1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __NET_CFG80211_H
3 #define __NET_CFG80211_H
4 /*
5 * 802.11 device and configuration interface
6 *
7 * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
8 * Copyright 2013-2014 Intel Mobile Communications GmbH
9 * Copyright 2015-2017 Intel Deutschland GmbH
10 * Copyright (C) 2018-2025 Intel Corporation
11 */
12
13 #include <linux/ethtool.h>
14 #include <uapi/linux/rfkill.h>
15 #include <linux/netdevice.h>
16 #include <linux/debugfs.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/netlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/nl80211.h>
22 #include <linux/if_ether.h>
23 #include <linux/ieee80211.h>
24 #include <linux/net.h>
25 #include <linux/rfkill.h>
26 #include <net/regulatory.h>
27
28 /**
29 * DOC: Introduction
30 *
31 * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges
32 * userspace and drivers, and offers some utility functionality associated
33 * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used
34 * by all modern wireless drivers in Linux, so that they offer a consistent
35 * API through nl80211. For backward compatibility, cfg80211 also offers
36 * wireless extensions to userspace, but hides them from drivers completely.
37 *
38 * Additionally, cfg80211 contains code to help enforce regulatory spectrum
39 * use restrictions.
40 */
41
42
43 /**
44 * DOC: Device registration
45 *
46 * In order for a driver to use cfg80211, it must register the hardware device
47 * with cfg80211. This happens through a number of hardware capability structs
48 * described below.
49 *
50 * The fundamental structure for each device is the 'wiphy', of which each
51 * instance describes a physical wireless device connected to the system. Each
52 * such wiphy can have zero, one, or many virtual interfaces associated with
53 * it, which need to be identified as such by pointing the network interface's
54 * @ieee80211_ptr pointer to a &struct wireless_dev which further describes
55 * the wireless part of the interface. Normally this struct is embedded in the
56 * network interface's private data area. Drivers can optionally allow creating
57 * or destroying virtual interfaces on the fly, but without at least one or the
58 * ability to create some the wireless device isn't useful.
59 *
60 * Each wiphy structure contains device capability information, and also has
61 * a pointer to the various operations the driver offers. The definitions and
62 * structures here describe these capabilities in detail.
63 */
64
65 struct wiphy;
66
67 /*
68 * wireless hardware capability structures
69 */
70
71 /**
72 * enum ieee80211_channel_flags - channel flags
73 *
74 * Channel flags set by the regulatory control code.
75 *
76 * @IEEE80211_CHAN_DISABLED: This channel is disabled.
77 * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes
78 * sending probe requests or beaconing.
79 * @IEEE80211_CHAN_PSD: Power spectral density (in dBm) is set for this
80 * channel.
81 * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
82 * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
83 * is not permitted.
84 * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
85 * is not permitted.
86 * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel.
87 * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band,
88 * this flag indicates that an 80 MHz channel cannot use this
89 * channel as the control or any of the secondary channels.
90 * This may be due to the driver or due to regulatory bandwidth
91 * restrictions.
92 * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band,
93 * this flag indicates that an 160 MHz channel cannot use this
94 * channel as the control or any of the secondary channels.
95 * This may be due to the driver or due to regulatory bandwidth
96 * restrictions.
97 * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY
98 * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT
99 * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted
100 * on this channel.
101 * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted
102 * on this channel.
103 * @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel.
104 * @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band,
105 * this flag indicates that a 320 MHz channel cannot use this
106 * channel as the control or any of the secondary channels.
107 * This may be due to the driver or due to regulatory bandwidth
108 * restrictions.
109 * @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel.
110 * @IEEE80211_CHAN_DFS_CONCURRENT: See %NL80211_RRF_DFS_CONCURRENT
111 * @IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT: Client connection with VLP AP
112 * not permitted using this channel
113 * @IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT: Client connection with AFC AP
114 * not permitted using this channel
115 * @IEEE80211_CHAN_CAN_MONITOR: This channel can be used for monitor
116 * mode even in the presence of other (regulatory) restrictions,
117 * even if it is otherwise disabled.
118 * @IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP: Allow using this channel for AP operation
119 * with very low power (VLP), even if otherwise set to NO_IR.
120 * @IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY: Allow activity on a 20 MHz channel,
121 * even if otherwise set to NO_IR.
122 * @IEEE80211_CHAN_S1G_NO_PRIMARY: Prevents the channel for use as an S1G
123 * primary channel. Does not prevent the wider operating channel
124 * described by the chandef from being used. In order for a 2MHz primary
125 * to be used, both 1MHz subchannels shall not contain this flag.
126 * @IEEE80211_CHAN_NO_4MHZ: 4 MHz bandwidth is not permitted on this channel.
127 * @IEEE80211_CHAN_NO_8MHZ: 8 MHz bandwidth is not permitted on this channel.
128 * @IEEE80211_CHAN_NO_16MHZ: 16 MHz bandwidth is not permitted on this channel.
129 */
130 enum ieee80211_channel_flags {
131 IEEE80211_CHAN_DISABLED = BIT(0),
132 IEEE80211_CHAN_NO_IR = BIT(1),
133 IEEE80211_CHAN_PSD = BIT(2),
134 IEEE80211_CHAN_RADAR = BIT(3),
135 IEEE80211_CHAN_NO_HT40PLUS = BIT(4),
136 IEEE80211_CHAN_NO_HT40MINUS = BIT(5),
137 IEEE80211_CHAN_NO_OFDM = BIT(6),
138 IEEE80211_CHAN_NO_80MHZ = BIT(7),
139 IEEE80211_CHAN_NO_160MHZ = BIT(8),
140 IEEE80211_CHAN_INDOOR_ONLY = BIT(9),
141 IEEE80211_CHAN_IR_CONCURRENT = BIT(10),
142 IEEE80211_CHAN_NO_20MHZ = BIT(11),
143 IEEE80211_CHAN_NO_10MHZ = BIT(12),
144 IEEE80211_CHAN_NO_HE = BIT(13),
145 /* can use free bits here */
146 IEEE80211_CHAN_NO_320MHZ = BIT(19),
147 IEEE80211_CHAN_NO_EHT = BIT(20),
148 IEEE80211_CHAN_DFS_CONCURRENT = BIT(21),
149 IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT = BIT(22),
150 IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT = BIT(23),
151 IEEE80211_CHAN_CAN_MONITOR = BIT(24),
152 IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP = BIT(25),
153 IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY = BIT(26),
154 IEEE80211_CHAN_S1G_NO_PRIMARY = BIT(27),
155 IEEE80211_CHAN_NO_4MHZ = BIT(28),
156 IEEE80211_CHAN_NO_8MHZ = BIT(29),
157 IEEE80211_CHAN_NO_16MHZ = BIT(30),
158 };
159
160 #define IEEE80211_CHAN_NO_HT40 \
161 (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS)
162
163 #define IEEE80211_DFS_MIN_CAC_TIME_MS 60000
164 #define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000)
165
166 /**
167 * struct ieee80211_channel - channel definition
168 *
169 * This structure describes a single channel for use
170 * with cfg80211.
171 *
172 * @center_freq: center frequency in MHz
173 * @freq_offset: offset from @center_freq, in KHz
174 * @hw_value: hardware-specific value for the channel
175 * @flags: channel flags from &enum ieee80211_channel_flags.
176 * @orig_flags: channel flags at registration time, used by regulatory
177 * code to support devices with additional restrictions
178 * @band: band this channel belongs to.
179 * @max_antenna_gain: maximum antenna gain in dBi
180 * @max_power: maximum transmission power (in dBm)
181 * @max_reg_power: maximum regulatory transmission power (in dBm)
182 * @beacon_found: helper to regulatory code to indicate when a beacon
183 * has been found on this channel. Use regulatory_hint_found_beacon()
184 * to enable this, this is useful only on 5 GHz band.
185 * @orig_mag: internal use
186 * @orig_mpwr: internal use
187 * @dfs_state: current state of this channel. Only relevant if radar is required
188 * on this channel.
189 * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered.
190 * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels.
191 * @psd: power spectral density (in dBm)
192 */
193 struct ieee80211_channel {
194 enum nl80211_band band;
195 u32 center_freq;
196 u16 freq_offset;
197 u16 hw_value;
198 u32 flags;
199 int max_antenna_gain;
200 int max_power;
201 int max_reg_power;
202 bool beacon_found;
203 u32 orig_flags;
204 int orig_mag, orig_mpwr;
205 enum nl80211_dfs_state dfs_state;
206 unsigned long dfs_state_entered;
207 unsigned int dfs_cac_ms;
208 s8 psd;
209 };
210
211 /**
212 * enum ieee80211_rate_flags - rate flags
213 *
214 * Hardware/specification flags for rates. These are structured
215 * in a way that allows using the same bitrate structure for
216 * different bands/PHY modes.
217 *
218 * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
219 * preamble on this bitrate; only relevant in 2.4GHz band and
220 * with CCK rates.
221 * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
222 * when used with 802.11a (on the 5 GHz band); filled by the
223 * core code when registering the wiphy.
224 * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
225 * when used with 802.11b (on the 2.4 GHz band); filled by the
226 * core code when registering the wiphy.
227 * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
228 * when used with 802.11g (on the 2.4 GHz band); filled by the
229 * core code when registering the wiphy.
230 * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
231 * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode
232 * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode
233 */
234 enum ieee80211_rate_flags {
235 IEEE80211_RATE_SHORT_PREAMBLE = BIT(0),
236 IEEE80211_RATE_MANDATORY_A = BIT(1),
237 IEEE80211_RATE_MANDATORY_B = BIT(2),
238 IEEE80211_RATE_MANDATORY_G = BIT(3),
239 IEEE80211_RATE_ERP_G = BIT(4),
240 IEEE80211_RATE_SUPPORTS_5MHZ = BIT(5),
241 IEEE80211_RATE_SUPPORTS_10MHZ = BIT(6),
242 };
243
244 /**
245 * enum ieee80211_bss_type - BSS type filter
246 *
247 * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS
248 * @IEEE80211_BSS_TYPE_PBSS: Personal BSS
249 * @IEEE80211_BSS_TYPE_IBSS: Independent BSS
250 * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS
251 * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type
252 */
253 enum ieee80211_bss_type {
254 IEEE80211_BSS_TYPE_ESS,
255 IEEE80211_BSS_TYPE_PBSS,
256 IEEE80211_BSS_TYPE_IBSS,
257 IEEE80211_BSS_TYPE_MBSS,
258 IEEE80211_BSS_TYPE_ANY
259 };
260
261 /**
262 * enum ieee80211_privacy - BSS privacy filter
263 *
264 * @IEEE80211_PRIVACY_ON: privacy bit set
265 * @IEEE80211_PRIVACY_OFF: privacy bit clear
266 * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting
267 */
268 enum ieee80211_privacy {
269 IEEE80211_PRIVACY_ON,
270 IEEE80211_PRIVACY_OFF,
271 IEEE80211_PRIVACY_ANY
272 };
273
274 #define IEEE80211_PRIVACY(x) \
275 ((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF)
276
277 /**
278 * struct ieee80211_rate - bitrate definition
279 *
280 * This structure describes a bitrate that an 802.11 PHY can
281 * operate with. The two values @hw_value and @hw_value_short
282 * are only for driver use when pointers to this structure are
283 * passed around.
284 *
285 * @flags: rate-specific flags from &enum ieee80211_rate_flags
286 * @bitrate: bitrate in units of 100 Kbps
287 * @hw_value: driver/hardware value for this rate
288 * @hw_value_short: driver/hardware value for this rate when
289 * short preamble is used
290 */
291 struct ieee80211_rate {
292 u32 flags;
293 u16 bitrate;
294 u16 hw_value, hw_value_short;
295 };
296
297 /**
298 * struct ieee80211_he_obss_pd - AP settings for spatial reuse
299 *
300 * @enable: is the feature enabled.
301 * @sr_ctrl: The SR Control field of SRP element.
302 * @non_srg_max_offset: non-SRG maximum tx power offset
303 * @min_offset: minimal tx power offset an associated station shall use
304 * @max_offset: maximum tx power offset an associated station shall use
305 * @bss_color_bitmap: bitmap that indicates the BSS color values used by
306 * members of the SRG
307 * @partial_bssid_bitmap: bitmap that indicates the partial BSSID values
308 * used by members of the SRG
309 */
310 struct ieee80211_he_obss_pd {
311 bool enable;
312 u8 sr_ctrl;
313 u8 non_srg_max_offset;
314 u8 min_offset;
315 u8 max_offset;
316 u8 bss_color_bitmap[8];
317 u8 partial_bssid_bitmap[8];
318 };
319
320 /**
321 * struct cfg80211_he_bss_color - AP settings for BSS coloring
322 *
323 * @color: the current color.
324 * @enabled: HE BSS color is used
325 * @partial: define the AID equation.
326 */
327 struct cfg80211_he_bss_color {
328 u8 color;
329 bool enabled;
330 bool partial;
331 };
332
333 /**
334 * struct ieee80211_sta_ht_cap - STA's HT capabilities
335 *
336 * This structure describes most essential parameters needed
337 * to describe 802.11n HT capabilities for an STA.
338 *
339 * @ht_supported: is HT supported by the STA
340 * @cap: HT capabilities map as described in 802.11n spec
341 * @ampdu_factor: Maximum A-MPDU length factor
342 * @ampdu_density: Minimum A-MPDU spacing
343 * @mcs: Supported MCS rates
344 */
345 struct ieee80211_sta_ht_cap {
346 u16 cap; /* use IEEE80211_HT_CAP_ */
347 bool ht_supported;
348 u8 ampdu_factor;
349 u8 ampdu_density;
350 struct ieee80211_mcs_info mcs;
351 };
352
353 /**
354 * struct ieee80211_sta_vht_cap - STA's VHT capabilities
355 *
356 * This structure describes most essential parameters needed
357 * to describe 802.11ac VHT capabilities for an STA.
358 *
359 * @vht_supported: is VHT supported by the STA
360 * @cap: VHT capabilities map as described in 802.11ac spec
361 * @vht_mcs: Supported VHT MCS rates
362 */
363 struct ieee80211_sta_vht_cap {
364 bool vht_supported;
365 u32 cap; /* use IEEE80211_VHT_CAP_ */
366 struct ieee80211_vht_mcs_info vht_mcs;
367 };
368
369 #define IEEE80211_HE_PPE_THRES_MAX_LEN 25
370
371 /**
372 * struct ieee80211_sta_he_cap - STA's HE capabilities
373 *
374 * This structure describes most essential parameters needed
375 * to describe 802.11ax HE capabilities for a STA.
376 *
377 * @has_he: true iff HE data is valid.
378 * @he_cap_elem: Fixed portion of the HE capabilities element.
379 * @he_mcs_nss_supp: The supported NSS/MCS combinations.
380 * @ppe_thres: Holds the PPE Thresholds data.
381 */
382 struct ieee80211_sta_he_cap {
383 bool has_he;
384 struct ieee80211_he_cap_elem he_cap_elem;
385 struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp;
386 u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN];
387 };
388
389 /**
390 * struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS
391 *
392 * See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS
393 * and NSS Set field"
394 *
395 * @only_20mhz: MCS/NSS support for 20 MHz-only STA.
396 * @bw: MCS/NSS support for 80, 160 and 320 MHz
397 * @bw._80: MCS/NSS support for BW <= 80 MHz
398 * @bw._160: MCS/NSS support for BW = 160 MHz
399 * @bw._320: MCS/NSS support for BW = 320 MHz
400 */
401 struct ieee80211_eht_mcs_nss_supp {
402 union {
403 struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz;
404 struct {
405 struct ieee80211_eht_mcs_nss_supp_bw _80;
406 struct ieee80211_eht_mcs_nss_supp_bw _160;
407 struct ieee80211_eht_mcs_nss_supp_bw _320;
408 } __packed bw;
409 } __packed;
410 } __packed;
411
412 #define IEEE80211_EHT_PPE_THRES_MAX_LEN 32
413
414 /**
415 * struct ieee80211_sta_eht_cap - STA's EHT capabilities
416 *
417 * This structure describes most essential parameters needed
418 * to describe 802.11be EHT capabilities for a STA.
419 *
420 * @has_eht: true iff EHT data is valid.
421 * @eht_cap_elem: Fixed portion of the eht capabilities element.
422 * @eht_mcs_nss_supp: The supported NSS/MCS combinations.
423 * @eht_ppe_thres: Holds the PPE Thresholds data.
424 */
425 struct ieee80211_sta_eht_cap {
426 bool has_eht;
427 struct ieee80211_eht_cap_elem_fixed eht_cap_elem;
428 struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp;
429 u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN];
430 };
431
432 /* sparse defines __CHECKER__; see Documentation/dev-tools/sparse.rst */
433 #ifdef __CHECKER__
434 /*
435 * This is used to mark the sband->iftype_data pointer which is supposed
436 * to be an array with special access semantics (per iftype), but a lot
437 * of code got it wrong in the past, so with this marking sparse will be
438 * noisy when the pointer is used directly.
439 */
440 # define __iftd __attribute__((noderef, address_space(__iftype_data)))
441 #else
442 # define __iftd
443 #endif /* __CHECKER__ */
444
445 /**
446 * struct ieee80211_sband_iftype_data - sband data per interface type
447 *
448 * This structure encapsulates sband data that is relevant for the
449 * interface types defined in @types_mask. Each type in the
450 * @types_mask must be unique across all instances of iftype_data.
451 *
452 * @types_mask: interface types mask
453 * @he_cap: holds the HE capabilities
454 * @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a
455 * 6 GHz band channel (and 0 may be valid value).
456 * @eht_cap: STA's EHT capabilities
457 * @vendor_elems: vendor element(s) to advertise
458 * @vendor_elems.data: vendor element(s) data
459 * @vendor_elems.len: vendor element(s) length
460 */
461 struct ieee80211_sband_iftype_data {
462 u16 types_mask;
463 struct ieee80211_sta_he_cap he_cap;
464 struct ieee80211_he_6ghz_capa he_6ghz_capa;
465 struct ieee80211_sta_eht_cap eht_cap;
466 struct {
467 const u8 *data;
468 unsigned int len;
469 } vendor_elems;
470 };
471
472 /**
473 * enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations
474 *
475 * @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz
476 * @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz
477 * @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz
478 * @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz
479 * @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz
480 * @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz
481 * @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz
482 * @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and
483 * 2.16GHz+2.16GHz
484 * @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and
485 * 4.32GHz + 4.32GHz
486 * @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and
487 * 4.32GHz + 4.32GHz
488 * @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz
489 * and 4.32GHz + 4.32GHz
490 * @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz,
491 * 2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz
492 */
493 enum ieee80211_edmg_bw_config {
494 IEEE80211_EDMG_BW_CONFIG_4 = 4,
495 IEEE80211_EDMG_BW_CONFIG_5 = 5,
496 IEEE80211_EDMG_BW_CONFIG_6 = 6,
497 IEEE80211_EDMG_BW_CONFIG_7 = 7,
498 IEEE80211_EDMG_BW_CONFIG_8 = 8,
499 IEEE80211_EDMG_BW_CONFIG_9 = 9,
500 IEEE80211_EDMG_BW_CONFIG_10 = 10,
501 IEEE80211_EDMG_BW_CONFIG_11 = 11,
502 IEEE80211_EDMG_BW_CONFIG_12 = 12,
503 IEEE80211_EDMG_BW_CONFIG_13 = 13,
504 IEEE80211_EDMG_BW_CONFIG_14 = 14,
505 IEEE80211_EDMG_BW_CONFIG_15 = 15,
506 };
507
508 /**
509 * struct ieee80211_edmg - EDMG configuration
510 *
511 * This structure describes most essential parameters needed
512 * to describe 802.11ay EDMG configuration
513 *
514 * @channels: bitmap that indicates the 2.16 GHz channel(s)
515 * that are allowed to be used for transmissions.
516 * Bit 0 indicates channel 1, bit 1 indicates channel 2, etc.
517 * Set to 0 indicate EDMG not supported.
518 * @bw_config: Channel BW Configuration subfield encodes
519 * the allowed channel bandwidth configurations
520 */
521 struct ieee80211_edmg {
522 u8 channels;
523 enum ieee80211_edmg_bw_config bw_config;
524 };
525
526 /**
527 * struct ieee80211_sta_s1g_cap - STA's S1G capabilities
528 *
529 * This structure describes most essential parameters needed
530 * to describe 802.11ah S1G capabilities for a STA.
531 *
532 * @s1g: is STA an S1G STA
533 * @cap: S1G capabilities information
534 * @nss_mcs: Supported NSS MCS set
535 */
536 struct ieee80211_sta_s1g_cap {
537 bool s1g;
538 u8 cap[10]; /* use S1G_CAPAB_ */
539 u8 nss_mcs[5];
540 };
541
542 /**
543 * struct ieee80211_supported_band - frequency band definition
544 *
545 * This structure describes a frequency band a wiphy
546 * is able to operate in.
547 *
548 * @channels: Array of channels the hardware can operate with
549 * in this band.
550 * @band: the band this structure represents
551 * @n_channels: Number of channels in @channels
552 * @bitrates: Array of bitrates the hardware can operate with
553 * in this band. Must be sorted to give a valid "supported
554 * rates" IE, i.e. CCK rates first, then OFDM.
555 * @n_bitrates: Number of bitrates in @bitrates
556 * @ht_cap: HT capabilities in this band
557 * @vht_cap: VHT capabilities in this band
558 * @s1g_cap: S1G capabilities in this band
559 * @edmg_cap: EDMG capabilities in this band
560 * @s1g_cap: S1G capabilities in this band (S1G band only, of course)
561 * @n_iftype_data: number of iftype data entries
562 * @iftype_data: interface type data entries. Note that the bits in
563 * @types_mask inside this structure cannot overlap (i.e. only
564 * one occurrence of each type is allowed across all instances of
565 * iftype_data).
566 */
567 struct ieee80211_supported_band {
568 struct ieee80211_channel *channels;
569 struct ieee80211_rate *bitrates;
570 enum nl80211_band band;
571 int n_channels;
572 int n_bitrates;
573 struct ieee80211_sta_ht_cap ht_cap;
574 struct ieee80211_sta_vht_cap vht_cap;
575 struct ieee80211_sta_s1g_cap s1g_cap;
576 struct ieee80211_edmg edmg_cap;
577 u16 n_iftype_data;
578 const struct ieee80211_sband_iftype_data __iftd *iftype_data;
579 };
580
581 /**
582 * _ieee80211_set_sband_iftype_data - set sband iftype data array
583 * @sband: the sband to initialize
584 * @iftd: the iftype data array pointer
585 * @n_iftd: the length of the iftype data array
586 *
587 * Set the sband iftype data array; use this where the length cannot
588 * be derived from the ARRAY_SIZE() of the argument, but prefer
589 * ieee80211_set_sband_iftype_data() where it can be used.
590 */
591 static inline void
_ieee80211_set_sband_iftype_data(struct ieee80211_supported_band * sband,const struct ieee80211_sband_iftype_data * iftd,u16 n_iftd)592 _ieee80211_set_sband_iftype_data(struct ieee80211_supported_band *sband,
593 const struct ieee80211_sband_iftype_data *iftd,
594 u16 n_iftd)
595 {
596 sband->iftype_data = (const void __iftd __force *)iftd;
597 sband->n_iftype_data = n_iftd;
598 }
599
600 /**
601 * ieee80211_set_sband_iftype_data - set sband iftype data array
602 * @sband: the sband to initialize
603 * @iftd: the iftype data array
604 */
605 #define ieee80211_set_sband_iftype_data(sband, iftd) \
606 _ieee80211_set_sband_iftype_data(sband, iftd, ARRAY_SIZE(iftd))
607
608 /**
609 * for_each_sband_iftype_data - iterate sband iftype data entries
610 * @sband: the sband whose iftype_data array to iterate
611 * @i: iterator counter
612 * @iftd: iftype data pointer to set
613 */
614 #define for_each_sband_iftype_data(sband, i, iftd) \
615 for (i = 0, iftd = (const void __force *)&(sband)->iftype_data[i]; \
616 i < (sband)->n_iftype_data; \
617 i++, iftd = (const void __force *)&(sband)->iftype_data[i])
618
619 /**
620 * ieee80211_get_sband_iftype_data - return sband data for a given iftype
621 * @sband: the sband to search for the STA on
622 * @iftype: enum nl80211_iftype
623 *
624 * Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found
625 */
626 static inline const struct ieee80211_sband_iftype_data *
ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band * sband,u8 iftype)627 ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband,
628 u8 iftype)
629 {
630 const struct ieee80211_sband_iftype_data *data;
631 int i;
632
633 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
634 return NULL;
635
636 if (iftype == NL80211_IFTYPE_AP_VLAN)
637 iftype = NL80211_IFTYPE_AP;
638
639 for_each_sband_iftype_data(sband, i, data) {
640 if (data->types_mask & BIT(iftype))
641 return data;
642 }
643
644 return NULL;
645 }
646
647 /**
648 * ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype
649 * @sband: the sband to search for the iftype on
650 * @iftype: enum nl80211_iftype
651 *
652 * Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found
653 */
654 static inline const struct ieee80211_sta_he_cap *
ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band * sband,u8 iftype)655 ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband,
656 u8 iftype)
657 {
658 const struct ieee80211_sband_iftype_data *data =
659 ieee80211_get_sband_iftype_data(sband, iftype);
660
661 if (data && data->he_cap.has_he)
662 return &data->he_cap;
663
664 return NULL;
665 }
666
667 /**
668 * ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities
669 * @sband: the sband to search for the STA on
670 * @iftype: the iftype to search for
671 *
672 * Return: the 6GHz capabilities
673 */
674 static inline __le16
ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band * sband,enum nl80211_iftype iftype)675 ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband,
676 enum nl80211_iftype iftype)
677 {
678 const struct ieee80211_sband_iftype_data *data =
679 ieee80211_get_sband_iftype_data(sband, iftype);
680
681 if (WARN_ON(!data || !data->he_cap.has_he))
682 return 0;
683
684 return data->he_6ghz_capa.capa;
685 }
686
687 /**
688 * ieee80211_get_eht_iftype_cap - return EHT capabilities for an sband's iftype
689 * @sband: the sband to search for the iftype on
690 * @iftype: enum nl80211_iftype
691 *
692 * Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found
693 */
694 static inline const struct ieee80211_sta_eht_cap *
ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band * sband,enum nl80211_iftype iftype)695 ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband,
696 enum nl80211_iftype iftype)
697 {
698 const struct ieee80211_sband_iftype_data *data =
699 ieee80211_get_sband_iftype_data(sband, iftype);
700
701 if (data && data->eht_cap.has_eht)
702 return &data->eht_cap;
703
704 return NULL;
705 }
706
707 /**
708 * wiphy_read_of_freq_limits - read frequency limits from device tree
709 *
710 * @wiphy: the wireless device to get extra limits for
711 *
712 * Some devices may have extra limitations specified in DT. This may be useful
713 * for chipsets that normally support more bands but are limited due to board
714 * design (e.g. by antennas or external power amplifier).
715 *
716 * This function reads info from DT and uses it to *modify* channels (disable
717 * unavailable ones). It's usually a *bad* idea to use it in drivers with
718 * shared channel data as DT limitations are device specific. You should make
719 * sure to call it only if channels in wiphy are copied and can be modified
720 * without affecting other devices.
721 *
722 * As this function access device node it has to be called after set_wiphy_dev.
723 * It also modifies channels so they have to be set first.
724 * If using this helper, call it before wiphy_register().
725 */
726 #ifdef CONFIG_OF
727 void wiphy_read_of_freq_limits(struct wiphy *wiphy);
728 #else /* CONFIG_OF */
wiphy_read_of_freq_limits(struct wiphy * wiphy)729 static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy)
730 {
731 }
732 #endif /* !CONFIG_OF */
733
734
735 /*
736 * Wireless hardware/device configuration structures and methods
737 */
738
739 /**
740 * DOC: Actions and configuration
741 *
742 * Each wireless device and each virtual interface offer a set of configuration
743 * operations and other actions that are invoked by userspace. Each of these
744 * actions is described in the operations structure, and the parameters these
745 * operations use are described separately.
746 *
747 * Additionally, some operations are asynchronous and expect to get status
748 * information via some functions that drivers need to call.
749 *
750 * Scanning and BSS list handling with its associated functionality is described
751 * in a separate chapter.
752 */
753
754 #define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\
755 WLAN_USER_POSITION_LEN)
756
757 /**
758 * struct vif_params - describes virtual interface parameters
759 * @flags: monitor interface flags, unchanged if 0, otherwise
760 * %MONITOR_FLAG_CHANGED will be set
761 * @use_4addr: use 4-address frames
762 * @macaddr: address to use for this virtual interface.
763 * If this parameter is set to zero address the driver may
764 * determine the address as needed.
765 * This feature is only fully supported by drivers that enable the
766 * %NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating
767 ** only p2p devices with specified MAC.
768 * @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets
769 * belonging to that MU-MIMO groupID; %NULL if not changed
770 * @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring
771 * MU-MIMO packets going to the specified station; %NULL if not changed
772 */
773 struct vif_params {
774 u32 flags;
775 int use_4addr;
776 u8 macaddr[ETH_ALEN];
777 const u8 *vht_mumimo_groups;
778 const u8 *vht_mumimo_follow_addr;
779 };
780
781 /**
782 * struct key_params - key information
783 *
784 * Information about a key
785 *
786 * @key: key material
787 * @key_len: length of key material
788 * @cipher: cipher suite selector
789 * @seq: sequence counter (IV/PN), must be in little endian,
790 * length given by @seq_len.
791 * @seq_len: length of @seq.
