xref: /linux/drivers/net/wireless/realtek/rtw88/pci.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include "main.h"
8 #include "pci.h"
9 #include "reg.h"
10 #include "tx.h"
11 #include "rx.h"
12 #include "fw.h"
13 #include "ps.h"
14 #include "debug.h"
15 #include "mac.h"
16 
17 static bool rtw_disable_msi;
18 static bool rtw_pci_disable_aspm;
19 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
20 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
21 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
22 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
23 
24 static const u32 rtw_pci_tx_queue_idx_addr[] = {
25 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
26 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
27 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
28 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
29 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
30 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
31 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
32 };
33 
rtw_pci_get_tx_qsel(struct sk_buff * skb,enum rtw_tx_queue_type queue)34 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
35 			      enum rtw_tx_queue_type queue)
36 {
37 	switch (queue) {
38 	case RTW_TX_QUEUE_BCN:
39 		return TX_DESC_QSEL_BEACON;
40 	case RTW_TX_QUEUE_H2C:
41 		return TX_DESC_QSEL_H2C;
42 	case RTW_TX_QUEUE_MGMT:
43 		return TX_DESC_QSEL_MGMT;
44 	case RTW_TX_QUEUE_HI0:
45 		return TX_DESC_QSEL_HIGH;
46 	default:
47 		return skb->priority;
48 	}
49 };
50 
rtw_pci_read8(struct rtw_dev * rtwdev,u32 addr)51 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
52 {
53 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
54 
55 	return readb(rtwpci->mmap + addr);
56 }
57 
rtw_pci_read16(struct rtw_dev * rtwdev,u32 addr)58 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
59 {
60 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
61 
62 	return readw(rtwpci->mmap + addr);
63 }
64 
rtw_pci_read32(struct rtw_dev * rtwdev,u32 addr)65 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
66 {
67 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
68 
69 	return readl(rtwpci->mmap + addr);
70 }
71 
rtw_pci_write8(struct rtw_dev * rtwdev,u32 addr,u8 val)72 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
73 {
74 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
75 
76 	writeb(val, rtwpci->mmap + addr);
77 }
78 
rtw_pci_write16(struct rtw_dev * rtwdev,u32 addr,u16 val)79 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
80 {
81 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
82 
83 	writew(val, rtwpci->mmap + addr);
84 }
85 
rtw_pci_write32(struct rtw_dev * rtwdev,u32 addr,u32 val)86 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
87 {
88 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
89 
90 	writel(val, rtwpci->mmap + addr);
91 }
92 
rtw_pci_free_tx_ring_skbs(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring)93 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
94 				      struct rtw_pci_tx_ring *tx_ring)
95 {
96 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
97 	struct rtw_pci_tx_data *tx_data;
98 	struct sk_buff *skb, *tmp;
99 	dma_addr_t dma;
100 
101 	/* free every skb remained in tx list */
102 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
103 		__skb_unlink(skb, &tx_ring->queue);
104 		tx_data = rtw_pci_get_tx_data(skb);
105 		dma = tx_data->dma;
106 
107 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
108 		dev_kfree_skb_any(skb);
109 	}
110 }
111 
rtw_pci_free_tx_ring(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring)112 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
113 				 struct rtw_pci_tx_ring *tx_ring)
114 {
115 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
116 	u8 *head = tx_ring->r.head;
117 	u32 len = tx_ring->r.len;
118 	int ring_sz = len * tx_ring->r.desc_size;
119 
120 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
121 
122 	/* free the ring itself */
123 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
124 	tx_ring->r.head = NULL;
125 }
126 
rtw_pci_free_rx_ring_skbs(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring)127 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
128 				      struct rtw_pci_rx_ring *rx_ring)
129 {
130 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
131 	struct sk_buff *skb;
132 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
133 	dma_addr_t dma;
134 	int i;
135 
136 	for (i = 0; i < rx_ring->r.len; i++) {
137 		skb = rx_ring->buf[i];
138 		if (!skb)
139 			continue;
140 
141 		dma = *((dma_addr_t *)skb->cb);
142 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
143 		dev_kfree_skb(skb);
144 		rx_ring->buf[i] = NULL;
145 	}
146 }
147 
rtw_pci_free_rx_ring(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring)148 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
149 				 struct rtw_pci_rx_ring *rx_ring)
150 {
151 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
152 	u8 *head = rx_ring->r.head;
153 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
154 
155 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
156 
157 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
158 }
159 
rtw_pci_free_trx_ring(struct rtw_dev * rtwdev)160 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
161 {
162 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
163 	struct rtw_pci_tx_ring *tx_ring;
164 	struct rtw_pci_rx_ring *rx_ring;
165 	int i;
166 
167 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
168 		tx_ring = &rtwpci->tx_rings[i];
169 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
170 	}
171 
172 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
173 		rx_ring = &rtwpci->rx_rings[i];
174 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
175 	}
176 }
177 
rtw_pci_init_tx_ring(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring,u8 desc_size,u32 len)178 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
179 				struct rtw_pci_tx_ring *tx_ring,
180 				u8 desc_size, u32 len)
181 {
182 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
183 	int ring_sz = desc_size * len;
184 	dma_addr_t dma;
185 	u8 *head;
186 
187 	if (len > TRX_BD_IDX_MASK) {
188 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
189 		return -EINVAL;
190 	}
191 
192 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
193 	if (!head) {
194 		rtw_err(rtwdev, "failed to allocate tx ring\n");
195 		return -ENOMEM;
196 	}
197 
198 	skb_queue_head_init(&tx_ring->queue);
199 	tx_ring->r.head = head;
200 	tx_ring->r.dma = dma;
201 	tx_ring->r.len = len;
202 	tx_ring->r.desc_size = desc_size;
203 	tx_ring->r.wp = 0;
204 	tx_ring->r.rp = 0;
205 
206 	return 0;
207 }
208 
rtw_pci_reset_rx_desc(struct rtw_dev * rtwdev,struct sk_buff * skb,struct rtw_pci_rx_ring * rx_ring,u32 idx,u32 desc_sz)209 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
210 				 struct rtw_pci_rx_ring *rx_ring,
211 				 u32 idx, u32 desc_sz)
212 {
213 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
214 	struct rtw_pci_rx_buffer_desc *buf_desc;
215 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
216 	dma_addr_t dma;
217 
218 	if (!skb)
219 		return -EINVAL;
220 
221 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
222 	if (dma_mapping_error(&pdev->dev, dma))
223 		return -EBUSY;
224 
225 	*((dma_addr_t *)skb->cb) = dma;
226 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
227 						     idx * desc_sz);
228 	memset(buf_desc, 0, sizeof(*buf_desc));
229 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
230 	buf_desc->dma = cpu_to_le32(dma);
231 
232 	return 0;
233 }
234 
rtw_pci_sync_rx_desc_device(struct rtw_dev * rtwdev,dma_addr_t dma,struct rtw_pci_rx_ring * rx_ring,u32 idx,u32 desc_sz)235 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
236 					struct rtw_pci_rx_ring *rx_ring,
237 					u32 idx, u32 desc_sz)
238 {
239 	struct device *dev = rtwdev->dev;
240 	struct rtw_pci_rx_buffer_desc *buf_desc;
241 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
242 
243 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
244 
245 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
246 						     idx * desc_sz);
247 	memset(buf_desc, 0, sizeof(*buf_desc));
248 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
249 	buf_desc->dma = cpu_to_le32(dma);
250 }
251 
rtw_pci_init_rx_ring(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring,u8 desc_size,u32 len)252 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
