xref: /linux/include/linux/sched.h (revision 3f31a806a62e44f7498e2d17719c03f816553f11)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/uidgid_types.h>
48 #include <linux/tracepoint-defs.h>
49 #include <asm/kmap_size.h>
50 
51 /* task_struct member predeclarations (sorted alphabetically): */
52 struct audit_context;
53 struct bio_list;
54 struct blk_plug;
55 struct bpf_local_storage;
56 struct bpf_run_ctx;
57 struct bpf_net_context;
58 struct capture_control;
59 struct cfs_rq;
60 struct fs_struct;
61 struct futex_pi_state;
62 struct io_context;
63 struct io_uring_task;
64 struct mempolicy;
65 struct nameidata;
66 struct nsproxy;
67 struct perf_event_context;
68 struct perf_ctx_data;
69 struct pid_namespace;
70 struct pipe_inode_info;
71 struct rcu_node;
72 struct reclaim_state;
73 struct robust_list_head;
74 struct root_domain;
75 struct rq;
76 struct sched_attr;
77 struct sched_dl_entity;
78 struct seq_file;
79 struct sighand_struct;
80 struct signal_struct;
81 struct task_delay_info;
82 struct task_group;
83 struct task_struct;
84 struct user_event_mm;
85 
86 #include <linux/sched/ext.h>
87 
88 /*
89  * Task state bitmask. NOTE! These bits are also
90  * encoded in fs/proc/array.c: get_task_state().
91  *
92  * We have two separate sets of flags: task->__state
93  * is about runnability, while task->exit_state are
94  * about the task exiting. Confusing, but this way
95  * modifying one set can't modify the other one by
96  * mistake.
97  */
98 
99 /* Used in tsk->__state: */
100 #define TASK_RUNNING			0x00000000
101 #define TASK_INTERRUPTIBLE		0x00000001
102 #define TASK_UNINTERRUPTIBLE		0x00000002
103 #define __TASK_STOPPED			0x00000004
104 #define __TASK_TRACED			0x00000008
105 /* Used in tsk->exit_state: */
106 #define EXIT_DEAD			0x00000010
107 #define EXIT_ZOMBIE			0x00000020
108 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
109 /* Used in tsk->__state again: */
110 #define TASK_PARKED			0x00000040
111 #define TASK_DEAD			0x00000080
112 #define TASK_WAKEKILL			0x00000100
113 #define TASK_WAKING			0x00000200
114 #define TASK_NOLOAD			0x00000400
115 #define TASK_NEW			0x00000800
116 #define TASK_RTLOCK_WAIT		0x00001000
117 #define TASK_FREEZABLE			0x00002000
118 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
119 #define TASK_FROZEN			0x00008000
120 #define TASK_STATE_MAX			0x00010000
121 
122 #define TASK_ANY			(TASK_STATE_MAX-1)
123 
124 /*
125  * DO NOT ADD ANY NEW USERS !
126  */
127 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
128 
129 /* Convenience macros for the sake of set_current_state: */
130 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
131 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
132 #define TASK_TRACED			__TASK_TRACED
133 
134 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
135 
136 /* Convenience macros for the sake of wake_up(): */
137 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
138 
139 /* get_task_state(): */
140 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
141 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
142 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
143 					 TASK_PARKED)
144 
145 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
146 
147 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
148 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
149 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
150 
151 /*
152  * Special states are those that do not use the normal wait-loop pattern. See
153  * the comment with set_special_state().
154  */
155 #define is_special_task_state(state)					\
156 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
157 		    TASK_DEAD | TASK_FROZEN))
158 
159 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
160 # define debug_normal_state_change(state_value)				\
161 	do {								\
162 		WARN_ON_ONCE(is_special_task_state(state_value));	\
163 		current->task_state_change = _THIS_IP_;			\
164 	} while (0)
165 
166 # define debug_special_state_change(state_value)			\
167 	do {								\
168 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
169 		current->task_state_change = _THIS_IP_;			\
170 	} while (0)
171 
172 # define debug_rtlock_wait_set_state()					\
173 	do {								 \
174 		current->saved_state_change = current->task_state_change;\
175 		current->task_state_change = _THIS_IP_;			 \
176 	} while (0)
177 
178 # define debug_rtlock_wait_restore_state()				\
179 	do {								 \
180 		current->task_state_change = current->saved_state_change;\
181 	} while (0)
182 
183 #else
184 # define debug_normal_state_change(cond)	do { } while (0)
185 # define debug_special_state_change(cond)	do { } while (0)
186 # define debug_rtlock_wait_set_state()		do { } while (0)
187 # define debug_rtlock_wait_restore_state()	do { } while (0)
188 #endif
189 
190 #define trace_set_current_state(state_value)                     \
191 	do {                                                     \
192 		if (tracepoint_enabled(sched_set_state_tp))      \
193 			__trace_set_current_state(state_value); \
194 	} while (0)
195 
196 /*
197  * set_current_state() includes a barrier so that the write of current->__state
198  * is correctly serialised wrt the caller's subsequent test of whether to
199  * actually sleep:
200  *
201  *   for (;;) {
202  *	set_current_state(TASK_UNINTERRUPTIBLE);
203  *	if (CONDITION)
204  *	   break;
205  *
206  *	schedule();
207  *   }
208  *   __set_current_state(TASK_RUNNING);
209  *
210  * If the caller does not need such serialisation (because, for instance, the
211  * CONDITION test and condition change and wakeup are under the same lock) then
212  * use __set_current_state().
213  *
214  * The above is typically ordered against the wakeup, which does:
215  *
216  *   CONDITION = 1;
217  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
218  *
219  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
220  * accessing p->__state.
221  *
222  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
223  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
224  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
225  *
226  * However, with slightly different timing the wakeup TASK_RUNNING store can
227  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
228  * a problem either because that will result in one extra go around the loop
229  * and our @cond test will save the day.
230  *
231  * Also see the comments of try_to_wake_up().
232  */
233 #define __set_current_state(state_value)				\
234 	do {								\
235 		debug_normal_state_change((state_value));		\
236 		trace_set_current_state(state_value);			\
237 		WRITE_ONCE(current->__state, (state_value));		\
238 	} while (0)
239 
240 #define set_current_state(state_value)					\
241 	do {								\
242 		debug_normal_state_change((state_value));		\
243 		trace_set_current_state(state_value);			\
244 		smp_store_mb(current->__state, (state_value));		\
245 	} while (0)
246 
247 /*
248  * set_special_state() should be used for those states when the blocking task
249  * can not use the regular condition based wait-loop. In that case we must
250  * serialize against wakeups such that any possible in-flight TASK_RUNNING
251  * stores will not collide with our state change.
252  */
253 #define set_special_state(state_value)					\
254 	do {								\
255 		unsigned long flags; /* may shadow */			\
256 									\
257 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
258 		debug_special_state_change((state_value));		\
259 		trace_set_current_state(state_value);			\
260 		WRITE_ONCE(current->__state, (state_value));		\
261 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
262 	} while (0)
263 
264 /*
265  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
266  *
267  * RT's spin/rwlock substitutions are state preserving. The state of the
268  * task when blocking on the lock is saved in task_struct::saved_state and
269  * restored after the lock has been acquired.  These operations are
270  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
271  * lock related wakeups while the task is blocked on the lock are
272  * redirected to operate on task_struct::saved_state to ensure that these
273  * are not dropped. On restore task_struct::saved_state is set to
274  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
275  *
276  * The lock operation looks like this:
277  *
278  *	current_save_and_set_rtlock_wait_state();
279  *	for (;;) {
280  *		if (try_lock())
281  *			break;
282  *		raw_spin_unlock_irq(&lock->wait_lock);
283  *		schedule_rtlock();
284  *		raw_spin_lock_irq(&lock->wait_lock);
285  *		set_current_state(TASK_RTLOCK_WAIT);
286  *	}
287  *	current_restore_rtlock_saved_state();
288  */
289 #define current_save_and_set_rtlock_wait_state()			\
290 	do {								\
291 		lockdep_assert_irqs_disabled();				\
292 		raw_spin_lock(&current->pi_lock);			\
293 		current->saved_state = current->__state;		\
294 		debug_rtlock_wait_set_state();				\
295 		trace_set_current_state(TASK_RTLOCK_WAIT);		\
296 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
297 		raw_spin_unlock(&current->pi_lock);			\
298 	} while (0);
299 
300 #define current_restore_rtlock_saved_state()				\
301 	do {								\
302 		lockdep_assert_irqs_disabled();				\
303 		raw_spin_lock(&current->pi_lock);			\
304 		debug_rtlock_wait_restore_state();			\
305 		trace_set_current_state(current->saved_state);		\
306 		WRITE_ONCE(current->__state, current->saved_state);	\
307 		current->saved_state = TASK_RUNNING;			\
308 		raw_spin_unlock(&current->pi_lock);			\
309 	} while (0);
310 
311 #define get_current_state()	READ_ONCE(current->__state)
312 
313 /*
314  * Define the task command name length as enum, then it can be visible to
315  * BPF programs.
