xref: /freebsd/sys/contrib/dev/rtw88/main.c (revision eb15fdb1b72de02e7a4c454f7eeeb1cee5cb83df)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #if defined(__FreeBSD__)
6 #define	LINUXKPI_PARAM_PREFIX	rtw88_
7 #endif
8 
9 #include <linux/devcoredump.h>
10 
11 #include "main.h"
12 #include "regd.h"
13 #include "fw.h"
14 #include "ps.h"
15 #include "sec.h"
16 #include "mac.h"
17 #include "coex.h"
18 #include "phy.h"
19 #include "reg.h"
20 #include "efuse.h"
21 #include "tx.h"
22 #include "debug.h"
23 #include "bf.h"
24 #include "sar.h"
25 #include "sdio.h"
26 #include "led.h"
27 
28 bool rtw_disable_lps_deep_mode;
29 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
30 bool rtw_bf_support = true;
31 unsigned int rtw_debug_mask;
32 EXPORT_SYMBOL(rtw_debug_mask);
33 /* EDCCA is enabled during normal behavior. For debugging purpose in
34  * a noisy environment, it can be disabled via edcca debugfs. Because
35  * all rtw88 devices will probably be affected if environment is noisy,
36  * rtw_edcca_enabled is just declared by driver instead of by device.
37  * So, turning it off will take effect for all rtw88 devices before
38  * there is a tough reason to maintain rtw_edcca_enabled by device.
39  */
40 bool rtw_edcca_enabled = true;
41 
42 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
43 module_param_named(support_bf, rtw_bf_support, bool, 0644);
44 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
45 
46 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
47 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
48 MODULE_PARM_DESC(debug_mask, "Debugging mask");
49 
50 #if defined(__FreeBSD__)
51 static bool rtw_ht_support = false;
52 module_param_named(support_ht, rtw_ht_support, bool, 0644);
53 MODULE_PARM_DESC(support_ht, "Set to Y to enable HT support");
54 
55 static bool rtw_vht_support = false;
56 module_param_named(support_vht, rtw_vht_support, bool, 0644);
57 MODULE_PARM_DESC(support_vht, "Set to Y to enable VHT support");
58 #endif
59 
60 #if defined(__FreeBSD__)
61 /* Macros based on rtw89::core.c. */
62 #define	RTW88_DEF_CHAN(_freq, _hw_val, _flags, _band)		\
63 	{ .center_freq = _freq, .hw_value = _hw_val, .flags = _flags, .band = _band, }
64 #define	RTW88_DEF_CHAN_2G(_freq, _hw_val)			\
65         RTW88_DEF_CHAN(_freq, _hw_val, 0, NL80211_BAND_2GHZ)
66 #define	RTW88_DEF_CHAN_5G(_freq, _hw_val)			\
67         RTW88_DEF_CHAN(_freq, _hw_val, 0, NL80211_BAND_5GHZ)
68 #define	RTW88_DEF_CHAN_5G_NO_HT40MINUS(_freq, _hw_val)		\
69         RTW88_DEF_CHAN(_freq, _hw_val, IEEE80211_CHAN_NO_HT40MINUS, NL80211_BAND_5GHZ)
70 
71 static struct ieee80211_channel rtw_channeltable_2g[] = {
72 	RTW88_DEF_CHAN_2G(2412, 1),
73 	RTW88_DEF_CHAN_2G(2417, 2),
74 	RTW88_DEF_CHAN_2G(2422, 3),
75 	RTW88_DEF_CHAN_2G(2427, 4),
76 	RTW88_DEF_CHAN_2G(2432, 5),
77 	RTW88_DEF_CHAN_2G(2437, 6),
78 	RTW88_DEF_CHAN_2G(2442, 7),
79 	RTW88_DEF_CHAN_2G(2447, 8),
80 	RTW88_DEF_CHAN_2G(2452, 9),
81 	RTW88_DEF_CHAN_2G(2457, 10),
82 	RTW88_DEF_CHAN_2G(2462, 11),
83 	RTW88_DEF_CHAN_2G(2467, 12),
84 	RTW88_DEF_CHAN_2G(2472, 13),
85 	RTW88_DEF_CHAN_2G(2484, 14),
86 };
87 
88 static struct ieee80211_channel rtw_channeltable_5g[] = {
89 	RTW88_DEF_CHAN_5G(5180, 36),
90 	RTW88_DEF_CHAN_5G(5200, 40),
91 	RTW88_DEF_CHAN_5G(5220, 44),
92 	RTW88_DEF_CHAN_5G(5240, 48),
93 	RTW88_DEF_CHAN_5G(5260, 52),
94 	RTW88_DEF_CHAN_5G(5280, 56),
95 	RTW88_DEF_CHAN_5G(5300, 60),
96 	RTW88_DEF_CHAN_5G(5320, 64),
97 	RTW88_DEF_CHAN_5G(5500, 100),
98 	RTW88_DEF_CHAN_5G(5520, 104),
99 	RTW88_DEF_CHAN_5G(5540, 108),
100 	RTW88_DEF_CHAN_5G(5560, 112),
101 	RTW88_DEF_CHAN_5G(5580, 116),
102 	RTW88_DEF_CHAN_5G(5600, 120),
103 	RTW88_DEF_CHAN_5G(5620, 124),
104 	RTW88_DEF_CHAN_5G(5640, 128),
105 	RTW88_DEF_CHAN_5G(5660, 132),
106 	RTW88_DEF_CHAN_5G(5680, 136),
107 	RTW88_DEF_CHAN_5G(5700, 140),
108 	RTW88_DEF_CHAN_5G(5720, 144),
109 	RTW88_DEF_CHAN_5G(5745, 149),
110 	RTW88_DEF_CHAN_5G(5765, 153),
111 	RTW88_DEF_CHAN_5G(5785, 157),
112 	RTW88_DEF_CHAN_5G(5805, 161),
113 	RTW88_DEF_CHAN_5G_NO_HT40MINUS(5825, 165),
114 };
115 #elif deifned(__linux__)
116 static struct ieee80211_channel rtw_channeltable_2g[] = {
117 	{.center_freq = 2412, .hw_value = 1,},
118 	{.center_freq = 2417, .hw_value = 2,},
119 	{.center_freq = 2422, .hw_value = 3,},
120 	{.center_freq = 2427, .hw_value = 4,},
121 	{.center_freq = 2432, .hw_value = 5,},
122 	{.center_freq = 2437, .hw_value = 6,},
123 	{.center_freq = 2442, .hw_value = 7,},
124 	{.center_freq = 2447, .hw_value = 8,},
125 	{.center_freq = 2452, .hw_value = 9,},
126 	{.center_freq = 2457, .hw_value = 10,},
127 	{.center_freq = 2462, .hw_value = 11,},
128 	{.center_freq = 2467, .hw_value = 12,},
129 	{.center_freq = 2472, .hw_value = 13,},
130 	{.center_freq = 2484, .hw_value = 14,},
131 };
132 
133 static struct ieee80211_channel rtw_channeltable_5g[] = {
134 	{.center_freq = 5180, .hw_value = 36,},
135 	{.center_freq = 5200, .hw_value = 40,},
136 	{.center_freq = 5220, .hw_value = 44,},
137 	{.center_freq = 5240, .hw_value = 48,},
138 	{.center_freq = 5260, .hw_value = 52,},
139 	{.center_freq = 5280, .hw_value = 56,},
140 	{.center_freq = 5300, .hw_value = 60,},
141 	{.center_freq = 5320, .hw_value = 64,},
142 	{.center_freq = 5500, .hw_value = 100,},
143 	{.center_freq = 5520, .hw_value = 104,},
144 	{.center_freq = 5540, .hw_value = 108,},
145 	{.center_freq = 5560, .hw_value = 112,},
146 	{.center_freq = 5580, .hw_value = 116,},
147 	{.center_freq = 5600, .hw_value = 120,},
148 	{.center_freq = 5620, .hw_value = 124,},
149 	{.center_freq = 5640, .hw_value = 128,},
150 	{.center_freq = 5660, .hw_value = 132,},
151 	{.center_freq = 5680, .hw_value = 136,},
152 	{.center_freq = 5700, .hw_value = 140,},
153 	{.center_freq = 5720, .hw_value = 144,},
154 	{.center_freq = 5745, .hw_value = 149,},
155 	{.center_freq = 5765, .hw_value = 153,},
156 	{.center_freq = 5785, .hw_value = 157,},
157 	{.center_freq = 5805, .hw_value = 161,},
158 	{.center_freq = 5825, .hw_value = 165,
159 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
160 };
161 #endif
162 
163 static struct ieee80211_rate rtw_ratetable[] = {
164 	{.bitrate = 10, .hw_value = 0x00,},
165 	{.bitrate = 20, .hw_value = 0x01,},
166 	{.bitrate = 55, .hw_value = 0x02,},
167 	{.bitrate = 110, .hw_value = 0x03,},
168 	{.bitrate = 60, .hw_value = 0x04,},
169 	{.bitrate = 90, .hw_value = 0x05,},
170 	{.bitrate = 120, .hw_value = 0x06,},
171 	{.bitrate = 180, .hw_value = 0x07,},
172 	{.bitrate = 240, .hw_value = 0x08,},
173 	{.bitrate = 360, .hw_value = 0x09,},
174 	{.bitrate = 480, .hw_value = 0x0a,},
175 	{.bitrate = 540, .hw_value = 0x0b,},
176 };
177 
178 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
179 	{
180 		.max = 1,
181 		.types = BIT(NL80211_IFTYPE_STATION),
182 	},
183 	{
184 		.max = 1,
185 		.types = BIT(NL80211_IFTYPE_AP),
186 	}
187 };
188 
189 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
190 	{
191 		.limits = rtw_iface_limits,
192 		.n_limits = ARRAY_SIZE(rtw_iface_limits),
193 		.max_interfaces = 2,
194 		.num_different_channels = 1,
195 	}
196 };
197 
rtw_desc_to_bitrate(u8 desc_rate)198 u16 rtw_desc_to_bitrate(u8 desc_rate)
199 {
200 	struct ieee80211_rate rate;
201 
202 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
203 		return 0;
204 
205 	rate = rtw_ratetable[desc_rate];
206 
207 	return rate.bitrate;
208 }
209 
210 static const struct ieee80211_supported_band rtw_band_2ghz = {
211 	.band = NL80211_BAND_2GHZ,
212 
213 	.channels = rtw_channeltable_2g,
214 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
215 
216 	.bitrates = rtw_ratetable,
217 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
218 
219 	.ht_cap = {0},
220 	.vht_cap = {0},
221 };
222 
223 static const struct ieee80211_supported_band rtw_band_5ghz = {
224 	.band = NL80211_BAND_5GHZ,
225 
226 	.channels = rtw_channeltable_5g,
227 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
228 
229 	/* 5G has no CCK rates */
230 	.bitrates = rtw_ratetable + 4,
231 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
232 
233 	.ht_cap = {0},
234 	.vht_cap = {0},
235 };
236 
237 struct rtw_watch_dog_iter_data {
238 	struct rtw_dev *rtwdev;
239 	struct rtw_vif *rtwvif;
240 };
241 
rtw_dynamic_csi_rate(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif)242 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
243 {
244 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
245 	u8 fix_rate_enable = 0;
246 	u8 new_csi_rate_idx;
247 
248 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
249 	    rtwvif->bfee.role != RTW_BFEE_MU)
250 		return;
251 
252 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
253 			      bf_info->cur_csi_rpt_rate,
254 			      fix_rate_enable, &new_csi_rate_idx);
255 
256 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
257 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
258 }
259 
rtw_vif_watch_dog_iter(void * data,struct ieee80211_vif * vif)260 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
261 {
262 	struct rtw_watch_dog_iter_data *iter_data = data;
263 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
264 
265 	if (vif->type == NL80211_IFTYPE_STATION)
266 		if (vif->cfg.assoc)
267 			iter_data->rtwvif = rtwvif;
268 
269 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
270 
271 	rtwvif->stats.tx_unicast = 0;
272 	rtwvif->stats.rx_unicast = 0;
273 	rtwvif->stats.tx_cnt = 0;
274 	rtwvif->stats.rx_cnt = 0;