253 				struct rtw_pci_rx_ring *rx_ring,
254 				u8 desc_size, u32 len)
255 {
256 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
257 	struct sk_buff *skb = NULL;
258 	dma_addr_t dma;
259 	u8 *head;
260 	int ring_sz = desc_size * len;
261 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
262 	int i, allocated;
263 	int ret = 0;
264 
265 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
266 	if (!head) {
267 		rtw_err(rtwdev, "failed to allocate rx ring\n");
268 		return -ENOMEM;
269 	}
270 	rx_ring->r.head = head;
271 
272 	for (i = 0; i < len; i++) {
273 		skb = dev_alloc_skb(buf_sz);
274 		if (!skb) {
275 			allocated = i;
276 			ret = -ENOMEM;
277 			goto err_out;
278 		}
279 
280 		memset(skb->data, 0, buf_sz);
281 		rx_ring->buf[i] = skb;
282 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
283 		if (ret) {
284 			allocated = i;
285 			dev_kfree_skb_any(skb);
286 			goto err_out;
287 		}
288 	}
289 
290 	rx_ring->r.dma = dma;
291 	rx_ring->r.len = len;
292 	rx_ring->r.desc_size = desc_size;
293 	rx_ring->r.wp = 0;
294 	rx_ring->r.rp = 0;
295 
296 	return 0;
297 
298 err_out:
299 	for (i = 0; i < allocated; i++) {
300 		skb = rx_ring->buf[i];
301 		if (!skb)
302 			continue;
303 		dma = *((dma_addr_t *)skb->cb);
304 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
305 		dev_kfree_skb_any(skb);
306 		rx_ring->buf[i] = NULL;
307 	}
308 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
309 
310 	rtw_err(rtwdev, "failed to init rx buffer\n");
311 
312 	return ret;
313 }
314 
rtw_pci_init_trx_ring(struct rtw_dev * rtwdev)315 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
316 {
317 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
318 	struct rtw_pci_tx_ring *tx_ring;
319 	struct rtw_pci_rx_ring *rx_ring;
320 	const struct rtw_chip_info *chip = rtwdev->chip;
321 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
322 	int tx_desc_size, rx_desc_size;
323 	u32 len;
324 	int ret;
325 
326 	tx_desc_size = chip->tx_buf_desc_sz;
327 
328 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
329 		tx_ring = &rtwpci->tx_rings[i];
330 		len = max_num_of_tx_queue(i);
331 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
332 		if (ret)
333 			goto out;
334 	}
335 
336 	rx_desc_size = chip->rx_buf_desc_sz;
337 
338 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
339 		rx_ring = &rtwpci->rx_rings[j];
340 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
341 					   RTK_MAX_RX_DESC_NUM);
342 		if (ret)
343 			goto out;
344 	}
345 
346 	return 0;
347 
348 out:
349 	tx_alloced = i;
350 	for (i = 0; i < tx_alloced; i++) {
351 		tx_ring = &rtwpci->tx_rings[i];
352 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
353 	}
354 
355 	rx_alloced = j;
356 	for (j = 0; j < rx_alloced; j++) {
357 		rx_ring = &rtwpci->rx_rings[j];
358 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
359 	}
360 
361 	return ret;
362 }
363 
rtw_pci_deinit(struct rtw_dev * rtwdev)364 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
365 {
366 	rtw_pci_free_trx_ring(rtwdev);
367 }
368 
rtw_pci_init(struct rtw_dev * rtwdev)369 static int rtw_pci_init(struct rtw_dev *rtwdev)
370 {
371 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
372 	int ret = 0;
373 
374 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
375 			      IMR_MGNTDOK |
376 			      IMR_BKDOK |
377 			      IMR_BEDOK |
378 			      IMR_VIDOK |
379 			      IMR_VODOK |
380 			      IMR_ROK |
381 			      IMR_BCNDMAINT_E |
382 			      IMR_C2HCMD |
383 			      0;
384 	rtwpci->irq_mask[1] = IMR_TXFOVW |
385 			      0;
386 	rtwpci->irq_mask[3] = IMR_H2CDOK |
387 			      0;
388 	spin_lock_init(&rtwpci->irq_lock);
389 	spin_lock_init(&rtwpci->hwirq_lock);
390 	ret = rtw_pci_init_trx_ring(rtwdev);
391 
392 	return ret;
393 }
394 
rtw_pci_reset_buf_desc(struct rtw_dev * rtwdev)395 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
396 {
397 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
398 	u32 len;
399 	u8 tmp;
400 	dma_addr_t dma;
401 
402 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
403 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
404 
405 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
406 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
407 
408 	if (!rtw_chip_wcpu_8051(rtwdev)) {
409 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
410 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
411 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
412 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
413 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
414 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
415 	}
416 
417 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
418 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
419 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
420 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
421 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
422 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
423 
424 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
425 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
426 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
427 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
428 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
429 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
430 
431 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
432 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
433 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
434 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
435 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
436 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
437 
438 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
439 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
440 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
441 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
442 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
443 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
444 
445 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
446 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
447 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
448 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
449 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
450 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
451 
452 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
453 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
454 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
455 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
456 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
457 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
458 
459 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
460 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
461 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
462 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
463 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
464 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
465 
466 	/* reset read/write point */
467 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
468 
469 	/* reset H2C Queue index in a single write */
470 	if (rtw_chip_wcpu_3081(rtwdev))
471 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
472 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
473 }
474 
rtw_pci_reset_trx_ring(struct rtw_dev * rtwdev)475 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
476 {
477 	rtw_pci_reset_buf_desc(rtwdev);
478 }
479 
rtw_pci_enable_interrupt(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,bool exclude_rx)480 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
481 				     struct rtw_pci *rtwpci, bool exclude_rx)
482 {
483 	unsigned long flags;
484 	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
485 
486 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
487 
488 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
489 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
490 	if (rtw_chip_wcpu_3081(rtwdev))
491 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
492 
493 	rtwpci->irq_enabled = true;
494 
495 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
496 }
497 
rtw_pci_disable_interrupt(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)498 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
