92 *p = end;
93 return 0;
94 bad:
95 return -EIO;
96 }
97
98 /*
99 * parse individual inode info
100 */
parse_reply_info_in(void ** p,void * end,struct ceph_mds_reply_info_in * info,u64 features)101 static int parse_reply_info_in(void **p, void *end,
102 struct ceph_mds_reply_info_in *info,
103 u64 features)
104 {
105 int err = 0;
106 u8 struct_v = 0;
107
108 if (features == (u64)-1) {
109 u32 struct_len;
110 u8 struct_compat;
111 ceph_decode_8_safe(p, end, struct_v, bad);
112 ceph_decode_8_safe(p, end, struct_compat, bad);
113 /* struct_v is expected to be >= 1. we only understand
114 * encoding with struct_compat == 1. */
115 if (!struct_v || struct_compat != 1)
116 goto bad;
117 ceph_decode_32_safe(p, end, struct_len, bad);
118 ceph_decode_need(p, end, struct_len, bad);
119 end = *p + struct_len;
120 }
121
122 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad);
123 info->in = *p;
124 *p += sizeof(struct ceph_mds_reply_inode) +
125 sizeof(*info->in->fragtree.splits) *
126 le32_to_cpu(info->in->fragtree.nsplits);
127
128 ceph_decode_32_safe(p, end, info->symlink_len, bad);
129 ceph_decode_need(p, end, info->symlink_len, bad);
130 info->symlink = *p;
131 *p += info->symlink_len;
132
133 ceph_decode_copy_safe(p, end, &info->dir_layout,
134 sizeof(info->dir_layout), bad);
135 ceph_decode_32_safe(p, end, info->xattr_len, bad);
136 ceph_decode_need(p, end, info->xattr_len, bad);
137 info->xattr_data = *p;
138 *p += info->xattr_len;
139
140 if (features == (u64)-1) {
141 /* inline data */
142 ceph_decode_64_safe(p, end, info->inline_version, bad);
143 ceph_decode_32_safe(p, end, info->inline_len, bad);
144 ceph_decode_need(p, end, info->inline_len, bad);
145 info->inline_data = *p;
146 *p += info->inline_len;
147 /* quota */
148 err = parse_reply_info_quota(p, end, info);
149 if (err < 0)
150 goto out_bad;
151 /* pool namespace */
152 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
153 if (info->pool_ns_len > 0) {
154 ceph_decode_need(p, end, info->pool_ns_len, bad);
155 info->pool_ns_data = *p;
156 *p += info->pool_ns_len;
157 }
158
159 /* btime */
160 ceph_decode_need(p, end, sizeof(info->btime), bad);
161 ceph_decode_copy(p, &info->btime, sizeof(info->btime));
162
163 /* change attribute */
164 ceph_decode_64_safe(p, end, info->change_attr, bad);
165
166 /* dir pin */
167 if (struct_v >= 2) {
168 ceph_decode_32_safe(p, end, info->dir_pin, bad);
169 } else {
170 info->dir_pin = -ENODATA;
171 }
172
173 /* snapshot birth time, remains zero for v<=2 */
174 if (struct_v >= 3) {
175 ceph_decode_need(p, end, sizeof(info->snap_btime), bad);
176 ceph_decode_copy(p, &info->snap_btime,
177 sizeof(info->snap_btime));
178 } else {
179 memset(&info->snap_btime, 0, sizeof(info->snap_btime));
180 }
181
182 /* snapshot count, remains zero for v<=3 */
183 if (struct_v >= 4) {
184 ceph_decode_64_safe(p, end, info->rsnaps, bad);
185 } else {
186 info->rsnaps = 0;
187 }
188
189 if (struct_v >= 5) {
190 u32 alen;
191
192 ceph_decode_32_safe(p, end, alen, bad);
193
194 while (alen--) {
195 u32 len;
196
197 /* key */
198 ceph_decode_32_safe(p, end, len, bad);
199 ceph_decode_skip_n(p, end, len, bad);
200 /* value */
201 ceph_decode_32_safe(p, end, len, bad);
202 ceph_decode_skip_n(p, end, len, bad);
203 }
204 }
205
206 /* fscrypt flag -- ignore */
207 if (struct_v >= 6)
208 ceph_decode_skip_8(p, end, bad);
209
210 info->fscrypt_auth = NULL;
211 info->fscrypt_auth_len = 0;
212 info->fscrypt_file = NULL;
213 info->fscrypt_file_len = 0;
214 if (struct_v >= 7) {
215 ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad);
216 if (info->fscrypt_auth_len) {
217 info->fscrypt_auth = kmalloc(info->fscrypt_auth_len,
218 GFP_KERNEL);
219 if (!info->fscrypt_auth)
220 return -ENOMEM;
221 ceph_decode_copy_safe(p, end, info->fscrypt_auth,
222 info->fscrypt_auth_len, bad);
223 }
224 ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad);
225 if (info->fscrypt_file_len) {
226 info->fscrypt_file = kmalloc(info->fscrypt_file_len,
227 GFP_KERNEL);
228 if (!info->fscrypt_file)
229 return -ENOMEM;
230 ceph_decode_copy_safe(p, end, info->fscrypt_file,
231 info->fscrypt_file_len, bad);
232 }
233 }
234 *p = end;
235 } else {
236 /* legacy (unversioned) struct */
237 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
238 ceph_decode_64_safe(p, end, info->inline_version, bad);
239 ceph_decode_32_safe(p, end, info->inline_len, bad);
240 ceph_decode_need(p, end, info->inline_len, bad);
241 info->inline_data = *p;
242 *p += info->inline_len;
243 } else
244 info->inline_version = CEPH_INLINE_NONE;
245
246 if (features & CEPH_FEATURE_MDS_QUOTA) {
247 err = parse_reply_info_quota(p, end, info);
248 if (err < 0)
249 goto out_bad;
250 } else {
251 info->max_bytes = 0;
252 info->max_files = 0;
253 }
254
255 info->pool_ns_len = 0;
256 info->pool_ns_data = NULL;
257 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
258 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
259 if (info->pool_ns_len > 0) {
260 ceph_decode_need(p, end, info->pool_ns_len, bad);
261 info->pool_ns_data = *p;
262 *p += info->pool_ns_len;
263 }
264 }
265
266 if (features & CEPH_FEATURE_FS_BTIME) {
267 ceph_decode_need(p, end, sizeof(info->btime), bad);
268 ceph_decode_copy(p, &info->btime, sizeof(info->btime));
269 ceph_decode_64_safe(p, end, info->change_attr, bad);
270 }
271
272 info->dir_pin = -ENODATA;
273 /* info->snap_btime and info->rsnaps remain zero */
274 }
275 return 0;
276 bad:
277 err = -EIO;
278 out_bad:
279 return err;
280 }
281
parse_reply_info_dir(void ** p,void * end,struct ceph_mds_reply_dirfrag ** dirfrag,u64 features)282 static int parse_reply_info_dir(void **p, void *end,
283 struct ceph_mds_reply_dirfrag **dirfrag,
284 u64 features)
285 {
286 if (features == (u64)-1) {
287 u8 struct_v, struct_compat;
288 u32 struct_len;
289 ceph_decode_8_safe(p, end, struct_v, bad);
290 ceph_decode_8_safe(p, end, struct_compat, bad);
291 /* struct_v is expected to be >= 1. we only understand
292 * encoding whose struct_compat == 1. */
293 if (!struct_v || struct_compat != 1)
294 goto bad;
295 ceph_decode_32_safe(p, end, struct_len, bad);
296 ceph_decode_need(p, end, struct_len, bad);
297 end = *p + struct_len;
298 }
299
300 ceph_decode_need(p, end, sizeof(**dirfrag), bad);
301 *dirfrag = *p;
302 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist);
303 if (unlikely(*p > end))
304 goto bad;
305 if (features == (u64)-1)
306 *p = end;
307 return 0;
308 bad:
309 return -EIO;
310 }
311
parse_reply_info_lease(void ** p,void * end,struct ceph_mds_reply_lease ** lease,u64 features,u32 * altname_len,u8 ** altname)312 static int parse_reply_info_lease(void **p, void *end,
313 struct ceph_mds_reply_lease **lease,
314 u64 features, u32 *altname_len, u8 **altname)
315 {
316 u8 struct_v;
317 u32 struct_len;
318 void *lend;
319
320 if (features == (u64)-1) {
321 u8 struct_compat;
322
323 ceph_decode_8_safe(p, end, struct_v, bad);
324 ceph_decode_8_safe(p, end, struct_compat, bad);
325
326 /* struct_v is expected to be >= 1. we only understand
327 * encoding whose struct_compat == 1. */
328 if (!struct_v || struct_compat != 1)
329 goto bad;
330
331 ceph_decode_32_safe(p, end, struct_len, bad);
332 } else {
333 struct_len = sizeof(**lease);
334 *altname_len = 0;
335 *altname = NULL;
336 }
337
338 lend = *p + struct_len;
339 ceph_decode_need(p, end, struct_len, bad);
340 *lease = *p;
341 *p += sizeof(**lease);
342
343 if (features == (u64)-1) {
344 if (struct_v >= 2) {
345 ceph_decode_32_safe(p, end, *altname_len, bad);
346 ceph_decode_need(p, end, *altname_len, bad);
347 *altname = *p;
348 *p += *altname_len;
349 } else {
350 *altname = NULL;
351 *altname_len = 0;
352 }
353 }
354 *p = lend;
355 return 0;
356 bad:
357 return -EIO;
358 }
359
360 /*
361 * parse a normal reply, which may contain a (dir+)dentry and/or a
362 * target inode.
363 */
parse_reply_info_trace(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,u64 features)364 static int parse_reply_info_trace(void **p, void *end,
365 struct ceph_mds_reply_info_parsed *info,
366 u64 features)
367 {
368 int err;
369
370 if (info->head->is_dentry) {
371 err = parse_reply_info_in(p, end, &info->diri, features);
372 if (err < 0)
373 goto out_bad;
374
375 err = parse_reply_info_dir(p, end, &info->dirfrag, features);
376 if (err < 0)
377 goto out_bad;
378
379 ceph_decode_32_safe(p, end, info->dname_len, bad);
380 ceph_decode_need(p, end, info->dname_len, bad);
381 info->dname = *p;
382 *p += info->dname_len;
383
384 err = parse_reply_info_lease(p, end, &info->dlease, features,
385 &info->altname_len, &info->altname);
386 if (err < 0)
387 goto out_bad;
388 }
389
390 if (info->head->is_target) {
391 err = parse_reply_info_in(p, end, &info->targeti, features);
392 if (err < 0)
393 goto out_bad;
394 }
395
396 if (unlikely(*p != end))
397 goto bad;
398 return 0;
399
400 bad:
401 err = -EIO;
402 out_bad:
403 pr_err("problem parsing mds trace %d\n", err);
404 return err;
405 }
406
407 /*
408 * parse readdir results
409 */
parse_reply_info_readdir(void ** p,void * end,struct ceph_mds_request * req,u64 features)410 static int parse_reply_info_readdir(void **p, void *end,
411 struct ceph_mds_request *req,
412 u64 features)
413 {
414 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
415 struct ceph_client *cl = req->r_mdsc->fsc->client;
416 u32 num, i = 0;
417 int err;
418
419 err = parse_reply_info_dir(p, end, &info->dir_dir, features);
420 if (err < 0)
421 goto out_bad;
422
423 ceph_decode_need(p, end, sizeof(num) + 2, bad);
424 num = ceph_decode_32(p);
425 {
426 u16 flags = ceph_decode_16(p);
427 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
428 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
429 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
430 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH);
431 }
432 if (num == 0)
433 goto done;
434
435 BUG_ON(!info->dir_entries);
436 if ((unsigned long)(info->dir_entries + num) >
437 (unsigned long)info->dir_entries + info->dir_buf_size) {
438 pr_err_client(cl, "dir contents are larger than expected\n");
439 WARN_ON(1);
440 goto bad;
441 }
442
443 info->dir_nr = num;
444 while (num) {
445 struct inode *inode = d_inode(req->r_dentry);
446 struct ceph_inode_info *ci = ceph_inode(inode);
447 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
448 struct fscrypt_str tname = FSTR_INIT(NULL, 0);
449 struct fscrypt_str oname = FSTR_INIT(NULL, 0);
450 struct ceph_fname fname;
451 u32 altname_len, _name_len;
452 u8 *altname, *_name;
453
454 /* dentry */
455 ceph_decode_32_safe(p, end, _name_len, bad);
456 ceph_decode_need(p, end, _name_len, bad);
457 _name = *p;
458 *p += _name_len;
459 doutc(cl, "parsed dir dname '%.*s'\n", _name_len, _name);
460
461 if (info->hash_order)
462 rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash,
463 _name, _name_len);
464
465 /* dentry lease */
466 err = parse_reply_info_lease(p, end, &rde->lease, features,
467 &altname_len, &altname);
468 if (err)
469 goto out_bad;
470
471 /*
472 * Try to dencrypt the dentry names and update them
473 * in the ceph_mds_reply_dir_entry struct.
474 */
475 fname.dir = inode;
476 fname.name = _name;
477 fname.name_len = _name_len;
478 fname.ctext = altname;
479 fname.ctext_len = altname_len;
480 /*
481 * The _name_len maybe larger than altname_len, such as
482 * when the human readable name length is in range of
483 * (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE),
484 * then the copy in ceph_fname_to_usr will corrupt the
485 * data if there has no encryption key.
486 *
487 * Just set the no_copy flag and then if there has no
488 * encryption key the oname.name will be assigned to
489 * _name always.
490 */
491 fname.no_copy = true;
492 if (altname_len == 0) {
493 /*
494 * Set tname to _name, and this will be used
495 * to do the base64_decode in-place. It's
496 * safe because the decoded string should
497 * always be shorter, which is 3/4 of origin
498 * string.
499 */
500 tname.name = _name;
501
502 /*
503 * Set oname to _name too, and this will be
504 * used to do the dencryption in-place.
505 */
506 oname.name = _name;
507 oname.len = _name_len;
508 } else {
509 /*
510 * This will do the decryption only in-place
511 * from altname cryptext directly.
512 */
513 oname.name = altname;
514 oname.len = altname_len;
515 }
516 rde->is_nokey = false;
517 err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey);
518 if (err) {
519 pr_err_client(cl, "unable to decode %.*s, got %d\n",
520 _name_len, _name, err);
521 goto out_bad;
522 }
523 rde->name = oname.name;
524 rde->name_len = oname.len;
525
526 /* inode */
527 err = parse_reply_info_in(p, end, &rde->inode, features);
528 if (err < 0)
529 goto out_bad;
530 /* ceph_readdir_prepopulate() will update it */
531 rde->offset = 0;
532 i++;
533 num--;
534 }
535
536 done:
537 /* Skip over any unrecognized fields */
538 *p = end;
539 return 0;
540
541 bad:
542 err = -EIO;
543 out_bad:
544 pr_err_client(cl, "problem parsing dir contents %d\n", err);
545 return err;
546 }
547
548 /*
549 * parse fcntl F_GETLK results
550 */
parse_reply_info_filelock(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,u64 features)551 static int parse_reply_info_filelock(void **p, void *end,
552 struct ceph_mds_reply_info_parsed *info,
553 u64 features)
554 {
555 if (*p + sizeof(*info->filelock_reply) > end)
556 goto bad;
557
558 info->filelock_reply = *p;
559
560 /* Skip over any unrecognized fields */
561 *p = end;
562 return 0;
563 bad:
564 return -EIO;
565 }
566
567
568 #if BITS_PER_LONG == 64
569
570 #define DELEGATED_INO_AVAILABLE xa_mk_value(1)
571
ceph_parse_deleg_inos(void ** p,void * end,struct ceph_mds_session * s)572 static int ceph_parse_deleg_inos(void **p, void *end,
573 struct ceph_mds_session *s)
574 {
575 struct ceph_client *cl = s->s_mdsc->fsc->client;
576 u32 sets;
577
578 ceph_decode_32_safe(p, end, sets, bad);
579 doutc(cl, "got %u sets of delegated inodes\n", sets);
580 while (sets--) {
581 u64 start, len;
582
583 ceph_decode_64_safe(p, end, start, bad);
584 ceph_decode_64_safe(p, end, len, bad);
585
586 /* Don't accept a delegation of system inodes */
587 if (start < CEPH_INO_SYSTEM_BASE) {
588 pr_warn_ratelimited_client(cl,
589 "ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n",
590 start, len);
591 continue;
592 }
593 while (len--) {
594 int err = xa_insert(&s->s_delegated_inos, start++,
595 DELEGATED_INO_AVAILABLE,
596 GFP_KERNEL);
597 if (!err) {
598 doutc(cl, "added delegated inode 0x%llx\n", start - 1);
599 } else if (err == -EBUSY) {
600 pr_warn_client(cl,
601 "MDS delegated inode 0x%llx more than once.\n",
602 start - 1);
603 } else {
604 return err;
605 }
606 }
607 }
608 return 0;
609 bad:
610 return -EIO;
611 }
612
ceph_get_deleg_ino(struct ceph_mds_session * s)613 u64 ceph_get_deleg_ino(struct ceph_mds_session *s)
614 {
615 unsigned long ino;
616 void *val;
617
618 xa_for_each(&s->s_delegated_inos, ino, val) {
619 val = xa_erase(&s->s_delegated_inos, ino);
620 if (val == DELEGATED_INO_AVAILABLE)
621 return ino;
622 }
623 return 0;
624 }
625
ceph_restore_deleg_ino(struct ceph_mds_session * s,u64 ino)626 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino)
627 {
628 return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE,
629 GFP_KERNEL);
630 }
631 #else /* BITS_PER_LONG == 64 */
632 /*
633 * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just
634 * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top
635 * and bottom words?
636 */
ceph_parse_deleg_inos(void ** p,void * end,struct ceph_mds_session * s)637 static int ceph_parse_deleg_inos(void **p, void *end,
638 struct ceph_mds_session *s)
639 {
640 u32 sets;
641
642 ceph_decode_32_safe(p, end, sets, bad);
643 if (sets)
644 ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad);
645 return 0;
646 bad:
647 return -EIO;
648 }
649
ceph_get_deleg_ino(struct ceph_mds_session * s)650 u64 ceph_get_deleg_ino(struct ceph_mds_session *s)
651 {
652 return 0;
653 }
654
ceph_restore_deleg_ino(struct ceph_mds_session * s,u64 ino)655 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino)
656 {
657 return 0;
658 }
659 #endif /* BITS_PER_LONG == 64 */
660
661 /*
662 * parse create results
663 */
parse_reply_info_create(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,u64 features,struct ceph_mds_session * s)664 static int parse_reply_info_create(void **p, void *end,
665 struct ceph_mds_reply_info_parsed *info,
666 u64 features, struct ceph_mds_session *s)
667 {
668 int ret;
669
670 if (features == (u64)-1 ||
671 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) {
672 if (*p == end) {
673 /* Malformed reply? */
674 info->has_create_ino = false;
675 } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) {
676 info->has_create_ino = true;
677 /* struct_v, struct_compat, and len */
678 ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad);
679 ceph_decode_64_safe(p, end, info->ino, bad);
680 ret = ceph_parse_deleg_inos(p, end, s);
681 if (ret)
682 return ret;
683 } else {
684 /* legacy */
685 ceph_decode_64_safe(p, end, info->ino, bad);
686 info->has_create_ino = true;
687 }
688 } else {
689 if (*p != end)
690 goto bad;
691 }
692
693 /* Skip over any unrecognized fields */
694 *p = end;
695 return 0;
696 bad:
697 return -EIO;
698 }
699
parse_reply_info_getvxattr(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,u64 features)700 static int parse_reply_info_getvxattr(void **p, void *end,
701 struct ceph_mds_reply_info_parsed *info,
702 u64 features)
703 {
704 u32 value_len;
705
706 ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */
707 ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */
708 ceph_decode_skip_32(p, end, bad); /* skip payload length */
709
710 ceph_decode_32_safe(p, end, value_len, bad);
711
712 if (value_len == end - *p) {
713 info->xattr_info.xattr_value = *p;
714 info->xattr_info.xattr_value_len = value_len;
715 *p = end;
716 return value_len;
717 }
718 bad:
719 return -EIO;
720 }
721
722 /*
723 * parse extra results
724 */
parse_reply_info_extra(void ** p,void * end,struct ceph_mds_request * req,u64 features,struct ceph_mds_session * s)725 static int parse_reply_info_extra(void **p, void *end,
726 struct ceph_mds_request *req,
727 u64 features, struct ceph_mds_session *s)
728 {
729 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
730 u32 op = le32_to_cpu(info->head->op);
731
732 if (op == CEPH_MDS_OP_GETFILELOCK)
733 return parse_reply_info_filelock(p, end, info, features);
734 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
735 return parse_reply_info_readdir(p, end, req, features);
736 else if (op == CEPH_MDS_OP_CREATE)
737 return parse_reply_info_create(p, end, info, features, s);
738 else if (op == CEPH_MDS_OP_GETVXATTR)
739 return parse_reply_info_getvxattr(p, end, info, features);
740 else
741 return -EIO;
742 }
743
744 /*
745 * parse entire mds reply
746 */
parse_reply_info(struct ceph_mds_session * s,struct ceph_msg * msg,struct ceph_mds_request * req,u64 features)747 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg,
748 struct ceph_mds_request *req, u64 features)
749 {
750 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
751 struct ceph_client *cl = s->s_mdsc->fsc->client;
752 void *p, *end;
753 u32 len;
754 int err;
755
756 info->head = msg->front.iov_base;
757 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
758 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
759
760 /* trace */
761 ceph_decode_32_safe(&p, end, len, bad);
762 if (len > 0) {
763 ceph_decode_need(&p, end, len, bad);
764 err = parse_reply_info_trace(&p, p+len, info, features);
765 if (err < 0)
766 goto out_bad;
767 }
768
769 /* extra */
770 ceph_decode_32_safe(&p, end, len, bad);
771 if (len > 0) {
772 ceph_decode_need(&p, end, len, bad);
773 err = parse_reply_info_extra(&p, p+len, req, features, s);
774 if (err < 0)
775 goto out_bad;
776 }
777
778 /* snap blob */
779 ceph_decode_32_safe(&p, end, len, bad);
780 info->snapblob_len = len;
781 info->snapblob = p;
782 p += len;
783
784 if (p != end)
785 goto bad;
786 return 0;
787
788 bad:
789 err = -EIO;
790 out_bad:
791 pr_err_client(cl, "mds parse_reply err %d\n", err);
792 ceph_msg_dump(msg);
793 return err;
794 }
795
destroy_reply_info(struct ceph_mds_reply_info_parsed * info)796 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
797 {
798 int i;
799
800 kfree(info->diri.fscrypt_auth);
801 kfree(info->diri.fscrypt_file);
802 kfree(info->targeti.fscrypt_auth);
803 kfree(info->targeti.fscrypt_file);
804 if (!info->dir_entries)
805 return;
806
807 for (i = 0; i < info->dir_nr; i++) {
808 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
809
810 kfree(rde->inode.fscrypt_auth);
811 kfree(rde->inode.fscrypt_file);
812 }
813 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
814 }
815
816 /*
817 * In async unlink case the kclient won't wait for the first reply
818 * from MDS and just drop all the links and unhash the dentry and then
819 * succeeds immediately.
820 *
821 * For any new create/link/rename,etc requests followed by using the
822 * same file names we must wait for the first reply of the inflight
823 * unlink request, or the MDS possibly will fail these following
824 * requests with -EEXIST if the inflight async unlink request was
825 * delayed for some reasons.
826 *
827 * And the worst case is that for the none async openc request it will
828 * successfully open the file if the CDentry hasn't been unlinked yet,
829 * but later the previous delayed async unlink request will remove the
830 * CDentry. That means the just created file is possibly deleted later
831 * by accident.
832 *
833 * We need to wait for the inflight async unlink requests to finish
834 * when creating new files/directories by using the same file names.
835 */
ceph_wait_on_conflict_unlink(struct dentry * dentry)836 int ceph_wait_on_conflict_unlink(struct dentry *dentry)
837 {
838 struct ceph_fs_client *fsc = ceph_sb_to_fs_client(dentry->d_sb);
839 struct ceph_client *cl = fsc->client;
840 struct dentry *pdentry = dentry->d_parent;
841 struct dentry *udentry, *found = NULL;
842 struct ceph_dentry_info *di;
843 struct qstr dname;
844 u32 hash = dentry->d_name.hash;
845 int err;
846
847 dname.name = dentry->d_name.name;
848 dname.len = dentry->d_name.len;
849
850 rcu_read_lock();
851 hash_for_each_possible_rcu(fsc->async_unlink_conflict, di,
852 hnode, hash) {
853 udentry = di->dentry;
854
855 spin_lock(&udentry->d_lock);
856 if (udentry->d_name.hash != hash)
857 goto next;
858 if (unlikely(udentry->d_parent != pdentry))
859 goto next;
860 if (!hash_hashed(&di->hnode))
861 goto next;
862
863 if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags))
864 pr_warn_client(cl, "dentry %p:%pd async unlink bit is not set\n",
865 dentry, dentry);
866
867 if (!d_same_name(udentry, pdentry, &dname))
868 goto next;
869
870 found = dget_dlock(udentry);
871 spin_unlock(&udentry->d_lock);
872 break;
873 next:
874 spin_unlock(&udentry->d_lock);
875 }
876 rcu_read_unlock();
877
878 if (likely(!found))
879 return 0;
880
881 doutc(cl, "dentry %p:%pd conflict with old %p:%pd\n", dentry, dentry,
882 found, found);
883
884 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT,
885 TASK_KILLABLE);
886 dput(found);
887 return err;
888 }
889
890
891 /*
892 * sessions
893 */
ceph_session_state_name(int s)894 const char *ceph_session_state_name(int s)
895 {
896 switch (s) {
897 case CEPH_MDS_SESSION_NEW: return "new";
898 case CEPH_MDS_SESSION_OPENING: return "opening";
899 case CEPH_MDS_SESSION_OPEN: return "open";
900 case CEPH_MDS_SESSION_HUNG: return "hung";
901 case CEPH_MDS_SESSION_CLOSING: return "closing";
902 case CEPH_MDS_SESSION_CLOSED: return "closed";
903 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
904 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
905 case CEPH_MDS_SESSION_REJECTED: return "rejected";
906 default: return "???";
907 }
908 }
909
ceph_get_mds_session(struct ceph_mds_session * s)910 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s)
911 {
912 if (refcount_inc_not_zero(&s->s_ref))
913 return s;
914 return NULL;
915 }
916
ceph_put_mds_session(struct ceph_mds_session * s)917 void ceph_put_mds_session(struct ceph_mds_session *s)
918 {
919 if (IS_ERR_OR_NULL(s))
920 return;
921
922 if (refcount_dec_and_test(&s->s_ref)) {
923 if (s->s_auth.authorizer)
924 ceph_auth_destroy_authorizer(s->s_auth.authorizer);
925 WARN_ON(mutex_is_locked(&s->s_mutex));
926 xa_destroy(&s->s_delegated_inos);
927 kfree(s);
928 }
929 }
930
931 /*
932 * called under mdsc->mutex
933 */
__ceph_lookup_mds_session(struct ceph_mds_client * mdsc,int mds)934 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
935 int mds)
936 {
937 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
938 return NULL;
939 return ceph_get_mds_session(mdsc->sessions[mds]);
940 }
941
__have_session(struct ceph_mds_client * mdsc,int mds)942 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
943 {
944 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
945 return false;
946 else
947 return true;
948 }
949
__verify_registered_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * s)950 static int __verify_registered_session(struct ceph_mds_client *mdsc,
951 struct ceph_mds_session *s)
952 {
953 if (s->s_mds >= mdsc->max_sessions ||
954 mdsc->sessions[s->s_mds] != s)
955 return -ENOENT;
956 return 0;
957 }
958
959 /*
960 * create+register a new session for given mds.
961 * called under mdsc->mutex.
