1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009-2012 Realtek Corporation.*/
3
4 #include "../wifi.h"
5 #include "../efuse.h"
6 #include "../base.h"
7 #include "../regd.h"
8 #include "../cam.h"
9 #include "../ps.h"
10 #include "../pci.h"
11 #include "reg.h"
12 #include "def.h"
13 #include "phy.h"
14 #include "dm.h"
15 #include "fw.h"
16 #include "led.h"
17 #include "hw.h"
18
rtl92se_get_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)19 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
20 {
21 struct rtl_priv *rtlpriv = rtl_priv(hw);
22 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
23 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
24
25 switch (variable) {
26 case HW_VAR_RCR: {
27 *((u32 *) (val)) = rtlpci->receive_config;
28 break;
29 }
30 case HW_VAR_RF_STATE: {
31 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
32 break;
33 }
34 case HW_VAR_FW_PSMODE_STATUS: {
35 *((bool *) (val)) = ppsc->fw_current_inpsmode;
36 break;
37 }
38 case HW_VAR_CORRECT_TSF: {
39 u64 tsf;
40 u32 *ptsf_low = (u32 *)&tsf;
41 u32 *ptsf_high = ((u32 *)&tsf) + 1;
42
43 *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
44 *ptsf_low = rtl_read_dword(rtlpriv, TSFR);
45
46 *((u64 *) (val)) = tsf;
47
48 break;
49 }
50 case HW_VAR_MRC: {
51 *((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
52 break;
53 }
54 case HAL_DEF_WOWLAN:
55 break;
56 default:
57 pr_err("switch case %#x not processed\n", variable);
58 break;
59 }
60 }
61
rtl92se_set_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)62 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
63 {
64 struct rtl_priv *rtlpriv = rtl_priv(hw);
65 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
66 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
67 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
68 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
69 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
70
71 switch (variable) {
72 case HW_VAR_ETHER_ADDR:{
73 rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
74 rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
75 break;
76 }
77 case HW_VAR_BASIC_RATE:{
78 u16 rate_cfg = ((u16 *) val)[0];
79 u8 rate_index = 0;
80
81 if (rtlhal->version == VERSION_8192S_ACUT)
82 rate_cfg = rate_cfg & 0x150;
83 else
84 rate_cfg = rate_cfg & 0x15f;
85
86 rate_cfg |= 0x01;
87
88 rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
89 rtl_write_byte(rtlpriv, RRSR + 1,
90 (rate_cfg >> 8) & 0xff);
91
92 while (rate_cfg > 0x1) {
93 rate_cfg = (rate_cfg >> 1);
94 rate_index++;
95 }
96 rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
97
98 break;
99 }
100 case HW_VAR_BSSID:{
101 rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
102 rtl_write_word(rtlpriv, BSSIDR + 4,
103 ((u16 *)(val + 4))[0]);
104 break;
105 }
106 case HW_VAR_SIFS:{
107 rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
108 rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
109 break;
110 }
111 case HW_VAR_SLOT_TIME:{
112 u8 e_aci;
113
114 rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
115 "HW_VAR_SLOT_TIME %x\n", val[0]);
116
117 rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
118
119 for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
120 rtlpriv->cfg->ops->set_hw_reg(hw,
121 HW_VAR_AC_PARAM,
122 (&e_aci));
123 }
124 break;
125 }
126 case HW_VAR_ACK_PREAMBLE:{
127 u8 reg_tmp;
128 u8 short_preamble = (bool) (*val);
129 reg_tmp = (mac->cur_40_prime_sc) << 5;
130 if (short_preamble)
131 reg_tmp |= 0x80;
132
133 rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
134 break;
135 }
136 case HW_VAR_AMPDU_MIN_SPACE:{
137 u8 min_spacing_to_set;
138 u8 sec_min_space;
139
140 min_spacing_to_set = *val;
141 if (min_spacing_to_set <= 7) {
142 if (rtlpriv->sec.pairwise_enc_algorithm ==
143 NO_ENCRYPTION)
144 sec_min_space = 0;
145 else
146 sec_min_space = 1;
147
148 if (min_spacing_to_set < sec_min_space)
149 min_spacing_to_set = sec_min_space;
150 if (min_spacing_to_set > 5)
151 min_spacing_to_set = 5;
152
153 mac->min_space_cfg =
154 ((mac->min_space_cfg & 0xf8) |
155 min_spacing_to_set);
156
157 *val = min_spacing_to_set;
158
159 rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
160 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
161 mac->min_space_cfg);
162
163 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
164 mac->min_space_cfg);
165 }
166 break;
167 }
168 case HW_VAR_SHORTGI_DENSITY:{
169 u8 density_to_set;
170
171 density_to_set = *val;
172 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
173 mac->min_space_cfg |= (density_to_set << 3);
174
175 rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
176 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
177 mac->min_space_cfg);
178
179 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
180 mac->min_space_cfg);
181
182 break;
183 }
184 case HW_VAR_AMPDU_FACTOR:{
185 u8 factor_toset;
186 u8 regtoset;
187 u8 factorlevel[18] = {
188 2, 4, 4, 7, 7, 13, 13,
189 13, 2, 7, 7, 13, 13,
190 15, 15, 15, 15, 0};
191 u8 index = 0;
192
193 factor_toset = *val;
194 if (factor_toset <= 3) {
195 factor_toset = (1 << (factor_toset + 2));
196 if (factor_toset > 0xf)
197 factor_toset = 0xf;
198
199 for (index = 0; index < 17; index++) {
200 if (factorlevel[index] > factor_toset)
201 factorlevel[index] =
202 factor_toset;
203 }
204
205 for (index = 0; index < 8; index++) {
206 regtoset = ((factorlevel[index * 2]) |
207 (factorlevel[index *
208 2 + 1] << 4));
209 rtl_write_byte(rtlpriv,
210 AGGLEN_LMT_L + index,
211 regtoset);
212 }
213
214 regtoset = ((factorlevel[16]) |
215 (factorlevel[17] << 4));
216 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
217
218 rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
219 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
220 factor_toset);
221 }
222 break;
223 }
224 case HW_VAR_AC_PARAM:{
225 u8 e_aci = *val;
226 rtl92s_dm_init_edca_turbo(hw);
227
228 if (rtlpci->acm_method != EACMWAY2_SW)
229 rtlpriv->cfg->ops->set_hw_reg(hw,
230 HW_VAR_ACM_CTRL,
231 &e_aci);
232 break;
233 }
234 case HW_VAR_ACM_CTRL:{
235 u8 e_aci = *val;
236 union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
237 mac->ac[0].aifs));
238 u8 acm = p_aci_aifsn->f.acm;
239 u8 acm_ctrl = rtl_read_byte(rtlpriv, ACMHWCTRL);
240
241 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
242 0x0 : 0x1);
243
244 if (acm) {
245 switch (e_aci) {
246 case AC0_BE:
247 acm_ctrl |= ACMHW_BEQEN;
248 break;
249 case AC2_VI:
250 acm_ctrl |= ACMHW_VIQEN;
251 break;
252 case AC3_VO:
253 acm_ctrl |= ACMHW_VOQEN;
254 break;
255 default:
256 rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
257 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
258 acm);
259 break;
260 }
261 } else {
262 switch (e_aci) {
263 case AC0_BE:
264 acm_ctrl &= (~ACMHW_BEQEN);
265 break;
266 case AC2_VI:
267 acm_ctrl &= (~ACMHW_VIQEN);
268 break;
269 case AC3_VO:
270 acm_ctrl &= (~ACMHW_VOQEN);
271 break;
272 default:
273 pr_err("switch case %#x not processed\n",
274 e_aci);
275 break;
276 }
277 }
278
279 rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE,
280 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
281 rtl_write_byte(rtlpriv, ACMHWCTRL, acm_ctrl);
282 break;
283 }
284 case HW_VAR_RCR:{
285 rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
286 rtlpci->receive_config = ((u32 *) (val))[0];
287 break;
288 }
289 case HW_VAR_RETRY_LIMIT:{
290 u8 retry_limit = val[0];
291
292 rtl_write_word(rtlpriv, RETRY_LIMIT,
293 retry_limit << RETRY_LIMIT_SHORT_SHIFT |
294 retry_limit << RETRY_LIMIT_LONG_SHIFT);
295 break;
296 }
297 case HW_VAR_DUAL_TSF_RST: {
298 break;
299 }
300 case HW_VAR_EFUSE_BYTES: {
301 rtlefuse->efuse_usedbytes = *((u16 *) val);
302 break;
303 }
304 case HW_VAR_EFUSE_USAGE: {
305 rtlefuse->efuse_usedpercentage = *val;
306 break;
307 }
308 case HW_VAR_IO_CMD: {
309 break;
310 }
311 case HW_VAR_WPA_CONFIG: {
312 rtl_write_byte(rtlpriv, REG_SECR, *val);
313 break;
314 }
315 case HW_VAR_SET_RPWM:{
316 break;
317 }
318 case HW_VAR_H2C_FW_PWRMODE:{
319 break;
320 }
321 case HW_VAR_FW_PSMODE_STATUS: {
322 ppsc->fw_current_inpsmode = *((bool *) val);
323 break;
324 }
325 case HW_VAR_H2C_FW_JOINBSSRPT:{
326 break;
327 }
328 case HW_VAR_AID:{
329 break;
330 }
331 case HW_VAR_CORRECT_TSF:{
332 break;
333 }
334 case HW_VAR_MRC: {
335 bool bmrc_toset = *((bool *)val);
336 u8 u1bdata = 0;
337
338 if (bmrc_toset) {
339 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
340 MASKBYTE0, 0x33);
341 u1bdata = (u8)rtl_get_bbreg(hw,
342 ROFDM1_TRXPATHENABLE,
343 MASKBYTE0);
344 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
345 MASKBYTE0,
346 ((u1bdata & 0xf0) | 0x03));
347 u1bdata = (u8)rtl_get_bbreg(hw,
348 ROFDM0_TRXPATHENABLE,
349 MASKBYTE1);
350 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
351 MASKBYTE1,
352 (u1bdata | 0x04));
353
354 /* Update current settings. */
355 rtlpriv->dm.current_mrc_switch = bmrc_toset;
356 } else {
357 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
358 MASKBYTE0, 0x13);
359 u1bdata = (u8)rtl_get_bbreg(hw,
360 ROFDM1_TRXPATHENABLE,
361 MASKBYTE0);
362 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
363 MASKBYTE0,
364 ((u1bdata & 0xf0) | 0x01));
365 u1bdata = (u8)rtl_get_bbreg(hw,
366 ROFDM0_TRXPATHENABLE,
367 MASKBYTE1);
368 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
369 MASKBYTE1, (u1bdata & 0xfb));
370
371 /* Update current settings. */
372 rtlpriv->dm.current_mrc_switch = bmrc_toset;
373 }
374
375 break;
376 }
377 case HW_VAR_FW_LPS_ACTION: {
378 bool enter_fwlps = *((bool *)val);
379 u8 rpwm_val, fw_pwrmode;
380 bool fw_current_inps;
381
382 if (enter_fwlps) {
383 rpwm_val = 0x02; /* RF off */
384 fw_current_inps = true;
385 rtlpriv->cfg->ops->set_hw_reg(hw,
386 HW_VAR_FW_PSMODE_STATUS,
387 (u8 *)(&fw_current_inps));
388 rtlpriv->cfg->ops->set_hw_reg(hw,
389 HW_VAR_H2C_FW_PWRMODE,
390 &ppsc->fwctrl_psmode);
391
392 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
393 &rpwm_val);
394 } else {
395 rpwm_val = 0x0C; /* RF on */
396 fw_pwrmode = FW_PS_ACTIVE_MODE;
397 fw_current_inps = false;
398 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
399 &rpwm_val);
400 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
401 &fw_pwrmode);
402
403 rtlpriv->cfg->ops->set_hw_reg(hw,
404 HW_VAR_FW_PSMODE_STATUS,
405 (u8 *)(&fw_current_inps));
406 }
407 break; }
408 default:
409 pr_err("switch case %#x not processed\n", variable);
410 break;
411 }
412
413 }
414
rtl92se_enable_hw_security_config(struct ieee80211_hw * hw)415 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
416 {
417 struct rtl_priv *rtlpriv = rtl_priv(hw);
418 u8 sec_reg_value = 0x0;
419
420 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
421 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
422 rtlpriv->sec.pairwise_enc_algorithm,
423 rtlpriv->sec.group_enc_algorithm);
424
425 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
426 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
427 "not open hw encryption\n");
428 return;
429 }
430
431 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
432
433 if (rtlpriv->sec.use_defaultkey) {
434 sec_reg_value |= SCR_TXUSEDK;
435 sec_reg_value |= SCR_RXUSEDK;
436 }
437
438 rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
439 sec_reg_value);
440
441 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