499 				      struct rtw_pci *rtwpci)
500 {
501 	unsigned long flags;
502 
503 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
504 
505 	if (!rtwpci->irq_enabled)
506 		goto out;
507 
508 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
509 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
510 	if (rtw_chip_wcpu_3081(rtwdev))
511 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
512 
513 	rtwpci->irq_enabled = false;
514 
515 out:
516 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
517 }
518 
rtw_pci_dma_reset(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)519 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
520 {
521 	/* reset dma and rx tag */
522 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
523 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
524 	rtwpci->rx_tag = 0;
525 }
526 
rtw_pci_setup(struct rtw_dev * rtwdev)527 static int rtw_pci_setup(struct rtw_dev *rtwdev)
528 {
529 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
530 
531 	rtw_pci_reset_trx_ring(rtwdev);
532 	rtw_pci_dma_reset(rtwdev, rtwpci);
533 
534 	return 0;
535 }
536 
rtw_pci_dma_release(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)537 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
538 {
539 	struct rtw_pci_tx_ring *tx_ring;
540 	enum rtw_tx_queue_type queue;
541 
542 	rtw_pci_reset_trx_ring(rtwdev);
543 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
544 		tx_ring = &rtwpci->tx_rings[queue];
545 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
546 	}
547 }
548 
rtw_pci_napi_start(struct rtw_dev * rtwdev)549 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
550 {
551 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
552 
553 	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
554 		return;
555 
556 	napi_enable(&rtwpci->napi);
557 }
558 
rtw_pci_napi_stop(struct rtw_dev * rtwdev)559 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
560 {
561 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
562 
563 	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
564 		return;
565 
566 	napi_synchronize(&rtwpci->napi);
567 	napi_disable(&rtwpci->napi);
568 }
569 
rtw_pci_start(struct rtw_dev * rtwdev)570 static int rtw_pci_start(struct rtw_dev *rtwdev)
571 {
572 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
573 
574 	rtw_pci_napi_start(rtwdev);
575 
576 	spin_lock_bh(&rtwpci->irq_lock);
577 	rtwpci->running = true;
578 	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
579 	spin_unlock_bh(&rtwpci->irq_lock);
580 
581 	return 0;
582 }
583 
rtw_pci_stop(struct rtw_dev * rtwdev)584 static void rtw_pci_stop(struct rtw_dev *rtwdev)
585 {
586 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
587 	struct pci_dev *pdev = rtwpci->pdev;
588 
589 	spin_lock_bh(&rtwpci->irq_lock);
590 	rtwpci->running = false;
591 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
592 	spin_unlock_bh(&rtwpci->irq_lock);
593 
594 	synchronize_irq(pdev->irq);
595 	rtw_pci_napi_stop(rtwdev);
596 
597 	spin_lock_bh(&rtwpci->irq_lock);
598 	rtw_pci_dma_release(rtwdev, rtwpci);
599 	spin_unlock_bh(&rtwpci->irq_lock);
600 }
601 
rtw_pci_deep_ps_enter(struct rtw_dev * rtwdev)602 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
603 {
604 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
605 	struct rtw_pci_tx_ring *tx_ring;
606 	enum rtw_tx_queue_type queue;
607 	bool tx_empty = true;
608 
609 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
610 		goto enter_deep_ps;
611 
612 	lockdep_assert_held(&rtwpci->irq_lock);
613 
614 	/* Deep PS state is not allowed to TX-DMA */
615 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
616 		/* BCN queue is rsvd page, does not have DMA interrupt
617 		 * H2C queue is managed by firmware
618 		 */
619 		if (queue == RTW_TX_QUEUE_BCN ||
620 		    queue == RTW_TX_QUEUE_H2C)
621 			continue;
622 
623 		tx_ring = &rtwpci->tx_rings[queue];
624 
625 		/* check if there is any skb DMAing */
626 		if (skb_queue_len(&tx_ring->queue)) {
627 			tx_empty = false;
628 			break;
629 		}
630 	}
631 
632 	if (!tx_empty) {
633 		rtw_dbg(rtwdev, RTW_DBG_PS,
634 			"TX path not empty, cannot enter deep power save state\n");
635 		return;
636 	}
637 enter_deep_ps:
638 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
639 	rtw_power_mode_change(rtwdev, true);
640 }
641 
rtw_pci_deep_ps_leave(struct rtw_dev * rtwdev)642 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
643 {
644 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
645 
646 	lockdep_assert_held(&rtwpci->irq_lock);
647 
648 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
649 		rtw_power_mode_change(rtwdev, false);
650 }
651 
rtw_pci_deep_ps(struct rtw_dev * rtwdev,bool enter)652 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
653 {
654 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
655 
656 	spin_lock_bh(&rtwpci->irq_lock);
657 
658 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
659 		rtw_pci_deep_ps_enter(rtwdev);
660 
661 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
662 		rtw_pci_deep_ps_leave(rtwdev);
663 
664 	spin_unlock_bh(&rtwpci->irq_lock);
665 }
666 
rtw_pci_release_rsvd_page(struct rtw_pci * rtwpci,struct rtw_pci_tx_ring * ring)667 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
668 				      struct rtw_pci_tx_ring *ring)
669 {
670 	struct sk_buff *prev = skb_dequeue(&ring->queue);
671 	struct rtw_pci_tx_data *tx_data;
672 	dma_addr_t dma;
673 
674 	if (!prev)
675 		return;
676 
677 	tx_data = rtw_pci_get_tx_data(prev);
678 	dma = tx_data->dma;
679 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
680 	dev_kfree_skb_any(prev);
681 }
682 
rtw_pci_dma_check(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring,u32 idx)683 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
684 			      struct rtw_pci_rx_ring *rx_ring,
685 			      u32 idx)
686 {
687 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
688 	const struct rtw_chip_info *chip = rtwdev->chip;
689 	struct rtw_pci_rx_buffer_desc *buf_desc;
690 	u32 desc_sz = chip->rx_buf_desc_sz;
691 	u16 total_pkt_size;
692 
693 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
694 						     idx * desc_sz);
695 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
696 
697 	/* rx tag mismatch, throw a warning */
698 	if (total_pkt_size != rtwpci->rx_tag)
699 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
700 
701 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
702 }
703 
__pci_get_hw_tx_ring_rp(struct rtw_dev * rtwdev,u8 pci_q)704 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
705 {
706 	u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
707 	u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
708 
709 	return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
710 }
711 
__pci_flush_queue(struct rtw_dev * rtwdev,u8 pci_q,bool drop)712 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
713 {
714 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
715 	struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
716 	u32 cur_rp;
717 	u8 i;
718 
719 	/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
720 	 * bit dynamic, it's hard to define a reasonable fixed total timeout to
721 	 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
722 	 * polling times, so we just use for loop with udelay here.
723 	 */
724 	for (i = 0; i < 30; i++) {
725 		cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
726 		if (cur_rp == ring->r.wp)
727 			return;
728 
729 		udelay(1);
730 	}
731 
732 	if (!drop)
733 		rtw_dbg(rtwdev, RTW_DBG_UNEXP,
734 			"timed out to flush pci tx ring[%d]\n", pci_q);
735 }
736 
__rtw_pci_flush_queues(struct rtw_dev * rtwdev,u32 pci_queues,bool drop)737 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
738 				   bool drop)
739 {
740 	u8 q;
741 
742 	for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
743 		/* Unnecessary to flush BCN, H2C and HI tx queues. */
744 		if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C ||
745 		    q == RTW_TX_QUEUE_HI0)
746 			continue;
747 
748 		if (pci_queues & BIT(q))
749 			__pci_flush_queue(rtwdev, q, drop);
750 	}
751 }
752 
rtw_pci_flush_queues(struct rtw_dev * rtwdev,u32 queues,bool drop)753 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
754 {
755 	u32 pci_queues = 0;
756 	u8 i;
757 
758 	/* If all of the hardware queues are requested to flush,
759 	 * flush all of the pci queues.