275 }
276 
rtw_sw_beacon_loss_check(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,int received_beacons)277 static void rtw_sw_beacon_loss_check(struct rtw_dev *rtwdev,
278 				     struct rtw_vif *rtwvif, int received_beacons)
279 {
280 	int watchdog_delay = 2000000 / 1024; /* TU */
281 	int beacon_int, expected_beacons;
282 
283 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_BCN_FILTER) || !rtwvif)
284 		return;
285 
286 	beacon_int = rtwvif_to_vif(rtwvif)->bss_conf.beacon_int;
287 	expected_beacons = DIV_ROUND_UP(watchdog_delay, beacon_int);
288 
289 	rtwdev->beacon_loss = received_beacons < expected_beacons / 2;
290 }
291 
292 /* process TX/RX statistics periodically for hardware,
293  * the information helps hardware to enhance performance
294  */
rtw_watch_dog_work(struct work_struct * work)295 static void rtw_watch_dog_work(struct work_struct *work)
296 {
297 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
298 					      watch_dog_work.work);
299 	struct rtw_traffic_stats *stats = &rtwdev->stats;
300 	struct rtw_watch_dog_iter_data data = {};
301 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
302 	int received_beacons = rtwdev->dm_info.cur_pkt_count.num_bcn_pkt;
303 	u32 tx_unicast_mbps, rx_unicast_mbps;
304 	bool ps_active;
305 
306 	mutex_lock(&rtwdev->mutex);
307 
308 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
309 		goto unlock;
310 
311 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
312 				     RTW_WATCH_DOG_DELAY_TIME);
313 
314 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
315 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
316 	else
317 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
318 
319 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
320 		rtw_coex_wl_status_change_notify(rtwdev, 0);
321 
322 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
323 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
324 		ps_active = true;
325 	else
326 		ps_active = false;
327 
328 	tx_unicast_mbps = stats->tx_unicast >> RTW_TP_SHIFT;
329 	rx_unicast_mbps = stats->rx_unicast >> RTW_TP_SHIFT;
330 
331 	ewma_tp_add(&stats->tx_ewma_tp, tx_unicast_mbps);
332 	ewma_tp_add(&stats->rx_ewma_tp, rx_unicast_mbps);
333 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
334 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
335 
336 	/* reset tx/rx statictics */
337 	stats->tx_unicast = 0;
338 	stats->rx_unicast = 0;
339 	stats->tx_cnt = 0;
340 	stats->rx_cnt = 0;
341 
342 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
343 		goto unlock;
344 
345 	/* make sure BB/RF is working for dynamic mech */
346 	rtw_leave_lps(rtwdev);
347 	rtw_coex_wl_status_check(rtwdev);
348 	rtw_coex_query_bt_hid_list(rtwdev);
349 	rtw_coex_active_query_bt_info(rtwdev);
350 
351 	rtw_phy_dynamic_mechanism(rtwdev);
352 
353 	rtw_hci_dynamic_rx_agg(rtwdev,
354 			       tx_unicast_mbps >= 1 || rx_unicast_mbps >= 1);
355 
356 	data.rtwdev = rtwdev;
357 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
358 	 * to avoid taking local->iflist_mtx mutex
359 	 */
360 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
361 
362 	rtw_sw_beacon_loss_check(rtwdev, data.rtwvif, received_beacons);
363 
364 	/* fw supports only one station associated to enter lps, if there are
365 	 * more than two stations associated to the AP, then we can not enter
366 	 * lps, because fw does not handle the overlapped beacon interval
367 	 *
368 	 * rtw_recalc_lps() iterate vifs and determine if driver can enter
369 	 * ps by vif->type and vif->cfg.ps, all we need to do here is to
370 	 * get that vif and check if device is having traffic more than the
371 	 * threshold.
372 	 */
373 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
374 	    !rtwdev->beacon_loss && !rtwdev->ap_active)
375 		rtw_enter_lps(rtwdev, data.rtwvif->port);
376 
377 	rtwdev->watch_dog_cnt++;
378 
379 unlock:
380 	mutex_unlock(&rtwdev->mutex);
381 }
382 
rtw_c2h_work(struct work_struct * work)383 static void rtw_c2h_work(struct work_struct *work)
384 {
385 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
386 	struct sk_buff *skb, *tmp;
387 
388 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
389 		skb_unlink(skb, &rtwdev->c2h_queue);
390 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
391 		dev_kfree_skb_any(skb);
392 	}
393 }
394 
rtw_ips_work(struct work_struct * work)395 static void rtw_ips_work(struct work_struct *work)
396 {
397 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
398 
399 	mutex_lock(&rtwdev->mutex);
400 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
401 		rtw_enter_ips(rtwdev);
402 	mutex_unlock(&rtwdev->mutex);
403 }
404 
rtw_sta_rc_work(struct work_struct * work)405 static void rtw_sta_rc_work(struct work_struct *work)
406 {
407 	struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
408 					       rc_work);
409 	struct rtw_dev *rtwdev = si->rtwdev;
410 
411 	mutex_lock(&rtwdev->mutex);
412 	rtw_update_sta_info(rtwdev, si, true);
413 	mutex_unlock(&rtwdev->mutex);
414 }
415 
rtw_sta_add(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,struct ieee80211_vif * vif)416 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
417 		struct ieee80211_vif *vif)
418 {
419 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
420 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
421 	int i;
422 
423 	if (vif->type == NL80211_IFTYPE_STATION && !sta->tdls) {
424 		si->mac_id = rtwvif->mac_id;
425 	} else {
426 		si->mac_id = rtw_acquire_macid(rtwdev);
427 		if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
428 			return -ENOSPC;
429 	}
430 
431 	si->rtwdev = rtwdev;
432 	si->sta = sta;
433 	si->vif = vif;
434 	si->init_ra_lv = 1;
435 	ewma_rssi_init(&si->avg_rssi);
436 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
437 		rtw_txq_init(rtwdev, sta->txq[i]);
438 	INIT_WORK(&si->rc_work, rtw_sta_rc_work);
439 
440 	rtw_update_sta_info(rtwdev, si, true);
441 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
442 
443 	rtwdev->sta_cnt++;
444 	rtwdev->beacon_loss = false;
445 #if defined(__linux__)
446 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
447 		sta->addr, si->mac_id);
448 #elif defined(__FreeBSD__)
449 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D joined with macid %d\n",
450 		sta->addr, ":", si->mac_id);
451 #endif
452 
453 	return 0;
454 }
455 
rtw_sta_remove(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,bool fw_exist)456 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
457 		    bool fw_exist)
458 {
459 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
460 	struct ieee80211_vif *vif = si->vif;
461 	int i;
462 
463 	cancel_work_sync(&si->rc_work);
464 
465 	if (vif->type != NL80211_IFTYPE_STATION || sta->tdls)
466 		rtw_release_macid(rtwdev, si->mac_id);
467 	if (fw_exist)
468 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
469 
470 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
471 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
472 
473 	kfree(si->mask);
474 
475 	rtwdev->sta_cnt--;
476 #if defined(__linux__)
477 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
478 		sta->addr, si->mac_id);
479 #elif defined(__FreeBSD__)
480 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D with macid %d left\n",
481 		sta->addr, ":", si->mac_id);
482 #endif
483 }
484 
485 struct rtw_fwcd_hdr {
486 	u32 item;
487 	u32 size;
488 	u32 padding1;
489 	u32 padding2;
490 } __packed;
491 
rtw_fwcd_prep(struct rtw_dev * rtwdev)492 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
493 {
494 	const struct rtw_chip_info *chip = rtwdev->chip;
495 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
496 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
497 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
498 	u8 i;
499 
500 	if (segs) {
501 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
502 
503 		for (i = 0; i < segs->num; i++)
504 			prep_size += segs->segs[i];
505 	}
506 
507 	desc->data = vmalloc(prep_size);
508 	if (!desc->data)
509 		return -ENOMEM;
510 
511 	desc->size = prep_size;
512 	desc->next = desc->data;
513 
514 	return 0;
515 }
516 
rtw_fwcd_next(struct rtw_dev * rtwdev,u32 item,u32 size)517 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
518 {
519 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
520 	struct rtw_fwcd_hdr *hdr;
521 	u8 *next;
522 
523 	if (!desc->data) {
524 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
525 		return NULL;
526 	}
527 
528 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
529 	if (next - desc->data + size > desc->size) {
530 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
531 		return NULL;
532 	}
533 
534 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
535 	hdr->item = item;
536 	hdr->size = size;
537 	hdr->padding1 = 0x01234567;
538 	hdr->padding2 = 0x89abcdef;
539 	desc->next = next + size;
540 
541 	return next;
542 }
543 
rtw_fwcd_dump(struct rtw_dev * rtwdev)544 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
545 {
546 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
547 
548 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
549 
550 	/* Data will be freed after lifetime of device coredump. After calling
551 	 * dev_coredump, data is supposed to be handled by the device coredump
552 	 * framework. Note that a new dump will be discarded if a previous one
553 	 * hasn't been released yet.
