1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4 *
5 * Contact Information:
6 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
7 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
8 *
9 * Few modifications for Realtek's Wi-Fi drivers by
10 * Andrea Merello <andrea.merello@gmail.com>
11 *
12 * A special thanks goes to Realtek for their support !
13 */
14 #include <linux/compiler.h>
15 #include <linux/errno.h>
16 #include <linux/if_arp.h>
17 #include <linux/in6.h>
18 #include <linux/in.h>
19 #include <linux/ip.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/tcp.h>
28 #include <linux/types.h>
29 #include <linux/wireless.h>
30 #include <linux/etherdevice.h>
31 #include <linux/uaccess.h>
32 #include <linux/if_vlan.h>
33
34 #include "rtllib.h"
35
36 /* 802.11 Data Frame
37 *
38 *
39 * 802.11 frame_control for data frames - 2 bytes
40 * ,--------------------------------------------------------------------.
41 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
42 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
43 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x |
44 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
45 * desc | ver | type | ^-subtype-^ |to |from|more|retry| pwr |more |wep |
46 * | | | x=0 data |DS | DS |frag| | mgm |data | |
47 * | | | x=1 data+ack | | | | | | | |
48 * '--------------------------------------------------------------------'
49 * /\
50 * |
51 * 802.11 Data Frame |
52 * ,--------- 'ctrl' expands to >---'
53 * |
54 * ,--'---,-------------------------------------------------------------.
55 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
56 * |------|------|---------|---------|---------|------|---------|------|
57 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
58 * | | tion | (BSSID) | | | ence | data | |
59 * `--------------------------------------------------| |------'
60 * Total: 28 non-data bytes `----.----'
61 * |
62 * .- 'Frame data' expands to <---------------------------'
63 * |
64 * V
65 * ,---------------------------------------------------.
66 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
67 * |------|------|---------|----------|------|---------|
68 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
69 * | DSAP | SSAP | | | | Packet |
70 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
71 * `-----------------------------------------| |
72 * Total: 8 non-data bytes `----.----'
73 * |
74 * .- 'IP Packet' expands, if WEP enabled, to <--'
75 * |
76 * V
77 * ,-----------------------.
78 * Bytes | 4 | 0-2296 | 4 |
79 * |-----|-----------|-----|
80 * Desc. | IV | Encrypted | ICV |
81 * | | IP Packet | |
82 * `-----------------------'
83 * Total: 8 non-data bytes
84 *
85 *
86 * 802.3 Ethernet Data Frame
87 *
88 * ,-----------------------------------------.
89 * Bytes | 6 | 6 | 2 | Variable | 4 |
90 * |-------|-------|------|-----------|------|
91 * Desc. | Dest. | Source| Type | IP Packet | fcs |
92 * | MAC | MAC | | | |
93 * `-----------------------------------------'
94 * Total: 18 non-data bytes
95 *
96 * In the event that fragmentation is required, the incoming payload is split
97 * into N parts of size ieee->fts. The first fragment contains the SNAP header
98 * and the remaining packets are just data.
99 *
100 * If encryption is enabled, each fragment payload size is reduced by enough
101 * space to add the prefix and postfix (IV and ICV totalling 8 bytes in
102 * the case of WEP) So if you have 1500 bytes of payload with ieee->fts set to
103 * 500 without encryption it will take 3 frames. With WEP it will take 4 frames
104 * as the payload of each frame is reduced to 492 bytes.