760 	 */
761 	if (queues == BIT(rtwdev->hw->queues) - 1) {
762 		pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
763 	} else {
764 		for (i = 0; i < rtwdev->hw->queues; i++)
765 			if (queues & BIT(i))
766 				pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
767 	}
768 
769 	__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
770 }
771 
rtw_pci_tx_kick_off_queue(struct rtw_dev * rtwdev,enum rtw_tx_queue_type queue)772 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
773 				      enum rtw_tx_queue_type queue)
774 {
775 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
776 	struct rtw_pci_tx_ring *ring;
777 	u32 bd_idx;
778 
779 	ring = &rtwpci->tx_rings[queue];
780 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
781 
782 	spin_lock_bh(&rtwpci->irq_lock);
783 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
784 		rtw_pci_deep_ps_leave(rtwdev);
785 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
786 	spin_unlock_bh(&rtwpci->irq_lock);
787 }
788 
rtw_pci_tx_kick_off(struct rtw_dev * rtwdev)789 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
790 {
791 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
792 	enum rtw_tx_queue_type queue;
793 
794 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
795 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
796 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
797 }
798 
rtw_pci_tx_write_data(struct rtw_dev * rtwdev,struct rtw_tx_pkt_info * pkt_info,struct sk_buff * skb,enum rtw_tx_queue_type queue)799 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
800 				 struct rtw_tx_pkt_info *pkt_info,
801 				 struct sk_buff *skb,
802 				 enum rtw_tx_queue_type queue)
803 {
804 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
805 	const struct rtw_chip_info *chip = rtwdev->chip;
806 	struct rtw_pci_tx_ring *ring;
807 	struct rtw_pci_tx_data *tx_data;
808 	dma_addr_t dma;
809 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
810 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
811 	u32 size;
812 	u32 psb_len;
813 	u8 *pkt_desc;
814 	struct rtw_pci_tx_buffer_desc *buf_desc;
815 
816 	ring = &rtwpci->tx_rings[queue];
817 
818 	size = skb->len;
819 
820 	if (queue == RTW_TX_QUEUE_BCN)
821 		rtw_pci_release_rsvd_page(rtwpci, ring);
822 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
823 		return -ENOSPC;
824 
825 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
826 	memset(pkt_desc, 0, tx_pkt_desc_sz);
827 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
828 	rtw_tx_fill_tx_desc(rtwdev, pkt_info, skb);
829 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
830 			     DMA_TO_DEVICE);
831 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
832 		return -EBUSY;
833 
834 	/* after this we got dma mapped, there is no way back */
835 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
836 	memset(buf_desc, 0, tx_buf_desc_sz);
837 	psb_len = (skb->len - 1) / 128 + 1;
838 	if (queue == RTW_TX_QUEUE_BCN)
839 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
840 
841 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
842 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
843 	buf_desc[0].dma = cpu_to_le32(dma);
844 	buf_desc[1].buf_size = cpu_to_le16(size);
845 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
846 
847 	tx_data = rtw_pci_get_tx_data(skb);
848 	tx_data->dma = dma;
849 	tx_data->sn = pkt_info->sn;
850 
851 	spin_lock_bh(&rtwpci->irq_lock);
852 
853 	skb_queue_tail(&ring->queue, skb);
854 
855 	if (queue == RTW_TX_QUEUE_BCN)
856 		goto out_unlock;
857 
858 	/* update write-index, and kick it off later */
859 	set_bit(queue, rtwpci->tx_queued);
860 	if (++ring->r.wp >= ring->r.len)
861 		ring->r.wp = 0;
862 
863 out_unlock:
864 	spin_unlock_bh(&rtwpci->irq_lock);
865 
866 	return 0;
867 }
868 
rtw_pci_write_data_rsvd_page(struct rtw_dev * rtwdev,u8 * buf,u32 size)869 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
870 					u32 size)
871 {
872 	struct sk_buff *skb;
873 	struct rtw_tx_pkt_info pkt_info = {0};
874 	u8 reg_bcn_work;
875 	int ret;
876 
877 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
878 	if (!skb)
879 		return -ENOMEM;
880 
881 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
882 	if (ret) {
883 		rtw_err(rtwdev, "failed to write rsvd page data\n");
884 		return ret;
885 	}
886 
887 	/* reserved pages go through beacon queue */
888 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
889 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
890 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
891 
892 	return 0;
893 }
894 
rtw_pci_write_data_h2c(struct rtw_dev * rtwdev,u8 * buf,u32 size)895 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
896 {
897 	struct sk_buff *skb;
898 	struct rtw_tx_pkt_info pkt_info = {0};
899 	int ret;
900 
901 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
902 	if (!skb)
903 		return -ENOMEM;
904 
905 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
906 	if (ret) {
907 		rtw_err(rtwdev, "failed to write h2c data\n");
908 		return ret;
909 	}
910 
911 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
912 
913 	return 0;
914 }
915 
rtw_pci_tx_write(struct rtw_dev * rtwdev,struct rtw_tx_pkt_info * pkt_info,struct sk_buff * skb)916 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
917 			    struct rtw_tx_pkt_info *pkt_info,
918 			    struct sk_buff *skb)
919 {
920 	enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
921 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
922 	struct rtw_pci_tx_ring *ring;
923 	int ret;
924 
925 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
926 	if (ret)
927 		return ret;
928 
929 	ring = &rtwpci->tx_rings[queue];
930 	spin_lock_bh(&rtwpci->irq_lock);
931 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
932 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
933 		ring->queue_stopped = true;
934 	}
935 	spin_unlock_bh(&rtwpci->irq_lock);
936 
937 	return 0;
938 }
939 
rtw_pci_tx_isr(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u8 hw_queue)940 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
941 			   u8 hw_queue)
942 {
943 	struct ieee80211_hw *hw = rtwdev->hw;
944 	struct ieee80211_tx_info *info;
945 	struct rtw_pci_tx_ring *ring;
946 	struct rtw_pci_tx_data *tx_data;
947 	struct sk_buff *skb;
948 	u32 count;
949 	u32 bd_idx_addr;
950 	u32 bd_idx, cur_rp, rp_idx;
951 	u16 q_map;
952 
953 	ring = &rtwpci->tx_rings[hw_queue];
954 
955 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
956 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
957 	cur_rp = bd_idx >> 16;
958 	cur_rp &= TRX_BD_IDX_MASK;
959 	rp_idx = ring->r.rp;
960 	if (cur_rp >= ring->r.rp)
961 		count = cur_rp - ring->r.rp;