554 	 */
555 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
556 }
557 
rtw_fwcd_free(struct rtw_dev * rtwdev,bool free_self)558 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
559 {
560 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
561 
562 	if (free_self) {
563 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
564 		vfree(desc->data);
565 	}
566 
567 	desc->data = NULL;
568 	desc->next = NULL;
569 }
570 
rtw_fw_dump_crash_log(struct rtw_dev * rtwdev)571 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
572 {
573 	u32 size = rtwdev->chip->fw_rxff_size;
574 	u32 *buf;
575 	u8 seq;
576 
577 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
578 	if (!buf)
579 		return -ENOMEM;
580 
581 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
582 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
583 		return -EINVAL;
584 	}
585 
586 	if (GET_FW_DUMP_LEN(buf) == 0) {
587 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
588 		return -EINVAL;
589 	}
590 
591 	seq = GET_FW_DUMP_SEQ(buf);
592 	if (seq > 0) {
593 		rtw_dbg(rtwdev, RTW_DBG_FW,
594 			"fw crash dump's seq is wrong: %d\n", seq);
595 		return -EINVAL;
596 	}
597 
598 	return 0;
599 }
600 
rtw_dump_fw(struct rtw_dev * rtwdev,const u32 ocp_src,u32 size,u32 fwcd_item)601 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
602 		u32 fwcd_item)
603 {
604 	u32 rxff = rtwdev->chip->fw_rxff_size;
605 	u32 dump_size, done_size = 0;
606 	u8 *buf;
607 	int ret;
608 
609 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
610 	if (!buf)
611 		return -ENOMEM;
612 
613 	while (size) {
614 		dump_size = size > rxff ? rxff : size;
615 
616 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
617 					  dump_size);
618 		if (ret) {
619 			rtw_err(rtwdev,
620 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
621 				ocp_src, done_size);
622 			return ret;
623 		}
624 
625 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
626 				       dump_size, (u32 *)(buf + done_size));
627 		if (ret) {
628 			rtw_err(rtwdev,
629 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
630 				ocp_src, done_size);
631 			return ret;
632 		}
633 
634 		size -= dump_size;
635 		done_size += dump_size;
636 	}
637 
638 	return 0;
639 }
640 EXPORT_SYMBOL(rtw_dump_fw);
641 
rtw_dump_reg(struct rtw_dev * rtwdev,const u32 addr,const u32 size)642 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
643 {
644 	u8 *buf;
645 	u32 i;
646 
647 	if (addr & 0x3) {
648 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
649 		return -EINVAL;
650 	}
651 
652 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
653 	if (!buf)
654 		return -ENOMEM;
655 
656 	for (i = 0; i < size; i += 4)
657 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
658 
659 	return 0;
660 }
661 EXPORT_SYMBOL(rtw_dump_reg);
662 
rtw_vif_assoc_changed(struct rtw_vif * rtwvif,struct ieee80211_bss_conf * conf)663 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
664 			   struct ieee80211_bss_conf *conf)
665 {
666 	struct ieee80211_vif *vif = NULL;
667 
668 	if (conf)
669 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
670 
671 	if (conf && vif->cfg.assoc) {
672 		rtwvif->aid = vif->cfg.aid;
673 		rtwvif->net_type = RTW_NET_MGD_LINKED;
674 	} else {
675 		rtwvif->aid = 0;
676 		rtwvif->net_type = RTW_NET_NO_LINK;
677 	}
678 }
679 
rtw_reset_key_iter(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ieee80211_key_conf * key,void * data)680 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
681 			       struct ieee80211_vif *vif,
682 			       struct ieee80211_sta *sta,
683 			       struct ieee80211_key_conf *key,
684 			       void *data)
685 {
686 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
687 	struct rtw_sec_desc *sec = &rtwdev->sec;
688 
689 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
690 }
691 
rtw_reset_sta_iter(void * data,struct ieee80211_sta * sta)692 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
693 {
694 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
695 
696 	if (rtwdev->sta_cnt == 0) {
697 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
698 		return;
699 	}
700 	rtw_sta_remove(rtwdev, sta, false);
701 }
702 
rtw_reset_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)703 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
704 {
705 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
706 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
707 
708 	rtw_bf_disassoc(rtwdev, vif, NULL);
709 	rtw_vif_assoc_changed(rtwvif, NULL);
710 	rtw_txq_cleanup(rtwdev, vif->txq);
711 
712 	rtw_release_macid(rtwdev, rtwvif->mac_id);
713 }
714 
rtw_fw_recovery(struct rtw_dev * rtwdev)715 void rtw_fw_recovery(struct rtw_dev *rtwdev)
716 {
717 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
718 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
719 }
720 EXPORT_SYMBOL(rtw_fw_recovery);
721 
__fw_recovery_work(struct rtw_dev * rtwdev)722 static void __fw_recovery_work(struct rtw_dev *rtwdev)
723 {
724 	int ret = 0;
725 
726 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
727 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
728 
729 	ret = rtw_fwcd_prep(rtwdev);
730 	if (ret)
731 		goto free;
732 	ret = rtw_fw_dump_crash_log(rtwdev);
733 	if (ret)
734 		goto free;
735 	ret = rtw_chip_dump_fw_crash(rtwdev);
736 	if (ret)
737 		goto free;
738 
739 	rtw_fwcd_dump(rtwdev);
740 free:
741 	rtw_fwcd_free(rtwdev, !!ret);
742 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
743 
744 	WARN(1, "firmware crash, start reset and recover\n");
745 
746 	rcu_read_lock();
747 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
748 	rcu_read_unlock();
749 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
750 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
751 	bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
752 	rtw_enter_ips(rtwdev);
753 }
754 
rtw_fw_recovery_work(struct work_struct * work)755 static void rtw_fw_recovery_work(struct work_struct *work)
756 {
757 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
758 					      fw_recovery_work);
759 
760 	mutex_lock(&rtwdev->mutex);
761 	__fw_recovery_work(rtwdev);
762 	mutex_unlock(&rtwdev->mutex);
763 
764 	ieee80211_restart_hw(rtwdev->hw);
765 }
766 
767 struct rtw_txq_ba_iter_data {
768 };
769 
rtw_txq_ba_iter(void * data,struct ieee80211_sta * sta)770 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
771 {
772 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
773 	int ret;
774 	u8 tid;
775 
776 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
777 	while (tid != IEEE80211_NUM_TIDS) {
778 		clear_bit(tid, si->tid_ba);
779 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
780 		if (ret == -EINVAL) {
781 			struct ieee80211_txq *txq;
782 			struct rtw_txq *rtwtxq;
783 
784 			txq = sta->txq[tid];
785 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
786 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
787 		}
788 
789 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
790 	}
791 }
792 
rtw_txq_ba_work(struct work_struct * work)793 static void rtw_txq_ba_work(struct work_struct *work)
794 {
795 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
796 	struct rtw_txq_ba_iter_data data;
797 
798 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
799 }
800 
rtw_set_rx_freq_band(struct rtw_rx_pkt_stat * pkt_stat,u8 channel)801 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
802 {
803 	if (IS_CH_2G_BAND(channel))
804 		pkt_stat->band = NL80211_BAND_2GHZ;
805 	else if (IS_CH_5G_BAND(channel))
806 		pkt_stat->band = NL80211_BAND_5GHZ;
807 	else
808 		return;
809 
810 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
811 }
812 EXPORT_SYMBOL(rtw_set_rx_freq_band);
813 
rtw_set_dtim_period(struct rtw_dev * rtwdev,int dtim_period)814 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
815 {
816 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
817 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
818 }
819 
rtw_update_channel(struct rtw_dev * rtwdev,u8 center_channel,u8 primary_channel,enum rtw_supported_band band,enum rtw_bandwidth bandwidth)820 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
821 			u8 primary_channel, enum rtw_supported_band band,
822 			enum rtw_bandwidth bandwidth)
823 {
824 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
825 	struct rtw_hal *hal = &rtwdev->hal;
826 	u8 *cch_by_bw = hal->cch_by_bw;
827 	u32 center_freq, primary_freq;
828 	enum rtw_sar_bands sar_band;
829 	u8 primary_channel_idx;
830 
831 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
832 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
833 
834 	/* assign the center channel used while 20M bw is selected */
835 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
836 
837 	/* assign the center channel used while current bw is selected */
838 	cch_by_bw[bandwidth] = center_channel;
839 
840 	switch (bandwidth) {
841 	case RTW_CHANNEL_WIDTH_20:
842 	default:
843 		primary_channel_idx = RTW_SC_DONT_CARE;
844 		break;
845 	case RTW_CHANNEL_WIDTH_40:
846 		if (primary_freq > center_freq)
847 			primary_channel_idx = RTW_SC_20_UPPER;
848 		else
849 			primary_channel_idx = RTW_SC_20_LOWER;
850 		break;
851 	case RTW_CHANNEL_WIDTH_80:
852 		if (primary_freq > center_freq) {
853 			if (primary_freq - center_freq == 10)
854 				primary_channel_idx = RTW_SC_20_UPPER;
855 			else
856 				primary_channel_idx = RTW_SC_20_UPMOST;
857 
858 			/* assign the center channel used
859 			 * while 40M bw is selected
860 			 */
861 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
862 		} else {
863 			if (center_freq - primary_freq == 10)
864 				primary_channel_idx = RTW_SC_20_LOWER;
865 			else
866 				primary_channel_idx = RTW_SC_20_LOWEST;
867 
868 			/* assign the center channel used
869 			 * while 40M bw is selected
870 			 */
871 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
872 		}
873 		break;
874 	}
875 
876 	switch (center_channel) {
877 	case 1 ... 14:
878 		sar_band = RTW_SAR_BAND_0;
879 		break;
880 	case 36 ... 64:
881 		sar_band = RTW_SAR_BAND_1;
882 		break;
883 	case 100 ... 144:
884 		sar_band = RTW_SAR_BAND_3;
885 		break;
886 	case 149 ... 177:
887 		sar_band = RTW_SAR_BAND_4;
888 		break;
889 	default:
890 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
891 		sar_band = RTW_SAR_BAND_0;
892 		break;
893 	}
894 
895 	hal->current_primary_channel_index = primary_channel_idx;
896 	hal->current_band_width = bandwidth;
897 	hal->primary_channel = primary_channel;
898 	hal->current_channel = center_channel;
899 	hal->current_band_type = band;
900 	hal->sar_band = sar_band;
901 }
902 
rtw_get_channel_params(struct cfg80211_chan_def * chandef,struct rtw_channel_params * chan_params)903 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
904 			    struct rtw_channel_params *chan_params)
905 {
906 	struct ieee80211_channel *channel = chandef->chan;
907 	enum nl80211_chan_width width = chandef->width;
908 	u32 primary_freq, center_freq;
909 	u8 center_chan;
910 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
911 
912 	center_chan = channel->hw_value;
913 	primary_freq = channel->center_freq;
914 	center_freq = chandef->center_freq1;
915 
916 	switch (width) {
917 	case NL80211_CHAN_WIDTH_20_NOHT:
918 	case NL80211_CHAN_WIDTH_20:
919 		bandwidth = RTW_CHANNEL_WIDTH_20;
920 		break;
921 	case NL80211_CHAN_WIDTH_40:
922 		bandwidth = RTW_CHANNEL_WIDTH_40;
923 		if (primary_freq > center_freq)
924 			center_chan -= 2;
925 		else
926 			center_chan += 2;
927 		break;
928 	case NL80211_CHAN_WIDTH_80:
929 		bandwidth = RTW_CHANNEL_WIDTH_80;
930 		if (primary_freq > center_freq) {
931 			if (primary_freq - center_freq == 10)
932 				center_chan -= 2;
933 			else
934 				center_chan -= 6;
935 		} else {
936 			if (center_freq - primary_freq == 10)
937 				center_chan += 2;
938 			else
939 				center_chan += 6;
940 		}
941 		break;
942 	default:
943 		center_chan = 0;
944 		break;
945 	}
946 
947 	chan_params->center_chan = center_chan;
948 	chan_params->bandwidth = bandwidth;
949 	chan_params->primary_chan = channel->hw_value;
950 }
951 
rtw_set_channel(struct rtw_dev * rtwdev)952 void rtw_set_channel(struct rtw_dev *rtwdev)
953 {
954 	const struct rtw_chip_info *chip = rtwdev->chip;
955 	struct ieee80211_hw *hw = rtwdev->hw;
956 	struct rtw_hal *hal = &rtwdev->hal;
957 	struct rtw_channel_params ch_param;
958 	u8 center_chan, primary_chan, bandwidth, band;
959 
960 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
961 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
962 		return;
963 
964 	center_chan = ch_param.center_chan;
965 	primary_chan = ch_param.primary_chan;
966 	bandwidth = ch_param.bandwidth;
967 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
968 
969 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
970 
971 	if (rtwdev->scan_info.op_chan)
972 		rtw_store_op_chan(rtwdev, true);
973 
974 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
975 			       hal->current_primary_channel_index);
976 
977 	if (hal->current_band_type == RTW_BAND_5G) {
978 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
979 	} else {
980 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
981 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
982 		else
983 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
984 	}
985 
986 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
987 
988 	/* if the channel isn't set for scanning, we will do RF calibration
989 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
990 	 * during scanning on each channel takes too long.