105 *
106 * SKB visualization
107 *
108 * ,- skb->data
109 * |
110 * | ETHERNET HEADER ,-<-- PAYLOAD
111 * | | 14 bytes from skb->data
112 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
113 * | | | |
114 * |,-Dest.--. ,--Src.---. | | |
115 * | 6 bytes| | 6 bytes | | | |
116 * v | | | | | |
117 * 0 | v 1 | v | v 2
118 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
119 * ^ | ^ | ^ |
120 * | | | | | |
121 * | | | | `T' <---- 2 bytes for Type
122 * | | | |
123 * | | '---SNAP--' <-------- 6 bytes for SNAP
124 * | |
125 * `-IV--' <-------------------- 4 bytes for IV (WEP)
126 *
127 * SNAP HEADER
128 *
129 */
130
131 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
132 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
133
rtllib_put_snap(u8 * data,u16 h_proto)134 static int rtllib_put_snap(u8 *data, u16 h_proto)
135 {
136 struct rtllib_snap_hdr *snap;
137 u8 *oui;
138
139 snap = (struct rtllib_snap_hdr *)data;
140 snap->dsap = 0xaa;
141 snap->ssap = 0xaa;
142 snap->ctrl = 0x03;
143
144 if (h_proto == 0x8137 || h_proto == 0x80f3)
145 oui = P802_1H_OUI;
146 else
147 oui = RFC1042_OUI;
148 snap->oui[0] = oui[0];
149 snap->oui[1] = oui[1];
150 snap->oui[2] = oui[2];
151
152 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
153
154 return SNAP_SIZE + sizeof(u16);
155 }
156
rtllib_encrypt_fragment(struct rtllib_device * ieee,struct sk_buff * frag,int hdr_len)157 int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag,
158 int hdr_len)
159 {
160 struct lib80211_crypt_data *crypt = NULL;
161 int res;
162
163 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
164
165 if (!(crypt && crypt->ops)) {
166 netdev_info(ieee->dev, "=========>%s(), crypt is null\n",
167 __func__);
168 return -1;
169 }
170 /* To encrypt, frame format is:
171 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
172 */
173
174 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
175 * call both MSDU and MPDU encryption functions from here.
176 */
177 atomic_inc(&crypt->refcnt);
178 res = 0;
179 if (crypt->ops->encrypt_msdu)
180 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
181 if (res == 0 && crypt->ops->encrypt_mpdu)
182 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
183
184 atomic_dec(&crypt->refcnt);
185 if (res < 0) {
186 netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n",
187 ieee->dev->name, frag->len);
188 return -1;
189 }
190
191 return 0;
192 }
193
rtllib_txb_free(struct rtllib_txb * txb)194 void rtllib_txb_free(struct rtllib_txb *txb)
195 {
196 if (unlikely(!txb))
197 return;
198 kfree(txb);
199 }
200
rtllib_alloc_txb(int nr_frags,int txb_size,gfp_t gfp_mask)201 static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size,
202 gfp_t gfp_mask)
203 {
204 struct rtllib_txb *txb;
205 int i;
206
207 txb = kzalloc(struct_size(txb, fragments, nr_frags), gfp_mask);
208 if (!txb)
209 return NULL;
210
211 txb->nr_frags = nr_frags;
212 txb->frag_size = cpu_to_le16(txb_size);
213
214 for (i = 0; i < nr_frags; i++) {
215 txb->fragments[i] = dev_alloc_skb(txb_size);
216 if (unlikely(!txb->fragments[i]))
217 goto err_free;
218 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