962 */
register_session(struct ceph_mds_client * mdsc,int mds)963 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
964 int mds)
965 {
966 struct ceph_client *cl = mdsc->fsc->client;
967 struct ceph_mds_session *s;
968
969 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO)
970 return ERR_PTR(-EIO);
971
972 if (mds >= mdsc->mdsmap->possible_max_rank)
973 return ERR_PTR(-EINVAL);
974
975 s = kzalloc(sizeof(*s), GFP_NOFS);
976 if (!s)
977 return ERR_PTR(-ENOMEM);
978
979 if (mds >= mdsc->max_sessions) {
980 int newmax = 1 << get_count_order(mds + 1);
981 struct ceph_mds_session **sa;
982
983 doutc(cl, "realloc to %d\n", newmax);
984 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
985 if (!sa)
986 goto fail_realloc;
987 if (mdsc->sessions) {
988 memcpy(sa, mdsc->sessions,
989 mdsc->max_sessions * sizeof(void *));
990 kfree(mdsc->sessions);
991 }
992 mdsc->sessions = sa;
993 mdsc->max_sessions = newmax;
994 }
995
996 doutc(cl, "mds%d\n", mds);
997 s->s_mdsc = mdsc;
998 s->s_mds = mds;
999 s->s_state = CEPH_MDS_SESSION_NEW;
1000 mutex_init(&s->s_mutex);
1001
1002 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
1003
1004 atomic_set(&s->s_cap_gen, 1);
1005 s->s_cap_ttl = jiffies - 1;
1006
1007 spin_lock_init(&s->s_cap_lock);
1008 INIT_LIST_HEAD(&s->s_caps);
1009 refcount_set(&s->s_ref, 1);
1010 INIT_LIST_HEAD(&s->s_waiting);
1011 INIT_LIST_HEAD(&s->s_unsafe);
1012 xa_init(&s->s_delegated_inos);
1013 INIT_LIST_HEAD(&s->s_cap_releases);
1014 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work);
1015
1016 INIT_LIST_HEAD(&s->s_cap_dirty);
1017 INIT_LIST_HEAD(&s->s_cap_flushing);
1018
1019 mdsc->sessions[mds] = s;
1020 atomic_inc(&mdsc->num_sessions);
1021 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */
1022
1023 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
1024 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
1025
1026 return s;
1027
1028 fail_realloc:
1029 kfree(s);
1030 return ERR_PTR(-ENOMEM);
1031 }
1032
1033 /*
1034 * called under mdsc->mutex
1035 */
__unregister_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * s)1036 static void __unregister_session(struct ceph_mds_client *mdsc,
1037 struct ceph_mds_session *s)
1038 {
1039 doutc(mdsc->fsc->client, "mds%d %p\n", s->s_mds, s);
1040 BUG_ON(mdsc->sessions[s->s_mds] != s);
1041 mdsc->sessions[s->s_mds] = NULL;
1042 ceph_con_close(&s->s_con);
1043 ceph_put_mds_session(s);
1044 atomic_dec(&mdsc->num_sessions);
1045 }
1046
1047 /*
1048 * drop session refs in request.
1049 *
1050 * should be last request ref, or hold mdsc->mutex
1051 */
put_request_session(struct ceph_mds_request * req)1052 static void put_request_session(struct ceph_mds_request *req)
1053 {
1054 if (req->r_session) {
1055 ceph_put_mds_session(req->r_session);
1056 req->r_session = NULL;
1057 }
1058 }
1059
ceph_mdsc_iterate_sessions(struct ceph_mds_client * mdsc,void (* cb)(struct ceph_mds_session *),bool check_state)1060 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc,
1061 void (*cb)(struct ceph_mds_session *),
1062 bool check_state)
1063 {
1064 int mds;
1065
1066 mutex_lock(&mdsc->mutex);
1067 for (mds = 0; mds < mdsc->max_sessions; ++mds) {
1068 struct ceph_mds_session *s;
1069
1070 s = __ceph_lookup_mds_session(mdsc, mds);
1071 if (!s)
1072 continue;
1073
1074 if (check_state && !check_session_state(s)) {
1075 ceph_put_mds_session(s);
1076 continue;
1077 }
1078
1079 mutex_unlock(&mdsc->mutex);
1080 cb(s);
1081 ceph_put_mds_session(s);
1082 mutex_lock(&mdsc->mutex);
1083 }
1084 mutex_unlock(&mdsc->mutex);
1085 }
1086
ceph_mdsc_release_request(struct kref * kref)1087 void ceph_mdsc_release_request(struct kref *kref)
1088 {
1089 struct ceph_mds_request *req = container_of(kref,
1090 struct ceph_mds_request,
1091 r_kref);
1092 ceph_mdsc_release_dir_caps_async(req);
1093 destroy_reply_info(&req->r_reply_info);
1094 if (req->r_request)
1095 ceph_msg_put(req->r_request);
1096 if (req->r_reply)
1097 ceph_msg_put(req->r_reply);
1098 if (req->r_inode) {
1099 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1100 iput(req->r_inode);
1101 }
1102 if (req->r_parent) {
1103 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
1104 iput(req->r_parent);
1105 }
1106 iput(req->r_target_inode);
1107 iput(req->r_new_inode);
1108 if (req->r_dentry)
1109 dput(req->r_dentry);
1110 if (req->r_old_dentry)
1111 dput(req->r_old_dentry);
1112 if (req->r_old_dentry_dir) {
1113 /*
1114 * track (and drop pins for) r_old_dentry_dir
1115 * separately, since r_old_dentry's d_parent may have
1116 * changed between the dir mutex being dropped and
1117 * this request being freed.
1118 */
1119 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
1120 CEPH_CAP_PIN);
1121 iput(req->r_old_dentry_dir);
1122 }
1123 kfree(req->r_path1);
1124 kfree(req->r_path2);
1125 put_cred(req->r_cred);
1126 if (req->r_mnt_idmap)
1127 mnt_idmap_put(req->r_mnt_idmap);
1128 if (req->r_pagelist)
1129 ceph_pagelist_release(req->r_pagelist);
1130 kfree(req->r_fscrypt_auth);
1131 kfree(req->r_altname);
1132 put_request_session(req);
1133 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
1134 WARN_ON_ONCE(!list_empty(&req->r_wait));
1135 kmem_cache_free(ceph_mds_request_cachep, req);
1136 }
1137
DEFINE_RB_FUNCS(request,struct ceph_mds_request,r_tid,r_node)1138 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
1139
1140 /*
1141 * lookup session, bump ref if found.
1142 *
1143 * called under mdsc->mutex.
1144 */
1145 static struct ceph_mds_request *
1146 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
1147 {
1148 struct ceph_mds_request *req;
1149
1150 req = lookup_request(&mdsc->request_tree, tid);
1151 if (req)
1152 ceph_mdsc_get_request(req);
1153
1154 return req;
1155 }
1156
1157 /*
1158 * Register an in-flight request, and assign a tid. Link to directory
1159 * are modifying (if any).
1160 *
1161 * Called under mdsc->mutex.
1162 */
__register_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,struct inode * dir)1163 static void __register_request(struct ceph_mds_client *mdsc,
1164 struct ceph_mds_request *req,
1165 struct inode *dir)
1166 {
1167 struct ceph_client *cl = mdsc->fsc->client;
1168 int ret = 0;
1169
1170 req->r_tid = ++mdsc->last_tid;
1171 if (req->r_num_caps) {
1172 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation,
1173 req->r_num_caps);
1174 if (ret < 0) {
1175 pr_err_client(cl, "%p failed to reserve caps: %d\n",
1176 req, ret);
1177 /* set req->r_err to fail early from __do_request */
1178 req->r_err = ret;
1179 return;
1180 }
1181 }
1182 doutc(cl, "%p tid %lld\n", req, req->r_tid);
1183 ceph_mdsc_get_request(req);
1184 insert_request(&mdsc->request_tree, req);
1185
1186 req->r_cred = get_current_cred();
1187 if (!req->r_mnt_idmap)
1188 req->r_mnt_idmap = &nop_mnt_idmap;
1189
1190 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
1191 mdsc->oldest_tid = req->r_tid;
1192
1193 if (dir) {
1194 struct ceph_inode_info *ci = ceph_inode(dir);
1195
1196 ihold(dir);
1197 req->r_unsafe_dir = dir;
1198 spin_lock(&ci->i_unsafe_lock);
1199 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
1200 spin_unlock(&ci->i_unsafe_lock);
1201 }
1202 }
1203
__unregister_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)1204 static void __unregister_request(struct ceph_mds_client *mdsc,
1205 struct ceph_mds_request *req)
1206 {
1207 doutc(mdsc->fsc->client, "%p tid %lld\n", req, req->r_tid);
1208
1209 /* Never leave an unregistered request on an unsafe list! */
1210 list_del_init(&req->r_unsafe_item);
1211
1212 if (req->r_tid == mdsc->oldest_tid) {
1213 struct rb_node *p = rb_next(&req->r_node);
1214 mdsc->oldest_tid = 0;
1215 while (p) {
1216 struct ceph_mds_request *next_req =
1217 rb_entry(p, struct ceph_mds_request, r_node);
1218 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
1219 mdsc->oldest_tid = next_req->r_tid;
1220 break;
1221 }
1222 p = rb_next(p);
1223 }
1224 }
1225
1226 erase_request(&mdsc->request_tree, req);
1227
1228 if (req->r_unsafe_dir) {
1229 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
1230 spin_lock(&ci->i_unsafe_lock);
1231 list_del_init(&req->r_unsafe_dir_item);
1232 spin_unlock(&ci->i_unsafe_lock);
1233 }
1234 if (req->r_target_inode &&
1235 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
1236 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
1237 spin_lock(&ci->i_unsafe_lock);
1238 list_del_init(&req->r_unsafe_target_item);
1239 spin_unlock(&ci->i_unsafe_lock);
1240 }
1241
1242 if (req->r_unsafe_dir) {
1243 iput(req->r_unsafe_dir);
1244 req->r_unsafe_dir = NULL;
1245 }
1246
1247 complete_all(&req->r_safe_completion);
1248
1249 ceph_mdsc_put_request(req);
1250 }
1251
1252 /*
1253 * Walk back up the dentry tree until we hit a dentry representing a
1254 * non-snapshot inode. We do this using the rcu_read_lock (which must be held
1255 * when calling this) to ensure that the objects won't disappear while we're
1256 * working with them. Once we hit a candidate dentry, we attempt to take a
1257 * reference to it, and return that as the result.
1258 */
get_nonsnap_parent(struct dentry * dentry)1259 static struct inode *get_nonsnap_parent(struct dentry *dentry)
1260 {
1261 struct inode *inode = NULL;
1262
1263 while (dentry && !IS_ROOT(dentry)) {
1264 inode = d_inode_rcu(dentry);
1265 if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
1266 break;
1267 dentry = dentry->d_parent;
1268 }
1269 if (inode)
1270 inode = igrab(inode);
1271 return inode;
1272 }
1273
1274 /*
1275 * Choose mds to send request to next. If there is a hint set in the
1276 * request (e.g., due to a prior forward hint from the mds), use that.
1277 * Otherwise, consult frag tree and/or caps to identify the
1278 * appropriate mds. If all else fails, choose randomly.
1279 *
1280 * Called under mdsc->mutex.
1281 */
__choose_mds(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,bool * random)1282 static int __choose_mds(struct ceph_mds_client *mdsc,
1283 struct ceph_mds_request *req,
1284 bool *random)
1285 {
1286 struct inode *inode;
1287 struct ceph_inode_info *ci;
1288 struct ceph_cap *cap;
1289 int mode = req->r_direct_mode;
1290 int mds = -1;
1291 u32 hash = req->r_direct_hash;
1292 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
1293 struct ceph_client *cl = mdsc->fsc->client;
1294
1295 if (random)
1296 *random = false;
1297
1298 /*
1299 * is there a specific mds we should try? ignore hint if we have
1300 * no session and the mds is not up (active or recovering).
1301 */
1302 if (req->r_resend_mds >= 0 &&
1303 (__have_session(mdsc, req->r_resend_mds) ||
1304 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
1305 doutc(cl, "using resend_mds mds%d\n", req->r_resend_mds);
1306 return req->r_resend_mds;
1307 }
1308
1309 if (mode == USE_RANDOM_MDS)
1310 goto random;
1311
1312 inode = NULL;
1313 if (req->r_inode) {
1314 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) {
1315 inode = req->r_inode;
1316 ihold(inode);
1317 } else {
1318 /* req->r_dentry is non-null for LSSNAP request */
1319 rcu_read_lock();
1320 inode = get_nonsnap_parent(req->r_dentry);
1321 rcu_read_unlock();
1322 doutc(cl, "using snapdir's parent %p %llx.%llx\n",
1323 inode, ceph_vinop(inode));
1324 }
1325 } else if (req->r_dentry) {
1326 /* ignore race with rename; old or new d_parent is okay */
1327 struct dentry *parent;
1328 struct inode *dir;
1329
1330 rcu_read_lock();
1331 parent = READ_ONCE(req->r_dentry->d_parent);
1332 dir = req->r_parent ? : d_inode_rcu(parent);
1333
1334 if (!dir || dir->i_sb != mdsc->fsc->sb) {
1335 /* not this fs or parent went negative */
1336 inode = d_inode(req->r_dentry);
1337 if (inode)
1338 ihold(inode);
1339 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
1340 /* direct snapped/virtual snapdir requests
1341 * based on parent dir inode */
1342 inode = get_nonsnap_parent(parent);
1343 doutc(cl, "using nonsnap parent %p %llx.%llx\n",
1344 inode, ceph_vinop(inode));
1345 } else {
1346 /* dentry target */
1347 inode = d_inode(req->r_dentry);
1348 if (!inode || mode == USE_AUTH_MDS) {
1349 /* dir + name */
1350 inode = igrab(dir);
1351 hash = ceph_dentry_hash(dir, req->r_dentry);
1352 is_hash = true;
1353 } else {
1354 ihold(inode);
1355 }
1356 }
1357 rcu_read_unlock();
1358 }
1359
1360 if (!inode)
1361 goto random;
1362
1363 doutc(cl, "%p %llx.%llx is_hash=%d (0x%x) mode %d\n", inode,
1364 ceph_vinop(inode), (int)is_hash, hash, mode);
1365 ci = ceph_inode(inode);
1366
1367 if (is_hash && S_ISDIR(inode->i_mode)) {
1368 struct ceph_inode_frag frag;
1369 int found;
1370
1371 ceph_choose_frag(ci, hash, &frag, &found);
1372 if (found) {
1373 if (mode == USE_ANY_MDS && frag.ndist > 0) {
1374 u8 r;
1375
1376 /* choose a random replica */
1377 get_random_bytes(&r, 1);
1378 r %= frag.ndist;
1379 mds = frag.dist[r];
1380 doutc(cl, "%p %llx.%llx frag %u mds%d (%d/%d)\n",
1381 inode, ceph_vinop(inode), frag.frag,
1382 mds, (int)r, frag.ndist);
1383 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
1384 CEPH_MDS_STATE_ACTIVE &&
1385 !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds))
1386 goto out;
1387 }
1388
1389 /* since this file/dir wasn't known to be
1390 * replicated, then we want to look for the
1391 * authoritative mds. */
1392 if (frag.mds >= 0) {
1393 /* choose auth mds */
1394 mds = frag.mds;
1395 doutc(cl, "%p %llx.%llx frag %u mds%d (auth)\n",
1396 inode, ceph_vinop(inode), frag.frag, mds);
1397 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
1398 CEPH_MDS_STATE_ACTIVE) {
1399 if (!ceph_mdsmap_is_laggy(mdsc->mdsmap,
1400 mds))
1401 goto out;
1402 }
1403 }
1404 mode = USE_AUTH_MDS;
1405 }
1406 }
1407
1408 spin_lock(&ci->i_ceph_lock);
1409 cap = NULL;
1410 if (mode == USE_AUTH_MDS)
1411 cap = ci->i_auth_cap;
1412 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
1413 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
1414 if (!cap) {
1415 spin_unlock(&ci->i_ceph_lock);
1416 iput(inode);
1417 goto random;
1418 }
1419 mds = cap->session->s_mds;
1420 doutc(cl, "%p %llx.%llx mds%d (%scap %p)\n", inode,
1421 ceph_vinop(inode), mds,
1422 cap == ci->i_auth_cap ? "auth " : "", cap);
1423 spin_unlock(&ci->i_ceph_lock);
1424 out:
1425 iput(inode);
1426 return mds;
1427
1428 random:
1429 if (random)
1430 *random = true;
1431
1432 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
1433 doutc(cl, "chose random mds%d\n", mds);
1434 return mds;
1435 }
1436
1437
1438 /*
1439 * session messages
1440 */
ceph_create_session_msg(u32 op,u64 seq)1441 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq)
1442 {
1443 struct ceph_msg *msg;
1444 struct ceph_mds_session_head *h;
1445
1446 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
1447 false);
1448 if (!msg) {
1449 pr_err("ENOMEM creating session %s msg\n",
1450 ceph_session_op_name(op));
1451 return NULL;
1452 }
1453 h = msg->front.iov_base;
1454 h->op = cpu_to_le32(op);
1455 h->seq = cpu_to_le64(seq);
1456
1457 return msg;
1458 }
1459
1460 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED;
1461 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8)
encode_supported_features(void ** p,void * end)1462 static int encode_supported_features(void **p, void *end)
1463 {
1464 static const size_t count = ARRAY_SIZE(feature_bits);
1465
1466 if (count > 0) {
1467 size_t i;
1468 size_t size = FEATURE_BYTES(count);
1469 unsigned long bit;
1470
1471 if (WARN_ON_ONCE(*p + 4 + size > end))
1472 return -ERANGE;
1473
1474 ceph_encode_32(p, size);
1475 memset(*p, 0, size);
1476 for (i = 0; i < count; i++) {
1477 bit = feature_bits[i];
1478 ((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8);
1479 }
1480 *p += size;
1481 } else {
1482 if (WARN_ON_ONCE(*p + 4 > end))
1483 return -ERANGE;
1484
1485 ceph_encode_32(p, 0);
1486 }
1487
1488 return 0;
1489 }
1490
1491 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED;
1492 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8)
encode_metric_spec(void ** p,void * end)1493 static int encode_metric_spec(void **p, void *end)
1494 {
1495 static const size_t count = ARRAY_SIZE(metric_bits);
1496
1497 /* header */
1498 if (WARN_ON_ONCE(*p + 2 > end))
1499 return -ERANGE;
1500
1501 ceph_encode_8(p, 1); /* version */
1502 ceph_encode_8(p, 1); /* compat */
1503
1504 if (count > 0) {
1505 size_t i;
1506 size_t size = METRIC_BYTES(count);
1507
1508 if (WARN_ON_ONCE(*p + 4 + 4 + size > end))
1509 return -ERANGE;
1510
1511 /* metric spec info length */
1512 ceph_encode_32(p, 4 + size);
1513
1514 /* metric spec */
1515 ceph_encode_32(p, size);
1516 memset(*p, 0, size);
1517 for (i = 0; i < count; i++)
1518 ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8);
1519 *p += size;
1520 } else {
1521 if (WARN_ON_ONCE(*p + 4 + 4 > end))
1522 return -ERANGE;
1523
1524 /* metric spec info length */
1525 ceph_encode_32(p, 4);
1526 /* metric spec */
1527 ceph_encode_32(p, 0);
1528 }
1529
1530 return 0;
1531 }
1532
1533 /*
1534 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
1535 * to include additional client metadata fields.
1536 */
1537 static struct ceph_msg *
create_session_full_msg(struct ceph_mds_client * mdsc,int op,u64 seq)1538 create_session_full_msg(struct ceph_mds_client *mdsc, int op, u64 seq)
1539 {
1540 struct ceph_msg *msg;
1541 struct ceph_mds_session_head *h;
1542 int i;
1543 int extra_bytes = 0;
1544 int metadata_key_count = 0;
1545 struct ceph_options *opt = mdsc->fsc->client->options;
1546 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
1547 struct ceph_client *cl = mdsc->fsc->client;
1548 size_t size, count;
1549 void *p, *end;
1550 int ret;
1551
1552 const char* metadata[][2] = {
1553 {"hostname", mdsc->nodename},
1554 {"kernel_version", init_utsname()->release},
1555 {"entity_id", opt->name ? : ""},
1556 {"root", fsopt->server_path ? : "/"},
1557 {NULL, NULL}
1558 };
1559
1560 /* Calculate serialized length of metadata */
1561 extra_bytes = 4; /* map length */
1562 for (i = 0; metadata[i][0]; ++i) {
1563 extra_bytes += 8 + strlen(metadata[i][0]) +
1564 strlen(metadata[i][1]);
1565 metadata_key_count++;
1566 }
1567
1568 /* supported feature */
1569 size = 0;
1570 count = ARRAY_SIZE(feature_bits);
1571 if (count > 0)
1572 size = FEATURE_BYTES(count);
1573 extra_bytes += 4 + size;
1574
1575 /* metric spec */
1576 size = 0;
1577 count = ARRAY_SIZE(metric_bits);
1578 if (count > 0)
1579 size = METRIC_BYTES(count);
1580 extra_bytes += 2 + 4 + 4 + size;
1581
1582 /* flags, mds auth caps and oldest_client_tid */
1583 extra_bytes += 4 + 4 + 8;
1584
1585 /* Allocate the message */
1586 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes,
1587 GFP_NOFS, false);
1588 if (!msg) {
1589 pr_err_client(cl, "ENOMEM creating session open msg\n");
1590 return ERR_PTR(-ENOMEM);
1591 }
1592 p = msg->front.iov_base;
1593 end = p + msg->front.iov_len;
1594
1595 h = p;
1596 h->op = cpu_to_le32(op);
1597 h->seq = cpu_to_le64(seq);
1598
1599 /*
1600 * Serialize client metadata into waiting buffer space, using
1601 * the format that userspace expects for map<string, string>
1602 *
1603 * ClientSession messages with metadata are v7
1604 */
1605 msg->hdr.version = cpu_to_le16(7);
1606 msg->hdr.compat_version = cpu_to_le16(1);
1607
1608 /* The write pointer, following the session_head structure */
1609 p += sizeof(*h);
1610
1611 /* Number of entries in the map */
1612 ceph_encode_32(&p, metadata_key_count);
1613
1614 /* Two length-prefixed strings for each entry in the map */
1615 for (i = 0; metadata[i][0]; ++i) {
1616 size_t const key_len = strlen(metadata[i][0]);
1617 size_t const val_len = strlen(metadata[i][1]);
1618
1619 ceph_encode_32(&p, key_len);
1620 memcpy(p, metadata[i][0], key_len);
1621 p += key_len;
1622 ceph_encode_32(&p, val_len);
1623 memcpy(p, metadata[i][1], val_len);
1624 p += val_len;
1625 }
1626
1627 ret = encode_supported_features(&p, end);
1628 if (ret) {
1629 pr_err_client(cl, "encode_supported_features failed!\n");
1630 ceph_msg_put(msg);
1631 return ERR_PTR(ret);
1632 }
1633
1634 ret = encode_metric_spec(&p, end);
1635 if (ret) {
1636 pr_err_client(cl, "encode_metric_spec failed!\n");
1637 ceph_msg_put(msg);
1638 return ERR_PTR(ret);
1639 }
1640
1641 /* version == 5, flags */
1642 ceph_encode_32(&p, 0);
1643
1644 /* version == 6, mds auth caps */
1645 ceph_encode_32(&p, 0);
1646
1647 /* version == 7, oldest_client_tid */
1648 ceph_encode_64(&p, mdsc->oldest_tid);
1649
1650 msg->front.iov_len = p - msg->front.iov_base;
1651 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1652
1653 return msg;
1654 }
1655
1656 /*
1657 * send session open request.
1658 *
1659 * called under mdsc->mutex
1660 */
__open_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1661 static int __open_session(struct ceph_mds_client *mdsc,
1662 struct ceph_mds_session *session)
1663 {
1664 struct ceph_msg *msg;
1665 int mstate;
1666 int mds = session->s_mds;
1667
1668 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO)
1669 return -EIO;
1670
1671 /* wait for mds to go active? */
1672 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
1673 doutc(mdsc->fsc->client, "open_session to mds%d (%s)\n", mds,
1674 ceph_mds_state_name(mstate));
1675 session->s_state = CEPH_MDS_SESSION_OPENING;
1676 session->s_renew_requested = jiffies;
1677
1678 /* send connect message */
1679 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_OPEN,
1680 session->s_seq);
1681 if (IS_ERR(msg))
1682 return PTR_ERR(msg);
1683 ceph_con_send(&session->s_con, msg);
1684 return 0;
1685 }
1686
1687 /*
1688 * open sessions for any export targets for the given mds
1689 *
1690 * called under mdsc->mutex
1691 */
1692 static struct ceph_mds_session *
__open_export_target_session(struct ceph_mds_client * mdsc,int target)1693 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
1694 {
1695 struct ceph_mds_session *session;
1696 int ret;
1697
1698 session = __ceph_lookup_mds_session(mdsc, target);
1699 if (!session) {
1700 session = register_session(mdsc, target);
1701 if (IS_ERR(session))
1702 return session;
1703 }
1704 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1705 session->s_state == CEPH_MDS_SESSION_CLOSING) {
1706 ret = __open_session(mdsc, session);
1707 if (ret)
1708 return ERR_PTR(ret);
1709 }
1710
1711 return session;
1712 }
1713
1714 struct ceph_mds_session *
ceph_mdsc_open_export_target_session(struct ceph_mds_client * mdsc,int target)1715 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
1716 {
1717 struct ceph_mds_session *session;
1718 struct ceph_client *cl = mdsc->fsc->client;
1719
1720 doutc(cl, "to mds%d\n", target);
1721
1722 mutex_lock(&mdsc->mutex);
1723 session = __open_export_target_session(mdsc, target);
1724 mutex_unlock(&mdsc->mutex);
1725
1726 return session;
1727 }
1728
__open_export_target_sessions(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1729 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
1730 struct ceph_mds_session *session)
1731 {
1732 struct ceph_mds_info *mi;
1733 struct ceph_mds_session *ts;
1734 int i, mds = session->s_mds;
1735 struct ceph_client *cl = mdsc->fsc->client;
1736
1737 if (mds >= mdsc->mdsmap->possible_max_rank)
1738 return;
1739
1740 mi = &mdsc->mdsmap->m_info[mds];
1741 doutc(cl, "for mds%d (%d targets)\n", session->s_mds,
1742 mi->num_export_targets);
1743
1744 for (i = 0; i < mi->num_export_targets; i++) {
1745 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1746 ceph_put_mds_session(ts);
1747 }
1748 }
1749
1750 /*
1751 * session caps
1752 */
1753
detach_cap_releases(struct ceph_mds_session * session,struct list_head * target)1754 static void detach_cap_releases(struct ceph_mds_session *session,
1755 struct list_head *target)
1756 {
1757 struct ceph_client *cl = session->s_mdsc->fsc->client;
1758
1759 lockdep_assert_held(&session->s_cap_lock);
1760
1761 list_splice_init(&session->s_cap_releases, target);
1762 session->s_num_cap_releases = 0;
1763 doutc(cl, "mds%d\n", session->s_mds);
1764 }
1765
dispose_cap_releases(struct ceph_mds_client * mdsc,struct list_head * dispose)1766 static void dispose_cap_releases(struct ceph_mds_client *mdsc,
1767 struct list_head *dispose)
1768 {
1769 while (!list_empty(dispose)) {
1770 struct ceph_cap *cap;
1771 /* zero out the in-progress message */
1772 cap = list_first_entry(dispose, struct ceph_cap, session_caps);
1773 list_del(&cap->session_caps);
1774 ceph_put_cap(mdsc, cap);
1775 }
1776 }
1777
cleanup_session_requests(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1778 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1779 struct ceph_mds_session *session)
1780 {
1781 struct ceph_client *cl = mdsc->fsc->client;
1782 struct ceph_mds_request *req;
1783 struct rb_node *p;
1784
1785 doutc(cl, "mds%d\n", session->s_mds);
1786 mutex_lock(&mdsc->mutex);
1787 while (!list_empty(&session->s_unsafe)) {
1788 req = list_first_entry(&session->s_unsafe,
1789 struct ceph_mds_request, r_unsafe_item);
1790 pr_warn_ratelimited_client(cl, " dropping unsafe request %llu\n",
1791 req->r_tid);
1792 if (req->r_target_inode)
1793 mapping_set_error(req->r_target_inode->i_mapping, -EIO);
1794 if (req->r_unsafe_dir)
1795 mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO);
1796 __unregister_request(mdsc, req);
1797 }
1798 /* zero r_attempts, so kick_requests() will re-send requests */
1799 p = rb_first(&mdsc->request_tree);
1800 while (p) {
1801 req = rb_entry(p, struct ceph_mds_request, r_node);
1802 p = rb_next(p);
1803 if (req->r_session &&
1804 req->r_session->s_mds == session->s_mds)
1805 req->r_attempts = 0;
1806 }
1807 mutex_unlock(&mdsc->mutex);
1808 }
1809
1810 /*
1811 * Helper to safely iterate over all caps associated with a session, with
1812 * special care taken to handle a racing __ceph_remove_cap().