991 	 */
992 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
993 		rtwdev->need_rfk = true;
994 }
995 
rtw_chip_prepare_tx(struct rtw_dev * rtwdev)996 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
997 {
998 	const struct rtw_chip_info *chip = rtwdev->chip;
999 
1000 	if (rtwdev->need_rfk) {
1001 		rtwdev->need_rfk = false;
1002 		chip->ops->phy_calibration(rtwdev);
1003 	}
1004 }
1005 
rtw_vif_write_addr(struct rtw_dev * rtwdev,u32 start,u8 * addr)1006 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; i < ETH_ALEN; i++)
1011 		rtw_write8(rtwdev, start + i, addr[i]);
1012 }
1013 
rtw_vif_port_config(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,u32 config)1014 void rtw_vif_port_config(struct rtw_dev *rtwdev,
1015 			 struct rtw_vif *rtwvif,
1016 			 u32 config)
1017 {
1018 	u32 addr, mask;
1019 
1020 	if (config & PORT_SET_MAC_ADDR) {
1021 		addr = rtwvif->conf->mac_addr.addr;
1022 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
1023 	}
1024 	if (config & PORT_SET_BSSID) {
1025 		addr = rtwvif->conf->bssid.addr;
1026 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
1027 	}
1028 	if (config & PORT_SET_NET_TYPE) {
1029 		addr = rtwvif->conf->net_type.addr;
1030 		mask = rtwvif->conf->net_type.mask;
1031 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
1032 	}
1033 	if (config & PORT_SET_AID) {
1034 		addr = rtwvif->conf->aid.addr;
1035 		mask = rtwvif->conf->aid.mask;
1036 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
1037 	}
1038 	if (config & PORT_SET_BCN_CTRL) {
1039 		addr = rtwvif->conf->bcn_ctrl.addr;
1040 		mask = rtwvif->conf->bcn_ctrl.mask;
1041 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
1042 	}
1043 }
1044 
hw_bw_cap_to_bitamp(u8 bw_cap)1045 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
1046 {
1047 	u8 bw = 0;
1048 
1049 	switch (bw_cap) {
1050 	case EFUSE_HW_CAP_IGNORE:
1051 	case EFUSE_HW_CAP_SUPP_BW80:
1052 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
1053 		fallthrough;
1054 	case EFUSE_HW_CAP_SUPP_BW40:
1055 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
1056 		fallthrough;
1057 	default:
1058 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
1059 		break;
1060 	}
1061 
1062 	return bw;
1063 }
1064 
rtw_hw_config_rf_ant_num(struct rtw_dev * rtwdev,u8 hw_ant_num)1065 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
1066 {
1067 	const struct rtw_chip_info *chip = rtwdev->chip;
1068 	struct rtw_hal *hal = &rtwdev->hal;
1069 
1070 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
1071 	    hw_ant_num >= hal->rf_path_num)
1072 		return;
1073 
1074 	switch (hw_ant_num) {
1075 	case 1:
1076 		hal->rf_type = RF_1T1R;
1077 		hal->rf_path_num = 1;
1078 		if (!chip->fix_rf_phy_num)
1079 			hal->rf_phy_num = hal->rf_path_num;
1080 		hal->antenna_tx = BB_PATH_A;
1081 		hal->antenna_rx = BB_PATH_A;
1082 		break;
1083 	default:
1084 		WARN(1, "invalid hw configuration from efuse\n");
1085 		break;
1086 	}
1087 }
1088 
get_vht_ra_mask(struct ieee80211_sta * sta)1089 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
1090 {
1091 	u64 ra_mask = 0;
1092 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
1093 	u8 vht_mcs_cap;
1094 	int i, nss;
1095 
1096 	/* 4SS, every two bits for MCS7/8/9 */
1097 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
1098 		vht_mcs_cap = mcs_map & 0x3;
1099 		switch (vht_mcs_cap) {
1100 		case 2: /* MCS9 */
1101 			ra_mask |= 0x3ffULL << nss;
1102 			break;
1103 		case 1: /* MCS8 */
1104 			ra_mask |= 0x1ffULL << nss;
1105 			break;
1106 		case 0: /* MCS7 */
1107 			ra_mask |= 0x0ffULL << nss;
1108 			break;
1109 		default:
1110 			break;
1111 		}
1112 	}
1113 
1114 	return ra_mask;
1115 }
1116 
get_rate_id(u8 wireless_set,enum rtw_bandwidth bw_mode,u8 tx_num)1117 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1118 {
1119 	u8 rate_id = 0;
1120 
1121 	switch (wireless_set) {
1122 	case WIRELESS_CCK:
1123 		rate_id = RTW_RATEID_B_20M;
1124 		break;
1125 	case WIRELESS_OFDM:
1126 		rate_id = RTW_RATEID_G;
1127 		break;
1128 	case WIRELESS_CCK | WIRELESS_OFDM:
1129 		rate_id = RTW_RATEID_BG;
1130 		break;
1131 	case WIRELESS_OFDM | WIRELESS_HT:
1132 		if (tx_num == 1)
1133 			rate_id = RTW_RATEID_GN_N1SS;
1134 		else if (tx_num == 2)
1135 			rate_id = RTW_RATEID_GN_N2SS;
1136 		else if (tx_num == 3)
1137 			rate_id = RTW_RATEID_ARFR5_N_3SS;
1138 		break;
1139 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1140 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1141 			if (tx_num == 1)
1142 				rate_id = RTW_RATEID_BGN_40M_1SS;
1143 			else if (tx_num == 2)
1144 				rate_id = RTW_RATEID_BGN_40M_2SS;
1145 			else if (tx_num == 3)
1146 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1147 			else if (tx_num == 4)
1148 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1149 		} else {
1150 			if (tx_num == 1)
1151 				rate_id = RTW_RATEID_BGN_20M_1SS;
1152 			else if (tx_num == 2)
1153 				rate_id = RTW_RATEID_BGN_20M_2SS;
1154 			else if (tx_num == 3)
1155 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1156 			else if (tx_num == 4)
1157 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1158 		}
1159 		break;
1160 	case WIRELESS_OFDM | WIRELESS_VHT:
1161 		if (tx_num == 1)
1162 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1163 		else if (tx_num == 2)
1164 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1165 		else if (tx_num == 3)
1166 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1167 		else if (tx_num == 4)
1168 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1169 		break;
1170 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1171 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1172 			if (tx_num == 1)
1173 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1174 			else if (tx_num == 2)
1175 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1176 			else if (tx_num == 3)
1177 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1178 			else if (tx_num == 4)
1179 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1180 		} else {
1181 			if (tx_num == 1)
1182 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1183 			else if (tx_num == 2)
1184 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1185 			else if (tx_num == 3)
1186 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1187 			else if (tx_num == 4)
1188 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1189 		}
1190 		break;
1191 	default:
1192 		break;
1193 	}
1194 
1195 	return rate_id;
1196 }
1197 
1198 #define RA_MASK_CCK_RATES	0x0000f
1199 #define RA_MASK_OFDM_RATES	0x00ff0
1200 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1201 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1202 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1203 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1204 				 RA_MASK_HT_RATES_2SS | \
1205 				 RA_MASK_HT_RATES_3SS)
1206 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1207 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1208 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1209 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1210 				 RA_MASK_VHT_RATES_2SS | \
1211 				 RA_MASK_VHT_RATES_3SS)
1212 #define RA_MASK_CCK_IN_BG	0x00005
1213 #define RA_MASK_CCK_IN_HT	0x00005
1214 #define RA_MASK_CCK_IN_VHT	0x00005
1215 #define RA_MASK_OFDM_IN_VHT	0x00010
1216 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1217 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1218 
rtw_rate_mask_rssi(struct rtw_sta_info * si,u8 wireless_set)1219 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1220 {
1221 	u8 rssi_level = si->rssi_level;
1222 
1223 	if (wireless_set == WIRELESS_CCK)
1224 		return 0xffffffffffffffffULL;
1225 
1226 	if (rssi_level == 0)
1227 		return 0xffffffffffffffffULL;
1228 	else if (rssi_level == 1)
1229 		return 0xfffffffffffffff0ULL;
1230 	else if (rssi_level == 2)
1231 		return 0xffffffffffffefe0ULL;
1232 	else if (rssi_level == 3)
1233 		return 0xffffffffffffcfc0ULL;
1234 	else if (rssi_level == 4)
1235 		return 0xffffffffffff8f80ULL;
1236 	else
1237 		return 0xffffffffffff0f00ULL;
1238 }
1239 
rtw_rate_mask_recover(u64 ra_mask,u64 ra_mask_bak)1240 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1241 {
1242 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1243 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1244 
1245 	if (ra_mask == 0)
1246 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1247 
1248 	return ra_mask;
1249 }
1250 
rtw_rate_mask_cfg(struct rtw_dev * rtwdev,struct rtw_sta_info * si,u64 ra_mask,bool is_vht_enable)1251 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1252 			     u64 ra_mask, bool is_vht_enable)
1253 {
1254 	struct rtw_hal *hal = &rtwdev->hal;
1255 	const struct cfg80211_bitrate_mask *mask = si->mask;
1256 	u64 cfg_mask = GENMASK_ULL(63, 0);
1257 	u8 band;
1258 
1259 	if (!si->use_cfg_mask)
1260 		return ra_mask;
1261 
1262 	band = hal->current_band_type;
1263 	if (band == RTW_BAND_2G) {
1264 		band = NL80211_BAND_2GHZ;
1265 		cfg_mask = mask->control[band].legacy;
1266 	} else if (band == RTW_BAND_5G) {
1267 		band = NL80211_BAND_5GHZ;
1268 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1269 					   RA_MASK_OFDM_RATES);
1270 	}
1271 
1272 	if (!is_vht_enable) {
1273 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1274 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1275 						    RA_MASK_HT_RATES_1SS);
1276 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1277 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1278 						    RA_MASK_HT_RATES_2SS);
1279 	} else {
1280 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1281 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1282 						    RA_MASK_VHT_RATES_1SS);
1283 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1284 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1285 						    RA_MASK_VHT_RATES_2SS);
1286 	}
1287 
1288 	ra_mask &= cfg_mask;
1289 
1290 	return ra_mask;
1291 }
1292 
rtw_update_sta_info(struct rtw_dev * rtwdev,struct rtw_sta_info * si,bool reset_ra_mask)1293 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1294 			 bool reset_ra_mask)
1295 {
1296 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1297 	struct ieee80211_sta *sta = si->sta;
1298 	struct rtw_efuse *efuse = &rtwdev->efuse;
1299 	struct rtw_hal *hal = &rtwdev->hal;
1300 	u8 wireless_set;
1301 	u8 bw_mode;
1302 	u8 rate_id;
1303 	u8 stbc_en = 0;
1304 	u8 ldpc_en = 0;
1305 	u8 tx_num = 1;
1306 	u64 ra_mask = 0;
1307 	u64 ra_mask_bak = 0;
1308 	bool is_vht_enable = false;
1309 	bool is_support_sgi = false;
1310 
1311 	if (sta->deflink.vht_cap.vht_supported) {
1312 		is_vht_enable = true;
1313 		ra_mask |= get_vht_ra_mask(sta);