792 * @vlan_id: vlan_id for VLAN group key (if nonzero)
793 * @mode: key install mode (RX_TX, NO_TX or SET_TX)
794 */
795 struct key_params {
796 const u8 *key;
797 const u8 *seq;
798 int key_len;
799 int seq_len;
800 u16 vlan_id;
801 u32 cipher;
802 enum nl80211_key_mode mode;
803 };
804
805 /**
806 * struct cfg80211_chan_def - channel definition
807 * @chan: the (control) channel
808 * @width: channel width
809 * @center_freq1: center frequency of first segment
810 * @center_freq2: center frequency of second segment
811 * (only with 80+80 MHz)
812 * @edmg: define the EDMG channels configuration.
813 * If edmg is requested (i.e. the .channels member is non-zero),
814 * chan will define the primary channel and all other
815 * parameters are ignored.
816 * @freq1_offset: offset from @center_freq1, in KHz
817 * @punctured: mask of the punctured 20 MHz subchannels, with
818 * bits turned on being disabled (punctured); numbered
819 * from lower to higher frequency (like in the spec)
820 * @s1g_primary_2mhz: Indicates if the control channel pointed to
821 * by 'chan' exists as a 1MHz primary subchannel within an
822 * S1G 2MHz primary channel.
823 */
824 struct cfg80211_chan_def {
825 struct ieee80211_channel *chan;
826 enum nl80211_chan_width width;
827 u32 center_freq1;
828 u32 center_freq2;
829 struct ieee80211_edmg edmg;
830 u16 freq1_offset;
831 u16 punctured;
832 bool s1g_primary_2mhz;
833 };
834
835 /*
836 * cfg80211_bitrate_mask - masks for bitrate control
837 */
838 struct cfg80211_bitrate_mask {
839 struct {
840 u32 legacy;
841 u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN];
842 u16 vht_mcs[NL80211_VHT_NSS_MAX];
843 u16 he_mcs[NL80211_HE_NSS_MAX];
844 u16 eht_mcs[NL80211_EHT_NSS_MAX];
845 enum nl80211_txrate_gi gi;
846 enum nl80211_he_gi he_gi;
847 enum nl80211_eht_gi eht_gi;
848 enum nl80211_he_ltf he_ltf;
849 enum nl80211_eht_ltf eht_ltf;
850 } control[NUM_NL80211_BANDS];
851 };
852
853
854 /**
855 * struct cfg80211_tid_cfg - TID specific configuration
856 * @config_override: Flag to notify driver to reset TID configuration
857 * of the peer.
858 * @tids: bitmap of TIDs to modify
859 * @mask: bitmap of attributes indicating which parameter changed,
860 * similar to &nl80211_tid_config_supp.
861 * @noack: noack configuration value for the TID
862 * @retry_long: retry count value
863 * @retry_short: retry count value
864 * @ampdu: Enable/Disable MPDU aggregation
865 * @rtscts: Enable/Disable RTS/CTS
866 * @amsdu: Enable/Disable MSDU aggregation
867 * @txrate_type: Tx bitrate mask type
868 * @txrate_mask: Tx bitrate to be applied for the TID
869 */
870 struct cfg80211_tid_cfg {
871 bool config_override;
872 u8 tids;
873 u64 mask;
874 enum nl80211_tid_config noack;
875 u8 retry_long, retry_short;
876 enum nl80211_tid_config ampdu;
877 enum nl80211_tid_config rtscts;
878 enum nl80211_tid_config amsdu;
879 enum nl80211_tx_rate_setting txrate_type;
880 struct cfg80211_bitrate_mask txrate_mask;
881 };
882
883 /**
884 * struct cfg80211_tid_config - TID configuration
885 * @peer: Station's MAC address
886 * @n_tid_conf: Number of TID specific configurations to be applied
887 * @tid_conf: Configuration change info
888 */
889 struct cfg80211_tid_config {
890 const u8 *peer;
891 u32 n_tid_conf;
892 struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf);
893 };
894
895 /**
896 * struct cfg80211_fils_aad - FILS AAD data
897 * @macaddr: STA MAC address
898 * @kek: FILS KEK
899 * @kek_len: FILS KEK length
900 * @snonce: STA Nonce
901 * @anonce: AP Nonce
902 */
903 struct cfg80211_fils_aad {
904 const u8 *macaddr;
905 const u8 *kek;
906 u8 kek_len;
907 const u8 *snonce;
908 const u8 *anonce;
909 };
910
911 /**
912 * struct cfg80211_set_hw_timestamp - enable/disable HW timestamping
913 * @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all
914 * addresses.
915 * @enable: if set, enable HW timestamping for the specified MAC address.
916 * Otherwise disable HW timestamping for the specified MAC address.
917 */
918 struct cfg80211_set_hw_timestamp {
919 const u8 *macaddr;
920 bool enable;
921 };
922
923 /**
924 * cfg80211_get_chandef_type - return old channel type from chandef
925 * @chandef: the channel definition
926 *
927 * Return: The old channel type (NOHT, HT20, HT40+/-) from a given
928 * chandef, which must have a bandwidth allowing this conversion.
929 */
930 static inline enum nl80211_channel_type
cfg80211_get_chandef_type(const struct cfg80211_chan_def * chandef)931 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef)
932 {
933 switch (chandef->width) {
934 case NL80211_CHAN_WIDTH_20_NOHT:
935 return NL80211_CHAN_NO_HT;
936 case NL80211_CHAN_WIDTH_20:
937 return NL80211_CHAN_HT20;
938 case NL80211_CHAN_WIDTH_40:
939 if (chandef->center_freq1 > chandef->chan->center_freq)
940 return NL80211_CHAN_HT40PLUS;
941 return NL80211_CHAN_HT40MINUS;
942 default:
943 WARN_ON(1);
944 return NL80211_CHAN_NO_HT;
945 }
946 }
947
948 /**
949 * cfg80211_chandef_create - create channel definition using channel type
950 * @chandef: the channel definition struct to fill
951 * @channel: the control channel
952 * @chantype: the channel type
953 *
954 * Given a channel type, create a channel definition.
955 */
956 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
957 struct ieee80211_channel *channel,
958 enum nl80211_channel_type chantype);
959
960 /**
961 * cfg80211_chandef_identical - check if two channel definitions are identical
962 * @chandef1: first channel definition
963 * @chandef2: second channel definition
964 *
965 * Return: %true if the channels defined by the channel definitions are
966 * identical, %false otherwise.
967 */
968 static inline bool
cfg80211_chandef_identical(const struct cfg80211_chan_def * chandef1,const struct cfg80211_chan_def * chandef2)969 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1,
970 const struct cfg80211_chan_def *chandef2)
971 {
972 return (chandef1->chan == chandef2->chan &&
973 chandef1->width == chandef2->width &&
974 chandef1->center_freq1 == chandef2->center_freq1 &&
975 chandef1->freq1_offset == chandef2->freq1_offset &&
976 chandef1->center_freq2 == chandef2->center_freq2 &&
977 chandef1->punctured == chandef2->punctured &&
978 chandef1->s1g_primary_2mhz == chandef2->s1g_primary_2mhz);
979 }
980
981 /**
982 * cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel
983 *
984 * @chandef: the channel definition
985 *
986 * Return: %true if EDMG defined, %false otherwise.
987 */
988 static inline bool
cfg80211_chandef_is_edmg(const struct cfg80211_chan_def * chandef)989 cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef)
990 {
991 return chandef->edmg.channels || chandef->edmg.bw_config;
992 }
993
994 /**
995 * cfg80211_chandef_is_s1g - check if chandef represents an S1G channel
996 * @chandef: the channel definition
997 *
998 * Return: %true if S1G.
999 */
1000 static inline bool
cfg80211_chandef_is_s1g(const struct cfg80211_chan_def * chandef)1001 cfg80211_chandef_is_s1g(const struct cfg80211_chan_def *chandef)
1002 {
1003 return chandef->chan->band == NL80211_BAND_S1GHZ;
1004 }
1005
1006 /**
1007 * cfg80211_chandef_compatible - check if two channel definitions are compatible
1008 * @chandef1: first channel definition
1009 * @chandef2: second channel definition
1010 *
1011 * Return: %NULL if the given channel definitions are incompatible,
1012 * chandef1 or chandef2 otherwise.
1013 */
1014 const struct cfg80211_chan_def *
1015 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1,
1016 const struct cfg80211_chan_def *chandef2);
1017
1018
1019 /**
1020 * nl80211_chan_width_to_mhz - get the channel width in MHz
1021 * @chan_width: the channel width from &enum nl80211_chan_width
1022 *
1023 * Return: channel width in MHz if the chan_width from &enum nl80211_chan_width
1024 * is valid. -1 otherwise.
1025 */
1026 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width);
1027
1028 /**
1029 * cfg80211_chandef_get_width - return chandef width in MHz
1030 * @c: chandef to return bandwidth for
1031 * Return: channel width in MHz for the given chandef; note that it returns
1032 * 80 for 80+80 configurations
1033 */
cfg80211_chandef_get_width(const struct cfg80211_chan_def * c)1034 static inline int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
1035 {
1036 return nl80211_chan_width_to_mhz(c->width);
1037 }
1038
1039 /**
1040 * cfg80211_chandef_valid - check if a channel definition is valid
1041 * @chandef: the channel definition to check
1042 * Return: %true if the channel definition is valid. %false otherwise.
1043 */
1044 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef);
1045
1046 /**
1047 * cfg80211_chandef_usable - check if secondary channels can be used
1048 * @wiphy: the wiphy to validate against
1049 * @chandef: the channel definition to check
1050 * @prohibited_flags: the regulatory channel flags that must not be set
1051 * Return: %true if secondary channels are usable. %false otherwise.
1052 */
1053 bool cfg80211_chandef_usable(struct wiphy *wiphy,
1054 const struct cfg80211_chan_def *chandef,
1055 u32 prohibited_flags);
1056
1057 /**
1058 * cfg80211_chandef_dfs_required - checks if radar detection is required
1059 * @wiphy: the wiphy to validate against
1060 * @chandef: the channel definition to check
1061 * @iftype: the interface type as specified in &enum nl80211_iftype
1062 * Returns:
1063 * 1 if radar detection is required, 0 if it is not, < 0 on error
1064 */
1065 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
1066 const struct cfg80211_chan_def *chandef,
1067 enum nl80211_iftype iftype);
1068
1069 /**
1070 * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable and we
1071 * can/need start CAC on such channel
1072 * @wiphy: the wiphy to validate against
1073 * @chandef: the channel definition to check
1074 *
1075 * Return: true if all channels available and at least
1076 * one channel requires CAC (NL80211_DFS_USABLE)
1077 */
1078 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
1079 const struct cfg80211_chan_def *chandef);
1080
1081 /**
1082 * cfg80211_chandef_dfs_cac_time - get the DFS CAC time (in ms) for given
1083 * channel definition
1084 * @wiphy: the wiphy to validate against
1085 * @chandef: the channel definition to check
1086 *
1087 * Returns: DFS CAC time (in ms) which applies for this channel definition
1088 */
1089 unsigned int
1090 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1091 const struct cfg80211_chan_def *chandef);
1092
1093 /**
1094 * cfg80211_chandef_primary - calculate primary 40/80/160 MHz freq
1095 * @chandef: chandef to calculate for
1096 * @primary_chan_width: primary channel width to calculate center for
1097 * @punctured: punctured sub-channel bitmap, will be recalculated
1098 * according to the new bandwidth, can be %NULL
1099 *
1100 * Returns: the primary 40/80/160 MHz channel center frequency, or -1
1101 * for errors, updating the punctured bitmap
1102 */
1103 int cfg80211_chandef_primary(const struct cfg80211_chan_def *chandef,
1104 enum nl80211_chan_width primary_chan_width,
1105 u16 *punctured);
1106
1107 /**
1108 * nl80211_send_chandef - sends the channel definition.
1109 * @msg: the msg to send channel definition
1110 * @chandef: the channel definition to check
1111 *
1112 * Returns: 0 if sent the channel definition to msg, < 0 on error
1113 **/
1114 int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef);
1115
1116 /**
1117 * ieee80211_chandef_max_power - maximum transmission power for the chandef
1118 *
1119 * In some regulations, the transmit power may depend on the configured channel
1120 * bandwidth which may be defined as dBm/MHz. This function returns the actual
1121 * max_power for non-standard (20 MHz) channels.
1122 *
1123 * @chandef: channel definition for the channel
1124 *
1125 * Returns: maximum allowed transmission power in dBm for the chandef
1126 */
1127 static inline int
ieee80211_chandef_max_power(struct cfg80211_chan_def * chandef)1128 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef)
1129 {
1130 switch (chandef->width) {
1131 case NL80211_CHAN_WIDTH_5:
1132 return min(chandef->chan->max_reg_power - 6,
1133 chandef->chan->max_power);
1134 case NL80211_CHAN_WIDTH_10:
1135 return min(chandef->chan->max_reg_power - 3,
1136 chandef->chan->max_power);
1137 default:
1138 break;
1139 }
1140 return chandef->chan->max_power;
1141 }
1142
1143 /**
1144 * cfg80211_any_usable_channels - check for usable channels
1145 * @wiphy: the wiphy to check for
1146 * @band_mask: which bands to check on
1147 * @prohibited_flags: which channels to not consider usable,
1148 * %IEEE80211_CHAN_DISABLED is always taken into account
1149 *
1150 * Return: %true if usable channels found, %false otherwise
1151 */
1152 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1153 unsigned long band_mask,
1154 u32 prohibited_flags);
1155
1156 /**
1157 * enum survey_info_flags - survey information flags
1158 *
1159 * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
1160 * @SURVEY_INFO_IN_USE: channel is currently being used
1161 * @SURVEY_INFO_TIME: active time (in ms) was filled in
1162 * @SURVEY_INFO_TIME_BUSY: busy time was filled in
1163 * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in
1164 * @SURVEY_INFO_TIME_RX: receive time was filled in
1165 * @SURVEY_INFO_TIME_TX: transmit time was filled in
1166 * @SURVEY_INFO_TIME_SCAN: scan time was filled in
1167 * @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in
1168 *
1169 * Used by the driver to indicate which info in &struct survey_info
1170 * it has filled in during the get_survey().
1171 */
1172 enum survey_info_flags {
1173 SURVEY_INFO_NOISE_DBM = BIT(0),
1174 SURVEY_INFO_IN_USE = BIT(1),
1175 SURVEY_INFO_TIME = BIT(2),
1176 SURVEY_INFO_TIME_BUSY = BIT(3),
1177 SURVEY_INFO_TIME_EXT_BUSY = BIT(4),
1178 SURVEY_INFO_TIME_RX = BIT(5),
1179 SURVEY_INFO_TIME_TX = BIT(6),
1180 SURVEY_INFO_TIME_SCAN = BIT(7),
1181 SURVEY_INFO_TIME_BSS_RX = BIT(8),
1182 };
1183
1184 /**
1185 * struct survey_info - channel survey response
1186 *
1187 * @channel: the channel this survey record reports, may be %NULL for a single
1188 * record to report global statistics
1189 * @filled: bitflag of flags from &enum survey_info_flags
1190 * @noise: channel noise in dBm. This and all following fields are
1191 * optional
1192 * @time: amount of time in ms the radio was turn on (on the channel)
1193 * @time_busy: amount of time the primary channel was sensed busy
1194 * @time_ext_busy: amount of time the extension channel was sensed busy
1195 * @time_rx: amount of time the radio spent receiving data
1196 * @time_tx: amount of time the radio spent transmitting data
1197 * @time_scan: amount of time the radio spent for scanning
1198 * @time_bss_rx: amount of time the radio spent receiving data on a local BSS
1199 *
1200 * Used by dump_survey() to report back per-channel survey information.
1201 *
1202 * This structure can later be expanded with things like
1203 * channel duty cycle etc.
1204 */
1205 struct survey_info {
1206 struct ieee80211_channel *channel;
1207 u64 time;
1208 u64 time_busy;
1209 u64 time_ext_busy;
1210 u64 time_rx;
1211 u64 time_tx;
1212 u64 time_scan;
1213 u64 time_bss_rx;
1214 u32 filled;
1215 s8 noise;
1216 };
1217
1218 #define CFG80211_MAX_NUM_AKM_SUITES 10
1219
1220 /**
1221 * struct cfg80211_crypto_settings - Crypto settings
1222 * @wpa_versions: indicates which, if any, WPA versions are enabled
1223 * (from enum nl80211_wpa_versions)
1224 * @cipher_group: group key cipher suite (or 0 if unset)
1225 * @n_ciphers_pairwise: number of AP supported unicast ciphers
1226 * @ciphers_pairwise: unicast key cipher suites
1227 * @n_akm_suites: number of AKM suites
1228 * @akm_suites: AKM suites
1229 * @control_port: Whether user space controls IEEE 802.1X port, i.e.,
1230 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
1231 * required to assume that the port is unauthorized until authorized by
1232 * user space. Otherwise, port is marked authorized by default.
1233 * @control_port_ethertype: the control port protocol that should be
1234 * allowed through even on unauthorized ports
1235 * @control_port_no_encrypt: TRUE to prevent encryption of control port
1236 * protocol frames.
1237 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
1238 * port frames over NL80211 instead of the network interface.
1239 * @control_port_no_preauth: disables pre-auth rx over the nl80211 control
1240 * port for mac80211
1241 * @psk: PSK (for devices supporting 4-way-handshake offload)
1242 * @sae_pwd: password for SAE authentication (for devices supporting SAE
1243 * offload)
1244 * @sae_pwd_len: length of SAE password (for devices supporting SAE offload)
1245 * @sae_pwe: The mechanisms allowed for SAE PWE derivation:
1246 *
1247 * NL80211_SAE_PWE_UNSPECIFIED
1248 * Not-specified, used to indicate userspace did not specify any
1249 * preference. The driver should follow its internal policy in
1250 * such a scenario.
1251 *
1252 * NL80211_SAE_PWE_HUNT_AND_PECK
1253 * Allow hunting-and-pecking loop only
1254 *
1255 * NL80211_SAE_PWE_HASH_TO_ELEMENT
1256 * Allow hash-to-element only
1257 *
1258 * NL80211_SAE_PWE_BOTH
1259 * Allow either hunting-and-pecking loop or hash-to-element
1260 */
1261 struct cfg80211_crypto_settings {
1262 u32 wpa_versions;
1263 u32 cipher_group;
1264 int n_ciphers_pairwise;
1265 u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
1266 int n_akm_suites;
1267 u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES];
1268 bool control_port;
1269 __be16 control_port_ethertype;
1270 bool control_port_no_encrypt;
1271 bool control_port_over_nl80211;
1272 bool control_port_no_preauth;
1273 const u8 *psk;
1274 const u8 *sae_pwd;
1275 u8 sae_pwd_len;
1276 enum nl80211_sae_pwe_mechanism sae_pwe;
1277 };
1278
1279 /**
1280 * struct cfg80211_mbssid_config - AP settings for multi bssid
1281 *
1282 * @tx_wdev: pointer to the transmitted interface in the MBSSID set
1283 * @tx_link_id: link ID of the transmitted profile in an MLD.
1284 * @index: index of this AP in the multi bssid group.
1285 * @ema: set to true if the beacons should be sent out in EMA mode.
1286 */
1287 struct cfg80211_mbssid_config {
1288 struct wireless_dev *tx_wdev;
1289 u8 tx_link_id;
1290 u8 index;
1291 bool ema;
1292 };
1293
1294 /**
1295 * struct cfg80211_mbssid_elems - Multiple BSSID elements
1296 *
1297 * @cnt: Number of elements in array %elems.
1298 *
1299 * @elem: Array of multiple BSSID element(s) to be added into Beacon frames.
1300 * @elem.data: Data for multiple BSSID elements.
1301 * @elem.len: Length of data.
1302 */
1303 struct cfg80211_mbssid_elems {
1304 u8 cnt;
1305 struct {
1306 const u8 *data;
1307 size_t len;
1308 } elem[] __counted_by(cnt);
1309 };
1310
1311 /**
1312 * struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements
1313 *
1314 * @cnt: Number of elements in array %elems.
1315 *
1316 * @elem: Array of RNR element(s) to be added into Beacon frames.
1317 * @elem.data: Data for RNR elements.
1318 * @elem.len: Length of data.
1319 */
1320 struct cfg80211_rnr_elems {
1321 u8 cnt;
1322 struct {
1323 const u8 *data;
1324 size_t len;
1325 } elem[] __counted_by(cnt);
1326 };
1327
1328 /**
1329 * struct cfg80211_beacon_data - beacon data
1330 * @link_id: the link ID for the AP MLD link sending this beacon
1331 * @head: head portion of beacon (before TIM IE)
1332 * or %NULL if not changed
1333 * @tail: tail portion of beacon (after TIM IE)
1334 * or %NULL if not changed
1335 * @head_len: length of @head
1336 * @tail_len: length of @tail
1337 * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL
1338 * @beacon_ies_len: length of beacon_ies in octets
1339 * @proberesp_ies: extra information element(s) to add into Probe Response
1340 * frames or %NULL
1341 * @proberesp_ies_len: length of proberesp_ies in octets
1342 * @assocresp_ies: extra information element(s) to add into (Re)Association
1343 * Response frames or %NULL
1344 * @assocresp_ies_len: length of assocresp_ies in octets
1345 * @probe_resp_len: length of probe response template (@probe_resp)
1346 * @probe_resp: probe response template (AP mode only)
1347 * @mbssid_ies: multiple BSSID elements
1348 * @rnr_ies: reduced neighbor report elements
1349 * @ftm_responder: enable FTM responder functionality; -1 for no change
1350 * (which also implies no change in LCI/civic location data)
1351 * @lci: Measurement Report element content, starting with Measurement Token
1352 * (measurement type 8)
1353 * @civicloc: Measurement Report element content, starting with Measurement
1354 * Token (measurement type 11)
1355 * @lci_len: LCI data length
1356 * @civicloc_len: Civic location data length
1357 * @he_bss_color: BSS Color settings
1358 * @he_bss_color_valid: indicates whether bss color
1359 * attribute is present in beacon data or not.
1360 */
1361 struct cfg80211_beacon_data {
1362 unsigned int link_id;
1363
1364 const u8 *head, *tail;
1365 const u8 *beacon_ies;
1366 const u8 *proberesp_ies;
1367 const u8 *assocresp_ies;
1368 const u8 *probe_resp;
1369 const u8 *lci;
1370 const u8 *civicloc;
1371 struct cfg80211_mbssid_elems *mbssid_ies;
1372 struct cfg80211_rnr_elems *rnr_ies;
1373 s8 ftm_responder;
1374
1375 size_t head_len, tail_len;
1376 size_t beacon_ies_len;
1377 size_t proberesp_ies_len;
1378 size_t assocresp_ies_len;
1379 size_t probe_resp_len;
1380 size_t lci_len;
1381 size_t civicloc_len;
1382 struct cfg80211_he_bss_color he_bss_color;
1383 bool he_bss_color_valid;
1384 };
1385
1386 struct mac_address {
1387 u8 addr[ETH_ALEN];
1388 };
1389
1390 /**
1391 * struct cfg80211_acl_data - Access control list data
1392 *
1393 * @acl_policy: ACL policy to be applied on the station's
1394 * entry specified by mac_addr
1395 * @n_acl_entries: Number of MAC address entries passed
1396 * @mac_addrs: List of MAC addresses of stations to be used for ACL
1397 */
1398 struct cfg80211_acl_data {
1399 enum nl80211_acl_policy acl_policy;
1400 int n_acl_entries;
1401
1402 /* Keep it last */
1403 struct mac_address mac_addrs[] __counted_by(n_acl_entries);
1404 };
1405
1406 /**
1407 * struct cfg80211_fils_discovery - FILS discovery parameters from
1408 * IEEE Std 802.11ai-2016, Annex C.3 MIB detail.
1409 *
1410 * @update: Set to true if the feature configuration should be updated.
1411 * @min_interval: Minimum packet interval in TUs (0 - 10000)
1412 * @max_interval: Maximum packet interval in TUs (0 - 10000)
1413 * @tmpl_len: Template length
1414 * @tmpl: Template data for FILS discovery frame including the action
1415 * frame headers.
1416 */
1417 struct cfg80211_fils_discovery {
1418 bool update;
1419 u32 min_interval;
1420 u32 max_interval;
1421 size_t tmpl_len;
1422 const u8 *tmpl;
1423 };
1424
1425 /**
1426 * struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe
1427 * response parameters in 6GHz.
1428 *
1429 * @update: Set to true if the feature configuration should be updated.
1430 * @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned
1431 * in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive
1432 * scanning
1433 * @tmpl_len: Template length
1434 * @tmpl: Template data for probe response
1435 */
1436 struct cfg80211_unsol_bcast_probe_resp {
1437 bool update;
1438 u32 interval;
1439 size_t tmpl_len;
1440 const u8 *tmpl;
1441 };
1442
1443 /**
1444 * struct cfg80211_s1g_short_beacon - S1G short beacon data.
1445 *
1446 * @update: Set to true if the feature configuration should be updated.
1447 * @short_head: Short beacon head.
1448 * @short_tail: Short beacon tail.
1449 * @short_head_len: Short beacon head len.
1450 * @short_tail_len: Short beacon tail len.
1451 */
1452 struct cfg80211_s1g_short_beacon {
1453 bool update;
1454 const u8 *short_head;
1455 const u8 *short_tail;
1456 size_t short_head_len;
1457 size_t short_tail_len;
1458 };
1459
1460 /**
1461 * struct cfg80211_ap_settings - AP configuration
1462 *
1463 * Used to configure an AP interface.
1464 *
1465 * @chandef: defines the channel to use
1466 * @beacon: beacon data
1467 * @beacon_interval: beacon interval
1468 * @dtim_period: DTIM period
1469 * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from
1470 * user space)
1471 * @ssid_len: length of @ssid
1472 * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames
1473 * @crypto: crypto settings
1474 * @privacy: the BSS uses privacy
1475 * @auth_type: Authentication type (algorithm)
1476 * @inactivity_timeout: time in seconds to determine station's inactivity.
1477 * @p2p_ctwindow: P2P CT Window
1478 * @p2p_opp_ps: P2P opportunistic PS
1479 * @acl: ACL configuration used by the drivers which has support for
1480 * MAC address based access control
1481 * @pbss: If set, start as a PCP instead of AP. Relevant for DMG
1482 * networks.
1483 * @beacon_rate: bitrate to be used for beacons
1484 * @ht_cap: HT capabilities (or %NULL if HT isn't enabled)
1485 * @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled)
1486 * @he_cap: HE capabilities (or %NULL if HE isn't enabled)
1487 * @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled)
1488 * @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled)
1489 * @ht_required: stations must support HT
1490 * @vht_required: stations must support VHT
1491 * @twt_responder: Enable Target Wait Time
1492 * @he_required: stations must support HE
1493 * @sae_h2e_required: stations must support direct H2E technique in SAE
1494 * @flags: flags, as defined in &enum nl80211_ap_settings_flags
1495 * @he_obss_pd: OBSS Packet Detection settings
1496 * @he_oper: HE operation IE (or %NULL if HE isn't enabled)
1497 * @fils_discovery: FILS discovery transmission parameters
1498 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1499 * @mbssid_config: AP settings for multiple bssid
1500 * @s1g_long_beacon_period: S1G long beacon period
1501 * @s1g_short_beacon: S1G short beacon data
1502 */
1503 struct cfg80211_ap_settings {
1504 struct cfg80211_chan_def chandef;
1505
1506 struct cfg80211_beacon_data beacon;
1507
1508 int beacon_interval, dtim_period;
1509 const u8 *ssid;
1510 size_t ssid_len;
1511 enum nl80211_hidden_ssid hidden_ssid;
1512 struct cfg80211_crypto_settings crypto;
1513 bool privacy;
1514 enum nl80211_auth_type auth_type;
1515 int inactivity_timeout;
1516 u8 p2p_ctwindow;
1517 bool p2p_opp_ps;
1518 const struct cfg80211_acl_data *acl;
1519 bool pbss;
1520 struct cfg80211_bitrate_mask beacon_rate;
1521
1522 const struct ieee80211_ht_cap *ht_cap;
1523 const struct ieee80211_vht_cap *vht_cap;
1524 const struct ieee80211_he_cap_elem *he_cap;
1525 const struct ieee80211_he_operation *he_oper;
1526 const struct ieee80211_eht_cap_elem *eht_cap;
1527 const struct ieee80211_eht_operation *eht_oper;
1528 bool ht_required, vht_required, he_required, sae_h2e_required;
1529 bool twt_responder;
1530 u32 flags;
1531 struct ieee80211_he_obss_pd he_obss_pd;
1532 struct cfg80211_fils_discovery fils_discovery;
1533 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1534 struct cfg80211_mbssid_config mbssid_config;
1535 u8 s1g_long_beacon_period;
1536 struct cfg80211_s1g_short_beacon s1g_short_beacon;
1537 };
1538
1539
1540 /**
1541 * struct cfg80211_ap_update - AP configuration update
1542 *
1543 * Subset of &struct cfg80211_ap_settings, for updating a running AP.
1544 *
1545 * @beacon: beacon data
1546 * @fils_discovery: FILS discovery transmission parameters
1547 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1548 * @s1g_short_beacon: S1G short beacon data
1549 */
1550 struct cfg80211_ap_update {
1551 struct cfg80211_beacon_data beacon;
1552 struct cfg80211_fils_discovery fils_discovery;
1553 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1554 struct cfg80211_s1g_short_beacon s1g_short_beacon;
1555 };
1556
1557 /**
1558 * struct cfg80211_csa_settings - channel switch settings
1559 *
1560 * Used for channel switch
1561 *
1562 * @chandef: defines the channel to use after the switch
1563 * @beacon_csa: beacon data while performing the switch
1564 * @counter_offsets_beacon: offsets of the counters within the beacon (tail)
1565 * @counter_offsets_presp: offsets of the counters within the probe response
1566 * @n_counter_offsets_beacon: number of csa counters the beacon (tail)
1567 * @n_counter_offsets_presp: number of csa counters in the probe response
1568 * @beacon_after: beacon data to be used on the new channel
1569 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1570 * @radar_required: whether radar detection is required on the new channel
1571 * @block_tx: whether transmissions should be blocked while changing
1572 * @count: number of beacons until switch
1573 * @link_id: defines the link on which channel switch is expected during
1574 * MLO. 0 in case of non-MLO.