442
443 }
444
_rtl92se_halset_sysclk(struct ieee80211_hw * hw,u8 data)445 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
446 {
447 struct rtl_priv *rtlpriv = rtl_priv(hw);
448 u8 waitcount = 100;
449 bool bresult = false;
450 u8 tmpvalue;
451
452 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
453
454 /* Wait the MAC synchronized. */
455 udelay(400);
456
457 /* Check if it is set ready. */
458 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
459 bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
460
461 if (!(data & (BIT(6) | BIT(7)))) {
462 waitcount = 100;
463 tmpvalue = 0;
464
465 while (1) {
466 waitcount--;
467
468 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
469 if ((tmpvalue & BIT(6)))
470 break;
471
472 pr_err("wait for BIT(6) return value %x\n", tmpvalue);
473 if (waitcount == 0)
474 break;
475
476 udelay(10);
477 }
478
479 if (waitcount == 0)
480 bresult = false;
481 else
482 bresult = true;
483 }
484
485 return bresult;
486 }
487
rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw * hw)488 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
489 {
490 struct rtl_priv *rtlpriv = rtl_priv(hw);
491 u8 u1tmp;
492
493 /* The following config GPIO function */
494 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
495 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
496
497 /* config GPIO3 to input */
498 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
499 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
500
501 }
502
_rtl92se_rf_onoff_detect(struct ieee80211_hw * hw)503 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
504 {
505 struct rtl_priv *rtlpriv = rtl_priv(hw);
506 u8 u1tmp;
507 u8 retval = ERFON;
508
509 /* The following config GPIO function */
510 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
511 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
512
513 /* config GPIO3 to input */
514 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
515 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
516
517 /* On some of the platform, driver cannot read correct
518 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
519 mdelay(10);
520
521 /* check GPIO3 */
522 u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
523 retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
524
525 return retval;
526 }
527
_rtl92se_macconfig_before_fwdownload(struct ieee80211_hw * hw)528 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
529 {
530 struct rtl_priv *rtlpriv = rtl_priv(hw);
531 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
532 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
533
534 u8 i;
535 u8 tmpu1b;
536 u16 tmpu2b;
537 u8 pollingcnt = 20;
538
539 if (rtlpci->first_init) {
540 /* Reset PCIE Digital */
541 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
542 tmpu1b &= 0xFE;
543 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
544 udelay(1);
545 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
546 }
547
548 /* Switch to SW IO control */
549 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
550 if (tmpu1b & BIT(7)) {
551 tmpu1b &= ~(BIT(6) | BIT(7));
552
553 /* Set failed, return to prevent hang. */
554 if (!_rtl92se_halset_sysclk(hw, tmpu1b))
555 return;
556 }
557
558 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
559 udelay(50);
560 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
561 udelay(50);
562
563 /* Clear FW RPWM for FW control LPS.*/
564 rtl_write_byte(rtlpriv, RPWM, 0x0);
565
566 /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
567 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
568 tmpu1b &= 0x73;
569 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
570 /* wait for BIT 10/11/15 to pull high automatically!! */
571 mdelay(1);
572
573 rtl_write_byte(rtlpriv, CMDR, 0);
574 rtl_write_byte(rtlpriv, TCR, 0);
575
576 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
577 tmpu1b = rtl_read_byte(rtlpriv, 0x562);
578 tmpu1b |= 0x08;
579 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
580 tmpu1b &= ~(BIT(3));
581 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
582
583 /* Enable AFE clock source */
584 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
585 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
586 /* Delay 1.5ms */
587 mdelay(2);
588 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
589 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
590
591 /* Enable AFE Macro Block's Bandgap */
592 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
593 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
594 mdelay(1);
595
596 /* Enable AFE Mbias */
597 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
598 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
599 mdelay(1);
600
601 /* Enable LDOA15 block */
602 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
603 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
604
605 /* Set Digital Vdd to Retention isolation Path. */
606 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
607 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
608
609 /* For warm reboot NIC disappera bug. */
610 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
611 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
612
613 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
614
615 /* Enable AFE PLL Macro Block */
616 /* We need to delay 100u before enabling PLL. */
617 udelay(200);
618 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
619 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
620
621 /* for divider reset */
622 udelay(100);
623 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
624 BIT(4) | BIT(6)));
625 udelay(10);
626 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
627 udelay(10);
628
629 /* Enable MAC 80MHZ clock */
630 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
631 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
632 mdelay(1);
633
634 /* Release isolation AFE PLL & MD */
635 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
636
637 /* Enable MAC clock */
638 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
639 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
640
641 /* Enable Core digital and enable IOREG R/W */
642 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
643 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
644
645 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
646 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
647
648 /* enable REG_EN */
649 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
650
651 /* Switch the control path. */
652 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
653 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
654
655 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
656 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
657 if (!_rtl92se_halset_sysclk(hw, tmpu1b))
658 return; /* Set failed, return to prevent hang. */
659
660 rtl_write_word(rtlpriv, CMDR, 0x07FC);
661
662 /* MH We must enable the section of code to prevent load IMEM fail. */
663 /* Load MAC register from WMAc temporarily We simulate macreg. */
664 /* txt HW will provide MAC txt later */
665 rtl_write_byte(rtlpriv, 0x6, 0x30);
666 rtl_write_byte(rtlpriv, 0x49, 0xf0);
667
668 rtl_write_byte(rtlpriv, 0x4b, 0x81);
669
670 rtl_write_byte(rtlpriv, 0xb5, 0x21);
671
672 rtl_write_byte(rtlpriv, 0xdc, 0xff);
673 rtl_write_byte(rtlpriv, 0xdd, 0xff);
674 rtl_write_byte(rtlpriv, 0xde, 0xff);
675 rtl_write_byte(rtlpriv, 0xdf, 0xff);
676
677 rtl_write_byte(rtlpriv, 0x11a, 0x00);
678 rtl_write_byte(rtlpriv, 0x11b, 0x00);
679
680 for (i = 0; i < 32; i++)
681 rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
682
683 rtl_write_byte(rtlpriv, 0x236, 0xff);
684
685 rtl_write_byte(rtlpriv, 0x503, 0x22);
686
687 if (ppsc->support_aspm && !ppsc->support_backdoor)
688 rtl_write_byte(rtlpriv, 0x560, 0x40);
689 else
690 rtl_write_byte(rtlpriv, 0x560, 0x00);
691
692 rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
693
694 /* Set RX Desc Address */
695 rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
696 rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
697
698 /* Set TX Desc Address */
699 rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
700 rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
701 rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
702 rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
703 rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
704 rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
705 rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
706 rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
707 rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
708
709 rtl_write_word(rtlpriv, CMDR, 0x37FC);
710
711 /* To make sure that TxDMA can ready to download FW. */
712 /* We should reset TxDMA if IMEM RPT was not ready. */
713 do {
714 tmpu1b = rtl_read_byte(rtlpriv, TCR);
715 if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
716 break;
717
718 udelay(5);
719 } while (pollingcnt--);
720
721 if (pollingcnt <= 0) {
722 pr_err("Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
723 tmpu1b);
724 tmpu1b = rtl_read_byte(rtlpriv, CMDR);
725 rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
726 udelay(2);
727 /* Reset TxDMA */
728 rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
729 }
730
731 /* After MACIO reset,we must refresh LED state. */
732 if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
733 (ppsc->rfoff_reason == 0)) {
734 enum rtl_led_pin pin0 = rtlpriv->ledctl.sw_led0;
735 enum rf_pwrstate rfpwr_state_toset;
736 rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
737
738 if (rfpwr_state_toset == ERFON)
739 rtl92se_sw_led_on(hw, pin0);
740 }
741 }
742
_rtl92se_macconfig_after_fwdownload(struct ieee80211_hw * hw)743 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
744 {
745 struct rtl_priv *rtlpriv = rtl_priv(hw);
746 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
747 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
748 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
749 u8 i;
750 u16 tmpu2b;
751
752 /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
753
754 /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
755 /* Turn on 0x40 Command register */
756 rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
757 SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
758 RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
759
760 /* Set TCR TX DMA pre 2 FULL enable bit */
761 rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
762 TXDMAPRE2FULL);
763
764 /* Set RCR */
765 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
766
767 /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
768
769 /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
770 /* Set CCK/OFDM SIFS */
771 /* CCK SIFS shall always be 10us. */
772 rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
773 rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
774
775 /* Set AckTimeout */
776 rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
777
778 /* Beacon related */
779 rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
780 rtl_write_word(rtlpriv, ATIMWND, 2);
781
782 /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
783 /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