1314 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1315 			stbc_en = VHT_STBC_EN;
1316 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1317 			ldpc_en = VHT_LDPC_EN;
1318 	} else if (sta->deflink.ht_cap.ht_supported) {
1319 		ra_mask |= ((u64)sta->deflink.ht_cap.mcs.rx_mask[3] << 36) |
1320 			   ((u64)sta->deflink.ht_cap.mcs.rx_mask[2] << 28) |
1321 			   (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1322 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1323 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1324 			stbc_en = HT_STBC_EN;
1325 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1326 			ldpc_en = HT_LDPC_EN;
1327 	}
1328 
1329 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1330 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1331 	else if (efuse->hw_cap.nss == 2)
1332 		ra_mask &= RA_MASK_VHT_RATES_2SS | RA_MASK_HT_RATES_2SS |
1333 			   RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1334 
1335 	if (hal->current_band_type == RTW_BAND_5G) {
1336 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1337 		ra_mask_bak = ra_mask;
1338 		if (sta->deflink.vht_cap.vht_supported) {
1339 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1340 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1341 		} else if (sta->deflink.ht_cap.ht_supported) {
1342 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1343 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1344 		} else {
1345 			wireless_set = WIRELESS_OFDM;
1346 		}
1347 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1348 	} else if (hal->current_band_type == RTW_BAND_2G) {
1349 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1350 		ra_mask_bak = ra_mask;
1351 		if (sta->deflink.vht_cap.vht_supported) {
1352 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1353 				   RA_MASK_OFDM_IN_VHT;
1354 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1355 				       WIRELESS_HT | WIRELESS_VHT;
1356 		} else if (sta->deflink.ht_cap.ht_supported) {
1357 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1358 				   RA_MASK_OFDM_IN_HT_2G;
1359 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1360 				       WIRELESS_HT;
1361 #if defined(__linux__)
1362 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1363 #elif defined(__FreeBSD__)
1364 		} else if (sta->deflink.supp_rates[NL80211_BAND_2GHZ] <= 0xf) {
1365 #endif
1366 			wireless_set = WIRELESS_CCK;
1367 		} else {
1368 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1369 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1370 		}
1371 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1372 	} else {
1373 		rtw_err(rtwdev, "Unknown band type\n");
1374 		ra_mask_bak = ra_mask;
1375 		wireless_set = 0;
1376 	}
1377 
1378 	switch (sta->deflink.bandwidth) {
1379 	case IEEE80211_STA_RX_BW_80:
1380 		bw_mode = RTW_CHANNEL_WIDTH_80;
1381 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1382 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1383 		break;
1384 	case IEEE80211_STA_RX_BW_40:
1385 		bw_mode = RTW_CHANNEL_WIDTH_40;
1386 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1387 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1388 		break;
1389 	default:
1390 		bw_mode = RTW_CHANNEL_WIDTH_20;
1391 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1392 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1393 		break;
1394 	}
1395 
1396 	if (sta->deflink.vht_cap.vht_supported ||
1397 	    sta->deflink.ht_cap.ht_supported)
1398 		tx_num = efuse->hw_cap.nss;
1399 
1400 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1401 
1402 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1403 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1404 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1405 
1406 	si->bw_mode = bw_mode;
1407 	si->stbc_en = stbc_en;
1408 	si->ldpc_en = ldpc_en;
1409 	si->sgi_enable = is_support_sgi;
1410 	si->vht_enable = is_vht_enable;
1411 	si->ra_mask = ra_mask;
1412 	si->rate_id = rate_id;
1413 
1414 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1415 }
1416 
rtw_wait_firmware_completion(struct rtw_dev * rtwdev)1417 int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1418 {
1419 	const struct rtw_chip_info *chip = rtwdev->chip;
1420 	struct rtw_fw_state *fw;
1421 	int ret = 0;
1422 
1423 	fw = &rtwdev->fw;
1424 	wait_for_completion(&fw->completion);
1425 	if (!fw->firmware)
1426 		ret = -EINVAL;
1427 
1428 	if (chip->wow_fw_name) {
1429 		fw = &rtwdev->wow_fw;
1430 		wait_for_completion(&fw->completion);
1431 		if (!fw->firmware)
1432 			ret = -EINVAL;
1433 	}
1434 
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL(rtw_wait_firmware_completion);
1438 
rtw_update_lps_deep_mode(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1439 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1440 						       struct rtw_fw_state *fw)
1441 {
1442 	const struct rtw_chip_info *chip = rtwdev->chip;
1443 
1444 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1445 	    !fw->feature)
1446 		return LPS_DEEP_MODE_NONE;
1447 
1448 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1449 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1450 		return LPS_DEEP_MODE_PG;
1451 
1452 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1453 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1454 		return LPS_DEEP_MODE_LCLK;
1455 
1456 	return LPS_DEEP_MODE_NONE;
1457 }
1458 
rtw_power_on(struct rtw_dev * rtwdev)1459 int rtw_power_on(struct rtw_dev *rtwdev)
1460 {
1461 	const struct rtw_chip_info *chip = rtwdev->chip;
1462 	struct rtw_fw_state *fw = &rtwdev->fw;
1463 	bool wifi_only;
1464 	int ret;
1465 
1466 	ret = rtw_hci_setup(rtwdev);
1467 	if (ret) {
1468 		rtw_err(rtwdev, "failed to setup hci\n");
1469 		goto err;
1470 	}
1471 
1472 	/* power on MAC before firmware downloaded */
1473 	ret = rtw_mac_power_on(rtwdev);
1474 	if (ret) {
1475 		rtw_err(rtwdev, "failed to power on mac\n");
1476 		goto err;
1477 	}
1478 
1479 	ret = rtw_wait_firmware_completion(rtwdev);
1480 	if (ret) {
1481 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1482 		goto err_off;
1483 	}
1484 
1485 	ret = rtw_download_firmware(rtwdev, fw);
1486 	if (ret) {
1487 		rtw_err(rtwdev, "failed to download firmware\n");
1488 		goto err_off;
1489 	}
1490 
1491 	/* config mac after firmware downloaded */
1492 	ret = rtw_mac_init(rtwdev);
1493 	if (ret) {
1494 		rtw_err(rtwdev, "failed to configure mac\n");
1495 		goto err_off;
1496 	}
1497 
1498 	chip->ops->phy_set_param(rtwdev);
1499 
1500 	ret = rtw_mac_postinit(rtwdev);
1501 	if (ret) {
1502 		rtw_err(rtwdev, "failed to configure mac in postinit\n");
1503 		goto err_off;
1504 	}
1505 
1506 	ret = rtw_hci_start(rtwdev);
1507 	if (ret) {
1508 		rtw_err(rtwdev, "failed to start hci\n");
1509 		goto err_off;
1510 	}
1511 
1512 	/* send H2C after HCI has started */
1513 	rtw_fw_send_general_info(rtwdev);
1514 	rtw_fw_send_phydm_info(rtwdev);
1515 
1516 	wifi_only = !rtwdev->efuse.btcoex;
1517 	rtw_coex_power_on_setting(rtwdev);
1518 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1519 
1520 	return 0;
1521 
1522 err_off:
1523 	rtw_mac_power_off(rtwdev);
1524 
1525 err:
1526 	return ret;
1527 }
1528 EXPORT_SYMBOL(rtw_power_on);
1529 
rtw_core_fw_scan_notify(struct rtw_dev * rtwdev,bool start)1530 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1531 {
1532 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1533 		return;
1534 
1535 	if (start) {
1536 		rtw_fw_scan_notify(rtwdev, true);
1537 	} else {
1538 		reinit_completion(&rtwdev->fw_scan_density);
1539 		rtw_fw_scan_notify(rtwdev, false);
1540 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1541 						 SCAN_NOTIFY_TIMEOUT))
1542 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1543 	}
1544 }
1545 
rtw_core_scan_start(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,const u8 * mac_addr,bool hw_scan)1546 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1547 			 const u8 *mac_addr, bool hw_scan)
1548 {
1549 	u32 config = 0;
1550 	int ret = 0;
1551 
1552 	rtw_leave_lps(rtwdev);
1553 
1554 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1555 		ret = rtw_leave_ips(rtwdev);
1556 		if (ret) {
1557 			rtw_err(rtwdev, "failed to leave idle state\n");
1558 			return;
1559 		}
1560 	}
1561 
1562 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1563 	config |= PORT_SET_MAC_ADDR;
1564 	rtw_vif_port_config(rtwdev, rtwvif, config);
1565 
1566 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1567 	rtw_core_fw_scan_notify(rtwdev, true);
1568 
1569 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1570 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1571 }
1572 
rtw_core_scan_complete(struct rtw_dev * rtwdev,struct ieee80211_vif * vif,bool hw_scan)1573 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1574 			    bool hw_scan)
1575 {
1576 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1577 	u32 config = 0;
1578 
1579 	if (!rtwvif)
1580 		return;
1581 
1582 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1583 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1584 
1585 	rtw_core_fw_scan_notify(rtwdev, false);
1586 
1587 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1588 	config |= PORT_SET_MAC_ADDR;
1589 	rtw_vif_port_config(rtwdev, rtwvif, config);
1590 
1591 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1592 
1593 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1594 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1595 }
1596 
rtw_core_start(struct rtw_dev * rtwdev)1597 int rtw_core_start(struct rtw_dev *rtwdev)
1598 {
1599 	int ret;
1600 
1601 	ret = rtwdev->chip->ops->power_on(rtwdev);
1602 	if (ret)
1603 		return ret;
1604 
1605 	rtw_sec_enable_sec_engine(rtwdev);
1606 
1607 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1608 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1609 
1610 	/* rcr reset after powered on */
1611 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1612 
1613 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1614 				     RTW_WATCH_DOG_DELAY_TIME);
1615 
1616 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1617 
1618 	return 0;
1619 }
1620 
rtw_power_off(struct rtw_dev * rtwdev)1621 void rtw_power_off(struct rtw_dev *rtwdev)
1622 {
1623 	rtw_hci_stop(rtwdev);
1624 	rtw_coex_power_off_setting(rtwdev);
1625 	rtw_mac_power_off(rtwdev);
1626 }
1627 EXPORT_SYMBOL(rtw_power_off);
1628 
rtw_core_stop(struct rtw_dev * rtwdev)1629 void rtw_core_stop(struct rtw_dev *rtwdev)
1630 {
1631 	struct rtw_coex *coex = &rtwdev->coex;
1632 
1633 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1634 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1635 
1636 	mutex_unlock(&rtwdev->mutex);
1637 
1638 	cancel_work_sync(&rtwdev->c2h_work);