1575 */
1576 struct cfg80211_csa_settings {
1577 struct cfg80211_chan_def chandef;
1578 struct cfg80211_beacon_data beacon_csa;
1579 const u16 *counter_offsets_beacon;
1580 const u16 *counter_offsets_presp;
1581 unsigned int n_counter_offsets_beacon;
1582 unsigned int n_counter_offsets_presp;
1583 struct cfg80211_beacon_data beacon_after;
1584 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1585 bool radar_required;
1586 bool block_tx;
1587 u8 count;
1588 u8 link_id;
1589 };
1590
1591 /**
1592 * struct cfg80211_color_change_settings - color change settings
1593 *
1594 * Used for bss color change
1595 *
1596 * @beacon_color_change: beacon data while performing the color countdown
1597 * @counter_offset_beacon: offsets of the counters within the beacon (tail)
1598 * @counter_offset_presp: offsets of the counters within the probe response
1599 * @beacon_next: beacon data to be used after the color change
1600 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1601 * @count: number of beacons until the color change
1602 * @color: the color used after the change
1603 * @link_id: defines the link on which color change is expected during MLO.
1604 * 0 in case of non-MLO.
1605 */
1606 struct cfg80211_color_change_settings {
1607 struct cfg80211_beacon_data beacon_color_change;
1608 u16 counter_offset_beacon;
1609 u16 counter_offset_presp;
1610 struct cfg80211_beacon_data beacon_next;
1611 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1612 u8 count;
1613 u8 color;
1614 u8 link_id;
1615 };
1616
1617 /**
1618 * struct iface_combination_params - input parameters for interface combinations
1619 *
1620 * Used to pass interface combination parameters
1621 *
1622 * @radio_idx: wiphy radio index or -1 for global
1623 * @num_different_channels: the number of different channels we want
1624 * to use for verification
1625 * @radar_detect: a bitmap where each bit corresponds to a channel
1626 * width where radar detection is needed, as in the definition of
1627 * &struct ieee80211_iface_combination.@radar_detect_widths
1628 * @iftype_num: array with the number of interfaces of each interface
1629 * type. The index is the interface type as specified in &enum
1630 * nl80211_iftype.
1631 * @new_beacon_int: set this to the beacon interval of a new interface
1632 * that's not operating yet, if such is to be checked as part of
1633 * the verification
1634 */
1635 struct iface_combination_params {
1636 int radio_idx;
1637 int num_different_channels;
1638 u8 radar_detect;
1639 int iftype_num[NUM_NL80211_IFTYPES];
1640 u32 new_beacon_int;
1641 };
1642
1643 /**
1644 * enum station_parameters_apply_mask - station parameter values to apply
1645 * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp)
1646 * @STATION_PARAM_APPLY_CAPABILITY: apply new capability
1647 * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state
1648 *
1649 * Not all station parameters have in-band "no change" signalling,
1650 * for those that don't these flags will are used.
1651 */
1652 enum station_parameters_apply_mask {
1653 STATION_PARAM_APPLY_UAPSD = BIT(0),
1654 STATION_PARAM_APPLY_CAPABILITY = BIT(1),
1655 STATION_PARAM_APPLY_PLINK_STATE = BIT(2),
1656 };
1657
1658 /**
1659 * struct sta_txpwr - station txpower configuration
1660 *
1661 * Used to configure txpower for station.
1662 *
1663 * @power: tx power (in dBm) to be used for sending data traffic. If tx power
1664 * is not provided, the default per-interface tx power setting will be
1665 * overriding. Driver should be picking up the lowest tx power, either tx
1666 * power per-interface or per-station.
1667 * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power
1668 * will be less than or equal to specified from userspace, whereas if TPC
1669 * %type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power.
1670 * NL80211_TX_POWER_FIXED is not a valid configuration option for
1671 * per peer TPC.
1672 */
1673 struct sta_txpwr {
1674 s16 power;
1675 enum nl80211_tx_power_setting type;
1676 };
1677
1678 /**
1679 * struct link_station_parameters - link station parameters
1680 *
1681 * Used to change and create a new link station.
1682 *
1683 * @mld_mac: MAC address of the station
1684 * @link_id: the link id (-1 for non-MLD station)
1685 * @link_mac: MAC address of the link
1686 * @supported_rates: supported rates in IEEE 802.11 format
1687 * (or NULL for no change)
1688 * @supported_rates_len: number of supported rates
1689 * @ht_capa: HT capabilities of station
1690 * @vht_capa: VHT capabilities of station
1691 * @opmode_notif: operating mode field from Operating Mode Notification
1692 * @opmode_notif_used: information if operating mode field is used
1693 * @he_capa: HE capabilities of station
1694 * @he_capa_len: the length of the HE capabilities
1695 * @txpwr: transmit power for an associated station
1696 * @txpwr_set: txpwr field is set
1697 * @he_6ghz_capa: HE 6 GHz Band capabilities of station
1698 * @eht_capa: EHT capabilities of station
1699 * @eht_capa_len: the length of the EHT capabilities
1700 * @s1g_capa: S1G capabilities of station
1701 */
1702 struct link_station_parameters {
1703 const u8 *mld_mac;
1704 int link_id;
1705 const u8 *link_mac;
1706 const u8 *supported_rates;
1707 u8 supported_rates_len;
1708 const struct ieee80211_ht_cap *ht_capa;
1709 const struct ieee80211_vht_cap *vht_capa;
1710 u8 opmode_notif;
1711 bool opmode_notif_used;
1712 const struct ieee80211_he_cap_elem *he_capa;
1713 u8 he_capa_len;
1714 struct sta_txpwr txpwr;
1715 bool txpwr_set;
1716 const struct ieee80211_he_6ghz_capa *he_6ghz_capa;
1717 const struct ieee80211_eht_cap_elem *eht_capa;
1718 u8 eht_capa_len;
1719 const struct ieee80211_s1g_cap *s1g_capa;
1720 };
1721
1722 /**
1723 * struct link_station_del_parameters - link station deletion parameters
1724 *
1725 * Used to delete a link station entry (or all stations).
1726 *
1727 * @mld_mac: MAC address of the station
1728 * @link_id: the link id
1729 */
1730 struct link_station_del_parameters {
1731 const u8 *mld_mac;
1732 u32 link_id;
1733 };
1734
1735 /**
1736 * struct cfg80211_ttlm_params: TID to link mapping parameters
1737 *
1738 * Used for setting a TID to link mapping.
1739 *
1740 * @dlink: Downlink TID to link mapping, as defined in section 9.4.2.314
1741 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1742 * @ulink: Uplink TID to link mapping, as defined in section 9.4.2.314
1743 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1744 */
1745 struct cfg80211_ttlm_params {
1746 u16 dlink[8];
1747 u16 ulink[8];
1748 };
1749
1750 /**
1751 * struct station_parameters - station parameters
1752 *
1753 * Used to change and create a new station.
1754 *
1755 * @vlan: vlan interface station should belong to
1756 * @sta_flags_mask: station flags that changed
1757 * (bitmask of BIT(%NL80211_STA_FLAG_...))
1758 * @sta_flags_set: station flags values
1759 * (bitmask of BIT(%NL80211_STA_FLAG_...))
1760 * @listen_interval: listen interval or -1 for no change
1761 * @aid: AID or zero for no change
1762 * @vlan_id: VLAN ID for station (if nonzero)
1763 * @peer_aid: mesh peer AID or zero for no change
1764 * @plink_action: plink action to take
1765 * @plink_state: set the peer link state for a station
1766 * @uapsd_queues: bitmap of queues configured for uapsd. same format
1767 * as the AC bitmap in the QoS info field
1768 * @max_sp: max Service Period. same format as the MAX_SP in the
1769 * QoS info field (but already shifted down)
1770 * @sta_modify_mask: bitmap indicating which parameters changed
1771 * (for those that don't have a natural "no change" value),
1772 * see &enum station_parameters_apply_mask
1773 * @local_pm: local link-specific mesh power save mode (no change when set
1774 * to unknown)
1775 * @capability: station capability
1776 * @ext_capab: extended capabilities of the station
1777 * @ext_capab_len: number of extended capabilities
1778 * @supported_channels: supported channels in IEEE 802.11 format
1779 * @supported_channels_len: number of supported channels
1780 * @supported_oper_classes: supported oper classes in IEEE 802.11 format
1781 * @supported_oper_classes_len: number of supported operating classes
1782 * @support_p2p_ps: information if station supports P2P PS mechanism
1783 * @airtime_weight: airtime scheduler weight for this station
1784 * @eml_cap_present: Specifies if EML capabilities field (@eml_cap) is
1785 * present/updated
1786 * @eml_cap: EML capabilities of this station
1787 * @link_sta_params: link related params.
1788 */
1789 struct station_parameters {
1790 struct net_device *vlan;
1791 u32 sta_flags_mask, sta_flags_set;
1792 u32 sta_modify_mask;
1793 int listen_interval;
1794 u16 aid;
1795 u16 vlan_id;
1796 u16 peer_aid;
1797 u8 plink_action;
1798 u8 plink_state;
1799 u8 uapsd_queues;
1800 u8 max_sp;
1801 enum nl80211_mesh_power_mode local_pm;
1802 u16 capability;
1803 const u8 *ext_capab;
1804 u8 ext_capab_len;
1805 const u8 *supported_channels;
1806 u8 supported_channels_len;
1807 const u8 *supported_oper_classes;
1808 u8 supported_oper_classes_len;
1809 int support_p2p_ps;
1810 u16 airtime_weight;
1811 bool eml_cap_present;
1812 u16 eml_cap;
1813 struct link_station_parameters link_sta_params;
1814 };
1815
1816 /**
1817 * struct station_del_parameters - station deletion parameters
1818 *
1819 * Used to delete a station entry (or all stations).
1820 *
1821 * @mac: MAC address of the station to remove or NULL to remove all stations
1822 * @subtype: Management frame subtype to use for indicating removal
1823 * (10 = Disassociation, 12 = Deauthentication)
1824 * @reason_code: Reason code for the Disassociation/Deauthentication frame
1825 * @link_id: Link ID indicating a link that stations to be flushed must be
1826 * using; valid only for MLO, but can also be -1 for MLO to really
1827 * remove all stations.
1828 */
1829 struct station_del_parameters {
1830 const u8 *mac;
1831 u8 subtype;
1832 u16 reason_code;
1833 int link_id;
1834 };
1835
1836 /**
1837 * enum cfg80211_station_type - the type of station being modified
1838 * @CFG80211_STA_AP_CLIENT: client of an AP interface
1839 * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still
1840 * unassociated (update properties for this type of client is permitted)
1841 * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has
1842 * the AP MLME in the device
1843 * @CFG80211_STA_AP_STA: AP station on managed interface
1844 * @CFG80211_STA_IBSS: IBSS station
1845 * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry
1846 * while TDLS setup is in progress, it moves out of this state when
1847 * being marked authorized; use this only if TDLS with external setup is
1848 * supported/used)
1849 * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active
1850 * entry that is operating, has been marked authorized by userspace)
1851 * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed)
1852 * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed)
1853 */
1854 enum cfg80211_station_type {
1855 CFG80211_STA_AP_CLIENT,
1856 CFG80211_STA_AP_CLIENT_UNASSOC,
1857 CFG80211_STA_AP_MLME_CLIENT,
1858 CFG80211_STA_AP_STA,
1859 CFG80211_STA_IBSS,
1860 CFG80211_STA_TDLS_PEER_SETUP,
1861 CFG80211_STA_TDLS_PEER_ACTIVE,
1862 CFG80211_STA_MESH_PEER_KERNEL,
1863 CFG80211_STA_MESH_PEER_USER,
1864 };
1865
1866 /**
1867 * cfg80211_check_station_change - validate parameter changes
1868 * @wiphy: the wiphy this operates on
1869 * @params: the new parameters for a station
1870 * @statype: the type of station being modified
1871 *
1872 * Utility function for the @change_station driver method. Call this function
1873 * with the appropriate station type looking up the station (and checking that
1874 * it exists). It will verify whether the station change is acceptable.
1875 *
1876 * Return: 0 if the change is acceptable, otherwise an error code. Note that
1877 * it may modify the parameters for backward compatibility reasons, so don't
1878 * use them before calling this.
1879 */
1880 int cfg80211_check_station_change(struct wiphy *wiphy,
1881 struct station_parameters *params,
1882 enum cfg80211_station_type statype);
1883
1884 /**
1885 * enum rate_info_flags - bitrate info flags
1886 *
1887 * Used by the driver to indicate the specific rate transmission
1888 * type for 802.11n transmissions.
1889 *
1890 * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS
1891 * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS
1892 * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval
1893 * @RATE_INFO_FLAGS_DMG: 60GHz MCS
1894 * @RATE_INFO_FLAGS_HE_MCS: HE MCS information
1895 * @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode
1896 * @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS
1897 * @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information
1898 * @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS
1899 */
1900 enum rate_info_flags {
1901 RATE_INFO_FLAGS_MCS = BIT(0),
1902 RATE_INFO_FLAGS_VHT_MCS = BIT(1),
1903 RATE_INFO_FLAGS_SHORT_GI = BIT(2),
1904 RATE_INFO_FLAGS_DMG = BIT(3),
1905 RATE_INFO_FLAGS_HE_MCS = BIT(4),
1906 RATE_INFO_FLAGS_EDMG = BIT(5),
1907 RATE_INFO_FLAGS_EXTENDED_SC_DMG = BIT(6),
1908 RATE_INFO_FLAGS_EHT_MCS = BIT(7),
1909 RATE_INFO_FLAGS_S1G_MCS = BIT(8),
1910 };
1911
1912 /**
1913 * enum rate_info_bw - rate bandwidth information
1914 *
1915 * Used by the driver to indicate the rate bandwidth.
1916 *
1917 * @RATE_INFO_BW_5: 5 MHz bandwidth
1918 * @RATE_INFO_BW_10: 10 MHz bandwidth
1919 * @RATE_INFO_BW_20: 20 MHz bandwidth
1920 * @RATE_INFO_BW_40: 40 MHz bandwidth
1921 * @RATE_INFO_BW_80: 80 MHz bandwidth
1922 * @RATE_INFO_BW_160: 160 MHz bandwidth
1923 * @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation
1924 * @RATE_INFO_BW_320: 320 MHz bandwidth
1925 * @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT RU allocation
1926 * @RATE_INFO_BW_1: 1 MHz bandwidth
1927 * @RATE_INFO_BW_2: 2 MHz bandwidth
1928 * @RATE_INFO_BW_4: 4 MHz bandwidth
1929 * @RATE_INFO_BW_8: 8 MHz bandwidth
1930 * @RATE_INFO_BW_16: 16 MHz bandwidth
1931 */
1932 enum rate_info_bw {
1933 RATE_INFO_BW_20 = 0,
1934 RATE_INFO_BW_5,
1935 RATE_INFO_BW_10,
1936 RATE_INFO_BW_40,
1937 RATE_INFO_BW_80,
1938 RATE_INFO_BW_160,
1939 RATE_INFO_BW_HE_RU,
1940 RATE_INFO_BW_320,
1941 RATE_INFO_BW_EHT_RU,
1942 RATE_INFO_BW_1,
1943 RATE_INFO_BW_2,
1944 RATE_INFO_BW_4,
1945 RATE_INFO_BW_8,
1946 RATE_INFO_BW_16,
1947 };
1948
1949 /**
1950 * struct rate_info - bitrate information
1951 *
1952 * Information about a receiving or transmitting bitrate
1953 *
1954 * @flags: bitflag of flags from &enum rate_info_flags
1955 * @legacy: bitrate in 100kbit/s for 802.11abg
1956 * @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G rate
1957 * @nss: number of streams (VHT & HE only)
1958 * @bw: bandwidth (from &enum rate_info_bw)
1959 * @he_gi: HE guard interval (from &enum nl80211_he_gi)
1960 * @he_dcm: HE DCM value
1961 * @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc,
1962 * only valid if bw is %RATE_INFO_BW_HE_RU)
1963 * @n_bonded_ch: In case of EDMG the number of bonded channels (1-4)
1964 * @eht_gi: EHT guard interval (from &enum nl80211_eht_gi)
1965 * @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc,
1966 * only valid if bw is %RATE_INFO_BW_EHT_RU)
1967 */
1968 struct rate_info {
1969 u16 flags;
1970 u16 legacy;
1971 u8 mcs;
1972 u8 nss;
1973 u8 bw;
1974 u8 he_gi;
1975 u8 he_dcm;
1976 u8 he_ru_alloc;
1977 u8 n_bonded_ch;
1978 u8 eht_gi;
1979 u8 eht_ru_alloc;
1980 };
1981
1982 /**
1983 * enum bss_param_flags - bitrate info flags
1984 *
1985 * Used by the driver to indicate the specific rate transmission
1986 * type for 802.11n transmissions.
1987 *
1988 * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled
1989 * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled
1990 * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled
1991 */
1992 enum bss_param_flags {
1993 BSS_PARAM_FLAGS_CTS_PROT = BIT(0),
1994 BSS_PARAM_FLAGS_SHORT_PREAMBLE = BIT(1),
1995 BSS_PARAM_FLAGS_SHORT_SLOT_TIME = BIT(2),
1996 };
1997
1998 /**
1999 * struct sta_bss_parameters - BSS parameters for the attached station
2000 *
2001 * Information about the currently associated BSS
2002 *
2003 * @flags: bitflag of flags from &enum bss_param_flags
2004 * @dtim_period: DTIM period for the BSS
2005 * @beacon_interval: beacon interval
2006 */
2007 struct sta_bss_parameters {
2008 u8 flags;
2009 u8 dtim_period;
2010 u16 beacon_interval;
2011 };
2012
2013 /**
2014 * struct cfg80211_txq_stats - TXQ statistics for this TID
2015 * @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to
2016 * indicate the relevant values in this struct are filled
2017 * @backlog_bytes: total number of bytes currently backlogged
2018 * @backlog_packets: total number of packets currently backlogged
2019 * @flows: number of new flows seen
2020 * @drops: total number of packets dropped
2021 * @ecn_marks: total number of packets marked with ECN CE
2022 * @overlimit: number of drops due to queue space overflow
2023 * @overmemory: number of drops due to memory limit overflow
2024 * @collisions: number of hash collisions
2025 * @tx_bytes: total number of bytes dequeued
2026 * @tx_packets: total number of packets dequeued
2027 * @max_flows: maximum number of flows supported
2028 */
2029 struct cfg80211_txq_stats {
2030 u32 filled;
2031 u32 backlog_bytes;
2032 u32 backlog_packets;
2033 u32 flows;
2034 u32 drops;
2035 u32 ecn_marks;
2036 u32 overlimit;
2037 u32 overmemory;
2038 u32 collisions;
2039 u32 tx_bytes;
2040 u32 tx_packets;
2041 u32 max_flows;
2042 };
2043
2044 /**
2045 * struct cfg80211_tid_stats - per-TID statistics
2046 * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to
2047 * indicate the relevant values in this struct are filled
2048 * @rx_msdu: number of received MSDUs
2049 * @tx_msdu: number of (attempted) transmitted MSDUs
2050 * @tx_msdu_retries: number of retries (not counting the first) for
2051 * transmitted MSDUs
2052 * @tx_msdu_failed: number of failed transmitted MSDUs
2053 * @txq_stats: TXQ statistics
2054 */
2055 struct cfg80211_tid_stats {
2056 u32 filled;
2057 u64 rx_msdu;
2058 u64 tx_msdu;
2059 u64 tx_msdu_retries;
2060 u64 tx_msdu_failed;
2061 struct cfg80211_txq_stats txq_stats;
2062 };
2063
2064 #define IEEE80211_MAX_CHAINS 4
2065
2066 /**
2067 * struct link_station_info - link station information
2068 *
2069 * Link station information filled by driver for get_station() and
2070 * dump_station().
2071 * @filled: bit flag of flags using the bits of &enum nl80211_sta_info to
2072 * indicate the relevant values in this struct for them
2073 * @connected_time: time(in secs) since a link of station is last connected
2074 * @inactive_time: time since last activity for link station(tx/rx)
2075 * in milliseconds
2076 * @assoc_at: bootime (ns) of the last association of link of station
2077 * @rx_bytes: bytes (size of MPDUs) received from this link of station
2078 * @tx_bytes: bytes (size of MPDUs) transmitted to this link of station
2079 * @signal: The signal strength, type depends on the wiphy's signal_type.
2080 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2081 * @signal_avg: Average signal strength, type depends on the wiphy's
2082 * signal_type. For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_
2083 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
2084 * @chain_signal: per-chain signal strength of last received packet in dBm
2085 * @chain_signal_avg: per-chain signal strength average in dBm
2086 * @txrate: current unicast bitrate from this link of station
2087 * @rxrate: current unicast bitrate to this link of station
2088 * @rx_packets: packets (MSDUs & MMPDUs) received from this link of station
2089 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this link of station
2090 * @tx_retries: cumulative retry counts (MPDUs) for this link of station
2091 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
2092 * @rx_dropped_misc: Dropped for un-specified reason.
2093 * @bss_param: current BSS parameters
2094 * @beacon_loss_count: Number of times beacon loss event has triggered.
2095 * @expected_throughput: expected throughput in kbps (including 802.11 headers)
2096 * towards this station.
2097 * @rx_beacon: number of beacons received from this peer
2098 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
2099 * from this peer
2100 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
2101 * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
2102 * @airtime_weight: current airtime scheduling weight
2103 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
2104 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
2105 * Note that this doesn't use the @filled bit, but is used if non-NULL.
2106 * @ack_signal: signal strength (in dBm) of the last ACK frame.
2107 * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
2108 * been sent.
2109 * @rx_mpdu_count: number of MPDUs received from this station
2110 * @fcs_err_count: number of packets (MPDUs) received from this station with
2111 * an FCS error. This counter should be incremented only when TA of the
2112 * received packet with an FCS error matches the peer MAC address.
2113 * @addr: For MLO STA connection, filled with address of the link of station.
2114 */
2115 struct link_station_info {
2116 u64 filled;
2117 u32 connected_time;
2118 u32 inactive_time;
2119 u64 assoc_at;
2120 u64 rx_bytes;
2121 u64 tx_bytes;
2122 s8 signal;
2123 s8 signal_avg;
2124
2125 u8 chains;
2126 s8 chain_signal[IEEE80211_MAX_CHAINS];
2127 s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
2128
2129 struct rate_info txrate;
2130 struct rate_info rxrate;
2131 u32 rx_packets;
2132 u32 tx_packets;
2133 u32 tx_retries;
2134 u32 tx_failed;
2135 u32 rx_dropped_misc;
2136 struct sta_bss_parameters bss_param;
2137
2138 u32 beacon_loss_count;
2139
2140 u32 expected_throughput;
2141
2142 u64 tx_duration;
2143 u64 rx_duration;
2144 u64 rx_beacon;
2145 u8 rx_beacon_signal_avg;
2146
2147 u16 airtime_weight;
2148
2149 s8 ack_signal;
2150 s8 avg_ack_signal;
2151 struct cfg80211_tid_stats *pertid;
2152
2153 u32 rx_mpdu_count;
2154 u32 fcs_err_count;
2155
2156 u8 addr[ETH_ALEN] __aligned(2);
2157 };
2158
2159 /**
2160 * struct station_info - station information
2161 *
2162 * Station information filled by driver for get_station() and dump_station.
2163 *
2164 * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to
2165 * indicate the relevant values in this struct for them
2166 * @connected_time: time(in secs) since a station is last connected
2167 * @inactive_time: time since last station activity (tx/rx) in milliseconds
2168 * @assoc_at: bootime (ns) of the last association
2169 * @rx_bytes: bytes (size of MPDUs) received from this station
2170 * @tx_bytes: bytes (size of MPDUs) transmitted to this station
2171 * @signal: The signal strength, type depends on the wiphy's signal_type.
2172 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2173 * @signal_avg: Average signal strength, type depends on the wiphy's signal_type.
2174 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2175 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
2176 * @chain_signal: per-chain signal strength of last received packet in dBm
2177 * @chain_signal_avg: per-chain signal strength average in dBm
2178 * @txrate: current unicast bitrate from this station
2179 * @rxrate: current unicast bitrate to this station
2180 * @rx_packets: packets (MSDUs & MMPDUs) received from this station
2181 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station
2182 * @tx_retries: cumulative retry counts (MPDUs)
2183 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
2184 * @rx_dropped_misc: Dropped for un-specified reason.
2185 * @bss_param: current BSS parameters
2186 * @generation: generation number for nl80211 dumps.
2187 * This number should increase every time the list of stations
2188 * changes, i.e. when a station is added or removed, so that
2189 * userspace can tell whether it got a consistent snapshot.
2190 * @beacon_loss_count: Number of times beacon loss event has triggered.
2191 * @assoc_req_ies: IEs from (Re)Association Request.
2192 * This is used only when in AP mode with drivers that do not use
2193 * user space MLME/SME implementation. The information is provided for
2194 * the cfg80211_new_sta() calls to notify user space of the IEs.
2195 * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets.
2196 * @sta_flags: station flags mask & values
2197 * @t_offset: Time offset of the station relative to this host.
2198 * @llid: mesh local link id
2199 * @plid: mesh peer link id
2200 * @plink_state: mesh peer link state
2201 * @connected_to_gate: true if mesh STA has a path to mesh gate
2202 * @connected_to_as: true if mesh STA has a path to authentication server
2203 * @airtime_link_metric: mesh airtime link metric.
2204 * @local_pm: local mesh STA power save mode
2205 * @peer_pm: peer mesh STA power save mode
2206 * @nonpeer_pm: non-peer mesh STA power save mode
2207 * @expected_throughput: expected throughput in kbps (including 802.11 headers)
2208 * towards this station.
2209 * @rx_beacon: number of beacons received from this peer
2210 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
2211 * from this peer
2212 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
2213 * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
2214 * @airtime_weight: current airtime scheduling weight
2215 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
2216 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
2217 * Note that this doesn't use the @filled bit, but is used if non-NULL.
2218 * @ack_signal: signal strength (in dBm) of the last ACK frame.
2219 * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
2220 * been sent.
2221 * @rx_mpdu_count: number of MPDUs received from this station
2222 * @fcs_err_count: number of packets (MPDUs) received from this station with
2223 * an FCS error. This counter should be incremented only when TA of the
2224 * received packet with an FCS error matches the peer MAC address.
2225 * @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled
2226 * by driver. Drivers use this only in cfg80211_new_sta() calls when AP
2227 * MLD's MLME/SME is offload to driver. Drivers won't fill this
2228 * information in cfg80211_del_sta_sinfo(), get_station() and
2229 * dump_station() callbacks.
2230 * @assoc_link_id: Indicates MLO link ID of the AP, with which the station
2231 * completed (re)association. This information filled for both MLO
2232 * and non-MLO STA connections when the AP affiliated with an MLD.
2233 * @mld_addr: For MLO STA connection, filled with MLD address of the station.
2234 * For non-MLO STA connection, filled with all zeros.
2235 * @assoc_resp_ies: IEs from (Re)Association Response.
2236 * This is used only when in AP mode with drivers that do not use user
2237 * space MLME/SME implementation. The information is provided only for the
2238 * cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't
2239 * fill this information in cfg80211_del_sta_sinfo(), get_station() and
2240 * dump_station() callbacks. User space needs this information to determine
2241 * the accepted and rejected affiliated links of the connected station.
2242 * @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets.
2243 * @valid_links: bitmap of valid links, or 0 for non-MLO. Drivers fill this
2244 * information in cfg80211_new_sta(), cfg80211_del_sta_sinfo(),
2245 * get_station() and dump_station() callbacks.
2246 * @links: reference to Link sta entries for MLO STA, all link specific
2247 * information is accessed through links[link_id].