316  */
317 enum {
318 	TASK_COMM_LEN = 16,
319 };
320 
321 extern void sched_tick(void);
322 
323 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
324 
325 extern long schedule_timeout(long timeout);
326 extern long schedule_timeout_interruptible(long timeout);
327 extern long schedule_timeout_killable(long timeout);
328 extern long schedule_timeout_uninterruptible(long timeout);
329 extern long schedule_timeout_idle(long timeout);
330 asmlinkage void schedule(void);
331 extern void schedule_preempt_disabled(void);
332 asmlinkage void preempt_schedule_irq(void);
333 #ifdef CONFIG_PREEMPT_RT
334  extern void schedule_rtlock(void);
335 #endif
336 
337 extern int __must_check io_schedule_prepare(void);
338 extern void io_schedule_finish(int token);
339 extern long io_schedule_timeout(long timeout);
340 extern void io_schedule(void);
341 
342 /* wrapper function to trace from this header file */
343 DECLARE_TRACEPOINT(sched_set_state_tp);
344 extern void __trace_set_current_state(int state_value);
345 
346 /**
347  * struct prev_cputime - snapshot of system and user cputime
348  * @utime: time spent in user mode
349  * @stime: time spent in system mode
350  * @lock: protects the above two fields
351  *
352  * Stores previous user/system time values such that we can guarantee
353  * monotonicity.
354  */
355 struct prev_cputime {
356 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
357 	u64				utime;
358 	u64				stime;
359 	raw_spinlock_t			lock;
360 #endif
361 };
362 
363 enum vtime_state {
364 	/* Task is sleeping or running in a CPU with VTIME inactive: */
365 	VTIME_INACTIVE = 0,
366 	/* Task is idle */
367 	VTIME_IDLE,
368 	/* Task runs in kernelspace in a CPU with VTIME active: */
369 	VTIME_SYS,
370 	/* Task runs in userspace in a CPU with VTIME active: */
371 	VTIME_USER,
372 	/* Task runs as guests in a CPU with VTIME active: */
373 	VTIME_GUEST,
374 };
375 
376 struct vtime {
377 	seqcount_t		seqcount;
378 	unsigned long long	starttime;
379 	enum vtime_state	state;
380 	unsigned int		cpu;
381 	u64			utime;
382 	u64			stime;
383 	u64			gtime;
384 };
385 
386 /*
387  * Utilization clamp constraints.
388  * @UCLAMP_MIN:	Minimum utilization
389  * @UCLAMP_MAX:	Maximum utilization
390  * @UCLAMP_CNT:	Utilization clamp constraints count
391  */
392 enum uclamp_id {
393 	UCLAMP_MIN = 0,
394 	UCLAMP_MAX,
395 	UCLAMP_CNT
396 };
397 
398 #ifdef CONFIG_SMP
399 extern struct root_domain def_root_domain;
400 extern struct mutex sched_domains_mutex;
401 extern void sched_domains_mutex_lock(void);
402 extern void sched_domains_mutex_unlock(void);
403 #else
sched_domains_mutex_lock(void)404 static inline void sched_domains_mutex_lock(void) { }
sched_domains_mutex_unlock(void)405 static inline void sched_domains_mutex_unlock(void) { }
406 #endif
407 
408 struct sched_param {
409 	int sched_priority;
410 };
411 
412 struct sched_info {
413 #ifdef CONFIG_SCHED_INFO
414 	/* Cumulative counters: */
415 
416 	/* # of times we have run on this CPU: */
417 	unsigned long			pcount;
418 
419 	/* Time spent waiting on a runqueue: */
420 	unsigned long long		run_delay;
421 
422 	/* Max time spent waiting on a runqueue: */
423 	unsigned long long		max_run_delay;
424 
425 	/* Min time spent waiting on a runqueue: */
426 	unsigned long long		min_run_delay;
427 
428 	/* Timestamps: */
429 
430 	/* When did we last run on a CPU? */
431 	unsigned long long		last_arrival;
432 
433 	/* When were we last queued to run? */
434 	unsigned long long		last_queued;
435 
436 #endif /* CONFIG_SCHED_INFO */
437 };
438 
439 /*
440  * Integer metrics need fixed point arithmetic, e.g., sched/fair
441  * has a few: load, load_avg, util_avg, freq, and capacity.
442  *
443  * We define a basic fixed point arithmetic range, and then formalize
444  * all these metrics based on that basic range.
445  */
446 # define SCHED_FIXEDPOINT_SHIFT		10
447 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
448 
449 /* Increase resolution of cpu_capacity calculations */
450 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
451 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
452 
453 struct load_weight {
454 	unsigned long			weight;
455 	u32				inv_weight;
456 };
457 
458 /*
459  * The load/runnable/util_avg accumulates an infinite geometric series
460  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
461  *
462  * [load_avg definition]
463  *
464  *   load_avg = runnable% * scale_load_down(load)
465  *
466  * [runnable_avg definition]
467  *
468  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
469  *
470  * [util_avg definition]
471  *
472  *   util_avg = running% * SCHED_CAPACITY_SCALE
473  *
474  * where runnable% is the time ratio that a sched_entity is runnable and
475  * running% the time ratio that a sched_entity is running.
476  *
477  * For cfs_rq, they are the aggregated values of all runnable and blocked
478  * sched_entities.
479  *
480  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
481  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
482  * for computing those signals (see update_rq_clock_pelt())
483  *
484  * N.B., the above ratios (runnable% and running%) themselves are in the
485  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
486  * to as large a range as necessary. This is for example reflected by
487  * util_avg's SCHED_CAPACITY_SCALE.
488  *
489  * [Overflow issue]
490  *
491  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
492  * with the highest load (=88761), always runnable on a single cfs_rq,
493  * and should not overflow as the number already hits PID_MAX_LIMIT.
494  *
495  * For all other cases (including 32-bit kernels), struct load_weight's
496  * weight will overflow first before we do, because:
497  *
498  *    Max(load_avg) <= Max(load.weight)
499  *
500  * Then it is the load_weight's responsibility to consider overflow
501  * issues.
502  */
503 struct sched_avg {
504 	u64				last_update_time;
505 	u64				load_sum;
506 	u64				runnable_sum;
507 	u32				util_sum;
508 	u32				period_contrib;
509 	unsigned long			load_avg;
510 	unsigned long			runnable_avg;
511 	unsigned long			util_avg;
512 	unsigned int			util_est;
513 } ____cacheline_aligned;
514 
515 /*
516  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
517  * updates. When a task is dequeued, its util_est should not be updated if its
518  * util_avg has not been updated in the meantime.
519  * This information is mapped into the MSB bit of util_est at dequeue time.
520  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
521  * it is safe to use MSB.
522  */
523 #define UTIL_EST_WEIGHT_SHIFT		2
524 #define UTIL_AVG_UNCHANGED		0x80000000
525 
526 struct sched_statistics {
527 #ifdef CONFIG_SCHEDSTATS
528 	u64				wait_start;
529 	u64				wait_max;
530 	u64				wait_count;
531 	u64				wait_sum;
532 	u64				iowait_count;
533 	u64				iowait_sum;
534 
535 	u64				sleep_start;
536 	u64				sleep_max;
537 	s64				sum_sleep_runtime;
538 
539 	u64				block_start;
540 	u64				block_max;
541 	s64				sum_block_runtime;
542 
543 	s64				exec_max;
544 	u64				slice_max;
545 
546 	u64				nr_migrations_cold;
547 	u64				nr_failed_migrations_affine;
548 	u64				nr_failed_migrations_running;
549 	u64				nr_failed_migrations_hot;
550 	u64				nr_forced_migrations;
551 
552 	u64				nr_wakeups;
553 	u64				nr_wakeups_sync;
554 	u64				nr_wakeups_migrate;
555 	u64				nr_wakeups_local;
556 	u64				nr_wakeups_remote;
557 	u64				nr_wakeups_affine;
558 	u64				nr_wakeups_affine_attempts;
559 	u64				nr_wakeups_passive;
560 	u64				nr_wakeups_idle;
561 
562 #ifdef CONFIG_SCHED_CORE
563 	u64				core_forceidle_sum;
564 #endif
565 #endif /* CONFIG_SCHEDSTATS */
566 } ____cacheline_aligned;
567 
568 struct sched_entity {
569 	/* For load-balancing: */
570 	struct load_weight		load;
571 	struct rb_node			run_node;
572 	u64				deadline;
573 	u64				min_vruntime;
574 	u64				min_slice;
575 
576 	struct list_head		group_node;
577 	unsigned char			on_rq;
578 	unsigned char			sched_delayed;
579 	unsigned char			rel_deadline;
580 	unsigned char			custom_slice;
581 					/* hole */
582 
583 	u64				exec_start;
584 	u64				sum_exec_runtime;
585 	u64				prev_sum_exec_runtime;
586 	u64				vruntime;
587 	s64				vlag;
588 	u64				slice;
589 
590 	u64				nr_migrations;
591 
592 #ifdef CONFIG_FAIR_GROUP_SCHED
593 	int				depth;
594 	struct sched_entity		*parent;
595 	/* rq on which this entity is (to be) queued: */
596 	struct cfs_rq			*cfs_rq;
597 	/* rq "owned" by this entity/group: */
598 	struct cfs_rq			*my_q;
599 	/* cached value of my_q->h_nr_running */
600 	unsigned long			runnable_weight;
601 #endif
602 
603 #ifdef CONFIG_SMP
604 	/*
605 	 * Per entity load average tracking.