962 	else
963 		count = ring->r.len - (ring->r.rp - cur_rp);
964 
965 	while (count--) {
966 		skb = skb_dequeue(&ring->queue);
967 		if (!skb) {
968 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
969 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
970 			break;
971 		}
972 		tx_data = rtw_pci_get_tx_data(skb);
973 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
974 				 DMA_TO_DEVICE);
975 
976 		/* just free command packets from host to card */
977 		if (hw_queue == RTW_TX_QUEUE_H2C) {
978 			dev_kfree_skb_irq(skb);
979 			continue;
980 		}
981 
982 		if (ring->queue_stopped &&
983 		    avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
984 			q_map = skb_get_queue_mapping(skb);
985 			ieee80211_wake_queue(hw, q_map);
986 			ring->queue_stopped = false;
987 		}
988 
989 		if (++rp_idx >= ring->r.len)
990 			rp_idx = 0;
991 
992 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
993 
994 		info = IEEE80211_SKB_CB(skb);
995 
996 		/* enqueue to wait for tx report */
997 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
998 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
999 			continue;
1000 		}
1001 
1002 		/* always ACK for others, then they won't be marked as drop */
1003 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1004 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1005 		else
1006 			info->flags |= IEEE80211_TX_STAT_ACK;
1007 
1008 		ieee80211_tx_info_clear_status(info);
1009 		ieee80211_tx_status_irqsafe(hw, skb);
1010 	}
1011 
1012 	ring->r.rp = cur_rp;
1013 }
1014 
rtw_pci_rx_isr(struct rtw_dev * rtwdev)1015 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1016 {
1017 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1018 	struct napi_struct *napi = &rtwpci->napi;
1019 
1020 	napi_schedule(napi);
1021 }
1022 
rtw_pci_get_hw_rx_ring_nr(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)1023 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1024 				     struct rtw_pci *rtwpci)
1025 {
1026 	struct rtw_pci_rx_ring *ring;
1027 	int count = 0;
1028 	u32 tmp, cur_wp;
1029 
1030 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1031 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1032 	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1033 	if (cur_wp >= ring->r.wp)
1034 		count = cur_wp - ring->r.wp;
1035 	else
1036 		count = ring->r.len - (ring->r.wp - cur_wp);
1037 
1038 	return count;
1039 }
1040 
rtw_pci_rx_napi(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u8 hw_queue,u32 limit)1041 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1042 			   u8 hw_queue, u32 limit)
1043 {
1044 	const struct rtw_chip_info *chip = rtwdev->chip;
1045 	struct napi_struct *napi = &rtwpci->napi;
1046 	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1047 	struct rtw_rx_pkt_stat pkt_stat;
1048 	struct ieee80211_rx_status rx_status;
1049 	struct sk_buff *skb, *new;
1050 	u32 cur_rp = ring->r.rp;
1051 	u32 count, rx_done = 0;
1052 	u32 pkt_offset;
1053 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1054 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1055 	u32 new_len;
1056 	u8 *rx_desc;
1057 	dma_addr_t dma;
1058 
1059 	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1060 	count = min(count, limit);
1061 
1062 	while (count--) {
1063 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1064 		skb = ring->buf[cur_rp];
1065 		dma = *((dma_addr_t *)skb->cb);
1066 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1067 					DMA_FROM_DEVICE);
1068 		rx_desc = skb->data;
1069 		rtw_rx_query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1070 
1071 		/* offset from rx_desc to payload */
1072 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1073 			     pkt_stat.shift;
1074 
1075 		/* allocate a new skb for this frame,
1076 		 * discard the frame if none available
1077 		 */
1078 		new_len = pkt_stat.pkt_len + pkt_offset;
1079 		new = dev_alloc_skb(new_len);
1080 		if (WARN_ONCE(!new, "rx routine starvation\n"))
1081 			goto next_rp;
1082 
1083 		/* put the DMA data including rx_desc from phy to new skb */
1084 		skb_put_data(new, skb->data, new_len);
1085 
1086 		if (pkt_stat.is_c2h) {
1087 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1088 		} else {
1089 			/* remove rx_desc */
1090 			skb_pull(new, pkt_offset);
1091 
1092 			rtw_update_rx_freq_for_invalid(rtwdev, new, &rx_status, &pkt_stat);
1093 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1094 			memcpy(new->cb, &rx_status, sizeof(rx_status));
1095 			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1096 			rx_done++;
1097 		}
1098 
1099 next_rp:
1100 		/* new skb delivered to mac80211, re-enable original skb DMA */
1101 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1102 					    buf_desc_sz);
1103 
1104 		/* host read next element in ring */
1105 		if (++cur_rp >= ring->r.len)
1106 			cur_rp = 0;
1107 	}
1108 
1109 	ring->r.rp = cur_rp;
1110 	/* 'rp', the last position we have read, is seen as previous posistion
1111 	 * of 'wp' that is used to calculate 'count' next time.
1112 	 */
1113 	ring->r.wp = cur_rp;
1114 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1115 
1116 	return rx_done;
1117 }
1118 
rtw_pci_irq_recognized(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u32 * irq_status)1119 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1120 				   struct rtw_pci *rtwpci, u32 *irq_status)
1121 {
1122 	unsigned long flags;
1123 
1124 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1125 
1126 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1127 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1128 	if (rtw_chip_wcpu_3081(rtwdev))
1129 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1130 	else
1131 		irq_status[3] = 0;
1132 	irq_status[0] &= rtwpci->irq_mask[0];
1133 	irq_status[1] &= rtwpci->irq_mask[1];
1134 	irq_status[3] &= rtwpci->irq_mask[3];
1135 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1136 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1137 	if (rtw_chip_wcpu_3081(rtwdev))
1138 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1139 
1140 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1141 }
1142 
rtw_pci_interrupt_handler(int irq,void * dev)1143 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1144 {
1145 	struct rtw_dev *rtwdev = dev;
1146 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1147 
1148 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1149 	 * thread function
1150 	 *
1151 	 * disable HIMR here to also avoid new HISR flag being raised before
1152 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1153 	 * are cleared, the edge-triggered interrupt will not be generated when
1154 	 * a new HISR flag is set.