219 }
220
221 return txb;
222
223 err_free:
224 while (--i >= 0)
225 dev_kfree_skb_any(txb->fragments[i]);
226 kfree(txb);
227
228 return NULL;
229 }
230
rtllib_classify(struct sk_buff * skb)231 static int rtllib_classify(struct sk_buff *skb)
232 {
233 struct ethhdr *eth;
234 struct iphdr *ip;
235
236 eth = (struct ethhdr *)skb->data;
237 if (eth->h_proto != htons(ETH_P_IP))
238 return 0;
239
240 #ifdef VERBOSE_DEBUG
241 print_hex_dump_bytes("%s: ", __func__, DUMP_PREFIX_NONE, skb->data,
242 skb->len);
243 #endif
244 ip = ip_hdr(skb);
245 switch (ip->tos & 0xfc) {
246 case 0x20:
247 return 2;
248 case 0x40:
249 return 1;
250 case 0x60:
251 return 3;
252 case 0x80:
253 return 4;
254 case 0xa0:
255 return 5;
256 case 0xc0:
257 return 6;
258 case 0xe0:
259 return 7;
260 default:
261 return 0;
262 }
263 }
264
rtllib_tx_query_agg_cap(struct rtllib_device * ieee,struct sk_buff * skb,struct cb_desc * tcb_desc)265 static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee,
266 struct sk_buff *skb,
267 struct cb_desc *tcb_desc)
268 {
269 struct rt_hi_throughput *ht_info = ieee->ht_info;
270 struct tx_ts_record *ts = NULL;
271 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
272
273 if (rtllib_act_scanning(ieee, false))
274 return;
275
276 if (!ht_info->current_ht_support || !ht_info->enable_ht)
277 return;
278 if (!is_qos_data_frame(skb->data))
279 return;
280 if (is_multicast_ether_addr(hdr->addr1))
281 return;
282
283 if (tcb_desc->bdhcp || ieee->cnt_after_link < 2)
284 return;
285
286 if (ht_info->iot_action & HT_IOT_ACT_TX_NO_AGGREGATION)
287 return;
288
289 if (!ieee->get_nmode_support_by_sec_cfg(ieee->dev))
290 return;
291 if (ht_info->current_ampdu_enable) {
292 if (!rtllib_get_ts(ieee, (struct ts_common_info **)(&ts), hdr->addr1,
293 skb->priority, TX_DIR, true)) {
294 netdev_info(ieee->dev, "%s: can't get TS\n", __func__);
295 return;
296 }
297 if (!ts->tx_admitted_ba_record.b_valid) {
298 if (ieee->wpa_ie_len && (ieee->pairwise_key_type ==
299 KEY_TYPE_NA)) {
300 ;
301 } else if (tcb_desc->bdhcp == 1) {
302 ;
303 } else if (!ts->disable_add_ba) {
304 rtllib_ts_start_add_ba_process(ieee, ts);
305 }
306 return;
307 } else if (!ts->using_ba) {
308 if (SN_LESS(ts->tx_admitted_ba_record.ba_start_seq_ctrl.field.seq_num,
309 (ts->tx_cur_seq + 1) % 4096))
310 ts->using_ba = true;
311 else
312 return;
313 }
314 if (ieee->iw_mode == IW_MODE_INFRA) {
315 tcb_desc->ampdu_enable = true;
316 tcb_desc->ampdu_factor = ht_info->current_ampdu_factor;
317 tcb_desc->ampdu_density = ht_info->current_mpdu_density;
318 }
319 }
320 }
321
rtllib_query_short_preamble_mode(struct rtllib_device * ieee,struct cb_desc * tcb_desc)322 static void rtllib_query_short_preamble_mode(struct rtllib_device *ieee,
323 struct cb_desc *tcb_desc)
324 {
325 tcb_desc->use_short_preamble = false;
326 if (tcb_desc->data_rate == 2)
327 return;
328 else if (ieee->current_network.capability &
329 WLAN_CAPABILITY_SHORT_PREAMBLE)
330 tcb_desc->use_short_preamble = true;
331 }
332
rtllib_query_ht_cap_short_gi(struct rtllib_device * ieee,struct cb_desc * tcb_desc)333 static void rtllib_query_ht_cap_short_gi(struct rtllib_device *ieee,
