xref: /linux/drivers/rtc/class.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC subsystem, base class
4  *
5  * Copyright (C) 2005 Tower Technologies
6  * Author: Alessandro Zummo <a.zummo@towertech.it>
7  *
8  * class skeleton from drivers/hwmon/hwmon.c
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/rtc.h>
16 #include <linux/kdev_t.h>
17 #include <linux/idr.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 
21 #include "rtc-core.h"
22 
23 static DEFINE_IDA(rtc_ida);
24 
rtc_device_release(struct device * dev)25 static void rtc_device_release(struct device *dev)
26 {
27 	struct rtc_device *rtc = to_rtc_device(dev);
28 	struct timerqueue_head *head = &rtc->timerqueue;
29 	struct timerqueue_node *node;
30 
31 	mutex_lock(&rtc->ops_lock);
32 	while ((node = timerqueue_getnext(head)))
33 		timerqueue_del(head, node);
34 	mutex_unlock(&rtc->ops_lock);
35 
36 	cancel_work_sync(&rtc->irqwork);
37 
38 	ida_free(&rtc_ida, rtc->id);
39 	mutex_destroy(&rtc->ops_lock);
40 	kfree(rtc);
41 }
42 
43 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
44 /* Result of the last RTC to system clock attempt. */
45 int rtc_hctosys_ret = -ENODEV;
46 
47 /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
48  * whether it stores the most close value or the value with partial
49  * seconds truncated. However, it is important that we use it to store
50  * the truncated value. This is because otherwise it is necessary,
51  * in an rtc sync function, to read both xtime.tv_sec and
52  * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
53  * of >32bits is not possible. So storing the most close value would
54  * slow down the sync API. So here we have the truncated value and
55  * the best guess is to add 0.5s.
56  */
57 
rtc_hctosys(struct rtc_device * rtc)58 static void rtc_hctosys(struct rtc_device *rtc)
59 {
60 	int err;
61 	struct rtc_time tm;
62 	struct timespec64 tv64 = {
63 		.tv_nsec = NSEC_PER_SEC >> 1,
64 	};
65 
66 	err = rtc_read_time(rtc, &tm);
67 	if (err) {
68 		dev_err(rtc->dev.parent,
69 			"hctosys: unable to read the hardware clock\n");
70 		goto err_read;
71 	}
72 
73 	tv64.tv_sec = rtc_tm_to_time64(&tm);
74 
75 #if BITS_PER_LONG == 32
76 	if (tv64.tv_sec > INT_MAX) {
77 		err = -ERANGE;
78 		goto err_read;
79 	}
80 #endif
81 
82 	err = do_settimeofday64(&tv64);
83 
84 	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
85 		 &tm, (long long)tv64.tv_sec);
86 
87 err_read:
88 	rtc_hctosys_ret = err;
89 }
90 #endif
91 
92 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
93 /*
94  * On suspend(), measure the delta between one RTC and the
95  * system's wall clock; restore it on resume().
96  */
97 
98 static struct timespec64 old_rtc, old_system, old_delta;
99 
rtc_suspend(struct device * dev)100 static int rtc_suspend(struct device *dev)
101 {
102 	struct rtc_device	*rtc = to_rtc_device(dev);
103 	struct rtc_time		tm;
104 	struct timespec64	delta, delta_delta;
105 	int err;
106 
107 	if (timekeeping_rtc_skipsuspend())
108 		return 0;
109 
110 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
111 		return 0;
112 
113 	/* snapshot the current RTC and system time at suspend*/
114 	err = rtc_read_time(rtc, &tm);
115 	if (err < 0) {
116 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
117 		return 0;
118 	}
119 
120 	ktime_get_real_ts64(&old_system);
121 	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
122 
123 	/*
124 	 * To avoid drift caused by repeated suspend/resumes,
125 	 * which each can add ~1 second drift error,
126 	 * try to compensate so the difference in system time
127 	 * and rtc time stays close to constant.
128 	 */
129 	delta = timespec64_sub(old_system, old_rtc);
130 	delta_delta = timespec64_sub(delta, old_delta);
131 	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
132 		/*
133 		 * if delta_delta is too large, assume time correction
134 		 * has occurred and set old_delta to the current delta.