1155 	 */
1156 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1157 
1158 	return IRQ_WAKE_THREAD;
1159 }
1160 
rtw_pci_interrupt_threadfn(int irq,void * dev)1161 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1162 {
1163 	struct rtw_dev *rtwdev = dev;
1164 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1165 	u32 irq_status[4];
1166 	bool rx = false;
1167 
1168 	spin_lock_bh(&rtwpci->irq_lock);
1169 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1170 
1171 	if (irq_status[0] & IMR_MGNTDOK)
1172 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1173 	if (irq_status[0] & IMR_HIGHDOK)
1174 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1175 	if (irq_status[0] & IMR_BEDOK)
1176 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1177 	if (irq_status[0] & IMR_BKDOK)
1178 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1179 	if (irq_status[0] & IMR_VODOK)
1180 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1181 	if (irq_status[0] & IMR_VIDOK)
1182 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1183 	if (irq_status[3] & IMR_H2CDOK)
1184 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1185 	if (irq_status[0] & IMR_ROK) {
1186 		rtw_pci_rx_isr(rtwdev);
1187 		rx = true;
1188 	}
1189 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1190 		rtw_fw_c2h_cmd_isr(rtwdev);
1191 
1192 	/* all of the jobs for this interrupt have been done */
1193 	if (rtwpci->running)
1194 		rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1195 	spin_unlock_bh(&rtwpci->irq_lock);
1196 
1197 	return IRQ_HANDLED;
1198 }
1199 
rtw_pci_io_mapping(struct rtw_dev * rtwdev,struct pci_dev * pdev)1200 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1201 			      struct pci_dev *pdev)
1202 {
1203 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1204 	unsigned long len;
1205 	u8 bar_id = 2;
1206 	int ret;
1207 
1208 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1209 	if (ret) {
1210 		rtw_err(rtwdev, "failed to request pci regions\n");
1211 		return ret;
1212 	}
1213 
1214 	len = pci_resource_len(pdev, bar_id);
1215 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1216 	if (!rtwpci->mmap) {
1217 		pci_release_regions(pdev);
1218 		rtw_err(rtwdev, "failed to map pci memory\n");
1219 		return -ENOMEM;
1220 	}
1221 
1222 	return 0;
1223 }
1224 
rtw_pci_io_unmapping(struct rtw_dev * rtwdev,struct pci_dev * pdev)1225 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1226 				 struct pci_dev *pdev)
1227 {
1228 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1229 
1230 	if (rtwpci->mmap) {
1231 		pci_iounmap(pdev, rtwpci->mmap);
1232 		pci_release_regions(pdev);
1233 	}
1234 }
1235 
rtw_dbi_write8(struct rtw_dev * rtwdev,u16 addr,u8 data)1236 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1237 {
1238 	u16 write_addr;
1239 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1240 	u8 flag;
1241 	u8 cnt;
1242 
1243 	write_addr = addr & BITS_DBI_ADDR_MASK;
1244 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1245 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1246 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1247 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1248 
1249 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1250 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1251 		if (flag == 0)
1252 			return;
1253 
1254 		udelay(10);
1255 	}
1256 
1257 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1258 }
1259 
rtw_dbi_read8(struct rtw_dev * rtwdev,u16 addr,u8 * value)1260 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1261 {
1262 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1263 	u8 flag;
1264 	u8 cnt;
1265 
1266 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1267 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1268 
1269 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1270 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1271 		if (flag == 0) {
1272 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1273 			*value = rtw_read8(rtwdev, read_addr);
1274 			return 0;
1275 		}
1276 
1277 		udelay(10);
1278 	}
1279 
1280 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1281 	return -EIO;
1282 }
1283 
rtw_mdio_write(struct rtw_dev * rtwdev,u8 addr,u16 data,bool g1)1284 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1285 {
1286 	u8 page;
1287 	u8 wflag;
1288 	u8 cnt;
1289 
1290 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1291 
1292 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1293 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1294 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1295 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1296 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1297 
1298 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1299 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1300 					BIT_MDIO_WFLAG_V1);
1301 		if (wflag == 0)
1302 			return;
1303 
1304 		udelay(10);
1305 	}
1306 
1307 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1308 }
1309 
rtw_pci_clkreq_set(struct rtw_dev * rtwdev,bool enable)1310 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1311 {
1312 	u8 value;
1313 	int ret;
1314 
1315 	if (rtw_pci_disable_aspm)
1316 		return;
1317 
1318 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1319 	if (ret) {
1320 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1321 		return;
1322 	}
1323 
1324 	if (enable)
1325 		value |= BIT_CLKREQ_SW_EN;
1326 	else
1327 		value &= ~BIT_CLKREQ_SW_EN;
1328 
1329 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1330 }
1331 
rtw_pci_clkreq_pad_low(struct rtw_dev * rtwdev,bool enable)1332 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1333 {
1334 	u8 value;
1335 	int ret;
1336 
1337 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1338 	if (ret) {
1339 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1340 		return;
1341 	}
1342 
1343 	if (enable)
1344 		value &= ~BIT_CLKREQ_N_PAD;
1345 	else
1346 		value |= BIT_CLKREQ_N_PAD;
1347 
1348 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1349 }
1350 
rtw_pci_aspm_set(struct rtw_dev * rtwdev,bool enable)1351 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1352 {
1353 	u8 value;
1354 	int ret;
1355 
1356 	if (rtw_pci_disable_aspm)
1357 		return;
1358 
1359 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1360 	if (ret) {
1361 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1362 		return;
1363 	}
1364 
1365 	if (enable)
1366 		value |= BIT_L1_SW_EN;
1367 	else
1368 		value &= ~BIT_L1_SW_EN;
1369 
1370 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1371 }
1372 
rtw_pci_link_ps(struct rtw_dev * rtwdev,bool enter)1373 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1374 {
1375 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1376 
1377 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1378 	 * only be enabled when host supports it.
1379 	 *
1380 	 * And ASPM mechanism should be enabled when driver/firmware enters
1381 	 * power save mode, without having heavy traffic. Because we've
1382 	 * experienced some inter-operability issues that the link tends
1383 	 * to enter L1 state on the fly even when driver is having high
1384 	 * throughput. This is probably because the ASPM behavior slightly
1385 	 * varies from different SOC.
1386 	 */
1387 	if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1388 		return;
1389 
1390 	if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1391 	    (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1392 		rtw_pci_aspm_set(rtwdev, enter);
1393 }
1394 
rtw_pci_link_cfg(struct rtw_dev * rtwdev)1395 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1396 {
1397 	const struct rtw_chip_info *chip = rtwdev->chip;
1398 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1399 	struct pci_dev *pdev = rtwpci->pdev;
1400 	u16 link_ctrl;
1401 	int ret;
1402 
1403 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1404 	 * to add clock delay to cover the REFCLK timing gap.
1405 	 */
1406 	if (chip->id == RTW_CHIP_TYPE_8822C)
1407 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1408 
1409 	/* Though there is standard PCIE configuration space to set the
1410 	 * link control register, but by Realtek's design, driver should
1411 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1412 	 *
1413 	 * These functions are implemented by two HW modules associated,
1414 	 * one is responsible to access PCIE configuration space to
1415 	 * follow the host settings, and another is in charge of doing
1416 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1417 	 * the host does not support it, and due to some reasons or wrong
1418 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1419 	 * loss if HW misbehaves on the link.
1420 	 *
1421 	 * Hence it's designed that driver should first check the PCIE
1422 	 * configuration space is sync'ed and enabled, then driver can turn
1423 	 * on the other module that is actually working on the mechanism.