334 struct cb_desc *tcb_desc)
335 {
336 struct rt_hi_throughput *ht_info = ieee->ht_info;
337
338 tcb_desc->use_short_gi = false;
339
340 if (!ht_info->current_ht_support || !ht_info->enable_ht)
341 return;
342
343 if (ht_info->cur_bw_40mhz && ht_info->cur_short_gi_40mhz)
344 tcb_desc->use_short_gi = true;
345 else if (!ht_info->cur_bw_40mhz && ht_info->cur_short_gi_20mhz)
346 tcb_desc->use_short_gi = true;
347 }
348
rtllib_query_bandwidth_mode(struct rtllib_device * ieee,struct cb_desc * tcb_desc)349 static void rtllib_query_bandwidth_mode(struct rtllib_device *ieee,
350 struct cb_desc *tcb_desc)
351 {
352 struct rt_hi_throughput *ht_info = ieee->ht_info;
353
354 tcb_desc->packet_bw = false;
355
356 if (!ht_info->current_ht_support || !ht_info->enable_ht)
357 return;
358
359 if (tcb_desc->multicast || tcb_desc->broadcast)
360 return;
361
362 if ((tcb_desc->data_rate & 0x80) == 0)
363 return;
364 if (ht_info->cur_bw_40mhz && ht_info->cur_tx_bw40mhz &&
365 !ieee->bandwidth_auto_switch.forced_tx_20MHz)
366 tcb_desc->packet_bw = true;
367 }
368
rtllib_query_protectionmode(struct rtllib_device * ieee,struct cb_desc * tcb_desc,struct sk_buff * skb)369 static void rtllib_query_protectionmode(struct rtllib_device *ieee,
370 struct cb_desc *tcb_desc,
371 struct sk_buff *skb)
372 {
373 struct rt_hi_throughput *ht_info;
374
375 tcb_desc->rtsstbc = false;
376 tcb_desc->rts_use_short_gi = false;
377 tcb_desc->cts_enable = false;
378 tcb_desc->RTSSC = 0;
379 tcb_desc->rts_bw = false;
380
381 if (tcb_desc->broadcast || tcb_desc->multicast)
382 return;
383
384 if (is_broadcast_ether_addr(skb->data + 16))
385 return;
386
387 if (ieee->mode < WIRELESS_MODE_N_24G) {
388 if (skb->len > ieee->rts) {
389 tcb_desc->rts_enable = true;
390 tcb_desc->rts_rate = MGN_24M;
391 } else if (ieee->current_network.buseprotection) {
392 tcb_desc->rts_enable = true;
393 tcb_desc->cts_enable = true;
394 tcb_desc->rts_rate = MGN_24M;
395 }
396 return;
397 }
398
399 ht_info = ieee->ht_info;
400
401 while (true) {
402 if (ht_info->iot_action & HT_IOT_ACT_FORCED_CTS2SELF) {
403 tcb_desc->cts_enable = true;
404 tcb_desc->rts_rate = MGN_24M;
405 tcb_desc->rts_enable = true;
406 break;
407 } else if (ht_info->iot_action & (HT_IOT_ACT_FORCED_RTS |
408 HT_IOT_ACT_PURE_N_MODE)) {
409 tcb_desc->rts_enable = true;
410 tcb_desc->rts_rate = MGN_24M;
411 break;
412 }
413 if (ieee->current_network.buseprotection) {
414 tcb_desc->rts_enable = true;
415 tcb_desc->cts_enable = true;
416 tcb_desc->rts_rate = MGN_24M;
417 break;
418 }
419 if (ht_info->current_ht_support && ht_info->enable_ht) {
420 u8 ht_op_mode = ht_info->current_op_mode;
421
422 if ((ht_info->cur_bw_40mhz && (ht_op_mode == 2 ||
423 ht_op_mode == 3)) ||
424 (!ht_info->cur_bw_40mhz && ht_op_mode == 3)) {
425 tcb_desc->rts_rate = MGN_24M;
426 tcb_desc->rts_enable = true;
427 break;
428 }
429 }
430 if (skb->len > ieee->rts) {
431 tcb_desc->rts_rate = MGN_24M;
432 tcb_desc->rts_enable = true;
433 break;
434 }
435 if (tcb_desc->ampdu_enable) {
436 tcb_desc->rts_rate = MGN_24M;
437 tcb_desc->rts_enable = false;
438 break;
439 }
440 goto NO_PROTECTION;