1639 	cancel_work_sync(&rtwdev->update_beacon_work);
1640 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1641 	cancel_delayed_work_sync(&coex->bt_relink_work);
1642 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1643 	cancel_delayed_work_sync(&coex->defreeze_work);
1644 	cancel_delayed_work_sync(&coex->wl_remain_work);
1645 	cancel_delayed_work_sync(&coex->bt_remain_work);
1646 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1647 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1648 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1649 
1650 	mutex_lock(&rtwdev->mutex);
1651 
1652 	rtwdev->chip->ops->power_off(rtwdev);
1653 }
1654 
rtw_init_ht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_ht_cap * ht_cap)1655 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1656 			    struct ieee80211_sta_ht_cap *ht_cap)
1657 {
1658 	const struct rtw_chip_info *chip = rtwdev->chip;
1659 	struct rtw_efuse *efuse = &rtwdev->efuse;
1660 	int i;
1661 
1662 	ht_cap->ht_supported = true;
1663 	ht_cap->cap = 0;
1664 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1665 			IEEE80211_HT_CAP_MAX_AMSDU |
1666 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1667 
1668 	if (rtw_chip_has_rx_ldpc(rtwdev))
1669 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1670 	if (rtw_chip_has_tx_stbc(rtwdev))
1671 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1672 
1673 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1674 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1675 				IEEE80211_HT_CAP_DSSSCCK40 |
1676 				IEEE80211_HT_CAP_SGI_40;
1677 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1678 	ht_cap->ampdu_density = chip->ampdu_density;
1679 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1680 
1681 	for (i = 0; i < efuse->hw_cap.nss; i++)
1682 		ht_cap->mcs.rx_mask[i] = 0xFF;
1683 	ht_cap->mcs.rx_mask[4] = 0x01;
1684 	ht_cap->mcs.rx_highest = cpu_to_le16(150 * efuse->hw_cap.nss);
1685 }
1686 
rtw_init_vht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_vht_cap * vht_cap)1687 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1688 			     struct ieee80211_sta_vht_cap *vht_cap)
1689 {
1690 	struct rtw_efuse *efuse = &rtwdev->efuse;
1691 	u16 mcs_map = 0;
1692 	__le16 highest;
1693 	int i;
1694 
1695 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1696 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1697 		return;
1698 
1699 	vht_cap->vht_supported = true;
1700 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1701 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1702 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1703 		       IEEE80211_VHT_CAP_HTC_VHT |
1704 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1705 		       0;
1706 	if (rtwdev->hal.rf_path_num > 1)
1707 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1708 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1709 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1710 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1711 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1712 
1713 	if (rtw_chip_has_rx_ldpc(rtwdev))
1714 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1715 
1716 	for (i = 0; i < 8; i++) {
1717 		if (i < efuse->hw_cap.nss)
1718 			mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
1719 		else
1720 			mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
1721 	}
1722 
1723 	highest = cpu_to_le16(390 * efuse->hw_cap.nss);
1724 
1725 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1726 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1727 	vht_cap->vht_mcs.rx_highest = highest;
1728 	vht_cap->vht_mcs.tx_highest = highest;
1729 }
1730 
rtw_get_max_scan_ie_len(struct rtw_dev * rtwdev)1731 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1732 {
1733 	u16 len;
1734 
1735 	len = rtwdev->chip->max_scan_ie_len;
1736 
1737 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1738 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1739 		len = IEEE80211_MAX_DATA_LEN;
1740 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1741 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1742 
1743 	return len;
1744 }
1745 
rtw_set_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1746 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1747 				   const struct rtw_chip_info *chip)
1748 {
1749 	struct rtw_dev *rtwdev = hw->priv;
1750 	struct ieee80211_supported_band *sband;
1751 
1752 	if (chip->band & RTW_BAND_2G) {
1753 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1754 		if (!sband)
1755 			goto err_out;
1756 #if defined(__linux__)
1757 		if (chip->ht_supported)
1758 #elif defined(__FreeBSD__)
1759 		if (rtw_ht_support && chip->ht_supported)
1760 #endif
1761 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1762 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1763 	}
1764 
1765 	if (chip->band & RTW_BAND_5G) {
1766 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1767 		if (!sband)
1768 			goto err_out;
1769 #if defined(__linux__)
1770 		if (chip->ht_supported)
1771 #elif defined(__FreeBSD__)
1772 		if (rtw_ht_support && chip->ht_supported)
1773 #endif
1774 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1775 #if defined(__linux__)
1776 		if (chip->vht_supported)
1777 #elif defined(__FreeBSD__)
1778 		if (rtw_vht_support && chip->vht_supported)
1779 #endif
1780 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1781 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1782 	}
1783 
1784 	return;
1785 
1786 err_out:
1787 	rtw_err(rtwdev, "failed to set supported band\n");
1788 }
1789 
rtw_unset_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1790 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1791 				     const struct rtw_chip_info *chip)
1792 {
1793 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1794 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1795 }
1796 
rtw_vif_smps_iter(void * data,u8 * mac,struct ieee80211_vif * vif)1797 static void rtw_vif_smps_iter(void *data, u8 *mac,
1798 			      struct ieee80211_vif *vif)
1799 {
1800 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1801 
1802 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1803 		return;
1804 
1805 	if (rtwdev->hal.txrx_1ss)
1806 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1807 	else
1808 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1809 }
1810 
rtw_set_txrx_1ss(struct rtw_dev * rtwdev,bool txrx_1ss)1811 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1812 {
1813 	const struct rtw_chip_info *chip = rtwdev->chip;
1814 	struct rtw_hal *hal = &rtwdev->hal;
1815 
1816 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1817 		return;
1818 
1819 	rtwdev->hal.txrx_1ss = txrx_1ss;
1820 	if (txrx_1ss)
1821 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1822 	else
1823 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1824 					    hal->antenna_rx, false);
1825 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1826 }
1827 
__update_firmware_feature(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1828 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1829 				      struct rtw_fw_state *fw)
1830 {
1831 	u32 feature;
1832 	const struct rtw_fw_hdr *fw_hdr =
1833 				(const struct rtw_fw_hdr *)fw->firmware->data;
1834 
1835 	feature = le32_to_cpu(fw_hdr->feature);
1836 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1837 
1838 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1839 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1840 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1841 }
1842 
__update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1843 static void __update_firmware_info(struct rtw_dev *rtwdev,
1844 				   struct rtw_fw_state *fw)
1845 {
1846 	const struct rtw_fw_hdr *fw_hdr =
1847 				(const struct rtw_fw_hdr *)fw->firmware->data;
1848 
1849 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1850 	fw->version = le16_to_cpu(fw_hdr->version);
1851 	fw->sub_version = fw_hdr->subversion;
1852 	fw->sub_index = fw_hdr->subindex;
1853 
1854 	__update_firmware_feature(rtwdev, fw);
1855 }
1856 
__update_firmware_info_legacy(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1857 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1858 					  struct rtw_fw_state *fw)
1859 {
1860 	struct rtw_fw_hdr_legacy *legacy =
1861 #if defined(__linux__)
1862 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1863 #elif defined(__FreeBSD__)
1864 	    __DECONST(struct rtw_fw_hdr_legacy *, fw->firmware->data);
1865 #endif
1866 
1867 	fw->h2c_version = 0;
1868 	fw->version = le16_to_cpu(legacy->version);
1869 	fw->sub_version = legacy->subversion1;
1870 	fw->sub_index = legacy->subversion2;
1871 }
1872 
update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1873 static void update_firmware_info(struct rtw_dev *rtwdev,
1874 				 struct rtw_fw_state *fw)
1875 {
1876 	if (rtw_chip_wcpu_8051(rtwdev))
1877 		__update_firmware_info_legacy(rtwdev, fw);
1878 	else
1879 		__update_firmware_info(rtwdev, fw);
1880 }
1881 
rtw_load_firmware_cb(const struct firmware * firmware,void * context)1882 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1883 {
1884 	struct rtw_fw_state *fw = context;
1885 	struct rtw_dev *rtwdev = fw->rtwdev;
1886 
1887 	if (!firmware || !firmware->data) {
1888 		rtw_err(rtwdev, "failed to request firmware\n");
1889 		complete_all(&fw->completion);
1890 		return;
1891 	}
1892 
1893 	fw->firmware = firmware;
1894 	update_firmware_info(rtwdev, fw);
1895 	complete_all(&fw->completion);
1896 
1897 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1898 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1899 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1900 }
1901 
rtw_load_firmware(struct rtw_dev * rtwdev,enum rtw_fw_type type)1902 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1903 {
1904 	const char *fw_name;
1905 	struct rtw_fw_state *fw;
1906 	int ret;
1907 
1908 	switch (type) {
1909 	case RTW_WOWLAN_FW:
1910 		fw = &rtwdev->wow_fw;
1911 		fw_name = rtwdev->chip->wow_fw_name;
1912 		break;
1913 
1914 	case RTW_NORMAL_FW:
1915 		fw = &rtwdev->fw;
1916 		fw_name = rtwdev->chip->fw_name;
1917 		break;
1918 
1919 	default:
1920 		rtw_warn(rtwdev, "unsupported firmware type\n");
1921 		return -ENOENT;
1922 	}
1923 
1924 	fw->type = type;
1925 	fw->rtwdev = rtwdev;
1926 	init_completion(&fw->completion);
1927 
1928 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1929 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1930 	if (ret) {
1931 		rtw_err(rtwdev, "failed to async firmware request\n");
1932 		return ret;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
rtw_chip_parameter_setup(struct rtw_dev * rtwdev)1938 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1939 {