606 	 *
607 	 * Put into separate cache line so it does not
608 	 * collide with read-mostly values above.
609 	 */
610 	struct sched_avg		avg;
611 #endif
612 };
613 
614 struct sched_rt_entity {
615 	struct list_head		run_list;
616 	unsigned long			timeout;
617 	unsigned long			watchdog_stamp;
618 	unsigned int			time_slice;
619 	unsigned short			on_rq;
620 	unsigned short			on_list;
621 
622 	struct sched_rt_entity		*back;
623 #ifdef CONFIG_RT_GROUP_SCHED
624 	struct sched_rt_entity		*parent;
625 	/* rq on which this entity is (to be) queued: */
626 	struct rt_rq			*rt_rq;
627 	/* rq "owned" by this entity/group: */
628 	struct rt_rq			*my_q;
629 #endif
630 } __randomize_layout;
631 
632 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
633 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
634 
635 struct sched_dl_entity {
636 	struct rb_node			rb_node;
637 
638 	/*
639 	 * Original scheduling parameters. Copied here from sched_attr
640 	 * during sched_setattr(), they will remain the same until
641 	 * the next sched_setattr().
642 	 */
643 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
644 	u64				dl_deadline;	/* Relative deadline of each instance	*/
645 	u64				dl_period;	/* Separation of two instances (period) */
646 	u64				dl_bw;		/* dl_runtime / dl_period		*/
647 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
648 
649 	/*
650 	 * Actual scheduling parameters. Initialized with the values above,
651 	 * they are continuously updated during task execution. Note that
652 	 * the remaining runtime could be < 0 in case we are in overrun.
653 	 */
654 	s64				runtime;	/* Remaining runtime for this instance	*/
655 	u64				deadline;	/* Absolute deadline for this instance	*/
656 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
657 
658 	/*
659 	 * Some bool flags:
660 	 *
661 	 * @dl_throttled tells if we exhausted the runtime. If so, the
662 	 * task has to wait for a replenishment to be performed at the
663 	 * next firing of dl_timer.
664 	 *
665 	 * @dl_yielded tells if task gave up the CPU before consuming
666 	 * all its available runtime during the last job.
667 	 *
668 	 * @dl_non_contending tells if the task is inactive while still
669 	 * contributing to the active utilization. In other words, it
670 	 * indicates if the inactive timer has been armed and its handler
671 	 * has not been executed yet. This flag is useful to avoid race
672 	 * conditions between the inactive timer handler and the wakeup
673 	 * code.
674 	 *
675 	 * @dl_overrun tells if the task asked to be informed about runtime
676 	 * overruns.
677 	 *
678 	 * @dl_server tells if this is a server entity.
679 	 *
680 	 * @dl_defer tells if this is a deferred or regular server. For
681 	 * now only defer server exists.
682 	 *
683 	 * @dl_defer_armed tells if the deferrable server is waiting
684 	 * for the replenishment timer to activate it.
685 	 *
686 	 * @dl_server_active tells if the dlserver is active(started).
687 	 * dlserver is started on first cfs enqueue on an idle runqueue
688 	 * and is stopped when a dequeue results in 0 cfs tasks on the
689 	 * runqueue. In other words, dlserver is active only when cpu's
690 	 * runqueue has atleast one cfs task.
691 	 *
692 	 * @dl_defer_running tells if the deferrable server is actually
693 	 * running, skipping the defer phase.
694 	 */
695 	unsigned int			dl_throttled      : 1;
696 	unsigned int			dl_yielded        : 1;
697 	unsigned int			dl_non_contending : 1;
698 	unsigned int			dl_overrun	  : 1;
699 	unsigned int			dl_server         : 1;
700 	unsigned int			dl_server_active  : 1;
701 	unsigned int			dl_defer	  : 1;
702 	unsigned int			dl_defer_armed	  : 1;
703 	unsigned int			dl_defer_running  : 1;
704 
705 	/*
706 	 * Bandwidth enforcement timer. Each -deadline task has its
707 	 * own bandwidth to be enforced, thus we need one timer per task.
708 	 */
709 	struct hrtimer			dl_timer;
710 
711 	/*
712 	 * Inactive timer, responsible for decreasing the active utilization
713 	 * at the "0-lag time". When a -deadline task blocks, it contributes
714 	 * to GRUB's active utilization until the "0-lag time", hence a
715 	 * timer is needed to decrease the active utilization at the correct
716 	 * time.
717 	 */
718 	struct hrtimer			inactive_timer;
719 
720 	/*
721 	 * Bits for DL-server functionality. Also see the comment near
722 	 * dl_server_update().
723 	 *
724 	 * @rq the runqueue this server is for
725 	 *
726 	 * @server_has_tasks() returns true if @server_pick return a
727 	 * runnable task.
728 	 */
729 	struct rq			*rq;
730 	dl_server_has_tasks_f		server_has_tasks;
731 	dl_server_pick_f		server_pick_task;
732 
733 #ifdef CONFIG_RT_MUTEXES
734 	/*
735 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
736 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
737 	 * to (the original one/itself).
738 	 */
739 	struct sched_dl_entity *pi_se;
740 #endif
741 };
742 
743 #ifdef CONFIG_UCLAMP_TASK
744 /* Number of utilization clamp buckets (shorter alias) */
745 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
746 
747 /*
748  * Utilization clamp for a scheduling entity
749  * @value:		clamp value "assigned" to a se
750  * @bucket_id:		bucket index corresponding to the "assigned" value
751  * @active:		the se is currently refcounted in a rq's bucket
752  * @user_defined:	the requested clamp value comes from user-space
753  *
754  * The bucket_id is the index of the clamp bucket matching the clamp value
755  * which is pre-computed and stored to avoid expensive integer divisions from
756  * the fast path.
757  *
758  * The active bit is set whenever a task has got an "effective" value assigned,
759  * which can be different from the clamp value "requested" from user-space.
760  * This allows to know a task is refcounted in the rq's bucket corresponding
761  * to the "effective" bucket_id.
762  *
763  * The user_defined bit is set whenever a task has got a task-specific clamp
764  * value requested from userspace, i.e. the system defaults apply to this task
765  * just as a restriction. This allows to relax default clamps when a less
766  * restrictive task-specific value has been requested, thus allowing to
767  * implement a "nice" semantic. For example, a task running with a 20%
768  * default boost can still drop its own boosting to 0%.
769  */
770 struct uclamp_se {
771 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
772 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
773 	unsigned int active		: 1;
774 	unsigned int user_defined	: 1;
775 };
776 #endif /* CONFIG_UCLAMP_TASK */
777 
778 union rcu_special {
779 	struct {
780 		u8			blocked;
781 		u8			need_qs;
782 		u8			exp_hint; /* Hint for performance. */
783 		u8			need_mb; /* Readers need smp_mb(). */
784 	} b; /* Bits. */
785 	u32 s; /* Set of bits. */
786 };
787 
788 enum perf_event_task_context {
789 	perf_invalid_context = -1,
790 	perf_hw_context = 0,
791 	perf_sw_context,
792 	perf_nr_task_contexts,
793 };
794 
795 /*
796  * Number of contexts where an event can trigger:
797  *      task, softirq, hardirq, nmi.
798  */
799 #define PERF_NR_CONTEXTS	4
800 
801 struct wake_q_node {
802 	struct wake_q_node *next;
803 };
804 
805 struct kmap_ctrl {
806 #ifdef CONFIG_KMAP_LOCAL
807 	int				idx;
808 	pte_t				pteval[KM_MAX_IDX];
809 #endif
810 };
811 
812 struct task_struct {
813 #ifdef CONFIG_THREAD_INFO_IN_TASK
814 	/*
815 	 * For reasons of header soup (see current_thread_info()), this
816 	 * must be the first element of task_struct.
817 	 */
818 	struct thread_info		thread_info;
819 #endif
820 	unsigned int			__state;
821 
822 	/* saved state for "spinlock sleepers" */
823 	unsigned int			saved_state;
824 
825 	/*
826 	 * This begins the randomizable portion of task_struct. Only
827 	 * scheduling-critical items should be added above here.
828 	 */
829 	randomized_struct_fields_start
830 
831 	void				*stack;
832 	refcount_t			usage;
833 	/* Per task flags (PF_*), defined further below: */
834 	unsigned int			flags;
835 	unsigned int			ptrace;
836 
837 #ifdef CONFIG_MEM_ALLOC_PROFILING
838 	struct alloc_tag		*alloc_tag;
839 #endif
840 
841 #ifdef CONFIG_SMP
842 	int				on_cpu;
843 	struct __call_single_node	wake_entry;
844 	unsigned int			wakee_flips;
845 	unsigned long			wakee_flip_decay_ts;
846 	struct task_struct		*last_wakee;
847 
848 	/*
849 	 * recent_used_cpu is initially set as the last CPU used by a task
850 	 * that wakes affine another task. Waker/wakee relationships can
851 	 * push tasks around a CPU where each wakeup moves to the next one.
852 	 * Tracking a recently used CPU allows a quick search for a recently
853 	 * used CPU that may be idle.