441 }
442 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
443 tcb_desc->use_short_preamble = true;
444 return;
445 NO_PROTECTION:
446 tcb_desc->rts_enable = false;
447 tcb_desc->cts_enable = false;
448 tcb_desc->rts_rate = 0;
449 tcb_desc->RTSSC = 0;
450 tcb_desc->rts_bw = false;
451 }
452
rtllib_txrate_selectmode(struct rtllib_device * ieee,struct cb_desc * tcb_desc)453 static void rtllib_txrate_selectmode(struct rtllib_device *ieee,
454 struct cb_desc *tcb_desc)
455 {
456 if (ieee->tx_dis_rate_fallback)
457 tcb_desc->tx_dis_rate_fallback = true;
458
459 if (ieee->tx_use_drv_assinged_rate)
460 tcb_desc->tx_use_drv_assinged_rate = true;
461 if (!tcb_desc->tx_dis_rate_fallback ||
462 !tcb_desc->tx_use_drv_assinged_rate) {
463 if (ieee->iw_mode == IW_MODE_INFRA)
464 tcb_desc->ratr_index = 0;
465 }
466 }
467
rtllib_query_seqnum(struct rtllib_device * ieee,struct sk_buff * skb,u8 * dst)468 static u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb,
469 u8 *dst)
470 {
471 u16 seqnum = 0;
472
473 if (is_multicast_ether_addr(dst))
474 return 0;
475 if (is_qos_data_frame(skb->data)) {
476 struct tx_ts_record *ts = NULL;
477
478 if (!rtllib_get_ts(ieee, (struct ts_common_info **)(&ts), dst,
479 skb->priority, TX_DIR, true))
480 return 0;
481 seqnum = ts->tx_cur_seq;
482 ts->tx_cur_seq = (ts->tx_cur_seq + 1) % 4096;
483 return seqnum;
484 }
485 return 0;
486 }
487
wme_downgrade_ac(struct sk_buff * skb)488 static int wme_downgrade_ac(struct sk_buff *skb)
489 {
490 switch (skb->priority) {
491 case 6:
492 case 7:
493 skb->priority = 5; /* VO -> VI */
494 return 0;
495 case 4:
496 case 5:
497 skb->priority = 3; /* VI -> BE */
498 return 0;
499 case 0:
500 case 3:
501 skb->priority = 1; /* BE -> BK */
502 return 0;
503 default:
504 return -1;
505 }
506 }
507
rtllib_current_rate(struct rtllib_device * ieee)508 static u8 rtllib_current_rate(struct rtllib_device *ieee)
509 {
510 if (ieee->mode & IEEE_MODE_MASK)
511 return ieee->rate;
512
513 if (ieee->ht_curr_op_rate)
514 return ieee->ht_curr_op_rate;
515 else
516 return ieee->rate & 0x7F;
517 }
518
rtllib_xmit_inter(struct sk_buff * skb,struct net_device * dev)519 static int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev)
520 {
521 struct rtllib_device *ieee = (struct rtllib_device *)
522 netdev_priv_rsl(dev);
523 struct rtllib_txb *txb = NULL;
524 struct ieee80211_qos_hdr *frag_hdr;
525 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
526 unsigned long flags;
527 struct net_device_stats *stats = &ieee->stats;
528 int ether_type = 0, encrypt;
529 int bytes, fc, qos_ctl = 0, hdr_len;
530 struct sk_buff *skb_frag;
531 struct ieee80211_qos_hdr header = { /* Ensure zero initialized */
532 .duration_id = 0,
533 .seq_ctrl = 0,
534 .qos_ctrl = 0
535 };
536 int qos_activated = ieee->current_network.qos_data.active;
537 u8 dest[ETH_ALEN];
538 u8 src[ETH_ALEN];
539 struct lib80211_crypt_data *crypt = NULL;
540 struct cb_desc *tcb_desc;
541 u8 is_multicast = false;
542 bool bdhcp = false;
543
544 spin_lock_irqsave(&ieee->lock, flags);
545
546 /* If there is no driver handler to take the TXB, don't bother
547 * creating it...