135 		 */
136 		old_delta = delta;
137 	} else {
138 		/* Otherwise try to adjust old_system to compensate */
139 		old_system = timespec64_sub(old_system, delta_delta);
140 	}
141 
142 	return 0;
143 }
144 
rtc_resume(struct device * dev)145 static int rtc_resume(struct device *dev)
146 {
147 	struct rtc_device	*rtc = to_rtc_device(dev);
148 	struct rtc_time		tm;
149 	struct timespec64	new_system, new_rtc;
150 	struct timespec64	sleep_time;
151 	int err;
152 
153 	if (timekeeping_rtc_skipresume())
154 		return 0;
155 
156 	rtc_hctosys_ret = -ENODEV;
157 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
158 		return 0;
159 
160 	/* snapshot the current rtc and system time at resume */
161 	ktime_get_real_ts64(&new_system);
162 	err = rtc_read_time(rtc, &tm);
163 	if (err < 0) {
164 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
165 		return 0;
166 	}
167 
168 	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
169 	new_rtc.tv_nsec = 0;
170 
171 	if (new_rtc.tv_sec < old_rtc.tv_sec) {
172 		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
173 		return 0;
174 	}
175 
176 	/* calculate the RTC time delta (sleep time)*/
177 	sleep_time = timespec64_sub(new_rtc, old_rtc);
178 
179 	/*
180 	 * Since these RTC suspend/resume handlers are not called
181 	 * at the very end of suspend or the start of resume,
182 	 * some run-time may pass on either sides of the sleep time
183 	 * so subtract kernel run-time between rtc_suspend to rtc_resume
184 	 * to keep things accurate.
185 	 */
186 	sleep_time = timespec64_sub(sleep_time,
187 				    timespec64_sub(new_system, old_system));
188 
189 	if (sleep_time.tv_sec >= 0)
190 		timekeeping_inject_sleeptime64(&sleep_time);
191 	rtc_hctosys_ret = 0;
192 	return 0;
193 }
194 
195 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
196 #define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
197 #else
198 #define RTC_CLASS_DEV_PM_OPS	NULL
199 #endif
200 
201 const struct class rtc_class = {
202 	.name = "rtc",
203 	.pm = RTC_CLASS_DEV_PM_OPS,
204 };
205 
206 /* Ensure the caller will set the id before releasing the device */
rtc_allocate_device(void)207 static struct rtc_device *rtc_allocate_device(void)
208 {
209 	struct rtc_device *rtc;
210 
211 	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
212 	if (!rtc)
213 		return NULL;
214 
215 	device_initialize(&rtc->dev);
216 
217 	/*
218 	 * Drivers can revise this default after allocating the device.
219 	 * The default is what most RTCs do: Increment seconds exactly one
220 	 * second after the write happened. This adds a default transport
221 	 * time of 5ms which is at least halfways close to reality.
222 	 */
223 	rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
224 
225 	rtc->irq_freq = 1;
226 	rtc->max_user_freq = 64;
227 	rtc->dev.class = &rtc_class;
228 	rtc->dev.groups = rtc_get_dev_attribute_groups();
229 	rtc->dev.release = rtc_device_release;
230 
231 	mutex_init(&rtc->ops_lock);
232 	spin_lock_init(&rtc->irq_lock);
233 	init_waitqueue_head(&rtc->irq_queue);
234 
235 	/* Init timerqueue */
236 	timerqueue_init_head(&rtc->timerqueue);
237 	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
238 	/* Init aie timer */
239 	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
240 	/* Init uie timer */
241 	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
242 	/* Init pie timer */
243 	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
244 	rtc->pie_timer.function = rtc_pie_update_irq;
245 	rtc->pie_enabled = 0;
246 
247 	set_bit(RTC_FEATURE_ALARM, rtc->features);
248 	set_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features);
249 
250 	return rtc;
251 }
252 
rtc_device_get_id(struct device * dev)253 static int rtc_device_get_id(struct device *dev)
254 {
255 	int of_id = -1, id = -1;
256 
257 	if (dev->of_node)
258 		of_id = of_alias_get_id(dev->of_node, "rtc");
259 	else if (dev->parent && dev->parent->of_node)
260 		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
261 
262 	if (of_id >= 0) {
263 		id = ida_alloc_range(&rtc_ida, of_id, of_id, GFP_KERNEL);
264 		if (id < 0)
265 			dev_warn(dev, "/aliases ID %d not available\n", of_id);
266 	}
267 
268 	if (id < 0)
269 		id = ida_alloc(&rtc_ida, GFP_KERNEL);
270 
271 	return id;
272 }
273 
rtc_device_get_offset(struct rtc_device * rtc)274 static void rtc_device_get_offset(struct rtc_device *rtc)
275 {
276 	time64_t range_secs;
277 	u32 start_year;
278 	int ret;
279 
280 	/*
281 	 * If RTC driver did not implement the range of RTC hardware device,
282 	 * then we can not expand the RTC range by adding or subtracting one
283 	 * offset.