854 	 */
855 	int				recent_used_cpu;
856 	int				wake_cpu;
857 #endif
858 	int				on_rq;
859 
860 	int				prio;
861 	int				static_prio;
862 	int				normal_prio;
863 	unsigned int			rt_priority;
864 
865 	struct sched_entity		se;
866 	struct sched_rt_entity		rt;
867 	struct sched_dl_entity		dl;
868 	struct sched_dl_entity		*dl_server;
869 #ifdef CONFIG_SCHED_CLASS_EXT
870 	struct sched_ext_entity		scx;
871 #endif
872 	const struct sched_class	*sched_class;
873 
874 #ifdef CONFIG_SCHED_CORE
875 	struct rb_node			core_node;
876 	unsigned long			core_cookie;
877 	unsigned int			core_occupation;
878 #endif
879 
880 #ifdef CONFIG_CGROUP_SCHED
881 	struct task_group		*sched_task_group;
882 #endif
883 
884 
885 #ifdef CONFIG_UCLAMP_TASK
886 	/*
887 	 * Clamp values requested for a scheduling entity.
888 	 * Must be updated with task_rq_lock() held.
889 	 */
890 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
891 	/*
892 	 * Effective clamp values used for a scheduling entity.
893 	 * Must be updated with task_rq_lock() held.
894 	 */
895 	struct uclamp_se		uclamp[UCLAMP_CNT];
896 #endif
897 
898 	struct sched_statistics         stats;
899 
900 #ifdef CONFIG_PREEMPT_NOTIFIERS
901 	/* List of struct preempt_notifier: */
902 	struct hlist_head		preempt_notifiers;
903 #endif
904 
905 #ifdef CONFIG_BLK_DEV_IO_TRACE
906 	unsigned int			btrace_seq;
907 #endif
908 
909 	unsigned int			policy;
910 	unsigned long			max_allowed_capacity;
911 	int				nr_cpus_allowed;
912 	const cpumask_t			*cpus_ptr;
913 	cpumask_t			*user_cpus_ptr;
914 	cpumask_t			cpus_mask;
915 	void				*migration_pending;
916 #ifdef CONFIG_SMP
917 	unsigned short			migration_disabled;
918 #endif
919 	unsigned short			migration_flags;
920 
921 #ifdef CONFIG_PREEMPT_RCU
922 	int				rcu_read_lock_nesting;
923 	union rcu_special		rcu_read_unlock_special;
924 	struct list_head		rcu_node_entry;
925 	struct rcu_node			*rcu_blocked_node;
926 #endif /* #ifdef CONFIG_PREEMPT_RCU */
927 
928 #ifdef CONFIG_TASKS_RCU
929 	unsigned long			rcu_tasks_nvcsw;
930 	u8				rcu_tasks_holdout;
931 	u8				rcu_tasks_idx;
932 	int				rcu_tasks_idle_cpu;
933 	struct list_head		rcu_tasks_holdout_list;
934 	int				rcu_tasks_exit_cpu;
935 	struct list_head		rcu_tasks_exit_list;
936 #endif /* #ifdef CONFIG_TASKS_RCU */
937 
938 #ifdef CONFIG_TASKS_TRACE_RCU
939 	int				trc_reader_nesting;
940 	int				trc_ipi_to_cpu;
941 	union rcu_special		trc_reader_special;
942 	struct list_head		trc_holdout_list;
943 	struct list_head		trc_blkd_node;
944 	int				trc_blkd_cpu;
945 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
946 
947 	struct sched_info		sched_info;
948 
949 	struct list_head		tasks;
950 #ifdef CONFIG_SMP
951 	struct plist_node		pushable_tasks;
952 	struct rb_node			pushable_dl_tasks;
953 #endif
954 
955 	struct mm_struct		*mm;
956 	struct mm_struct		*active_mm;
957 	struct address_space		*faults_disabled_mapping;
958 
959 	int				exit_state;
960 	int				exit_code;
961 	int				exit_signal;
962 	/* The signal sent when the parent dies: */
963 	int				pdeath_signal;
964 	/* JOBCTL_*, siglock protected: */
965 	unsigned long			jobctl;
966 
967 	/* Used for emulating ABI behavior of previous Linux versions: */
968 	unsigned int			personality;
969 
970 	/* Scheduler bits, serialized by scheduler locks: */
971 	unsigned			sched_reset_on_fork:1;
972 	unsigned			sched_contributes_to_load:1;
973 	unsigned			sched_migrated:1;
974 	unsigned			sched_task_hot:1;
975 
976 	/* Force alignment to the next boundary: */
977 	unsigned			:0;
978 
979 	/* Unserialized, strictly 'current' */
980 
981 	/*
982 	 * This field must not be in the scheduler word above due to wakelist
983 	 * queueing no longer being serialized by p->on_cpu. However:
984 	 *
985 	 * p->XXX = X;			ttwu()
986 	 * schedule()			  if (p->on_rq && ..) // false
987 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
988 	 *   deactivate_task()		      ttwu_queue_wakelist())
989 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
990 	 *
991 	 * guarantees all stores of 'current' are visible before
992 	 * ->sched_remote_wakeup gets used, so it can be in this word.
993 	 */
994 	unsigned			sched_remote_wakeup:1;
995 #ifdef CONFIG_RT_MUTEXES
996 	unsigned			sched_rt_mutex:1;
997 #endif
998 
999 	/* Bit to tell TOMOYO we're in execve(): */
1000 	unsigned			in_execve:1;
1001 	unsigned			in_iowait:1;
1002 #ifndef TIF_RESTORE_SIGMASK
1003 	unsigned			restore_sigmask:1;
1004 #endif
1005 #ifdef CONFIG_MEMCG_V1
1006 	unsigned			in_user_fault:1;
1007 #endif
1008 #ifdef CONFIG_LRU_GEN
1009 	/* whether the LRU algorithm may apply to this access */
1010 	unsigned			in_lru_fault:1;
1011 #endif
1012 #ifdef CONFIG_COMPAT_BRK
1013 	unsigned			brk_randomized:1;
1014 #endif
1015 #ifdef CONFIG_CGROUPS
1016 	/* disallow userland-initiated cgroup migration */
1017 	unsigned			no_cgroup_migration:1;
1018 	/* task is frozen/stopped (used by the cgroup freezer) */
1019 	unsigned			frozen:1;
1020 #endif
1021 #ifdef CONFIG_BLK_CGROUP
1022 	unsigned			use_memdelay:1;
1023 #endif
1024 #ifdef CONFIG_PSI
1025 	/* Stalled due to lack of memory */
1026 	unsigned			in_memstall:1;
1027 #endif
1028 #ifdef CONFIG_PAGE_OWNER
1029 	/* Used by page_owner=on to detect recursion in page tracking. */
1030 	unsigned			in_page_owner:1;
1031 #endif
1032 #ifdef CONFIG_EVENTFD
1033 	/* Recursion prevention for eventfd_signal() */
1034 	unsigned			in_eventfd:1;
1035 #endif
1036 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1037 	unsigned			pasid_activated:1;
1038 #endif
1039 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1040 	unsigned			reported_split_lock:1;
1041 #endif
1042 #ifdef CONFIG_TASK_DELAY_ACCT
1043 	/* delay due to memory thrashing */
1044 	unsigned                        in_thrashing:1;
1045 #endif
1046 	unsigned			in_nf_duplicate:1;
1047 #ifdef CONFIG_PREEMPT_RT
1048 	struct netdev_xmit		net_xmit;
1049 #endif
1050 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1051 
1052 	struct restart_block		restart_block;
1053 
1054 	pid_t				pid;
1055 	pid_t				tgid;
1056 
1057 #ifdef CONFIG_STACKPROTECTOR
1058 	/* Canary value for the -fstack-protector GCC feature: */
1059 	unsigned long			stack_canary;
1060 #endif
1061 	/*
1062 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1063 	 * older sibling, respectively.  (p->father can be replaced with
1064 	 * p->real_parent->pid)
1065 	 */
1066 
1067 	/* Real parent process: */
1068 	struct task_struct __rcu	*real_parent;
1069 
1070 	/* Recipient of SIGCHLD, wait4() reports: */
1071 	struct task_struct __rcu	*parent;
1072 
1073 	/*
1074 	 * Children/sibling form the list of natural children:
1075 	 */
1076 	struct list_head		children;
1077 	struct list_head		sibling;
1078 	struct task_struct		*group_leader;
1079 
1080 	/*
1081 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1082 	 *
1083 	 * This includes both natural children and PTRACE_ATTACH targets.