548 */
549 if (!(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) ||
550 ((!ieee->softmac_data_hard_start_xmit &&
551 (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
552 netdev_warn(ieee->dev, "No xmit handler.\n");
553 goto success;
554 }
555
556 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
557 netdev_warn(ieee->dev, "skb too small (%d).\n",
558 skb->len);
559 goto success;
560 }
561 /* Save source and destination addresses */
562 ether_addr_copy(dest, skb->data);
563 ether_addr_copy(src, skb->data + ETH_ALEN);
564
565 memset(skb->cb, 0, sizeof(skb->cb));
566 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
567
568 if (ieee->iw_mode == IW_MODE_MONITOR) {
569 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
570 if (unlikely(!txb)) {
571 netdev_warn(ieee->dev,
572 "Could not allocate TXB\n");
573 goto failed;
574 }
575
576 txb->encrypted = 0;
577 txb->payload_size = cpu_to_le16(skb->len);
578 skb_put_data(txb->fragments[0], skb->data, skb->len);
579
580 goto success;
581 }
582
583 if (skb->len > 282) {
584 if (ether_type == ETH_P_IP) {
585 const struct iphdr *ip = (struct iphdr *)
586 ((u8 *)skb->data + 14);
587 if (ip->protocol == IPPROTO_UDP) {
588 struct udphdr *udp;
589
590 udp = (struct udphdr *)((u8 *)ip +
591 (ip->ihl << 2));
592 if (((((u8 *)udp)[1] == 68) &&
593 (((u8 *)udp)[3] == 67)) ||
594 ((((u8 *)udp)[1] == 67) &&
595 (((u8 *)udp)[3] == 68))) {
596 bdhcp = true;
597 ieee->lps_delay_cnt = 200;
598 }
599 }
600 } else if (ether_type == ETH_P_ARP) {
601 netdev_info(ieee->dev,
602 "=================>DHCP Protocol start tx ARP pkt!!\n");
603 bdhcp = true;
604 ieee->lps_delay_cnt =
605 ieee->current_network.tim.tim_count;
606 }
607 }
608
609 skb->priority = rtllib_classify(skb);
610 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
611 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) && crypt && crypt->ops;
612 if (!encrypt && ieee->ieee802_1x &&
613 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
614 stats->tx_dropped++;
615 goto success;
616 }
617 if (crypt && !encrypt && ether_type == ETH_P_PAE) {
618 struct eapol *eap = (struct eapol *)(skb->data +
619 sizeof(struct ethhdr) - SNAP_SIZE -
620 sizeof(u16));
621 netdev_dbg(ieee->dev,
622 "TX: IEEE 802.11 EAPOL frame: %s\n",
623 eap_get_type(eap->type));
624 }
625
626 /* Advance the SKB to the start of the payload */
627 skb_pull(skb, sizeof(struct ethhdr));
628
629 /* Determine total amount of storage required for TXB packets */
630 bytes = skb->len + SNAP_SIZE + sizeof(u16);
631
632 if (encrypt)
633 fc = RTLLIB_FTYPE_DATA | IEEE80211_FCTL_PROTECTED;
634 else
635 fc = RTLLIB_FTYPE_DATA;
636
637 if (qos_activated)
638 fc |= IEEE80211_STYPE_QOS_DATA;
639 else
640 fc |= IEEE80211_STYPE_DATA;
641
642 if (ieee->iw_mode == IW_MODE_INFRA) {
643 fc |= IEEE80211_FCTL_TODS;
644 /* To DS: Addr1 = BSSID, Addr2 = SA,
645 * Addr3 = DA
646 */
647 ether_addr_copy(header.addr1,
648 ieee->current_network.bssid);
649 ether_addr_copy(header.addr2, src);
650 ether_addr_copy(header.addr3, dest);
651 }
652
653 is_multicast = is_multicast_ether_addr(header.addr1);
654
655 header.frame_control = cpu_to_le16(fc);
656
657 /* Determine fragmentation size based on destination (multicast
658 * and broadcast are not fragmented)
659 */
660 if (is_multicast) {
661 frag_size = MAX_FRAG_THRESHOLD;
662 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
663 } else {
664 frag_size = ieee->fts;
665 qos_ctl = 0;
666 }
667
668 if (qos_activated) {
669 hdr_len = RTLLIB_3ADDR_LEN + 2;
670
671 /* in case we are a client verify acm is not set for this ac */
672 while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) {
673 netdev_info(ieee->dev, "skb->priority = %x\n",
674 skb->priority);
675 if (wme_downgrade_ac(skb))
676 break;
677 netdev_info(ieee->dev, "converted skb->priority = %x\n",
678 skb->priority);
679 }
680
681 qos_ctl |= skb->priority;
682 header.qos_ctrl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID);
683
684 } else {
685 hdr_len = RTLLIB_3ADDR_LEN;
686 }
687 /* Determine amount of payload per fragment. Regardless of if
688 * this stack is providing the full 802.11 header, one will
689 * eventually be affixed to this fragment -- so we must account
690 * for it when determining the amount of payload space.