1813 *
1814 * Caller must hold session s_mutex.
1815 */
ceph_iterate_session_caps(struct ceph_mds_session * session,int (* cb)(struct inode *,int mds,void *),void * arg)1816 int ceph_iterate_session_caps(struct ceph_mds_session *session,
1817 int (*cb)(struct inode *, int mds, void *),
1818 void *arg)
1819 {
1820 struct ceph_client *cl = session->s_mdsc->fsc->client;
1821 struct list_head *p;
1822 struct ceph_cap *cap;
1823 struct inode *inode, *last_inode = NULL;
1824 struct ceph_cap *old_cap = NULL;
1825 int ret;
1826
1827 doutc(cl, "%p mds%d\n", session, session->s_mds);
1828 spin_lock(&session->s_cap_lock);
1829 p = session->s_caps.next;
1830 while (p != &session->s_caps) {
1831 int mds;
1832
1833 cap = list_entry(p, struct ceph_cap, session_caps);
1834 inode = igrab(&cap->ci->netfs.inode);
1835 if (!inode) {
1836 p = p->next;
1837 continue;
1838 }
1839 session->s_cap_iterator = cap;
1840 mds = cap->mds;
1841 spin_unlock(&session->s_cap_lock);
1842
1843 if (last_inode) {
1844 iput(last_inode);
1845 last_inode = NULL;
1846 }
1847 if (old_cap) {
1848 ceph_put_cap(session->s_mdsc, old_cap);
1849 old_cap = NULL;
1850 }
1851
1852 ret = cb(inode, mds, arg);
1853 last_inode = inode;
1854
1855 spin_lock(&session->s_cap_lock);
1856 p = p->next;
1857 if (!cap->ci) {
1858 doutc(cl, "finishing cap %p removal\n", cap);
1859 BUG_ON(cap->session != session);
1860 cap->session = NULL;
1861 list_del_init(&cap->session_caps);
1862 session->s_nr_caps--;
1863 atomic64_dec(&session->s_mdsc->metric.total_caps);
1864 if (cap->queue_release)
1865 __ceph_queue_cap_release(session, cap);
1866 else
1867 old_cap = cap; /* put_cap it w/o locks held */
1868 }
1869 if (ret < 0)
1870 goto out;
1871 }
1872 ret = 0;
1873 out:
1874 session->s_cap_iterator = NULL;
1875 spin_unlock(&session->s_cap_lock);
1876
1877 iput(last_inode);
1878 if (old_cap)
1879 ceph_put_cap(session->s_mdsc, old_cap);
1880
1881 return ret;
1882 }
1883
remove_session_caps_cb(struct inode * inode,int mds,void * arg)1884 static int remove_session_caps_cb(struct inode *inode, int mds, void *arg)
1885 {
1886 struct ceph_inode_info *ci = ceph_inode(inode);
1887 struct ceph_client *cl = ceph_inode_to_client(inode);
1888 bool invalidate = false;
1889 struct ceph_cap *cap;
1890 int iputs = 0;
1891
1892 spin_lock(&ci->i_ceph_lock);
1893 cap = __get_cap_for_mds(ci, mds);
1894 if (cap) {
1895 doutc(cl, " removing cap %p, ci is %p, inode is %p\n",
1896 cap, ci, &ci->netfs.inode);
1897
1898 iputs = ceph_purge_inode_cap(inode, cap, &invalidate);
1899 }
1900 spin_unlock(&ci->i_ceph_lock);
1901
1902 if (cap)
1903 wake_up_all(&ci->i_cap_wq);
1904 if (invalidate)
1905 ceph_queue_invalidate(inode);
1906 while (iputs--)
1907 iput(inode);
1908 return 0;
1909 }
1910
1911 /*
1912 * caller must hold session s_mutex
1913 */
remove_session_caps(struct ceph_mds_session * session)1914 static void remove_session_caps(struct ceph_mds_session *session)
1915 {
1916 struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1917 struct super_block *sb = fsc->sb;
1918 LIST_HEAD(dispose);
1919
1920 doutc(fsc->client, "on %p\n", session);
1921 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc);
1922
1923 wake_up_all(&fsc->mdsc->cap_flushing_wq);
1924
1925 spin_lock(&session->s_cap_lock);
1926 if (session->s_nr_caps > 0) {
1927 struct inode *inode;
1928 struct ceph_cap *cap, *prev = NULL;
1929 struct ceph_vino vino;
1930 /*
1931 * iterate_session_caps() skips inodes that are being
1932 * deleted, we need to wait until deletions are complete.
1933 * __wait_on_freeing_inode() is designed for the job,
1934 * but it is not exported, so use lookup inode function
1935 * to access it.
1936 */
1937 while (!list_empty(&session->s_caps)) {
1938 cap = list_entry(session->s_caps.next,
1939 struct ceph_cap, session_caps);
1940 if (cap == prev)
1941 break;
1942 prev = cap;
1943 vino = cap->ci->i_vino;
1944 spin_unlock(&session->s_cap_lock);
1945
1946 inode = ceph_find_inode(sb, vino);
1947 iput(inode);
1948
1949 spin_lock(&session->s_cap_lock);
1950 }
1951 }
1952
1953 // drop cap expires and unlock s_cap_lock
1954 detach_cap_releases(session, &dispose);
1955
1956 BUG_ON(session->s_nr_caps > 0);
1957 BUG_ON(!list_empty(&session->s_cap_flushing));
1958 spin_unlock(&session->s_cap_lock);
1959 dispose_cap_releases(session->s_mdsc, &dispose);
1960 }
1961
1962 enum {
1963 RECONNECT,
1964 RENEWCAPS,
1965 FORCE_RO,
1966 };
1967
1968 /*
1969 * wake up any threads waiting on this session's caps. if the cap is
1970 * old (didn't get renewed on the client reconnect), remove it now.
1971 *
1972 * caller must hold s_mutex.
1973 */
wake_up_session_cb(struct inode * inode,int mds,void * arg)1974 static int wake_up_session_cb(struct inode *inode, int mds, void *arg)
1975 {
1976 struct ceph_inode_info *ci = ceph_inode(inode);
1977 unsigned long ev = (unsigned long)arg;
1978
1979 if (ev == RECONNECT) {
1980 spin_lock(&ci->i_ceph_lock);
1981 ci->i_wanted_max_size = 0;
1982 ci->i_requested_max_size = 0;
1983 spin_unlock(&ci->i_ceph_lock);
1984 } else if (ev == RENEWCAPS) {
1985 struct ceph_cap *cap;
1986
1987 spin_lock(&ci->i_ceph_lock);
1988 cap = __get_cap_for_mds(ci, mds);
1989 /* mds did not re-issue stale cap */
1990 if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen))
1991 cap->issued = cap->implemented = CEPH_CAP_PIN;
1992 spin_unlock(&ci->i_ceph_lock);
1993 } else if (ev == FORCE_RO) {
1994 }
1995 wake_up_all(&ci->i_cap_wq);
1996 return 0;
1997 }
1998
wake_up_session_caps(struct ceph_mds_session * session,int ev)1999 static void wake_up_session_caps(struct ceph_mds_session *session, int ev)
2000 {
2001 struct ceph_client *cl = session->s_mdsc->fsc->client;
2002
2003 doutc(cl, "session %p mds%d\n", session, session->s_mds);
2004 ceph_iterate_session_caps(session, wake_up_session_cb,
2005 (void *)(unsigned long)ev);
2006 }
2007
2008 /*
2009 * Send periodic message to MDS renewing all currently held caps. The
2010 * ack will reset the expiration for all caps from this session.
2011 *
2012 * caller holds s_mutex
2013 */
send_renew_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2014 static int send_renew_caps(struct ceph_mds_client *mdsc,
2015 struct ceph_mds_session *session)
2016 {
2017 struct ceph_client *cl = mdsc->fsc->client;
2018 struct ceph_msg *msg;
2019 int state;
2020
2021 if (time_after_eq(jiffies, session->s_cap_ttl) &&
2022 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
2023 pr_info_client(cl, "mds%d caps stale\n", session->s_mds);
2024 session->s_renew_requested = jiffies;
2025
2026 /* do not try to renew caps until a recovering mds has reconnected
2027 * with its clients. */
2028 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
2029 if (state < CEPH_MDS_STATE_RECONNECT) {
2030 doutc(cl, "ignoring mds%d (%s)\n", session->s_mds,
2031 ceph_mds_state_name(state));
2032 return 0;
2033 }
2034
2035 doutc(cl, "to mds%d (%s)\n", session->s_mds,
2036 ceph_mds_state_name(state));
2037 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_RENEWCAPS,
2038 ++session->s_renew_seq);
2039 if (IS_ERR(msg))
2040 return PTR_ERR(msg);
2041 ceph_con_send(&session->s_con, msg);
2042 return 0;
2043 }
2044
send_flushmsg_ack(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,u64 seq)2045 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
2046 struct ceph_mds_session *session, u64 seq)
2047 {
2048 struct ceph_client *cl = mdsc->fsc->client;
2049 struct ceph_msg *msg;
2050
2051 doutc(cl, "to mds%d (%s)s seq %lld\n", session->s_mds,
2052 ceph_session_state_name(session->s_state), seq);
2053 msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
2054 if (!msg)
2055 return -ENOMEM;
2056 ceph_con_send(&session->s_con, msg);
2057 return 0;
2058 }
2059
2060
2061 /*
2062 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
2063 *
2064 * Called under session->s_mutex
2065 */
renewed_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,int is_renew)2066 static void renewed_caps(struct ceph_mds_client *mdsc,
2067 struct ceph_mds_session *session, int is_renew)
2068 {
2069 struct ceph_client *cl = mdsc->fsc->client;
2070 int was_stale;
2071 int wake = 0;
2072
2073 spin_lock(&session->s_cap_lock);
2074 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
2075
2076 session->s_cap_ttl = session->s_renew_requested +
2077 mdsc->mdsmap->m_session_timeout*HZ;
2078
2079 if (was_stale) {
2080 if (time_before(jiffies, session->s_cap_ttl)) {
2081 pr_info_client(cl, "mds%d caps renewed\n",
2082 session->s_mds);
2083 wake = 1;
2084 } else {
2085 pr_info_client(cl, "mds%d caps still stale\n",
2086 session->s_mds);
2087 }
2088 }
2089 doutc(cl, "mds%d ttl now %lu, was %s, now %s\n", session->s_mds,
2090 session->s_cap_ttl, was_stale ? "stale" : "fresh",
2091 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
2092 spin_unlock(&session->s_cap_lock);
2093
2094 if (wake)
2095 wake_up_session_caps(session, RENEWCAPS);
2096 }
2097
2098 /*
2099 * send a session close request
2100 */
request_close_session(struct ceph_mds_session * session)2101 static int request_close_session(struct ceph_mds_session *session)
2102 {
2103 struct ceph_client *cl = session->s_mdsc->fsc->client;
2104 struct ceph_msg *msg;
2105
2106 doutc(cl, "mds%d state %s seq %lld\n", session->s_mds,
2107 ceph_session_state_name(session->s_state), session->s_seq);
2108 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE,
2109 session->s_seq);
2110 if (!msg)
2111 return -ENOMEM;
2112 ceph_con_send(&session->s_con, msg);
2113 return 1;
2114 }
2115
2116 /*
2117 * Called with s_mutex held.
2118 */
__close_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2119 static int __close_session(struct ceph_mds_client *mdsc,
2120 struct ceph_mds_session *session)
2121 {
2122 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
2123 return 0;
2124 session->s_state = CEPH_MDS_SESSION_CLOSING;
2125 return request_close_session(session);
2126 }
2127
drop_negative_children(struct dentry * dentry)2128 static bool drop_negative_children(struct dentry *dentry)
2129 {
2130 struct dentry *child;
2131 bool all_negative = true;
2132
2133 if (!d_is_dir(dentry))
2134 goto out;
2135
2136 spin_lock(&dentry->d_lock);
2137 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
2138 if (d_really_is_positive(child)) {
2139 all_negative = false;
2140 break;
2141 }
2142 }
2143 spin_unlock(&dentry->d_lock);
2144
2145 if (all_negative)
2146 shrink_dcache_parent(dentry);
2147 out:
2148 return all_negative;
2149 }
2150
2151 /*
2152 * Trim old(er) caps.
2153 *
2154 * Because we can't cache an inode without one or more caps, we do
2155 * this indirectly: if a cap is unused, we prune its aliases, at which
2156 * point the inode will hopefully get dropped to.
2157 *
2158 * Yes, this is a bit sloppy. Our only real goal here is to respond to
2159 * memory pressure from the MDS, though, so it needn't be perfect.
2160 */
trim_caps_cb(struct inode * inode,int mds,void * arg)2161 static int trim_caps_cb(struct inode *inode, int mds, void *arg)
2162 {
2163 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
2164 struct ceph_client *cl = mdsc->fsc->client;
2165 int *remaining = arg;
2166 struct ceph_inode_info *ci = ceph_inode(inode);
2167 int used, wanted, oissued, mine;
2168 struct ceph_cap *cap;
2169
2170 if (*remaining <= 0)
2171 return -1;
2172
2173 spin_lock(&ci->i_ceph_lock);
2174 cap = __get_cap_for_mds(ci, mds);
2175 if (!cap) {
2176 spin_unlock(&ci->i_ceph_lock);
2177 return 0;
2178 }
2179 mine = cap->issued | cap->implemented;
2180 used = __ceph_caps_used(ci);
2181 wanted = __ceph_caps_file_wanted(ci);
2182 oissued = __ceph_caps_issued_other(ci, cap);
2183
2184 doutc(cl, "%p %llx.%llx cap %p mine %s oissued %s used %s wanted %s\n",
2185 inode, ceph_vinop(inode), cap, ceph_cap_string(mine),
2186 ceph_cap_string(oissued), ceph_cap_string(used),
2187 ceph_cap_string(wanted));
2188 if (cap == ci->i_auth_cap) {
2189 if (ci->i_dirty_caps || ci->i_flushing_caps ||
2190 !list_empty(&ci->i_cap_snaps))
2191 goto out;
2192 if ((used | wanted) & CEPH_CAP_ANY_WR)
2193 goto out;
2194 /* Note: it's possible that i_filelock_ref becomes non-zero
2195 * after dropping auth caps. It doesn't hurt because reply
2196 * of lock mds request will re-add auth caps. */
2197 if (atomic_read(&ci->i_filelock_ref) > 0)
2198 goto out;
2199 }
2200 /* The inode has cached pages, but it's no longer used.
2201 * we can safely drop it */
2202 if (S_ISREG(inode->i_mode) &&
2203 wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
2204 !(oissued & CEPH_CAP_FILE_CACHE)) {
2205 used = 0;
2206 oissued = 0;
2207 }
2208 if ((used | wanted) & ~oissued & mine)
2209 goto out; /* we need these caps */
2210
2211 if (oissued) {
2212 /* we aren't the only cap.. just remove us */
2213 ceph_remove_cap(mdsc, cap, true);
2214 (*remaining)--;
2215 } else {
2216 struct dentry *dentry;
2217 /* try dropping referring dentries */
2218 spin_unlock(&ci->i_ceph_lock);
2219 dentry = d_find_any_alias(inode);
2220 if (dentry && drop_negative_children(dentry)) {
2221 int count;
2222 dput(dentry);
2223 d_prune_aliases(inode);
2224 count = atomic_read(&inode->i_count);
2225 if (count == 1)
2226 (*remaining)--;
2227 doutc(cl, "%p %llx.%llx cap %p pruned, count now %d\n",
2228 inode, ceph_vinop(inode), cap, count);
2229 } else {
2230 dput(dentry);
2231 }
2232 return 0;
2233 }
2234
2235 out:
2236 spin_unlock(&ci->i_ceph_lock);
2237 return 0;
2238 }
2239
2240 /*
2241 * Trim session cap count down to some max number.
2242 */
ceph_trim_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,int max_caps)2243 int ceph_trim_caps(struct ceph_mds_client *mdsc,
2244 struct ceph_mds_session *session,
2245 int max_caps)
2246 {
2247 struct ceph_client *cl = mdsc->fsc->client;
2248 int trim_caps = session->s_nr_caps - max_caps;
2249
2250 doutc(cl, "mds%d start: %d / %d, trim %d\n", session->s_mds,
2251 session->s_nr_caps, max_caps, trim_caps);
2252 if (trim_caps > 0) {
2253 int remaining = trim_caps;
2254
2255 ceph_iterate_session_caps(session, trim_caps_cb, &remaining);
2256 doutc(cl, "mds%d done: %d / %d, trimmed %d\n",
2257 session->s_mds, session->s_nr_caps, max_caps,
2258 trim_caps - remaining);
2259 }
2260
2261 ceph_flush_session_cap_releases(mdsc, session);
2262 return 0;
2263 }
2264
check_caps_flush(struct ceph_mds_client * mdsc,u64 want_flush_tid)2265 static int check_caps_flush(struct ceph_mds_client *mdsc,
2266 u64 want_flush_tid)
2267 {
2268 struct ceph_client *cl = mdsc->fsc->client;
2269 int ret = 1;
2270
2271 spin_lock(&mdsc->cap_dirty_lock);
2272 if (!list_empty(&mdsc->cap_flush_list)) {
2273 struct ceph_cap_flush *cf =
2274 list_first_entry(&mdsc->cap_flush_list,
2275 struct ceph_cap_flush, g_list);
2276 if (cf->tid <= want_flush_tid) {
2277 doutc(cl, "still flushing tid %llu <= %llu\n",
2278 cf->tid, want_flush_tid);
2279 ret = 0;
2280 }
2281 }
2282 spin_unlock(&mdsc->cap_dirty_lock);
2283 return ret;
2284 }
2285
2286 /*
2287 * flush all dirty inode data to disk.
2288 *
2289 * returns true if we've flushed through want_flush_tid
2290 */
wait_caps_flush(struct ceph_mds_client * mdsc,u64 want_flush_tid)2291 static void wait_caps_flush(struct ceph_mds_client *mdsc,
2292 u64 want_flush_tid)
2293 {
2294 struct ceph_client *cl = mdsc->fsc->client;
2295
2296 doutc(cl, "want %llu\n", want_flush_tid);
2297
2298 wait_event(mdsc->cap_flushing_wq,
2299 check_caps_flush(mdsc, want_flush_tid));
2300
2301 doutc(cl, "ok, flushed thru %llu\n", want_flush_tid);
2302 }
2303
2304 /*
2305 * called under s_mutex
2306 */
ceph_send_cap_releases(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2307 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
2308 struct ceph_mds_session *session)
2309 {
2310 struct ceph_client *cl = mdsc->fsc->client;
2311 struct ceph_msg *msg = NULL;
2312 struct ceph_mds_cap_release *head;
2313 struct ceph_mds_cap_item *item;
2314 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
2315 struct ceph_cap *cap;
2316 LIST_HEAD(tmp_list);
2317 int num_cap_releases;
2318 __le32 barrier, *cap_barrier;
2319
2320 down_read(&osdc->lock);
2321 barrier = cpu_to_le32(osdc->epoch_barrier);
2322 up_read(&osdc->lock);
2323
2324 spin_lock(&session->s_cap_lock);
2325 again:
2326 list_splice_init(&session->s_cap_releases, &tmp_list);
2327 num_cap_releases = session->s_num_cap_releases;
2328 session->s_num_cap_releases = 0;
2329 spin_unlock(&session->s_cap_lock);
2330
2331 while (!list_empty(&tmp_list)) {
2332 if (!msg) {
2333 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
2334 PAGE_SIZE, GFP_NOFS, false);
2335 if (!msg)
2336 goto out_err;
2337 head = msg->front.iov_base;
2338 head->num = cpu_to_le32(0);
2339 msg->front.iov_len = sizeof(*head);
2340
2341 msg->hdr.version = cpu_to_le16(2);
2342 msg->hdr.compat_version = cpu_to_le16(1);
2343 }
2344
2345 cap = list_first_entry(&tmp_list, struct ceph_cap,
2346 session_caps);
2347 list_del(&cap->session_caps);
2348 num_cap_releases--;
2349
2350 head = msg->front.iov_base;
2351 put_unaligned_le32(get_unaligned_le32(&head->num) + 1,
2352 &head->num);
2353 item = msg->front.iov_base + msg->front.iov_len;
2354 item->ino = cpu_to_le64(cap->cap_ino);
2355 item->cap_id = cpu_to_le64(cap->cap_id);
2356 item->migrate_seq = cpu_to_le32(cap->mseq);
2357 item->issue_seq = cpu_to_le32(cap->issue_seq);
2358 msg->front.iov_len += sizeof(*item);
2359
2360 ceph_put_cap(mdsc, cap);
2361
2362 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
2363 // Append cap_barrier field
2364 cap_barrier = msg->front.iov_base + msg->front.iov_len;
2365 *cap_barrier = barrier;
2366 msg->front.iov_len += sizeof(*cap_barrier);
2367
2368 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2369 doutc(cl, "mds%d %p\n", session->s_mds, msg);
2370 ceph_con_send(&session->s_con, msg);
2371 msg = NULL;
2372 }
2373 }
2374
2375 BUG_ON(num_cap_releases != 0);
2376
2377 spin_lock(&session->s_cap_lock);
2378 if (!list_empty(&session->s_cap_releases))
2379 goto again;
2380 spin_unlock(&session->s_cap_lock);
2381
2382 if (msg) {
2383 // Append cap_barrier field
2384 cap_barrier = msg->front.iov_base + msg->front.iov_len;
2385 *cap_barrier = barrier;
2386 msg->front.iov_len += sizeof(*cap_barrier);
2387
2388 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2389 doutc(cl, "mds%d %p\n", session->s_mds, msg);
2390 ceph_con_send(&session->s_con, msg);
2391 }
2392 return;
2393 out_err:
2394 pr_err_client(cl, "mds%d, failed to allocate message\n",
2395 session->s_mds);
2396 spin_lock(&session->s_cap_lock);
2397 list_splice(&tmp_list, &session->s_cap_releases);
2398 session->s_num_cap_releases += num_cap_releases;
2399 spin_unlock(&session->s_cap_lock);
2400 }
2401
ceph_cap_release_work(struct work_struct * work)2402 static void ceph_cap_release_work(struct work_struct *work)
2403 {
2404 struct ceph_mds_session *session =
2405 container_of(work, struct ceph_mds_session, s_cap_release_work);
2406
2407 mutex_lock(&session->s_mutex);
2408 if (session->s_state == CEPH_MDS_SESSION_OPEN ||
2409 session->s_state == CEPH_MDS_SESSION_HUNG)
2410 ceph_send_cap_releases(session->s_mdsc, session);
2411 mutex_unlock(&session->s_mutex);
2412 ceph_put_mds_session(session);
2413 }
2414
ceph_flush_session_cap_releases(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2415 void ceph_flush_session_cap_releases(struct ceph_mds_client *mdsc,
2416 struct ceph_mds_session *session)
2417 {
2418 struct ceph_client *cl = mdsc->fsc->client;
2419 if (mdsc->stopping)
2420 return;
2421
2422 ceph_get_mds_session(session);
2423 if (queue_work(mdsc->fsc->cap_wq,
2424 &session->s_cap_release_work)) {
2425 doutc(cl, "cap release work queued\n");
2426 } else {
2427 ceph_put_mds_session(session);
2428 doutc(cl, "failed to queue cap release work\n");
2429 }
2430 }
2431
2432 /*
2433 * caller holds session->s_cap_lock
2434 */
__ceph_queue_cap_release(struct ceph_mds_session * session,struct ceph_cap * cap)2435 void __ceph_queue_cap_release(struct ceph_mds_session *session,
2436 struct ceph_cap *cap)
2437 {
2438 list_add_tail(&cap->session_caps, &session->s_cap_releases);
2439 session->s_num_cap_releases++;
2440
2441 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE))
2442 ceph_flush_session_cap_releases(session->s_mdsc, session);
2443 }
2444
ceph_cap_reclaim_work(struct work_struct * work)2445 static void ceph_cap_reclaim_work(struct work_struct *work)
2446 {
2447 struct ceph_mds_client *mdsc =
2448 container_of(work, struct ceph_mds_client, cap_reclaim_work);
2449 int ret = ceph_trim_dentries(mdsc);
2450 if (ret == -EAGAIN)
2451 ceph_queue_cap_reclaim_work(mdsc);
2452 }
2453
ceph_queue_cap_reclaim_work(struct ceph_mds_client * mdsc)2454 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc)
2455 {
2456 struct ceph_client *cl = mdsc->fsc->client;
2457 if (mdsc->stopping)
2458 return;
2459
2460 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) {
2461 doutc(cl, "caps reclaim work queued\n");
2462 } else {
2463 doutc(cl, "failed to queue caps release work\n");
2464 }
2465 }
2466
ceph_reclaim_caps_nr(struct ceph_mds_client * mdsc,int nr)2467 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr)
2468 {
2469 int val;
2470 if (!nr)
2471 return;
2472 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending);
2473 if ((val % CEPH_CAPS_PER_RELEASE) < nr) {
2474 atomic_set(&mdsc->cap_reclaim_pending, 0);
2475 ceph_queue_cap_reclaim_work(mdsc);
2476 }
2477 }
2478
ceph_queue_cap_unlink_work(struct ceph_mds_client * mdsc)2479 void ceph_queue_cap_unlink_work(struct ceph_mds_client *mdsc)
2480 {
2481 struct ceph_client *cl = mdsc->fsc->client;
2482 if (mdsc->stopping)
2483 return;
2484
2485 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_unlink_work)) {
2486 doutc(cl, "caps unlink work queued\n");
2487 } else {
2488 doutc(cl, "failed to queue caps unlink work\n");
2489 }
2490 }
2491
ceph_cap_unlink_work(struct work_struct * work)2492 static void ceph_cap_unlink_work(struct work_struct *work)
2493 {
2494 struct ceph_mds_client *mdsc =
2495 container_of(work, struct ceph_mds_client, cap_unlink_work);
2496 struct ceph_client *cl = mdsc->fsc->client;
2497
2498 doutc(cl, "begin\n");
2499 spin_lock(&mdsc->cap_delay_lock);
2500 while (!list_empty(&mdsc->cap_unlink_delay_list)) {
2501 struct ceph_inode_info *ci;
2502 struct inode *inode;
2503
2504 ci = list_first_entry(&mdsc->cap_unlink_delay_list,
2505 struct ceph_inode_info,
2506 i_cap_delay_list);
2507 list_del_init(&ci->i_cap_delay_list);
2508
2509 inode = igrab(&ci->netfs.inode);
2510 if (inode) {
2511 spin_unlock(&mdsc->cap_delay_lock);
2512 doutc(cl, "on %p %llx.%llx\n", inode,
2513 ceph_vinop(inode));
2514 ceph_check_caps(ci, CHECK_CAPS_FLUSH);
2515 iput(inode);
2516 spin_lock(&mdsc->cap_delay_lock);
2517 }
2518 }
2519 spin_unlock(&mdsc->cap_delay_lock);
2520 doutc(cl, "done\n");
2521 }
2522
2523 /*
2524 * requests
2525 */
2526
ceph_alloc_readdir_reply_buffer(struct ceph_mds_request * req,struct inode * dir)2527 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
2528 struct inode *dir)
2529 {
2530 struct ceph_inode_info *ci = ceph_inode(dir);
2531 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
2532 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
2533 size_t size = sizeof(struct ceph_mds_reply_dir_entry);
2534 unsigned int num_entries;
2535 int order;
2536
2537 spin_lock(&ci->i_ceph_lock);
2538 num_entries = ci->i_files + ci->i_subdirs;
2539 spin_unlock(&ci->i_ceph_lock);
2540 num_entries = max(num_entries, 1U);
2541 num_entries = min(num_entries, opt->max_readdir);
2542
2543 order = get_order(size * num_entries);
2544 while (order >= 0) {
2545 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
2546 __GFP_NOWARN |
2547 __GFP_ZERO,
2548 order);
2549 if (rinfo->dir_entries)
2550 break;
2551 order--;
2552 }
2553 if (!rinfo->dir_entries)
2554 return -ENOMEM;
2555
2556 num_entries = (PAGE_SIZE << order) / size;
2557 num_entries = min(num_entries, opt->max_readdir);
2558
2559 rinfo->dir_buf_size = PAGE_SIZE << order;
2560 req->r_num_caps = num_entries + 1;
2561 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
2562 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
2563 return 0;
2564 }
2565
2566 /*
2567 * Create an mds request.