784 /* Firmware allocate now, associate with FW internal setting.!!! */
785
786 /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
787 /* 5.3 Set driver info, we only accept PHY status now. */
788 /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
789 rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
790
791 /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
792 /* Set RRSR to all legacy rate and HT rate
793 * CCK rate is supported by default.
794 * CCK rate will be filtered out only when associated
795 * AP does not support it.
796 * Only enable ACK rate to OFDM 24M
797 * Disable RRSR for CCK rate in A-Cut */
798
799 if (rtlhal->version == VERSION_8192S_ACUT)
800 rtl_write_byte(rtlpriv, RRSR, 0xf0);
801 else if (rtlhal->version == VERSION_8192S_BCUT)
802 rtl_write_byte(rtlpriv, RRSR, 0xff);
803 rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
804 rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
805
806 /* A-Cut IC do not support CCK rate. We forbid ARFR to */
807 /* fallback to CCK rate */
808 for (i = 0; i < 8; i++) {
809 /*Disable RRSR for CCK rate in A-Cut */
810 if (rtlhal->version == VERSION_8192S_ACUT)
811 rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
812 }
813
814 /* Different rate use different AMPDU size */
815 /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
816 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
817 /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
818 rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
819 /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
820 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
821 /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
822 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
823 /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
824 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
825
826 /* Set Data / Response auto rate fallack retry count */
827 rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
828 rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
829 rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
830 rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
831
832 /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
833 /* Set all rate to support SG */
834 rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
835
836 /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
837 /* Set NAV protection length */
838 rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
839 /* CF-END Threshold */
840 rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
841 /* Set AMPDU minimum space */
842 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
843 /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
844 rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
845
846 /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
847 /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
848 /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
849 /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
850 /* 13. Test mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
851
852 /* 14. Set driver info, we only accept PHY status now. */
853 rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
854
855 /* 15. For EEPROM R/W Workaround */
856 /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
857 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
858 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
859 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
860 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
861
862 /* 17. For EFUSE */
863 /* We may R/W EFUSE in EEPROM mode */
864 if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
865 u8 tempval;
866
867 tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
868 tempval &= 0xFE;
869 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
870
871 /* Change Program timing */
872 rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
873 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
874 }
875
876 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
877
878 }
879
_rtl92se_hw_configure(struct ieee80211_hw * hw)880 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
881 {
882 struct rtl_priv *rtlpriv = rtl_priv(hw);
883 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
884 struct rtl_phy *rtlphy = &(rtlpriv->phy);
885 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
886
887 u8 reg_bw_opmode = 0;
888 u32 reg_rrsr = 0;
889 u8 regtmp = 0;
890
891 reg_bw_opmode = BW_OPMODE_20MHZ;
892 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
893
894 regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
895 reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
896 rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
897 rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
898
899 /* Set Retry Limit here */
900 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
901 (u8 *)(&rtlpci->shortretry_limit));
902
903 rtl_write_byte(rtlpriv, MLT, 0x8f);
904
905 /* For Min Spacing configuration. */
906 switch (rtlphy->rf_type) {
907 case RF_1T2R:
908 case RF_1T1R:
909 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
910 break;
911 case RF_2T2R:
912 case RF_2T2R_GREEN:
913 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
914 break;
915 }
916 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
917 }
918
rtl92se_hw_init(struct ieee80211_hw * hw)919 int rtl92se_hw_init(struct ieee80211_hw *hw)
920 {
921 struct rtl_priv *rtlpriv = rtl_priv(hw);
922 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
923 struct rtl_phy *rtlphy = &(rtlpriv->phy);
924 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
925 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
926 u8 tmp_byte = 0;
927 unsigned long flags;
928 bool rtstatus = true;
929 u8 tmp_u1b;
930 int err = false;
931 u8 i;
932 int wdcapra_add[] = {
933 EDCAPARA_BE, EDCAPARA_BK,
934 EDCAPARA_VI, EDCAPARA_VO};
935 u8 secr_value = 0x0;
936
937 rtlpci->being_init_adapter = true;
938
939 /* As this function can take a very long time (up to 350 ms)
940 * and can be called with irqs disabled, reenable the irqs
941 * to let the other devices continue being serviced.
942 *
943 * It is safe doing so since our own interrupts will only be enabled
944 * in a subsequent step.
945 */
946 local_save_flags(flags);
947 local_irq_enable();
948
949 rtlpriv->intf_ops->disable_aspm(hw);
950
951 /* 1. MAC Initialize */
952 /* Before FW download, we have to set some MAC register */
953 _rtl92se_macconfig_before_fwdownload(hw);
954
955 rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
956 PMC_FSM) >> 16) & 0xF);
957
958 rtl8192se_gpiobit3_cfg_inputmode(hw);
959
960 /* 2. download firmware */
961 rtstatus = rtl92s_download_fw(hw);
962 if (!rtstatus) {
963 rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
964 "Failed to download FW. Init HW without FW now... Please copy FW into /lib/firmware/rtlwifi\n");
965 err = 1;
966 goto exit;
967 }
968
969 /* After FW download, we have to reset MAC register */
970 _rtl92se_macconfig_after_fwdownload(hw);
971
972 /*Retrieve default FW Cmd IO map. */
973 rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR);
974 rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
975
976 /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
977 if (!rtl92s_phy_mac_config(hw)) {
978 pr_err("MAC Config failed\n");
979 err = rtstatus;
980 goto exit;
981 }
982
983 /* because last function modify RCR, so we update
984 * rcr var here, or TP will unstable for receive_config
985 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
986 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
987 */
988 rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
989 rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
990 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
991
992 /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
993 /* We must set flag avoid BB/RF config period later!! */
994 rtl_write_dword(rtlpriv, CMDR, 0x37FC);
995
996 /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
997 if (!rtl92s_phy_bb_config(hw)) {
998 pr_err("BB Config failed\n");
999 err = rtstatus;
1000 goto exit;
1001 }
1002
1003 /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1004 /* Before initalizing RF. We can not use FW to do RF-R/W. */
1005
1006 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1007
1008 /* Before RF-R/W we must execute the IO from Scott's suggestion. */
1009 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1010 if (rtlhal->version == VERSION_8192S_ACUT)
1011 rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1012 else
1013 rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1014
1015 if (!rtl92s_phy_rf_config(hw)) {
1016 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1017 err = rtstatus;
1018 goto exit;
1019 }
1020
1021 /* After read predefined TXT, we must set BB/MAC/RF
1022 * register as our requirement */
1023
1024 rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1025 (enum radio_path)0,
1026 RF_CHNLBW,
1027 RFREG_OFFSET_MASK);
1028 rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1029 (enum radio_path)1,
1030 RF_CHNLBW,
1031 RFREG_OFFSET_MASK);
1032
1033 /*---- Set CCK and OFDM Block "ON"----*/
1034 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1035 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1036
1037 /*3 Set Hardware(Do nothing now) */
1038 _rtl92se_hw_configure(hw);
1039
1040 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1041 /* TX power index for different rate set. */
1042 /* Get original hw reg values */
1043 rtl92s_phy_get_hw_reg_originalvalue(hw);
1044 /* Write correct tx power index */
1045 rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1046
1047 /* We must set MAC address after firmware download. */
1048 for (i = 0; i < 6; i++)
1049 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1050
1051 /* EEPROM R/W workaround */
1052 tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1053 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1054
1055 rtl_write_byte(rtlpriv, 0x4d, 0x0);
1056
1057 if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1058 tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1059 tmp_byte = tmp_byte | BIT(5);
1060 rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1061 rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1062 }
1063
1064 /* We enable high power and RA related mechanism after NIC
1065 * initialized. */
1066 if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1067 /* Fw v.53 and later. */
1068 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1069 } else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1070 /* Fw v.52. */
1071 rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1072 rtl92s_phy_chk_fwcmd_iodone(hw);
1073 } else {
1074 /* Compatible earlier FW version. */
1075 rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1076 rtl92s_phy_chk_fwcmd_iodone(hw);
1077 rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1078 rtl92s_phy_chk_fwcmd_iodone(hw);
1079 rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1080 rtl92s_phy_chk_fwcmd_iodone(hw);
1081 }
1082
1083 /* Add to prevent ASPM bug. */
1084 /* Always enable hst and NIC clock request. */
1085 rtl92s_phy_switch_ephy_parameter(hw);
1086
1087 /* Security related
1088 * 1. Clear all H/W keys.