2248 */
2249 struct station_info {
2250 u64 filled;
2251 u32 connected_time;
2252 u32 inactive_time;
2253 u64 assoc_at;
2254 u64 rx_bytes;
2255 u64 tx_bytes;
2256 s8 signal;
2257 s8 signal_avg;
2258
2259 u8 chains;
2260 s8 chain_signal[IEEE80211_MAX_CHAINS];
2261 s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
2262
2263 struct rate_info txrate;
2264 struct rate_info rxrate;
2265 u32 rx_packets;
2266 u32 tx_packets;
2267 u32 tx_retries;
2268 u32 tx_failed;
2269 u32 rx_dropped_misc;
2270 struct sta_bss_parameters bss_param;
2271 struct nl80211_sta_flag_update sta_flags;
2272
2273 int generation;
2274
2275 u32 beacon_loss_count;
2276
2277 const u8 *assoc_req_ies;
2278 size_t assoc_req_ies_len;
2279
2280 s64 t_offset;
2281 u16 llid;
2282 u16 plid;
2283 u8 plink_state;
2284 u8 connected_to_gate;
2285 u8 connected_to_as;
2286 u32 airtime_link_metric;
2287 enum nl80211_mesh_power_mode local_pm;
2288 enum nl80211_mesh_power_mode peer_pm;
2289 enum nl80211_mesh_power_mode nonpeer_pm;
2290
2291 u32 expected_throughput;
2292
2293 u16 airtime_weight;
2294
2295 s8 ack_signal;
2296 s8 avg_ack_signal;
2297 struct cfg80211_tid_stats *pertid;
2298
2299 u64 tx_duration;
2300 u64 rx_duration;
2301 u64 rx_beacon;
2302 u8 rx_beacon_signal_avg;
2303
2304 u32 rx_mpdu_count;
2305 u32 fcs_err_count;
2306
2307 bool mlo_params_valid;
2308 u8 assoc_link_id;
2309 u8 mld_addr[ETH_ALEN] __aligned(2);
2310 const u8 *assoc_resp_ies;
2311 size_t assoc_resp_ies_len;
2312
2313 u16 valid_links;
2314 struct link_station_info *links[IEEE80211_MLD_MAX_NUM_LINKS];
2315 };
2316
2317 /**
2318 * struct cfg80211_sar_sub_specs - sub specs limit
2319 * @power: power limitation in 0.25dbm
2320 * @freq_range_index: index the power limitation applies to
2321 */
2322 struct cfg80211_sar_sub_specs {
2323 s32 power;
2324 u32 freq_range_index;
2325 };
2326
2327 /**
2328 * struct cfg80211_sar_specs - sar limit specs
2329 * @type: it's set with power in 0.25dbm or other types
2330 * @num_sub_specs: number of sar sub specs
2331 * @sub_specs: memory to hold the sar sub specs
2332 */
2333 struct cfg80211_sar_specs {
2334 enum nl80211_sar_type type;
2335 u32 num_sub_specs;
2336 struct cfg80211_sar_sub_specs sub_specs[] __counted_by(num_sub_specs);
2337 };
2338
2339
2340 /**
2341 * struct cfg80211_sar_freq_ranges - sar frequency ranges
2342 * @start_freq: start range edge frequency
2343 * @end_freq: end range edge frequency
2344 */
2345 struct cfg80211_sar_freq_ranges {
2346 u32 start_freq;
2347 u32 end_freq;
2348 };
2349
2350 /**
2351 * struct cfg80211_sar_capa - sar limit capability
2352 * @type: it's set via power in 0.25dbm or other types
2353 * @num_freq_ranges: number of frequency ranges
2354 * @freq_ranges: memory to hold the freq ranges.
2355 *
2356 * Note: WLAN driver may append new ranges or split an existing
2357 * range to small ones and then append them.
2358 */
2359 struct cfg80211_sar_capa {
2360 enum nl80211_sar_type type;
2361 u32 num_freq_ranges;
2362 const struct cfg80211_sar_freq_ranges *freq_ranges;
2363 };
2364
2365 #if IS_ENABLED(CONFIG_CFG80211)
2366 /**
2367 * cfg80211_get_station - retrieve information about a given station
2368 * @dev: the device where the station is supposed to be connected to
2369 * @mac_addr: the mac address of the station of interest
2370 * @sinfo: pointer to the structure to fill with the information
2371 *
2372 * Return: 0 on success and sinfo is filled with the available information
2373 * otherwise returns a negative error code and the content of sinfo has to be
2374 * considered undefined.
2375 */
2376 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2377 struct station_info *sinfo);
2378 #else
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2379 static inline int cfg80211_get_station(struct net_device *dev,
2380 const u8 *mac_addr,
2381 struct station_info *sinfo)
2382 {
2383 return -ENOENT;
2384 }
2385 #endif
2386
2387 /**
2388 * enum monitor_flags - monitor flags
2389 *
2390 * Monitor interface configuration flags. Note that these must be the bits
2391 * according to the nl80211 flags.
2392 *
2393 * @MONITOR_FLAG_CHANGED: set if the flags were changed
2394 * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS
2395 * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP
2396 * @MONITOR_FLAG_CONTROL: pass control frames
2397 * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering
2398 * @MONITOR_FLAG_COOK_FRAMES: deprecated, will unconditionally be refused
2399 * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address
2400 * @MONITOR_FLAG_SKIP_TX: do not pass locally transmitted frames
2401 */
2402 enum monitor_flags {
2403 MONITOR_FLAG_CHANGED = BIT(__NL80211_MNTR_FLAG_INVALID),
2404 MONITOR_FLAG_FCSFAIL = BIT(NL80211_MNTR_FLAG_FCSFAIL),
2405 MONITOR_FLAG_PLCPFAIL = BIT(NL80211_MNTR_FLAG_PLCPFAIL),
2406 MONITOR_FLAG_CONTROL = BIT(NL80211_MNTR_FLAG_CONTROL),
2407 MONITOR_FLAG_OTHER_BSS = BIT(NL80211_MNTR_FLAG_OTHER_BSS),
2408 MONITOR_FLAG_COOK_FRAMES = BIT(NL80211_MNTR_FLAG_COOK_FRAMES),
2409 MONITOR_FLAG_ACTIVE = BIT(NL80211_MNTR_FLAG_ACTIVE),
2410 MONITOR_FLAG_SKIP_TX = BIT(NL80211_MNTR_FLAG_SKIP_TX),
2411 };
2412
2413 /**
2414 * enum mpath_info_flags - mesh path information flags
2415 *
2416 * Used by the driver to indicate which info in &struct mpath_info it has filled
2417 * in during get_station() or dump_station().
2418 *
2419 * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
2420 * @MPATH_INFO_SN: @sn filled
2421 * @MPATH_INFO_METRIC: @metric filled
2422 * @MPATH_INFO_EXPTIME: @exptime filled
2423 * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
2424 * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
2425 * @MPATH_INFO_FLAGS: @flags filled
2426 * @MPATH_INFO_HOP_COUNT: @hop_count filled
2427 * @MPATH_INFO_PATH_CHANGE: @path_change_count filled
2428 */
2429 enum mpath_info_flags {
2430 MPATH_INFO_FRAME_QLEN = BIT(0),
2431 MPATH_INFO_SN = BIT(1),
2432 MPATH_INFO_METRIC = BIT(2),
2433 MPATH_INFO_EXPTIME = BIT(3),
2434 MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4),
2435 MPATH_INFO_DISCOVERY_RETRIES = BIT(5),
2436 MPATH_INFO_FLAGS = BIT(6),
2437 MPATH_INFO_HOP_COUNT = BIT(7),
2438 MPATH_INFO_PATH_CHANGE = BIT(8),
2439 };
2440
2441 /**
2442 * struct mpath_info - mesh path information
2443 *
2444 * Mesh path information filled by driver for get_mpath() and dump_mpath().
2445 *
2446 * @filled: bitfield of flags from &enum mpath_info_flags
2447 * @frame_qlen: number of queued frames for this destination
2448 * @sn: target sequence number
2449 * @metric: metric (cost) of this mesh path
2450 * @exptime: expiration time for the mesh path from now, in msecs
2451 * @flags: mesh path flags from &enum mesh_path_flags
2452 * @discovery_timeout: total mesh path discovery timeout, in msecs
2453 * @discovery_retries: mesh path discovery retries
2454 * @generation: generation number for nl80211 dumps.
2455 * This number should increase every time the list of mesh paths
2456 * changes, i.e. when a station is added or removed, so that
2457 * userspace can tell whether it got a consistent snapshot.
2458 * @hop_count: hops to destination
2459 * @path_change_count: total number of path changes to destination
2460 */
2461 struct mpath_info {
2462 u32 filled;
2463 u32 frame_qlen;
2464 u32 sn;
2465 u32 metric;
2466 u32 exptime;
2467 u32 discovery_timeout;
2468 u8 discovery_retries;
2469 u8 flags;
2470 u8 hop_count;
2471 u32 path_change_count;
2472
2473 int generation;
2474 };
2475
2476 /**
2477 * enum wiphy_bss_param_flags - bit positions for supported bss parameters.
2478 *
2479 * @WIPHY_BSS_PARAM_CTS_PROT: support changing CTS protection.
2480 * @WIPHY_BSS_PARAM_SHORT_PREAMBLE: support changing short preamble usage.
2481 * @WIPHY_BSS_PARAM_SHORT_SLOT_TIME: support changing short slot time usage.
2482 * @WIPHY_BSS_PARAM_BASIC_RATES: support reconfiguring basic rates.
2483 * @WIPHY_BSS_PARAM_AP_ISOLATE: support changing AP isolation.
2484 * @WIPHY_BSS_PARAM_HT_OPMODE: support changing HT operating mode.
2485 * @WIPHY_BSS_PARAM_P2P_CTWINDOW: support reconfiguring ctwindow.
2486 * @WIPHY_BSS_PARAM_P2P_OPPPS: support changing P2P opportunistic power-save.
2487 */
2488 enum wiphy_bss_param_flags {
2489 WIPHY_BSS_PARAM_CTS_PROT = BIT(0),
2490 WIPHY_BSS_PARAM_SHORT_PREAMBLE = BIT(1),
2491 WIPHY_BSS_PARAM_SHORT_SLOT_TIME = BIT(2),
2492 WIPHY_BSS_PARAM_BASIC_RATES = BIT(3),
2493 WIPHY_BSS_PARAM_AP_ISOLATE = BIT(4),
2494 WIPHY_BSS_PARAM_HT_OPMODE = BIT(5),
2495 WIPHY_BSS_PARAM_P2P_CTWINDOW = BIT(6),
2496 WIPHY_BSS_PARAM_P2P_OPPPS = BIT(7),
2497 };
2498
2499 /**
2500 * struct bss_parameters - BSS parameters
2501 *
2502 * Used to change BSS parameters (mainly for AP mode).
2503 *
2504 * @link_id: link_id or -1 for non-MLD
2505 * @use_cts_prot: Whether to use CTS protection
2506 * (0 = no, 1 = yes, -1 = do not change)
2507 * @use_short_preamble: Whether the use of short preambles is allowed
2508 * (0 = no, 1 = yes, -1 = do not change)
2509 * @use_short_slot_time: Whether the use of short slot time is allowed
2510 * (0 = no, 1 = yes, -1 = do not change)
2511 * @basic_rates: basic rates in IEEE 802.11 format
2512 * (or NULL for no change)
2513 * @basic_rates_len: number of basic rates
2514 * @ap_isolate: do not forward packets between connected stations
2515 * (0 = no, 1 = yes, -1 = do not change)
2516 * @ht_opmode: HT Operation mode
2517 * (u16 = opmode, -1 = do not change)
2518 * @p2p_ctwindow: P2P CT Window (-1 = no change)
2519 * @p2p_opp_ps: P2P opportunistic PS (-1 = no change)
2520 */
2521 struct bss_parameters {
2522 int link_id;
2523 int use_cts_prot;
2524 int use_short_preamble;
2525 int use_short_slot_time;
2526 const u8 *basic_rates;
2527 u8 basic_rates_len;
2528 int ap_isolate;
2529 int ht_opmode;
2530 s8 p2p_ctwindow, p2p_opp_ps;
2531 };
2532
2533 /**
2534 * struct mesh_config - 802.11s mesh configuration
2535 *
2536 * These parameters can be changed while the mesh is active.
2537 *
2538 * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used
2539 * by the Mesh Peering Open message
2540 * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units
2541 * used by the Mesh Peering Open message
2542 * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by
2543 * the mesh peering management to close a mesh peering
2544 * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this
2545 * mesh interface
2546 * @dot11MeshMaxRetries: the maximum number of peer link open retries that can
2547 * be sent to establish a new peer link instance in a mesh
2548 * @dot11MeshTTL: the value of TTL field set at a source mesh STA
2549 * @element_ttl: the value of TTL field set at a mesh STA for path selection
2550 * elements
2551 * @auto_open_plinks: whether we should automatically open peer links when we
2552 * detect compatible mesh peers
2553 * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to
2554 * synchronize to for 11s default synchronization method
2555 * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ
2556 * that an originator mesh STA can send to a particular path target
2557 * @path_refresh_time: how frequently to refresh mesh paths in milliseconds
2558 * @min_discovery_timeout: the minimum length of time to wait until giving up on
2559 * a path discovery in milliseconds
2560 * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs
2561 * receiving a PREQ shall consider the forwarding information from the
2562 * root to be valid. (TU = time unit)
2563 * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during
2564 * which a mesh STA can send only one action frame containing a PREQ
2565 * element
2566 * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during
2567 * which a mesh STA can send only one Action frame containing a PERR
2568 * element
2569 * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that
2570 * it takes for an HWMP information element to propagate across the mesh
2571 * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA
2572 * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root
2573 * announcements are transmitted
2574 * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh
2575 * station has access to a broader network beyond the MBSS. (This is
2576 * missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true
2577 * only means that the station will announce others it's a mesh gate, but
2578 * not necessarily using the gate announcement protocol. Still keeping the
2579 * same nomenclature to be in sync with the spec)
2580 * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding
2581 * entity (default is TRUE - forwarding entity)
2582 * @rssi_threshold: the threshold for average signal strength of candidate
2583 * station to establish a peer link
2584 * @ht_opmode: mesh HT protection mode
2585 *
2586 * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs
2587 * receiving a proactive PREQ shall consider the forwarding information to
2588 * the root mesh STA to be valid.
2589 *
2590 * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive
2591 * PREQs are transmitted.
2592 * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs)
2593 * during which a mesh STA can send only one Action frame containing
2594 * a PREQ element for root path confirmation.
2595 * @power_mode: The default mesh power save mode which will be the initial
2596 * setting for new peer links.
2597 * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake
2598 * after transmitting its beacon.
2599 * @plink_timeout: If no tx activity is seen from a STA we've established
2600 * peering with for longer than this time (in seconds), then remove it
2601 * from the STA's list of peers. Default is 30 minutes.
2602 * @dot11MeshConnectedToAuthServer: if set to true then this mesh STA
2603 * will advertise that it is connected to a authentication server
2604 * in the mesh formation field.
2605 * @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is
2606 * connected to a mesh gate in mesh formation info. If false, the
2607 * value in mesh formation is determined by the presence of root paths
2608 * in the mesh path table
2609 * @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP
2610 * for HWMP) if the destination is a direct neighbor. Note that this might
2611 * not be the optimal decision as a multi-hop route might be better. So
2612 * if using this setting you will likely also want to disable
2613 * dot11MeshForwarding and use another mesh routing protocol on top.
2614 */
2615 struct mesh_config {
2616 u16 dot11MeshRetryTimeout;
2617 u16 dot11MeshConfirmTimeout;
2618 u16 dot11MeshHoldingTimeout;
2619 u16 dot11MeshMaxPeerLinks;
2620 u8 dot11MeshMaxRetries;
2621 u8 dot11MeshTTL;
2622 u8 element_ttl;
2623 bool auto_open_plinks;
2624 u32 dot11MeshNbrOffsetMaxNeighbor;
2625 u8 dot11MeshHWMPmaxPREQretries;
2626 u32 path_refresh_time;
2627 u16 min_discovery_timeout;
2628 u32 dot11MeshHWMPactivePathTimeout;
2629 u16 dot11MeshHWMPpreqMinInterval;
2630 u16 dot11MeshHWMPperrMinInterval;
2631 u16 dot11MeshHWMPnetDiameterTraversalTime;
2632 u8 dot11MeshHWMPRootMode;
2633 bool dot11MeshConnectedToMeshGate;
2634 bool dot11MeshConnectedToAuthServer;
2635 u16 dot11MeshHWMPRannInterval;
2636 bool dot11MeshGateAnnouncementProtocol;
2637 bool dot11MeshForwarding;
2638 s32 rssi_threshold;
2639 u16 ht_opmode;
2640 u32 dot11MeshHWMPactivePathToRootTimeout;
2641 u16 dot11MeshHWMProotInterval;
2642 u16 dot11MeshHWMPconfirmationInterval;
2643 enum nl80211_mesh_power_mode power_mode;
2644 u16 dot11MeshAwakeWindowDuration;
2645 u32 plink_timeout;
2646 bool dot11MeshNolearn;
2647 };
2648
2649 /**
2650 * struct mesh_setup - 802.11s mesh setup configuration
2651 * @chandef: defines the channel to use
2652 * @mesh_id: the mesh ID
2653 * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes
2654 * @sync_method: which synchronization method to use
2655 * @path_sel_proto: which path selection protocol to use
2656 * @path_metric: which metric to use
2657 * @auth_id: which authentication method this mesh is using
2658 * @ie: vendor information elements (optional)
2659 * @ie_len: length of vendor information elements
2660 * @is_authenticated: this mesh requires authentication
2661 * @is_secure: this mesh uses security
2662 * @user_mpm: userspace handles all MPM functions
2663 * @dtim_period: DTIM period to use
2664 * @beacon_interval: beacon interval to use
2665 * @mcast_rate: multicast rate for Mesh Node [6Mbps is the default for 802.11a]
2666 * @basic_rates: basic rates to use when creating the mesh
2667 * @beacon_rate: bitrate to be used for beacons
2668 * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
2669 * changes the channel when a radar is detected. This is required
2670 * to operate on DFS channels.
2671 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
2672 * port frames over NL80211 instead of the network interface.
2673 *
2674 * These parameters are fixed when the mesh is created.
2675 */
2676 struct mesh_setup {
2677 struct cfg80211_chan_def chandef;
2678 const u8 *mesh_id;
2679 u8 mesh_id_len;
2680 u8 sync_method;
2681 u8 path_sel_proto;
2682 u8 path_metric;
2683 u8 auth_id;
2684 const u8 *ie;
2685 u8 ie_len;
2686 bool is_authenticated;
2687 bool is_secure;
2688 bool user_mpm;
2689 u8 dtim_period;
2690 u16 beacon_interval;
2691 int mcast_rate[NUM_NL80211_BANDS];
2692 u32 basic_rates;
2693 struct cfg80211_bitrate_mask beacon_rate;
2694 bool userspace_handles_dfs;
2695 bool control_port_over_nl80211;
2696 };
2697
2698 /**
2699 * struct ocb_setup - 802.11p OCB mode setup configuration
2700 * @chandef: defines the channel to use
2701 *
2702 * These parameters are fixed when connecting to the network
2703 */
2704 struct ocb_setup {
2705 struct cfg80211_chan_def chandef;
2706 };
2707
2708 /**
2709 * struct ieee80211_txq_params - TX queue parameters
2710 * @ac: AC identifier
2711 * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled
2712 * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range
2713 * 1..32767]
2714 * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range
2715 * 1..32767]
2716 * @aifs: Arbitration interframe space [0..255]
2717 * @link_id: link_id or -1 for non-MLD
2718 */
2719 struct ieee80211_txq_params {
2720 enum nl80211_ac ac;
2721 u16 txop;
2722 u16 cwmin;
2723 u16 cwmax;
2724 u8 aifs;
2725 int link_id;
2726 };
2727
2728 /**
2729 * DOC: Scanning and BSS list handling
2730 *
2731 * The scanning process itself is fairly simple, but cfg80211 offers quite
2732 * a bit of helper functionality. To start a scan, the scan operation will
2733 * be invoked with a scan definition. This scan definition contains the
2734 * channels to scan, and the SSIDs to send probe requests for (including the
2735 * wildcard, if desired). A passive scan is indicated by having no SSIDs to
2736 * probe. Additionally, a scan request may contain extra information elements
2737 * that should be added to the probe request. The IEs are guaranteed to be
2738 * well-formed, and will not exceed the maximum length the driver advertised
2739 * in the wiphy structure.
2740 *
2741 * When scanning finds a BSS, cfg80211 needs to be notified of that, because
2742 * it is responsible for maintaining the BSS list; the driver should not
2743 * maintain a list itself. For this notification, various functions exist.
2744 *
2745 * Since drivers do not maintain a BSS list, there are also a number of
2746 * functions to search for a BSS and obtain information about it from the
2747 * BSS structure cfg80211 maintains. The BSS list is also made available
2748 * to userspace.
2749 */
2750
2751 /**
2752 * struct cfg80211_ssid - SSID description
2753 * @ssid: the SSID
2754 * @ssid_len: length of the ssid
2755 */
2756 struct cfg80211_ssid {
2757 u8 ssid[IEEE80211_MAX_SSID_LEN];
2758 u8 ssid_len;
2759 };
2760
2761 /**
2762 * struct cfg80211_scan_info - information about completed scan
2763 * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the
2764 * wireless device that requested the scan is connected to. If this
2765 * information is not available, this field is left zero.
2766 * @tsf_bssid: the BSSID according to which %scan_start_tsf is set.
2767 * @aborted: set to true if the scan was aborted for any reason,
2768 * userspace will be notified of that
2769 */
2770 struct cfg80211_scan_info {
2771 u64 scan_start_tsf;
2772 u8 tsf_bssid[ETH_ALEN] __aligned(2);
2773 bool aborted;
2774 };
2775
2776 /**
2777 * struct cfg80211_scan_6ghz_params - relevant for 6 GHz only
2778 *
2779 * @short_ssid: short ssid to scan for
2780 * @bssid: bssid to scan for
2781 * @channel_idx: idx of the channel in the channel array in the scan request
2782 * which the above info is relevant to
2783 * @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU
2784 * @short_ssid_valid: @short_ssid is valid and can be used
2785 * @psc_no_listen: when set, and the channel is a PSC channel, no need to wait
2786 * 20 TUs before starting to send probe requests.
2787 * @psd_20: The AP's 20 MHz PSD value.
2788 */
2789 struct cfg80211_scan_6ghz_params {
2790 u32 short_ssid;
2791 u32 channel_idx;
2792 u8 bssid[ETH_ALEN];
2793 bool unsolicited_probe;
2794 bool short_ssid_valid;
2795 bool psc_no_listen;
2796 s8 psd_20;
2797 };
2798
2799 /**
2800 * struct cfg80211_scan_request - scan request description
2801 *
2802 * @ssids: SSIDs to scan for (active scan only)
2803 * @n_ssids: number of SSIDs
2804 * @channels: channels to scan on.
2805 * @n_channels: total number of channels to scan
2806 * @ie: optional information element(s) to add into Probe Request or %NULL
2807 * @ie_len: length of ie in octets
2808 * @duration: how long to listen on each channel, in TUs. If
2809 * %duration_mandatory is not set, this is the maximum dwell time and
2810 * the actual dwell time may be shorter.
2811 * @duration_mandatory: if set, the scan duration must be as specified by the
2812 * %duration field.
2813 * @flags: control flags from &enum nl80211_scan_flags
2814 * @rates: bitmap of rates to advertise for each band
2815 * @wiphy: the wiphy this was for
2816 * @scan_start: time (in jiffies) when the scan started
2817 * @wdev: the wireless device to scan for
2818 * @no_cck: used to send probe requests at non CCK rate in 2GHz band
2819 * @mac_addr: MAC address used with randomisation
2820 * @mac_addr_mask: MAC address mask used with randomisation, bits that
2821 * are 0 in the mask should be randomised, bits that are 1 should
2822 * be taken from the @mac_addr
2823 * @scan_6ghz: relevant for split scan request only,
2824 * true if this is a 6 GHz scan request
2825 * @first_part: %true if this is the first part of a split scan request or a
2826 * scan that was not split. May be %true for a @scan_6ghz scan if no other
2827 * channels were requested
2828 * @n_6ghz_params: number of 6 GHz params
2829 * @scan_6ghz_params: 6 GHz params
2830 * @bssid: BSSID to scan for (most commonly, the wildcard BSSID)
2831 * @tsf_report_link_id: for MLO, indicates the link ID of the BSS that should be
2832 * used for TSF reporting. Can be set to -1 to indicate no preference.
2833 */
2834 struct cfg80211_scan_request {
2835 struct cfg80211_ssid *ssids;
2836 int n_ssids;
2837 u32 n_channels;
2838 const u8 *ie;
2839 size_t ie_len;
2840 u16 duration;
2841 bool duration_mandatory;
2842 u32 flags;
2843
2844 u32 rates[NUM_NL80211_BANDS];
2845
2846 struct wireless_dev *wdev;
2847
2848 u8 mac_addr[ETH_ALEN] __aligned(2);
2849 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2850 u8 bssid[ETH_ALEN] __aligned(2);
2851 struct wiphy *wiphy;
2852 unsigned long scan_start;
2853 bool no_cck;
2854 bool scan_6ghz;
2855 bool first_part;
2856 u32 n_6ghz_params;
2857 struct cfg80211_scan_6ghz_params *scan_6ghz_params;
2858 s8 tsf_report_link_id;
2859
2860 /* keep last */
2861 struct ieee80211_channel *channels[];
2862 };
2863
get_random_mask_addr(u8 * buf,const u8 * addr,const u8 * mask)2864 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask)
2865 {
2866 int i;
2867
2868 get_random_bytes(buf, ETH_ALEN);
2869 for (i = 0; i < ETH_ALEN; i++) {
2870 buf[i] &= ~mask[i];
2871 buf[i] |= addr[i] & mask[i];
2872 }
2873 }
2874
2875 /**
2876 * struct cfg80211_match_set - sets of attributes to match
2877 *
2878 * @ssid: SSID to be matched; may be zero-length in case of BSSID match
2879 * or no match (RSSI only)
2880 * @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match
2881 * or no match (RSSI only)
2882 * @rssi_thold: don't report scan results below this threshold (in s32 dBm)
2883 */
2884 struct cfg80211_match_set {
2885 struct cfg80211_ssid ssid;
2886 u8 bssid[ETH_ALEN];
2887 s32 rssi_thold;
2888 };
2889
2890 /**
2891 * struct cfg80211_sched_scan_plan - scan plan for scheduled scan
2892 *
2893 * @interval: interval between scheduled scan iterations. In seconds.
2894 * @iterations: number of scan iterations in this scan plan. Zero means
2895 * infinite loop.
2896 * The last scan plan will always have this parameter set to zero,
2897 * all other scan plans will have a finite number of iterations.
2898 */
2899 struct cfg80211_sched_scan_plan {
2900 u32 interval;
2901 u32 iterations;
2902 };
2903
2904 /**
2905 * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment.
2906 *
2907 * @band: band of BSS which should match for RSSI level adjustment.
2908 * @delta: value of RSSI level adjustment.
2909 */
2910 struct cfg80211_bss_select_adjust {
2911 enum nl80211_band band;
2912 s8 delta;
2913 };
2914
2915 /**
2916 * struct cfg80211_sched_scan_request - scheduled scan request description
2917 *
2918 * @reqid: identifies this request.
2919 * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans)
2920 * @n_ssids: number of SSIDs
2921 * @n_channels: total number of channels to scan
2922 * @ie: optional information element(s) to add into Probe Request or %NULL
2923 * @ie_len: length of ie in octets
2924 * @flags: control flags from &enum nl80211_scan_flags
2925 * @match_sets: sets of parameters to be matched for a scan result
2926 * entry to be considered valid and to be passed to the host
2927 * (others are filtered out).
2928 * If omitted, all results are passed.
2929 * @n_match_sets: number of match sets
2930 * @report_results: indicates that results were reported for this request
2931 * @wiphy: the wiphy this was for
2932 * @dev: the interface
2933 * @scan_start: start time of the scheduled scan
2934 * @channels: channels to scan
2935 * @min_rssi_thold: for drivers only supporting a single threshold, this
2936 * contains the minimum over all matchsets
2937 * @mac_addr: MAC address used with randomisation
2938 * @mac_addr_mask: MAC address mask used with randomisation, bits that
2939 * are 0 in the mask should be randomised, bits that are 1 should
2940 * be taken from the @mac_addr
2941 * @scan_plans: scan plans to be executed in this scheduled scan. Lowest
2942 * index must be executed first.
2943 * @n_scan_plans: number of scan plans, at least 1.
2944 * @rcu_head: RCU callback used to free the struct
2945 * @owner_nlportid: netlink portid of owner (if this should is a request
2946 * owned by a particular socket)
2947 * @nl_owner_dead: netlink owner socket was closed - this request be freed
2948 * @list: for keeping list of requests.
2949 * @delay: delay in seconds to use before starting the first scan
2950 * cycle. The driver may ignore this parameter and start
2951 * immediately (or at any other time), if this feature is not
2952 * supported.
2953 * @relative_rssi_set: Indicates whether @relative_rssi is set or not.
2954 * @relative_rssi: Relative RSSI threshold in dB to restrict scan result
2955 * reporting in connected state to cases where a matching BSS is determined
2956 * to have better or slightly worse RSSI than the current connected BSS.
2957 * The relative RSSI threshold values are ignored in disconnected state.
2958 * @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong
2959 * to the specified band while deciding whether a better BSS is reported
2960 * using @relative_rssi. If delta is a negative number, the BSSs that
2961 * belong to the specified band will be penalized by delta dB in relative
2962 * comparisons.
2963 */
2964 struct cfg80211_sched_scan_request {
2965 u64 reqid;
2966 struct cfg80211_ssid *ssids;
2967 int n_ssids;
2968 u32 n_channels;
2969 const u8 *ie;
2970 size_t ie_len;
2971 u32 flags;
2972 struct cfg80211_match_set *match_sets;
2973 int n_match_sets;
2974 s32 min_rssi_thold;
2975 u32 delay;
2976 struct cfg80211_sched_scan_plan *scan_plans;
2977 int n_scan_plans;
2978
2979 u8 mac_addr[ETH_ALEN] __aligned(2);
2980 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2981
2982 bool relative_rssi_set;
2983 s8 relative_rssi;
2984 struct cfg80211_bss_select_adjust rssi_adjust;
2985
2986 /* internal */
2987 struct wiphy *wiphy;
2988 struct net_device *dev;
2989 unsigned long scan_start;
2990 bool report_results;
2991 struct rcu_head rcu_head;
2992 u32 owner_nlportid;
2993 bool nl_owner_dead;
2994 struct list_head list;
2995
2996 /* keep last */
2997 struct ieee80211_channel *channels[] __counted_by(n_channels);
2998 };
2999
3000 /**
3001 * enum cfg80211_signal_type - signal type
3002 *
3003 * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available
3004 * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm)
3005 * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100
3006 */
3007 enum cfg80211_signal_type {
3008 CFG80211_SIGNAL_TYPE_NONE,
3009 CFG80211_SIGNAL_TYPE_MBM,
3010 CFG80211_SIGNAL_TYPE_UNSPEC,
3011 };
3012
3013 /**
3014 * struct cfg80211_inform_bss - BSS inform data
3015 * @chan: channel the frame was received on
3016 * @signal: signal strength value, according to the wiphy's
3017 * signal type
3018 * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was
3019 * received; should match the time when the frame was actually
3020 * received by the device (not just by the host, in case it was
3021 * buffered on the device) and be accurate to about 10ms.