1084 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1085 	 */
1086 	struct list_head		ptraced;
1087 	struct list_head		ptrace_entry;
1088 
1089 	/* PID/PID hash table linkage. */
1090 	struct pid			*thread_pid;
1091 	struct hlist_node		pid_links[PIDTYPE_MAX];
1092 	struct list_head		thread_node;
1093 
1094 	struct completion		*vfork_done;
1095 
1096 	/* CLONE_CHILD_SETTID: */
1097 	int __user			*set_child_tid;
1098 
1099 	/* CLONE_CHILD_CLEARTID: */
1100 	int __user			*clear_child_tid;
1101 
1102 	/* PF_KTHREAD | PF_IO_WORKER */
1103 	void				*worker_private;
1104 
1105 	u64				utime;
1106 	u64				stime;
1107 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1108 	u64				utimescaled;
1109 	u64				stimescaled;
1110 #endif
1111 	u64				gtime;
1112 	struct prev_cputime		prev_cputime;
1113 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1114 	struct vtime			vtime;
1115 #endif
1116 
1117 #ifdef CONFIG_NO_HZ_FULL
1118 	atomic_t			tick_dep_mask;
1119 #endif
1120 	/* Context switch counts: */
1121 	unsigned long			nvcsw;
1122 	unsigned long			nivcsw;
1123 
1124 	/* Monotonic time in nsecs: */
1125 	u64				start_time;
1126 
1127 	/* Boot based time in nsecs: */
1128 	u64				start_boottime;
1129 
1130 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1131 	unsigned long			min_flt;
1132 	unsigned long			maj_flt;
1133 
1134 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1135 	struct posix_cputimers		posix_cputimers;
1136 
1137 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1138 	struct posix_cputimers_work	posix_cputimers_work;
1139 #endif
1140 
1141 	/* Process credentials: */
1142 
1143 	/* Tracer's credentials at attach: */
1144 	const struct cred __rcu		*ptracer_cred;
1145 
1146 	/* Objective and real subjective task credentials (COW): */
1147 	const struct cred __rcu		*real_cred;
1148 
1149 	/* Effective (overridable) subjective task credentials (COW): */
1150 	const struct cred __rcu		*cred;
1151 
1152 #ifdef CONFIG_KEYS
1153 	/* Cached requested key. */
1154 	struct key			*cached_requested_key;
1155 #endif
1156 
1157 	/*
1158 	 * executable name, excluding path.
1159 	 *
1160 	 * - normally initialized begin_new_exec()
1161 	 * - set it with set_task_comm()
1162 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1163 	 *     zero-padded
1164 	 *   - task_lock() to ensure the operation is atomic and the name is
1165 	 *     fully updated.
1166 	 */
1167 	char				comm[TASK_COMM_LEN];
1168 
1169 	struct nameidata		*nameidata;
1170 
1171 #ifdef CONFIG_SYSVIPC
1172 	struct sysv_sem			sysvsem;
1173 	struct sysv_shm			sysvshm;
1174 #endif
1175 #ifdef CONFIG_DETECT_HUNG_TASK
1176 	unsigned long			last_switch_count;
1177 	unsigned long			last_switch_time;
1178 #endif
1179 	/* Filesystem information: */
1180 	struct fs_struct		*fs;
1181 
1182 	/* Open file information: */
1183 	struct files_struct		*files;
1184 
1185 #ifdef CONFIG_IO_URING
1186 	struct io_uring_task		*io_uring;
1187 #endif
1188 
1189 	/* Namespaces: */
1190 	struct nsproxy			*nsproxy;
1191 
1192 	/* Signal handlers: */
1193 	struct signal_struct		*signal;
1194 	struct sighand_struct __rcu		*sighand;
1195 	sigset_t			blocked;
1196 	sigset_t			real_blocked;
1197 	/* Restored if set_restore_sigmask() was used: */
1198 	sigset_t			saved_sigmask;
1199 	struct sigpending		pending;
1200 	unsigned long			sas_ss_sp;
1201 	size_t				sas_ss_size;
1202 	unsigned int			sas_ss_flags;
1203 
1204 	struct callback_head		*task_works;
1205 
1206 #ifdef CONFIG_AUDIT
1207 #ifdef CONFIG_AUDITSYSCALL
1208 	struct audit_context		*audit_context;
1209 #endif
1210 	kuid_t				loginuid;
1211 	unsigned int			sessionid;
1212 #endif
1213 	struct seccomp			seccomp;
1214 	struct syscall_user_dispatch	syscall_dispatch;
1215 
1216 	/* Thread group tracking: */
1217 	u64				parent_exec_id;
1218 	u64				self_exec_id;
1219 
1220 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1221 	spinlock_t			alloc_lock;
1222 
1223 	/* Protection of the PI data structures: */
1224 	raw_spinlock_t			pi_lock;
1225 
1226 	struct wake_q_node		wake_q;
1227 
1228 #ifdef CONFIG_RT_MUTEXES
1229 	/* PI waiters blocked on a rt_mutex held by this task: */
1230 	struct rb_root_cached		pi_waiters;
1231 	/* Updated under owner's pi_lock and rq lock */
1232 	struct task_struct		*pi_top_task;
1233 	/* Deadlock detection and priority inheritance handling: */
1234 	struct rt_mutex_waiter		*pi_blocked_on;
1235 #endif
1236 
1237 #ifdef CONFIG_DEBUG_MUTEXES
1238 	/* Mutex deadlock detection: */
1239 	struct mutex_waiter		*blocked_on;
1240 #endif
1241 
1242 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
1243 	/*
1244 	 * Encoded lock address causing task block (lower 2 bits = type from
1245 	 * <linux/hung_task.h>). Accessed via hung_task_*() helpers.
1246 	 */
1247 	unsigned long			blocker;
1248 #endif
1249 
1250 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1251 	int				non_block_count;
1252 #endif
1253 
1254 #ifdef CONFIG_TRACE_IRQFLAGS
1255 	struct irqtrace_events		irqtrace;
1256 	unsigned int			hardirq_threaded;
1257 	u64				hardirq_chain_key;
1258 	int				softirqs_enabled;
1259 	int				softirq_context;
1260 	int				irq_config;
1261 #endif
1262 #ifdef CONFIG_PREEMPT_RT
1263 	int				softirq_disable_cnt;
1264 #endif
1265 
1266 #ifdef CONFIG_LOCKDEP
1267 # define MAX_LOCK_DEPTH			48UL
1268 	u64				curr_chain_key;
1269 	int				lockdep_depth;
1270 	unsigned int			lockdep_recursion;
1271 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1272 #endif
1273 
1274 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1275 	unsigned int			in_ubsan;
1276 #endif
1277 
1278 	/* Journalling filesystem info: */
1279 	void				*journal_info;
1280 
1281 	/* Stacked block device info: */
1282 	struct bio_list			*bio_list;
1283 
1284 	/* Stack plugging: */
1285 	struct blk_plug			*plug;
1286 
1287 	/* VM state: */
1288 	struct reclaim_state		*reclaim_state;
1289 
1290 	struct io_context		*io_context;
1291 
1292 #ifdef CONFIG_COMPACTION
1293 	struct capture_control		*capture_control;
1294 #endif
1295 	/* Ptrace state: */
1296 	unsigned long			ptrace_message;
1297 	kernel_siginfo_t		*last_siginfo;
1298 
1299 	struct task_io_accounting	ioac;
1300 #ifdef CONFIG_PSI
1301 	/* Pressure stall state */
1302 	unsigned int			psi_flags;
1303 #endif
1304 #ifdef CONFIG_TASK_XACCT
1305 	/* Accumulated RSS usage: */
1306 	u64				acct_rss_mem1;
1307 	/* Accumulated virtual memory usage: */
1308 	u64				acct_vm_mem1;
1309 	/* stime + utime since last update: */
1310 	u64				acct_timexpd;
1311 #endif
1312 #ifdef CONFIG_CPUSETS
1313 	/* Protected by ->alloc_lock: */
1314 	nodemask_t			mems_allowed;
1315 	/* Sequence number to catch updates: */
1316 	seqcount_spinlock_t		mems_allowed_seq;
1317 	int				cpuset_mem_spread_rotor;
1318 #endif
1319 #ifdef CONFIG_CGROUPS
1320 	/* Control Group info protected by css_set_lock: */
1321 	struct css_set __rcu		*cgroups;
1322 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1323 	struct list_head		cg_list;
1324 #endif
1325 #ifdef CONFIG_X86_CPU_RESCTRL
1326 	u32				closid;
1327 	u32				rmid;
1328 #endif
1329 #ifdef CONFIG_FUTEX
1330 	struct robust_list_head __user	*robust_list;
1331 #ifdef CONFIG_COMPAT
1332 	struct compat_robust_list_head __user *compat_robust_list;
1333 #endif
1334 	struct list_head		pi_state_list;
1335 	struct futex_pi_state		*pi_state_cache;
1336 	struct mutex			futex_exit_mutex;
1337 	unsigned int			futex_state;
1338 #endif
1339 #ifdef CONFIG_PERF_EVENTS
1340 	u8				perf_recursion[PERF_NR_CONTEXTS];
1341 	struct perf_event_context	*perf_event_ctxp;
1342 	struct mutex			perf_event_mutex;
1343 	struct list_head		perf_event_list;
1344 	struct perf_ctx_data __rcu	*perf_ctx_data;
1345 #endif
1346 #ifdef CONFIG_DEBUG_PREEMPT
1347 	unsigned long			preempt_disable_ip;
1348 #endif
1349 #ifdef CONFIG_NUMA
1350 	/* Protected by alloc_lock: */
1351 	struct mempolicy		*mempolicy;
1352 	short				il_prev;
1353 	u8				il_weight;
1354 	short				pref_node_fork;
1355 #endif
1356 #ifdef CONFIG_NUMA_BALANCING
1357 	int				numa_scan_seq;
1358 	unsigned int			numa_scan_period;
1359 	unsigned int			numa_scan_period_max;
1360 	int				numa_preferred_nid;
1361 	unsigned long			numa_migrate_retry;
1362 	/* Migration stamp: */
1363 	u64				node_stamp;
1364 	u64				last_task_numa_placement;
1365 	u64				last_sum_exec_runtime;
1366 	struct callback_head		numa_work;
1367 
1368 	/*
1369 	 * This pointer is only modified for current in syscall and
1370 	 * pagefault context (and for tasks being destroyed), so it can be read
1371 	 * from any of the following contexts:
1372 	 *  - RCU read-side critical section
1373 	 *  - current->numa_group from everywhere
1374 	 *  - task's runqueue locked, task not running
1375 	 */
1376 	struct numa_group __rcu		*numa_group;
1377 
1378 	/*
1379 	 * numa_faults is an array split into four regions:
1380 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1381 	 * in this precise order.