1089 * 2. Enable H/W encryption/decryption. */
1090 rtl_cam_reset_all_entry(hw);
1091 secr_value |= SCR_TXENCENABLE;
1092 secr_value |= SCR_RXENCENABLE;
1093 secr_value |= SCR_NOSKMC;
1094 rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1095
1096 for (i = 0; i < 4; i++)
1097 rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1098
1099 if (rtlphy->rf_type == RF_1T2R) {
1100 bool mrc2set = true;
1101 /* Turn on B-Path */
1102 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1103 }
1104
1105 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1106 rtl92s_dm_init(hw);
1107 exit:
1108 local_irq_restore(flags);
1109 rtlpci->being_init_adapter = false;
1110 return err;
1111 }
1112
rtl92se_set_mac_addr(struct rtl_io * io,const u8 * addr)1113 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1114 {
1115 /* This is a stub. */
1116 }
1117
rtl92se_set_check_bssid(struct ieee80211_hw * hw,bool check_bssid)1118 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1119 {
1120 struct rtl_priv *rtlpriv = rtl_priv(hw);
1121 u32 reg_rcr;
1122
1123 if (rtlpriv->psc.rfpwr_state != ERFON)
1124 return;
1125
1126 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
1127
1128 if (check_bssid) {
1129 reg_rcr |= (RCR_CBSSID);
1130 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
1131 } else if (!check_bssid) {
1132 reg_rcr &= (~RCR_CBSSID);
1133 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
1134 }
1135
1136 }
1137
_rtl92se_set_media_status(struct ieee80211_hw * hw,enum nl80211_iftype type)1138 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1139 enum nl80211_iftype type)
1140 {
1141 struct rtl_priv *rtlpriv = rtl_priv(hw);
1142 u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1143 u32 temp;
1144 bt_msr &= ~MSR_LINK_MASK;
1145
1146 switch (type) {
1147 case NL80211_IFTYPE_UNSPECIFIED:
1148 bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1149 rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1150 "Set Network type to NO LINK!\n");
1151 break;
1152 case NL80211_IFTYPE_ADHOC:
1153 bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1154 rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1155 "Set Network type to Ad Hoc!\n");
1156 break;
1157 case NL80211_IFTYPE_STATION:
1158 bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1159 rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1160 "Set Network type to STA!\n");
1161 break;
1162 case NL80211_IFTYPE_AP:
1163 bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1164 rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1165 "Set Network type to AP!\n");
1166 break;
1167 default:
1168 pr_err("Network type %d not supported!\n", type);
1169 return 1;
1170
1171 }
1172
1173 if (type != NL80211_IFTYPE_AP &&
1174 rtlpriv->mac80211.link_state < MAC80211_LINKED)
1175 bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
1176 rtl_write_byte(rtlpriv, MSR, bt_msr);
1177
1178 temp = rtl_read_dword(rtlpriv, TCR);
1179 rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1180 rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1181
1182
1183 return 0;
1184 }
1185
1186 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
rtl92se_set_network_type(struct ieee80211_hw * hw,enum nl80211_iftype type)1187 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1188 {
1189 struct rtl_priv *rtlpriv = rtl_priv(hw);
1190
1191 if (_rtl92se_set_media_status(hw, type))
1192 return -EOPNOTSUPP;
1193
1194 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1195 if (type != NL80211_IFTYPE_AP)
1196 rtl92se_set_check_bssid(hw, true);
1197 } else {
1198 rtl92se_set_check_bssid(hw, false);
1199 }
1200
1201 return 0;
1202 }
1203
1204 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
rtl92se_set_qos(struct ieee80211_hw * hw,int aci)1205 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1206 {
1207 struct rtl_priv *rtlpriv = rtl_priv(hw);
1208 rtl92s_dm_init_edca_turbo(hw);
1209
1210 switch (aci) {
1211 case AC1_BK:
1212 rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1213 break;
1214 case AC0_BE:
1215 /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1216 break;
1217 case AC2_VI:
1218 rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1219 break;
1220 case AC3_VO:
1221 rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1222 break;
1223 default:
1224 WARN_ONCE(true, "rtl8192se: invalid aci: %d !\n", aci);
1225 break;
1226 }
1227 }
1228
rtl92se_enable_interrupt(struct ieee80211_hw * hw)1229 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1230 {
1231 struct rtl_priv *rtlpriv = rtl_priv(hw);
1232 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1233
1234 rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1235 /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1236 rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1237 rtlpci->irq_enabled = true;
1238 }
1239
rtl92se_disable_interrupt(struct ieee80211_hw * hw)1240 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1241 {
1242 struct rtl_priv *rtlpriv;
1243 struct rtl_pci *rtlpci;
1244
1245 rtlpriv = rtl_priv(hw);
1246 /* if firmware not available, no interrupts */
1247 if (!rtlpriv || !rtlpriv->max_fw_size)
1248 return;
1249 rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1250 rtl_write_dword(rtlpriv, INTA_MASK, 0);
1251 rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1252 rtlpci->irq_enabled = false;
1253 }
1254
_rtl92s_set_sysclk(struct ieee80211_hw * hw,u8 data)1255 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1256 {
1257 struct rtl_priv *rtlpriv = rtl_priv(hw);
1258 u8 waitcnt = 100;
1259 bool result = false;
1260 u8 tmp;
1261
1262 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1263
1264 /* Wait the MAC synchronized. */
1265 udelay(400);
1266
1267 /* Check if it is set ready. */
1268 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1269 result = ((tmp & BIT(7)) == (data & BIT(7)));
1270
1271 if (!(data & (BIT(6) | BIT(7)))) {
1272 waitcnt = 100;
1273 tmp = 0;
1274
1275 while (1) {
1276 waitcnt--;
1277 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1278
1279 if ((tmp & BIT(6)))
1280 break;
1281
1282 pr_err("wait for BIT(6) return value %x\n", tmp);
1283
1284 if (waitcnt == 0)
1285 break;
1286 udelay(10);
1287 }
1288
1289 if (waitcnt == 0)
1290 result = false;
1291 else
1292 result = true;
1293 }
1294
1295 return result;
1296 }
1297
_rtl92s_phy_set_rfhalt(struct ieee80211_hw * hw)1298 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1299 {
1300 struct rtl_priv *rtlpriv = rtl_priv(hw);
1301 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1302 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1303 u8 u1btmp;
1304
1305 if (rtlhal->driver_is_goingto_unload)
1306 rtl_write_byte(rtlpriv, 0x560, 0x0);
1307
1308 /* Power save for BB/RF */
1309 u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1310 u1btmp |= BIT(0);
1311 rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1312 rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1313 rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1314 rtl_write_word(rtlpriv, CMDR, 0x57FC);
1315 udelay(100);
1316 rtl_write_word(rtlpriv, CMDR, 0x77FC);
1317 rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1318 udelay(10);
1319 rtl_write_word(rtlpriv, CMDR, 0x37FC);
1320 udelay(10);
1321 rtl_write_word(rtlpriv, CMDR, 0x77FC);
1322 udelay(10);
1323 rtl_write_word(rtlpriv, CMDR, 0x57FC);
1324 rtl_write_word(rtlpriv, CMDR, 0x0000);
1325
1326 if (rtlhal->driver_is_goingto_unload) {
1327 u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1328 u1btmp &= ~(BIT(0));
1329 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1330 }
1331
1332 u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1333
1334 /* Add description. After switch control path. register
1335 * after page1 will be invisible. We can not do any IO
1336 * for register>0x40. After resume&MACIO reset, we need
1337 * to remember previous reg content. */
1338 if (u1btmp & BIT(7)) {
1339 u1btmp &= ~(BIT(6) | BIT(7));
1340 if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1341 pr_err("Switch ctrl path fail\n");
1342 return;
1343 }
1344 }
1345
1346 /* Power save for MAC */
1347 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS &&
1348 !rtlhal->driver_is_goingto_unload) {
1349 /* enable LED function */
1350 rtl_write_byte(rtlpriv, 0x03, 0xF9);
1351 /* SW/HW radio off or halt adapter!! For example S3/S4 */
1352 } else {
1353 /* LED function disable. Power range is about 8mA now. */
1354 /* if write 0xF1 disconnect_pci power
1355 * ifconfig wlan0 down power are both high 35:70 */
1356 /* if write oxF9 disconnect_pci power
1357 * ifconfig wlan0 down power are both low 12:45*/
1358 rtl_write_byte(rtlpriv, 0x03, 0xF9);
1359 }
1360
1361 rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1362 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1363 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00);
1364 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1365 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1366 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1367
1368 }
1369
_rtl92se_gen_refreshledstate(struct ieee80211_hw * hw)1370 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1371 {
1372 struct rtl_priv *rtlpriv = rtl_priv(hw);
1373 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1374 enum rtl_led_pin pin0 = rtlpriv->ledctl.sw_led0;
1375
1376 if (rtlpci->up_first_time)
1377 return;
1378
1379 if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1380 rtl92se_sw_led_on(hw, pin0);
1381 else
1382 rtl92se_sw_led_off(hw, pin0);
1383 }
1384
1385
_rtl92se_power_domain_init(struct ieee80211_hw * hw)1386 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1387 {
1388 struct rtl_priv *rtlpriv = rtl_priv(hw);
1389 u16 tmpu2b;
1390 u8 tmpu1b;
1391
1392 rtlpriv->psc.pwrdomain_protect = true;
1393
1394 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1395 if (tmpu1b & BIT(7)) {
1396 tmpu1b &= ~(BIT(6) | BIT(7));