3022 * If the frame isn't buffered, just passing the return value of
3023 * ktime_get_boottime_ns() is likely appropriate.
3024 * @parent_tsf: the time at the start of reception of the first octet of the
3025 * timestamp field of the frame. The time is the TSF of the BSS specified
3026 * by %parent_bssid.
3027 * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to
3028 * the BSS that requested the scan in which the beacon/probe was received.
3029 * @chains: bitmask for filled values in @chain_signal.
3030 * @chain_signal: per-chain signal strength of last received BSS in dBm.
3031 * @restrict_use: restrict usage, if not set, assume @use_for is
3032 * %NL80211_BSS_USE_FOR_NORMAL.
3033 * @use_for: bitmap of possible usage for this BSS, see
3034 * &enum nl80211_bss_use_for
3035 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
3036 * if @restrict_use is set and @use_for is zero (empty); may be 0 for
3037 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
3038 * @drv_data: Data to be passed through to @inform_bss
3039 */
3040 struct cfg80211_inform_bss {
3041 struct ieee80211_channel *chan;
3042 s32 signal;
3043 u64 boottime_ns;
3044 u64 parent_tsf;
3045 u8 parent_bssid[ETH_ALEN] __aligned(2);
3046 u8 chains;
3047 s8 chain_signal[IEEE80211_MAX_CHAINS];
3048
3049 u8 restrict_use:1, use_for:7;
3050 u8 cannot_use_reasons;
3051
3052 void *drv_data;
3053 };
3054
3055 /**
3056 * struct cfg80211_bss_ies - BSS entry IE data
3057 * @tsf: TSF contained in the frame that carried these IEs
3058 * @rcu_head: internal use, for freeing
3059 * @len: length of the IEs
3060 * @from_beacon: these IEs are known to come from a beacon
3061 * @data: IE data
3062 */
3063 struct cfg80211_bss_ies {
3064 u64 tsf;
3065 struct rcu_head rcu_head;
3066 int len;
3067 bool from_beacon;
3068 u8 data[];
3069 };
3070
3071 /**
3072 * struct cfg80211_bss - BSS description
3073 *
3074 * This structure describes a BSS (which may also be a mesh network)
3075 * for use in scan results and similar.
3076 *
3077 * @channel: channel this BSS is on
3078 * @bssid: BSSID of the BSS
3079 * @beacon_interval: the beacon interval as from the frame
3080 * @capability: the capability field in host byte order
3081 * @ies: the information elements (Note that there is no guarantee that these
3082 * are well-formed!); this is a pointer to either the beacon_ies or
3083 * proberesp_ies depending on whether Probe Response frame has been
3084 * received. It is always non-%NULL.
3085 * @beacon_ies: the information elements from the last Beacon frame
3086 * (implementation note: if @hidden_beacon_bss is set this struct doesn't
3087 * own the beacon_ies, but they're just pointers to the ones from the
3088 * @hidden_beacon_bss struct)
3089 * @proberesp_ies: the information elements from the last Probe Response frame
3090 * @proberesp_ecsa_stuck: ECSA element is stuck in the Probe Response frame,
3091 * cannot rely on it having valid data
3092 * @hidden_beacon_bss: in case this BSS struct represents a probe response from
3093 * a BSS that hides the SSID in its beacon, this points to the BSS struct
3094 * that holds the beacon data. @beacon_ies is still valid, of course, and
3095 * points to the same data as hidden_beacon_bss->beacon_ies in that case.
3096 * @transmitted_bss: pointer to the transmitted BSS, if this is a
3097 * non-transmitted one (multi-BSSID support)
3098 * @nontrans_list: list of non-transmitted BSS, if this is a transmitted one
3099 * (multi-BSSID support)
3100 * @signal: signal strength value (type depends on the wiphy's signal_type)
3101 * @ts_boottime: timestamp of the last BSS update in nanoseconds since boot
3102 * @chains: bitmask for filled values in @chain_signal.
3103 * @chain_signal: per-chain signal strength of last received BSS in dBm.
3104 * @bssid_index: index in the multiple BSS set
3105 * @max_bssid_indicator: max number of members in the BSS set
3106 * @use_for: bitmap of possible usage for this BSS, see
3107 * &enum nl80211_bss_use_for
3108 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
3109 * if @restrict_use is set and @use_for is zero (empty); may be 0 for
3110 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
3111 * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes
3112 */
3113 struct cfg80211_bss {
3114 struct ieee80211_channel *channel;
3115
3116 const struct cfg80211_bss_ies __rcu *ies;
3117 const struct cfg80211_bss_ies __rcu *beacon_ies;
3118 const struct cfg80211_bss_ies __rcu *proberesp_ies;
3119
3120 struct cfg80211_bss *hidden_beacon_bss;
3121 struct cfg80211_bss *transmitted_bss;
3122 struct list_head nontrans_list;
3123
3124 s32 signal;
3125
3126 u64 ts_boottime;
3127
3128 u16 beacon_interval;
3129 u16 capability;
3130
3131 u8 bssid[ETH_ALEN];
3132 u8 chains;
3133 s8 chain_signal[IEEE80211_MAX_CHAINS];
3134
3135 u8 proberesp_ecsa_stuck:1;
3136
3137 u8 bssid_index;
3138 u8 max_bssid_indicator;
3139
3140 u8 use_for;
3141 u8 cannot_use_reasons;
3142
3143 u8 priv[] __aligned(sizeof(void *));
3144 };
3145
3146 /**
3147 * ieee80211_bss_get_elem - find element with given ID
3148 * @bss: the bss to search
3149 * @id: the element ID
3150 *
3151 * Note that the return value is an RCU-protected pointer, so
3152 * rcu_read_lock() must be held when calling this function.
3153 * Return: %NULL if not found.
3154 */
3155 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id);
3156
3157 /**
3158 * ieee80211_bss_get_ie - find IE with given ID
3159 * @bss: the bss to search
3160 * @id: the element ID
3161 *
3162 * Note that the return value is an RCU-protected pointer, so
3163 * rcu_read_lock() must be held when calling this function.
3164 * Return: %NULL if not found.
3165 */
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 id)3166 static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id)
3167 {
3168 return (const void *)ieee80211_bss_get_elem(bss, id);
3169 }
3170
3171
3172 /**
3173 * struct cfg80211_auth_request - Authentication request data
3174 *
3175 * This structure provides information needed to complete IEEE 802.11
3176 * authentication.
3177 *
3178 * @bss: The BSS to authenticate with, the callee must obtain a reference
3179 * to it if it needs to keep it.
3180 * @supported_selectors: List of selectors that should be assumed to be
3181 * supported by the station.
3182 * SAE_H2E must be assumed supported if set to %NULL.
3183 * @supported_selectors_len: Length of supported_selectors in octets.
3184 * @auth_type: Authentication type (algorithm)
3185 * @ie: Extra IEs to add to Authentication frame or %NULL
3186 * @ie_len: Length of ie buffer in octets
3187 * @key_len: length of WEP key for shared key authentication
3188 * @key_idx: index of WEP key for shared key authentication
3189 * @key: WEP key for shared key authentication
3190 * @auth_data: Fields and elements in Authentication frames. This contains
3191 * the authentication frame body (non-IE and IE data), excluding the
3192 * Authentication algorithm number, i.e., starting at the Authentication
3193 * transaction sequence number field.
3194 * @auth_data_len: Length of auth_data buffer in octets
3195 * @link_id: if >= 0, indicates authentication should be done as an MLD,
3196 * the interface address is included as the MLD address and the
3197 * necessary link (with the given link_id) will be created (and
3198 * given an MLD address) by the driver
3199 * @ap_mld_addr: AP MLD address in case of authentication request with
3200 * an AP MLD, valid iff @link_id >= 0
3201 */
3202 struct cfg80211_auth_request {
3203 struct cfg80211_bss *bss;
3204 const u8 *ie;
3205 size_t ie_len;
3206 const u8 *supported_selectors;
3207 u8 supported_selectors_len;
3208 enum nl80211_auth_type auth_type;
3209 const u8 *key;
3210 u8 key_len;
3211 s8 key_idx;
3212 const u8 *auth_data;
3213 size_t auth_data_len;
3214 s8 link_id;
3215 const u8 *ap_mld_addr;
3216 };
3217
3218 /**
3219 * struct cfg80211_assoc_link - per-link information for MLO association
3220 * @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss;
3221 * if this is %NULL for a link, that link is not requested
3222 * @elems: extra elements for the per-STA profile for this link
3223 * @elems_len: length of the elements
3224 * @error: per-link error code, must be <= 0. If there is an error, then the
3225 * operation as a whole must fail.
3226 */
3227 struct cfg80211_assoc_link {
3228 struct cfg80211_bss *bss;
3229 const u8 *elems;
3230 size_t elems_len;
3231 int error;
3232 };
3233
3234 /**
3235 * struct cfg80211_ml_reconf_req - MLO link reconfiguration request
3236 * @add_links: data for links to add, see &struct cfg80211_assoc_link
3237 * @rem_links: bitmap of links to remove
3238 * @ext_mld_capa_ops: extended MLD capabilities and operations set by
3239 * userspace for the ML reconfiguration action frame
3240 */
3241 struct cfg80211_ml_reconf_req {
3242 struct cfg80211_assoc_link add_links[IEEE80211_MLD_MAX_NUM_LINKS];
3243 u16 rem_links;
3244 u16 ext_mld_capa_ops;
3245 };
3246
3247 /**
3248 * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association.
3249 *
3250 * @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n)
3251 * @ASSOC_REQ_DISABLE_VHT: Disable VHT
3252 * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association
3253 * @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external
3254 * authentication capability. Drivers can offload authentication to
3255 * userspace if this flag is set. Only applicable for cfg80211_connect()
3256 * request (connect callback).
3257 * @ASSOC_REQ_DISABLE_HE: Disable HE
3258 * @ASSOC_REQ_DISABLE_EHT: Disable EHT
3259 * @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links.
3260 * Drivers shall disable MLO features for the current association if this
3261 * flag is not set.
3262 * @ASSOC_REQ_SPP_AMSDU: SPP A-MSDUs will be used on this connection (if any)
3263 */
3264 enum cfg80211_assoc_req_flags {
3265 ASSOC_REQ_DISABLE_HT = BIT(0),
3266 ASSOC_REQ_DISABLE_VHT = BIT(1),
3267 ASSOC_REQ_USE_RRM = BIT(2),
3268 CONNECT_REQ_EXTERNAL_AUTH_SUPPORT = BIT(3),
3269 ASSOC_REQ_DISABLE_HE = BIT(4),
3270 ASSOC_REQ_DISABLE_EHT = BIT(5),
3271 CONNECT_REQ_MLO_SUPPORT = BIT(6),
3272 ASSOC_REQ_SPP_AMSDU = BIT(7),
3273 };
3274
3275 /**
3276 * struct cfg80211_assoc_request - (Re)Association request data
3277 *
3278 * This structure provides information needed to complete IEEE 802.11
3279 * (re)association.
3280 * @bss: The BSS to associate with. If the call is successful the driver is
3281 * given a reference that it must give back to cfg80211_send_rx_assoc()
3282 * or to cfg80211_assoc_timeout(). To ensure proper refcounting, new
3283 * association requests while already associating must be rejected.
3284 * This also applies to the @links.bss parameter, which is used instead
3285 * of this one (it is %NULL) for MLO associations.
3286 * @ie: Extra IEs to add to (Re)Association Request frame or %NULL
3287 * @ie_len: Length of ie buffer in octets
3288 * @use_mfp: Use management frame protection (IEEE 802.11w) in this association
3289 * @crypto: crypto settings
3290 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3291 * to indicate a request to reassociate within the ESS instead of a request
3292 * do the initial association with the ESS. When included, this is set to
3293 * the BSSID of the current association, i.e., to the value that is
3294 * included in the Current AP address field of the Reassociation Request
3295 * frame.
3296 * @flags: See &enum cfg80211_assoc_req_flags
3297 * @supported_selectors: supported BSS selectors in IEEE 802.11 format
3298 * (or %NULL for no change).
3299 * If %NULL, then support for SAE_H2E should be assumed.
3300 * @supported_selectors_len: number of supported BSS selectors
3301 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3302 * will be used in ht_capa. Un-supported values will be ignored.
3303 * @ht_capa_mask: The bits of ht_capa which are to be used.
3304 * @vht_capa: VHT capability override
3305 * @vht_capa_mask: VHT capability mask indicating which fields to use
3306 * @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or
3307 * %NULL if FILS is not used.
3308 * @fils_kek_len: Length of fils_kek in octets
3309 * @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association
3310 * Request/Response frame or %NULL if FILS is not used. This field starts
3311 * with 16 octets of STA Nonce followed by 16 octets of AP Nonce.
3312 * @s1g_capa: S1G capability override
3313 * @s1g_capa_mask: S1G capability override mask
3314 * @links: per-link information for MLO connections
3315 * @link_id: >= 0 for MLO connections, where links are given, and indicates
3316 * the link on which the association request should be sent
3317 * @ap_mld_addr: AP MLD address in case of MLO association request,
3318 * valid iff @link_id >= 0
3319 * @ext_mld_capa_ops: extended MLD capabilities and operations set by
3320 * userspace for the association
3321 */
3322 struct cfg80211_assoc_request {
3323 struct cfg80211_bss *bss;
3324 const u8 *ie, *prev_bssid;
3325 size_t ie_len;
3326 struct cfg80211_crypto_settings crypto;
3327 bool use_mfp;
3328 u32 flags;
3329 const u8 *supported_selectors;
3330 u8 supported_selectors_len;
3331 struct ieee80211_ht_cap ht_capa;
3332 struct ieee80211_ht_cap ht_capa_mask;
3333 struct ieee80211_vht_cap vht_capa, vht_capa_mask;
3334 const u8 *fils_kek;
3335 size_t fils_kek_len;
3336 const u8 *fils_nonces;
3337 struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask;
3338 struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS];
3339 const u8 *ap_mld_addr;
3340 s8 link_id;
3341 u16 ext_mld_capa_ops;
3342 };
3343
3344 /**
3345 * struct cfg80211_deauth_request - Deauthentication request data
3346 *
3347 * This structure provides information needed to complete IEEE 802.11
3348 * deauthentication.
3349 *
3350 * @bssid: the BSSID or AP MLD address to deauthenticate from
3351 * @ie: Extra IEs to add to Deauthentication frame or %NULL
3352 * @ie_len: Length of ie buffer in octets
3353 * @reason_code: The reason code for the deauthentication
3354 * @local_state_change: if set, change local state only and
3355 * do not set a deauth frame
3356 */
3357 struct cfg80211_deauth_request {
3358 const u8 *bssid;
3359 const u8 *ie;
3360 size_t ie_len;
3361 u16 reason_code;
3362 bool local_state_change;
3363 };
3364
3365 /**
3366 * struct cfg80211_disassoc_request - Disassociation request data
3367 *
3368 * This structure provides information needed to complete IEEE 802.11
3369 * disassociation.
3370 *
3371 * @ap_addr: the BSSID or AP MLD address to disassociate from
3372 * @ie: Extra IEs to add to Disassociation frame or %NULL
3373 * @ie_len: Length of ie buffer in octets
3374 * @reason_code: The reason code for the disassociation
3375 * @local_state_change: This is a request for a local state only, i.e., no
3376 * Disassociation frame is to be transmitted.
3377 */
3378 struct cfg80211_disassoc_request {
3379 const u8 *ap_addr;
3380 const u8 *ie;
3381 size_t ie_len;
3382 u16 reason_code;
3383 bool local_state_change;
3384 };
3385
3386 /**
3387 * struct cfg80211_ibss_params - IBSS parameters
3388 *
3389 * This structure defines the IBSS parameters for the join_ibss()
3390 * method.
3391 *
3392 * @ssid: The SSID, will always be non-null.
3393 * @ssid_len: The length of the SSID, will always be non-zero.
3394 * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not
3395 * search for IBSSs with a different BSSID.
3396 * @chandef: defines the channel to use if no other IBSS to join can be found
3397 * @channel_fixed: The channel should be fixed -- do not search for
3398 * IBSSs to join on other channels.
3399 * @ie: information element(s) to include in the beacon
3400 * @ie_len: length of that
3401 * @beacon_interval: beacon interval to use
3402 * @privacy: this is a protected network, keys will be configured
3403 * after joining
3404 * @control_port: whether user space controls IEEE 802.1X port, i.e.,
3405 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
3406 * required to assume that the port is unauthorized until authorized by
3407 * user space. Otherwise, port is marked authorized by default.
3408 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
3409 * port frames over NL80211 instead of the network interface.
3410 * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
3411 * changes the channel when a radar is detected. This is required
3412 * to operate on DFS channels.
3413 * @basic_rates: bitmap of basic rates to use when creating the IBSS
3414 * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
3415 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3416 * will be used in ht_capa. Un-supported values will be ignored.
3417 * @ht_capa_mask: The bits of ht_capa which are to be used.
3418 * @wep_keys: static WEP keys, if not NULL points to an array of
3419 * CFG80211_MAX_WEP_KEYS WEP keys
3420 * @wep_tx_key: key index (0..3) of the default TX static WEP key
3421 */
3422 struct cfg80211_ibss_params {
3423 const u8 *ssid;
3424 const u8 *bssid;
3425 struct cfg80211_chan_def chandef;
3426 const u8 *ie;
3427 u8 ssid_len, ie_len;
3428 u16 beacon_interval;
3429 u32 basic_rates;
3430 bool channel_fixed;
3431 bool privacy;
3432 bool control_port;
3433 bool control_port_over_nl80211;
3434 bool userspace_handles_dfs;
3435 int mcast_rate[NUM_NL80211_BANDS];
3436 struct ieee80211_ht_cap ht_capa;
3437 struct ieee80211_ht_cap ht_capa_mask;
3438 struct key_params *wep_keys;
3439 int wep_tx_key;
3440 };
3441
3442 /**
3443 * struct cfg80211_bss_selection - connection parameters for BSS selection.
3444 *
3445 * @behaviour: requested BSS selection behaviour.
3446 * @param: parameters for requestion behaviour.
3447 * @param.band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF.
3448 * @param.adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST.
3449 */
3450 struct cfg80211_bss_selection {
3451 enum nl80211_bss_select_attr behaviour;
3452 union {
3453 enum nl80211_band band_pref;
3454 struct cfg80211_bss_select_adjust adjust;
3455 } param;
3456 };
3457
3458 /**
3459 * struct cfg80211_connect_params - Connection parameters
3460 *
3461 * This structure provides information needed to complete IEEE 802.11
3462 * authentication and association.
3463 *
3464 * @channel: The channel to use or %NULL if not specified (auto-select based
3465 * on scan results)
3466 * @channel_hint: The channel of the recommended BSS for initial connection or
3467 * %NULL if not specified
3468 * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan
3469 * results)
3470 * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or
3471 * %NULL if not specified. Unlike the @bssid parameter, the driver is
3472 * allowed to ignore this @bssid_hint if it has knowledge of a better BSS
3473 * to use.
3474 * @ssid: SSID
3475 * @ssid_len: Length of ssid in octets
3476 * @auth_type: Authentication type (algorithm)
3477 * @ie: IEs for association request
3478 * @ie_len: Length of assoc_ie in octets
3479 * @privacy: indicates whether privacy-enabled APs should be used
3480 * @mfp: indicate whether management frame protection is used
3481 * @crypto: crypto settings
3482 * @key_len: length of WEP key for shared key authentication
3483 * @key_idx: index of WEP key for shared key authentication
3484 * @key: WEP key for shared key authentication
3485 * @flags: See &enum cfg80211_assoc_req_flags
3486 * @bg_scan_period: Background scan period in seconds
3487 * or -1 to indicate that default value is to be used.
3488 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3489 * will be used in ht_capa. Un-supported values will be ignored.
3490 * @ht_capa_mask: The bits of ht_capa which are to be used.
3491 * @vht_capa: VHT Capability overrides
3492 * @vht_capa_mask: The bits of vht_capa which are to be used.
3493 * @pbss: if set, connect to a PCP instead of AP. Valid for DMG
3494 * networks.
3495 * @bss_select: criteria to be used for BSS selection.
3496 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3497 * to indicate a request to reassociate within the ESS instead of a request
3498 * do the initial association with the ESS. When included, this is set to
3499 * the BSSID of the current association, i.e., to the value that is
3500 * included in the Current AP address field of the Reassociation Request
3501 * frame.
3502 * @fils_erp_username: EAP re-authentication protocol (ERP) username part of the
3503 * NAI or %NULL if not specified. This is used to construct FILS wrapped
3504 * data IE.
3505 * @fils_erp_username_len: Length of @fils_erp_username in octets.
3506 * @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or
3507 * %NULL if not specified. This specifies the domain name of ER server and
3508 * is used to construct FILS wrapped data IE.
3509 * @fils_erp_realm_len: Length of @fils_erp_realm in octets.
3510 * @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP
3511 * messages. This is also used to construct FILS wrapped data IE.
3512 * @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional
3513 * keys in FILS or %NULL if not specified.
3514 * @fils_erp_rrk_len: Length of @fils_erp_rrk in octets.
3515 * @want_1x: indicates user-space supports and wants to use 802.1X driver
3516 * offload of 4-way handshake.
3517 * @edmg: define the EDMG channels.
3518 * This may specify multiple channels and bonding options for the driver
3519 * to choose from, based on BSS configuration.
3520 */
3521 struct cfg80211_connect_params {
3522 struct ieee80211_channel *channel;
3523 struct ieee80211_channel *channel_hint;
3524 const u8 *bssid;
3525 const u8 *bssid_hint;
3526 const u8 *ssid;
3527 size_t ssid_len;
3528 enum nl80211_auth_type auth_type;
3529 const u8 *ie;
3530 size_t ie_len;
3531 bool privacy;
3532 enum nl80211_mfp mfp;
3533 struct cfg80211_crypto_settings crypto;
3534 const u8 *key;
3535 u8 key_len, key_idx;
3536 u32 flags;
3537 int bg_scan_period;
3538 struct ieee80211_ht_cap ht_capa;
3539 struct ieee80211_ht_cap ht_capa_mask;
3540 struct ieee80211_vht_cap vht_capa;
3541 struct ieee80211_vht_cap vht_capa_mask;
3542 bool pbss;
3543 struct cfg80211_bss_selection bss_select;
3544 const u8 *prev_bssid;
3545 const u8 *fils_erp_username;
3546 size_t fils_erp_username_len;
3547 const u8 *fils_erp_realm;
3548 size_t fils_erp_realm_len;
3549 u16 fils_erp_next_seq_num;
3550 const u8 *fils_erp_rrk;
3551 size_t fils_erp_rrk_len;
3552 bool want_1x;
3553 struct ieee80211_edmg edmg;
3554 };
3555
3556 /**
3557 * enum cfg80211_connect_params_changed - Connection parameters being updated
3558 *
3559 * This enum provides information of all connect parameters that
3560 * have to be updated as part of update_connect_params() call.
3561 *
3562 * @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated
3563 * @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm,
3564 * username, erp sequence number and rrk) are updated
3565 * @UPDATE_AUTH_TYPE: Indicates that authentication type is updated
3566 */
3567 enum cfg80211_connect_params_changed {
3568 UPDATE_ASSOC_IES = BIT(0),
3569 UPDATE_FILS_ERP_INFO = BIT(1),
3570 UPDATE_AUTH_TYPE = BIT(2),
3571 };
3572
3573 /**
3574 * enum wiphy_params_flags - set_wiphy_params bitfield values
3575 * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
3576 * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
3577 * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
3578 * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
3579 * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
3580 * @WIPHY_PARAM_DYN_ACK: dynack has been enabled
3581 * @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed
3582 * @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed
3583 * @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum
3584 */
3585 enum wiphy_params_flags {
3586 WIPHY_PARAM_RETRY_SHORT = BIT(0),
3587 WIPHY_PARAM_RETRY_LONG = BIT(1),
3588 WIPHY_PARAM_FRAG_THRESHOLD = BIT(2),
3589 WIPHY_PARAM_RTS_THRESHOLD = BIT(3),
3590 WIPHY_PARAM_COVERAGE_CLASS = BIT(4),
3591 WIPHY_PARAM_DYN_ACK = BIT(5),
3592 WIPHY_PARAM_TXQ_LIMIT = BIT(6),
3593 WIPHY_PARAM_TXQ_MEMORY_LIMIT = BIT(7),
3594 WIPHY_PARAM_TXQ_QUANTUM = BIT(8),
3595 };
3596
3597 #define IEEE80211_DEFAULT_AIRTIME_WEIGHT 256
3598
3599 /* The per TXQ device queue limit in airtime */
3600 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L 5000
3601 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H 12000
3602
3603 /* The per interface airtime threshold to switch to lower queue limit */
3604 #define IEEE80211_AQL_THRESHOLD 24000
3605
3606 /**
3607 * struct cfg80211_pmksa - PMK Security Association
3608 *
3609 * This structure is passed to the set/del_pmksa() method for PMKSA
3610 * caching.
3611 *
3612 * @bssid: The AP's BSSID (may be %NULL).
3613 * @pmkid: The identifier to refer a PMKSA.
3614 * @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key
3615 * derivation by a FILS STA. Otherwise, %NULL.
3616 * @pmk_len: Length of the @pmk. The length of @pmk can differ depending on
3617 * the hash algorithm used to generate this.
3618 * @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS
3619 * cache identifier (may be %NULL).
3620 * @ssid_len: Length of the @ssid in octets.
3621 * @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the
3622 * scope of PMKSA. This is valid only if @ssid_len is non-zero (may be
3623 * %NULL).
3624 * @pmk_lifetime: Maximum lifetime for PMKSA in seconds
3625 * (dot11RSNAConfigPMKLifetime) or 0 if not specified.
3626 * The configured PMKSA must not be used for PMKSA caching after
3627 * expiration and any keys derived from this PMK become invalid on
3628 * expiration, i.e., the current association must be dropped if the PMK
3629 * used for it expires.
3630 * @pmk_reauth_threshold: Threshold time for reauthentication (percentage of
3631 * PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified.
3632 * Drivers are expected to trigger a full authentication instead of using
3633 * this PMKSA for caching when reassociating to a new BSS after this
3634 * threshold to generate a new PMK before the current one expires.
3635 */
3636 struct cfg80211_pmksa {
3637 const u8 *bssid;
3638 const u8 *pmkid;
3639 const u8 *pmk;
3640 size_t pmk_len;
3641 const u8 *ssid;
3642 size_t ssid_len;
3643 const u8 *cache_id;
3644 u32 pmk_lifetime;
3645 u8 pmk_reauth_threshold;
3646 };
3647
3648 /**
3649 * struct cfg80211_pkt_pattern - packet pattern
3650 * @mask: bitmask where to match pattern and where to ignore bytes,
3651 * one bit per byte, in same format as nl80211
3652 * @pattern: bytes to match where bitmask is 1
3653 * @pattern_len: length of pattern (in bytes)
3654 * @pkt_offset: packet offset (in bytes)
3655 *
3656 * Internal note: @mask and @pattern are allocated in one chunk of
3657 * memory, free @mask only!
3658 */
3659 struct cfg80211_pkt_pattern {
3660 const u8 *mask, *pattern;
3661 int pattern_len;
3662 int pkt_offset;
3663 };
3664
3665 /**
3666 * struct cfg80211_wowlan_tcp - TCP connection parameters
3667 *
3668 * @sock: (internal) socket for source port allocation
3669 * @src: source IP address
3670 * @dst: destination IP address
3671 * @dst_mac: destination MAC address
3672 * @src_port: source port
3673 * @dst_port: destination port
3674 * @payload_len: data payload length
3675 * @payload: data payload buffer
3676 * @payload_seq: payload sequence stamping configuration
3677 * @data_interval: interval at which to send data packets
3678 * @wake_len: wakeup payload match length
3679 * @wake_data: wakeup payload match data
3680 * @wake_mask: wakeup payload match mask
3681 * @tokens_size: length of the tokens buffer
3682 * @payload_tok: payload token usage configuration
3683 */
3684 struct cfg80211_wowlan_tcp {
3685 struct socket *sock;
3686 __be32 src, dst;
3687 u16 src_port, dst_port;
3688 u8 dst_mac[ETH_ALEN];
3689 int payload_len;
3690 const u8 *payload;
3691 struct nl80211_wowlan_tcp_data_seq payload_seq;
3692 u32 data_interval;
3693 u32 wake_len;
3694 const u8 *wake_data, *wake_mask;
3695 u32 tokens_size;
3696 /* must be last, variable member */
3697 struct nl80211_wowlan_tcp_data_token payload_tok;
3698 };
3699
3700 /**
3701 * struct cfg80211_wowlan - Wake on Wireless-LAN support info
3702 *
3703 * This structure defines the enabled WoWLAN triggers for the device.
3704 * @any: wake up on any activity -- special trigger if device continues
3705 * operating as normal during suspend
3706 * @disconnect: wake up if getting disconnected
3707 * @magic_pkt: wake up on receiving magic packet
3708 * @patterns: wake up on receiving packet matching a pattern
3709 * @n_patterns: number of patterns
3710 * @gtk_rekey_failure: wake up on GTK rekey failure
3711 * @eap_identity_req: wake up on EAP identity request packet
3712 * @four_way_handshake: wake up on 4-way handshake
3713 * @rfkill_release: wake up when rfkill is released
3714 * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h.
3715 * NULL if not configured.
3716 * @nd_config: configuration for the scan to be used for net detect wake.