1382 	 *
1383 	 * faults_memory: Exponential decaying average of faults on a per-node
1384 	 * basis. Scheduling placement decisions are made based on these
1385 	 * counts. The values remain static for the duration of a PTE scan.
1386 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1387 	 * hinting fault was incurred.
1388 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1389 	 * during the current scan window. When the scan completes, the counts
1390 	 * in faults_memory and faults_cpu decay and these values are copied.
1391 	 */
1392 	unsigned long			*numa_faults;
1393 	unsigned long			total_numa_faults;
1394 
1395 	/*
1396 	 * numa_faults_locality tracks if faults recorded during the last
1397 	 * scan window were remote/local or failed to migrate. The task scan
1398 	 * period is adapted based on the locality of the faults with different
1399 	 * weights depending on whether they were shared or private faults
1400 	 */
1401 	unsigned long			numa_faults_locality[3];
1402 
1403 	unsigned long			numa_pages_migrated;
1404 #endif /* CONFIG_NUMA_BALANCING */
1405 
1406 #ifdef CONFIG_RSEQ
1407 	struct rseq __user *rseq;
1408 	u32 rseq_len;
1409 	u32 rseq_sig;
1410 	/*
1411 	 * RmW on rseq_event_mask must be performed atomically
1412 	 * with respect to preemption.
1413 	 */
1414 	unsigned long rseq_event_mask;
1415 # ifdef CONFIG_DEBUG_RSEQ
1416 	/*
1417 	 * This is a place holder to save a copy of the rseq fields for
1418 	 * validation of read-only fields. The struct rseq has a
1419 	 * variable-length array at the end, so it cannot be used
1420 	 * directly. Reserve a size large enough for the known fields.
1421 	 */
1422 	char				rseq_fields[sizeof(struct rseq)];
1423 # endif
1424 #endif
1425 
1426 #ifdef CONFIG_SCHED_MM_CID
1427 	int				mm_cid;		/* Current cid in mm */
1428 	int				last_mm_cid;	/* Most recent cid in mm */
1429 	int				migrate_from_cpu;
1430 	int				mm_cid_active;	/* Whether cid bitmap is active */
1431 	struct callback_head		cid_work;
1432 #endif
1433 
1434 	struct tlbflush_unmap_batch	tlb_ubc;
1435 
1436 	/* Cache last used pipe for splice(): */
1437 	struct pipe_inode_info		*splice_pipe;
1438 
1439 	struct page_frag		task_frag;
1440 
1441 #ifdef CONFIG_TASK_DELAY_ACCT
1442 	struct task_delay_info		*delays;
1443 #endif
1444 
1445 #ifdef CONFIG_FAULT_INJECTION
1446 	int				make_it_fail;
1447 	unsigned int			fail_nth;
1448 #endif
1449 	/*
1450 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1451 	 * balance_dirty_pages() for a dirty throttling pause:
1452 	 */
1453 	int				nr_dirtied;
1454 	int				nr_dirtied_pause;
1455 	/* Start of a write-and-pause period: */
1456 	unsigned long			dirty_paused_when;
1457 
1458 #ifdef CONFIG_LATENCYTOP
1459 	int				latency_record_count;
1460 	struct latency_record		latency_record[LT_SAVECOUNT];
1461 #endif
1462 	/*
1463 	 * Time slack values; these are used to round up poll() and
1464 	 * select() etc timeout values. These are in nanoseconds.
1465 	 */
1466 	u64				timer_slack_ns;
1467 	u64				default_timer_slack_ns;
1468 
1469 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1470 	unsigned int			kasan_depth;
1471 #endif
1472 
1473 #ifdef CONFIG_KCSAN
1474 	struct kcsan_ctx		kcsan_ctx;
1475 #ifdef CONFIG_TRACE_IRQFLAGS
1476 	struct irqtrace_events		kcsan_save_irqtrace;
1477 #endif
1478 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1479 	int				kcsan_stack_depth;
1480 #endif
1481 #endif
1482 
1483 #ifdef CONFIG_KMSAN
1484 	struct kmsan_ctx		kmsan_ctx;
1485 #endif
1486 
1487 #if IS_ENABLED(CONFIG_KUNIT)
1488 	struct kunit			*kunit_test;
1489 #endif
1490 
1491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1492 	/* Index of current stored address in ret_stack: */
1493 	int				curr_ret_stack;
1494 	int				curr_ret_depth;
1495 
1496 	/* Stack of return addresses for return function tracing: */
1497 	unsigned long			*ret_stack;
1498 
1499 	/* Timestamp for last schedule: */
1500 	unsigned long long		ftrace_timestamp;
1501 	unsigned long long		ftrace_sleeptime;
1502 
1503 	/*
1504 	 * Number of functions that haven't been traced
1505 	 * because of depth overrun:
1506 	 */
1507 	atomic_t			trace_overrun;
1508 
1509 	/* Pause tracing: */
1510 	atomic_t			tracing_graph_pause;
1511 #endif
1512 
1513 #ifdef CONFIG_TRACING
1514 	/* Bitmask and counter of trace recursion: */
1515 	unsigned long			trace_recursion;
1516 #endif /* CONFIG_TRACING */
1517 
1518 #ifdef CONFIG_KCOV
1519 	/* See kernel/kcov.c for more details. */
1520 
1521 	/* Coverage collection mode enabled for this task (0 if disabled): */
1522 	unsigned int			kcov_mode;
1523 
1524 	/* Size of the kcov_area: */
1525 	unsigned int			kcov_size;
1526 
1527 	/* Buffer for coverage collection: */
1528 	void				*kcov_area;
1529 
1530 	/* KCOV descriptor wired with this task or NULL: */
1531 	struct kcov			*kcov;
1532 
1533 	/* KCOV common handle for remote coverage collection: */
1534 	u64				kcov_handle;
1535 
1536 	/* KCOV sequence number: */
1537 	int				kcov_sequence;
1538 
1539 	/* Collect coverage from softirq context: */
1540 	unsigned int			kcov_softirq;
1541 #endif
1542 
1543 #ifdef CONFIG_MEMCG_V1
1544 	struct mem_cgroup		*memcg_in_oom;
1545 #endif
1546 
1547 #ifdef CONFIG_MEMCG
1548 	/* Number of pages to reclaim on returning to userland: */
1549 	unsigned int			memcg_nr_pages_over_high;
1550 
1551 	/* Used by memcontrol for targeted memcg charge: */
1552 	struct mem_cgroup		*active_memcg;
1553 
1554 	/* Cache for current->cgroups->memcg->objcg lookups: */
1555 	struct obj_cgroup		*objcg;
1556 #endif
1557 
1558 #ifdef CONFIG_BLK_CGROUP
1559 	struct gendisk			*throttle_disk;
1560 #endif
1561 
1562 #ifdef CONFIG_UPROBES
1563 	struct uprobe_task		*utask;
1564 #endif
1565 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1566 	unsigned int			sequential_io;
1567 	unsigned int			sequential_io_avg;
1568 #endif
1569 	struct kmap_ctrl		kmap_ctrl;
1570 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1571 	unsigned long			task_state_change;
1572 # ifdef CONFIG_PREEMPT_RT
1573 	unsigned long			saved_state_change;
1574 # endif
1575 #endif
1576 	struct rcu_head			rcu;
1577 	refcount_t			rcu_users;
1578 	int				pagefault_disabled;
1579 #ifdef CONFIG_MMU
1580 	struct task_struct		*oom_reaper_list;
1581 	struct timer_list		oom_reaper_timer;
1582 #endif
1583 #ifdef CONFIG_VMAP_STACK
1584 	struct vm_struct		*stack_vm_area;
1585 #endif
1586 #ifdef CONFIG_THREAD_INFO_IN_TASK
1587 	/* A live task holds one reference: */
1588 	refcount_t			stack_refcount;
1589 #endif
1590 #ifdef CONFIG_LIVEPATCH
1591 	int patch_state;
1592 #endif
1593 #ifdef CONFIG_SECURITY
1594 	/* Used by LSM modules for access restriction: */
1595 	void				*security;
1596 #endif
1597 #ifdef CONFIG_BPF_SYSCALL
1598 	/* Used by BPF task local storage */
1599 	struct bpf_local_storage __rcu	*bpf_storage;
1600 	/* Used for BPF run context */
1601 	struct bpf_run_ctx		*bpf_ctx;
1602 #endif
1603 	/* Used by BPF for per-TASK xdp storage */
1604 	struct bpf_net_context		*bpf_net_context;
1605 
1606 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1607 	unsigned long			lowest_stack;
1608 	unsigned long			prev_lowest_stack;
1609 #endif
1610 
1611 #ifdef CONFIG_X86_MCE
1612 	void __user			*mce_vaddr;
1613 	__u64				mce_kflags;
1614 	u64				mce_addr;
1615 	__u64				mce_ripv : 1,
1616 					mce_whole_page : 1,
1617 					__mce_reserved : 62;
1618 	struct callback_head		mce_kill_me;
1619 	int				mce_count;
1620 #endif
1621 
1622 #ifdef CONFIG_KRETPROBES
1623 	struct llist_head               kretprobe_instances;
1624 #endif
1625 #ifdef CONFIG_RETHOOK
1626 	struct llist_head               rethooks;
1627 #endif
1628 
1629 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1630 	/*
1631 	 * If L1D flush is supported on mm context switch
1632 	 * then we use this callback head to queue kill work
1633 	 * to kill tasks that are not running on SMT disabled
1634 	 * cores
1635 	 */
1636 	struct callback_head		l1d_flush_kill;
1637 #endif
1638 
1639 #ifdef CONFIG_RV
1640 	/*
1641 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1642 	 * If we find justification for more monitors, we can think
1643 	 * about adding more or developing a dynamic method. So far,
1644 	 * none of these are justified.