1940 	const struct rtw_chip_info *chip = rtwdev->chip;
1941 	struct rtw_hal *hal = &rtwdev->hal;
1942 	struct rtw_efuse *efuse = &rtwdev->efuse;
1943 
1944 	switch (rtw_hci_type(rtwdev)) {
1945 	case RTW_HCI_TYPE_PCIE:
1946 		rtwdev->hci.rpwm_addr = 0x03d9;
1947 		rtwdev->hci.cpwm_addr = 0x03da;
1948 		break;
1949 	case RTW_HCI_TYPE_SDIO:
1950 		rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1951 		rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1952 		break;
1953 	case RTW_HCI_TYPE_USB:
1954 		rtwdev->hci.rpwm_addr = 0xfe58;
1955 		rtwdev->hci.cpwm_addr = 0xfe57;
1956 		break;
1957 	default:
1958 		rtw_err(rtwdev, "unsupported hci type\n");
1959 		return -EINVAL;
1960 	}
1961 
1962 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1963 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1964 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1965 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1966 		hal->rf_type = RF_2T2R;
1967 		hal->rf_path_num = 2;
1968 		hal->antenna_tx = BB_PATH_AB;
1969 		hal->antenna_rx = BB_PATH_AB;
1970 	} else {
1971 		hal->rf_type = RF_1T1R;
1972 		hal->rf_path_num = 1;
1973 		hal->antenna_tx = BB_PATH_A;
1974 		hal->antenna_rx = BB_PATH_A;
1975 	}
1976 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1977 			  hal->rf_path_num;
1978 
1979 	efuse->physical_size = chip->phy_efuse_size;
1980 	efuse->logical_size = chip->log_efuse_size;
1981 	efuse->protect_size = chip->ptct_efuse_size;
1982 
1983 	/* default use ack */
1984 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1985 
1986 	hal->bfee_sts_cap = 3;
1987 
1988 	return 0;
1989 }
1990 
rtw_chip_efuse_enable(struct rtw_dev * rtwdev)1991 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1992 {
1993 	struct rtw_fw_state *fw = &rtwdev->fw;
1994 	int ret;
1995 
1996 	ret = rtw_hci_setup(rtwdev);
1997 	if (ret) {
1998 		rtw_err(rtwdev, "failed to setup hci\n");
1999 		goto err;
2000 	}
2001 
2002 	ret = rtw_mac_power_on(rtwdev);
2003 	if (ret) {
2004 		rtw_err(rtwdev, "failed to power on mac\n");
2005 		goto err;
2006 	}
2007 
2008 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
2009 
2010 	wait_for_completion(&fw->completion);
2011 	if (!fw->firmware) {
2012 		ret = -EINVAL;
2013 		rtw_err(rtwdev, "failed to load firmware\n");
2014 		goto err;
2015 	}
2016 
2017 	ret = rtw_download_firmware(rtwdev, fw);
2018 	if (ret) {
2019 		rtw_err(rtwdev, "failed to download firmware\n");
2020 		goto err_off;
2021 	}
2022 
2023 	return 0;
2024 
2025 err_off:
2026 	rtw_mac_power_off(rtwdev);
2027 
2028 err:
2029 	return ret;
2030 }
2031 
rtw_dump_hw_feature(struct rtw_dev * rtwdev)2032 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
2033 {
2034 	struct rtw_efuse *efuse = &rtwdev->efuse;
2035 	u8 hw_feature[HW_FEATURE_LEN];
2036 	u8 id;
2037 	u8 bw;
2038 	int i;
2039 
2040 	if (!rtwdev->chip->hw_feature_report)
2041 		return 0;
2042 
2043 	id = rtw_read8(rtwdev, REG_C2HEVT);
2044 	if (id != C2H_HW_FEATURE_REPORT) {
2045 		rtw_err(rtwdev, "failed to read hw feature report\n");
2046 		return -EBUSY;
2047 	}
2048 
2049 	for (i = 0; i < HW_FEATURE_LEN; i++)
2050 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
2051 
2052 	rtw_write8(rtwdev, REG_C2HEVT, 0);
2053 
2054 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
2055 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
2056 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
2057 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
2058 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
2059 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
2060 
2061 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
2062 
2063 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
2064 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
2065 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
2066 
2067 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
2068 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
2069 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
2070 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
2071 
2072 	return 0;
2073 }
2074 
rtw_chip_efuse_disable(struct rtw_dev * rtwdev)2075 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
2076 {
2077 	rtw_hci_stop(rtwdev);
2078 	rtw_mac_power_off(rtwdev);
2079 }
2080 
rtw_chip_efuse_info_setup(struct rtw_dev * rtwdev)2081 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
2082 {
2083 	struct rtw_efuse *efuse = &rtwdev->efuse;
2084 	int ret;
2085 
2086 	mutex_lock(&rtwdev->mutex);
2087 
2088 	/* power on mac to read efuse */
2089 	ret = rtw_chip_efuse_enable(rtwdev);
2090 	if (ret)
2091 		goto out_unlock;
2092 
2093 	ret = rtw_parse_efuse_map(rtwdev);
2094 	if (ret)
2095 		goto out_disable;
2096 
2097 	ret = rtw_dump_hw_feature(rtwdev);
2098 	if (ret)
2099 		goto out_disable;
2100 
2101 	ret = rtw_check_supported_rfe(rtwdev);
2102 	if (ret)
2103 		goto out_disable;
2104 
2105 	if (efuse->crystal_cap == 0xff)
2106 		efuse->crystal_cap = 0;
2107 	if (efuse->pa_type_2g == 0xff)
2108 		efuse->pa_type_2g = 0;
2109 	if (efuse->pa_type_5g == 0xff)
2110 		efuse->pa_type_5g = 0;
2111 	if (efuse->lna_type_2g == 0xff)
2112 		efuse->lna_type_2g = 0;
2113 	if (efuse->lna_type_5g == 0xff)
2114 		efuse->lna_type_5g = 0;
2115 	if (efuse->channel_plan == 0xff)
2116 		efuse->channel_plan = 0x7f;
2117 	if (efuse->rf_board_option == 0xff)
2118 		efuse->rf_board_option = 0;
2119 	if (efuse->bt_setting & BIT(0))
2120 		efuse->share_ant = true;
2121 	if (efuse->regd == 0xff)
2122 		efuse->regd = 0;
2123 	if (efuse->tx_bb_swing_setting_2g == 0xff)
2124 		efuse->tx_bb_swing_setting_2g = 0;
2125 	if (efuse->tx_bb_swing_setting_5g == 0xff)
2126 		efuse->tx_bb_swing_setting_5g = 0;
2127 
2128 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2129 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2130 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2131 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2132 	efuse->ext_lna_5g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2133 
2134 	if (!is_valid_ether_addr(efuse->addr)) {
2135 		eth_random_addr(efuse->addr);
2136 		dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2137 	}
2138 
2139 out_disable:
2140 	rtw_chip_efuse_disable(rtwdev);
2141 
2142 out_unlock:
2143 	mutex_unlock(&rtwdev->mutex);
2144 	return ret;
2145 }
2146 
rtw_chip_board_info_setup(struct rtw_dev * rtwdev)2147 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2148 {
2149 	struct rtw_hal *hal = &rtwdev->hal;
2150 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2151 
2152 	if (!rfe_def)
2153 		return -ENODEV;
2154 
2155 	rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2156 
2157 	rtw_phy_init_tx_power(rtwdev);
2158 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2159 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2160 	rtw_phy_tx_power_by_rate_config(hal);
2161 	rtw_phy_tx_power_limit_config(hal);
2162 
2163 	return 0;
2164 }
2165 
rtw_chip_info_setup(struct rtw_dev * rtwdev)2166 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2167 {
2168 	int ret;
2169 
2170 	ret = rtw_chip_parameter_setup(rtwdev);
2171 	if (ret) {
2172 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2173 		goto err_out;
2174 	}
2175 
2176 	ret = rtw_chip_efuse_info_setup(rtwdev);
2177 	if (ret) {
2178 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2179 		goto err_out;
2180 	}
2181 
2182 	ret = rtw_chip_board_info_setup(rtwdev);
2183 	if (ret) {
2184 		rtw_err(rtwdev, "failed to setup chip board info\n");
2185 		goto err_out;
2186 	}
2187 
2188 	return 0;
2189 
2190 err_out:
2191 	return ret;
2192 }
2193 EXPORT_SYMBOL(rtw_chip_info_setup);
2194 
rtw_stats_init(struct rtw_dev * rtwdev)2195 static void rtw_stats_init(struct rtw_dev *rtwdev)
2196 {
2197 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2198 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2199 	int i;
2200 
2201 	ewma_tp_init(&stats->tx_ewma_tp);
2202 	ewma_tp_init(&stats->rx_ewma_tp);
2203 
2204 	for (i = 0; i < RTW_EVM_NUM; i++)
2205 		ewma_evm_init(&dm_info->ewma_evm[i]);
2206 	for (i = 0; i < RTW_SNR_NUM; i++)
2207 		ewma_snr_init(&dm_info->ewma_snr[i]);
2208 }
2209 
rtw_core_init(struct rtw_dev * rtwdev)2210 int rtw_core_init(struct rtw_dev *rtwdev)
2211 {
2212 	const struct rtw_chip_info *chip = rtwdev->chip;
2213 	struct rtw_coex *coex = &rtwdev->coex;
2214 	int ret;
2215 
2216 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2217 	INIT_LIST_HEAD(&rtwdev->txqs);
2218 
2219 	timer_setup(&rtwdev->tx_report.purge_timer,
2220 		    rtw_tx_report_purge_timer, 0);
2221 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2222 	if (!rtwdev->tx_wq) {
2223 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2224 		return -ENOMEM;
2225 	}
2226 
2227 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2228 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2229 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2230 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2231 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2232 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2233 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2234 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2235 			  rtw_coex_bt_multi_link_remain_work);
2236 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2237 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2238 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2239 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2240 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2241 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2242 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2243 	skb_queue_head_init(&rtwdev->c2h_queue);
2244 	skb_queue_head_init(&rtwdev->coex.queue);
2245 	skb_queue_head_init(&rtwdev->tx_report.queue);
2246 
2247 	spin_lock_init(&rtwdev->txq_lock);
2248 	spin_lock_init(&rtwdev->tx_report.q_lock);
2249 
2250 	mutex_init(&rtwdev->mutex);
2251 	mutex_init(&rtwdev->hal.tx_power_mutex);
2252 
2253 	init_waitqueue_head(&rtwdev->coex.wait);
2254 	init_completion(&rtwdev->lps_leave_check);
2255 	init_completion(&rtwdev->fw_scan_density);
2256 
2257 	rtwdev->sec.total_cam_num = 32;
2258 	rtwdev->hal.current_channel = 1;
2259 	rtwdev->dm_info.fix_rate = U8_MAX;
2260 
2261 	rtw_stats_init(rtwdev);
2262 
2263 	/* default rx filter setting */
2264 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2265 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2266 			  BIT_AB | BIT_AM | BIT_APM;
2267 
2268 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2269 	if (ret) {
2270 		rtw_warn(rtwdev, "no firmware loaded\n");
2271 		goto out;
2272 	}
2273 
2274 	if (chip->wow_fw_name) {