284 	 */
285 	if (rtc->range_min == rtc->range_max)
286 		return;
287 
288 	ret = device_property_read_u32(rtc->dev.parent, "start-year",
289 				       &start_year);
290 	if (!ret) {
291 		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
292 		rtc->set_start_time = true;
293 	}
294 
295 	/*
296 	 * If user did not implement the start time for RTC driver, then no
297 	 * need to expand the RTC range.
298 	 */
299 	if (!rtc->set_start_time)
300 		return;
301 
302 	range_secs = rtc->range_max - rtc->range_min + 1;
303 
304 	/*
305 	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
306 	 * supported by RTC hardware or the maximum seconds of new expanded
307 	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
308 	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
309 	 * RTC hardware will be mapped to start_secs by adding one offset, so
310 	 * the offset seconds calculation formula should be:
311 	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
312 	 *
313 	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
314 	 * supported by RTC hardware, then there is one region is overlapped
315 	 * between the original RTC hardware range and the new expanded range,
316 	 * and this overlapped region do not need to be mapped into the new
317 	 * expanded range due to it is valid for RTC device. So the minimum
318 	 * seconds of RTC hardware (rtc->range_min) should be mapped to
319 	 * rtc->range_max + 1, then the offset seconds formula should be:
320 	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
321 	 *
322 	 * If the start_secs is less than the minimum seconds (rtc->range_min),
323 	 * which is similar to case 2. So the start_secs should be mapped to
324 	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
325 	 * offset seconds formula should be:
326 	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
327 	 *
328 	 * Otherwise the offset seconds should be 0.
329 	 */
330 	if (rtc->start_secs > rtc->range_max ||
331 	    rtc->start_secs + range_secs - 1 < rtc->range_min)
332 		rtc->offset_secs = rtc->start_secs - rtc->range_min;
333 	else if (rtc->start_secs > rtc->range_min)
334 		rtc->offset_secs = range_secs;
335 	else if (rtc->start_secs < rtc->range_min)
336 		rtc->offset_secs = -range_secs;
337 	else
338 		rtc->offset_secs = 0;
339 }
340 
devm_rtc_unregister_device(void * data)341 static void devm_rtc_unregister_device(void *data)
342 {
343 	struct rtc_device *rtc = data;
344 
345 	mutex_lock(&rtc->ops_lock);
346 	/*
347 	 * Remove innards of this RTC, then disable it, before
348 	 * letting any rtc_class_open() users access it again
349 	 */
350 	rtc_proc_del_device(rtc);
351 	if (!test_bit(RTC_NO_CDEV, &rtc->flags))
352 		cdev_device_del(&rtc->char_dev, &rtc->dev);
353 	rtc->ops = NULL;
354 	mutex_unlock(&rtc->ops_lock);
355 }
356 
devm_rtc_release_device(void * res)357 static void devm_rtc_release_device(void *res)
358 {
359 	struct rtc_device *rtc = res;
360 
361 	put_device(&rtc->dev);
362 }
363 
devm_rtc_allocate_device(struct device * dev)364 struct rtc_device *devm_rtc_allocate_device(struct device *dev)
365 {
366 	struct rtc_device *rtc;
367 	int id, err;
368 
369 	id = rtc_device_get_id(dev);
370 	if (id < 0)
371 		return ERR_PTR(id);
372 
373 	rtc = rtc_allocate_device();
374 	if (!rtc) {
375 		ida_free(&rtc_ida, id);