3717 */
3718 struct cfg80211_wowlan {
3719 bool any, disconnect, magic_pkt, gtk_rekey_failure,
3720 eap_identity_req, four_way_handshake,
3721 rfkill_release;
3722 struct cfg80211_pkt_pattern *patterns;
3723 struct cfg80211_wowlan_tcp *tcp;
3724 int n_patterns;
3725 struct cfg80211_sched_scan_request *nd_config;
3726 };
3727
3728 /**
3729 * struct cfg80211_coalesce_rules - Coalesce rule parameters
3730 *
3731 * This structure defines coalesce rule for the device.
3732 * @delay: maximum coalescing delay in msecs.
3733 * @condition: condition for packet coalescence.
3734 * see &enum nl80211_coalesce_condition.
3735 * @patterns: array of packet patterns
3736 * @n_patterns: number of patterns
3737 */
3738 struct cfg80211_coalesce_rules {
3739 int delay;
3740 enum nl80211_coalesce_condition condition;
3741 struct cfg80211_pkt_pattern *patterns;
3742 int n_patterns;
3743 };
3744
3745 /**
3746 * struct cfg80211_coalesce - Packet coalescing settings
3747 *
3748 * This structure defines coalescing settings.
3749 * @rules: array of coalesce rules
3750 * @n_rules: number of rules
3751 */
3752 struct cfg80211_coalesce {
3753 int n_rules;
3754 struct cfg80211_coalesce_rules rules[] __counted_by(n_rules);
3755 };
3756
3757 /**
3758 * struct cfg80211_wowlan_nd_match - information about the match
3759 *
3760 * @ssid: SSID of the match that triggered the wake up
3761 * @n_channels: Number of channels where the match occurred. This
3762 * value may be zero if the driver can't report the channels.
3763 * @channels: center frequencies of the channels where a match
3764 * occurred (in MHz)
3765 */
3766 struct cfg80211_wowlan_nd_match {
3767 struct cfg80211_ssid ssid;
3768 int n_channels;
3769 u32 channels[] __counted_by(n_channels);
3770 };
3771
3772 /**
3773 * struct cfg80211_wowlan_nd_info - net detect wake up information
3774 *
3775 * @n_matches: Number of match information instances provided in
3776 * @matches. This value may be zero if the driver can't provide
3777 * match information.
3778 * @matches: Array of pointers to matches containing information about
3779 * the matches that triggered the wake up.
3780 */
3781 struct cfg80211_wowlan_nd_info {
3782 int n_matches;
3783 struct cfg80211_wowlan_nd_match *matches[] __counted_by(n_matches);
3784 };
3785
3786 /**
3787 * struct cfg80211_wowlan_wakeup - wakeup report
3788 * @disconnect: woke up by getting disconnected
3789 * @magic_pkt: woke up by receiving magic packet
3790 * @gtk_rekey_failure: woke up by GTK rekey failure
3791 * @eap_identity_req: woke up by EAP identity request packet
3792 * @four_way_handshake: woke up by 4-way handshake
3793 * @rfkill_release: woke up by rfkill being released
3794 * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern
3795 * @packet_present_len: copied wakeup packet data
3796 * @packet_len: original wakeup packet length
3797 * @packet: The packet causing the wakeup, if any.
3798 * @packet_80211: For pattern match, magic packet and other data
3799 * frame triggers an 802.3 frame should be reported, for
3800 * disconnect due to deauth 802.11 frame. This indicates which
3801 * it is.
3802 * @tcp_match: TCP wakeup packet received
3803 * @tcp_connlost: TCP connection lost or failed to establish
3804 * @tcp_nomoretokens: TCP data ran out of tokens
3805 * @net_detect: if not %NULL, woke up because of net detect
3806 * @unprot_deauth_disassoc: woke up due to unprotected deauth or
3807 * disassoc frame (in MFP).
3808 */
3809 struct cfg80211_wowlan_wakeup {
3810 bool disconnect, magic_pkt, gtk_rekey_failure,
3811 eap_identity_req, four_way_handshake,
3812 rfkill_release, packet_80211,
3813 tcp_match, tcp_connlost, tcp_nomoretokens,
3814 unprot_deauth_disassoc;
3815 s32 pattern_idx;
3816 u32 packet_present_len, packet_len;
3817 const void *packet;
3818 struct cfg80211_wowlan_nd_info *net_detect;
3819 };
3820
3821 /**
3822 * struct cfg80211_gtk_rekey_data - rekey data
3823 * @kek: key encryption key (@kek_len bytes)
3824 * @kck: key confirmation key (@kck_len bytes)
3825 * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes)
3826 * @kek_len: length of kek
3827 * @kck_len: length of kck
3828 * @akm: akm (oui, id)
3829 */
3830 struct cfg80211_gtk_rekey_data {
3831 const u8 *kek, *kck, *replay_ctr;
3832 u32 akm;
3833 u8 kek_len, kck_len;
3834 };
3835
3836 /**
3837 * struct cfg80211_update_ft_ies_params - FT IE Information
3838 *
3839 * This structure provides information needed to update the fast transition IE
3840 *
3841 * @md: The Mobility Domain ID, 2 Octet value
3842 * @ie: Fast Transition IEs
3843 * @ie_len: Length of ft_ie in octets
3844 */
3845 struct cfg80211_update_ft_ies_params {
3846 u16 md;
3847 const u8 *ie;
3848 size_t ie_len;
3849 };
3850
3851 /**
3852 * struct cfg80211_mgmt_tx_params - mgmt tx parameters
3853 *
3854 * This structure provides information needed to transmit a mgmt frame
3855 *
3856 * @chan: channel to use
3857 * @offchan: indicates whether off channel operation is required
3858 * @wait: duration for ROC
3859 * @buf: buffer to transmit
3860 * @len: buffer length
3861 * @no_cck: don't use cck rates for this frame
3862 * @dont_wait_for_ack: tells the low level not to wait for an ack
3863 * @n_csa_offsets: length of csa_offsets array
3864 * @csa_offsets: array of all the csa offsets in the frame
3865 * @link_id: for MLO, the link ID to transmit on, -1 if not given; note
3866 * that the link ID isn't validated (much), it's in range but the
3867 * link might not exist (or be used by the receiver STA)
3868 */
3869 struct cfg80211_mgmt_tx_params {
3870 struct ieee80211_channel *chan;
3871 bool offchan;
3872 unsigned int wait;
3873 const u8 *buf;
3874 size_t len;
3875 bool no_cck;
3876 bool dont_wait_for_ack;
3877 int n_csa_offsets;
3878 const u16 *csa_offsets;
3879 int link_id;
3880 };
3881
3882 /**
3883 * struct cfg80211_dscp_exception - DSCP exception
3884 *
3885 * @dscp: DSCP value that does not adhere to the user priority range definition
3886 * @up: user priority value to which the corresponding DSCP value belongs
3887 */
3888 struct cfg80211_dscp_exception {
3889 u8 dscp;
3890 u8 up;
3891 };
3892
3893 /**
3894 * struct cfg80211_dscp_range - DSCP range definition for user priority
3895 *
3896 * @low: lowest DSCP value of this user priority range, inclusive
3897 * @high: highest DSCP value of this user priority range, inclusive
3898 */
3899 struct cfg80211_dscp_range {
3900 u8 low;
3901 u8 high;
3902 };
3903
3904 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */
3905 #define IEEE80211_QOS_MAP_MAX_EX 21
3906 #define IEEE80211_QOS_MAP_LEN_MIN 16
3907 #define IEEE80211_QOS_MAP_LEN_MAX \
3908 (IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX)
3909
3910 /**
3911 * struct cfg80211_qos_map - QoS Map Information
3912 *
3913 * This struct defines the Interworking QoS map setting for DSCP values
3914 *
3915 * @num_des: number of DSCP exceptions (0..21)
3916 * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from
3917 * the user priority DSCP range definition
3918 * @up: DSCP range definition for a particular user priority
3919 */
3920 struct cfg80211_qos_map {
3921 u8 num_des;
3922 struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX];
3923 struct cfg80211_dscp_range up[8];
3924 };
3925
3926 /**
3927 * struct cfg80211_nan_band_config - NAN band specific configuration
3928 *
3929 * @chan: Pointer to the IEEE 802.11 channel structure. The channel to be used
3930 * for NAN operations on this band. For 2.4 GHz band, this is always
3931 * channel 6. For 5 GHz band, the channel is either 44 or 149, according
3932 * to the regulatory constraints. If chan pointer is NULL the entire band
3933 * configuration entry is considered invalid and should not be used.
3934 * @rssi_close: RSSI close threshold used for NAN state transition algorithm
3935 * as described in chapters 3.3.6 and 3.3.7 "NAN Device Role and State
3936 * Transition" of Wi-Fi Aware Specification v4.0. If not
3937 * specified (set to 0), default device value is used. The value should
3938 * be greater than -60 dBm.
3939 * @rssi_middle: RSSI middle threshold used for NAN state transition algorithm.
3940 * as described in chapters 3.3.6 and 3.3.7 "NAN Device Role and State
3941 * Transition" of Wi-Fi Aware Specification v4.0. If not
3942 * specified (set to 0), default device value is used. The value should be
3943 * greater than -75 dBm and less than rssi_close.
3944 * @awake_dw_interval: Committed DW interval. Valid values range: 0-5. 0
3945 * indicates no wakeup for DW and can't be used on 2.4GHz band, otherwise
3946 * 2^(n-1).
3947 * @disable_scan: If true, the device will not scan this band for cluster
3948 * merge. Disabling scan on 2.4 GHz band is not allowed.
3949 */
3950 struct cfg80211_nan_band_config {
3951 struct ieee80211_channel *chan;
3952 s8 rssi_close;
3953 s8 rssi_middle;
3954 u8 awake_dw_interval;
3955 bool disable_scan;
3956 };
3957
3958 /**
3959 * struct cfg80211_nan_conf - NAN configuration
3960 *
3961 * This struct defines NAN configuration parameters
3962 *
3963 * @master_pref: master preference (1 - 255)
3964 * @bands: operating bands, a bitmap of &enum nl80211_band values.
3965 * For instance, for NL80211_BAND_2GHZ, bit 0 would be set
3966 * (i.e. BIT(NL80211_BAND_2GHZ)).
3967 * @cluster_id: cluster ID used for NAN synchronization. This is a MAC address
3968 * that can take a value from 50-6F-9A-01-00-00 to 50-6F-9A-01-FF-FF.
3969 * If NULL, the device will pick a random Cluster ID.
3970 * @scan_period: period (in seconds) between NAN scans.
3971 * @scan_dwell_time: dwell time (in milliseconds) for NAN scans.
3972 * @discovery_beacon_interval: interval (in TUs) for discovery beacons.
3973 * @enable_dw_notification: flag to enable/disable discovery window
3974 * notifications.
3975 * @band_cfgs: array of band specific configurations, indexed by
3976 * &enum nl80211_band values.
3977 * @extra_nan_attrs: pointer to additional NAN attributes.
3978 * @extra_nan_attrs_len: length of the additional NAN attributes.
3979 * @vendor_elems: pointer to vendor-specific elements.
3980 * @vendor_elems_len: length of the vendor-specific elements.
3981 */
3982 struct cfg80211_nan_conf {
3983 u8 master_pref;
3984 u8 bands;
3985 const u8 *cluster_id;
3986 u16 scan_period;
3987 u16 scan_dwell_time;
3988 u8 discovery_beacon_interval;
3989 bool enable_dw_notification;
3990 struct cfg80211_nan_band_config band_cfgs[NUM_NL80211_BANDS];
3991 const u8 *extra_nan_attrs;
3992 u16 extra_nan_attrs_len;
3993 const u8 *vendor_elems;
3994 u16 vendor_elems_len;
3995 };
3996
3997 /**
3998 * enum cfg80211_nan_conf_changes - indicates changed fields in NAN
3999 * configuration
4000 *
4001 * @CFG80211_NAN_CONF_CHANGED_PREF: master preference
4002 * @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands
4003 * @CFG80211_NAN_CONF_CHANGED_CONFIG: changed additional configuration.
4004 * When this flag is set, it indicates that some additional attribute(s)
4005 * (other then master_pref and bands) have been changed. In this case,
4006 * all the unchanged attributes will be properly configured to their
4007 * previous values. The driver doesn't need to store any
4008 * previous configuration besides master_pref and bands.
4009 */
4010 enum cfg80211_nan_conf_changes {
4011 CFG80211_NAN_CONF_CHANGED_PREF = BIT(0),
4012 CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1),
4013 CFG80211_NAN_CONF_CHANGED_CONFIG = BIT(2),
4014 };
4015
4016 /**
4017 * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter
4018 *
4019 * @filter: the content of the filter
4020 * @len: the length of the filter
4021 */
4022 struct cfg80211_nan_func_filter {
4023 const u8 *filter;
4024 u8 len;
4025 };
4026
4027 /**
4028 * struct cfg80211_nan_func - a NAN function
4029 *
4030 * @type: &enum nl80211_nan_function_type
4031 * @service_id: the service ID of the function
4032 * @publish_type: &nl80211_nan_publish_type
4033 * @close_range: if true, the range should be limited. Threshold is
4034 * implementation specific.
4035 * @publish_bcast: if true, the solicited publish should be broadcasted
4036 * @subscribe_active: if true, the subscribe is active
4037 * @followup_id: the instance ID for follow up
4038 * @followup_reqid: the requester instance ID for follow up
4039 * @followup_dest: MAC address of the recipient of the follow up
4040 * @ttl: time to live counter in DW.
4041 * @serv_spec_info: Service Specific Info
4042 * @serv_spec_info_len: Service Specific Info length
4043 * @srf_include: if true, SRF is inclusive
4044 * @srf_bf: Bloom Filter
4045 * @srf_bf_len: Bloom Filter length
4046 * @srf_bf_idx: Bloom Filter index
4047 * @srf_macs: SRF MAC addresses
4048 * @srf_num_macs: number of MAC addresses in SRF
4049 * @rx_filters: rx filters that are matched with corresponding peer's tx_filter
4050 * @tx_filters: filters that should be transmitted in the SDF.
4051 * @num_rx_filters: length of &rx_filters.
4052 * @num_tx_filters: length of &tx_filters.
4053 * @instance_id: driver allocated id of the function.
4054 * @cookie: unique NAN function identifier.
4055 */
4056 struct cfg80211_nan_func {
4057 enum nl80211_nan_function_type type;
4058 u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN];
4059 u8 publish_type;
4060 bool close_range;
4061 bool publish_bcast;
4062 bool subscribe_active;
4063 u8 followup_id;
4064 u8 followup_reqid;
4065 struct mac_address followup_dest;
4066 u32 ttl;
4067 const u8 *serv_spec_info;
4068 u8 serv_spec_info_len;
4069 bool srf_include;
4070 const u8 *srf_bf;
4071 u8 srf_bf_len;
4072 u8 srf_bf_idx;
4073 struct mac_address *srf_macs;
4074 int srf_num_macs;
4075 struct cfg80211_nan_func_filter *rx_filters;
4076 struct cfg80211_nan_func_filter *tx_filters;
4077 u8 num_tx_filters;
4078 u8 num_rx_filters;
4079 u8 instance_id;
4080 u64 cookie;
4081 };
4082
4083 /**
4084 * struct cfg80211_pmk_conf - PMK configuration
4085 *
4086 * @aa: authenticator address
4087 * @pmk_len: PMK length in bytes.
4088 * @pmk: the PMK material
4089 * @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK
4090 * is not PMK-R0). When pmk_r0_name is not NULL, the pmk field
4091 * holds PMK-R0.
4092 */
4093 struct cfg80211_pmk_conf {
4094 const u8 *aa;
4095 u8 pmk_len;
4096 const u8 *pmk;
4097 const u8 *pmk_r0_name;
4098 };
4099
4100 /**
4101 * struct cfg80211_external_auth_params - Trigger External authentication.
4102 *
4103 * Commonly used across the external auth request and event interfaces.
4104 *
4105 * @action: action type / trigger for external authentication. Only significant
4106 * for the authentication request event interface (driver to user space).
4107 * @bssid: BSSID of the peer with which the authentication has
4108 * to happen. Used by both the authentication request event and
4109 * authentication response command interface.
4110 * @ssid: SSID of the AP. Used by both the authentication request event and
4111 * authentication response command interface.
4112 * @key_mgmt_suite: AKM suite of the respective authentication. Used by the
4113 * authentication request event interface.
4114 * @status: status code, %WLAN_STATUS_SUCCESS for successful authentication,
4115 * use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you
4116 * the real status code for failures. Used only for the authentication
4117 * response command interface (user space to driver).
4118 * @pmkid: The identifier to refer a PMKSA.
4119 * @mld_addr: MLD address of the peer. Used by the authentication request event
4120 * interface. Driver indicates this to enable MLO during the authentication
4121 * offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT
4122 * flag capability in NL80211_CMD_CONNECT to know whether the user space
4123 * supports enabling MLO during the authentication offload.
4124 * User space should use the address of the interface (on which the
4125 * authentication request event reported) as self MLD address. User space
4126 * and driver should use MLD addresses in RA, TA and BSSID fields of
4127 * authentication frames sent or received via cfg80211. The driver
4128 * translates the MLD addresses to/from link addresses based on the link
4129 * chosen for the authentication.
4130 */
4131 struct cfg80211_external_auth_params {
4132 enum nl80211_external_auth_action action;
4133 u8 bssid[ETH_ALEN] __aligned(2);
4134 struct cfg80211_ssid ssid;
4135 unsigned int key_mgmt_suite;
4136 u16 status;
4137 const u8 *pmkid;
4138 u8 mld_addr[ETH_ALEN] __aligned(2);
4139 };
4140
4141 /**
4142 * struct cfg80211_ftm_responder_stats - FTM responder statistics
4143 *
4144 * @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to
4145 * indicate the relevant values in this struct for them
4146 * @success_num: number of FTM sessions in which all frames were successfully
4147 * answered
4148 * @partial_num: number of FTM sessions in which part of frames were
4149 * successfully answered
4150 * @failed_num: number of failed FTM sessions
4151 * @asap_num: number of ASAP FTM sessions
4152 * @non_asap_num: number of non-ASAP FTM sessions
4153 * @total_duration_ms: total sessions durations - gives an indication
4154 * of how much time the responder was busy
4155 * @unknown_triggers_num: number of unknown FTM triggers - triggers from
4156 * initiators that didn't finish successfully the negotiation phase with
4157 * the responder
4158 * @reschedule_requests_num: number of FTM reschedule requests - initiator asks
4159 * for a new scheduling although it already has scheduled FTM slot
4160 * @out_of_window_triggers_num: total FTM triggers out of scheduled window
4161 */
4162 struct cfg80211_ftm_responder_stats {
4163 u32 filled;
4164 u32 success_num;
4165 u32 partial_num;
4166 u32 failed_num;
4167 u32 asap_num;
4168 u32 non_asap_num;
4169 u64 total_duration_ms;
4170 u32 unknown_triggers_num;
4171 u32 reschedule_requests_num;
4172 u32 out_of_window_triggers_num;
4173 };
4174
4175 /**
4176 * struct cfg80211_pmsr_ftm_result - FTM result
4177 * @failure_reason: if this measurement failed (PMSR status is
4178 * %NL80211_PMSR_STATUS_FAILURE), this gives a more precise
4179 * reason than just "failure"
4180 * @burst_index: if reporting partial results, this is the index
4181 * in [0 .. num_bursts-1] of the burst that's being reported
4182 * @num_ftmr_attempts: number of FTM request frames transmitted
4183 * @num_ftmr_successes: number of FTM request frames acked
4184 * @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY,
4185 * fill this to indicate in how many seconds a retry is deemed possible
4186 * by the responder
4187 * @num_bursts_exp: actual number of bursts exponent negotiated
4188 * @burst_duration: actual burst duration negotiated
4189 * @ftms_per_burst: actual FTMs per burst negotiated
4190 * @lci_len: length of LCI information (if present)
4191 * @civicloc_len: length of civic location information (if present)
4192 * @lci: LCI data (may be %NULL)
4193 * @civicloc: civic location data (may be %NULL)
4194 * @rssi_avg: average RSSI over FTM action frames reported
4195 * @rssi_spread: spread of the RSSI over FTM action frames reported
4196 * @tx_rate: bitrate for transmitted FTM action frame response
4197 * @rx_rate: bitrate of received FTM action frame
4198 * @rtt_avg: average of RTTs measured (must have either this or @dist_avg)
4199 * @rtt_variance: variance of RTTs measured (note that standard deviation is
4200 * the square root of the variance)
4201 * @rtt_spread: spread of the RTTs measured
4202 * @dist_avg: average of distances (mm) measured
4203 * (must have either this or @rtt_avg)
4204 * @dist_variance: variance of distances measured (see also @rtt_variance)
4205 * @dist_spread: spread of distances measured (see also @rtt_spread)
4206 * @num_ftmr_attempts_valid: @num_ftmr_attempts is valid
4207 * @num_ftmr_successes_valid: @num_ftmr_successes is valid
4208 * @rssi_avg_valid: @rssi_avg is valid
4209 * @rssi_spread_valid: @rssi_spread is valid
4210 * @tx_rate_valid: @tx_rate is valid
4211 * @rx_rate_valid: @rx_rate is valid
4212 * @rtt_avg_valid: @rtt_avg is valid
4213 * @rtt_variance_valid: @rtt_variance is valid
4214 * @rtt_spread_valid: @rtt_spread is valid
4215 * @dist_avg_valid: @dist_avg is valid
4216 * @dist_variance_valid: @dist_variance is valid
4217 * @dist_spread_valid: @dist_spread is valid
4218 */
4219 struct cfg80211_pmsr_ftm_result {
4220 const u8 *lci;
4221 const u8 *civicloc;
4222 unsigned int lci_len;
4223 unsigned int civicloc_len;
4224 enum nl80211_peer_measurement_ftm_failure_reasons failure_reason;
4225 u32 num_ftmr_attempts, num_ftmr_successes;
4226 s16 burst_index;
4227 u8 busy_retry_time;
4228 u8 num_bursts_exp;
4229 u8 burst_duration;
4230 u8 ftms_per_burst;
4231 s32 rssi_avg;
4232 s32 rssi_spread;
4233 struct rate_info tx_rate, rx_rate;
4234 s64 rtt_avg;
4235 s64 rtt_variance;
4236 s64 rtt_spread;
4237 s64 dist_avg;
4238 s64 dist_variance;
4239 s64 dist_spread;
4240
4241 u16 num_ftmr_attempts_valid:1,
4242 num_ftmr_successes_valid:1,
4243 rssi_avg_valid:1,
4244 rssi_spread_valid:1,
4245 tx_rate_valid:1,
4246 rx_rate_valid:1,
4247 rtt_avg_valid:1,
4248 rtt_variance_valid:1,
4249 rtt_spread_valid:1,
4250 dist_avg_valid:1,
4251 dist_variance_valid:1,
4252 dist_spread_valid:1;
4253 };
4254
4255 /**
4256 * struct cfg80211_pmsr_result - peer measurement result
4257 * @addr: address of the peer
4258 * @host_time: host time (use ktime_get_boottime() adjust to the time when the
4259 * measurement was made)
4260 * @ap_tsf: AP's TSF at measurement time
4261 * @status: status of the measurement
4262 * @final: if reporting partial results, mark this as the last one; if not
4263 * reporting partial results always set this flag
4264 * @ap_tsf_valid: indicates the @ap_tsf value is valid
4265 * @type: type of the measurement reported, note that we only support reporting
4266 * one type at a time, but you can report multiple results separately and
4267 * they're all aggregated for userspace.
4268 * @ftm: FTM result
4269 */
4270 struct cfg80211_pmsr_result {
4271 u64 host_time, ap_tsf;
4272 enum nl80211_peer_measurement_status status;
4273
4274 u8 addr[ETH_ALEN];
4275
4276 u8 final:1,
4277 ap_tsf_valid:1;
4278
4279 enum nl80211_peer_measurement_type type;
4280
4281 union {
4282 struct cfg80211_pmsr_ftm_result ftm;
4283 };
4284 };
4285
4286 /**
4287 * struct cfg80211_pmsr_ftm_request_peer - FTM request data
4288 * @requested: indicates FTM is requested
4289 * @preamble: frame preamble to use
4290 * @burst_period: burst period to use
4291 * @asap: indicates to use ASAP mode
4292 * @num_bursts_exp: number of bursts exponent
4293 * @burst_duration: burst duration
4294 * @ftms_per_burst: number of FTMs per burst
4295 * @ftmr_retries: number of retries for FTM request
4296 * @request_lci: request LCI information
4297 * @request_civicloc: request civic location information
4298 * @trigger_based: use trigger based ranging for the measurement
4299 * If neither @trigger_based nor @non_trigger_based is set,
4300 * EDCA based ranging will be used.
4301 * @non_trigger_based: use non trigger based ranging for the measurement
4302 * If neither @trigger_based nor @non_trigger_based is set,
4303 * EDCA based ranging will be used.
4304 * @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either
4305 * @trigger_based or @non_trigger_based is set.
4306 * @bss_color: the bss color of the responder. Optional. Set to zero to
4307 * indicate the driver should set the BSS color. Only valid if
4308 * @non_trigger_based or @trigger_based is set.
4309 *
4310 * See also nl80211 for the respective attribute documentation.
4311 */
4312 struct cfg80211_pmsr_ftm_request_peer {
4313 enum nl80211_preamble preamble;
4314 u16 burst_period;
4315 u8 requested:1,
4316 asap:1,
4317 request_lci:1,
4318 request_civicloc:1,
4319 trigger_based:1,
4320 non_trigger_based:1,
4321 lmr_feedback:1;
4322 u8 num_bursts_exp;
4323 u8 burst_duration;
4324 u8 ftms_per_burst;
4325 u8 ftmr_retries;
4326 u8 bss_color;
4327 };
4328
4329 /**
4330 * struct cfg80211_pmsr_request_peer - peer data for a peer measurement request
4331 * @addr: MAC address
4332 * @chandef: channel to use
4333 * @report_ap_tsf: report the associated AP's TSF
4334 * @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer
4335 */
4336 struct cfg80211_pmsr_request_peer {
4337 u8 addr[ETH_ALEN];
4338 struct cfg80211_chan_def chandef;
4339 u8 report_ap_tsf:1;
4340 struct cfg80211_pmsr_ftm_request_peer ftm;
4341 };
4342
4343 /**
4344 * struct cfg80211_pmsr_request - peer measurement request
4345 * @cookie: cookie, set by cfg80211
4346 * @nl_portid: netlink portid - used by cfg80211
4347 * @drv_data: driver data for this request, if required for aborting,
4348 * not otherwise freed or anything by cfg80211
4349 * @mac_addr: MAC address used for (randomised) request
4350 * @mac_addr_mask: MAC address mask used for randomisation, bits that
4351 * are 0 in the mask should be randomised, bits that are 1 should
4352 * be taken from the @mac_addr
4353 * @list: used by cfg80211 to hold on to the request
4354 * @timeout: timeout (in milliseconds) for the whole operation, if
4355 * zero it means there's no timeout
4356 * @n_peers: number of peers to do measurements with
4357 * @peers: per-peer measurement request data
4358 */
4359 struct cfg80211_pmsr_request {
4360 u64 cookie;
4361 void *drv_data;
4362 u32 n_peers;
4363 u32 nl_portid;
4364
4365 u32 timeout;
4366
4367 u8 mac_addr[ETH_ALEN] __aligned(2);
4368 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
4369
4370 struct list_head list;
4371
4372 struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers);
4373 };
4374
4375 /**
4376 * struct cfg80211_update_owe_info - OWE Information
4377 *
4378 * This structure provides information needed for the drivers to offload OWE
4379 * (Opportunistic Wireless Encryption) processing to the user space.
4380 *
4381 * Commonly used across update_owe_info request and event interfaces.
4382 *
4383 * @peer: MAC address of the peer device for which the OWE processing
4384 * has to be done.
4385 * @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info
4386 * processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space
4387 * cannot give you the real status code for failures. Used only for
4388 * OWE update request command interface (user space to driver).
4389 * @ie: IEs obtained from the peer or constructed by the user space. These are
4390 * the IEs of the remote peer in the event from the host driver and
4391 * the constructed IEs by the user space in the request interface.
4392 * @ie_len: Length of IEs in octets.
4393 * @assoc_link_id: MLO link ID of the AP, with which (re)association requested
4394 * by peer. This will be filled by driver for both MLO and non-MLO station
4395 * connections when the AP affiliated with an MLD. For non-MLD AP mode, it
4396 * will be -1. Used only with OWE update event (driver to user space).
4397 * @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO
4398 * connection, it will be all zeros. This is applicable only when
4399 * @assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only
4400 * with OWE update event (driver to user space).
4401 */
4402 struct cfg80211_update_owe_info {
4403 u8 peer[ETH_ALEN] __aligned(2);
4404 u16 status;
4405 const u8 *ie;
4406 size_t ie_len;
4407 int assoc_link_id;
4408 u8 peer_mld_addr[ETH_ALEN] __aligned(2);
4409 };
4410
4411 /**
4412 * struct mgmt_frame_regs - management frame registrations data
4413 * @global_stypes: bitmap of management frame subtypes registered
4414 * for the entire device
4415 * @interface_stypes: bitmap of management frame subtypes registered
4416 * for the given interface
4417 * @global_mcast_stypes: mcast RX is needed globally for these subtypes
4418 * @interface_mcast_stypes: mcast RX is needed on this interface
4419 * for these subtypes
4420 */
4421 struct mgmt_frame_regs {
4422 u32 global_stypes, interface_stypes;
4423 u32 global_mcast_stypes, interface_mcast_stypes;
4424 };
4425
4426 /**
4427 * struct cfg80211_ops - backend description for wireless configuration
4428 *
4429 * This struct is registered by fullmac card drivers and/or wireless stacks
4430 * in order to handle configuration requests on their interfaces.
4431 *
4432 * All callbacks except where otherwise noted should return 0
4433 * on success or a negative error code.