691 */
692 bytes_per_frag = frag_size - hdr_len;
693 if (ieee->config &
694 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
695 bytes_per_frag -= RTLLIB_FCS_LEN;
696
697 /* Each fragment may need to have room for encrypting
698 * pre/postfix
699 */
700 if (encrypt) {
701 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
702 crypt->ops->extra_mpdu_postfix_len +
703 crypt->ops->extra_msdu_prefix_len +
704 crypt->ops->extra_msdu_postfix_len;
705 }
706 /* Number of fragments is the total bytes_per_frag /
707 * payload_per_fragment
708 */
709 nr_frags = bytes / bytes_per_frag;
710 bytes_last_frag = bytes % bytes_per_frag;
711 if (bytes_last_frag)
712 nr_frags++;
713 else
714 bytes_last_frag = bytes_per_frag;
715
716 /* When we allocate the TXB we allocate enough space for the
717 * reserve and full fragment bytes (bytes_per_frag doesn't
718 * include prefix, postfix, header, FCS, etc.)
719 */
720 txb = rtllib_alloc_txb(nr_frags, frag_size +
721 ieee->tx_headroom, GFP_ATOMIC);
722 if (unlikely(!txb)) {
723 netdev_warn(ieee->dev, "Could not allocate TXB\n");
724 goto failed;
725 }
726 txb->encrypted = encrypt;
727 txb->payload_size = cpu_to_le16(bytes);
728
729 if (qos_activated)
730 txb->queue_index = UP2AC(skb->priority);
731 else
732 txb->queue_index = WME_AC_BE;
733
734 for (i = 0; i < nr_frags; i++) {
735 skb_frag = txb->fragments[i];
736 tcb_desc = (struct cb_desc *)(skb_frag->cb +
737 MAX_DEV_ADDR_SIZE);
738 if (qos_activated) {
739 skb_frag->priority = skb->priority;
740 tcb_desc->queue_index = UP2AC(skb->priority);
741 } else {
742 skb_frag->priority = WME_AC_BE;
743 tcb_desc->queue_index = WME_AC_BE;
744 }
745 skb_reserve(skb_frag, ieee->tx_headroom);
746
747 if (encrypt) {
748 if (ieee->hwsec_active)
749 tcb_desc->hw_sec = 1;
750 else
751 tcb_desc->hw_sec = 0;
752 skb_reserve(skb_frag,
753 crypt->ops->extra_mpdu_prefix_len +
754 crypt->ops->extra_msdu_prefix_len);
755 } else {
756 tcb_desc->hw_sec = 0;
757 }
758 frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
759
760 /* If this is not the last fragment, then add the
761 * MOREFRAGS bit to the frame control
762 */
763 if (i != nr_frags - 1) {
764 frag_hdr->frame_control = cpu_to_le16(fc |
765 IEEE80211_FCTL_MOREFRAGS);
766 bytes = bytes_per_frag;
767
768 } else {
769 /* The last fragment has the remaining length */
770 bytes = bytes_last_frag;
771 }
772 if ((qos_activated) && (!is_multicast)) {
773 frag_hdr->seq_ctrl =
774 cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag,
775 header.addr1));
776 frag_hdr->seq_ctrl =
777 cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctrl) << 4 | i);
778 } else {
779 frag_hdr->seq_ctrl =
780 cpu_to_le16(ieee->seq_ctrl[0] << 4 | i);
781 }
782 /* Put a SNAP header on the first fragment */
783 if (i == 0) {
784 rtllib_put_snap(skb_put(skb_frag,
785 SNAP_SIZE +
786 sizeof(u16)), ether_type);
787 bytes -= SNAP_SIZE + sizeof(u16);
788 }
789
790 skb_put_data(skb_frag, skb->data, bytes);
791
792 /* Advance the SKB... */
793 skb_pull(skb, bytes);
794
795 /* Encryption routine will move the header forward in