1397 if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1398 rtlpriv->psc.pwrdomain_protect = false;
1399 return;
1400 }
1401 }
1402
1403 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1404 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1405
1406 /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1407 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1408
1409 /* If IPS we need to turn LED on. So we not
1410 * disable BIT 3/7 of reg3. */
1411 if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1412 tmpu1b &= 0xFB;
1413 else
1414 tmpu1b &= 0x73;
1415
1416 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1417 /* wait for BIT 10/11/15 to pull high automatically!! */
1418 mdelay(1);
1419
1420 rtl_write_byte(rtlpriv, CMDR, 0);
1421 rtl_write_byte(rtlpriv, TCR, 0);
1422
1423 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1424 tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1425 tmpu1b |= 0x08;
1426 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1427 tmpu1b &= ~(BIT(3));
1428 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1429
1430 /* Enable AFE clock source */
1431 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1432 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1433 /* Delay 1.5ms */
1434 udelay(1500);
1435 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1436 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1437
1438 /* Enable AFE Macro Block's Bandgap */
1439 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1440 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1441 mdelay(1);
1442
1443 /* Enable AFE Mbias */
1444 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1445 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1446 mdelay(1);
1447
1448 /* Enable LDOA15 block */
1449 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1450 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1451
1452 /* Set Digital Vdd to Retention isolation Path. */
1453 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1454 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1455
1456
1457 /* For warm reboot NIC disappera bug. */
1458 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1459 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1460
1461 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1462
1463 /* Enable AFE PLL Macro Block */
1464 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1465 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1466 /* Enable MAC 80MHZ clock */
1467 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1468 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1469 mdelay(1);
1470
1471 /* Release isolation AFE PLL & MD */
1472 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1473
1474 /* Enable MAC clock */
1475 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1476 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1477
1478 /* Enable Core digital and enable IOREG R/W */
1479 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1480 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1481 /* enable REG_EN */
1482 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1483
1484 /* Switch the control path. */
1485 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1486 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1487
1488 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1489 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1490 if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1491 rtlpriv->psc.pwrdomain_protect = false;
1492 return;
1493 }
1494
1495 rtl_write_word(rtlpriv, CMDR, 0x37FC);
1496
1497 /* After MACIO reset,we must refresh LED state. */
1498 _rtl92se_gen_refreshledstate(hw);
1499
1500 rtlpriv->psc.pwrdomain_protect = false;
1501 }
1502
rtl92se_card_disable(struct ieee80211_hw * hw)1503 void rtl92se_card_disable(struct ieee80211_hw *hw)
1504 {
1505 struct rtl_priv *rtlpriv = rtl_priv(hw);
1506 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1507 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1508 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1509 enum nl80211_iftype opmode;
1510 u8 wait = 30;
1511
1512 rtlpriv->intf_ops->enable_aspm(hw);
1513
1514 if (rtlpci->driver_is_goingto_unload ||
1515 ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1516 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1517
1518 /* we should chnge GPIO to input mode
1519 * this will drop away current about 25mA*/
1520 rtl8192se_gpiobit3_cfg_inputmode(hw);
1521
1522 /* this is very important for ips power save */
1523 while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1524 if (rtlpriv->psc.pwrdomain_protect)
1525 mdelay(20);
1526 else
1527 break;
1528 }
1529
1530 mac->link_state = MAC80211_NOLINK;
1531 opmode = NL80211_IFTYPE_UNSPECIFIED;
1532 _rtl92se_set_media_status(hw, opmode);
1533
1534 _rtl92s_phy_set_rfhalt(hw);
1535 udelay(100);
1536 }
1537
rtl92se_interrupt_recognized(struct ieee80211_hw * hw,struct rtl_int * intvec)1538 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw,
1539 struct rtl_int *intvec)
1540 {
1541 struct rtl_priv *rtlpriv = rtl_priv(hw);
1542 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1543
1544 intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1545 rtl_write_dword(rtlpriv, ISR, intvec->inta);
1546
1547 intvec->intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1548 rtl_write_dword(rtlpriv, ISR + 4, intvec->intb);
1549 }
1550
rtl92se_set_beacon_related_registers(struct ieee80211_hw * hw)1551 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1552 {
1553 struct rtl_priv *rtlpriv = rtl_priv(hw);
1554 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1555 u16 atim_window = 2;
1556
1557 /* ATIM Window (in unit of TU). */
1558 rtl_write_word(rtlpriv, ATIMWND, atim_window);
1559
1560 /* Beacon interval (in unit of TU). */
1561 rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1562
1563 /* DrvErlyInt (in unit of TU). (Time to send
1564 * interrupt to notify driver to change
1565 * beacon content) */
1566 rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1567
1568 /* BcnDMATIM(in unit of us). Indicates the
1569 * time before TBTT to perform beacon queue DMA */
1570 rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1571
1572 /* Force beacon frame transmission even
1573 * after receiving beacon frame from
1574 * other ad hoc STA */
1575 rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1576
1577 /*for beacon changed */
1578 rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1579 }
1580
rtl92se_set_beacon_interval(struct ieee80211_hw * hw)1581 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1582 {
1583 struct rtl_priv *rtlpriv = rtl_priv(hw);
1584 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1585 u16 bcn_interval = mac->beacon_interval;
1586
1587 /* Beacon interval (in unit of TU). */
1588 rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1589 /* 2008.10.24 added by tynli for beacon changed. */
1590 rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1591 }
1592
rtl92se_update_interrupt_mask(struct ieee80211_hw * hw,u32 add_msr,u32 rm_msr)1593 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1594 u32 add_msr, u32 rm_msr)
1595 {
1596 struct rtl_priv *rtlpriv = rtl_priv(hw);
1597 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1598
1599 rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1600 add_msr, rm_msr);
1601
1602 if (add_msr)
1603 rtlpci->irq_mask[0] |= add_msr;
1604
1605 if (rm_msr)
1606 rtlpci->irq_mask[0] &= (~rm_msr);
1607
1608 rtl92se_disable_interrupt(hw);
1609 rtl92se_enable_interrupt(hw);
1610 }
1611
_rtl8192se_get_ic_inferiority(struct ieee80211_hw * hw)1612 static void _rtl8192se_get_ic_inferiority(struct ieee80211_hw *hw)
1613 {
1614 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1615 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1616 u8 efuse_id;
1617
1618 rtlhal->ic_class = IC_INFERIORITY_A;
1619
1620 /* Only retrieving while using EFUSE. */
1621 if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1622 !rtlefuse->autoload_failflag) {
1623 efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1624
1625 if (efuse_id == 0xfe)
1626 rtlhal->ic_class = IC_INFERIORITY_B;
1627 }
1628 }
1629
_rtl92se_read_adapter_info(struct ieee80211_hw * hw)1630 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1631 {
1632 struct rtl_priv *rtlpriv = rtl_priv(hw);
1633 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1634 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1635 struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev;
1636 u16 i, usvalue;
1637 u16 eeprom_id;
1638 u8 tempval;
1639 u8 hwinfo[HWSET_MAX_SIZE_92S];
1640 u8 rf_path, index;
1641
1642 switch (rtlefuse->epromtype) {
1643 case EEPROM_BOOT_EFUSE:
1644 rtl_efuse_shadow_map_update(hw);
1645 break;
1646
1647 case EEPROM_93C46:
1648 pr_err("RTL819X Not boot from eeprom, check it !!\n");
1649 return;
1650
1651 default:
1652 dev_warn(dev, "no efuse data\n");
1653 return;
1654 }
1655
1656 memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1657 HWSET_MAX_SIZE_92S);
1658
1659 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1660 hwinfo, HWSET_MAX_SIZE_92S);
1661
1662 eeprom_id = *((u16 *)&hwinfo[0]);
1663 if (eeprom_id != RTL8190_EEPROM_ID) {
1664 rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
1665 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1666 rtlefuse->autoload_failflag = true;
1667 } else {
1668 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1669 rtlefuse->autoload_failflag = false;
1670 }
1671
1672 if (rtlefuse->autoload_failflag)
1673 return;
1674
1675 _rtl8192se_get_ic_inferiority(hw);
1676
1677 /* Read IC Version && Channel Plan */
1678 /* VID, DID SE 0xA-D */
1679 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1680 rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1681 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1682 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1683 rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1684