1424 	 */
1425 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1426 	if (ret) {
1427 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1428 		return;
1429 	}
1430 
1431 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1432 		rtw_pci_clkreq_set(rtwdev, true);
1433 
1434 	rtwpci->link_ctrl = link_ctrl;
1435 }
1436 
rtw_pci_interface_cfg(struct rtw_dev * rtwdev)1437 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1438 {
1439 	const struct rtw_chip_info *chip = rtwdev->chip;
1440 
1441 	switch (chip->id) {
1442 	case RTW_CHIP_TYPE_8822C:
1443 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1444 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1445 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1446 		break;
1447 	default:
1448 		break;
1449 	}
1450 }
1451 
rtw_pci_phy_cfg(struct rtw_dev * rtwdev)1452 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1453 {
1454 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1455 	const struct rtw_chip_info *chip = rtwdev->chip;
1456 	struct rtw_efuse *efuse = &rtwdev->efuse;
1457 	struct pci_dev *pdev = rtwpci->pdev;
1458 	const struct rtw_intf_phy_para *para;
1459 	u16 cut;
1460 	u16 value;
1461 	u16 offset;
1462 	int i;
1463 	int ret;
1464 
1465 	cut = BIT(0) << rtwdev->hal.cut_version;
1466 
1467 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1468 		para = &chip->intf_table->gen1_para[i];
1469 		if (!(para->cut_mask & cut))
1470 			continue;
1471 		if (para->offset == 0xffff)
1472 			break;
1473 		offset = para->offset;
1474 		value = para->value;
1475 		if (para->ip_sel == RTW_IP_SEL_PHY)
1476 			rtw_mdio_write(rtwdev, offset, value, true);
1477 		else
1478 			rtw_dbi_write8(rtwdev, offset, value);
1479 	}
1480 
1481 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1482 		para = &chip->intf_table->gen2_para[i];
1483 		if (!(para->cut_mask & cut))
1484 			continue;
1485 		if (para->offset == 0xffff)
1486 			break;
1487 		offset = para->offset;
1488 		value = para->value;
1489 		if (para->ip_sel == RTW_IP_SEL_PHY)
1490 			rtw_mdio_write(rtwdev, offset, value, false);
1491 		else
1492 			rtw_dbi_write8(rtwdev, offset, value);
1493 	}
1494 
1495 	rtw_pci_link_cfg(rtwdev);
1496 
1497 	/* Disable 8821ce completion timeout by default */
1498 	if (chip->id == RTW_CHIP_TYPE_8821C) {
1499 		ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
1500 					       PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
1501 		if (ret)
1502 			rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
1503 				ret);
1504 	}
1505 
1506 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 5)
1507 		rtw_write32_mask(rtwdev, REG_ANAPARSW_MAC_0, BIT_CF_L_V2, 0x1);
1508 }
1509 
rtw_pci_suspend(struct device * dev)1510 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1511 {
1512 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1513 	struct rtw_dev *rtwdev = hw->priv;
1514 	const struct rtw_chip_info *chip = rtwdev->chip;
1515 	struct rtw_efuse *efuse = &rtwdev->efuse;
1516 
1517 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1518 		rtw_pci_clkreq_pad_low(rtwdev, true);
1519 	return 0;
1520 }
1521 
rtw_pci_resume(struct device * dev)1522 static int __maybe_unused rtw_pci_resume(struct device *dev)
1523 {
1524 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1525 	struct rtw_dev *rtwdev = hw->priv;
1526 	const struct rtw_chip_info *chip = rtwdev->chip;
1527 	struct rtw_efuse *efuse = &rtwdev->efuse;
1528 
1529 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1530 		rtw_pci_clkreq_pad_low(rtwdev, false);
1531 	return 0;
1532 }
1533 
1534 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1535 EXPORT_SYMBOL(rtw_pm_ops);
1536 
rtw_pci_claim(struct rtw_dev * rtwdev,struct pci_dev * pdev)1537 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1538 {
1539 	int ret;
1540 
1541 	ret = pci_enable_device(pdev);
1542 	if (ret) {
1543 		rtw_err(rtwdev, "failed to enable pci device\n");
1544 		return ret;
1545 	}
1546 
1547 	pci_set_master(pdev);
1548 	pci_set_drvdata(pdev, rtwdev->hw);
1549 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1550 
1551 	return 0;
1552 }
1553 
rtw_pci_declaim(struct rtw_dev * rtwdev,struct pci_dev * pdev)1554 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1555 {
1556 	pci_disable_device(pdev);
1557 }
1558 
rtw_pci_setup_resource(struct rtw_dev * rtwdev,struct pci_dev * pdev)1559 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1560 {
1561 	struct rtw_pci *rtwpci;
1562 	int ret;
1563 
1564 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1565 	rtwpci->pdev = pdev;
1566 
1567 	/* after this driver can access to hw registers */
1568 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1569 	if (ret) {
1570 		rtw_err(rtwdev, "failed to request pci io region\n");
1571 		goto err_out;
1572 	}
1573 
1574 	ret = rtw_pci_init(rtwdev);
1575 	if (ret) {
1576 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1577 		goto err_io_unmap;
1578 	}
1579 
1580 	return 0;
1581 
1582 err_io_unmap:
1583 	rtw_pci_io_unmapping(rtwdev, pdev);
1584 
1585 err_out:
1586 	return ret;
1587 }
1588 
rtw_pci_destroy(struct rtw_dev * rtwdev,struct pci_dev * pdev)1589 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1590 {
1591 	rtw_pci_deinit(rtwdev);
1592 	rtw_pci_io_unmapping(rtwdev, pdev);
1593 }
1594 
1595 static const struct rtw_hci_ops rtw_pci_ops = {
1596 	.tx_write = rtw_pci_tx_write,
1597 	.tx_kick_off = rtw_pci_tx_kick_off,
1598 	.flush_queues = rtw_pci_flush_queues,
1599 	.setup = rtw_pci_setup,
1600 	.start = rtw_pci_start,
1601 	.stop = rtw_pci_stop,
1602 	.deep_ps = rtw_pci_deep_ps,
1603 	.link_ps = rtw_pci_link_ps,
1604 	.interface_cfg = rtw_pci_interface_cfg,
1605 	.dynamic_rx_agg = NULL,
1606 	.write_firmware_page = rtw_write_firmware_page,
1607 
1608 	.read8 = rtw_pci_read8,
1609 	.read16 = rtw_pci_read16,
1610 	.read32 = rtw_pci_read32,
1611 	.write8 = rtw_pci_write8,
1612 	.write16 = rtw_pci_write16,
1613 	.write32 = rtw_pci_write32,
1614 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1615 	.write_data_h2c = rtw_pci_write_data_h2c,
1616 };
1617 
rtw_pci_request_irq(struct rtw_dev * rtwdev,struct pci_dev * pdev)1618 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1619 {
1620 	unsigned int flags = PCI_IRQ_INTX;
1621 	int ret;
1622 
1623 	if (!rtw_disable_msi)
1624 		flags |= PCI_IRQ_MSI;
1625 
1626 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1627 	if (ret < 0) {
1628 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1629 		return ret;
1630 	}
1631 
1632 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1633 					rtw_pci_interrupt_handler,
1634 					rtw_pci_interrupt_threadfn,
1635 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1636 	if (ret) {
1637 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1638 		pci_free_irq_vectors(pdev);
1639 	}
1640 
1641 	return ret;
1642 }
1643 
rtw_pci_free_irq(struct rtw_dev * rtwdev,struct pci_dev * pdev)1644 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1645 {
1646 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1647 	pci_free_irq_vectors(pdev);
1648 }
1649 
rtw_pci_napi_poll(struct napi_struct * napi,int budget)1650 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1651 {
1652 	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1653 	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1654 					      priv);
1655 	int work_done = 0;
1656 
1657 	if (rtwpci->rx_no_aspm)
1658 		rtw_pci_link_ps(rtwdev, false);
1659 
1660 	while (work_done < budget) {
1661 		u32 work_done_once;
1662 
1663 		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1664 						 budget - work_done);
1665 		if (work_done_once == 0)
1666 			break;
1667 		work_done += work_done_once;
1668 	}
1669 	if (work_done < budget) {
1670 		napi_complete_done(napi, work_done);
1671 		spin_lock_bh(&rtwpci->irq_lock);
1672 		if (rtwpci->running)
1673 			rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1674 		spin_unlock_bh(&rtwpci->irq_lock);
1675 		/* When ISR happens during polling and before napi_complete
1676 		 * while no further data is received. Data on the dma_ring will
1677 		 * not be processed immediately. Check whether dma ring is
1678 		 * empty and perform napi_schedule accordingly.