2568 */
2569 struct ceph_mds_request *
ceph_mdsc_create_request(struct ceph_mds_client * mdsc,int op,int mode)2570 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
2571 {
2572 struct ceph_mds_request *req;
2573
2574 req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS);
2575 if (!req)
2576 return ERR_PTR(-ENOMEM);
2577
2578 mutex_init(&req->r_fill_mutex);
2579 req->r_mdsc = mdsc;
2580 req->r_started = jiffies;
2581 req->r_start_latency = ktime_get();
2582 req->r_resend_mds = -1;
2583 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
2584 INIT_LIST_HEAD(&req->r_unsafe_target_item);
2585 req->r_fmode = -1;
2586 req->r_feature_needed = -1;
2587 kref_init(&req->r_kref);
2588 RB_CLEAR_NODE(&req->r_node);
2589 INIT_LIST_HEAD(&req->r_wait);
2590 init_completion(&req->r_completion);
2591 init_completion(&req->r_safe_completion);
2592 INIT_LIST_HEAD(&req->r_unsafe_item);
2593
2594 ktime_get_coarse_real_ts64(&req->r_stamp);
2595
2596 req->r_op = op;
2597 req->r_direct_mode = mode;
2598 return req;
2599 }
2600
2601 /*
2602 * return oldest (lowest) request, tid in request tree, 0 if none.
2603 *
2604 * called under mdsc->mutex.
2605 */
__get_oldest_req(struct ceph_mds_client * mdsc)2606 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
2607 {
2608 if (RB_EMPTY_ROOT(&mdsc->request_tree))
2609 return NULL;
2610 return rb_entry(rb_first(&mdsc->request_tree),
2611 struct ceph_mds_request, r_node);
2612 }
2613
__get_oldest_tid(struct ceph_mds_client * mdsc)2614 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
2615 {
2616 return mdsc->oldest_tid;
2617 }
2618
2619 #if IS_ENABLED(CONFIG_FS_ENCRYPTION)
get_fscrypt_altname(const struct ceph_mds_request * req,u32 * plen)2620 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen)
2621 {
2622 struct inode *dir = req->r_parent;
2623 struct dentry *dentry = req->r_dentry;
2624 u8 *cryptbuf = NULL;
2625 u32 len = 0;
2626 int ret = 0;
2627
2628 /* only encode if we have parent and dentry */
2629 if (!dir || !dentry)
2630 goto success;
2631
2632 /* No-op unless this is encrypted */
2633 if (!IS_ENCRYPTED(dir))
2634 goto success;
2635
2636 ret = ceph_fscrypt_prepare_readdir(dir);
2637 if (ret < 0)
2638 return ERR_PTR(ret);
2639
2640 /* No key? Just ignore it. */
2641 if (!fscrypt_has_encryption_key(dir))
2642 goto success;
2643
2644 if (!fscrypt_fname_encrypted_size(dir, dentry->d_name.len, NAME_MAX,
2645 &len)) {
2646 WARN_ON_ONCE(1);
2647 return ERR_PTR(-ENAMETOOLONG);
2648 }
2649
2650 /* No need to append altname if name is short enough */
2651 if (len <= CEPH_NOHASH_NAME_MAX) {
2652 len = 0;
2653 goto success;
2654 }
2655
2656 cryptbuf = kmalloc(len, GFP_KERNEL);
2657 if (!cryptbuf)
2658 return ERR_PTR(-ENOMEM);
2659
2660 ret = fscrypt_fname_encrypt(dir, &dentry->d_name, cryptbuf, len);
2661 if (ret) {
2662 kfree(cryptbuf);
2663 return ERR_PTR(ret);
2664 }
2665 success:
2666 *plen = len;
2667 return cryptbuf;
2668 }
2669 #else
get_fscrypt_altname(const struct ceph_mds_request * req,u32 * plen)2670 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen)
2671 {
2672 *plen = 0;
2673 return NULL;
2674 }
2675 #endif
2676
2677 /**
2678 * ceph_mdsc_build_path - build a path string to a given dentry
2679 * @mdsc: mds client
2680 * @dentry: dentry to which path should be built
2681 * @plen: returned length of string
2682 * @pbase: returned base inode number
2683 * @for_wire: is this path going to be sent to the MDS?
2684 *
2685 * Build a string that represents the path to the dentry. This is mostly called
2686 * for two different purposes:
2687 *
2688 * 1) we need to build a path string to send to the MDS (for_wire == true)
2689 * 2) we need a path string for local presentation (e.g. debugfs)
2690 * (for_wire == false)
2691 *
2692 * The path is built in reverse, starting with the dentry. Walk back up toward
2693 * the root, building the path until the first non-snapped inode is reached
2694 * (for_wire) or the root inode is reached (!for_wire).
2695 *
2696 * Encode hidden .snap dirs as a double /, i.e.
2697 * foo/.snap/bar -> foo//bar
2698 */
ceph_mdsc_build_path(struct ceph_mds_client * mdsc,struct dentry * dentry,int * plen,u64 * pbase,int for_wire)2699 char *ceph_mdsc_build_path(struct ceph_mds_client *mdsc, struct dentry *dentry,
2700 int *plen, u64 *pbase, int for_wire)
2701 {
2702 struct ceph_client *cl = mdsc->fsc->client;
2703 struct dentry *cur;
2704 struct inode *inode;
2705 char *path;
2706 int pos;
2707 unsigned seq;
2708 u64 base;
2709
2710 if (!dentry)
2711 return ERR_PTR(-EINVAL);
2712
2713 path = __getname();
2714 if (!path)
2715 return ERR_PTR(-ENOMEM);
2716 retry:
2717 pos = PATH_MAX - 1;
2718 path[pos] = '\0';
2719
2720 seq = read_seqbegin(&rename_lock);
2721 cur = dget(dentry);
2722 for (;;) {
2723 struct dentry *parent;
2724
2725 spin_lock(&cur->d_lock);
2726 inode = d_inode(cur);
2727 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
2728 doutc(cl, "path+%d: %p SNAPDIR\n", pos, cur);
2729 spin_unlock(&cur->d_lock);
2730 parent = dget_parent(cur);
2731 } else if (for_wire && inode && dentry != cur &&
2732 ceph_snap(inode) == CEPH_NOSNAP) {
2733 spin_unlock(&cur->d_lock);
2734 pos++; /* get rid of any prepended '/' */
2735 break;
2736 } else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) {
2737 pos -= cur->d_name.len;
2738 if (pos < 0) {
2739 spin_unlock(&cur->d_lock);
2740 break;
2741 }
2742 memcpy(path + pos, cur->d_name.name, cur->d_name.len);
2743 spin_unlock(&cur->d_lock);
2744 parent = dget_parent(cur);
2745 } else {
2746 int len, ret;
2747 char buf[NAME_MAX];
2748
2749 /*
2750 * Proactively copy name into buf, in case we need to
2751 * present it as-is.
2752 */
2753 memcpy(buf, cur->d_name.name, cur->d_name.len);
2754 len = cur->d_name.len;
2755 spin_unlock(&cur->d_lock);
2756 parent = dget_parent(cur);
2757
2758 ret = ceph_fscrypt_prepare_readdir(d_inode(parent));
2759 if (ret < 0) {
2760 dput(parent);
2761 dput(cur);
2762 return ERR_PTR(ret);
2763 }
2764
2765 if (fscrypt_has_encryption_key(d_inode(parent))) {
2766 len = ceph_encode_encrypted_fname(d_inode(parent),
2767 cur, buf);
2768 if (len < 0) {
2769 dput(parent);
2770 dput(cur);
2771 return ERR_PTR(len);
2772 }
2773 }
2774 pos -= len;
2775 if (pos < 0) {
2776 dput(parent);
2777 break;
2778 }
2779 memcpy(path + pos, buf, len);
2780 }
2781 dput(cur);
2782 cur = parent;
2783
2784 /* Are we at the root? */
2785 if (IS_ROOT(cur))
2786 break;
2787
2788 /* Are we out of buffer? */
2789 if (--pos < 0)
2790 break;
2791
2792 path[pos] = '/';
2793 }
2794 inode = d_inode(cur);
2795 base = inode ? ceph_ino(inode) : 0;
2796 dput(cur);
2797
2798 if (read_seqretry(&rename_lock, seq))
2799 goto retry;
2800
2801 if (pos < 0) {
2802 /*
2803 * The path is longer than PATH_MAX and this function
2804 * cannot ever succeed. Creating paths that long is
2805 * possible with Ceph, but Linux cannot use them.
2806 */
2807 return ERR_PTR(-ENAMETOOLONG);
2808 }
2809
2810 *pbase = base;
2811 *plen = PATH_MAX - 1 - pos;
2812 doutc(cl, "on %p %d built %llx '%.*s'\n", dentry, d_count(dentry),
2813 base, *plen, path + pos);
2814 return path + pos;
2815 }
2816
build_dentry_path(struct ceph_mds_client * mdsc,struct dentry * dentry,struct inode * dir,const char ** ppath,int * ppathlen,u64 * pino,bool * pfreepath,bool parent_locked)2817 static int build_dentry_path(struct ceph_mds_client *mdsc, struct dentry *dentry,
2818 struct inode *dir, const char **ppath, int *ppathlen,
2819 u64 *pino, bool *pfreepath, bool parent_locked)
2820 {
2821 char *path;
2822
2823 rcu_read_lock();
2824 if (!dir)
2825 dir = d_inode_rcu(dentry->d_parent);
2826 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP &&
2827 !IS_ENCRYPTED(dir)) {
2828 *pino = ceph_ino(dir);
2829 rcu_read_unlock();
2830 *ppath = dentry->d_name.name;
2831 *ppathlen = dentry->d_name.len;
2832 return 0;
2833 }
2834 rcu_read_unlock();
2835 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1);
2836 if (IS_ERR(path))
2837 return PTR_ERR(path);
2838 *ppath = path;
2839 *pfreepath = true;
2840 return 0;
2841 }
2842
build_inode_path(struct inode * inode,const char ** ppath,int * ppathlen,u64 * pino,bool * pfreepath)2843 static int build_inode_path(struct inode *inode,
2844 const char **ppath, int *ppathlen, u64 *pino,
2845 bool *pfreepath)
2846 {
2847 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
2848 struct dentry *dentry;
2849 char *path;
2850
2851 if (ceph_snap(inode) == CEPH_NOSNAP) {
2852 *pino = ceph_ino(inode);
2853 *ppathlen = 0;
2854 return 0;
2855 }
2856 dentry = d_find_alias(inode);
2857 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1);
2858 dput(dentry);
2859 if (IS_ERR(path))
2860 return PTR_ERR(path);
2861 *ppath = path;
2862 *pfreepath = true;
2863 return 0;
2864 }
2865
2866 /*
2867 * request arguments may be specified via an inode *, a dentry *, or
2868 * an explicit ino+path.
2869 */
set_request_path_attr(struct ceph_mds_client * mdsc,struct inode * rinode,struct dentry * rdentry,struct inode * rdiri,const char * rpath,u64 rino,const char ** ppath,int * pathlen,u64 * ino,bool * freepath,bool parent_locked)2870 static int set_request_path_attr(struct ceph_mds_client *mdsc, struct inode *rinode,
2871 struct dentry *rdentry, struct inode *rdiri,
2872 const char *rpath, u64 rino, const char **ppath,
2873 int *pathlen, u64 *ino, bool *freepath,
2874 bool parent_locked)
2875 {
2876 struct ceph_client *cl = mdsc->fsc->client;
2877 int r = 0;
2878
2879 if (rinode) {
2880 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
2881 doutc(cl, " inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
2882 ceph_snap(rinode));
2883 } else if (rdentry) {
2884 r = build_dentry_path(mdsc, rdentry, rdiri, ppath, pathlen, ino,
2885 freepath, parent_locked);
2886 doutc(cl, " dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, *ppath);
2887 } else if (rpath || rino) {
2888 *ino = rino;
2889 *ppath = rpath;
2890 *pathlen = rpath ? strlen(rpath) : 0;
2891 doutc(cl, " path %.*s\n", *pathlen, rpath);
2892 }
2893
2894 return r;
2895 }
2896
encode_mclientrequest_tail(void ** p,const struct ceph_mds_request * req)2897 static void encode_mclientrequest_tail(void **p,
2898 const struct ceph_mds_request *req)
2899 {
2900 struct ceph_timespec ts;
2901 int i;
2902
2903 ceph_encode_timespec64(&ts, &req->r_stamp);
2904 ceph_encode_copy(p, &ts, sizeof(ts));
2905
2906 /* v4: gid_list */
2907 ceph_encode_32(p, req->r_cred->group_info->ngroups);
2908 for (i = 0; i < req->r_cred->group_info->ngroups; i++)
2909 ceph_encode_64(p, from_kgid(&init_user_ns,
2910 req->r_cred->group_info->gid[i]));
2911
2912 /* v5: altname */
2913 ceph_encode_32(p, req->r_altname_len);
2914 ceph_encode_copy(p, req->r_altname, req->r_altname_len);
2915
2916 /* v6: fscrypt_auth and fscrypt_file */
2917 if (req->r_fscrypt_auth) {
2918 u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth);
2919
2920 ceph_encode_32(p, authlen);
2921 ceph_encode_copy(p, req->r_fscrypt_auth, authlen);
2922 } else {
2923 ceph_encode_32(p, 0);
2924 }
2925 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) {
2926 ceph_encode_32(p, sizeof(__le64));
2927 ceph_encode_64(p, req->r_fscrypt_file);
2928 } else {
2929 ceph_encode_32(p, 0);
2930 }
2931 }
2932
mds_supported_head_version(struct ceph_mds_session * session)2933 static inline u16 mds_supported_head_version(struct ceph_mds_session *session)
2934 {
2935 if (!test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, &session->s_features))
2936 return 1;
2937
2938 if (!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features))
2939 return 2;
2940
2941 return CEPH_MDS_REQUEST_HEAD_VERSION;
2942 }
2943
2944 static struct ceph_mds_request_head_legacy *
find_legacy_request_head(void * p,u64 features)2945 find_legacy_request_head(void *p, u64 features)
2946 {
2947 bool legacy = !(features & CEPH_FEATURE_FS_BTIME);
2948 struct ceph_mds_request_head_old *ohead;
2949
2950 if (legacy)
2951 return (struct ceph_mds_request_head_legacy *)p;
2952 ohead = (struct ceph_mds_request_head_old *)p;
2953 return (struct ceph_mds_request_head_legacy *)&ohead->oldest_client_tid;
2954 }
2955
2956 /*
2957 * called under mdsc->mutex
2958 */
create_request_message(struct ceph_mds_session * session,struct ceph_mds_request * req,bool drop_cap_releases)2959 static struct ceph_msg *create_request_message(struct ceph_mds_session *session,
2960 struct ceph_mds_request *req,
2961 bool drop_cap_releases)
2962 {
2963 int mds = session->s_mds;
2964 struct ceph_mds_client *mdsc = session->s_mdsc;
2965 struct ceph_client *cl = mdsc->fsc->client;
2966 struct ceph_msg *msg;
2967 struct ceph_mds_request_head_legacy *lhead;
2968 const char *path1 = NULL;
2969 const char *path2 = NULL;
2970 u64 ino1 = 0, ino2 = 0;
2971 int pathlen1 = 0, pathlen2 = 0;
2972 bool freepath1 = false, freepath2 = false;
2973 struct dentry *old_dentry = NULL;
2974 int len;
2975 u16 releases;
2976 void *p, *end;
2977 int ret;
2978 bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME);
2979 u16 request_head_version = mds_supported_head_version(session);
2980 kuid_t caller_fsuid = req->r_cred->fsuid;
2981 kgid_t caller_fsgid = req->r_cred->fsgid;
2982
2983 ret = set_request_path_attr(mdsc, req->r_inode, req->r_dentry,
2984 req->r_parent, req->r_path1, req->r_ino1.ino,
2985 &path1, &pathlen1, &ino1, &freepath1,
2986 test_bit(CEPH_MDS_R_PARENT_LOCKED,
2987 &req->r_req_flags));
2988 if (ret < 0) {
2989 msg = ERR_PTR(ret);
2990 goto out;
2991 }
2992
2993 /* If r_old_dentry is set, then assume that its parent is locked */
2994 if (req->r_old_dentry &&
2995 !(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED))
2996 old_dentry = req->r_old_dentry;
2997 ret = set_request_path_attr(mdsc, NULL, old_dentry,
2998 req->r_old_dentry_dir,
2999 req->r_path2, req->r_ino2.ino,
3000 &path2, &pathlen2, &ino2, &freepath2, true);
3001 if (ret < 0) {
3002 msg = ERR_PTR(ret);
3003 goto out_free1;
3004 }
3005
3006 req->r_altname = get_fscrypt_altname(req, &req->r_altname_len);
3007 if (IS_ERR(req->r_altname)) {
3008 msg = ERR_CAST(req->r_altname);
3009 req->r_altname = NULL;
3010 goto out_free2;
3011 }
3012
3013 /*
3014 * For old cephs without supporting the 32bit retry/fwd feature
3015 * it will copy the raw memories directly when decoding the
3016 * requests. While new cephs will decode the head depending the
3017 * version member, so we need to make sure it will be compatible
3018 * with them both.
3019 */
3020 if (legacy)
3021 len = sizeof(struct ceph_mds_request_head_legacy);
3022 else if (request_head_version == 1)
3023 len = sizeof(struct ceph_mds_request_head_old);
3024 else if (request_head_version == 2)
3025 len = offsetofend(struct ceph_mds_request_head, ext_num_fwd);
3026 else
3027 len = sizeof(struct ceph_mds_request_head);
3028
3029 /* filepaths */
3030 len += 2 * (1 + sizeof(u32) + sizeof(u64));
3031 len += pathlen1 + pathlen2;
3032
3033 /* cap releases */
3034 len += sizeof(struct ceph_mds_request_release) *
3035 (!!req->r_inode_drop + !!req->r_dentry_drop +
3036 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
3037
3038 if (req->r_dentry_drop)
3039 len += pathlen1;
3040 if (req->r_old_dentry_drop)
3041 len += pathlen2;
3042
3043 /* MClientRequest tail */
3044
3045 /* req->r_stamp */
3046 len += sizeof(struct ceph_timespec);
3047
3048 /* gid list */
3049 len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups);
3050
3051 /* alternate name */
3052 len += sizeof(u32) + req->r_altname_len;
3053
3054 /* fscrypt_auth */
3055 len += sizeof(u32); // fscrypt_auth
3056 if (req->r_fscrypt_auth)
3057 len += ceph_fscrypt_auth_len(req->r_fscrypt_auth);
3058
3059 /* fscrypt_file */
3060 len += sizeof(u32);
3061 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags))
3062 len += sizeof(__le64);
3063
3064 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false);
3065 if (!msg) {
3066 msg = ERR_PTR(-ENOMEM);
3067 goto out_free2;
3068 }
3069
3070 msg->hdr.tid = cpu_to_le64(req->r_tid);
3071
3072 lhead = find_legacy_request_head(msg->front.iov_base,
3073 session->s_con.peer_features);
3074
3075 if ((req->r_mnt_idmap != &nop_mnt_idmap) &&
3076 !test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) {
3077 WARN_ON_ONCE(!IS_CEPH_MDS_OP_NEWINODE(req->r_op));
3078
3079 if (enable_unsafe_idmap) {
3080 pr_warn_once_client(cl,
3081 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID"
3082 " is not supported by MDS. UID/GID-based restrictions may"
3083 " not work properly.\n");
3084
3085 caller_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns,
3086 VFSUIDT_INIT(req->r_cred->fsuid));
3087 caller_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns,
3088 VFSGIDT_INIT(req->r_cred->fsgid));
3089 } else {
3090 pr_err_ratelimited_client(cl,
3091 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID"
3092 " is not supported by MDS. Fail request with -EIO.\n");
3093
3094 ret = -EIO;
3095 goto out_err;
3096 }
3097 }
3098
3099 /*
3100 * The ceph_mds_request_head_legacy didn't contain a version field, and
3101 * one was added when we moved the message version from 3->4.
3102 */
3103 if (legacy) {
3104 msg->hdr.version = cpu_to_le16(3);
3105 p = msg->front.iov_base + sizeof(*lhead);
3106 } else if (request_head_version == 1) {
3107 struct ceph_mds_request_head_old *ohead = msg->front.iov_base;
3108
3109 msg->hdr.version = cpu_to_le16(4);
3110 ohead->version = cpu_to_le16(1);
3111 p = msg->front.iov_base + sizeof(*ohead);
3112 } else if (request_head_version == 2) {
3113 struct ceph_mds_request_head *nhead = msg->front.iov_base;
3114
3115 msg->hdr.version = cpu_to_le16(6);
3116 nhead->version = cpu_to_le16(2);
3117
3118 p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, ext_num_fwd);
3119 } else {
3120 struct ceph_mds_request_head *nhead = msg->front.iov_base;
3121 kuid_t owner_fsuid;
3122 kgid_t owner_fsgid;
3123
3124 msg->hdr.version = cpu_to_le16(6);
3125 nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION);
3126 nhead->struct_len = cpu_to_le32(sizeof(struct ceph_mds_request_head));
3127
3128 if (IS_CEPH_MDS_OP_NEWINODE(req->r_op)) {
3129 owner_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns,
3130 VFSUIDT_INIT(req->r_cred->fsuid));
3131 owner_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns,
3132 VFSGIDT_INIT(req->r_cred->fsgid));
3133 nhead->owner_uid = cpu_to_le32(from_kuid(&init_user_ns, owner_fsuid));
3134 nhead->owner_gid = cpu_to_le32(from_kgid(&init_user_ns, owner_fsgid));
3135 } else {
3136 nhead->owner_uid = cpu_to_le32(-1);
3137 nhead->owner_gid = cpu_to_le32(-1);
3138 }
3139
3140 p = msg->front.iov_base + sizeof(*nhead);
3141 }
3142
3143 end = msg->front.iov_base + msg->front.iov_len;
3144
3145 lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
3146 lhead->op = cpu_to_le32(req->r_op);
3147 lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns,
3148 caller_fsuid));
3149 lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns,
3150 caller_fsgid));
3151 lhead->ino = cpu_to_le64(req->r_deleg_ino);
3152 lhead->args = req->r_args;
3153
3154 ceph_encode_filepath(&p, end, ino1, path1);
3155 ceph_encode_filepath(&p, end, ino2, path2);
3156
3157 /* make note of release offset, in case we need to replay */
3158 req->r_request_release_offset = p - msg->front.iov_base;
3159
3160 /* cap releases */
3161 releases = 0;
3162 if (req->r_inode_drop)
3163 releases += ceph_encode_inode_release(&p,
3164 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
3165 mds, req->r_inode_drop, req->r_inode_unless,
3166 req->r_op == CEPH_MDS_OP_READDIR);
3167 if (req->r_dentry_drop) {
3168 ret = ceph_encode_dentry_release(&p, req->r_dentry,
3169 req->r_parent, mds, req->r_dentry_drop,
3170 req->r_dentry_unless);
3171 if (ret < 0)
3172 goto out_err;
3173 releases += ret;
3174 }
3175 if (req->r_old_dentry_drop) {
3176 ret = ceph_encode_dentry_release(&p, req->r_old_dentry,
3177 req->r_old_dentry_dir, mds,
3178 req->r_old_dentry_drop,
3179 req->r_old_dentry_unless);
3180 if (ret < 0)
3181 goto out_err;
3182 releases += ret;
3183 }
3184 if (req->r_old_inode_drop)
3185 releases += ceph_encode_inode_release(&p,
3186 d_inode(req->r_old_dentry),
3187 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
3188
3189 if (drop_cap_releases) {
3190 releases = 0;
3191 p = msg->front.iov_base + req->r_request_release_offset;
3192 }
3193
3194 lhead->num_releases = cpu_to_le16(releases);
3195
3196 encode_mclientrequest_tail(&p, req);
3197
3198 if (WARN_ON_ONCE(p > end)) {
3199 ceph_msg_put(msg);
3200 msg = ERR_PTR(-ERANGE);
3201 goto out_free2;
3202 }
3203
3204 msg->front.iov_len = p - msg->front.iov_base;
3205 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
3206
3207 if (req->r_pagelist) {
3208 struct ceph_pagelist *pagelist = req->r_pagelist;
3209 ceph_msg_data_add_pagelist(msg, pagelist);
3210 msg->hdr.data_len = cpu_to_le32(pagelist->length);
3211 } else {
3212 msg->hdr.data_len = 0;
3213 }
3214
3215 msg->hdr.data_off = cpu_to_le16(0);
3216
3217 out_free2:
3218 if (freepath2)
3219 ceph_mdsc_free_path((char *)path2, pathlen2);
3220 out_free1:
3221 if (freepath1)
3222 ceph_mdsc_free_path((char *)path1, pathlen1);
3223 out:
3224 return msg;
3225 out_err:
3226 ceph_msg_put(msg);
3227 msg = ERR_PTR(ret);
3228 goto out_free2;
3229 }
3230
3231 /*
3232 * called under mdsc->mutex if error, under no mutex if
3233 * success.
3234 */
complete_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)3235 static void complete_request(struct ceph_mds_client *mdsc,
3236 struct ceph_mds_request *req)
3237 {
3238 req->r_end_latency = ktime_get();
3239
3240 if (req->r_callback)
3241 req->r_callback(mdsc, req);
3242 complete_all(&req->r_completion);
3243 }
3244
3245 /*
3246 * called under mdsc->mutex
3247 */
__prepare_send_request(struct ceph_mds_session * session,struct ceph_mds_request * req,bool drop_cap_releases)3248 static int __prepare_send_request(struct ceph_mds_session *session,
3249 struct ceph_mds_request *req,
3250 bool drop_cap_releases)
3251 {
3252 int mds = session->s_mds;
3253 struct ceph_mds_client *mdsc = session->s_mdsc;
3254 struct ceph_client *cl = mdsc->fsc->client;
3255 struct ceph_mds_request_head_legacy *lhead;
3256 struct ceph_mds_request_head *nhead;
3257 struct ceph_msg *msg;
3258 int flags = 0, old_max_retry;
3259 bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD,
3260 &session->s_features);
3261
3262 /*
3263 * Avoid infinite retrying after overflow. The client will
3264 * increase the retry count and if the MDS is old version,
3265 * so we limit to retry at most 256 times.
3266 */
3267 if (req->r_attempts) {
3268 old_max_retry = sizeof_field(struct ceph_mds_request_head_old,
3269 num_retry);
3270 old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE);
3271 if ((old_version && req->r_attempts >= old_max_retry) ||
3272 ((uint32_t)req->r_attempts >= U32_MAX)) {
3273 pr_warn_ratelimited_client(cl, "request tid %llu seq overflow\n",
3274 req->r_tid);
3275 return -EMULTIHOP;
3276 }
3277 }
3278
3279 req->r_attempts++;
3280 if (req->r_inode) {
3281 struct ceph_cap *cap =
3282 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
3283
3284 if (cap)
3285 req->r_sent_on_mseq = cap->mseq;
3286 else
3287 req->r_sent_on_mseq = -1;
3288 }
3289 doutc(cl, "%p tid %lld %s (attempt %d)\n", req, req->r_tid,
3290 ceph_mds_op_name(req->r_op), req->r_attempts);
3291
3292 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
3293 void *p;
3294
3295 /*
3296 * Replay. Do not regenerate message (and rebuild
3297 * paths, etc.); just use the original message.
3298 * Rebuilding paths will break for renames because
3299 * d_move mangles the src name.