1685 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1686 "EEPROMId = 0x%4x\n", eeprom_id);
1687 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1688 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1689 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1690 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1691 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1692 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1693 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1694 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1695
1696 for (i = 0; i < 6; i += 2) {
1697 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1698 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1699 }
1700
1701 for (i = 0; i < 6; i++)
1702 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1703
1704 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1705
1706 /* Get Tx Power Level by Channel */
1707 /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1708 /* 92S suupport RF A & B */
1709 for (rf_path = 0; rf_path < 2; rf_path++) {
1710 for (i = 0; i < 3; i++) {
1711 /* Read CCK RF A & B Tx power */
1712 rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1713 hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1714
1715 /* Read OFDM RF A & B Tx power for 1T */
1716 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1717 hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1718
1719 /* Read OFDM RF A & B Tx power for 2T */
1720 rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1721 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1722 rf_path * 3 + i];
1723 }
1724 }
1725
1726 for (rf_path = 0; rf_path < 2; rf_path++)
1727 for (i = 0; i < 3; i++)
1728 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1729 "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1730 rf_path, i,
1731 rtlefuse->eeprom_chnlarea_txpwr_cck
1732 [rf_path][i]);
1733 for (rf_path = 0; rf_path < 2; rf_path++)
1734 for (i = 0; i < 3; i++)
1735 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1736 "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1737 rf_path, i,
1738 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1739 [rf_path][i]);
1740 for (rf_path = 0; rf_path < 2; rf_path++)
1741 for (i = 0; i < 3; i++)
1742 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1743 "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1744 rf_path, i,
1745 rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1746 [rf_path][i]);
1747
1748 for (rf_path = 0; rf_path < 2; rf_path++) {
1749
1750 /* Assign dedicated channel tx power */
1751 for (i = 0; i < 14; i++) {
1752 /* channel 1~3 use the same Tx Power Level. */
1753 if (i < 3)
1754 index = 0;
1755 /* Channel 4-8 */
1756 else if (i < 8)
1757 index = 1;
1758 /* Channel 9-14 */
1759 else
1760 index = 2;
1761
1762 /* Record A & B CCK /OFDM - 1T/2T Channel area
1763 * tx power */
1764 rtlefuse->txpwrlevel_cck[rf_path][i] =
1765 rtlefuse->eeprom_chnlarea_txpwr_cck
1766 [rf_path][index];
1767 rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
1768 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1769 [rf_path][index];
1770 rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
1771 rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1772 [rf_path][index];
1773 }
1774
1775 for (i = 0; i < 14; i++) {
1776 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1777 "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1778 rf_path, i,
1779 rtlefuse->txpwrlevel_cck[rf_path][i],
1780 rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1781 rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1782 }
1783 }
1784
1785 for (rf_path = 0; rf_path < 2; rf_path++) {
1786 for (i = 0; i < 3; i++) {
1787 /* Read Power diff limit. */
1788 rtlefuse->eeprom_pwrgroup[rf_path][i] =
1789 hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1790 }
1791 }
1792
1793 for (rf_path = 0; rf_path < 2; rf_path++) {
1794 /* Fill Pwr group */
1795 for (i = 0; i < 14; i++) {
1796 /* Chanel 1-3 */
1797 if (i < 3)
1798 index = 0;
1799 /* Channel 4-8 */
1800 else if (i < 8)
1801 index = 1;
1802 /* Channel 9-13 */
1803 else
1804 index = 2;
1805
1806 rtlefuse->pwrgroup_ht20[rf_path][i] =
1807 (rtlefuse->eeprom_pwrgroup[rf_path][index] &
1808 0xf);
1809 rtlefuse->pwrgroup_ht40[rf_path][i] =
1810 ((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1811 0xf0) >> 4);
1812
1813 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1814 "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1815 rf_path, i,
1816 rtlefuse->pwrgroup_ht20[rf_path][i]);
1817 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1818 "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1819 rf_path, i,
1820 rtlefuse->pwrgroup_ht40[rf_path][i]);
1821 }
1822 }
1823
1824 for (i = 0; i < 14; i++) {
1825 /* Read tx power difference between HT OFDM 20/40 MHZ */
1826 /* channel 1-3 */
1827 if (i < 3)
1828 index = 0;
1829 /* Channel 4-8 */
1830 else if (i < 8)
1831 index = 1;
1832 /* Channel 9-14 */
1833 else
1834 index = 2;
1835
1836 tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1837 rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1838 rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1839 ((tempval >> 4) & 0xF);
1840
1841 /* Read OFDM<->HT tx power diff */
1842 /* Channel 1-3 */
1843 if (i < 3)
1844 index = 0;
1845 /* Channel 4-8 */
1846 else if (i < 8)
1847 index = 0x11;
1848 /* Channel 9-14 */
1849 else
1850 index = 1;
1851
1852 tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1853 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1854 (tempval & 0xF);
1855 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1856 ((tempval >> 4) & 0xF);
1857
1858 tempval = hwinfo[TX_PWR_SAFETY_CHK];
1859 rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1860 }
1861
1862 rtlefuse->eeprom_regulatory = 0;
1863 if (rtlefuse->eeprom_version >= 2) {
1864 /* BIT(0)~2 */
1865 if (rtlefuse->eeprom_version >= 4)
1866 rtlefuse->eeprom_regulatory =
1867 (hwinfo[EEPROM_REGULATORY] & 0x7);
1868 else /* BIT(0) */
1869 rtlefuse->eeprom_regulatory =
1870 (hwinfo[EEPROM_REGULATORY] & 0x1);
1871 }
1872 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1873 "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1874
1875 for (i = 0; i < 14; i++)
1876 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1877 "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1878 i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1879 for (i = 0; i < 14; i++)
1880 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1881 "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1882 i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1883 for (i = 0; i < 14; i++)
1884 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1885 "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1886 i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1887 for (i = 0; i < 14; i++)
1888 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1889 "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1890 i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1891
1892 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1893 "TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1894
1895 /* Read RF-indication and Tx Power gain
1896 * index diff of legacy to HT OFDM rate. */
1897 tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1898 rtlefuse->eeprom_txpowerdiff = tempval;
1899 rtlefuse->legacy_ht_txpowerdiff =
1900 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1901
1902 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1903 "TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1904
1905 /* Get TSSI value for each path. */
1906 usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1907 rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1908 usvalue = hwinfo[EEPROM_TSSI_B];
1909 rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1910
1911 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1912 rtlefuse->eeprom_tssi[RF90_PATH_A],
1913 rtlefuse->eeprom_tssi[RF90_PATH_B]);
1914
1915 /* Read antenna tx power offset of B/C/D to A from EEPROM */
1916 /* and read ThermalMeter from EEPROM */
1917 tempval = hwinfo[EEPROM_THERMALMETER];
1918 rtlefuse->eeprom_thermalmeter = tempval;
1919 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1920 "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1921
1922 /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1923 rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1924 rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1925
1926 /* Read CrystalCap from EEPROM */
1927 tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1928 rtlefuse->eeprom_crystalcap = tempval;
1929 /* CrystalCap, BIT(12)~15 */
1930 rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1931
1932 /* Read IC Version && Channel Plan */
1933 /* Version ID, Channel plan */
1934 rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1935 rtlefuse->txpwr_fromeprom = true;
1936 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1937 "EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1938
1939 /* Read Customer ID or Board Type!!! */
1940 tempval = hwinfo[EEPROM_BOARDTYPE];
1941 /* Change RF type definition */
1942 if (tempval == 0)
1943 rtlphy->rf_type = RF_2T2R;
1944 else if (tempval == 1)
1945 rtlphy->rf_type = RF_1T2R;
1946 else if (tempval == 2)
1947 rtlphy->rf_type = RF_1T2R;
1948 else if (tempval == 3)
1949 rtlphy->rf_type = RF_1T1R;
1950
1951 /* 1T2R but 1SS (1x1 receive combining) */
1952 rtlefuse->b1x1_recvcombine = false;
1953 if (rtlphy->rf_type == RF_1T2R) {
1954 tempval = rtl_read_byte(rtlpriv, 0x07);
1955 if (!(tempval & BIT(0))) {
1956 rtlefuse->b1x1_recvcombine = true;
1957 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1958 "RF_TYPE=1T2R but only 1SS\n");
1959 }
1960 }
1961 rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1962 rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
1963
1964 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n",