1645 	 */
1646 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1647 #endif
1648 
1649 #ifdef CONFIG_USER_EVENTS
1650 	struct user_event_mm		*user_event_mm;
1651 #endif
1652 
1653 	/* CPU-specific state of this task: */
1654 	struct thread_struct		thread;
1655 
1656 	/*
1657 	 * New fields for task_struct should be added above here, so that
1658 	 * they are included in the randomized portion of task_struct.
1659 	 */
1660 	randomized_struct_fields_end
1661 } __attribute__ ((aligned (64)));
1662 
1663 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1664 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1665 
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1666 static inline unsigned int __task_state_index(unsigned int tsk_state,
1667 					      unsigned int tsk_exit_state)
1668 {
1669 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1670 
1671 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1672 
1673 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1674 		state = TASK_REPORT_IDLE;
1675 
1676 	/*
1677 	 * We're lying here, but rather than expose a completely new task state
1678 	 * to userspace, we can make this appear as if the task has gone through
1679 	 * a regular rt_mutex_lock() call.
1680 	 * Report frozen tasks as uninterruptible.
1681 	 */
1682 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1683 		state = TASK_UNINTERRUPTIBLE;
1684 
1685 	return fls(state);
1686 }
1687 
task_state_index(struct task_struct * tsk)1688 static inline unsigned int task_state_index(struct task_struct *tsk)
1689 {
1690 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1691 }
1692 
task_index_to_char(unsigned int state)1693 static inline char task_index_to_char(unsigned int state)
1694 {
1695 	static const char state_char[] = "RSDTtXZPI";
1696 
1697 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1698 
1699 	return state_char[state];
1700 }
1701 
task_state_to_char(struct task_struct * tsk)1702 static inline char task_state_to_char(struct task_struct *tsk)
1703 {
1704 	return task_index_to_char(task_state_index(tsk));
1705 }
1706 
1707 extern struct pid *cad_pid;
1708 
1709 /*
1710  * Per process flags
1711  */
1712 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1713 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1714 #define PF_EXITING		0x00000004	/* Getting shut down */
1715 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1716 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1717 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1718 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1719 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1720 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1721 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1722 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1723 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1724 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1725 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1726 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1727 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1728 #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1729 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1730 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1731 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1732 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1733 						 * I am cleaning dirty pages from some other bdi. */
1734 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1735 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1736 #define PF__HOLE__00800000	0x00800000
1737 #define PF__HOLE__01000000	0x01000000
1738 #define PF__HOLE__02000000	0x02000000
1739 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1740 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1741 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1742 						 * See memalloc_pin_save() */
1743 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1744 #define PF__HOLE__40000000	0x40000000
1745 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1746 
1747 /*
1748  * Only the _current_ task can read/write to tsk->flags, but other
1749  * tasks can access tsk->flags in readonly mode for example
1750  * with tsk_used_math (like during threaded core dumping).
1751  * There is however an exception to this rule during ptrace
1752  * or during fork: the ptracer task is allowed to write to the
1753  * child->flags of its traced child (same goes for fork, the parent
1754  * can write to the child->flags), because we're guaranteed the
1755  * child is not running and in turn not changing child->flags
1756  * at the same time the parent does it.
1757  */
1758 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1759 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1760 #define clear_used_math()			clear_stopped_child_used_math(current)
1761 #define set_used_math()				set_stopped_child_used_math(current)
1762 
1763 #define conditional_stopped_child_used_math(condition, child) \
1764 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1765 
1766 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1767 
1768 #define copy_to_stopped_child_used_math(child) \
1769 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1770 
1771 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1772 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1773 #define used_math()				tsk_used_math(current)
1774 
is_percpu_thread(void)1775 static __always_inline bool is_percpu_thread(void)
1776 {
1777 #ifdef CONFIG_SMP
1778 	return (current->flags & PF_NO_SETAFFINITY) &&
1779 		(current->nr_cpus_allowed  == 1);
1780 #else
1781 	return true;
1782 #endif
1783 }
1784 
1785 /* Per-process atomic flags. */
1786 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1787 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1788 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1789 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1790 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1791 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1792 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1793 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1794 
1795 #define TASK_PFA_TEST(name, func)					\
1796 	static inline bool task_##func(struct task_struct *p)		\
1797 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1798 
1799 #define TASK_PFA_SET(name, func)					\
1800 	static inline void task_set_##func(struct task_struct *p)	\
1801 	{ set_bit(PFA_##name, &p->atomic_flags); }
1802 
1803 #define TASK_PFA_CLEAR(name, func)					\
1804 	static inline void task_clear_##func(struct task_struct *p)	\
1805 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1806 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1807 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1808 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1809 
1810 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1811 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1812 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1813 
1814 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1815 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1816 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1817 
1818 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1819 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1820 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1821 
1822 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1823 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1824 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1825 
1826 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1827 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1828 
1829 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1830 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1831 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1832 
1833 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1834 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1835 
1836 static inline void
1837 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1838 {
1839 	current->flags &= ~flags;
1840 	current->flags |= orig_flags & flags;
1841 }
1842 
1843 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1844 extern int task_can_attach(struct task_struct *p);
1845 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1846 extern void dl_bw_free(int cpu, u64 dl_bw);
1847 #ifdef CONFIG_SMP
1848 
1849 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1850 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1851 
1852 /**
1853  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1854  * @p: the task
1855  * @new_mask: CPU affinity mask
1856  *
1857  * Return: zero if successful, or a negative error code
1858  */
1859 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1860 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1861 extern void release_user_cpus_ptr(struct task_struct *p);
1862 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1863 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1864 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1865 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1866 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1867 {
1868 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1869 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1870 {
1871 	/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1872 	if ((*cpumask_bits(new_mask) & 1) == 0)
1873 		return -EINVAL;
1874 	return 0;
1875 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1876 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1877 {
1878 	if (src->user_cpus_ptr)
1879 		return -EINVAL;
1880 	return 0;
1881 }
release_user_cpus_ptr(struct task_struct * p)1882 static inline void release_user_cpus_ptr(struct task_struct *p)
1883 {
1884 	WARN_ON(p->user_cpus_ptr);
1885 }
1886 
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1887 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1888 {
1889 	return 0;
1890 }
1891 #endif
1892 
1893 extern int yield_to(struct task_struct *p, bool preempt);
1894 extern void set_user_nice(struct task_struct *p, long nice);
1895 extern int task_prio(const struct task_struct *p);
1896 
1897 /**
1898  * task_nice - return the nice value of a given task.
1899  * @p: the task in question.
1900  *
1901  * Return: The nice value [ -20 ... 0 ... 19 ].
1902  */
task_nice(const struct task_struct * p)1903 static inline int task_nice(const struct task_struct *p)
1904 {
1905 	return PRIO_TO_NICE((p)->static_prio);
1906 }
1907 
1908 extern int can_nice(const struct task_struct *p, const int nice);
1909 extern int task_curr(const struct task_struct *p);
1910 extern int idle_cpu(int cpu);
1911 extern int available_idle_cpu(int cpu);
1912 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1913 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1914 extern void sched_set_fifo(struct task_struct *p);
1915 extern void sched_set_fifo_low(struct task_struct *p);
1916 extern void sched_set_normal(struct task_struct *p, int nice);
1917 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1918 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1919 extern struct task_struct *idle_task(int cpu);
1920 
1921 /**
1922  * is_idle_task - is the specified task an idle task?
1923  * @p: the task in question.
1924  *
1925  * Return: 1 if @p is an idle task. 0 otherwise.