3300 */
3301 msg = req->r_request;
3302 lhead = find_legacy_request_head(msg->front.iov_base,
3303 session->s_con.peer_features);
3304
3305 flags = le32_to_cpu(lhead->flags);
3306 flags |= CEPH_MDS_FLAG_REPLAY;
3307 lhead->flags = cpu_to_le32(flags);
3308
3309 if (req->r_target_inode)
3310 lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
3311
3312 lhead->num_retry = req->r_attempts - 1;
3313 if (!old_version) {
3314 nhead = (struct ceph_mds_request_head*)msg->front.iov_base;
3315 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1);
3316 }
3317
3318 /* remove cap/dentry releases from message */
3319 lhead->num_releases = 0;
3320
3321 p = msg->front.iov_base + req->r_request_release_offset;
3322 encode_mclientrequest_tail(&p, req);
3323
3324 msg->front.iov_len = p - msg->front.iov_base;
3325 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
3326 return 0;
3327 }
3328
3329 if (req->r_request) {
3330 ceph_msg_put(req->r_request);
3331 req->r_request = NULL;
3332 }
3333 msg = create_request_message(session, req, drop_cap_releases);
3334 if (IS_ERR(msg)) {
3335 req->r_err = PTR_ERR(msg);
3336 return PTR_ERR(msg);
3337 }
3338 req->r_request = msg;
3339
3340 lhead = find_legacy_request_head(msg->front.iov_base,
3341 session->s_con.peer_features);
3342 lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
3343 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
3344 flags |= CEPH_MDS_FLAG_REPLAY;
3345 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags))
3346 flags |= CEPH_MDS_FLAG_ASYNC;
3347 if (req->r_parent)
3348 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
3349 lhead->flags = cpu_to_le32(flags);
3350 lhead->num_fwd = req->r_num_fwd;
3351 lhead->num_retry = req->r_attempts - 1;
3352 if (!old_version) {
3353 nhead = (struct ceph_mds_request_head*)msg->front.iov_base;
3354 nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd);
3355 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1);
3356 }
3357
3358 doutc(cl, " r_parent = %p\n", req->r_parent);
3359 return 0;
3360 }
3361
3362 /*
3363 * called under mdsc->mutex
3364 */
__send_request(struct ceph_mds_session * session,struct ceph_mds_request * req,bool drop_cap_releases)3365 static int __send_request(struct ceph_mds_session *session,
3366 struct ceph_mds_request *req,
3367 bool drop_cap_releases)
3368 {
3369 int err;
3370
3371 err = __prepare_send_request(session, req, drop_cap_releases);
3372 if (!err) {
3373 ceph_msg_get(req->r_request);
3374 ceph_con_send(&session->s_con, req->r_request);
3375 }
3376
3377 return err;
3378 }
3379
3380 /*
3381 * send request, or put it on the appropriate wait list.
3382 */
__do_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)3383 static void __do_request(struct ceph_mds_client *mdsc,
3384 struct ceph_mds_request *req)
3385 {
3386 struct ceph_client *cl = mdsc->fsc->client;
3387 struct ceph_mds_session *session = NULL;
3388 int mds = -1;
3389 int err = 0;
3390 bool random;
3391
3392 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
3393 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
3394 __unregister_request(mdsc, req);
3395 return;
3396 }
3397
3398 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) {
3399 doutc(cl, "metadata corrupted\n");
3400 err = -EIO;
3401 goto finish;
3402 }
3403 if (req->r_timeout &&
3404 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
3405 doutc(cl, "timed out\n");
3406 err = -ETIMEDOUT;
3407 goto finish;
3408 }
3409 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
3410 doutc(cl, "forced umount\n");
3411 err = -EIO;
3412 goto finish;
3413 }
3414 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
3415 if (mdsc->mdsmap_err) {
3416 err = mdsc->mdsmap_err;
3417 doutc(cl, "mdsmap err %d\n", err);
3418 goto finish;
3419 }
3420 if (mdsc->mdsmap->m_epoch == 0) {
3421 doutc(cl, "no mdsmap, waiting for map\n");
3422 list_add(&req->r_wait, &mdsc->waiting_for_map);
3423 return;
3424 }
3425 if (!(mdsc->fsc->mount_options->flags &
3426 CEPH_MOUNT_OPT_MOUNTWAIT) &&
3427 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
3428 err = -EHOSTUNREACH;
3429 goto finish;
3430 }
3431 }
3432
3433 put_request_session(req);
3434
3435 mds = __choose_mds(mdsc, req, &random);
3436 if (mds < 0 ||
3437 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
3438 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) {
3439 err = -EJUKEBOX;
3440 goto finish;
3441 }
3442 doutc(cl, "no mds or not active, waiting for map\n");
3443 list_add(&req->r_wait, &mdsc->waiting_for_map);
3444 return;
3445 }
3446
3447 /* get, open session */
3448 session = __ceph_lookup_mds_session(mdsc, mds);
3449 if (!session) {
3450 session = register_session(mdsc, mds);
3451 if (IS_ERR(session)) {
3452 err = PTR_ERR(session);
3453 goto finish;
3454 }
3455 }
3456 req->r_session = ceph_get_mds_session(session);
3457
3458 doutc(cl, "mds%d session %p state %s\n", mds, session,
3459 ceph_session_state_name(session->s_state));
3460
3461 /*
3462 * The old ceph will crash the MDSs when see unknown OPs
3463 */
3464 if (req->r_feature_needed > 0 &&
3465 !test_bit(req->r_feature_needed, &session->s_features)) {
3466 err = -EOPNOTSUPP;
3467 goto out_session;
3468 }
3469
3470 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
3471 session->s_state != CEPH_MDS_SESSION_HUNG) {
3472 /*
3473 * We cannot queue async requests since the caps and delegated
3474 * inodes are bound to the session. Just return -EJUKEBOX and
3475 * let the caller retry a sync request in that case.
3476 */
3477 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) {
3478 err = -EJUKEBOX;
3479 goto out_session;
3480 }
3481
3482 /*
3483 * If the session has been REJECTED, then return a hard error,
3484 * unless it's a CLEANRECOVER mount, in which case we'll queue
3485 * it to the mdsc queue.
3486 */
3487 if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
3488 if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER))
3489 list_add(&req->r_wait, &mdsc->waiting_for_map);
3490 else
3491 err = -EACCES;
3492 goto out_session;
3493 }
3494
3495 if (session->s_state == CEPH_MDS_SESSION_NEW ||
3496 session->s_state == CEPH_MDS_SESSION_CLOSING) {
3497 err = __open_session(mdsc, session);
3498 if (err)
3499 goto out_session;
3500 /* retry the same mds later */
3501 if (random)
3502 req->r_resend_mds = mds;
3503 }
3504 list_add(&req->r_wait, &session->s_waiting);
3505 goto out_session;
3506 }
3507
3508 /* send request */
3509 req->r_resend_mds = -1; /* forget any previous mds hint */
3510
3511 if (req->r_request_started == 0) /* note request start time */
3512 req->r_request_started = jiffies;
3513
3514 /*
3515 * For async create we will choose the auth MDS of frag in parent
3516 * directory to send the request and usually this works fine, but
3517 * if the migrated the dirtory to another MDS before it could handle
3518 * it the request will be forwarded.
3519 *
3520 * And then the auth cap will be changed.
3521 */
3522 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) {
3523 struct ceph_dentry_info *di = ceph_dentry(req->r_dentry);
3524 struct ceph_inode_info *ci;
3525 struct ceph_cap *cap;
3526
3527 /*
3528 * The request maybe handled very fast and the new inode
3529 * hasn't been linked to the dentry yet. We need to wait
3530 * for the ceph_finish_async_create(), which shouldn't be
3531 * stuck too long or fail in thoery, to finish when forwarding
3532 * the request.
3533 */
3534 if (!d_inode(req->r_dentry)) {
3535 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT,
3536 TASK_KILLABLE);
3537 if (err) {
3538 mutex_lock(&req->r_fill_mutex);
3539 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
3540 mutex_unlock(&req->r_fill_mutex);
3541 goto out_session;
3542 }
3543 }
3544
3545 ci = ceph_inode(d_inode(req->r_dentry));
3546
3547 spin_lock(&ci->i_ceph_lock);
3548 cap = ci->i_auth_cap;
3549 if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) {
3550 doutc(cl, "session changed for auth cap %d -> %d\n",
3551 cap->session->s_mds, session->s_mds);
3552
3553 /* Remove the auth cap from old session */
3554 spin_lock(&cap->session->s_cap_lock);
3555 cap->session->s_nr_caps--;
3556 list_del_init(&cap->session_caps);
3557 spin_unlock(&cap->session->s_cap_lock);
3558
3559 /* Add the auth cap to the new session */
3560 cap->mds = mds;
3561 cap->session = session;
3562 spin_lock(&session->s_cap_lock);
3563 session->s_nr_caps++;
3564 list_add_tail(&cap->session_caps, &session->s_caps);
3565 spin_unlock(&session->s_cap_lock);
3566
3567 change_auth_cap_ses(ci, session);
3568 }
3569 spin_unlock(&ci->i_ceph_lock);
3570 }
3571
3572 err = __send_request(session, req, false);
3573
3574 out_session:
3575 ceph_put_mds_session(session);
3576 finish:
3577 if (err) {
3578 doutc(cl, "early error %d\n", err);
3579 req->r_err = err;
3580 complete_request(mdsc, req);
3581 __unregister_request(mdsc, req);
3582 }
3583 return;
3584 }
3585
3586 /*
3587 * called under mdsc->mutex
3588 */
__wake_requests(struct ceph_mds_client * mdsc,struct list_head * head)3589 static void __wake_requests(struct ceph_mds_client *mdsc,
3590 struct list_head *head)
3591 {
3592 struct ceph_client *cl = mdsc->fsc->client;
3593 struct ceph_mds_request *req;
3594 LIST_HEAD(tmp_list);
3595
3596 list_splice_init(head, &tmp_list);
3597
3598 while (!list_empty(&tmp_list)) {
3599 req = list_entry(tmp_list.next,
3600 struct ceph_mds_request, r_wait);
3601 list_del_init(&req->r_wait);
3602 doutc(cl, " wake request %p tid %llu\n", req,
3603 req->r_tid);
3604 __do_request(mdsc, req);
3605 }
3606 }
3607
3608 /*
3609 * Wake up threads with requests pending for @mds, so that they can
3610 * resubmit their requests to a possibly different mds.
3611 */
kick_requests(struct ceph_mds_client * mdsc,int mds)3612 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
3613 {
3614 struct ceph_client *cl = mdsc->fsc->client;
3615 struct ceph_mds_request *req;
3616 struct rb_node *p = rb_first(&mdsc->request_tree);
3617
3618 doutc(cl, "kick_requests mds%d\n", mds);
3619 while (p) {
3620 req = rb_entry(p, struct ceph_mds_request, r_node);
3621 p = rb_next(p);
3622 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
3623 continue;
3624 if (req->r_attempts > 0)
3625 continue; /* only new requests */
3626 if (req->r_session &&
3627 req->r_session->s_mds == mds) {
3628 doutc(cl, " kicking tid %llu\n", req->r_tid);
3629 list_del_init(&req->r_wait);
3630 __do_request(mdsc, req);
3631 }
3632 }
3633 }
3634
ceph_mdsc_submit_request(struct ceph_mds_client * mdsc,struct inode * dir,struct ceph_mds_request * req)3635 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir,
3636 struct ceph_mds_request *req)
3637 {
3638 struct ceph_client *cl = mdsc->fsc->client;
3639 int err = 0;
3640
3641 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
3642 if (req->r_inode)
3643 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
3644 if (req->r_parent) {
3645 struct ceph_inode_info *ci = ceph_inode(req->r_parent);
3646 int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ?
3647 CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD;
3648 spin_lock(&ci->i_ceph_lock);
3649 ceph_take_cap_refs(ci, CEPH_CAP_PIN, false);
3650 __ceph_touch_fmode(ci, mdsc, fmode);
3651 spin_unlock(&ci->i_ceph_lock);
3652 }
3653 if (req->r_old_dentry_dir)
3654 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
3655 CEPH_CAP_PIN);
3656
3657 if (req->r_inode) {
3658 err = ceph_wait_on_async_create(req->r_inode);
3659 if (err) {
3660 doutc(cl, "wait for async create returned: %d\n", err);
3661 return err;
3662 }
3663 }
3664
3665 if (!err && req->r_old_inode) {
3666 err = ceph_wait_on_async_create(req->r_old_inode);
3667 if (err) {
3668 doutc(cl, "wait for async create returned: %d\n", err);
3669 return err;
3670 }
3671 }
3672
3673 doutc(cl, "submit_request on %p for inode %p\n", req, dir);
3674 mutex_lock(&mdsc->mutex);
3675 __register_request(mdsc, req, dir);
3676 __do_request(mdsc, req);
3677 err = req->r_err;
3678 mutex_unlock(&mdsc->mutex);
3679 return err;
3680 }
3681
ceph_mdsc_wait_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,ceph_mds_request_wait_callback_t wait_func)3682 int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc,
3683 struct ceph_mds_request *req,
3684 ceph_mds_request_wait_callback_t wait_func)
3685 {
3686 struct ceph_client *cl = mdsc->fsc->client;
3687 int err;
3688
3689 /* wait */
3690 doutc(cl, "do_request waiting\n");
3691 if (wait_func) {
3692 err = wait_func(mdsc, req);
3693 } else {
3694 long timeleft = wait_for_completion_killable_timeout(
3695 &req->r_completion,
3696 ceph_timeout_jiffies(req->r_timeout));
3697 if (timeleft > 0)
3698 err = 0;
3699 else if (!timeleft)
3700 err = -ETIMEDOUT; /* timed out */
3701 else
3702 err = timeleft; /* killed */
3703 }
3704 doutc(cl, "do_request waited, got %d\n", err);
3705 mutex_lock(&mdsc->mutex);
3706
3707 /* only abort if we didn't race with a real reply */
3708 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
3709 err = le32_to_cpu(req->r_reply_info.head->result);
3710 } else if (err < 0) {
3711 doutc(cl, "aborted request %lld with %d\n", req->r_tid, err);
3712
3713 /*
3714 * ensure we aren't running concurrently with
3715 * ceph_fill_trace or ceph_readdir_prepopulate, which
3716 * rely on locks (dir mutex) held by our caller.
3717 */
3718 mutex_lock(&req->r_fill_mutex);
3719 req->r_err = err;
3720 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
3721 mutex_unlock(&req->r_fill_mutex);
3722
3723 if (req->r_parent &&
3724 (req->r_op & CEPH_MDS_OP_WRITE))
3725 ceph_invalidate_dir_request(req);
3726 } else {
3727 err = req->r_err;
3728 }
3729
3730 mutex_unlock(&mdsc->mutex);
3731 return err;
3732 }
3733
3734 /*
3735 * Synchrously perform an mds request. Take care of all of the
3736 * session setup, forwarding, retry details.
3737 */
ceph_mdsc_do_request(struct ceph_mds_client * mdsc,struct inode * dir,struct ceph_mds_request * req)3738 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
3739 struct inode *dir,
3740 struct ceph_mds_request *req)
3741 {
3742 struct ceph_client *cl = mdsc->fsc->client;
3743 int err;
3744
3745 doutc(cl, "do_request on %p\n", req);
3746
3747 /* issue */
3748 err = ceph_mdsc_submit_request(mdsc, dir, req);
3749 if (!err)
3750 err = ceph_mdsc_wait_request(mdsc, req, NULL);
3751 doutc(cl, "do_request %p done, result %d\n", req, err);
3752 return err;
3753 }
3754
3755 /*
3756 * Invalidate dir's completeness, dentry lease state on an aborted MDS
3757 * namespace request.
3758 */
ceph_invalidate_dir_request(struct ceph_mds_request * req)3759 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
3760 {
3761 struct inode *dir = req->r_parent;
3762 struct inode *old_dir = req->r_old_dentry_dir;
3763 struct ceph_client *cl = req->r_mdsc->fsc->client;
3764
3765 doutc(cl, "invalidate_dir_request %p %p (complete, lease(s))\n",
3766 dir, old_dir);
3767
3768 ceph_dir_clear_complete(dir);
3769 if (old_dir)
3770 ceph_dir_clear_complete(old_dir);
3771 if (req->r_dentry)
3772 ceph_invalidate_dentry_lease(req->r_dentry);
3773 if (req->r_old_dentry)
3774 ceph_invalidate_dentry_lease(req->r_old_dentry);
3775 }
3776
3777 /*
3778 * Handle mds reply.
3779 *
3780 * We take the session mutex and parse and process the reply immediately.
3781 * This preserves the logical ordering of replies, capabilities, etc., sent
3782 * by the MDS as they are applied to our local cache.
3783 */
handle_reply(struct ceph_mds_session * session,struct ceph_msg * msg)3784 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
3785 {
3786 struct ceph_mds_client *mdsc = session->s_mdsc;
3787 struct ceph_client *cl = mdsc->fsc->client;
3788 struct ceph_mds_request *req;
3789 struct ceph_mds_reply_head *head = msg->front.iov_base;
3790 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
3791 struct ceph_snap_realm *realm;
3792 u64 tid;
3793 int err, result;
3794 int mds = session->s_mds;
3795 bool close_sessions = false;
3796
3797 if (msg->front.iov_len < sizeof(*head)) {
3798 pr_err_client(cl, "got corrupt (short) reply\n");
3799 ceph_msg_dump(msg);
3800 return;
3801 }
3802
3803 /* get request, session */
3804 tid = le64_to_cpu(msg->hdr.tid);
3805 mutex_lock(&mdsc->mutex);
3806 req = lookup_get_request(mdsc, tid);
3807 if (!req) {
3808 doutc(cl, "on unknown tid %llu\n", tid);
3809 mutex_unlock(&mdsc->mutex);
3810 return;
3811 }
3812 doutc(cl, "handle_reply %p\n", req);
3813
3814 /* correct session? */
3815 if (req->r_session != session) {
3816 pr_err_client(cl, "got %llu on session mds%d not mds%d\n",
3817 tid, session->s_mds,
3818 req->r_session ? req->r_session->s_mds : -1);
3819 mutex_unlock(&mdsc->mutex);
3820 goto out;
3821 }
3822
3823 /* dup? */
3824 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
3825 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
3826 pr_warn_client(cl, "got a dup %s reply on %llu from mds%d\n",
3827 head->safe ? "safe" : "unsafe", tid, mds);
3828 mutex_unlock(&mdsc->mutex);
3829 goto out;
3830 }
3831 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
3832 pr_warn_client(cl, "got unsafe after safe on %llu from mds%d\n",
3833 tid, mds);
3834 mutex_unlock(&mdsc->mutex);
3835 goto out;
3836 }
3837
3838 result = le32_to_cpu(head->result);
3839
3840 if (head->safe) {
3841 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
3842 __unregister_request(mdsc, req);
3843
3844 /* last request during umount? */
3845 if (mdsc->stopping && !__get_oldest_req(mdsc))
3846 complete_all(&mdsc->safe_umount_waiters);
3847
3848 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
3849 /*
3850 * We already handled the unsafe response, now do the
3851 * cleanup. No need to examine the response; the MDS
3852 * doesn't include any result info in the safe
3853 * response. And even if it did, there is nothing
3854 * useful we could do with a revised return value.
3855 */
3856 doutc(cl, "got safe reply %llu, mds%d\n", tid, mds);
3857
3858 mutex_unlock(&mdsc->mutex);
3859 goto out;
3860 }
3861 } else {
3862 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
3863 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
3864 }
3865
3866 doutc(cl, "tid %lld result %d\n", tid, result);
3867 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features))
3868 err = parse_reply_info(session, msg, req, (u64)-1);
3869 else
3870 err = parse_reply_info(session, msg, req,
3871 session->s_con.peer_features);
3872 mutex_unlock(&mdsc->mutex);
3873
3874 /* Must find target inode outside of mutexes to avoid deadlocks */
3875 rinfo = &req->r_reply_info;
3876 if ((err >= 0) && rinfo->head->is_target) {
3877 struct inode *in = xchg(&req->r_new_inode, NULL);
3878 struct ceph_vino tvino = {
3879 .ino = le64_to_cpu(rinfo->targeti.in->ino),
3880 .snap = le64_to_cpu(rinfo->targeti.in->snapid)
3881 };
3882
3883 /*
3884 * If we ended up opening an existing inode, discard
3885 * r_new_inode
3886 */
3887 if (req->r_op == CEPH_MDS_OP_CREATE &&
3888 !req->r_reply_info.has_create_ino) {
3889 /* This should never happen on an async create */
3890 WARN_ON_ONCE(req->r_deleg_ino);
3891 iput(in);
3892 in = NULL;
3893 }
3894
3895 in = ceph_get_inode(mdsc->fsc->sb, tvino, in);
3896 if (IS_ERR(in)) {
3897 err = PTR_ERR(in);
3898 mutex_lock(&session->s_mutex);
3899 goto out_err;
3900 }
3901 req->r_target_inode = in;
3902 }
3903
3904 mutex_lock(&session->s_mutex);
3905 if (err < 0) {
3906 pr_err_client(cl, "got corrupt reply mds%d(tid:%lld)\n",
3907 mds, tid);
3908 ceph_msg_dump(msg);
3909 goto out_err;
3910 }
3911
3912 /* snap trace */
3913 realm = NULL;
3914 if (rinfo->snapblob_len) {
3915 down_write(&mdsc->snap_rwsem);
3916 err = ceph_update_snap_trace(mdsc, rinfo->snapblob,
3917 rinfo->snapblob + rinfo->snapblob_len,
3918 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
3919 &realm);
3920 if (err) {
3921 up_write(&mdsc->snap_rwsem);
3922 close_sessions = true;
3923 if (err == -EIO)
3924 ceph_msg_dump(msg);
3925 goto out_err;
3926 }
3927 downgrade_write(&mdsc->snap_rwsem);
3928 } else {
3929 down_read(&mdsc->snap_rwsem);
3930 }
3931
3932 /* insert trace into our cache */
3933 mutex_lock(&req->r_fill_mutex);
3934 current->journal_info = req;
3935 err = ceph_fill_trace(mdsc->fsc->sb, req);
3936 if (err == 0) {
3937 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
3938 req->r_op == CEPH_MDS_OP_LSSNAP))
3939 err = ceph_readdir_prepopulate(req, req->r_session);
3940 }
3941 current->journal_info = NULL;
3942 mutex_unlock(&req->r_fill_mutex);
3943
3944 up_read(&mdsc->snap_rwsem);
3945 if (realm)
3946 ceph_put_snap_realm(mdsc, realm);
3947
3948 if (err == 0) {
3949 if (req->r_target_inode &&
3950 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
3951 struct ceph_inode_info *ci =
3952 ceph_inode(req->r_target_inode);
3953 spin_lock(&ci->i_unsafe_lock);
3954 list_add_tail(&req->r_unsafe_target_item,
3955 &ci->i_unsafe_iops);
3956 spin_unlock(&ci->i_unsafe_lock);
3957 }
3958
3959 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
3960 }
3961 out_err:
3962 mutex_lock(&mdsc->mutex);
3963 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
3964 if (err) {
3965 req->r_err = err;
3966 } else {
3967 req->r_reply = ceph_msg_get(msg);
3968 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
3969 }
3970 } else {
3971 doutc(cl, "reply arrived after request %lld was aborted\n", tid);
3972 }
3973 mutex_unlock(&mdsc->mutex);
3974
3975 mutex_unlock(&session->s_mutex);
3976
3977 /* kick calling process */
3978 complete_request(mdsc, req);
3979
3980 ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency,
3981 req->r_end_latency, err);
3982 out:
3983 ceph_mdsc_put_request(req);
3984
3985 /* Defer closing the sessions after s_mutex lock being released */
3986 if (close_sessions)
3987 ceph_mdsc_close_sessions(mdsc);
3988 return;
3989 }
3990
3991
3992
3993 /*
3994 * handle mds notification that our request has been forwarded.
3995 */
handle_forward(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct ceph_msg * msg)3996 static void handle_forward(struct ceph_mds_client *mdsc,
3997 struct ceph_mds_session *session,
3998 struct ceph_msg *msg)
3999 {
4000 struct ceph_client *cl = mdsc->fsc->client;
4001 struct ceph_mds_request *req;
4002 u64 tid = le64_to_cpu(msg->hdr.tid);
4003 u32 next_mds;
4004 u32 fwd_seq;
4005 int err = -EINVAL;
4006 void *p = msg->front.iov_base;
4007 void *end = p + msg->front.iov_len;
4008 bool aborted = false;
4009
4010 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
4011 next_mds = ceph_decode_32(&p);
4012 fwd_seq = ceph_decode_32(&p);
4013
4014 mutex_lock(&mdsc->mutex);
4015 req = lookup_get_request(mdsc, tid);
4016 if (!req) {
4017 mutex_unlock(&mdsc->mutex);
4018 doutc(cl, "forward tid %llu to mds%d - req dne\n", tid, next_mds);
4019 return; /* dup reply? */
4020 }
4021
4022 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
4023 doutc(cl, "forward tid %llu aborted, unregistering\n", tid);
4024 __unregister_request(mdsc, req);
4025 } else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) {
4026 /*
4027 * Avoid infinite retrying after overflow.
4028 *
4029 * The MDS will increase the fwd count and in client side
4030 * if the num_fwd is less than the one saved in request
4031 * that means the MDS is an old version and overflowed of
4032 * 8 bits.
4033 */
4034 mutex_lock(&req->r_fill_mutex);
4035 req->r_err = -EMULTIHOP;
4036 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
4037 mutex_unlock(&req->r_fill_mutex);
4038 aborted = true;
4039 pr_warn_ratelimited_client(cl, "forward tid %llu seq overflow\n",
4040 tid);
4041 } else {
4042 /* resend. forward race not possible; mds would drop */
4043 doutc(cl, "forward tid %llu to mds%d (we resend)\n", tid, next_mds);
4044 BUG_ON(req->r_err);
4045 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
4046 req->r_attempts = 0;
4047 req->r_num_fwd = fwd_seq;
4048 req->r_resend_mds = next_mds;
4049 put_request_session(req);
4050 __do_request(mdsc, req);
4051 }
4052 mutex_unlock(&mdsc->mutex);
4053
4054 /* kick calling process */
4055 if (aborted)
4056 complete_request(mdsc, req);
4057 ceph_mdsc_put_request(req);
4058 return;
4059
4060 bad:
4061 pr_err_client(cl, "decode error err=%d\n", err);
4062 ceph_msg_dump(msg);
4063 }
4064
__decode_session_metadata(void ** p,void * end,bool * blocklisted)4065 static int __decode_session_metadata(void **p, void *end,
4066 bool *blocklisted)
4067 {
4068 /* map<string,string> */
4069 u32 n;
4070 bool err_str;
4071 ceph_decode_32_safe(p, end, n, bad);
4072 while (n-- > 0) {
4073 u32 len;
4074 ceph_decode_32_safe(p, end, len, bad);
4075 ceph_decode_need(p, end, len, bad);
4076 err_str = !strncmp(*p, "error_string", len);
4077 *p += len;
4078 ceph_decode_32_safe(p, end, len, bad);
4079 ceph_decode_need(p, end, len, bad);
4080 /*
4081 * Match "blocklisted (blacklisted)" from newer MDSes,
4082 * or "blacklisted" from older MDSes.
4083 */
4084 if (err_str && strnstr(*p, "blacklisted", len))
4085 *blocklisted = true;
4086 *p += len;
4087 }
4088 return 0;
4089 bad:
4090 return -1;
4091 }
4092
4093 /*
4094 * handle a mds session control message
4095 */
handle_session(struct ceph_mds_session * session,struct ceph_msg * msg)4096 static void handle_session(struct ceph_mds_session *session,
4097 struct ceph_msg *msg)
4098 {
4099 struct ceph_mds_client *mdsc = session->s_mdsc;
4100 struct ceph_client *cl = mdsc->fsc->client;
4101 int mds = session->s_mds;
4102 int msg_version = le16_to_cpu(msg->hdr.version);
4103 void *p = msg->front.iov_base;
4104 void *end = p + msg->front.iov_len;
4105 struct ceph_mds_session_head *h;
4106 struct ceph_mds_cap_auth *cap_auths = NULL;
4107 u32 op, cap_auths_num = 0;
4108 u64 seq, features = 0;
4109 int wake = 0;
4110 bool blocklisted = false;
4111 u32 i;
4112
4113
4114 /* decode */
4115 ceph_decode_need(&p, end, sizeof(*h), bad);
4116 h = p;
4117 p += sizeof(*h);
4118
4119 op = le32_to_cpu(h->op);
4120 seq = le64_to_cpu(h->seq);
4121
4122 if (msg_version >= 3) {
4123 u32 len;
4124 /* version >= 2 and < 5, decode metadata, skip otherwise
4125 * as it's handled via flags.