4434 *
4435 * All operations are invoked with the wiphy mutex held. The RTNL may be
4436 * held in addition (due to wireless extensions) but this cannot be relied
4437 * upon except in cases where documented below. Note that due to ordering,
4438 * the RTNL also cannot be acquired in any handlers.
4439 *
4440 * @suspend: wiphy device needs to be suspended. The variable @wow will
4441 * be %NULL or contain the enabled Wake-on-Wireless triggers that are
4442 * configured for the device.
4443 * @resume: wiphy device needs to be resumed
4444 * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback
4445 * to call device_set_wakeup_enable() to enable/disable wakeup from
4446 * the device.
4447 *
4448 * @add_virtual_intf: create a new virtual interface with the given name,
4449 * must set the struct wireless_dev's iftype. Beware: You must create
4450 * the new netdev in the wiphy's network namespace! Returns the struct
4451 * wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must
4452 * also set the address member in the wdev.
4453 * This additionally holds the RTNL to be able to do netdev changes.
4454 *
4455 * @del_virtual_intf: remove the virtual interface
4456 * This additionally holds the RTNL to be able to do netdev changes.
4457 *
4458 * @change_virtual_intf: change type/configuration of virtual interface,
4459 * keep the struct wireless_dev's iftype updated.
4460 * This additionally holds the RTNL to be able to do netdev changes.
4461 *
4462 * @add_intf_link: Add a new MLO link to the given interface. Note that
4463 * the wdev->link[] data structure has been updated, so the new link
4464 * address is available.
4465 * @del_intf_link: Remove an MLO link from the given interface.
4466 *
4467 * @add_key: add a key with the given parameters. @mac_addr will be %NULL
4468 * when adding a group key. @link_id will be -1 for non-MLO connection.
4469 * For MLO connection, @link_id will be >= 0 for group key and -1 for
4470 * pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key.
4471 *
4472 * @get_key: get information about the key with the given parameters.
4473 * @mac_addr will be %NULL when requesting information for a group
4474 * key. All pointers given to the @callback function need not be valid
4475 * after it returns. This function should return an error if it is
4476 * not possible to retrieve the key, -ENOENT if it doesn't exist.
4477 * @link_id will be -1 for non-MLO connection. For MLO connection,
4478 * @link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr
4479 * will be peer's MLD address for MLO pairwise key.
4480 *
4481 * @del_key: remove a key given the @mac_addr (%NULL for a group key)
4482 * and @key_index, return -ENOENT if the key doesn't exist. @link_id will
4483 * be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0
4484 * for group key and -1 for pairwise key, @mac_addr will be peer's MLD
4485 * address for MLO pairwise key.
4486 *
4487 * @set_default_key: set the default key on an interface. @link_id will be >= 0
4488 * for MLO connection and -1 for non-MLO connection.
4489 *
4490 * @set_default_mgmt_key: set the default management frame key on an interface.
4491 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4492 *
4493 * @set_default_beacon_key: set the default Beacon frame key on an interface.
4494 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4495 *
4496 * @set_rekey_data: give the data necessary for GTK rekeying to the driver
4497 *
4498 * @start_ap: Start acting in AP mode defined by the parameters.
4499 * @change_beacon: Change the beacon parameters for an access point mode
4500 * interface. This should reject the call when AP mode wasn't started.
4501 * @stop_ap: Stop being an AP, including stopping beaconing.
4502 *
4503 * @add_station: Add a new station.
4504 * @del_station: Remove a station
4505 * @change_station: Modify a given station. Note that flags changes are not much
4506 * validated in cfg80211, in particular the auth/assoc/authorized flags
4507 * might come to the driver in invalid combinations -- make sure to check
4508 * them, also against the existing state! Drivers must call
4509 * cfg80211_check_station_change() to validate the information.
4510 * @get_station: get station information for the station identified by @mac
4511 * @dump_station: dump station callback -- resume dump at index @idx
4512 *
4513 * @add_mpath: add a fixed mesh path
4514 * @del_mpath: delete a given mesh path
4515 * @change_mpath: change a given mesh path
4516 * @get_mpath: get a mesh path for the given parameters
4517 * @dump_mpath: dump mesh path callback -- resume dump at index @idx
4518 * @get_mpp: get a mesh proxy path for the given parameters
4519 * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx
4520 * @join_mesh: join the mesh network with the specified parameters
4521 * (invoked with the wireless_dev mutex held)
4522 * @leave_mesh: leave the current mesh network
4523 * (invoked with the wireless_dev mutex held)
4524 *
4525 * @get_mesh_config: Get the current mesh configuration
4526 *
4527 * @update_mesh_config: Update mesh parameters on a running mesh.
4528 * The mask is a bitfield which tells us which parameters to
4529 * set, and which to leave alone.
4530 *
4531 * @change_bss: Modify parameters for a given BSS.
4532 *
4533 * @inform_bss: Called by cfg80211 while being informed about new BSS data
4534 * for every BSS found within the reported data or frame. This is called
4535 * from within the cfg8011 inform_bss handlers while holding the bss_lock.
4536 * The data parameter is passed through from drv_data inside
4537 * struct cfg80211_inform_bss.
4538 * The new IE data for the BSS is explicitly passed.
4539 *
4540 * @set_txq_params: Set TX queue parameters
4541 *
4542 * @libertas_set_mesh_channel: Only for backward compatibility for libertas,
4543 * as it doesn't implement join_mesh and needs to set the channel to
4544 * join the mesh instead.
4545 *
4546 * @set_monitor_channel: Set the monitor mode channel for the device. If other
4547 * interfaces are active this callback should reject the configuration.
4548 * If no interfaces are active or the device is down, the channel should
4549 * be stored for when a monitor interface becomes active.
4550 *
4551 * @scan: Request to do a scan. If returning zero, the scan request is given
4552 * the driver, and will be valid until passed to cfg80211_scan_done().
4553 * For scan results, call cfg80211_inform_bss(); you can call this outside
4554 * the scan/scan_done bracket too.
4555 * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall
4556 * indicate the status of the scan through cfg80211_scan_done().
4557 *
4558 * @auth: Request to authenticate with the specified peer
4559 * (invoked with the wireless_dev mutex held)
4560 * @assoc: Request to (re)associate with the specified peer
4561 * (invoked with the wireless_dev mutex held)
4562 * @deauth: Request to deauthenticate from the specified peer
4563 * (invoked with the wireless_dev mutex held)
4564 * @disassoc: Request to disassociate from the specified peer
4565 * (invoked with the wireless_dev mutex held)
4566 *
4567 * @connect: Connect to the ESS with the specified parameters. When connected,
4568 * call cfg80211_connect_result()/cfg80211_connect_bss() with status code
4569 * %WLAN_STATUS_SUCCESS. If the connection fails for some reason, call
4570 * cfg80211_connect_result()/cfg80211_connect_bss() with the status code
4571 * from the AP or cfg80211_connect_timeout() if no frame with status code
4572 * was received.
4573 * The driver is allowed to roam to other BSSes within the ESS when the
4574 * other BSS matches the connect parameters. When such roaming is initiated
4575 * by the driver, the driver is expected to verify that the target matches
4576 * the configured security parameters and to use Reassociation Request
4577 * frame instead of Association Request frame.
4578 * The connect function can also be used to request the driver to perform a
4579 * specific roam when connected to an ESS. In that case, the prev_bssid
4580 * parameter is set to the BSSID of the currently associated BSS as an
4581 * indication of requesting reassociation.
4582 * In both the driver-initiated and new connect() call initiated roaming
4583 * cases, the result of roaming is indicated with a call to
4584 * cfg80211_roamed(). (invoked with the wireless_dev mutex held)
4585 * @update_connect_params: Update the connect parameters while connected to a
4586 * BSS. The updated parameters can be used by driver/firmware for
4587 * subsequent BSS selection (roaming) decisions and to form the
4588 * Authentication/(Re)Association Request frames. This call does not
4589 * request an immediate disassociation or reassociation with the current
4590 * BSS, i.e., this impacts only subsequent (re)associations. The bits in
4591 * changed are defined in &enum cfg80211_connect_params_changed.
4592 * (invoked with the wireless_dev mutex held)
4593 * @disconnect: Disconnect from the BSS/ESS or stop connection attempts if
4594 * connection is in progress. Once done, call cfg80211_disconnected() in
4595 * case connection was already established (invoked with the
4596 * wireless_dev mutex held), otherwise call cfg80211_connect_timeout().
4597 *
4598 * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call
4599 * cfg80211_ibss_joined(), also call that function when changing BSSID due
4600 * to a merge.
4601 * (invoked with the wireless_dev mutex held)
4602 * @leave_ibss: Leave the IBSS.
4603 * (invoked with the wireless_dev mutex held)
4604 *
4605 * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or
4606 * MESH mode)
4607 *
4608 * @set_wiphy_params: Notify that wiphy parameters have changed;
4609 * @changed bitfield (see &enum wiphy_params_flags) describes which values
4610 * have changed. The actual parameter values are available in
4611 * struct wiphy. If returning an error, no value should be changed.
4612 *
4613 * @set_tx_power: set the transmit power according to the parameters,
4614 * the power passed is in mBm, to get dBm use MBM_TO_DBM(). The
4615 * wdev may be %NULL if power was set for the wiphy, and will
4616 * always be %NULL unless the driver supports per-vif TX power
4617 * (as advertised by the nl80211 feature flag.)
4618 * @get_tx_power: store the current TX power into the dbm variable;
4619 * return 0 if successful
4620 *
4621 * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
4622 * functions to adjust rfkill hw state
4623 *
4624 * @dump_survey: get site survey information.
4625 *
4626 * @remain_on_channel: Request the driver to remain awake on the specified
4627 * channel for the specified duration to complete an off-channel
4628 * operation (e.g., public action frame exchange). When the driver is
4629 * ready on the requested channel, it must indicate this with an event
4630 * notification by calling cfg80211_ready_on_channel().
4631 * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation.
4632 * This allows the operation to be terminated prior to timeout based on
4633 * the duration value.
4634 * @mgmt_tx: Transmit a management frame.
4635 * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management
4636 * frame on another channel
4637 *
4638 * @testmode_cmd: run a test mode command; @wdev may be %NULL
4639 * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be
4640 * used by the function, but 0 and 1 must not be touched. Additionally,
4641 * return error codes other than -ENOBUFS and -ENOENT will terminate the
4642 * dump and return to userspace with an error, so be careful. If any data
4643 * was passed in from userspace then the data/len arguments will be present
4644 * and point to the data contained in %NL80211_ATTR_TESTDATA.
4645 *
4646 * @set_bitrate_mask: set the bitrate mask configuration
4647 *
4648 * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
4649 * devices running firmwares capable of generating the (re) association
4650 * RSN IE. It allows for faster roaming between WPA2 BSSIDs.
4651 * @del_pmksa: Delete a cached PMKID.
4652 * @flush_pmksa: Flush all cached PMKIDs.
4653 * @set_power_mgmt: Configure WLAN power management. A timeout value of -1
4654 * allows the driver to adjust the dynamic ps timeout value.
4655 * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold.
4656 * After configuration, the driver should (soon) send an event indicating
4657 * the current level is above/below the configured threshold; this may
4658 * need some care when the configuration is changed (without first being
4659 * disabled.)
4660 * @set_cqm_rssi_range_config: Configure two RSSI thresholds in the
4661 * connection quality monitor. An event is to be sent only when the
4662 * signal level is found to be outside the two values. The driver should
4663 * set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented.
4664 * If it is provided then there's no point providing @set_cqm_rssi_config.
4665 * @set_cqm_txe_config: Configure connection quality monitor TX error
4666 * thresholds.
4667 * @sched_scan_start: Tell the driver to start a scheduled scan.
4668 * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with
4669 * given request id. This call must stop the scheduled scan and be ready
4670 * for starting a new one before it returns, i.e. @sched_scan_start may be
4671 * called immediately after that again and should not fail in that case.
4672 * The driver should not call cfg80211_sched_scan_stopped() for a requested
4673 * stop (when this method returns 0).
4674 *
4675 * @update_mgmt_frame_registrations: Notify the driver that management frame
4676 * registrations were updated. The callback is allowed to sleep.
4677 *
4678 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
4679 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
4680 * reject TX/RX mask combinations they cannot support by returning -EINVAL
4681 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
4682 *
4683 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
4684 *
4685 * @tdls_mgmt: Transmit a TDLS management frame.
4686 * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup).
4687 *
4688 * @probe_client: probe an associated client, must return a cookie that it
4689 * later passes to cfg80211_probe_status().
4690 *
4691 * @set_noack_map: Set the NoAck Map for the TIDs.
4692 *
4693 * @get_channel: Get the current operating channel for the virtual interface.
4694 * For monitor interfaces, it should return %NULL unless there's a single
4695 * current monitoring channel.
4696 *
4697 * @start_p2p_device: Start the given P2P device.
4698 * @stop_p2p_device: Stop the given P2P device.
4699 *
4700 * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode.
4701 * Parameters include ACL policy, an array of MAC address of stations
4702 * and the number of MAC addresses. If there is already a list in driver
4703 * this new list replaces the existing one. Driver has to clear its ACL
4704 * when number of MAC addresses entries is passed as 0. Drivers which
4705 * advertise the support for MAC based ACL have to implement this callback.
4706 *
4707 * @start_radar_detection: Start radar detection in the driver.
4708 *
4709 * @end_cac: End running CAC, probably because a related CAC
4710 * was finished on another phy.
4711 *
4712 * @update_ft_ies: Provide updated Fast BSS Transition information to the
4713 * driver. If the SME is in the driver/firmware, this information can be
4714 * used in building Authentication and Reassociation Request frames.
4715 *
4716 * @crit_proto_start: Indicates a critical protocol needs more link reliability
4717 * for a given duration (milliseconds). The protocol is provided so the
4718 * driver can take the most appropriate actions.
4719 * @crit_proto_stop: Indicates critical protocol no longer needs increased link
4720 * reliability. This operation can not fail.
4721 * @set_coalesce: Set coalesce parameters.
4722 *
4723 * @channel_switch: initiate channel-switch procedure (with CSA). Driver is
4724 * responsible for veryfing if the switch is possible. Since this is
4725 * inherently tricky driver may decide to disconnect an interface later
4726 * with cfg80211_stop_iface(). This doesn't mean driver can accept
4727 * everything. It should do it's best to verify requests and reject them
4728 * as soon as possible.
4729 *
4730 * @set_qos_map: Set QoS mapping information to the driver
4731 *
4732 * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the
4733 * given interface This is used e.g. for dynamic HT 20/40 MHz channel width
4734 * changes during the lifetime of the BSS.
4735 *
4736 * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device
4737 * with the given parameters; action frame exchange has been handled by
4738 * userspace so this just has to modify the TX path to take the TS into
4739 * account.
4740 * If the admitted time is 0 just validate the parameters to make sure
4741 * the session can be created at all; it is valid to just always return
4742 * success for that but that may result in inefficient behaviour (handshake
4743 * with the peer followed by immediate teardown when the addition is later
4744 * rejected)
4745 * @del_tx_ts: remove an existing TX TS
4746 *
4747 * @join_ocb: join the OCB network with the specified parameters
4748 * (invoked with the wireless_dev mutex held)
4749 * @leave_ocb: leave the current OCB network
4750 * (invoked with the wireless_dev mutex held)
4751 *
4752 * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver
4753 * is responsible for continually initiating channel-switching operations
4754 * and returning to the base channel for communication with the AP.
4755 * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both
4756 * peers must be on the base channel when the call completes.
4757 * @start_nan: Start the NAN interface.
4758 * @stop_nan: Stop the NAN interface.
4759 * @add_nan_func: Add a NAN function. Returns negative value on failure.
4760 * On success @nan_func ownership is transferred to the driver and
4761 * it may access it outside of the scope of this function. The driver
4762 * should free the @nan_func when no longer needed by calling
4763 * cfg80211_free_nan_func().
4764 * On success the driver should assign an instance_id in the
4765 * provided @nan_func.
4766 * @del_nan_func: Delete a NAN function.
4767 * @nan_change_conf: changes NAN configuration. The changed parameters must
4768 * be specified in @changes (using &enum cfg80211_nan_conf_changes);
4769 * All other parameters must be ignored.
4770 *
4771 * @set_multicast_to_unicast: configure multicast to unicast conversion for BSS
4772 *
4773 * @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this
4774 * function should return phy stats, and interface stats otherwise.
4775 *
4776 * @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake.
4777 * If not deleted through @del_pmk the PMK remains valid until disconnect
4778 * upon which the driver should clear it.
4779 * (invoked with the wireless_dev mutex held)
4780 * @del_pmk: delete the previously configured PMK for the given authenticator.
4781 * (invoked with the wireless_dev mutex held)
4782 *
4783 * @external_auth: indicates result of offloaded authentication processing from
4784 * user space
4785 *
4786 * @tx_control_port: TX a control port frame (EAPoL). The noencrypt parameter
4787 * tells the driver that the frame should not be encrypted.
4788 *
4789 * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available.
4790 * Statistics should be cumulative, currently no way to reset is provided.
4791 * @start_pmsr: start peer measurement (e.g. FTM)
4792 * @abort_pmsr: abort peer measurement
4793 *
4794 * @update_owe_info: Provide updated OWE info to driver. Driver implementing SME
4795 * but offloading OWE processing to the user space will get the updated
4796 * DH IE through this interface.
4797 *
4798 * @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame
4799 * and overrule HWMP path selection algorithm.
4800 * @set_tid_config: TID specific configuration, this can be peer or BSS specific
4801 * This callback may sleep.
4802 * @reset_tid_config: Reset TID specific configuration for the peer, for the
4803 * given TIDs. This callback may sleep.
4804 *
4805 * @set_sar_specs: Update the SAR (TX power) settings.
4806 *
4807 * @color_change: Initiate a color change.
4808 *
4809 * @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use
4810 * those to decrypt (Re)Association Request and encrypt (Re)Association
4811 * Response frame.
4812 *
4813 * @set_radar_background: Configure dedicated offchannel chain available for
4814 * radar/CAC detection on some hw. This chain can't be used to transmit
4815 * or receive frames and it is bounded to a running wdev.
4816 * Background radar/CAC detection allows to avoid the CAC downtime
4817 * switching to a different channel during CAC detection on the selected
4818 * radar channel.
4819 * The caller is expected to set chandef pointer to NULL in order to
4820 * disable background CAC/radar detection.
4821 * @add_link_station: Add a link to a station.
4822 * @mod_link_station: Modify a link of a station.
4823 * @del_link_station: Remove a link of a station.
4824 *
4825 * @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames.
4826 * @set_ttlm: set the TID to link mapping.
4827 * @set_epcs: Enable/Disable EPCS for station mode.
4828 * @get_radio_mask: get bitmask of radios in use.
4829 * (invoked with the wiphy mutex held)
4830 * @assoc_ml_reconf: Request a non-AP MLO connection to perform ML
4831 * reconfiguration, i.e., add and/or remove links to/from the
4832 * association using ML reconfiguration action frames. Successfully added
4833 * links will be added to the set of valid links. Successfully removed
4834 * links will be removed from the set of valid links. The driver must
4835 * indicate removed links by calling cfg80211_links_removed() and added
4836 * links by calling cfg80211_mlo_reconf_add_done(). When calling
4837 * cfg80211_mlo_reconf_add_done() the bss pointer must be given for each
4838 * link for which MLO reconfiguration 'add' operation was requested.
4839 */
4840 struct cfg80211_ops {
4841 int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
4842 int (*resume)(struct wiphy *wiphy);
4843 void (*set_wakeup)(struct wiphy *wiphy, bool enabled);
4844
4845 struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,
4846 const char *name,
4847 unsigned char name_assign_type,
4848 enum nl80211_iftype type,
4849 struct vif_params *params);
4850 int (*del_virtual_intf)(struct wiphy *wiphy,
4851 struct wireless_dev *wdev);
4852 int (*change_virtual_intf)(struct wiphy *wiphy,
4853 struct net_device *dev,
4854 enum nl80211_iftype type,
4855 struct vif_params *params);
4856
4857 int (*add_intf_link)(struct wiphy *wiphy,
4858 struct wireless_dev *wdev,
4859 unsigned int link_id);
4860 void (*del_intf_link)(struct wiphy *wiphy,
4861 struct wireless_dev *wdev,
4862 unsigned int link_id);
4863
4864 int (*add_key)(struct wiphy *wiphy, struct net_device *netdev,
4865 int link_id, u8 key_index, bool pairwise,
4866 const u8 *mac_addr, struct key_params *params);
4867 int (*get_key)(struct wiphy *wiphy, struct net_device *netdev,
4868 int link_id, u8 key_index, bool pairwise,
4869 const u8 *mac_addr, void *cookie,
4870 void (*callback)(void *cookie, struct key_params*));
4871 int (*del_key)(struct wiphy *wiphy, struct net_device *netdev,
4872 int link_id, u8 key_index, bool pairwise,
4873 const u8 *mac_addr);
4874 int (*set_default_key)(struct wiphy *wiphy,
4875 struct net_device *netdev, int link_id,
4876 u8 key_index, bool unicast, bool multicast);
4877 int (*set_default_mgmt_key)(struct wiphy *wiphy,
4878 struct net_device *netdev, int link_id,
4879 u8 key_index);
4880 int (*set_default_beacon_key)(struct wiphy *wiphy,
4881 struct net_device *netdev,
4882 int link_id,
4883 u8 key_index);
4884
4885 int (*start_ap)(struct wiphy *wiphy, struct net_device *dev,
4886 struct cfg80211_ap_settings *settings);
4887 int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev,
4888 struct cfg80211_ap_update *info);
4889 int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev,
4890 unsigned int link_id);
4891
4892
4893 int (*add_station)(struct wiphy *wiphy, struct net_device *dev,
4894 const u8 *mac,
4895 struct station_parameters *params);
4896 int (*del_station)(struct wiphy *wiphy, struct net_device *dev,
4897 struct station_del_parameters *params);
4898 int (*change_station)(struct wiphy *wiphy, struct net_device *dev,
4899 const u8 *mac,
4900 struct station_parameters *params);
4901 int (*get_station)(struct wiphy *wiphy, struct net_device *dev,
4902 const u8 *mac, struct station_info *sinfo);
4903 int (*dump_station)(struct wiphy *wiphy, struct net_device *dev,
4904 int idx, u8 *mac, struct station_info *sinfo);
4905
4906 int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev,
4907 const u8 *dst, const u8 *next_hop);
4908 int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev,
4909 const u8 *dst);
4910 int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev,
4911 const u8 *dst, const u8 *next_hop);
4912 int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev,
4913 u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
4914 int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,
4915 int idx, u8 *dst, u8 *next_hop,
4916 struct mpath_info *pinfo);
4917 int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev,
4918 u8 *dst, u8 *mpp, struct mpath_info *pinfo);
4919 int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev,
4920 int idx, u8 *dst, u8 *mpp,
4921 struct mpath_info *pinfo);
4922 int (*get_mesh_config)(struct wiphy *wiphy,
4923 struct net_device *dev,
4924 struct mesh_config *conf);
4925 int (*update_mesh_config)(struct wiphy *wiphy,
4926 struct net_device *dev, u32 mask,
4927 const struct mesh_config *nconf);
4928 int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev,
4929 const struct mesh_config *conf,
4930 const struct mesh_setup *setup);
4931 int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
4932
4933 int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev,
4934 struct ocb_setup *setup);
4935 int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev);
4936
4937 int (*change_bss)(struct wiphy *wiphy, struct net_device *dev,
4938 struct bss_parameters *params);
4939
4940 void (*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss,
4941 const struct cfg80211_bss_ies *ies, void *data);
4942
4943 int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,
4944 struct ieee80211_txq_params *params);
4945
4946 int (*libertas_set_mesh_channel)(struct wiphy *wiphy,
4947 struct net_device *dev,
4948 struct ieee80211_channel *chan);
4949
4950 int (*set_monitor_channel)(struct wiphy *wiphy,
4951 struct net_device *dev,
4952 struct cfg80211_chan_def *chandef);
4953
4954 int (*scan)(struct wiphy *wiphy,
4955 struct cfg80211_scan_request *request);
4956 void (*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev);
4957
4958 int (*auth)(struct wiphy *wiphy, struct net_device *dev,
4959 struct cfg80211_auth_request *req);
4960 int (*assoc)(struct wiphy *wiphy, struct net_device *dev,
4961 struct cfg80211_assoc_request *req);
4962 int (*deauth)(struct wiphy *wiphy, struct net_device *dev,
4963 struct cfg80211_deauth_request *req);
4964 int (*disassoc)(struct wiphy *wiphy, struct net_device *dev,
4965 struct cfg80211_disassoc_request *req);
4966
4967 int (*connect)(struct wiphy *wiphy, struct net_device *dev,
4968 struct cfg80211_connect_params *sme);
4969 int (*update_connect_params)(struct wiphy *wiphy,
4970 struct net_device *dev,
4971 struct cfg80211_connect_params *sme,
4972 u32 changed);
4973 int (*disconnect)(struct wiphy *wiphy, struct net_device *dev,
4974 u16 reason_code);
4975
4976 int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev,
4977 struct cfg80211_ibss_params *params);
4978 int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
4979
4980 int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev,
4981 int rate[NUM_NL80211_BANDS]);
4982
4983 int (*set_wiphy_params)(struct wiphy *wiphy, int radio_idx,
4984 u32 changed);
4985
4986 int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4987 int radio_idx,
4988 enum nl80211_tx_power_setting type, int mbm);
4989 int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4990 int radio_idx, unsigned int link_id, int *dbm);
4991
4992 void (*rfkill_poll)(struct wiphy *wiphy);
4993
4994 #ifdef CONFIG_NL80211_TESTMODE
4995 int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev,
4996 void *data, int len);
4997 int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,
4998 struct netlink_callback *cb,
4999 void *data, int len);
5000 #endif
5001
5002 int (*set_bitrate_mask)(struct wiphy *wiphy,
5003 struct net_device *dev,
5004 unsigned int link_id,
5005 const u8 *peer,
5006 const struct cfg80211_bitrate_mask *mask);
5007
5008 int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,
5009 int idx, struct survey_info *info);
5010
5011 int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
5012 struct cfg80211_pmksa *pmksa);
5013 int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
5014 struct cfg80211_pmksa *pmksa);
5015 int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
5016
5017 int (*remain_on_channel)(struct wiphy *wiphy,
5018 struct wireless_dev *wdev,
5019 struct ieee80211_channel *chan,
5020 unsigned int duration,
5021 u64 *cookie);
5022 int (*cancel_remain_on_channel)(struct wiphy *wiphy,
5023 struct wireless_dev *wdev,
5024 u64 cookie);
5025
5026 int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,
5027 struct cfg80211_mgmt_tx_params *params,
5028 u64 *cookie);
5029 int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy,
5030 struct wireless_dev *wdev,
5031 u64 cookie);
5032
5033 int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev,
5034 bool enabled, int timeout);
5035
5036 int (*set_cqm_rssi_config)(struct wiphy *wiphy,
5037 struct net_device *dev,
5038 s32 rssi_thold, u32 rssi_hyst);
5039
5040 int (*set_cqm_rssi_range_config)(struct wiphy *wiphy,
5041 struct net_device *dev,
5042 s32 rssi_low, s32 rssi_high);
5043
5044 int (*set_cqm_txe_config)(struct wiphy *wiphy,
5045 struct net_device *dev,
5046 u32 rate, u32 pkts, u32 intvl);
5047
5048 void (*update_mgmt_frame_registrations)(struct wiphy *wiphy,
5049 struct wireless_dev *wdev,
5050 struct mgmt_frame_regs *upd);
5051
5052 int (*set_antenna)(struct wiphy *wiphy, int radio_idx,
5053 u32 tx_ant, u32 rx_ant);
5054 int (*get_antenna)(struct wiphy *wiphy, int radio_idx,
5055 u32 *tx_ant, u32 *rx_ant);
5056
5057 int (*sched_scan_start)(struct wiphy *wiphy,
5058 struct net_device *dev,
5059 struct cfg80211_sched_scan_request *request);
5060 int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev,
5061 u64 reqid);
5062
5063 int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,
5064 struct cfg80211_gtk_rekey_data *data);
5065
5066 int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,
5067 const u8 *peer, int link_id,
5068 u8 action_code, u8 dialog_token, u16 status_code,
5069 u32 peer_capability, bool initiator,
5070 const u8 *buf, size_t len);
5071 int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev,
5072 const u8 *peer, enum nl80211_tdls_operation oper);
5073
5074 int (*probe_client)(struct wiphy *wiphy, struct net_device *dev,
5075 const u8 *peer, u64 *cookie);
5076
5077 int (*set_noack_map)(struct wiphy *wiphy,
5078 struct net_device *dev,
5079 u16 noack_map);
5080
5081 int (*get_channel)(struct wiphy *wiphy,
5082 struct wireless_dev *wdev,
5083 unsigned int link_id,
5084 struct cfg80211_chan_def *chandef);
5085
5086 int (*start_p2p_device)(struct wiphy *wiphy,
5087 struct wireless_dev *wdev);
5088 void (*stop_p2p_device)(struct wiphy *wiphy,
5089 struct wireless_dev *wdev);
5090
5091 int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev,
5092 const struct cfg80211_acl_data *params);
5093
5094 int (*start_radar_detection)(struct wiphy *wiphy,
5095 struct net_device *dev,
5096 struct cfg80211_chan_def *chandef,
5097 u32 cac_time_ms, int link_id);
5098 void (*end_cac)(struct wiphy *wiphy,
5099 struct net_device *dev, unsigned int link_id);
5100 int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev,
5101 struct cfg80211_update_ft_ies_params *ftie);
5102 int (*crit_proto_start)(struct wiphy *wiphy,
5103 struct wireless_dev *wdev,
5104 enum nl80211_crit_proto_id protocol,
5105 u16 duration);
5106 void (*crit_proto_stop)(struct wiphy *wiphy,
5107 struct wireless_dev *wdev);
5108 int (*set_coalesce)(struct wiphy *wiphy,
5109 struct cfg80211_coalesce *coalesce);
5110
5111 int (*channel_switch)(struct wiphy *wiphy,
5112 struct net_device *dev,
5113 struct cfg80211_csa_settings *params);
5114
5115 int (*set_qos_map)(struct wiphy *wiphy,
5116 struct net_device *dev,
5117 struct cfg80211_qos_map *qos_map);
5118
5119 int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,
5120 unsigned int link_id,
5121 struct cfg80211_chan_def *chandef);
5122
5123 int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
5124 u8 tsid, const u8 *peer, u8 user_prio,
5125 u16 admitted_time);
5126 int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
5127 u8 tsid, const u8 *peer);
5128
5129 int (*tdls_channel_switch)(struct wiphy *wiphy,
5130 struct net_device *dev,
5131 const u8 *addr, u8 oper_class,
5132 struct cfg80211_chan_def *chandef);
5133 void (*tdls_cancel_channel_switch)(struct wiphy *wiphy,
5134 struct net_device *dev,
5135 const u8 *addr);
5136 int (*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev,
5137 struct cfg80211_nan_conf *conf);
5138 void (*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev);
5139 int (*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
5140 struct cfg80211_nan_func *nan_func);
5141 void (*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
5142 u64 cookie);
5143 int (*nan_change_conf)(struct wiphy *wiphy,
5144 struct wireless_dev *wdev,
5145 struct cfg80211_nan_conf *conf,
5146 u32 changes);
5147
5148 int (*set_multicast_to_unicast)(struct wiphy *wiphy,
5149 struct net_device *dev,
5150 const bool enabled);
5151
5152 int (*get_txq_stats)(struct wiphy *wiphy,
5153 struct wireless_dev *wdev,
5154 struct cfg80211_txq_stats *txqstats);
5155
5156 int (*set_pmk)(struct wiphy *wiphy, struct net_device *dev,
5157 const struct cfg80211_pmk_conf *conf);
5158 int (*del_pmk)(struct wiphy *wiphy, struct net_device *dev,
5159 const u8 *aa);
5160 int (*external_auth)(struct wiphy *wiphy, struct net_device *dev,
5161 struct cfg80211_external_auth_params *params);
5162
5163 int (*tx_control_port)(struct wiphy *wiphy,
5164 struct net_device *dev,
5165 const u8 *buf, size_t len,
5166 const u8 *dest, const __be16 proto,
5167 const bool noencrypt, int link_id,
5168 u64 *cookie);
5169
5170 int (*get_ftm_responder_stats)(struct wiphy *wiphy,
5171 struct net_device *dev,
5172 struct cfg80211_ftm_responder_stats *ftm_stats);
5173
5174 int (*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
5175 struct cfg80211_pmsr_request *request);
5176 void (*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
5177 struct cfg80211_pmsr_request *request);
5178 int (*update_owe_info)(struct wiphy *wiphy, struct net_device *dev,
5179 struct cfg80211_update_owe_info *owe_info);
5180 int (*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev,
5181 const u8 *buf, size_t len);
5182 int (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev,
5183 struct cfg80211_tid_config *tid_conf);
5184 int (*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev,
5185 const u8 *peer, u8 tids);
5186 int (*set_sar_specs)(struct wiphy *wiphy,
5187 struct cfg80211_sar_specs *sar);
5188 int (*color_change)(struct wiphy *wiphy,
5189 struct net_device *dev,
5190 struct cfg80211_color_change_settings *params);
5191 int (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev,
5192 struct cfg80211_fils_aad *fils_aad);
5193 int (*set_radar_background)(struct wiphy *wiphy,
5194 struct cfg80211_chan_def *chandef);
5195 int (*add_link_station)(struct wiphy *wiphy, struct net_device *dev,
5196 struct link_station_parameters *params);
5197 int (*mod_link_station)(struct wiphy *wiphy, struct net_device *dev,
5198 struct link_station_parameters *params);
5199 int (*del_link_station)(struct wiphy *wiphy, struct net_device *dev,
5200 struct link_station_del_parameters *params);
5201 int (*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev,
5202 struct cfg80211_set_hw_timestamp *hwts);
5203 int (*set_ttlm)(struct wiphy *wiphy, struct net_device *dev,
5204 struct cfg80211_ttlm_params *params);
5205 u32 (*get_radio_mask)(struct wiphy *wiphy, struct net_device *dev);
5206 int (*assoc_ml_reconf)(struct wiphy *wiphy, struct net_device *dev,
5207 struct cfg80211_ml_reconf_req *req);
5208 int (*set_epcs)(struct wiphy *wiphy, struct net_device *dev,
5209 bool val);
5210 };
5211
5212 /*
5213 * wireless hardware and networking interfaces structures
5214 * and registration/helper functions
5215 */
5216
5217 /**
5218 * enum wiphy_flags - wiphy capability flags
5219 *
5220 * @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split
5221 * into two, first for legacy bands and second for 6 GHz.