1965 rtlefuse->eeprom_oemid);
1966
1967 /* set channel paln to world wide 13 */
1968 rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
1969 }
1970
rtl92se_read_eeprom_info(struct ieee80211_hw * hw)1971 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
1972 {
1973 struct rtl_priv *rtlpriv = rtl_priv(hw);
1974 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1975 u8 tmp_u1b = 0;
1976
1977 tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
1978
1979 if (tmp_u1b & BIT(4)) {
1980 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1981 rtlefuse->epromtype = EEPROM_93C46;
1982 } else {
1983 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1984 rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1985 }
1986
1987 if (tmp_u1b & BIT(5)) {
1988 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1989 rtlefuse->autoload_failflag = false;
1990 _rtl92se_read_adapter_info(hw);
1991 } else {
1992 pr_err("Autoload ERR!!\n");
1993 rtlefuse->autoload_failflag = true;
1994 }
1995 }
1996
rtl92se_update_hal_rate_table(struct ieee80211_hw * hw,struct ieee80211_sta * sta)1997 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
1998 struct ieee80211_sta *sta)
1999 {
2000 struct rtl_priv *rtlpriv = rtl_priv(hw);
2001 struct rtl_phy *rtlphy = &(rtlpriv->phy);
2002 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2003 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2004 u32 ratr_value;
2005 u8 ratr_index = 0;
2006 u8 nmode = mac->ht_enable;
2007 u8 mimo_ps = IEEE80211_SMPS_OFF;
2008 u16 shortgi_rate = 0;
2009 u32 tmp_ratr_value = 0;
2010 u8 curtxbw_40mhz = mac->bw_40;
2011 u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2012 1 : 0;
2013 u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2014 1 : 0;
2015 enum wireless_mode wirelessmode = mac->mode;
2016
2017 if (rtlhal->current_bandtype == BAND_ON_5G)
2018 ratr_value = sta->deflink.supp_rates[1] << 4;
2019 else
2020 ratr_value = sta->deflink.supp_rates[0];
2021 if (mac->opmode == NL80211_IFTYPE_ADHOC)
2022 ratr_value = 0xfff;
2023 ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
2024 sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
2025 switch (wirelessmode) {
2026 case WIRELESS_MODE_B:
2027 ratr_value &= 0x0000000D;
2028 break;
2029 case WIRELESS_MODE_G:
2030 ratr_value &= 0x00000FF5;
2031 break;
2032 case WIRELESS_MODE_N_24G:
2033 case WIRELESS_MODE_N_5G:
2034 nmode = 1;
2035 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2036 ratr_value &= 0x0007F005;
2037 } else {
2038 u32 ratr_mask;
2039
2040 if (get_rf_type(rtlphy) == RF_1T2R ||
2041 get_rf_type(rtlphy) == RF_1T1R) {
2042 if (curtxbw_40mhz)
2043 ratr_mask = 0x000ff015;
2044 else
2045 ratr_mask = 0x000ff005;
2046 } else {
2047 if (curtxbw_40mhz)
2048 ratr_mask = 0x0f0ff015;
2049 else
2050 ratr_mask = 0x0f0ff005;
2051 }
2052
2053 ratr_value &= ratr_mask;
2054 }
2055 break;
2056 default:
2057 if (rtlphy->rf_type == RF_1T2R)
2058 ratr_value &= 0x000ff0ff;
2059 else
2060 ratr_value &= 0x0f0ff0ff;
2061
2062 break;
2063 }
2064
2065 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2066 ratr_value &= 0x0FFFFFFF;
2067 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2068 ratr_value &= 0x0FFFFFF0;
2069
2070 if (nmode && ((curtxbw_40mhz &&
2071 curshortgi_40mhz) || (!curtxbw_40mhz &&
2072 curshortgi_20mhz))) {
2073
2074 ratr_value |= 0x10000000;
2075 tmp_ratr_value = (ratr_value >> 12);
2076
2077 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2078 if ((1 << shortgi_rate) & tmp_ratr_value)
2079 break;
2080 }
2081
2082 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2083 (shortgi_rate << 4) | (shortgi_rate);
2084
2085 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2086 }
2087
2088 rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2089 if (ratr_value & 0xfffff000)
2090 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2091 else
2092 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2093
2094 rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2095 rtl_read_dword(rtlpriv, ARFR0));
2096 }
2097
rtl92se_update_hal_rate_mask(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level,bool update_bw)2098 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2099 struct ieee80211_sta *sta,
2100 u8 rssi_level, bool update_bw)
2101 {
2102 struct rtl_priv *rtlpriv = rtl_priv(hw);
2103 struct rtl_phy *rtlphy = &(rtlpriv->phy);
2104 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2105 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2106 struct rtl_sta_info *sta_entry = NULL;
2107 u32 ratr_bitmap;
2108 u8 ratr_index = 0;
2109 u8 curtxbw_40mhz = (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2110 u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2111 1 : 0;
2112 u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2113 1 : 0;
2114 enum wireless_mode wirelessmode = 0;
2115 bool shortgi = false;
2116 u32 ratr_value = 0;
2117 u8 shortgi_rate = 0;
2118 u32 mask = 0;
2119 u32 band = 0;
2120 bool bmulticast = false;
2121 u8 macid = 0;
2122 u8 mimo_ps = IEEE80211_SMPS_OFF;
2123
2124 sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2125 wirelessmode = sta_entry->wireless_mode;
2126 if (mac->opmode == NL80211_IFTYPE_STATION)
2127 curtxbw_40mhz = mac->bw_40;
2128 else if (mac->opmode == NL80211_IFTYPE_AP ||
2129 mac->opmode == NL80211_IFTYPE_ADHOC)
2130 macid = sta->aid + 1;
2131
2132 if (rtlhal->current_bandtype == BAND_ON_5G)
2133 ratr_bitmap = sta->deflink.supp_rates[1] << 4;
2134 else
2135 ratr_bitmap = sta->deflink.supp_rates[0];
2136 if (mac->opmode == NL80211_IFTYPE_ADHOC)
2137 ratr_bitmap = 0xfff;
2138 ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
2139 sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
2140 switch (wirelessmode) {
2141 case WIRELESS_MODE_B:
2142 band |= WIRELESS_11B;
2143 ratr_index = RATR_INX_WIRELESS_B;
2144 if (ratr_bitmap & 0x0000000c)
2145 ratr_bitmap &= 0x0000000d;
2146 else
2147 ratr_bitmap &= 0x0000000f;
2148 break;
2149 case WIRELESS_MODE_G:
2150 band |= (WIRELESS_11G | WIRELESS_11B);
2151 ratr_index = RATR_INX_WIRELESS_GB;
2152
2153 if (rssi_level == 1)
2154 ratr_bitmap &= 0x00000f00;
2155 else if (rssi_level == 2)
2156 ratr_bitmap &= 0x00000ff0;
2157 else
2158 ratr_bitmap &= 0x00000ff5;
2159 break;
2160 case WIRELESS_MODE_A:
2161 band |= WIRELESS_11A;
2162 ratr_index = RATR_INX_WIRELESS_A;
2163 ratr_bitmap &= 0x00000ff0;
2164 break;
2165 case WIRELESS_MODE_N_24G:
2166 case WIRELESS_MODE_N_5G:
2167 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2168 ratr_index = RATR_INX_WIRELESS_NGB;
2169
2170 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2171 if (rssi_level == 1)
2172 ratr_bitmap &= 0x00070000;
2173 else if (rssi_level == 2)
2174 ratr_bitmap &= 0x0007f000;
2175 else
2176 ratr_bitmap &= 0x0007f005;
2177 } else {
2178 if (rtlphy->rf_type == RF_1T2R ||
2179 rtlphy->rf_type == RF_1T1R) {
2180 if (rssi_level == 1) {
2181 ratr_bitmap &= 0x000f0000;
2182 } else if (rssi_level == 3) {
2183 ratr_bitmap &= 0x000fc000;
2184 } else if (rssi_level == 5) {
2185 ratr_bitmap &= 0x000ff000;
2186 } else {
2187 if (curtxbw_40mhz)
2188 ratr_bitmap &= 0x000ff015;
2189 else
2190 ratr_bitmap &= 0x000ff005;
2191 }
2192 } else {
2193 if (rssi_level == 1) {
2194 ratr_bitmap &= 0x0f8f0000;
2195 } else if (rssi_level == 3) {
2196 ratr_bitmap &= 0x0f8fc000;
2197 } else if (rssi_level == 5) {
2198 ratr_bitmap &= 0x0f8ff000;
2199 } else {
2200 if (curtxbw_40mhz)
2201 ratr_bitmap &= 0x0f8ff015;
2202 else
2203 ratr_bitmap &= 0x0f8ff005;
2204 }
2205 }
2206 }
2207
2208 if ((curtxbw_40mhz && curshortgi_40mhz) ||
2209 (!curtxbw_40mhz && curshortgi_20mhz)) {
2210 if (macid == 0)
2211 shortgi = true;
2212 else if (macid == 1)
2213 shortgi = false;
2214 }
2215 break;
2216 default:
2217 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2218 ratr_index = RATR_INX_WIRELESS_NGB;
2219
2220 if (rtlphy->rf_type == RF_1T2R)
2221 ratr_bitmap &= 0x000ff0ff;
2222 else
2223 ratr_bitmap &= 0x0f8ff0ff;
2224 break;
2225 }
2226 sta_entry->ratr_index = ratr_index;
2227
2228 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2229 ratr_bitmap &= 0x0FFFFFFF;
2230 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2231 ratr_bitmap &= 0x0FFFFFF0;
2232
2233 if (shortgi) {
2234 ratr_bitmap |= 0x10000000;
2235 /* Get MAX MCS available. */
2236 ratr_value = (ratr_bitmap >> 12);
2237 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2238 if ((1 << shortgi_rate) & ratr_value)
2239 break;
2240 }
2241
2242 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2243 (shortgi_rate << 4) | (shortgi_rate);
2244 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2245 }
2246
2247 mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2248
2249 rtl_dbg(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2250 mask, ratr_bitmap);
2251 rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2252 rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2253
2254 if (macid != 0)
2255 sta_entry->ratr_index = ratr_index;
2256 }
2257
rtl92se_update_hal_rate_tbl(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level,bool update_bw)2258 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2259 struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
2260 {
2261 struct rtl_priv *rtlpriv = rtl_priv(hw);
2262
2263 if (rtlpriv->dm.useramask)
2264 rtl92se_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
2265 else
2266 rtl92se_update_hal_rate_table(hw, sta);
2267 }
2268
rtl92se_update_channel_access_setting(struct ieee80211_hw * hw)2269 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2270 {
2271 struct rtl_priv *rtlpriv = rtl_priv(hw);
2272 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2273 u16 sifs_timer;
2274
2275 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2276 &mac->slot_time);
2277 sifs_timer = 0x0e0e;
2278 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2279
2280 }
2281
2282 /* this ifunction is for RFKILL, it's different with windows,
2283 * because UI will disable wireless when GPIO Radio Off.