4126 */
4127 if (msg_version >= 5)
4128 ceph_decode_skip_map(&p, end, string, string, bad);
4129 else if (__decode_session_metadata(&p, end, &blocklisted) < 0)
4130 goto bad;
4131
4132 /* version >= 3, feature bits */
4133 ceph_decode_32_safe(&p, end, len, bad);
4134 if (len) {
4135 ceph_decode_64_safe(&p, end, features, bad);
4136 p += len - sizeof(features);
4137 }
4138 }
4139
4140 if (msg_version >= 5) {
4141 u32 flags, len;
4142
4143 /* version >= 4 */
4144 ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */
4145 ceph_decode_32_safe(&p, end, len, bad); /* len */
4146 ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */
4147
4148 /* version >= 5, flags */
4149 ceph_decode_32_safe(&p, end, flags, bad);
4150 if (flags & CEPH_SESSION_BLOCKLISTED) {
4151 pr_warn_client(cl, "mds%d session blocklisted\n",
4152 session->s_mds);
4153 blocklisted = true;
4154 }
4155 }
4156
4157 if (msg_version >= 6) {
4158 ceph_decode_32_safe(&p, end, cap_auths_num, bad);
4159 doutc(cl, "cap_auths_num %d\n", cap_auths_num);
4160
4161 if (cap_auths_num && op != CEPH_SESSION_OPEN) {
4162 WARN_ON_ONCE(op != CEPH_SESSION_OPEN);
4163 goto skip_cap_auths;
4164 }
4165
4166 cap_auths = kcalloc(cap_auths_num,
4167 sizeof(struct ceph_mds_cap_auth),
4168 GFP_KERNEL);
4169 if (!cap_auths) {
4170 pr_err_client(cl, "No memory for cap_auths\n");
4171 return;
4172 }
4173
4174 for (i = 0; i < cap_auths_num; i++) {
4175 u32 _len, j;
4176
4177 /* struct_v, struct_compat, and struct_len in MDSCapAuth */
4178 ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad);
4179
4180 /* struct_v, struct_compat, and struct_len in MDSCapMatch */
4181 ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad);
4182 ceph_decode_64_safe(&p, end, cap_auths[i].match.uid, bad);
4183 ceph_decode_32_safe(&p, end, _len, bad);
4184 if (_len) {
4185 cap_auths[i].match.gids = kcalloc(_len, sizeof(u32),
4186 GFP_KERNEL);
4187 if (!cap_auths[i].match.gids) {
4188 pr_err_client(cl, "No memory for gids\n");
4189 goto fail;
4190 }
4191
4192 cap_auths[i].match.num_gids = _len;
4193 for (j = 0; j < _len; j++)
4194 ceph_decode_32_safe(&p, end,
4195 cap_auths[i].match.gids[j],
4196 bad);
4197 }
4198
4199 ceph_decode_32_safe(&p, end, _len, bad);
4200 if (_len) {
4201 cap_auths[i].match.path = kcalloc(_len + 1, sizeof(char),
4202 GFP_KERNEL);
4203 if (!cap_auths[i].match.path) {
4204 pr_err_client(cl, "No memory for path\n");
4205 goto fail;
4206 }
4207 ceph_decode_copy(&p, cap_auths[i].match.path, _len);
4208
4209 /* Remove the tailing '/' */
4210 while (_len && cap_auths[i].match.path[_len - 1] == '/') {
4211 cap_auths[i].match.path[_len - 1] = '\0';
4212 _len -= 1;
4213 }
4214 }
4215
4216 ceph_decode_32_safe(&p, end, _len, bad);
4217 if (_len) {
4218 cap_auths[i].match.fs_name = kcalloc(_len + 1, sizeof(char),
4219 GFP_KERNEL);
4220 if (!cap_auths[i].match.fs_name) {
4221 pr_err_client(cl, "No memory for fs_name\n");
4222 goto fail;
4223 }
4224 ceph_decode_copy(&p, cap_auths[i].match.fs_name, _len);
4225 }
4226
4227 ceph_decode_8_safe(&p, end, cap_auths[i].match.root_squash, bad);
4228 ceph_decode_8_safe(&p, end, cap_auths[i].readable, bad);
4229 ceph_decode_8_safe(&p, end, cap_auths[i].writeable, bad);
4230 doutc(cl, "uid %lld, num_gids %u, path %s, fs_name %s, root_squash %d, readable %d, writeable %d\n",
4231 cap_auths[i].match.uid, cap_auths[i].match.num_gids,
4232 cap_auths[i].match.path, cap_auths[i].match.fs_name,
4233 cap_auths[i].match.root_squash,
4234 cap_auths[i].readable, cap_auths[i].writeable);
4235 }
4236 }
4237
4238 skip_cap_auths:
4239 mutex_lock(&mdsc->mutex);
4240 if (op == CEPH_SESSION_OPEN) {
4241 if (mdsc->s_cap_auths) {
4242 for (i = 0; i < mdsc->s_cap_auths_num; i++) {
4243 kfree(mdsc->s_cap_auths[i].match.gids);
4244 kfree(mdsc->s_cap_auths[i].match.path);
4245 kfree(mdsc->s_cap_auths[i].match.fs_name);
4246 }
4247 kfree(mdsc->s_cap_auths);
4248 }
4249 mdsc->s_cap_auths_num = cap_auths_num;
4250 mdsc->s_cap_auths = cap_auths;
4251 }
4252 if (op == CEPH_SESSION_CLOSE) {
4253 ceph_get_mds_session(session);
4254 __unregister_session(mdsc, session);
4255 }
4256 /* FIXME: this ttl calculation is generous */
4257 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
4258 mutex_unlock(&mdsc->mutex);
4259
4260 mutex_lock(&session->s_mutex);
4261
4262 doutc(cl, "mds%d %s %p state %s seq %llu\n", mds,
4263 ceph_session_op_name(op), session,
4264 ceph_session_state_name(session->s_state), seq);
4265
4266 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
4267 session->s_state = CEPH_MDS_SESSION_OPEN;
4268 pr_info_client(cl, "mds%d came back\n", session->s_mds);
4269 }
4270
4271 switch (op) {
4272 case CEPH_SESSION_OPEN:
4273 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
4274 pr_info_client(cl, "mds%d reconnect success\n",
4275 session->s_mds);
4276
4277 session->s_features = features;
4278 if (session->s_state == CEPH_MDS_SESSION_OPEN) {
4279 pr_notice_client(cl, "mds%d is already opened\n",
4280 session->s_mds);
4281 } else {
4282 session->s_state = CEPH_MDS_SESSION_OPEN;
4283 renewed_caps(mdsc, session, 0);
4284 if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT,
4285 &session->s_features))
4286 metric_schedule_delayed(&mdsc->metric);
4287 }
4288
4289 /*
4290 * The connection maybe broken and the session in client
4291 * side has been reinitialized, need to update the seq
4292 * anyway.
4293 */
4294 if (!session->s_seq && seq)
4295 session->s_seq = seq;
4296
4297 wake = 1;
4298 if (mdsc->stopping)
4299 __close_session(mdsc, session);
4300 break;
4301
4302 case CEPH_SESSION_RENEWCAPS:
4303 if (session->s_renew_seq == seq)
4304 renewed_caps(mdsc, session, 1);
4305 break;
4306
4307 case CEPH_SESSION_CLOSE:
4308 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
4309 pr_info_client(cl, "mds%d reconnect denied\n",
4310 session->s_mds);
4311 session->s_state = CEPH_MDS_SESSION_CLOSED;
4312 cleanup_session_requests(mdsc, session);
4313 remove_session_caps(session);
4314 wake = 2; /* for good measure */
4315 wake_up_all(&mdsc->session_close_wq);
4316 break;
4317
4318 case CEPH_SESSION_STALE:
4319 pr_info_client(cl, "mds%d caps went stale, renewing\n",
4320 session->s_mds);
4321 atomic_inc(&session->s_cap_gen);
4322 session->s_cap_ttl = jiffies - 1;
4323 send_renew_caps(mdsc, session);
4324 break;
4325
4326 case CEPH_SESSION_RECALL_STATE:
4327 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
4328 break;
4329
4330 case CEPH_SESSION_FLUSHMSG:
4331 /* flush cap releases */
4332 spin_lock(&session->s_cap_lock);
4333 if (session->s_num_cap_releases)
4334 ceph_flush_session_cap_releases(mdsc, session);
4335 spin_unlock(&session->s_cap_lock);
4336
4337 send_flushmsg_ack(mdsc, session, seq);
4338 break;
4339
4340 case CEPH_SESSION_FORCE_RO:
4341 doutc(cl, "force_session_readonly %p\n", session);
4342 spin_lock(&session->s_cap_lock);
4343 session->s_readonly = true;
4344 spin_unlock(&session->s_cap_lock);
4345 wake_up_session_caps(session, FORCE_RO);
4346 break;
4347
4348 case CEPH_SESSION_REJECT:
4349 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
4350 pr_info_client(cl, "mds%d rejected session\n",
4351 session->s_mds);
4352 session->s_state = CEPH_MDS_SESSION_REJECTED;
4353 cleanup_session_requests(mdsc, session);
4354 remove_session_caps(session);
4355 if (blocklisted)
4356 mdsc->fsc->blocklisted = true;
4357 wake = 2; /* for good measure */
4358 break;
4359
4360 default:
4361 pr_err_client(cl, "bad op %d mds%d\n", op, mds);
4362 WARN_ON(1);
4363 }
4364
4365 mutex_unlock(&session->s_mutex);
4366 if (wake) {
4367 mutex_lock(&mdsc->mutex);
4368 __wake_requests(mdsc, &session->s_waiting);
4369 if (wake == 2)
4370 kick_requests(mdsc, mds);
4371 mutex_unlock(&mdsc->mutex);
4372 }
4373 if (op == CEPH_SESSION_CLOSE)
4374 ceph_put_mds_session(session);
4375 return;
4376
4377 bad:
4378 pr_err_client(cl, "corrupt message mds%d len %d\n", mds,
4379 (int)msg->front.iov_len);
4380 ceph_msg_dump(msg);
4381 fail:
4382 for (i = 0; i < cap_auths_num; i++) {
4383 kfree(cap_auths[i].match.gids);
4384 kfree(cap_auths[i].match.path);
4385 kfree(cap_auths[i].match.fs_name);
4386 }
4387 kfree(cap_auths);
4388 return;
4389 }
4390
ceph_mdsc_release_dir_caps(struct ceph_mds_request * req)4391 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req)
4392 {
4393 struct ceph_client *cl = req->r_mdsc->fsc->client;
4394 int dcaps;
4395
4396 dcaps = xchg(&req->r_dir_caps, 0);
4397 if (dcaps) {
4398 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps));
4399 ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps);
4400 }
4401 }
4402
ceph_mdsc_release_dir_caps_async(struct ceph_mds_request * req)4403 void ceph_mdsc_release_dir_caps_async(struct ceph_mds_request *req)
4404 {
4405 struct ceph_client *cl = req->r_mdsc->fsc->client;
4406 int dcaps;
4407
4408 dcaps = xchg(&req->r_dir_caps, 0);
4409 if (dcaps) {
4410 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps));
4411 ceph_put_cap_refs_async(ceph_inode(req->r_parent), dcaps);
4412 }
4413 }
4414
4415 /*
4416 * called under session->mutex.
4417 */
replay_unsafe_requests(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)4418 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
4419 struct ceph_mds_session *session)
4420 {
4421 struct ceph_mds_request *req, *nreq;
4422 struct rb_node *p;
4423
4424 doutc(mdsc->fsc->client, "mds%d\n", session->s_mds);
4425
4426 mutex_lock(&mdsc->mutex);
4427 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item)
4428 __send_request(session, req, true);
4429
4430 /*
4431 * also re-send old requests when MDS enters reconnect stage. So that MDS
4432 * can process completed request in clientreplay stage.
4433 */
4434 p = rb_first(&mdsc->request_tree);
4435 while (p) {
4436 req = rb_entry(p, struct ceph_mds_request, r_node);
4437 p = rb_next(p);
4438 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
4439 continue;
4440 if (req->r_attempts == 0)
4441 continue; /* only old requests */
4442 if (!req->r_session)
4443 continue;
4444 if (req->r_session->s_mds != session->s_mds)
4445 continue;
4446
4447 ceph_mdsc_release_dir_caps_async(req);
4448
4449 __send_request(session, req, true);
4450 }
4451 mutex_unlock(&mdsc->mutex);
4452 }
4453
send_reconnect_partial(struct ceph_reconnect_state * recon_state)4454 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state)
4455 {
4456 struct ceph_msg *reply;
4457 struct ceph_pagelist *_pagelist;
4458 struct page *page;
4459 __le32 *addr;
4460 int err = -ENOMEM;
4461
4462 if (!recon_state->allow_multi)
4463 return -ENOSPC;
4464
4465 /* can't handle message that contains both caps and realm */
4466 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms);
4467
4468 /* pre-allocate new pagelist */
4469 _pagelist = ceph_pagelist_alloc(GFP_NOFS);
4470 if (!_pagelist)
4471 return -ENOMEM;
4472
4473 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
4474 if (!reply)
4475 goto fail_msg;
4476
4477 /* placeholder for nr_caps */
4478 err = ceph_pagelist_encode_32(_pagelist, 0);
4479 if (err < 0)
4480 goto fail;
4481
4482 if (recon_state->nr_caps) {
4483 /* currently encoding caps */
4484 err = ceph_pagelist_encode_32(recon_state->pagelist, 0);
4485 if (err)
4486 goto fail;
4487 } else {
4488 /* placeholder for nr_realms (currently encoding relams) */
4489 err = ceph_pagelist_encode_32(_pagelist, 0);
4490 if (err < 0)
4491 goto fail;
4492 }
4493
4494 err = ceph_pagelist_encode_8(recon_state->pagelist, 1);
4495 if (err)
4496 goto fail;
4497
4498 page = list_first_entry(&recon_state->pagelist->head, struct page, lru);
4499 addr = kmap_atomic(page);
4500 if (recon_state->nr_caps) {
4501 /* currently encoding caps */
4502 *addr = cpu_to_le32(recon_state->nr_caps);
4503 } else {
4504 /* currently encoding relams */
4505 *(addr + 1) = cpu_to_le32(recon_state->nr_realms);
4506 }
4507 kunmap_atomic(addr);
4508
4509 reply->hdr.version = cpu_to_le16(5);
4510 reply->hdr.compat_version = cpu_to_le16(4);
4511
4512 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length);
4513 ceph_msg_data_add_pagelist(reply, recon_state->pagelist);
4514
4515 ceph_con_send(&recon_state->session->s_con, reply);
4516 ceph_pagelist_release(recon_state->pagelist);
4517
4518 recon_state->pagelist = _pagelist;
4519 recon_state->nr_caps = 0;
4520 recon_state->nr_realms = 0;
4521 recon_state->msg_version = 5;
4522 return 0;
4523 fail:
4524 ceph_msg_put(reply);
4525 fail_msg:
4526 ceph_pagelist_release(_pagelist);
4527 return err;
4528 }
4529
d_find_primary(struct inode * inode)4530 static struct dentry* d_find_primary(struct inode *inode)
4531 {
4532 struct dentry *alias, *dn = NULL;
4533
4534 if (hlist_empty(&inode->i_dentry))
4535 return NULL;
4536
4537 spin_lock(&inode->i_lock);
4538 if (hlist_empty(&inode->i_dentry))
4539 goto out_unlock;
4540
4541 if (S_ISDIR(inode->i_mode)) {
4542 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
4543 if (!IS_ROOT(alias))
4544 dn = dget(alias);
4545 goto out_unlock;
4546 }
4547
4548 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
4549 spin_lock(&alias->d_lock);
4550 if (!d_unhashed(alias) &&
4551 (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) {
4552 dn = dget_dlock(alias);
4553 }
4554 spin_unlock(&alias->d_lock);
4555 if (dn)
4556 break;
4557 }
4558 out_unlock:
4559 spin_unlock(&inode->i_lock);
4560 return dn;
4561 }
4562
4563 /*
4564 * Encode information about a cap for a reconnect with the MDS.
4565 */
reconnect_caps_cb(struct inode * inode,int mds,void * arg)4566 static int reconnect_caps_cb(struct inode *inode, int mds, void *arg)
4567 {
4568 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
4569 struct ceph_client *cl = ceph_inode_to_client(inode);
4570 union {
4571 struct ceph_mds_cap_reconnect v2;
4572 struct ceph_mds_cap_reconnect_v1 v1;
4573 } rec;
4574 struct ceph_inode_info *ci = ceph_inode(inode);
4575 struct ceph_reconnect_state *recon_state = arg;
4576 struct ceph_pagelist *pagelist = recon_state->pagelist;
4577 struct dentry *dentry;
4578 struct ceph_cap *cap;
4579 char *path;
4580 int pathlen = 0, err;
4581 u64 pathbase;
4582 u64 snap_follows;
4583
4584 dentry = d_find_primary(inode);
4585 if (dentry) {
4586 /* set pathbase to parent dir when msg_version >= 2 */
4587 path = ceph_mdsc_build_path(mdsc, dentry, &pathlen, &pathbase,
4588 recon_state->msg_version >= 2);
4589 dput(dentry);
4590 if (IS_ERR(path)) {
4591 err = PTR_ERR(path);
4592 goto out_err;
4593 }
4594 } else {
4595 path = NULL;
4596 pathbase = 0;
4597 }
4598
4599 spin_lock(&ci->i_ceph_lock);
4600 cap = __get_cap_for_mds(ci, mds);
4601 if (!cap) {
4602 spin_unlock(&ci->i_ceph_lock);
4603 err = 0;
4604 goto out_err;
4605 }
4606 doutc(cl, " adding %p ino %llx.%llx cap %p %lld %s\n", inode,
4607 ceph_vinop(inode), cap, cap->cap_id,
4608 ceph_cap_string(cap->issued));
4609
4610 cap->seq = 0; /* reset cap seq */
4611 cap->issue_seq = 0; /* and issue_seq */
4612 cap->mseq = 0; /* and migrate_seq */
4613 cap->cap_gen = atomic_read(&cap->session->s_cap_gen);
4614
4615 /* These are lost when the session goes away */
4616 if (S_ISDIR(inode->i_mode)) {
4617 if (cap->issued & CEPH_CAP_DIR_CREATE) {
4618 ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns));
4619 memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout));
4620 }
4621 cap->issued &= ~CEPH_CAP_ANY_DIR_OPS;
4622 }
4623
4624 if (recon_state->msg_version >= 2) {
4625 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
4626 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
4627 rec.v2.issued = cpu_to_le32(cap->issued);
4628 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
4629 rec.v2.pathbase = cpu_to_le64(pathbase);
4630 rec.v2.flock_len = (__force __le32)
4631 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1);
4632 } else {
4633 struct timespec64 ts;
4634
4635 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
4636 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
4637 rec.v1.issued = cpu_to_le32(cap->issued);
4638 rec.v1.size = cpu_to_le64(i_size_read(inode));
4639 ts = inode_get_mtime(inode);
4640 ceph_encode_timespec64(&rec.v1.mtime, &ts);
4641 ts = inode_get_atime(inode);
4642 ceph_encode_timespec64(&rec.v1.atime, &ts);
4643 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
4644 rec.v1.pathbase = cpu_to_le64(pathbase);
4645 }
4646
4647 if (list_empty(&ci->i_cap_snaps)) {
4648 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0;
4649 } else {
4650 struct ceph_cap_snap *capsnap =
4651 list_first_entry(&ci->i_cap_snaps,
4652 struct ceph_cap_snap, ci_item);
4653 snap_follows = capsnap->follows;
4654 }
4655 spin_unlock(&ci->i_ceph_lock);
4656
4657 if (recon_state->msg_version >= 2) {
4658 int num_fcntl_locks, num_flock_locks;
4659 struct ceph_filelock *flocks = NULL;
4660 size_t struct_len, total_len = sizeof(u64);
4661 u8 struct_v = 0;
4662
4663 encode_again:
4664 if (rec.v2.flock_len) {
4665 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
4666 } else {
4667 num_fcntl_locks = 0;
4668 num_flock_locks = 0;
4669 }
4670 if (num_fcntl_locks + num_flock_locks > 0) {
4671 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks,
4672 sizeof(struct ceph_filelock),
4673 GFP_NOFS);
4674 if (!flocks) {
4675 err = -ENOMEM;
4676 goto out_err;
4677 }
4678 err = ceph_encode_locks_to_buffer(inode, flocks,
4679 num_fcntl_locks,
4680 num_flock_locks);
4681 if (err) {
4682 kfree(flocks);
4683 flocks = NULL;
4684 if (err == -ENOSPC)
4685 goto encode_again;
4686 goto out_err;
4687 }
4688 } else {
4689 kfree(flocks);
4690 flocks = NULL;
4691 }
4692
4693 if (recon_state->msg_version >= 3) {
4694 /* version, compat_version and struct_len */
4695 total_len += 2 * sizeof(u8) + sizeof(u32);
4696 struct_v = 2;
4697 }
4698 /*
4699 * number of encoded locks is stable, so copy to pagelist
4700 */
4701 struct_len = 2 * sizeof(u32) +
4702 (num_fcntl_locks + num_flock_locks) *
4703 sizeof(struct ceph_filelock);
4704 rec.v2.flock_len = cpu_to_le32(struct_len);
4705
4706 struct_len += sizeof(u32) + pathlen + sizeof(rec.v2);
4707
4708 if (struct_v >= 2)
4709 struct_len += sizeof(u64); /* snap_follows */
4710
4711 total_len += struct_len;
4712
4713 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) {
4714 err = send_reconnect_partial(recon_state);
4715 if (err)
4716 goto out_freeflocks;
4717 pagelist = recon_state->pagelist;
4718 }
4719
4720 err = ceph_pagelist_reserve(pagelist, total_len);
4721 if (err)
4722 goto out_freeflocks;
4723
4724 ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
4725 if (recon_state->msg_version >= 3) {
4726 ceph_pagelist_encode_8(pagelist, struct_v);
4727 ceph_pagelist_encode_8(pagelist, 1);
4728 ceph_pagelist_encode_32(pagelist, struct_len);
4729 }
4730 ceph_pagelist_encode_string(pagelist, path, pathlen);
4731 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
4732 ceph_locks_to_pagelist(flocks, pagelist,
4733 num_fcntl_locks, num_flock_locks);
4734 if (struct_v >= 2)
4735 ceph_pagelist_encode_64(pagelist, snap_follows);
4736 out_freeflocks:
4737 kfree(flocks);
4738 } else {
4739 err = ceph_pagelist_reserve(pagelist,
4740 sizeof(u64) + sizeof(u32) +
4741 pathlen + sizeof(rec.v1));
4742 if (err)
4743 goto out_err;
4744
4745 ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
4746 ceph_pagelist_encode_string(pagelist, path, pathlen);
4747 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
4748 }
4749
4750 out_err:
4751 ceph_mdsc_free_path(path, pathlen);
4752 if (!err)
4753 recon_state->nr_caps++;
4754 return err;
4755 }
4756
encode_snap_realms(struct ceph_mds_client * mdsc,struct ceph_reconnect_state * recon_state)4757 static int encode_snap_realms(struct ceph_mds_client *mdsc,
4758 struct ceph_reconnect_state *recon_state)
4759 {
4760 struct rb_node *p;
4761 struct ceph_pagelist *pagelist = recon_state->pagelist;
4762 struct ceph_client *cl = mdsc->fsc->client;
4763 int err = 0;
4764
4765 if (recon_state->msg_version >= 4) {
4766 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms);
4767 if (err < 0)
4768 goto fail;
4769 }
4770
4771 /*
4772 * snaprealms. we provide mds with the ino, seq (version), and
4773 * parent for all of our realms. If the mds has any newer info,
4774 * it will tell us.
4775 */
4776 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
4777 struct ceph_snap_realm *realm =
4778 rb_entry(p, struct ceph_snap_realm, node);
4779 struct ceph_mds_snaprealm_reconnect sr_rec;
4780
4781 if (recon_state->msg_version >= 4) {
4782 size_t need = sizeof(u8) * 2 + sizeof(u32) +
4783 sizeof(sr_rec);
4784
4785 if (pagelist->length + need > RECONNECT_MAX_SIZE) {
4786 err = send_reconnect_partial(recon_state);
4787 if (err)
4788 goto fail;
4789 pagelist = recon_state->pagelist;
4790 }
4791
4792 err = ceph_pagelist_reserve(pagelist, need);
4793 if (err)
4794 goto fail;
4795
4796 ceph_pagelist_encode_8(pagelist, 1);
4797 ceph_pagelist_encode_8(pagelist, 1);
4798 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec));
4799 }
4800
4801 doutc(cl, " adding snap realm %llx seq %lld parent %llx\n",
4802 realm->ino, realm->seq, realm->parent_ino);
4803 sr_rec.ino = cpu_to_le64(realm->ino);
4804 sr_rec.seq = cpu_to_le64(realm->seq);
4805 sr_rec.parent = cpu_to_le64(realm->parent_ino);
4806
4807 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
4808 if (err)
4809 goto fail;
4810
4811 recon_state->nr_realms++;
4812 }
4813 fail:
4814 return err;
4815 }
4816
4817
4818 /*
4819 * If an MDS fails and recovers, clients need to reconnect in order to
4820 * reestablish shared state. This includes all caps issued through
4821 * this session _and_ the snap_realm hierarchy. Because it's not
4822 * clear which snap realms the mds cares about, we send everything we
4823 * know about.. that ensures we'll then get any new info the
4824 * recovering MDS might have.
4825 *
4826 * This is a relatively heavyweight operation, but it's rare.
4827 */
send_mds_reconnect(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)4828 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
4829 struct ceph_mds_session *session)
4830 {
4831 struct ceph_client *cl = mdsc->fsc->client;
4832 struct ceph_msg *reply;
4833 int mds = session->s_mds;
4834 int err = -ENOMEM;
4835 struct ceph_reconnect_state recon_state = {
4836 .session = session,
4837 };
4838 LIST_HEAD(dispose);
4839
4840 pr_info_client(cl, "mds%d reconnect start\n", mds);
4841
4842 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS);
4843 if (!recon_state.pagelist)
4844 goto fail_nopagelist;
4845
4846 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
4847 if (!reply)
4848 goto fail_nomsg;
4849
4850 xa_destroy(&session->s_delegated_inos);
4851
4852 mutex_lock(&session->s_mutex);
4853 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
4854 session->s_seq = 0;
4855
4856 doutc(cl, "session %p state %s\n", session,
4857 ceph_session_state_name(session->s_state));
4858
4859 atomic_inc(&session->s_cap_gen);
4860
4861 spin_lock(&session->s_cap_lock);
4862 /* don't know if session is readonly */
4863 session->s_readonly = 0;
4864 /*
4865 * notify __ceph_remove_cap() that we are composing cap reconnect.
4866 * If a cap get released before being added to the cap reconnect,
4867 * __ceph_remove_cap() should skip queuing cap release.