1679 		 */
1680 		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1681 			napi_schedule(napi);
1682 	}
1683 	if (rtwpci->rx_no_aspm)
1684 		rtw_pci_link_ps(rtwdev, true);
1685 
1686 	return work_done;
1687 }
1688 
rtw_pci_napi_init(struct rtw_dev * rtwdev)1689 static int rtw_pci_napi_init(struct rtw_dev *rtwdev)
1690 {
1691 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1692 
1693 	rtwpci->netdev = alloc_netdev_dummy(0);
1694 	if (!rtwpci->netdev)
1695 		return -ENOMEM;
1696 
1697 	netif_napi_add(rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
1698 	return 0;
1699 }
1700 
rtw_pci_napi_deinit(struct rtw_dev * rtwdev)1701 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1702 {
1703 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1704 
1705 	rtw_pci_napi_stop(rtwdev);
1706 	netif_napi_del(&rtwpci->napi);
1707 	free_netdev(rtwpci->netdev);
1708 }
1709 
rtw_pci_io_err_detected(struct pci_dev * pdev,pci_channel_state_t state)1710 static pci_ers_result_t rtw_pci_io_err_detected(struct pci_dev *pdev,
1711 						pci_channel_state_t state)
1712 {
1713 	struct net_device *netdev = pci_get_drvdata(pdev);
1714 
1715 	netif_device_detach(netdev);
1716 
1717 	return PCI_ERS_RESULT_NEED_RESET;
1718 }
1719 
rtw_pci_io_slot_reset(struct pci_dev * pdev)1720 static pci_ers_result_t rtw_pci_io_slot_reset(struct pci_dev *pdev)
1721 {
1722 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1723 	struct rtw_dev *rtwdev = hw->priv;
1724 
1725 	rtw_fw_recovery(rtwdev);
1726 
1727 	return PCI_ERS_RESULT_RECOVERED;
1728 }
1729 
rtw_pci_io_resume(struct pci_dev * pdev)1730 static void rtw_pci_io_resume(struct pci_dev *pdev)
1731 {
1732 	struct net_device *netdev = pci_get_drvdata(pdev);
1733 
1734 	/* ack any pending wake events, disable PME */
1735 	pci_enable_wake(pdev, PCI_D0, 0);
1736 
1737 	netif_device_attach(netdev);
1738 }
1739 
1740 const struct pci_error_handlers rtw_pci_err_handler = {
1741 	.error_detected = rtw_pci_io_err_detected,
1742 	.slot_reset = rtw_pci_io_slot_reset,
1743 	.resume = rtw_pci_io_resume,
1744 };
1745 EXPORT_SYMBOL(rtw_pci_err_handler);
1746 
rtw_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)1747 int rtw_pci_probe(struct pci_dev *pdev,
1748 		  const struct pci_device_id *id)
1749 {
1750 	struct pci_dev *bridge = pci_upstream_bridge(pdev);
1751 	struct ieee80211_hw *hw;
1752 	struct rtw_dev *rtwdev;
1753 	struct rtw_pci *rtwpci;
1754 	int drv_data_size;
1755 	int ret;
1756 
1757 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1758 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1759 	if (!hw) {
1760 		dev_err(&pdev->dev, "failed to allocate hw\n");
1761 		return -ENOMEM;
1762 	}
1763 
1764 	rtwdev = hw->priv;
1765 	rtwdev->hw = hw;
1766 	rtwdev->dev = &pdev->dev;
1767 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1768 	rtwdev->hci.ops = &rtw_pci_ops;
1769 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1770 
1771 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1772 	atomic_set(&rtwpci->link_usage, 1);
1773 
1774 	ret = rtw_core_init(rtwdev);
1775 	if (ret)
1776 		goto err_release_hw;
1777 
1778 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1779 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1780 		pdev->vendor, pdev->device, pdev->revision);
1781 
1782 	ret = rtw_pci_claim(rtwdev, pdev);
1783 	if (ret) {
1784 		rtw_err(rtwdev, "failed to claim pci device\n");
1785 		goto err_deinit_core;
1786 	}
1787 
1788 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1789 	if (ret) {
1790 		rtw_err(rtwdev, "failed to setup pci resources\n");
1791 		goto err_pci_declaim;
1792 	}
1793 
1794 	ret = rtw_pci_napi_init(rtwdev);
1795 	if (ret) {
1796 		rtw_err(rtwdev, "failed to setup NAPI\n");
1797 		goto err_pci_declaim;
1798 	}
1799 
1800 	ret = rtw_chip_info_setup(rtwdev);
1801 	if (ret) {
1802 		rtw_err(rtwdev, "failed to setup chip information\n");
1803 		goto err_destroy_pci;
1804 	}
1805 
1806 	/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1807 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
1808 		rtwpci->rx_no_aspm = true;
1809 
1810 	rtw_pci_phy_cfg(rtwdev);
1811 
1812 	ret = rtw_register_hw(rtwdev, hw);
1813 	if (ret) {
1814 		rtw_err(rtwdev, "failed to register hw\n");
1815 		goto err_destroy_pci;
1816 	}
1817 
1818 	ret = rtw_pci_request_irq(rtwdev, pdev);
1819 	if (ret) {
1820 		ieee80211_unregister_hw(hw);
1821 		goto err_destroy_pci;
1822 	}
1823 
1824 	return 0;
1825 
1826 err_destroy_pci:
1827 	rtw_pci_napi_deinit(rtwdev);
1828 	rtw_pci_destroy(rtwdev, pdev);
1829 
1830 err_pci_declaim:
1831 	rtw_pci_declaim(rtwdev, pdev);
1832 
1833 err_deinit_core:
1834 	rtw_core_deinit(rtwdev);
1835 
1836 err_release_hw:
1837 	ieee80211_free_hw(hw);
1838 
1839 	return ret;
1840 }
1841 EXPORT_SYMBOL(rtw_pci_probe);
1842 
rtw_pci_remove(struct pci_dev * pdev)1843 void rtw_pci_remove(struct pci_dev *pdev)
1844 {
1845 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1846 	struct rtw_dev *rtwdev;
1847 	struct rtw_pci *rtwpci;
1848 
1849 	if (!hw)
1850 		return;
1851 
1852 	rtwdev = hw->priv;
1853 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1854 
1855 	rtw_unregister_hw(rtwdev, hw);
1856 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1857 	rtw_pci_napi_deinit(rtwdev);
1858 	rtw_pci_destroy(rtwdev, pdev);
1859 	rtw_pci_declaim(rtwdev, pdev);
1860 	rtw_pci_free_irq(rtwdev, pdev);
1861 	rtw_core_deinit(rtwdev);
1862 	ieee80211_free_hw(hw);
1863 }
1864 EXPORT_SYMBOL(rtw_pci_remove);
1865 
rtw_pci_shutdown(struct pci_dev * pdev)1866 void rtw_pci_shutdown(struct pci_dev *pdev)
1867 {
1868 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1869 	struct rtw_dev *rtwdev;
1870 	const struct rtw_chip_info *chip;
1871 
1872 	if (!hw)
1873 		return;
1874 
1875 	rtwdev = hw->priv;
1876 	chip = rtwdev->chip;
1877 
1878 	if (chip->ops->shutdown)
1879 		chip->ops->shutdown(rtwdev);
1880 
1881 	pci_set_power_state(pdev, PCI_D3hot);
1882 }
1883 EXPORT_SYMBOL(rtw_pci_shutdown);
1884 
1885 MODULE_AUTHOR("Realtek Corporation");
1886 MODULE_DESCRIPTION("Realtek PCI 802.11ac wireless driver");
1887 MODULE_LICENSE("Dual BSD/GPL");
1888