2284 * And here we not check or Disable/Enable ASPM like windows*/
rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw * hw,u8 * valid)2285 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2286 {
2287 struct rtl_priv *rtlpriv = rtl_priv(hw);
2288 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2289 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2290 enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2291 unsigned long flag = 0;
2292 bool actuallyset = false;
2293 bool turnonbypowerdomain = false;
2294
2295 /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2296 if (rtlpci->up_first_time || rtlpci->being_init_adapter)
2297 return false;
2298
2299 if (ppsc->swrf_processing)
2300 return false;
2301
2302 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2303 if (ppsc->rfchange_inprogress) {
2304 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2305 return false;
2306 } else {
2307 ppsc->rfchange_inprogress = true;
2308 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2309 }
2310
2311 /* cur_rfstate = ppsc->rfpwr_state;*/
2312
2313 /* because after _rtl92s_phy_set_rfhalt, all power
2314 * closed, so we must open some power for GPIO check,
2315 * or we will always check GPIO RFOFF here,
2316 * And we should close power after GPIO check */
2317 if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2318 _rtl92se_power_domain_init(hw);
2319 turnonbypowerdomain = true;
2320 }
2321
2322 rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2323
2324 if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2325 rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2326 "RFKILL-HW Radio ON, RF ON\n");
2327
2328 rfpwr_toset = ERFON;
2329 ppsc->hwradiooff = false;
2330 actuallyset = true;
2331 } else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2332 rtl_dbg(rtlpriv, COMP_RF,
2333 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2334
2335 rfpwr_toset = ERFOFF;
2336 ppsc->hwradiooff = true;
2337 actuallyset = true;
2338 }
2339
2340 if (actuallyset) {
2341 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2342 ppsc->rfchange_inprogress = false;
2343 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2344
2345 /* this not include ifconfig wlan0 down case */
2346 /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2347 } else {
2348 /* because power_domain_init may be happen when
2349 * _rtl92s_phy_set_rfhalt, this will open some powers
2350 * and cause current increasing about 40 mA for ips,
2351 * rfoff and ifconfig down, so we set
2352 * _rtl92s_phy_set_rfhalt again here */
2353 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2354 turnonbypowerdomain) {
2355 _rtl92s_phy_set_rfhalt(hw);
2356 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2357 }
2358
2359 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2360 ppsc->rfchange_inprogress = false;
2361 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2362 }
2363
2364 *valid = 1;
2365 return !ppsc->hwradiooff;
2366
2367 }
2368
2369 /* Is_wepkey just used for WEP used as group & pairwise key
2370 * if pairwise is AES ang group is WEP Is_wepkey == false.*/
rtl92se_set_key(struct ieee80211_hw * hw,u32 key_index,u8 * p_macaddr,bool is_group,u8 enc_algo,bool is_wepkey,bool clear_all)2371 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2372 bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2373 {
2374 struct rtl_priv *rtlpriv = rtl_priv(hw);
2375 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2376 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2377 u8 *macaddr = p_macaddr;
2378
2379 u32 entry_id = 0;
2380 bool is_pairwise = false;
2381
2382 static u8 cam_const_addr[4][6] = {
2383 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2384 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2385 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2386 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2387 };
2388 static u8 cam_const_broad[] = {
2389 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2390 };
2391
2392 if (clear_all) {
2393 u8 idx = 0;
2394 u8 cam_offset = 0;
2395 u8 clear_number = 5;
2396
2397 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2398
2399 for (idx = 0; idx < clear_number; idx++) {
2400 rtl_cam_mark_invalid(hw, cam_offset + idx);
2401 rtl_cam_empty_entry(hw, cam_offset + idx);
2402
2403 if (idx < 5) {
2404 memset(rtlpriv->sec.key_buf[idx], 0,
2405 MAX_KEY_LEN);
2406 rtlpriv->sec.key_len[idx] = 0;
2407 }
2408 }
2409
2410 } else {
2411 switch (enc_algo) {
2412 case WEP40_ENCRYPTION:
2413 enc_algo = CAM_WEP40;
2414 break;
2415 case WEP104_ENCRYPTION:
2416 enc_algo = CAM_WEP104;
2417 break;
2418 case TKIP_ENCRYPTION:
2419 enc_algo = CAM_TKIP;
2420 break;
2421 case AESCCMP_ENCRYPTION:
2422 enc_algo = CAM_AES;
2423 break;
2424 default:
2425 pr_err("switch case %#x not processed\n",
2426 enc_algo);
2427 enc_algo = CAM_TKIP;
2428 break;
2429 }
2430
2431 if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2432 macaddr = cam_const_addr[key_index];
2433 entry_id = key_index;
2434 } else {
2435 if (is_group) {
2436 macaddr = cam_const_broad;
2437 entry_id = key_index;
2438 } else {
2439 if (mac->opmode == NL80211_IFTYPE_AP) {
2440 entry_id = rtl_cam_get_free_entry(hw,
2441 p_macaddr);
2442 if (entry_id >= TOTAL_CAM_ENTRY) {
2443 pr_err("Can not find free hw security cam entry\n");
2444 return;
2445 }
2446 } else {
2447 entry_id = CAM_PAIRWISE_KEY_POSITION;
2448 }
2449
2450 key_index = PAIRWISE_KEYIDX;
2451 is_pairwise = true;
2452 }
2453 }
2454
2455 if (rtlpriv->sec.key_len[key_index] == 0) {
2456 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2457 "delete one entry, entry_id is %d\n",
2458 entry_id);
2459 if (mac->opmode == NL80211_IFTYPE_AP)
2460 rtl_cam_del_entry(hw, p_macaddr);
2461 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2462 } else {
2463 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2464 "add one entry\n");
2465 if (is_pairwise) {
2466 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2467 "set Pairwise key\n");
2468
2469 rtl_cam_add_one_entry(hw, macaddr, key_index,
2470 entry_id, enc_algo,
2471 CAM_CONFIG_NO_USEDK,
2472 rtlpriv->sec.key_buf[key_index]);
2473 } else {
2474 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2475 "set group key\n");
2476
2477 if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2478 rtl_cam_add_one_entry(hw,
2479 rtlefuse->dev_addr,
2480 PAIRWISE_KEYIDX,
2481 CAM_PAIRWISE_KEY_POSITION,
2482 enc_algo, CAM_CONFIG_NO_USEDK,
2483 rtlpriv->sec.key_buf[entry_id]);
2484 }
2485
2486 rtl_cam_add_one_entry(hw, macaddr, key_index,
2487 entry_id, enc_algo,
2488 CAM_CONFIG_NO_USEDK,
2489 rtlpriv->sec.key_buf[entry_id]);
2490 }
2491
2492 }
2493 }
2494 }
2495
rtl92se_suspend(struct ieee80211_hw * hw)2496 void rtl92se_suspend(struct ieee80211_hw *hw)
2497 {
2498 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2499
2500 rtlpci->up_first_time = true;
2501 }
2502
rtl92se_resume(struct ieee80211_hw * hw)2503 void rtl92se_resume(struct ieee80211_hw *hw)
2504 {
2505 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2506 u32 val;
2507
2508 pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2509 if ((val & 0x0000ff00) != 0)
2510 pci_write_config_dword(rtlpci->pdev, 0x40,
2511 val & 0xffff00ff);
2512 }
2513