4868 */
4869 session->s_cap_reconnect = 1;
4870 /* drop old cap expires; we're about to reestablish that state */
4871 detach_cap_releases(session, &dispose);
4872 spin_unlock(&session->s_cap_lock);
4873 dispose_cap_releases(mdsc, &dispose);
4874
4875 /* trim unused caps to reduce MDS's cache rejoin time */
4876 if (mdsc->fsc->sb->s_root)
4877 shrink_dcache_parent(mdsc->fsc->sb->s_root);
4878
4879 ceph_con_close(&session->s_con);
4880 ceph_con_open(&session->s_con,
4881 CEPH_ENTITY_TYPE_MDS, mds,
4882 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
4883
4884 /* replay unsafe requests */
4885 replay_unsafe_requests(mdsc, session);
4886
4887 ceph_early_kick_flushing_caps(mdsc, session);
4888
4889 down_read(&mdsc->snap_rwsem);
4890
4891 /* placeholder for nr_caps */
4892 err = ceph_pagelist_encode_32(recon_state.pagelist, 0);
4893 if (err)
4894 goto fail;
4895
4896 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) {
4897 recon_state.msg_version = 3;
4898 recon_state.allow_multi = true;
4899 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) {
4900 recon_state.msg_version = 3;
4901 } else {
4902 recon_state.msg_version = 2;
4903 }
4904 /* traverse this session's caps */
4905 err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state);
4906
4907 spin_lock(&session->s_cap_lock);
4908 session->s_cap_reconnect = 0;
4909 spin_unlock(&session->s_cap_lock);
4910
4911 if (err < 0)
4912 goto fail;
4913
4914 /* check if all realms can be encoded into current message */
4915 if (mdsc->num_snap_realms) {
4916 size_t total_len =
4917 recon_state.pagelist->length +
4918 mdsc->num_snap_realms *
4919 sizeof(struct ceph_mds_snaprealm_reconnect);
4920 if (recon_state.msg_version >= 4) {
4921 /* number of realms */
4922 total_len += sizeof(u32);
4923 /* version, compat_version and struct_len */
4924 total_len += mdsc->num_snap_realms *
4925 (2 * sizeof(u8) + sizeof(u32));
4926 }
4927 if (total_len > RECONNECT_MAX_SIZE) {
4928 if (!recon_state.allow_multi) {
4929 err = -ENOSPC;
4930 goto fail;
4931 }
4932 if (recon_state.nr_caps) {
4933 err = send_reconnect_partial(&recon_state);
4934 if (err)
4935 goto fail;
4936 }
4937 recon_state.msg_version = 5;
4938 }
4939 }
4940
4941 err = encode_snap_realms(mdsc, &recon_state);
4942 if (err < 0)
4943 goto fail;
4944
4945 if (recon_state.msg_version >= 5) {
4946 err = ceph_pagelist_encode_8(recon_state.pagelist, 0);
4947 if (err < 0)
4948 goto fail;
4949 }
4950
4951 if (recon_state.nr_caps || recon_state.nr_realms) {
4952 struct page *page =
4953 list_first_entry(&recon_state.pagelist->head,
4954 struct page, lru);
4955 __le32 *addr = kmap_atomic(page);
4956 if (recon_state.nr_caps) {
4957 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms);
4958 *addr = cpu_to_le32(recon_state.nr_caps);
4959 } else if (recon_state.msg_version >= 4) {
4960 *(addr + 1) = cpu_to_le32(recon_state.nr_realms);
4961 }
4962 kunmap_atomic(addr);
4963 }
4964
4965 reply->hdr.version = cpu_to_le16(recon_state.msg_version);
4966 if (recon_state.msg_version >= 4)
4967 reply->hdr.compat_version = cpu_to_le16(4);
4968
4969 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length);
4970 ceph_msg_data_add_pagelist(reply, recon_state.pagelist);
4971
4972 ceph_con_send(&session->s_con, reply);
4973
4974 mutex_unlock(&session->s_mutex);
4975
4976 mutex_lock(&mdsc->mutex);
4977 __wake_requests(mdsc, &session->s_waiting);
4978 mutex_unlock(&mdsc->mutex);
4979
4980 up_read(&mdsc->snap_rwsem);
4981 ceph_pagelist_release(recon_state.pagelist);
4982 return;
4983
4984 fail:
4985 ceph_msg_put(reply);
4986 up_read(&mdsc->snap_rwsem);
4987 mutex_unlock(&session->s_mutex);
4988 fail_nomsg:
4989 ceph_pagelist_release(recon_state.pagelist);
4990 fail_nopagelist:
4991 pr_err_client(cl, "error %d preparing reconnect for mds%d\n",
4992 err, mds);
4993 return;
4994 }
4995
4996
4997 /*
4998 * compare old and new mdsmaps, kicking requests
4999 * and closing out old connections as necessary
5000 *
5001 * called under mdsc->mutex.
5002 */
check_new_map(struct ceph_mds_client * mdsc,struct ceph_mdsmap * newmap,struct ceph_mdsmap * oldmap)5003 static void check_new_map(struct ceph_mds_client *mdsc,
5004 struct ceph_mdsmap *newmap,
5005 struct ceph_mdsmap *oldmap)
5006 {
5007 int i, j, err;
5008 int oldstate, newstate;
5009 struct ceph_mds_session *s;
5010 unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0};
5011 struct ceph_client *cl = mdsc->fsc->client;
5012
5013 doutc(cl, "new %u old %u\n", newmap->m_epoch, oldmap->m_epoch);
5014
5015 if (newmap->m_info) {
5016 for (i = 0; i < newmap->possible_max_rank; i++) {
5017 for (j = 0; j < newmap->m_info[i].num_export_targets; j++)
5018 set_bit(newmap->m_info[i].export_targets[j], targets);
5019 }
5020 }
5021
5022 for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) {
5023 if (!mdsc->sessions[i])
5024 continue;
5025 s = mdsc->sessions[i];
5026 oldstate = ceph_mdsmap_get_state(oldmap, i);
5027 newstate = ceph_mdsmap_get_state(newmap, i);
5028
5029 doutc(cl, "mds%d state %s%s -> %s%s (session %s)\n",
5030 i, ceph_mds_state_name(oldstate),
5031 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
5032 ceph_mds_state_name(newstate),
5033 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
5034 ceph_session_state_name(s->s_state));
5035
5036 if (i >= newmap->possible_max_rank) {
5037 /* force close session for stopped mds */
5038 ceph_get_mds_session(s);
5039 __unregister_session(mdsc, s);
5040 __wake_requests(mdsc, &s->s_waiting);
5041 mutex_unlock(&mdsc->mutex);
5042
5043 mutex_lock(&s->s_mutex);
5044 cleanup_session_requests(mdsc, s);
5045 remove_session_caps(s);
5046 mutex_unlock(&s->s_mutex);
5047
5048 ceph_put_mds_session(s);
5049
5050 mutex_lock(&mdsc->mutex);
5051 kick_requests(mdsc, i);
5052 continue;
5053 }
5054
5055 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
5056 ceph_mdsmap_get_addr(newmap, i),
5057 sizeof(struct ceph_entity_addr))) {
5058 /* just close it */
5059 mutex_unlock(&mdsc->mutex);
5060 mutex_lock(&s->s_mutex);
5061 mutex_lock(&mdsc->mutex);
5062 ceph_con_close(&s->s_con);
5063 mutex_unlock(&s->s_mutex);
5064 s->s_state = CEPH_MDS_SESSION_RESTARTING;
5065 } else if (oldstate == newstate) {
5066 continue; /* nothing new with this mds */
5067 }
5068
5069 /*
5070 * send reconnect?
5071 */
5072 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
5073 newstate >= CEPH_MDS_STATE_RECONNECT) {
5074 mutex_unlock(&mdsc->mutex);
5075 clear_bit(i, targets);
5076 send_mds_reconnect(mdsc, s);
5077 mutex_lock(&mdsc->mutex);
5078 }
5079
5080 /*
5081 * kick request on any mds that has gone active.
5082 */
5083 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
5084 newstate >= CEPH_MDS_STATE_ACTIVE) {
5085 if (oldstate != CEPH_MDS_STATE_CREATING &&
5086 oldstate != CEPH_MDS_STATE_STARTING)
5087 pr_info_client(cl, "mds%d recovery completed\n",
5088 s->s_mds);
5089 kick_requests(mdsc, i);
5090 mutex_unlock(&mdsc->mutex);
5091 mutex_lock(&s->s_mutex);
5092 mutex_lock(&mdsc->mutex);
5093 ceph_kick_flushing_caps(mdsc, s);
5094 mutex_unlock(&s->s_mutex);
5095 wake_up_session_caps(s, RECONNECT);
5096 }
5097 }
5098
5099 /*
5100 * Only open and reconnect sessions that don't exist yet.
5101 */
5102 for (i = 0; i < newmap->possible_max_rank; i++) {
5103 /*
5104 * In case the import MDS is crashed just after
5105 * the EImportStart journal is flushed, so when
5106 * a standby MDS takes over it and is replaying
5107 * the EImportStart journal the new MDS daemon
5108 * will wait the client to reconnect it, but the
5109 * client may never register/open the session yet.
5110 *
5111 * Will try to reconnect that MDS daemon if the
5112 * rank number is in the export targets array and
5113 * is the up:reconnect state.
5114 */
5115 newstate = ceph_mdsmap_get_state(newmap, i);
5116 if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT)
5117 continue;
5118
5119 /*
5120 * The session maybe registered and opened by some
5121 * requests which were choosing random MDSes during
5122 * the mdsc->mutex's unlock/lock gap below in rare
5123 * case. But the related MDS daemon will just queue
5124 * that requests and be still waiting for the client's
5125 * reconnection request in up:reconnect state.
5126 */
5127 s = __ceph_lookup_mds_session(mdsc, i);
5128 if (likely(!s)) {
5129 s = __open_export_target_session(mdsc, i);
5130 if (IS_ERR(s)) {
5131 err = PTR_ERR(s);
5132 pr_err_client(cl,
5133 "failed to open export target session, err %d\n",
5134 err);
5135 continue;
5136 }
5137 }
5138 doutc(cl, "send reconnect to export target mds.%d\n", i);
5139 mutex_unlock(&mdsc->mutex);
5140 send_mds_reconnect(mdsc, s);
5141 ceph_put_mds_session(s);
5142 mutex_lock(&mdsc->mutex);
5143 }
5144
5145 for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) {
5146 s = mdsc->sessions[i];
5147 if (!s)
5148 continue;
5149 if (!ceph_mdsmap_is_laggy(newmap, i))
5150 continue;
5151 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
5152 s->s_state == CEPH_MDS_SESSION_HUNG ||
5153 s->s_state == CEPH_MDS_SESSION_CLOSING) {
5154 doutc(cl, " connecting to export targets of laggy mds%d\n", i);
5155 __open_export_target_sessions(mdsc, s);
5156 }
5157 }
5158 }
5159
5160
5161
5162 /*
5163 * leases
5164 */
5165
5166 /*
5167 * caller must hold session s_mutex, dentry->d_lock
5168 */
__ceph_mdsc_drop_dentry_lease(struct dentry * dentry)5169 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
5170 {
5171 struct ceph_dentry_info *di = ceph_dentry(dentry);
5172
5173 ceph_put_mds_session(di->lease_session);
5174 di->lease_session = NULL;
5175 }
5176
handle_lease(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct ceph_msg * msg)5177 static void handle_lease(struct ceph_mds_client *mdsc,
5178 struct ceph_mds_session *session,
5179 struct ceph_msg *msg)
5180 {
5181 struct ceph_client *cl = mdsc->fsc->client;
5182 struct super_block *sb = mdsc->fsc->sb;
5183 struct inode *inode;
5184 struct dentry *parent, *dentry;
5185 struct ceph_dentry_info *di;
5186 int mds = session->s_mds;
5187 struct ceph_mds_lease *h = msg->front.iov_base;
5188 u32 seq;
5189 struct ceph_vino vino;
5190 struct qstr dname;
5191 int release = 0;
5192
5193 doutc(cl, "from mds%d\n", mds);
5194
5195 if (!ceph_inc_mds_stopping_blocker(mdsc, session))
5196 return;
5197
5198 /* decode */
5199 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
5200 goto bad;
5201 vino.ino = le64_to_cpu(h->ino);
5202 vino.snap = CEPH_NOSNAP;
5203 seq = le32_to_cpu(h->seq);
5204 dname.len = get_unaligned_le32(h + 1);
5205 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len)
5206 goto bad;
5207 dname.name = (void *)(h + 1) + sizeof(u32);
5208
5209 /* lookup inode */
5210 inode = ceph_find_inode(sb, vino);
5211 doutc(cl, "%s, ino %llx %p %.*s\n", ceph_lease_op_name(h->action),
5212 vino.ino, inode, dname.len, dname.name);
5213
5214 mutex_lock(&session->s_mutex);
5215 if (!inode) {
5216 doutc(cl, "no inode %llx\n", vino.ino);
5217 goto release;
5218 }
5219
5220 /* dentry */
5221 parent = d_find_alias(inode);
5222 if (!parent) {
5223 doutc(cl, "no parent dentry on inode %p\n", inode);
5224 WARN_ON(1);
5225 goto release; /* hrm... */
5226 }
5227 dname.hash = full_name_hash(parent, dname.name, dname.len);
5228 dentry = d_lookup(parent, &dname);
5229 dput(parent);
5230 if (!dentry)
5231 goto release;
5232
5233 spin_lock(&dentry->d_lock);
5234 di = ceph_dentry(dentry);
5235 switch (h->action) {
5236 case CEPH_MDS_LEASE_REVOKE:
5237 if (di->lease_session == session) {
5238 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
5239 h->seq = cpu_to_le32(di->lease_seq);
5240 __ceph_mdsc_drop_dentry_lease(dentry);
5241 }
5242 release = 1;
5243 break;
5244
5245 case CEPH_MDS_LEASE_RENEW:
5246 if (di->lease_session == session &&
5247 di->lease_gen == atomic_read(&session->s_cap_gen) &&
5248 di->lease_renew_from &&
5249 di->lease_renew_after == 0) {
5250 unsigned long duration =
5251 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
5252
5253 di->lease_seq = seq;
5254 di->time = di->lease_renew_from + duration;
5255 di->lease_renew_after = di->lease_renew_from +
5256 (duration >> 1);
5257 di->lease_renew_from = 0;
5258 }
5259 break;
5260 }
5261 spin_unlock(&dentry->d_lock);
5262 dput(dentry);
5263
5264 if (!release)
5265 goto out;
5266
5267 release:
5268 /* let's just reuse the same message */
5269 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
5270 ceph_msg_get(msg);
5271 ceph_con_send(&session->s_con, msg);
5272
5273 out:
5274 mutex_unlock(&session->s_mutex);
5275 iput(inode);
5276
5277 ceph_dec_mds_stopping_blocker(mdsc);
5278 return;
5279
5280 bad:
5281 ceph_dec_mds_stopping_blocker(mdsc);
5282
5283 pr_err_client(cl, "corrupt lease message\n");
5284 ceph_msg_dump(msg);
5285 }
5286
ceph_mdsc_lease_send_msg(struct ceph_mds_session * session,struct dentry * dentry,char action,u32 seq)5287 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
5288 struct dentry *dentry, char action,
5289 u32 seq)
5290 {
5291 struct ceph_client *cl = session->s_mdsc->fsc->client;
5292 struct ceph_msg *msg;
5293 struct ceph_mds_lease *lease;
5294 struct inode *dir;
5295 int len = sizeof(*lease) + sizeof(u32) + NAME_MAX;
5296
5297 doutc(cl, "identry %p %s to mds%d\n", dentry, ceph_lease_op_name(action),
5298 session->s_mds);
5299
5300 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
5301 if (!msg)
5302 return;
5303 lease = msg->front.iov_base;
5304 lease->action = action;
5305 lease->seq = cpu_to_le32(seq);
5306
5307 spin_lock(&dentry->d_lock);
5308 dir = d_inode(dentry->d_parent);
5309 lease->ino = cpu_to_le64(ceph_ino(dir));
5310 lease->first = lease->last = cpu_to_le64(ceph_snap(dir));
5311
5312 put_unaligned_le32(dentry->d_name.len, lease + 1);
5313 memcpy((void *)(lease + 1) + 4,
5314 dentry->d_name.name, dentry->d_name.len);
5315 spin_unlock(&dentry->d_lock);
5316
5317 ceph_con_send(&session->s_con, msg);
5318 }
5319
5320 /*
5321 * lock unlock the session, to wait ongoing session activities
5322 */
lock_unlock_session(struct ceph_mds_session * s)5323 static void lock_unlock_session(struct ceph_mds_session *s)
5324 {
5325 mutex_lock(&s->s_mutex);
5326 mutex_unlock(&s->s_mutex);
5327 }
5328
maybe_recover_session(struct ceph_mds_client * mdsc)5329 static void maybe_recover_session(struct ceph_mds_client *mdsc)
5330 {
5331 struct ceph_client *cl = mdsc->fsc->client;
5332 struct ceph_fs_client *fsc = mdsc->fsc;
5333
5334 if (!ceph_test_mount_opt(fsc, CLEANRECOVER))
5335 return;
5336
5337 if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED)
5338 return;
5339
5340 if (!READ_ONCE(fsc->blocklisted))
5341 return;
5342
5343 pr_info_client(cl, "auto reconnect after blocklisted\n");
5344 ceph_force_reconnect(fsc->sb);
5345 }
5346
check_session_state(struct ceph_mds_session * s)5347 bool check_session_state(struct ceph_mds_session *s)
5348 {
5349 struct ceph_client *cl = s->s_mdsc->fsc->client;
5350
5351 switch (s->s_state) {
5352 case CEPH_MDS_SESSION_OPEN:
5353 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
5354 s->s_state = CEPH_MDS_SESSION_HUNG;
5355 pr_info_client(cl, "mds%d hung\n", s->s_mds);
5356 }
5357 break;
5358 case CEPH_MDS_SESSION_CLOSING:
5359 case CEPH_MDS_SESSION_NEW:
5360 case CEPH_MDS_SESSION_RESTARTING:
5361 case CEPH_MDS_SESSION_CLOSED:
5362 case CEPH_MDS_SESSION_REJECTED:
5363 return false;
5364 }
5365
5366 return true;
5367 }
5368
5369 /*
5370 * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply,
5371 * then we need to retransmit that request.
5372 */
inc_session_sequence(struct ceph_mds_session * s)5373 void inc_session_sequence(struct ceph_mds_session *s)
5374 {
5375 struct ceph_client *cl = s->s_mdsc->fsc->client;
5376
5377 lockdep_assert_held(&s->s_mutex);
5378
5379 s->s_seq++;
5380
5381 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
5382 int ret;
5383
5384 doutc(cl, "resending session close request for mds%d\n", s->s_mds);
5385 ret = request_close_session(s);
5386 if (ret < 0)
5387 pr_err_client(cl, "unable to close session to mds%d: %d\n",
5388 s->s_mds, ret);
5389 }
5390 }
5391
5392 /*
5393 * delayed work -- periodically trim expired leases, renew caps with mds. If
5394 * the @delay parameter is set to 0 or if it's more than 5 secs, the default
5395 * workqueue delay value of 5 secs will be used.
5396 */
schedule_delayed(struct ceph_mds_client * mdsc,unsigned long delay)5397 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay)
5398 {
5399 unsigned long max_delay = HZ * 5;
5400
5401 /* 5 secs default delay */
5402 if (!delay || (delay > max_delay))
5403 delay = max_delay;
5404 schedule_delayed_work(&mdsc->delayed_work,
5405 round_jiffies_relative(delay));
5406 }
5407
delayed_work(struct work_struct * work)5408 static void delayed_work(struct work_struct *work)
5409 {
5410 struct ceph_mds_client *mdsc =
5411 container_of(work, struct ceph_mds_client, delayed_work.work);
5412 unsigned long delay;
5413 int renew_interval;
5414 int renew_caps;
5415 int i;
5416
5417 doutc(mdsc->fsc->client, "mdsc delayed_work\n");
5418
5419 if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED)
5420 return;
5421
5422 mutex_lock(&mdsc->mutex);
5423 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
5424 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
5425 mdsc->last_renew_caps);
5426 if (renew_caps)
5427 mdsc->last_renew_caps = jiffies;
5428
5429 for (i = 0; i < mdsc->max_sessions; i++) {
5430 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
5431 if (!s)
5432 continue;
5433
5434 if (!check_session_state(s)) {
5435 ceph_put_mds_session(s);
5436 continue;
5437 }
5438 mutex_unlock(&mdsc->mutex);
5439
5440 ceph_flush_session_cap_releases(mdsc, s);
5441
5442 mutex_lock(&s->s_mutex);
5443 if (renew_caps)
5444 send_renew_caps(mdsc, s);
5445 else
5446 ceph_con_keepalive(&s->s_con);
5447 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
5448 s->s_state == CEPH_MDS_SESSION_HUNG)
5449 ceph_send_cap_releases(mdsc, s);
5450 mutex_unlock(&s->s_mutex);
5451 ceph_put_mds_session(s);
5452
5453 mutex_lock(&mdsc->mutex);
5454 }
5455 mutex_unlock(&mdsc->mutex);
5456
5457 delay = ceph_check_delayed_caps(mdsc);
5458
5459 ceph_queue_cap_reclaim_work(mdsc);
5460
5461 ceph_trim_snapid_map(mdsc);
5462
5463 maybe_recover_session(mdsc);
5464
5465 schedule_delayed(mdsc, delay);
5466 }
5467
ceph_mdsc_init(struct ceph_fs_client * fsc)5468 int ceph_mdsc_init(struct ceph_fs_client *fsc)
5469
5470 {
5471 struct ceph_mds_client *mdsc;
5472 int err;
5473
5474 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
5475 if (!mdsc)
5476 return -ENOMEM;
5477 mdsc->fsc = fsc;
5478 mutex_init(&mdsc->mutex);
5479 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
5480 if (!mdsc->mdsmap) {
5481 err = -ENOMEM;
5482 goto err_mdsc;
5483 }
5484
5485 init_completion(&mdsc->safe_umount_waiters);
5486 spin_lock_init(&mdsc->stopping_lock);
5487 atomic_set(&mdsc->stopping_blockers, 0);
5488 init_completion(&mdsc->stopping_waiter);
5489 init_waitqueue_head(&mdsc->session_close_wq);
5490 INIT_LIST_HEAD(&mdsc->waiting_for_map);
5491 mdsc->quotarealms_inodes = RB_ROOT;
5492 mutex_init(&mdsc->quotarealms_inodes_mutex);
5493 init_rwsem(&mdsc->snap_rwsem);
5494 mdsc->snap_realms = RB_ROOT;
5495 INIT_LIST_HEAD(&mdsc->snap_empty);
5496 spin_lock_init(&mdsc->snap_empty_lock);
5497 mdsc->request_tree = RB_ROOT;
5498 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
5499 mdsc->last_renew_caps = jiffies;
5500 INIT_LIST_HEAD(&mdsc->cap_delay_list);
5501 #ifdef CONFIG_DEBUG_FS
5502 INIT_LIST_HEAD(&mdsc->cap_wait_list);
5503 #endif
5504 spin_lock_init(&mdsc->cap_delay_lock);
5505 INIT_LIST_HEAD(&mdsc->cap_unlink_delay_list);
5506 INIT_LIST_HEAD(&mdsc->snap_flush_list);
5507 spin_lock_init(&mdsc->snap_flush_lock);
5508 mdsc->last_cap_flush_tid = 1;
5509 INIT_LIST_HEAD(&mdsc->cap_flush_list);
5510 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
5511 spin_lock_init(&mdsc->cap_dirty_lock);
5512 init_waitqueue_head(&mdsc->cap_flushing_wq);
5513 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work);
5514 INIT_WORK(&mdsc->cap_unlink_work, ceph_cap_unlink_work);
5515 err = ceph_metric_init(&mdsc->metric);
5516 if (err)
5517 goto err_mdsmap;
5518
5519 spin_lock_init(&mdsc->dentry_list_lock);
5520 INIT_LIST_HEAD(&mdsc->dentry_leases);
5521 INIT_LIST_HEAD(&mdsc->dentry_dir_leases);
5522
5523 ceph_caps_init(mdsc);
5524 ceph_adjust_caps_max_min(mdsc, fsc->mount_options);
5525
5526 spin_lock_init(&mdsc->snapid_map_lock);
5527 mdsc->snapid_map_tree = RB_ROOT;
5528 INIT_LIST_HEAD(&mdsc->snapid_map_lru);
5529
5530 init_rwsem(&mdsc->pool_perm_rwsem);
5531 mdsc->pool_perm_tree = RB_ROOT;
5532
5533 strscpy(mdsc->nodename, utsname()->nodename,
5534 sizeof(mdsc->nodename));
5535
5536 fsc->mdsc = mdsc;
5537 return 0;
5538
5539 err_mdsmap:
5540 kfree(mdsc->mdsmap);
5541 err_mdsc:
5542 kfree(mdsc);
5543 return err;
5544 }
5545
5546 /*
5547 * Wait for safe replies on open mds requests. If we time out, drop
5548 * all requests from the tree to avoid dangling dentry refs.
5549 */
wait_requests(struct ceph_mds_client * mdsc)5550 static void wait_requests(struct ceph_mds_client *mdsc)
5551 {
5552 struct ceph_client *cl = mdsc->fsc->client;
5553 struct ceph_options *opts = mdsc->fsc->client->options;
5554 struct ceph_mds_request *req;
5555
5556 mutex_lock(&mdsc->mutex);
5557 if (__get_oldest_req(mdsc)) {
5558 mutex_unlock(&mdsc->mutex);
5559
5560 doutc(cl, "waiting for requests\n");
5561 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
5562 ceph_timeout_jiffies(opts->mount_timeout));
5563
5564 /* tear down remaining requests */
5565 mutex_lock(&mdsc->mutex);
5566 while ((req = __get_oldest_req(mdsc))) {
5567 doutc(cl, "timed out on tid %llu\n", req->r_tid);
5568 list_del_init(&req->r_wait);
5569 __unregister_request(mdsc, req);
5570 }
5571 }
5572 mutex_unlock(&mdsc->mutex);
5573 doutc(cl, "done\n");
5574 }
5575
send_flush_mdlog(struct ceph_mds_session * s)5576 void send_flush_mdlog(struct ceph_mds_session *s)
5577 {
5578 struct ceph_client *cl = s->s_mdsc->fsc->client;
5579 struct ceph_msg *msg;
5580
5581 /*
5582 * Pre-luminous MDS crashes when it sees an unknown session request
5583 */
5584 if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS))
5585 return;
5586
5587 mutex_lock(&s->s_mutex);
5588 doutc(cl, "request mdlog flush to mds%d (%s)s seq %lld\n",
5589 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq);
5590 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG,
5591 s->s_seq);
5592 if (!msg) {
5593 pr_err_client(cl, "failed to request mdlog flush to mds%d (%s) seq %lld\n",
5594 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq);
5595 } else {
5596 ceph_con_send(&s->s_con, msg);
5597 }
5598 mutex_unlock(&s->s_mutex);
5599 }
5600
ceph_mds_auth_match(struct ceph_mds_client * mdsc,struct ceph_mds_cap_auth * auth,const struct cred * cred,char * tpath)5601 static int ceph_mds_auth_match(struct ceph_mds_client *mdsc,
5602 struct ceph_mds_cap_auth *auth,
5603 const struct cred *cred,
5604 char *tpath)
5605 {
5606 u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid);
5607 u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid);
5608 struct ceph_client *cl = mdsc->fsc->client;
5609 const char *spath = mdsc->fsc->mount_options->server_path;
5610 bool gid_matched = false;
5611 u32 gid, tlen, len;
5612 int i, j;
5613
5614 doutc(cl, "match.uid %lld\n", auth->match.uid);
5615 if (auth->match.uid != MDS_AUTH_UID_ANY) {
5616 if (auth->match.uid != caller_uid)
5617 return 0;
5618 if (auth->match.num_gids) {
5619 for (i = 0; i < auth->match.num_gids; i++) {
5620 if (caller_gid == auth->match.gids[i])
5621 gid_matched = true;
5622 }
5623 if (!gid_matched && cred->group_info->ngroups) {
5624 for (i = 0; i < cred->group_info->ngroups; i++) {
5625 gid = from_kgid(&init_user_ns,
5626 cred->group_info->gid[i]);
5627 for (j = 0; j < auth->match.num_gids; j++) {
5628 if (gid == auth->match.gids[j]) {
5629 gid_matched = true;
5630 break;
5631 }
5632 }
5633 if (gid_matched)
5634 break;
5635 }
5636 }
5637 if (!gid_matched)
5638 return 0;
5639 }
5640 }
5641
5642 /* path match */
5643 if (auth->match.path) {
5644 if (!tpath)
5645 return 0;
5646
5647 tlen = strlen(tpath);
5648 len = strlen(auth->match.path);
5649 if (len) {
5650 char *_tpath = tpath;
5651 bool free_tpath = false;
5652 int m, n;
5653
5654 doutc(cl, "server path %s, tpath %s, match.path %s\n",
5655 spath, tpath, auth->match.path);
5656 if (spath && (m = strlen(spath)) != 1) {
5657 /* mount path + '/' + tpath + an extra space */
5658 n = m + 1 + tlen + 1;
5659 _tpath = kmalloc(n, GFP_NOFS);
5660 if (!_tpath)
5661 return -ENOMEM;
5662 /* remove the leading '/' */
5663 snprintf(_tpath, n, "%s/%s", spath + 1, tpath);
5664 free_tpath = true;
5665 tlen = strlen(_tpath);
5666 }
5667
5668 /*
5669 * Please note the tailing '/' for match.path has already
5670 * been removed when parsing.
5671 *
5672 * Remove the tailing '/' for the target path.