1926  */
is_idle_task(const struct task_struct * p)1927 static __always_inline bool is_idle_task(const struct task_struct *p)
1928 {
1929 	return !!(p->flags & PF_IDLE);
1930 }
1931 
1932 extern struct task_struct *curr_task(int cpu);
1933 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1934 
1935 void yield(void);
1936 
1937 union thread_union {
1938 	struct task_struct task;
1939 #ifndef CONFIG_THREAD_INFO_IN_TASK
1940 	struct thread_info thread_info;
1941 #endif
1942 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1943 };
1944 
1945 #ifndef CONFIG_THREAD_INFO_IN_TASK
1946 extern struct thread_info init_thread_info;
1947 #endif
1948 
1949 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1950 
1951 #ifdef CONFIG_THREAD_INFO_IN_TASK
1952 # define task_thread_info(task)	(&(task)->thread_info)
1953 #else
1954 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1955 #endif
1956 
1957 /*
1958  * find a task by one of its numerical ids
1959  *
1960  * find_task_by_pid_ns():
1961  *      finds a task by its pid in the specified namespace
1962  * find_task_by_vpid():
1963  *      finds a task by its virtual pid
1964  *
1965  * see also find_vpid() etc in include/linux/pid.h
1966  */
1967 
1968 extern struct task_struct *find_task_by_vpid(pid_t nr);
1969 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1970 
1971 /*
1972  * find a task by its virtual pid and get the task struct
1973  */
1974 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1975 
1976 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1977 extern int wake_up_process(struct task_struct *tsk);
1978 extern void wake_up_new_task(struct task_struct *tsk);
1979 
1980 #ifdef CONFIG_SMP
1981 extern void kick_process(struct task_struct *tsk);
1982 #else
kick_process(struct task_struct * tsk)1983 static inline void kick_process(struct task_struct *tsk) { }
1984 #endif
1985 
1986 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1987 #define set_task_comm(tsk, from) ({			\
1988 	BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN);	\
1989 	__set_task_comm(tsk, from, false);		\
1990 })
1991 
1992 /*
1993  * - Why not use task_lock()?
1994  *   User space can randomly change their names anyway, so locking for readers
1995  *   doesn't make sense. For writers, locking is probably necessary, as a race
1996  *   condition could lead to long-term mixed results.
1997  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1998  *   always NUL-terminated and zero-padded. Therefore the race condition between
1999  *   reader and writer is not an issue.
2000  *
2001  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
2002  *   Since the callers don't perform any return value checks, this safeguard is
2003  *   necessary.
2004  */
2005 #define get_task_comm(buf, tsk) ({			\
2006 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
2007 	strscpy_pad(buf, (tsk)->comm);			\
2008 	buf;						\
2009 })
2010 
2011 #ifdef CONFIG_SMP
scheduler_ipi(void)2012 static __always_inline void scheduler_ipi(void)
2013 {
2014 	/*
2015 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2016 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2017 	 * this IPI.
2018 	 */
2019 	preempt_fold_need_resched();
2020 }
2021 #else
scheduler_ipi(void)2022 static inline void scheduler_ipi(void) { }
2023 #endif
2024 
2025 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2026 
2027 /*
2028  * Set thread flags in other task's structures.
2029  * See asm/thread_info.h for TIF_xxxx flags available:
2030  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2031 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2032 {
2033 	set_ti_thread_flag(task_thread_info(tsk), flag);
2034 }
2035 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2036 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2037 {
2038 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2039 }
2040 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2041 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2042 					  bool value)
2043 {
2044 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2045 }
2046 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2047 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2048 {
2049 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2050 }
2051 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2052 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2053 {
2054 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2055 }
2056 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2057 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2058 {
2059 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2060 }
2061 
set_tsk_need_resched(struct task_struct * tsk)2062 static inline void set_tsk_need_resched(struct task_struct *tsk)
2063 {
2064 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2065 }
2066 
clear_tsk_need_resched(struct task_struct * tsk)2067 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2068 {
2069 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2070 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2071 }
2072 
test_tsk_need_resched(struct task_struct * tsk)2073 static inline int test_tsk_need_resched(struct task_struct *tsk)
2074 {
2075 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2076 }
2077 
2078 /*
2079  * cond_resched() and cond_resched_lock(): latency reduction via
2080  * explicit rescheduling in places that are safe. The return
2081  * value indicates whether a reschedule was done in fact.
2082  * cond_resched_lock() will drop the spinlock before scheduling,
2083  */
2084 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2085 extern int __cond_resched(void);
2086 
2087 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2088 
2089 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2090 
_cond_resched(void)2091 static __always_inline int _cond_resched(void)
2092 {
2093 	return static_call_mod(cond_resched)();
2094 }
2095 
2096 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2097 
2098 extern int dynamic_cond_resched(void);
2099 
_cond_resched(void)2100 static __always_inline int _cond_resched(void)
2101 {
2102 	return dynamic_cond_resched();
2103 }
2104 
2105 #else /* !CONFIG_PREEMPTION */
2106 
_cond_resched(void)2107 static inline int _cond_resched(void)
2108 {
2109 	return __cond_resched();
2110 }
2111 
2112 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2113 
2114 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2115 
_cond_resched(void)2116 static inline int _cond_resched(void)
2117 {
2118 	return 0;
2119 }
2120 
2121 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2122 
2123 #define cond_resched() ({			\
2124 	__might_resched(__FILE__, __LINE__, 0);	\
2125 	_cond_resched();			\
2126 })
2127 
2128 extern int __cond_resched_lock(spinlock_t *lock);
2129 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2130 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2131 
2132 #define MIGHT_RESCHED_RCU_SHIFT		8
2133 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2134 
2135 #ifndef CONFIG_PREEMPT_RT
2136 /*
2137  * Non RT kernels have an elevated preempt count due to the held lock,
2138  * but are not allowed to be inside a RCU read side critical section
2139  */
2140 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2141 #else
2142 /*
2143  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2144  * cond_resched*lock() has to take that into account because it checks for
2145  * preempt_count() and rcu_preempt_depth().
2146  */
2147 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2148 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2149 #endif
2150 
2151 #define cond_resched_lock(lock) ({						\
2152 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2153 	__cond_resched_lock(lock);						\
2154 })
2155 
2156 #define cond_resched_rwlock_read(lock) ({					\
2157 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2158 	__cond_resched_rwlock_read(lock);					\
2159 })
2160 
2161 #define cond_resched_rwlock_write(lock) ({					\
2162 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2163 	__cond_resched_rwlock_write(lock);					\
2164 })
2165 
need_resched(void)2166 static __always_inline bool need_resched(void)
2167 {
2168 	return unlikely(tif_need_resched());
2169 }
2170 
2171 /*
2172  * Wrappers for p->thread_info->cpu access. No-op on UP.
2173  */
2174 #ifdef CONFIG_SMP
2175 
task_cpu(const struct task_struct * p)2176 static inline unsigned int task_cpu(const struct task_struct *p)
2177 {
2178 	return READ_ONCE(task_thread_info(p)->cpu);
2179 }
2180 
2181 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2182 
2183 #else
2184 
task_cpu(const struct task_struct * p)2185 static inline unsigned int task_cpu(const struct task_struct *p)
2186 {
2187 	return 0;
2188 }
2189 
set_task_cpu(struct task_struct * p,unsigned int cpu)2190 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2191 {
2192 }
2193 
2194 #endif /* CONFIG_SMP */
2195 
task_is_runnable(struct task_struct * p)2196 static inline bool task_is_runnable(struct task_struct *p)
2197 {
2198 	return p->on_rq && !p->se.sched_delayed;
2199 }
2200 
2201 extern bool sched_task_on_rq(struct task_struct *p);
2202 extern unsigned long get_wchan(struct task_struct *p);
2203 extern struct task_struct *cpu_curr_snapshot(int cpu);
2204 
2205 #include <linux/spinlock.h>
2206 
2207 /*
2208  * In order to reduce various lock holder preemption latencies provide an
2209  * interface to see if a vCPU is currently running or not.
2210  *
2211  * This allows us to terminate optimistic spin loops and block, analogous to
2212  * the native optimistic spin heuristic of testing if the lock owner task is
2213  * running or not.
2214  */
2215 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2216 static inline bool vcpu_is_preempted(int cpu)
2217 {
2218 	return false;
2219 }
2220 #endif
2221 
2222 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2223 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2224 
2225 #ifndef TASK_SIZE_OF
2226 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2227 #endif
2228 
2229 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2230 static inline bool owner_on_cpu(struct task_struct *owner)
2231 {
2232 	/*
2233 	 * As lock holder preemption issue, we both skip spinning if
2234 	 * task is not on cpu or its cpu is preempted
2235 	 */
2236 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2237 }
2238 
2239 /* Returns effective CPU energy utilization, as seen by the scheduler */
2240 unsigned long sched_cpu_util(int cpu);
2241 #endif /* CONFIG_SMP */
2242 
2243 #ifdef CONFIG_SCHED_CORE
2244 extern void sched_core_free(struct task_struct *tsk);
2245 extern void sched_core_fork(struct task_struct *p);
2246 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2247 				unsigned long uaddr);
2248 extern int sched_core_idle_cpu(int cpu);
2249 #else
sched_core_free(struct task_struct * tsk)2250 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2251 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2252 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2253 #endif
2254 
2255 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2256 
2257 #ifdef CONFIG_MEM_ALLOC_PROFILING
alloc_tag_save(struct alloc_tag * tag)2258 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2259 {
2260 	swap(current->alloc_tag, tag);
2261 	return tag;
2262 }
2263 
alloc_tag_restore(struct alloc_tag * tag,struct alloc_tag * old)2264 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2265 {
2266 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2267 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2268 #endif
2269 	current->alloc_tag = old;
2270 }
2271 #else
2272 #define alloc_tag_save(_tag)			NULL
2273 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2274 #endif
2275 
2276 #endif
2277