376 		return ERR_PTR(-ENOMEM);
377 	}
378 
379 	rtc->id = id;
380 	rtc->dev.parent = dev;
381 	err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
382 	if (err)
383 		return ERR_PTR(err);
384 
385 	err = dev_set_name(&rtc->dev, "rtc%d", id);
386 	if (err)
387 		return ERR_PTR(err);
388 
389 	return rtc;
390 }
391 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
392 
__devm_rtc_register_device(struct module * owner,struct rtc_device * rtc)393 int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
394 {
395 	struct rtc_wkalrm alrm;
396 	int err;
397 
398 	if (!rtc->ops) {
399 		dev_dbg(&rtc->dev, "no ops set\n");
400 		return -EINVAL;
401 	}
402 
403 	if (!rtc->ops->set_alarm)
404 		clear_bit(RTC_FEATURE_ALARM, rtc->features);
405 
406 	if (rtc->ops->set_offset)
407 		set_bit(RTC_FEATURE_CORRECTION, rtc->features);
408 
409 	rtc->owner = owner;
410 	rtc_device_get_offset(rtc);
411 
412 	/* Check to see if there is an ALARM already set in hw */
413 	err = __rtc_read_alarm(rtc, &alrm);
414 	if (!err && !rtc_valid_tm(&alrm.time))
415 		rtc_initialize_alarm(rtc, &alrm);
416 
417 	rtc_dev_prepare(rtc);
418 
419 	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
420 	if (err) {
421 		set_bit(RTC_NO_CDEV, &rtc->flags);
422 		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
423 			 MAJOR(rtc->dev.devt), rtc->id);
424 	} else {
425 		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
426 			MAJOR(rtc->dev.devt), rtc->id);
427 	}
428 
429 	rtc_proc_add_device(rtc);
430 
431 	dev_info(rtc->dev.parent, "registered as %s\n",
432 		 dev_name(&rtc->dev));
433 
434 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
435 	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
436 		rtc_hctosys(rtc);
437 #endif
438 
439 	return devm_add_action_or_reset(rtc->dev.parent,
440 					devm_rtc_unregister_device, rtc);
441 }
442 EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
443 
444 /**
445  * devm_rtc_device_register - resource managed rtc_device_register()
446  * @dev: the device to register
447  * @name: the name of the device (unused)
448  * @ops: the rtc operations structure
449  * @owner: the module owner
450  *
451  * @return a struct rtc on success, or an ERR_PTR on error
452  *
453  * Managed rtc_device_register(). The rtc_device returned from this function
454  * are automatically freed on driver detach.
455  * This function is deprecated, use devm_rtc_allocate_device and
456  * rtc_register_device instead
457  */
devm_rtc_device_register(struct device * dev,const char * name,const struct rtc_class_ops * ops,struct module * owner)458 struct rtc_device *devm_rtc_device_register(struct device *dev,
459 					    const char *name,
460 					    const struct rtc_class_ops *ops,
461 					    struct module *owner)
462 {
463 	struct rtc_device *rtc;
464 	int err;
465 
466 	rtc = devm_rtc_allocate_device(dev);
467 	if (IS_ERR(rtc))
468 		return rtc;
469 
470 	rtc->ops = ops;
471 
472 	err = __devm_rtc_register_device(owner, rtc);
473 	if (err)
474 		return ERR_PTR(err);
475 
476 	return rtc;
477 }
478 EXPORT_SYMBOL_GPL(devm_rtc_device_register);
479 
rtc_init(void)480 static int __init rtc_init(void)
481 {
482 	int err;
483 
484 	err = class_register(&rtc_class);
485 	if (err)
486 		return err;
487 
488 	rtc_dev_init();
489 
490 	return 0;
491 }
492 subsys_initcall(rtc_init);
493