796 * order to insert the IV between the header and the
797 * payload
798 */
799 if (encrypt)
800 rtllib_encrypt_fragment(ieee, skb_frag,
801 hdr_len);
802 if (ieee->config &
803 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
804 skb_put(skb_frag, 4);
805 }
806
807 if ((qos_activated) && (!is_multicast)) {
808 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
809 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
810 else
811 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
812 } else {
813 if (ieee->seq_ctrl[0] == 0xFFF)
814 ieee->seq_ctrl[0] = 0;
815 else
816 ieee->seq_ctrl[0]++;
817 }
818
819 success:
820 if (txb) {
821 tcb_desc = (struct cb_desc *)
822 (txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
823 tcb_desc->tx_enable_fw_calc_dur = 1;
824 tcb_desc->priority = skb->priority;
825
826 if (ether_type == ETH_P_PAE) {
827 if (ieee->ht_info->iot_action &
828 HT_IOT_ACT_WA_IOT_Broadcom) {
829 tcb_desc->data_rate =
830 mgnt_query_tx_rate_exclude_cck_rates(ieee);
831 tcb_desc->tx_dis_rate_fallback = false;
832 } else {
833 tcb_desc->data_rate = ieee->basic_rate;
834 tcb_desc->tx_dis_rate_fallback = 1;
835 }
836
837 tcb_desc->ratr_index = 7;
838 tcb_desc->tx_use_drv_assinged_rate = 1;
839 } else {
840 if (is_multicast_ether_addr(header.addr1))
841 tcb_desc->multicast = 1;
842 if (is_broadcast_ether_addr(header.addr1))
843 tcb_desc->broadcast = 1;
844 rtllib_txrate_selectmode(ieee, tcb_desc);
845 if (tcb_desc->multicast || tcb_desc->broadcast)
846 tcb_desc->data_rate = ieee->basic_rate;
847 else
848 tcb_desc->data_rate = rtllib_current_rate(ieee);
849
850 if (bdhcp) {
851 if (ieee->ht_info->iot_action &
852 HT_IOT_ACT_WA_IOT_Broadcom) {
853 tcb_desc->data_rate =
854 mgnt_query_tx_rate_exclude_cck_rates(ieee);
855 tcb_desc->tx_dis_rate_fallback = false;
856 } else {
857 tcb_desc->data_rate = MGN_1M;
858 tcb_desc->tx_dis_rate_fallback = 1;
859 }
860
861 tcb_desc->ratr_index = 7;
862 tcb_desc->tx_use_drv_assinged_rate = 1;
863 tcb_desc->bdhcp = 1;
864 }
865
866 rtllib_query_short_preamble_mode(ieee, tcb_desc);
867 rtllib_tx_query_agg_cap(ieee, txb->fragments[0],
868 tcb_desc);
869 rtllib_query_ht_cap_short_gi(ieee, tcb_desc);
870 rtllib_query_bandwidth_mode(ieee, tcb_desc);
871 rtllib_query_protectionmode(ieee, tcb_desc,
872 txb->fragments[0]);
873 }
874 }
875 spin_unlock_irqrestore(&ieee->lock, flags);
876 dev_kfree_skb_any(skb);
877 if (txb) {
878 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) {
879 dev->stats.tx_packets++;
880 dev->stats.tx_bytes += le16_to_cpu(txb->payload_size);
881 rtllib_softmac_xmit(txb, ieee);
882 } else {
883 rtllib_txb_free(txb);
884 }
885 }
886
887 return 0;
888
889 failed:
890 spin_unlock_irqrestore(&ieee->lock, flags);
891 netif_stop_queue(dev);
892 stats->tx_errors++;
893 return 1;
894 }
895
rtllib_xmit(struct sk_buff * skb,struct net_device * dev)896 netdev_tx_t rtllib_xmit(struct sk_buff *skb, struct net_device *dev)
897 {
898 memset(skb->cb, 0, sizeof(skb->cb));
899 return rtllib_xmit_inter(skb, dev) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
900 }
901 EXPORT_SYMBOL(rtllib_xmit);
902