2275 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2276 		if (ret) {
2277 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2278 			wait_for_completion(&rtwdev->fw.completion);
2279 			if (rtwdev->fw.firmware)
2280 				release_firmware(rtwdev->fw.firmware);
2281 			goto out;
2282 		}
2283 	}
2284 
2285 #if defined(__FreeBSD__)
2286 	rtw_wait_firmware_completion(rtwdev);
2287 #endif
2288 
2289 	return 0;
2290 
2291 out:
2292 	destroy_workqueue(rtwdev->tx_wq);
2293 	return ret;
2294 }
2295 EXPORT_SYMBOL(rtw_core_init);
2296 
rtw_core_deinit(struct rtw_dev * rtwdev)2297 void rtw_core_deinit(struct rtw_dev *rtwdev)
2298 {
2299 	struct rtw_fw_state *fw = &rtwdev->fw;
2300 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2301 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2302 	unsigned long flags;
2303 
2304 	rtw_wait_firmware_completion(rtwdev);
2305 
2306 	if (fw->firmware)
2307 		release_firmware(fw->firmware);
2308 
2309 	if (wow_fw->firmware)
2310 		release_firmware(wow_fw->firmware);
2311 
2312 	destroy_workqueue(rtwdev->tx_wq);
2313 	timer_delete_sync(&rtwdev->tx_report.purge_timer);
2314 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2315 	skb_queue_purge(&rtwdev->tx_report.queue);
2316 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2317 	skb_queue_purge(&rtwdev->coex.queue);
2318 	skb_queue_purge(&rtwdev->c2h_queue);
2319 
2320 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2321 				 build_list) {
2322 		list_del(&rsvd_pkt->build_list);
2323 		kfree(rsvd_pkt);
2324 	}
2325 
2326 	mutex_destroy(&rtwdev->mutex);
2327 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2328 }
2329 EXPORT_SYMBOL(rtw_core_deinit);
2330 
rtw_register_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2331 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2332 {
2333 	struct rtw_hal *hal = &rtwdev->hal;
2334 	int max_tx_headroom = 0;
2335 	int ret;
2336 
2337 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2338 
2339 	if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2340 		max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2341 
2342 	hw->extra_tx_headroom = max_tx_headroom;
2343 	hw->queues = IEEE80211_NUM_ACS;
2344 	hw->txq_data_size = sizeof(struct rtw_txq);
2345 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2346 	hw->vif_data_size = sizeof(struct rtw_vif);
2347 
2348 	ieee80211_hw_set(hw, SIGNAL_DBM);
2349 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2350 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2351 	ieee80211_hw_set(hw, MFP_CAPABLE);
2352 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2353 	ieee80211_hw_set(hw, SUPPORTS_PS);
2354 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2355 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2356 	if (rtwdev->chip->amsdu_in_ampdu)
2357 		ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2358 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2359 	ieee80211_hw_set(hw, TX_AMSDU);
2360 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2361 
2362 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2363 				     BIT(NL80211_IFTYPE_AP) |
2364 				     BIT(NL80211_IFTYPE_ADHOC);
2365 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2366 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2367 
2368 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2369 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2370 
2371 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2372 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2373 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2374 
2375 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2376 		hw->wiphy->iface_combinations = rtw_iface_combs;
2377 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2378 	}
2379 
2380 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2381 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2382 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2383 
2384 #ifdef CONFIG_PM
2385 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2386 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2387 #endif
2388 	rtw_set_supported_band(hw, rtwdev->chip);
2389 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2390 
2391 	hw->wiphy->sar_capa = &rtw_sar_capa;
2392 
2393 	ret = rtw_regd_init(rtwdev);
2394 	if (ret) {
2395 		rtw_err(rtwdev, "failed to init regd\n");
2396 		return ret;
2397 	}
2398 
2399 	rtw_led_init(rtwdev);
2400 
2401 	ret = ieee80211_register_hw(hw);
2402 	if (ret) {
2403 		rtw_err(rtwdev, "failed to register hw\n");
2404 		goto led_deinit;
2405 	}
2406 
2407 	ret = rtw_regd_hint(rtwdev);
2408 	if (ret) {
2409 		rtw_err(rtwdev, "failed to hint regd\n");
2410 		goto led_deinit;
2411 	}
2412 
2413 	rtw_debugfs_init(rtwdev);
2414 
2415 	rtwdev->bf_info.bfer_mu_cnt = 0;
2416 	rtwdev->bf_info.bfer_su_cnt = 0;
2417 
2418 	return 0;
2419 
2420 led_deinit:
2421 	rtw_led_deinit(rtwdev);
2422 	return ret;
2423 }
2424 EXPORT_SYMBOL(rtw_register_hw);
2425 
rtw_unregister_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2426 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2427 {
2428 	const struct rtw_chip_info *chip = rtwdev->chip;
2429 
2430 	ieee80211_unregister_hw(hw);
2431 	rtw_unset_supported_band(hw, chip);
2432 	rtw_debugfs_deinit(rtwdev);
2433 	rtw_led_deinit(rtwdev);
2434 }
2435 EXPORT_SYMBOL(rtw_unregister_hw);
2436 
2437 static
rtw_swap_reg_nbytes(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2,u8 nbytes)2438 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2439 			 const struct rtw_hw_reg *reg2, u8 nbytes)
2440 {
2441 	u8 i;
2442 
2443 	for (i = 0; i < nbytes; i++) {
2444 		u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2445 		u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2446 
2447 		rtw_write8(rtwdev, reg1->addr + i, v2);
2448 		rtw_write8(rtwdev, reg2->addr + i, v1);
2449 	}
2450 }
2451 
2452 static
rtw_swap_reg_mask(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2)2453 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2454 		       const struct rtw_hw_reg *reg2)
2455 {
2456 	u32 v1, v2;
2457 
2458 	v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2459 	v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2460 	rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2461 	rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2462 }
2463 
2464 struct rtw_iter_port_switch_data {
2465 	struct rtw_dev *rtwdev;
2466 	struct rtw_vif *rtwvif_ap;
2467 };
2468 
rtw_port_switch_iter(void * data,struct ieee80211_vif * vif)2469 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2470 {
2471 	struct rtw_iter_port_switch_data *iter_data = data;
2472 	struct rtw_dev *rtwdev = iter_data->rtwdev;
2473 	struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2474 	struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2475 	const struct rtw_hw_reg *reg1, *reg2;
2476 
2477 	if (rtwvif_target->port != RTW_PORT_0)
2478 		return;
2479 
2480 	rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2481 		rtwvif_ap->port, rtwvif_target->port);
2482 
2483 	/* Leave LPS so the value swapped are not in PS mode */
2484 	rtw_leave_lps(rtwdev);
2485 
2486 	reg1 = &rtwvif_ap->conf->net_type;
2487 	reg2 = &rtwvif_target->conf->net_type;
2488 	rtw_swap_reg_mask(rtwdev, reg1, reg2);
2489 
2490 	reg1 = &rtwvif_ap->conf->mac_addr;
2491 	reg2 = &rtwvif_target->conf->mac_addr;
2492 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2493 
2494 	reg1 = &rtwvif_ap->conf->bssid;
2495 	reg2 = &rtwvif_target->conf->bssid;
2496 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2497 
2498 	reg1 = &rtwvif_ap->conf->bcn_ctrl;
2499 	reg2 = &rtwvif_target->conf->bcn_ctrl;
2500 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2501 
2502 	swap(rtwvif_target->port, rtwvif_ap->port);
2503 	swap(rtwvif_target->conf, rtwvif_ap->conf);
2504 
2505 	rtw_fw_default_port(rtwdev, rtwvif_target);
2506 }
2507 
rtw_core_port_switch(struct rtw_dev * rtwdev,struct ieee80211_vif * vif)2508 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2509 {
2510 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2511 	struct rtw_iter_port_switch_data iter_data;
2512 
2513 	if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2514 		return;
2515 
2516 	iter_data.rtwdev = rtwdev;
2517 	iter_data.rtwvif_ap = rtwvif;
2518 	rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2519 }
2520 
rtw_check_sta_active_iter(void * data,struct ieee80211_vif * vif)2521 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2522 {
2523 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2524 	bool *active = data;
2525 
2526 	if (*active)
2527 		return;
2528 
2529 	if (vif->type != NL80211_IFTYPE_STATION)
2530 		return;
2531 
2532 	if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2533 		*active = true;
2534 }
2535 
rtw_core_check_sta_active(struct rtw_dev * rtwdev)2536 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2537 {
2538 	bool sta_active = false;
2539 
2540 	rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2541 
2542 	return rtwdev->ap_active || sta_active;
2543 }
2544 
rtw_core_enable_beacon(struct rtw_dev * rtwdev,bool enable)2545 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2546 {
2547 	if (!rtwdev->ap_active)
2548 		return;
2549 
2550 	if (enable) {
2551 		rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2552 		rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2553 	} else {
2554 		rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2555 		rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2556 	}
2557 }
2558 
rtw_set_ampdu_factor(struct rtw_dev * rtwdev,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf)2559 void rtw_set_ampdu_factor(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
2560 			  struct ieee80211_bss_conf *bss_conf)
2561 {
2562 	const struct rtw_chip_ops *ops = rtwdev->chip->ops;
2563 	struct ieee80211_sta *sta;
2564 	u8 factor = 0xff;
2565 
2566 	if (!ops->set_ampdu_factor)
2567 		return;
2568 
2569 	rcu_read_lock();
2570 
2571 	sta = ieee80211_find_sta(vif, bss_conf->bssid);
2572 	if (!sta) {
2573 		rcu_read_unlock();
2574 		rtw_warn(rtwdev, "%s: failed to find station %pM\n",
2575 			 __func__, bss_conf->bssid);
2576 		return;
2577 	}
2578 
2579 	if (sta->deflink.vht_cap.vht_supported)
2580 		factor = u32_get_bits(sta->deflink.vht_cap.cap,
2581 				      IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
2582 	else if (sta->deflink.ht_cap.ht_supported)
2583 		factor = sta->deflink.ht_cap.ampdu_factor;
2584 
2585 	rcu_read_unlock();
2586 
2587 	if (factor != 0xff)
2588 		ops->set_ampdu_factor(rtwdev, factor);
2589 }
2590 
2591 MODULE_AUTHOR("Realtek Corporation");
2592 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2593 MODULE_LICENSE("Dual BSD/GPL");
2594