5673 */
5674 while (tlen && _tpath[tlen - 1] == '/') {
5675 _tpath[tlen - 1] = '\0';
5676 tlen -= 1;
5677 }
5678 doutc(cl, "_tpath %s\n", _tpath);
5679
5680 /*
5681 * In case first == _tpath && tlen == len:
5682 * match.path=/foo --> /foo _path=/foo --> match
5683 * match.path=/foo/ --> /foo _path=/foo --> match
5684 *
5685 * In case first == _tmatch.path && tlen > len:
5686 * match.path=/foo/ --> /foo _path=/foo/ --> match
5687 * match.path=/foo --> /foo _path=/foo/ --> match
5688 * match.path=/foo/ --> /foo _path=/foo/d --> match
5689 * match.path=/foo --> /foo _path=/food --> mismatch
5690 *
5691 * All the other cases --> mismatch
5692 */
5693 char *first = strstr(_tpath, auth->match.path);
5694 if (first != _tpath) {
5695 if (free_tpath)
5696 kfree(_tpath);
5697 return 0;
5698 }
5699
5700 if (tlen > len && _tpath[len] != '/') {
5701 if (free_tpath)
5702 kfree(_tpath);
5703 return 0;
5704 }
5705 }
5706 }
5707
5708 doutc(cl, "matched\n");
5709 return 1;
5710 }
5711
ceph_mds_check_access(struct ceph_mds_client * mdsc,char * tpath,int mask)5712 int ceph_mds_check_access(struct ceph_mds_client *mdsc, char *tpath, int mask)
5713 {
5714 const struct cred *cred = get_current_cred();
5715 u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid);
5716 u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid);
5717 struct ceph_mds_cap_auth *rw_perms_s = NULL;
5718 struct ceph_client *cl = mdsc->fsc->client;
5719 bool root_squash_perms = true;
5720 int i, err;
5721
5722 doutc(cl, "tpath '%s', mask %d, caller_uid %d, caller_gid %d\n",
5723 tpath, mask, caller_uid, caller_gid);
5724
5725 for (i = 0; i < mdsc->s_cap_auths_num; i++) {
5726 struct ceph_mds_cap_auth *s = &mdsc->s_cap_auths[i];
5727
5728 err = ceph_mds_auth_match(mdsc, s, cred, tpath);
5729 if (err < 0) {
5730 put_cred(cred);
5731 return err;
5732 } else if (err > 0) {
5733 /* always follow the last auth caps' permission */
5734 root_squash_perms = true;
5735 rw_perms_s = NULL;
5736 if ((mask & MAY_WRITE) && s->writeable &&
5737 s->match.root_squash && (!caller_uid || !caller_gid))
5738 root_squash_perms = false;
5739
5740 if (((mask & MAY_WRITE) && !s->writeable) ||
5741 ((mask & MAY_READ) && !s->readable))
5742 rw_perms_s = s;
5743 }
5744 }
5745
5746 put_cred(cred);
5747
5748 doutc(cl, "root_squash_perms %d, rw_perms_s %p\n", root_squash_perms,
5749 rw_perms_s);
5750 if (root_squash_perms && rw_perms_s == NULL) {
5751 doutc(cl, "access allowed\n");
5752 return 0;
5753 }
5754
5755 if (!root_squash_perms) {
5756 doutc(cl, "root_squash is enabled and user(%d %d) isn't allowed to write",
5757 caller_uid, caller_gid);
5758 }
5759 if (rw_perms_s) {
5760 doutc(cl, "mds auth caps readable/writeable %d/%d while request r/w %d/%d",
5761 rw_perms_s->readable, rw_perms_s->writeable,
5762 !!(mask & MAY_READ), !!(mask & MAY_WRITE));
5763 }
5764 doutc(cl, "access denied\n");
5765 return -EACCES;
5766 }
5767
5768 /*
5769 * called before mount is ro, and before dentries are torn down.
5770 * (hmm, does this still race with new lookups?)
5771 */
ceph_mdsc_pre_umount(struct ceph_mds_client * mdsc)5772 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
5773 {
5774 doutc(mdsc->fsc->client, "begin\n");
5775 mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN;
5776
5777 ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true);
5778 ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false);
5779 ceph_flush_dirty_caps(mdsc);
5780 wait_requests(mdsc);
5781
5782 /*
5783 * wait for reply handlers to drop their request refs and
5784 * their inode/dcache refs
5785 */
5786 ceph_msgr_flush();
5787
5788 ceph_cleanup_quotarealms_inodes(mdsc);
5789 doutc(mdsc->fsc->client, "done\n");
5790 }
5791
5792 /*
5793 * flush the mdlog and wait for all write mds requests to flush.
5794 */
flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client * mdsc,u64 want_tid)5795 static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc,
5796 u64 want_tid)
5797 {
5798 struct ceph_client *cl = mdsc->fsc->client;
5799 struct ceph_mds_request *req = NULL, *nextreq;
5800 struct ceph_mds_session *last_session = NULL;
5801 struct rb_node *n;
5802
5803 mutex_lock(&mdsc->mutex);
5804 doutc(cl, "want %lld\n", want_tid);
5805 restart:
5806 req = __get_oldest_req(mdsc);
5807 while (req && req->r_tid <= want_tid) {
5808 /* find next request */
5809 n = rb_next(&req->r_node);
5810 if (n)
5811 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
5812 else
5813 nextreq = NULL;
5814 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
5815 (req->r_op & CEPH_MDS_OP_WRITE)) {
5816 struct ceph_mds_session *s = req->r_session;
5817
5818 if (!s) {
5819 req = nextreq;
5820 continue;
5821 }
5822
5823 /* write op */
5824 ceph_mdsc_get_request(req);
5825 if (nextreq)
5826 ceph_mdsc_get_request(nextreq);
5827 s = ceph_get_mds_session(s);
5828 mutex_unlock(&mdsc->mutex);
5829
5830 /* send flush mdlog request to MDS */
5831 if (last_session != s) {
5832 send_flush_mdlog(s);
5833 ceph_put_mds_session(last_session);
5834 last_session = s;
5835 } else {
5836 ceph_put_mds_session(s);
5837 }
5838 doutc(cl, "wait on %llu (want %llu)\n",
5839 req->r_tid, want_tid);
5840 wait_for_completion(&req->r_safe_completion);
5841
5842 mutex_lock(&mdsc->mutex);
5843 ceph_mdsc_put_request(req);
5844 if (!nextreq)
5845 break; /* next dne before, so we're done! */
5846 if (RB_EMPTY_NODE(&nextreq->r_node)) {
5847 /* next request was removed from tree */
5848 ceph_mdsc_put_request(nextreq);
5849 goto restart;
5850 }
5851 ceph_mdsc_put_request(nextreq); /* won't go away */
5852 }
5853 req = nextreq;
5854 }
5855 mutex_unlock(&mdsc->mutex);
5856 ceph_put_mds_session(last_session);
5857 doutc(cl, "done\n");
5858 }
5859
ceph_mdsc_sync(struct ceph_mds_client * mdsc)5860 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
5861 {
5862 struct ceph_client *cl = mdsc->fsc->client;
5863 u64 want_tid, want_flush;
5864
5865 if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN)
5866 return;
5867
5868 doutc(cl, "sync\n");
5869 mutex_lock(&mdsc->mutex);
5870 want_tid = mdsc->last_tid;
5871 mutex_unlock(&mdsc->mutex);
5872
5873 ceph_flush_dirty_caps(mdsc);
5874 ceph_flush_cap_releases(mdsc);
5875 spin_lock(&mdsc->cap_dirty_lock);
5876 want_flush = mdsc->last_cap_flush_tid;
5877 if (!list_empty(&mdsc->cap_flush_list)) {
5878 struct ceph_cap_flush *cf =
5879 list_last_entry(&mdsc->cap_flush_list,
5880 struct ceph_cap_flush, g_list);
5881 cf->wake = true;
5882 }
5883 spin_unlock(&mdsc->cap_dirty_lock);
5884
5885 doutc(cl, "sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
5886
5887 flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid);
5888 wait_caps_flush(mdsc, want_flush);
5889 }
5890
5891 /*
5892 * true if all sessions are closed, or we force unmount
5893 */
done_closing_sessions(struct ceph_mds_client * mdsc,int skipped)5894 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
5895 {
5896 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
5897 return true;
5898 return atomic_read(&mdsc->num_sessions) <= skipped;
5899 }
5900
5901 /*
5902 * called after sb is ro or when metadata corrupted.
5903 */
ceph_mdsc_close_sessions(struct ceph_mds_client * mdsc)5904 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
5905 {
5906 struct ceph_options *opts = mdsc->fsc->client->options;
5907 struct ceph_client *cl = mdsc->fsc->client;
5908 struct ceph_mds_session *session;
5909 int i;
5910 int skipped = 0;
5911
5912 doutc(cl, "begin\n");
5913
5914 /* close sessions */
5915 mutex_lock(&mdsc->mutex);
5916 for (i = 0; i < mdsc->max_sessions; i++) {
5917 session = __ceph_lookup_mds_session(mdsc, i);
5918 if (!session)
5919 continue;
5920 mutex_unlock(&mdsc->mutex);
5921 mutex_lock(&session->s_mutex);
5922 if (__close_session(mdsc, session) <= 0)
5923 skipped++;
5924 mutex_unlock(&session->s_mutex);
5925 ceph_put_mds_session(session);
5926 mutex_lock(&mdsc->mutex);
5927 }
5928 mutex_unlock(&mdsc->mutex);
5929
5930 doutc(cl, "waiting for sessions to close\n");
5931 wait_event_timeout(mdsc->session_close_wq,
5932 done_closing_sessions(mdsc, skipped),
5933 ceph_timeout_jiffies(opts->mount_timeout));
5934
5935 /* tear down remaining sessions */
5936 mutex_lock(&mdsc->mutex);
5937 for (i = 0; i < mdsc->max_sessions; i++) {
5938 if (mdsc->sessions[i]) {
5939 session = ceph_get_mds_session(mdsc->sessions[i]);
5940 __unregister_session(mdsc, session);
5941 mutex_unlock(&mdsc->mutex);
5942 mutex_lock(&session->s_mutex);
5943 remove_session_caps(session);
5944 mutex_unlock(&session->s_mutex);
5945 ceph_put_mds_session(session);
5946 mutex_lock(&mdsc->mutex);
5947 }
5948 }
5949 WARN_ON(!list_empty(&mdsc->cap_delay_list));
5950 mutex_unlock(&mdsc->mutex);
5951
5952 ceph_cleanup_snapid_map(mdsc);
5953 ceph_cleanup_global_and_empty_realms(mdsc);
5954
5955 cancel_work_sync(&mdsc->cap_reclaim_work);
5956 cancel_work_sync(&mdsc->cap_unlink_work);
5957 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
5958
5959 doutc(cl, "done\n");
5960 }
5961
ceph_mdsc_force_umount(struct ceph_mds_client * mdsc)5962 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
5963 {
5964 struct ceph_mds_session *session;
5965 int mds;
5966
5967 doutc(mdsc->fsc->client, "force umount\n");
5968
5969 mutex_lock(&mdsc->mutex);
5970 for (mds = 0; mds < mdsc->max_sessions; mds++) {
5971 session = __ceph_lookup_mds_session(mdsc, mds);
5972 if (!session)
5973 continue;
5974
5975 if (session->s_state == CEPH_MDS_SESSION_REJECTED)
5976 __unregister_session(mdsc, session);
5977 __wake_requests(mdsc, &session->s_waiting);
5978 mutex_unlock(&mdsc->mutex);
5979
5980 mutex_lock(&session->s_mutex);
5981 __close_session(mdsc, session);
5982 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
5983 cleanup_session_requests(mdsc, session);
5984 remove_session_caps(session);
5985 }
5986 mutex_unlock(&session->s_mutex);
5987 ceph_put_mds_session(session);
5988
5989 mutex_lock(&mdsc->mutex);
5990 kick_requests(mdsc, mds);
5991 }
5992 __wake_requests(mdsc, &mdsc->waiting_for_map);
5993 mutex_unlock(&mdsc->mutex);
5994 }
5995
ceph_mdsc_stop(struct ceph_mds_client * mdsc)5996 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
5997 {
5998 doutc(mdsc->fsc->client, "stop\n");
5999 /*
6000 * Make sure the delayed work stopped before releasing
6001 * the resources.
6002 *
6003 * Because the cancel_delayed_work_sync() will only
6004 * guarantee that the work finishes executing. But the
6005 * delayed work will re-arm itself again after that.
6006 */
6007 flush_delayed_work(&mdsc->delayed_work);
6008
6009 if (mdsc->mdsmap)
6010 ceph_mdsmap_destroy(mdsc->mdsmap);
6011 kfree(mdsc->sessions);
6012 ceph_caps_finalize(mdsc);
6013
6014 if (mdsc->s_cap_auths) {
6015 int i;
6016
6017 for (i = 0; i < mdsc->s_cap_auths_num; i++) {
6018 kfree(mdsc->s_cap_auths[i].match.gids);
6019 kfree(mdsc->s_cap_auths[i].match.path);
6020 kfree(mdsc->s_cap_auths[i].match.fs_name);
6021 }
6022 kfree(mdsc->s_cap_auths);
6023 }
6024
6025 ceph_pool_perm_destroy(mdsc);
6026 }
6027
ceph_mdsc_destroy(struct ceph_fs_client * fsc)6028 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
6029 {
6030 struct ceph_mds_client *mdsc = fsc->mdsc;
6031 doutc(fsc->client, "%p\n", mdsc);
6032
6033 if (!mdsc)
6034 return;
6035
6036 /* flush out any connection work with references to us */
6037 ceph_msgr_flush();
6038
6039 ceph_mdsc_stop(mdsc);
6040
6041 ceph_metric_destroy(&mdsc->metric);
6042
6043 fsc->mdsc = NULL;
6044 kfree(mdsc);
6045 doutc(fsc->client, "%p done\n", mdsc);
6046 }
6047
ceph_mdsc_handle_fsmap(struct ceph_mds_client * mdsc,struct ceph_msg * msg)6048 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
6049 {
6050 struct ceph_fs_client *fsc = mdsc->fsc;
6051 struct ceph_client *cl = fsc->client;
6052 const char *mds_namespace = fsc->mount_options->mds_namespace;
6053 void *p = msg->front.iov_base;
6054 void *end = p + msg->front.iov_len;
6055 u32 epoch;
6056 u32 num_fs;
6057 u32 mount_fscid = (u32)-1;
6058 int err = -EINVAL;
6059
6060 ceph_decode_need(&p, end, sizeof(u32), bad);
6061 epoch = ceph_decode_32(&p);
6062
6063 doutc(cl, "epoch %u\n", epoch);
6064
6065 /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */
6066 ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad);
6067
6068 ceph_decode_32_safe(&p, end, num_fs, bad);
6069 while (num_fs-- > 0) {
6070 void *info_p, *info_end;
6071 u32 info_len;
6072 u32 fscid, namelen;
6073
6074 ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
6075 p += 2; // info_v, info_cv
6076 info_len = ceph_decode_32(&p);
6077 ceph_decode_need(&p, end, info_len, bad);
6078 info_p = p;
6079 info_end = p + info_len;
6080 p = info_end;
6081
6082 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
6083 fscid = ceph_decode_32(&info_p);
6084 namelen = ceph_decode_32(&info_p);
6085 ceph_decode_need(&info_p, info_end, namelen, bad);
6086
6087 if (mds_namespace &&
6088 strlen(mds_namespace) == namelen &&
6089 !strncmp(mds_namespace, (char *)info_p, namelen)) {
6090 mount_fscid = fscid;
6091 break;
6092 }
6093 }
6094
6095 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
6096 if (mount_fscid != (u32)-1) {
6097 fsc->client->monc.fs_cluster_id = mount_fscid;
6098 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
6099 0, true);
6100 ceph_monc_renew_subs(&fsc->client->monc);
6101 } else {
6102 err = -ENOENT;
6103 goto err_out;
6104 }
6105 return;
6106
6107 bad:
6108 pr_err_client(cl, "error decoding fsmap %d. Shutting down mount.\n",
6109 err);
6110 ceph_umount_begin(mdsc->fsc->sb);
6111 ceph_msg_dump(msg);
6112 err_out:
6113 mutex_lock(&mdsc->mutex);
6114 mdsc->mdsmap_err = err;
6115 __wake_requests(mdsc, &mdsc->waiting_for_map);
6116 mutex_unlock(&mdsc->mutex);
6117 }
6118
6119 /*
6120 * handle mds map update.
6121 */
ceph_mdsc_handle_mdsmap(struct ceph_mds_client * mdsc,struct ceph_msg * msg)6122 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
6123 {
6124 struct ceph_client *cl = mdsc->fsc->client;
6125 u32 epoch;
6126 u32 maplen;
6127 void *p = msg->front.iov_base;
6128 void *end = p + msg->front.iov_len;
6129 struct ceph_mdsmap *newmap, *oldmap;
6130 struct ceph_fsid fsid;
6131 int err = -EINVAL;
6132
6133 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
6134 ceph_decode_copy(&p, &fsid, sizeof(fsid));
6135 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
6136 return;
6137 epoch = ceph_decode_32(&p);
6138 maplen = ceph_decode_32(&p);
6139 doutc(cl, "epoch %u len %d\n", epoch, (int)maplen);
6140
6141 /* do we need it? */
6142 mutex_lock(&mdsc->mutex);
6143 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
6144 doutc(cl, "epoch %u <= our %u\n", epoch, mdsc->mdsmap->m_epoch);
6145 mutex_unlock(&mdsc->mutex);
6146 return;
6147 }
6148
6149 newmap = ceph_mdsmap_decode(mdsc, &p, end, ceph_msgr2(mdsc->fsc->client));
6150 if (IS_ERR(newmap)) {
6151 err = PTR_ERR(newmap);
6152 goto bad_unlock;
6153 }
6154
6155 /* swap into place */
6156 if (mdsc->mdsmap) {
6157 oldmap = mdsc->mdsmap;
6158 mdsc->mdsmap = newmap;
6159 check_new_map(mdsc, newmap, oldmap);
6160 ceph_mdsmap_destroy(oldmap);
6161 } else {
6162 mdsc->mdsmap = newmap; /* first mds map */
6163 }
6164 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size,
6165 MAX_LFS_FILESIZE);
6166
6167 __wake_requests(mdsc, &mdsc->waiting_for_map);
6168 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
6169 mdsc->mdsmap->m_epoch);
6170
6171 mutex_unlock(&mdsc->mutex);
6172 schedule_delayed(mdsc, 0);
6173 return;
6174
6175 bad_unlock:
6176 mutex_unlock(&mdsc->mutex);
6177 bad:
6178 pr_err_client(cl, "error decoding mdsmap %d. Shutting down mount.\n",
6179 err);
6180 ceph_umount_begin(mdsc->fsc->sb);
6181 ceph_msg_dump(msg);
6182 return;
6183 }
6184
mds_get_con(struct ceph_connection * con)6185 static struct ceph_connection *mds_get_con(struct ceph_connection *con)
6186 {
6187 struct ceph_mds_session *s = con->private;
6188
6189 if (ceph_get_mds_session(s))
6190 return con;
6191 return NULL;
6192 }
6193
mds_put_con(struct ceph_connection * con)6194 static void mds_put_con(struct ceph_connection *con)
6195 {
6196 struct ceph_mds_session *s = con->private;
6197
6198 ceph_put_mds_session(s);
6199 }
6200
6201 /*
6202 * if the client is unresponsive for long enough, the mds will kill
6203 * the session entirely.
6204 */
mds_peer_reset(struct ceph_connection * con)6205 static void mds_peer_reset(struct ceph_connection *con)
6206 {
6207 struct ceph_mds_session *s = con->private;
6208 struct ceph_mds_client *mdsc = s->s_mdsc;
6209
6210 pr_warn_client(mdsc->fsc->client, "mds%d closed our session\n",
6211 s->s_mds);
6212 if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO &&
6213 ceph_mdsmap_get_state(mdsc->mdsmap, s->s_mds) >= CEPH_MDS_STATE_RECONNECT)
6214 send_mds_reconnect(mdsc, s);
6215 }
6216
mds_dispatch(struct ceph_connection * con,struct ceph_msg * msg)6217 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg)
6218 {
6219 struct ceph_mds_session *s = con->private;
6220 struct ceph_mds_client *mdsc = s->s_mdsc;
6221 struct ceph_client *cl = mdsc->fsc->client;
6222 int type = le16_to_cpu(msg->hdr.type);
6223
6224 mutex_lock(&mdsc->mutex);
6225 if (__verify_registered_session(mdsc, s) < 0) {
6226 mutex_unlock(&mdsc->mutex);
6227 goto out;
6228 }
6229 mutex_unlock(&mdsc->mutex);
6230
6231 switch (type) {
6232 case CEPH_MSG_MDS_MAP:
6233 ceph_mdsc_handle_mdsmap(mdsc, msg);
6234 break;
6235 case CEPH_MSG_FS_MAP_USER:
6236 ceph_mdsc_handle_fsmap(mdsc, msg);
6237 break;
6238 case CEPH_MSG_CLIENT_SESSION:
6239 handle_session(s, msg);
6240 break;
6241 case CEPH_MSG_CLIENT_REPLY:
6242 handle_reply(s, msg);
6243 break;
6244 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
6245 handle_forward(mdsc, s, msg);
6246 break;
6247 case CEPH_MSG_CLIENT_CAPS:
6248 ceph_handle_caps(s, msg);
6249 break;
6250 case CEPH_MSG_CLIENT_SNAP:
6251 ceph_handle_snap(mdsc, s, msg);
6252 break;
6253 case CEPH_MSG_CLIENT_LEASE:
6254 handle_lease(mdsc, s, msg);
6255 break;
6256 case CEPH_MSG_CLIENT_QUOTA:
6257 ceph_handle_quota(mdsc, s, msg);
6258 break;
6259
6260 default:
6261 pr_err_client(cl, "received unknown message type %d %s\n",
6262 type, ceph_msg_type_name(type));
6263 }
6264 out:
6265 ceph_msg_put(msg);
6266 }
6267
6268 /*
6269 * authentication
6270 */
6271
6272 /*
6273 * Note: returned pointer is the address of a structure that's
6274 * managed separately. Caller must *not* attempt to free it.
6275 */
6276 static struct ceph_auth_handshake *
mds_get_authorizer(struct ceph_connection * con,int * proto,int force_new)6277 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new)
6278 {
6279 struct ceph_mds_session *s = con->private;
6280 struct ceph_mds_client *mdsc = s->s_mdsc;
6281 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6282 struct ceph_auth_handshake *auth = &s->s_auth;
6283 int ret;
6284
6285 ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS,
6286 force_new, proto, NULL, NULL);
6287 if (ret)
6288 return ERR_PTR(ret);
6289
6290 return auth;
6291 }
6292
mds_add_authorizer_challenge(struct ceph_connection * con,void * challenge_buf,int challenge_buf_len)6293 static int mds_add_authorizer_challenge(struct ceph_connection *con,
6294 void *challenge_buf, int challenge_buf_len)
6295 {
6296 struct ceph_mds_session *s = con->private;
6297 struct ceph_mds_client *mdsc = s->s_mdsc;
6298 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6299
6300 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer,
6301 challenge_buf, challenge_buf_len);
6302 }
6303
mds_verify_authorizer_reply(struct ceph_connection * con)6304 static int mds_verify_authorizer_reply(struct ceph_connection *con)
6305 {
6306 struct ceph_mds_session *s = con->private;
6307 struct ceph_mds_client *mdsc = s->s_mdsc;
6308 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6309 struct ceph_auth_handshake *auth = &s->s_auth;
6310
6311 return ceph_auth_verify_authorizer_reply(ac, auth->authorizer,
6312 auth->authorizer_reply_buf, auth->authorizer_reply_buf_len,
6313 NULL, NULL, NULL, NULL);
6314 }
6315
mds_invalidate_authorizer(struct ceph_connection * con)6316 static int mds_invalidate_authorizer(struct ceph_connection *con)
6317 {
6318 struct ceph_mds_session *s = con->private;
6319 struct ceph_mds_client *mdsc = s->s_mdsc;
6320 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6321
6322 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
6323
6324 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
6325 }
6326
mds_get_auth_request(struct ceph_connection * con,void * buf,int * buf_len,void ** authorizer,int * authorizer_len)6327 static int mds_get_auth_request(struct ceph_connection *con,
6328 void *buf, int *buf_len,
6329 void **authorizer, int *authorizer_len)
6330 {
6331 struct ceph_mds_session *s = con->private;
6332 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
6333 struct ceph_auth_handshake *auth = &s->s_auth;
6334 int ret;
6335
6336 ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS,
6337 buf, buf_len);
6338 if (ret)
6339 return ret;
6340
6341 *authorizer = auth->authorizer_buf;
6342 *authorizer_len = auth->authorizer_buf_len;
6343 return 0;
6344 }
6345
mds_handle_auth_reply_more(struct ceph_connection * con,void * reply,int reply_len,void * buf,int * buf_len,void ** authorizer,int * authorizer_len)6346 static int mds_handle_auth_reply_more(struct ceph_connection *con,
6347 void *reply, int reply_len,
6348 void *buf, int *buf_len,
6349 void **authorizer, int *authorizer_len)
6350 {
6351 struct ceph_mds_session *s = con->private;
6352 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
6353 struct ceph_auth_handshake *auth = &s->s_auth;
6354 int ret;
6355
6356 ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len,
6357 buf, buf_len);
6358 if (ret)
6359 return ret;
6360
6361 *authorizer = auth->authorizer_buf;
6362 *authorizer_len = auth->authorizer_buf_len;
6363 return 0;
6364 }
6365
mds_handle_auth_done(struct ceph_connection * con,u64 global_id,void * reply,int reply_len,u8 * session_key,int * session_key_len,u8 * con_secret,int * con_secret_len)6366 static int mds_handle_auth_done(struct ceph_connection *con,
6367 u64 global_id, void *reply, int reply_len,
6368 u8 *session_key, int *session_key_len,
6369 u8 *con_secret, int *con_secret_len)
6370 {
6371 struct ceph_mds_session *s = con->private;
6372 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
6373 struct ceph_auth_handshake *auth = &s->s_auth;
6374
6375 return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len,
6376 session_key, session_key_len,
6377 con_secret, con_secret_len);
6378 }
6379
mds_handle_auth_bad_method(struct ceph_connection * con,int used_proto,int result,const int * allowed_protos,int proto_cnt,const int * allowed_modes,int mode_cnt)6380 static int mds_handle_auth_bad_method(struct ceph_connection *con,
6381 int used_proto, int result,
6382 const int *allowed_protos, int proto_cnt,
6383 const int *allowed_modes, int mode_cnt)
6384 {
6385 struct ceph_mds_session *s = con->private;
6386 struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc;
6387 int ret;
6388
6389 if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS,
6390 used_proto, result,
6391 allowed_protos, proto_cnt,
6392 allowed_modes, mode_cnt)) {
6393 ret = ceph_monc_validate_auth(monc);
6394 if (ret)
6395 return ret;
6396 }
6397
6398 return -EACCES;
6399 }
6400
mds_alloc_msg(struct ceph_connection * con,struct ceph_msg_header * hdr,int * skip)6401 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
6402 struct ceph_msg_header *hdr, int *skip)
6403 {
6404 struct ceph_msg *msg;
6405 int type = (int) le16_to_cpu(hdr->type);
6406 int front_len = (int) le32_to_cpu(hdr->front_len);
6407
6408 if (con->in_msg)
6409 return con->in_msg;
6410
6411 *skip = 0;
6412 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
6413 if (!msg) {
6414 pr_err("unable to allocate msg type %d len %d\n",
6415 type, front_len);
6416 return NULL;
6417 }
6418
6419 return msg;
6420 }
6421
mds_sign_message(struct ceph_msg * msg)6422 static int mds_sign_message(struct ceph_msg *msg)
6423 {
6424 struct ceph_mds_session *s = msg->con->private;
6425 struct ceph_auth_handshake *auth = &s->s_auth;
6426
6427 return ceph_auth_sign_message(auth, msg);
6428 }
6429
mds_check_message_signature(struct ceph_msg * msg)6430 static int mds_check_message_signature(struct ceph_msg *msg)
6431 {
6432 struct ceph_mds_session *s = msg->con->private;
6433 struct ceph_auth_handshake *auth = &s->s_auth;
6434
6435 return ceph_auth_check_message_signature(auth, msg);
6436 }
6437
6438 static const struct ceph_connection_operations mds_con_ops = {
6439 .get = mds_get_con,
6440 .put = mds_put_con,
6441 .alloc_msg = mds_alloc_msg,
6442 .dispatch = mds_dispatch,
6443 .peer_reset = mds_peer_reset,
6444 .get_authorizer = mds_get_authorizer,
6445 .add_authorizer_challenge = mds_add_authorizer_challenge,
6446 .verify_authorizer_reply = mds_verify_authorizer_reply,
6447 .invalidate_authorizer = mds_invalidate_authorizer,
6448 .sign_message = mds_sign_message,
6449 .check_message_signature = mds_check_message_signature,
6450 .get_auth_request = mds_get_auth_request,
6451 .handle_auth_reply_more = mds_handle_auth_reply_more,
6452 .handle_auth_done = mds_handle_auth_done,
6453 .handle_auth_bad_method = mds_handle_auth_bad_method,
6454 };
6455
6456 /* eof */
6457