5222 * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this
5223 * wiphy at all
5224 * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled
5225 * by default -- this flag will be set depending on the kernel's default
5226 * on wiphy_new(), but can be changed by the driver if it has a good
5227 * reason to override the default
5228 * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station
5229 * on a VLAN interface). This flag also serves an extra purpose of
5230 * supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype.
5231 * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station
5232 * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the
5233 * control port protocol ethertype. The device also honours the
5234 * control_port_no_encrypt flag.
5235 * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN.
5236 * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing
5237 * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH.
5238 * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the
5239 * firmware.
5240 * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP.
5241 * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation.
5242 * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z)
5243 * link setup/discovery operations internally. Setup, discovery and
5244 * teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT
5245 * command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be
5246 * used for asking the driver/firmware to perform a TDLS operation.
5247 * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME
5248 * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes
5249 * when there are virtual interfaces in AP mode by calling
5250 * cfg80211_report_obss_beacon().
5251 * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device
5252 * responds to probe-requests in hardware.
5253 * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX.
5254 * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call.
5255 * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels.
5256 * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in
5257 * beaconing mode (AP, IBSS, Mesh, ...).
5258 * @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys
5259 * @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs,
5260 * in order to not have them reachable in normal drivers, until we have
5261 * complete feature/interface combinations/etc. advertisement. No driver
5262 * should set this flag for now.
5263 * @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys.
5264 * @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for
5265 * NL80211_REGDOM_SET_BY_DRIVER.
5266 * @WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON: reg_call_notifier() is called if driver
5267 * set this flag to update channels on beacon hints.
5268 * @WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY: support connection to non-primary link
5269 * of an NSTR mobile AP MLD.
5270 * @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device
5271 */
5272 enum wiphy_flags {
5273 WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK = BIT(0),
5274 WIPHY_FLAG_SUPPORTS_MLO = BIT(1),
5275 WIPHY_FLAG_SPLIT_SCAN_6GHZ = BIT(2),
5276 WIPHY_FLAG_NETNS_OK = BIT(3),
5277 WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4),
5278 WIPHY_FLAG_4ADDR_AP = BIT(5),
5279 WIPHY_FLAG_4ADDR_STATION = BIT(6),
5280 WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7),
5281 WIPHY_FLAG_IBSS_RSN = BIT(8),
5282 WIPHY_FLAG_DISABLE_WEXT = BIT(9),
5283 WIPHY_FLAG_MESH_AUTH = BIT(10),
5284 WIPHY_FLAG_SUPPORTS_EXT_KCK_32 = BIT(11),
5285 WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY = BIT(12),
5286 WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13),
5287 WIPHY_FLAG_AP_UAPSD = BIT(14),
5288 WIPHY_FLAG_SUPPORTS_TDLS = BIT(15),
5289 WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16),
5290 WIPHY_FLAG_HAVE_AP_SME = BIT(17),
5291 WIPHY_FLAG_REPORTS_OBSS = BIT(18),
5292 WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19),
5293 WIPHY_FLAG_OFFCHAN_TX = BIT(20),
5294 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21),
5295 WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22),
5296 WIPHY_FLAG_HAS_CHANNEL_SWITCH = BIT(23),
5297 WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER = BIT(24),
5298 WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON = BIT(25),
5299 };
5300
5301 /**
5302 * struct ieee80211_iface_limit - limit on certain interface types
5303 * @max: maximum number of interfaces of these types
5304 * @types: interface types (bits)
5305 */
5306 struct ieee80211_iface_limit {
5307 u16 max;
5308 u16 types;
5309 };
5310
5311 /**
5312 * struct ieee80211_iface_combination - possible interface combination
5313 *
5314 * With this structure the driver can describe which interface
5315 * combinations it supports concurrently. When set in a struct wiphy_radio,
5316 * the combinations refer to combinations of interfaces currently active on
5317 * that radio.
5318 *
5319 * Examples:
5320 *
5321 * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:
5322 *
5323 * .. code-block:: c
5324 *
5325 * struct ieee80211_iface_limit limits1[] = {
5326 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5327 * { .max = 1, .types = BIT(NL80211_IFTYPE_AP), },
5328 * };
5329 * struct ieee80211_iface_combination combination1 = {
5330 * .limits = limits1,
5331 * .n_limits = ARRAY_SIZE(limits1),
5332 * .max_interfaces = 2,
5333 * .beacon_int_infra_match = true,
5334 * };
5335 *
5336 *
5337 * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:
5338 *
5339 * .. code-block:: c
5340 *
5341 * struct ieee80211_iface_limit limits2[] = {
5342 * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
5343 * BIT(NL80211_IFTYPE_P2P_GO), },
5344 * };
5345 * struct ieee80211_iface_combination combination2 = {
5346 * .limits = limits2,
5347 * .n_limits = ARRAY_SIZE(limits2),
5348 * .max_interfaces = 8,
5349 * .num_different_channels = 1,
5350 * };
5351 *
5352 *
5353 * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
5354 *
5355 * This allows for an infrastructure connection and three P2P connections.
5356 *
5357 * .. code-block:: c
5358 *
5359 * struct ieee80211_iface_limit limits3[] = {
5360 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5361 * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
5362 * BIT(NL80211_IFTYPE_P2P_CLIENT), },
5363 * };
5364 * struct ieee80211_iface_combination combination3 = {
5365 * .limits = limits3,
5366 * .n_limits = ARRAY_SIZE(limits3),
5367 * .max_interfaces = 4,
5368 * .num_different_channels = 2,
5369 * };
5370 *
5371 */
5372 struct ieee80211_iface_combination {
5373 /**
5374 * @limits:
5375 * limits for the given interface types
5376 */
5377 const struct ieee80211_iface_limit *limits;
5378
5379 /**
5380 * @num_different_channels:
5381 * can use up to this many different channels
5382 */
5383 u32 num_different_channels;
5384
5385 /**
5386 * @max_interfaces:
5387 * maximum number of interfaces in total allowed in this group
5388 */
5389 u16 max_interfaces;
5390
5391 /**
5392 * @n_limits:
5393 * number of limitations
5394 */
5395 u8 n_limits;
5396
5397 /**
5398 * @beacon_int_infra_match:
5399 * In this combination, the beacon intervals between infrastructure
5400 * and AP types must match. This is required only in special cases.
5401 */
5402 bool beacon_int_infra_match;
5403
5404 /**
5405 * @radar_detect_widths:
5406 * bitmap of channel widths supported for radar detection
5407 */
5408 u8 radar_detect_widths;
5409
5410 /**
5411 * @radar_detect_regions:
5412 * bitmap of regions supported for radar detection
5413 */
5414 u8 radar_detect_regions;
5415
5416 /**
5417 * @beacon_int_min_gcd:
5418 * This interface combination supports different beacon intervals.
5419 *
5420 * = 0
5421 * all beacon intervals for different interface must be same.
5422 * > 0
5423 * any beacon interval for the interface part of this combination AND
5424 * GCD of all beacon intervals from beaconing interfaces of this
5425 * combination must be greater or equal to this value.
5426 */
5427 u32 beacon_int_min_gcd;
5428 };
5429
5430 struct ieee80211_txrx_stypes {
5431 u16 tx, rx;
5432 };
5433
5434 /**
5435 * enum wiphy_wowlan_support_flags - WoWLAN support flags
5436 * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any"
5437 * trigger that keeps the device operating as-is and
5438 * wakes up the host on any activity, for example a
5439 * received packet that passed filtering; note that the
5440 * packet should be preserved in that case
5441 * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet
5442 * (see nl80211.h)
5443 * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect
5444 * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep
5445 * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure
5446 * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request
5447 * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure
5448 * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release
5449 * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection
5450 */
5451 enum wiphy_wowlan_support_flags {
5452 WIPHY_WOWLAN_ANY = BIT(0),
5453 WIPHY_WOWLAN_MAGIC_PKT = BIT(1),
5454 WIPHY_WOWLAN_DISCONNECT = BIT(2),
5455 WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3),
5456 WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4),
5457 WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5),
5458 WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6),
5459 WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7),
5460 WIPHY_WOWLAN_NET_DETECT = BIT(8),
5461 };
5462
5463 struct wiphy_wowlan_tcp_support {
5464 const struct nl80211_wowlan_tcp_data_token_feature *tok;
5465 u32 data_payload_max;
5466 u32 data_interval_max;
5467 u32 wake_payload_max;
5468 bool seq;
5469 };
5470
5471 /**
5472 * struct wiphy_wowlan_support - WoWLAN support data
5473 * @flags: see &enum wiphy_wowlan_support_flags
5474 * @n_patterns: number of supported wakeup patterns
5475 * (see nl80211.h for the pattern definition)
5476 * @pattern_max_len: maximum length of each pattern
5477 * @pattern_min_len: minimum length of each pattern
5478 * @max_pkt_offset: maximum Rx packet offset
5479 * @max_nd_match_sets: maximum number of matchsets for net-detect,
5480 * similar, but not necessarily identical, to max_match_sets for
5481 * scheduled scans.
5482 * See &struct cfg80211_sched_scan_request.@match_sets for more
5483 * details.
5484 * @tcp: TCP wakeup support information
5485 */
5486 struct wiphy_wowlan_support {
5487 u32 flags;
5488 int n_patterns;
5489 int pattern_max_len;
5490 int pattern_min_len;
5491 int max_pkt_offset;
5492 int max_nd_match_sets;
5493 const struct wiphy_wowlan_tcp_support *tcp;
5494 };
5495
5496 /**
5497 * struct wiphy_coalesce_support - coalesce support data
5498 * @n_rules: maximum number of coalesce rules
5499 * @max_delay: maximum supported coalescing delay in msecs
5500 * @n_patterns: number of supported patterns in a rule
5501 * (see nl80211.h for the pattern definition)
5502 * @pattern_max_len: maximum length of each pattern
5503 * @pattern_min_len: minimum length of each pattern
5504 * @max_pkt_offset: maximum Rx packet offset
5505 */
5506 struct wiphy_coalesce_support {
5507 int n_rules;
5508 int max_delay;
5509 int n_patterns;
5510 int pattern_max_len;
5511 int pattern_min_len;
5512 int max_pkt_offset;
5513 };
5514
5515 /**
5516 * enum wiphy_vendor_command_flags - validation flags for vendor commands
5517 * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
5518 * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
5519 * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
5520 * (must be combined with %_WDEV or %_NETDEV)
5521 */
5522 enum wiphy_vendor_command_flags {
5523 WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
5524 WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
5525 WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
5526 };
5527
5528 /**
5529 * enum wiphy_opmode_flag - Station's ht/vht operation mode information flags
5530 *
5531 * @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed
5532 * @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed
5533 * @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed
5534 *
5535 */
5536 enum wiphy_opmode_flag {
5537 STA_OPMODE_MAX_BW_CHANGED = BIT(0),
5538 STA_OPMODE_SMPS_MODE_CHANGED = BIT(1),
5539 STA_OPMODE_N_SS_CHANGED = BIT(2),
5540 };
5541
5542 /**
5543 * struct sta_opmode_info - Station's ht/vht operation mode information
5544 * @changed: contains value from &enum wiphy_opmode_flag
5545 * @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station
5546 * @bw: new max bandwidth value from &enum nl80211_chan_width of a station
5547 * @rx_nss: new rx_nss value of a station
5548 */
5549
5550 struct sta_opmode_info {
5551 u32 changed;
5552 enum nl80211_smps_mode smps_mode;
5553 enum nl80211_chan_width bw;
5554 u8 rx_nss;
5555 };
5556
5557 #define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA))
5558
5559 /**
5560 * struct wiphy_vendor_command - vendor command definition
5561 * @info: vendor command identifying information, as used in nl80211
5562 * @flags: flags, see &enum wiphy_vendor_command_flags
5563 * @doit: callback for the operation, note that wdev is %NULL if the
5564 * flags didn't ask for a wdev and non-%NULL otherwise; the data
5565 * pointer may be %NULL if userspace provided no data at all
5566 * @dumpit: dump callback, for transferring bigger/multiple items. The
5567 * @storage points to cb->args[5], ie. is preserved over the multiple
5568 * dumpit calls.
5569 * @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA.
5570 * Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the
5571 * attribute is just raw data (e.g. a firmware command).
5572 * @maxattr: highest attribute number in policy
5573 * It's recommended to not have the same sub command with both @doit and
5574 * @dumpit, so that userspace can assume certain ones are get and others
5575 * are used with dump requests.
5576 */
5577 struct wiphy_vendor_command {
5578 struct nl80211_vendor_cmd_info info;
5579 u32 flags;
5580 int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5581 const void *data, int data_len);
5582 int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5583 struct sk_buff *skb, const void *data, int data_len,
5584 unsigned long *storage);
5585 const struct nla_policy *policy;
5586 unsigned int maxattr;
5587 };
5588
5589 /**
5590 * struct wiphy_iftype_ext_capab - extended capabilities per interface type
5591 * @iftype: interface type
5592 * @extended_capabilities: extended capabilities supported by the driver,
5593 * additional capabilities might be supported by userspace; these are the
5594 * 802.11 extended capabilities ("Extended Capabilities element") and are
5595 * in the same format as in the information element. See IEEE Std
5596 * 802.11-2012 8.4.2.29 for the defined fields.
5597 * @extended_capabilities_mask: mask of the valid values
5598 * @extended_capabilities_len: length of the extended capabilities
5599 * @eml_capabilities: EML capabilities (for MLO)
5600 * @mld_capa_and_ops: MLD capabilities and operations (for MLO)
5601 */
5602 struct wiphy_iftype_ext_capab {
5603 enum nl80211_iftype iftype;
5604 const u8 *extended_capabilities;
5605 const u8 *extended_capabilities_mask;
5606 u8 extended_capabilities_len;
5607 u16 eml_capabilities;
5608 u16 mld_capa_and_ops;
5609 };
5610
5611 /**
5612 * cfg80211_get_iftype_ext_capa - lookup interface type extended capability
5613 * @wiphy: the wiphy to look up from
5614 * @type: the interface type to look up
5615 *
5616 * Return: The extended capability for the given interface @type, may be %NULL
5617 */
5618 const struct wiphy_iftype_ext_capab *
5619 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type);
5620
5621 /**
5622 * struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities
5623 * @max_peers: maximum number of peers in a single measurement
5624 * @report_ap_tsf: can report assoc AP's TSF for radio resource measurement
5625 * @randomize_mac_addr: can randomize MAC address for measurement
5626 * @ftm: FTM measurement data
5627 * @ftm.supported: FTM measurement is supported
5628 * @ftm.asap: ASAP-mode is supported
5629 * @ftm.non_asap: non-ASAP-mode is supported
5630 * @ftm.request_lci: can request LCI data
5631 * @ftm.request_civicloc: can request civic location data
5632 * @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble)
5633 * @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width)
5634 * @ftm.max_bursts_exponent: maximum burst exponent supported
5635 * (set to -1 if not limited; note that setting this will necessarily
5636 * forbid using the value 15 to let the responder pick)
5637 * @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if
5638 * not limited)
5639 * @ftm.trigger_based: trigger based ranging measurement is supported
5640 * @ftm.non_trigger_based: non trigger based ranging measurement is supported
5641 */
5642 struct cfg80211_pmsr_capabilities {
5643 unsigned int max_peers;
5644 u8 report_ap_tsf:1,
5645 randomize_mac_addr:1;
5646
5647 struct {
5648 u32 preambles;
5649 u32 bandwidths;
5650 s8 max_bursts_exponent;
5651 u8 max_ftms_per_burst;
5652 u8 supported:1,
5653 asap:1,
5654 non_asap:1,
5655 request_lci:1,
5656 request_civicloc:1,
5657 trigger_based:1,
5658 non_trigger_based:1;
5659 } ftm;
5660 };
5661
5662 /**
5663 * struct wiphy_iftype_akm_suites - This structure encapsulates supported akm
5664 * suites for interface types defined in @iftypes_mask. Each type in the
5665 * @iftypes_mask must be unique across all instances of iftype_akm_suites.
5666 *
5667 * @iftypes_mask: bitmask of interfaces types
5668 * @akm_suites: points to an array of supported akm suites
5669 * @n_akm_suites: number of supported AKM suites
5670 */
5671 struct wiphy_iftype_akm_suites {
5672 u16 iftypes_mask;
5673 const u32 *akm_suites;
5674 int n_akm_suites;
5675 };
5676
5677 /**
5678 * struct wiphy_radio_cfg - physical radio config of a wiphy
5679 * This structure describes the configurations of a physical radio in a
5680 * wiphy. It is used to denote per-radio attributes belonging to a wiphy.
5681 *
5682 * @rts_threshold: RTS threshold (dot11RTSThreshold);
5683 * -1 (default) = RTS/CTS disabled
5684 * @radio_debugfsdir: Pointer to debugfs directory containing the radio-
5685 * specific parameters.
5686 * NULL (default) = Debugfs directory not created
5687 */
5688 struct wiphy_radio_cfg {
5689 u32 rts_threshold;
5690 struct dentry *radio_debugfsdir;
5691 };
5692
5693 /**
5694 * struct wiphy_radio_freq_range - wiphy frequency range
5695 * @start_freq: start range edge frequency (kHz)
5696 * @end_freq: end range edge frequency (kHz)
5697 */
5698 struct wiphy_radio_freq_range {
5699 u32 start_freq;
5700 u32 end_freq;
5701 };
5702
5703
5704 /**
5705 * struct wiphy_radio - physical radio of a wiphy
5706 * This structure describes a physical radio belonging to a wiphy.
5707 * It is used to describe concurrent-channel capabilities. Only one channel
5708 * can be active on the radio described by struct wiphy_radio.
5709 *
5710 * @freq_range: frequency range that the radio can operate on.
5711 * @n_freq_range: number of elements in @freq_range
5712 *
5713 * @iface_combinations: Valid interface combinations array, should not
5714 * list single interface types.
5715 * @n_iface_combinations: number of entries in @iface_combinations array.
5716 *
5717 * @antenna_mask: bitmask of antennas connected to this radio.
5718 */
5719 struct wiphy_radio {
5720 const struct wiphy_radio_freq_range *freq_range;
5721 int n_freq_range;
5722
5723 const struct ieee80211_iface_combination *iface_combinations;
5724 int n_iface_combinations;
5725
5726 u32 antenna_mask;
5727 };
5728
5729 /**
5730 * enum wiphy_nan_flags - NAN capabilities
5731 *
5732 * @WIPHY_NAN_FLAGS_CONFIGURABLE_SYNC: Device supports NAN configurable
5733 * synchronization.
5734 * @WIPHY_NAN_FLAGS_USERSPACE_DE: Device doesn't support DE offload.
5735 */
5736 enum wiphy_nan_flags {
5737 WIPHY_NAN_FLAGS_CONFIGURABLE_SYNC = BIT(0),
5738 WIPHY_NAN_FLAGS_USERSPACE_DE = BIT(1),
5739 };
5740
5741 /**
5742 * struct wiphy_nan_capa - NAN capabilities
5743 *
5744 * This structure describes the NAN capabilities of a wiphy.
5745 *
5746 * @flags: NAN capabilities flags, see &enum wiphy_nan_flags
5747 * @op_mode: NAN operation mode, as defined in Wi-Fi Aware (TM) specification
5748 * Table 81.
5749 * @n_antennas: number of antennas supported by the device for Tx/Rx. Lower
5750 * nibble indicates the number of TX antennas and upper nibble indicates the
5751 * number of RX antennas. Value 0 indicates the information is not
5752 * available.
5753 * @max_channel_switch_time: maximum channel switch time in milliseconds.
5754 * @dev_capabilities: NAN device capabilities as defined in Wi-Fi Aware (TM)
5755 * specification Table 79 (Capabilities field).
5756 */
5757 struct wiphy_nan_capa {
5758 u32 flags;
5759 u8 op_mode;
5760 u8 n_antennas;
5761 u16 max_channel_switch_time;
5762 u8 dev_capabilities;
5763 };
5764
5765 #define CFG80211_HW_TIMESTAMP_ALL_PEERS 0xffff
5766
5767 /**
5768 * struct wiphy - wireless hardware description
5769 * @mtx: mutex for the data (structures) of this device
5770 * @reg_notifier: the driver's regulatory notification callback,
5771 * note that if your driver uses wiphy_apply_custom_regulatory()
5772 * the reg_notifier's request can be passed as NULL
5773 * @regd: the driver's regulatory domain, if one was requested via
5774 * the regulatory_hint() API. This can be used by the driver
5775 * on the reg_notifier() if it chooses to ignore future
5776 * regulatory domain changes caused by other drivers.
5777 * @signal_type: signal type reported in &struct cfg80211_bss.
5778 * @cipher_suites: supported cipher suites
5779 * @n_cipher_suites: number of supported cipher suites
5780 * @akm_suites: supported AKM suites. These are the default AKMs supported if
5781 * the supported AKMs not advertized for a specific interface type in
5782 * iftype_akm_suites.
5783 * @n_akm_suites: number of supported AKM suites
5784 * @iftype_akm_suites: array of supported akm suites info per interface type.
5785 * Note that the bits in @iftypes_mask inside this structure cannot
5786 * overlap (i.e. only one occurrence of each type is allowed across all
5787 * instances of iftype_akm_suites).
5788 * @num_iftype_akm_suites: number of interface types for which supported akm
5789 * suites are specified separately.
5790 * @retry_short: Retry limit for short frames (dot11ShortRetryLimit)
5791 * @retry_long: Retry limit for long frames (dot11LongRetryLimit)
5792 * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
5793 * -1 = fragmentation disabled, only odd values >= 256 used
5794 * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
5795 * @_net: the network namespace this wiphy currently lives in
5796 * @perm_addr: permanent MAC address of this device
5797 * @addr_mask: If the device supports multiple MAC addresses by masking,
5798 * set this to a mask with variable bits set to 1, e.g. if the last
5799 * four bits are variable then set it to 00-00-00-00-00-0f. The actual
5800 * variable bits shall be determined by the interfaces added, with
5801 * interfaces not matching the mask being rejected to be brought up.
5802 * @n_addresses: number of addresses in @addresses.
5803 * @addresses: If the device has more than one address, set this pointer
5804 * to a list of addresses (6 bytes each). The first one will be used
5805 * by default for perm_addr. In this case, the mask should be set to
5806 * all-zeroes. In this case it is assumed that the device can handle
5807 * the same number of arbitrary MAC addresses.
5808 * @registered: protects ->resume and ->suspend sysfs callbacks against
5809 * unregister hardware
5810 * @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>).
5811 * It will be renamed automatically on wiphy renames
5812 * @dev: (virtual) struct device for this wiphy. The item in
5813 * /sys/class/ieee80211/ points to this. You need use set_wiphy_dev()
5814 * (see below).
5815 * @wext: wireless extension handlers
5816 * @priv: driver private data (sized according to wiphy_new() parameter)
5817 * @interface_modes: bitmask of interfaces types valid for this wiphy,
5818 * must be set by driver
5819 * @iface_combinations: Valid interface combinations array, should not
5820 * list single interface types.
5821 * @n_iface_combinations: number of entries in @iface_combinations array.
5822 * @software_iftypes: bitmask of software interface types, these are not
5823 * subject to any restrictions since they are purely managed in SW.
5824 * @flags: wiphy flags, see &enum wiphy_flags
5825 * @regulatory_flags: wiphy regulatory flags, see
5826 * &enum ieee80211_regulatory_flags
5827 * @features: features advertised to nl80211, see &enum nl80211_feature_flags.
5828 * @ext_features: extended features advertised to nl80211, see
5829 * &enum nl80211_ext_feature_index.
5830 * @bss_priv_size: each BSS struct has private data allocated with it,
5831 * this variable determines its size
5832 * @max_scan_ssids: maximum number of SSIDs the device can scan for in
5833 * any given scan
5834 * @max_sched_scan_reqs: maximum number of scheduled scan requests that
5835 * the device can run concurrently.
5836 * @max_sched_scan_ssids: maximum number of SSIDs the device can scan
5837 * for in any given scheduled scan
5838 * @max_match_sets: maximum number of match sets the device can handle
5839 * when performing a scheduled scan, 0 if filtering is not
5840 * supported.
5841 * @max_scan_ie_len: maximum length of user-controlled IEs device can
5842 * add to probe request frames transmitted during a scan, must not
5843 * include fixed IEs like supported rates
5844 * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled
5845 * scans
5846 * @max_sched_scan_plans: maximum number of scan plans (scan interval and number
5847 * of iterations) for scheduled scan supported by the device.
5848 * @max_sched_scan_plan_interval: maximum interval (in seconds) for a
5849 * single scan plan supported by the device.
5850 * @max_sched_scan_plan_iterations: maximum number of iterations for a single
5851 * scan plan supported by the device.
5852 * @coverage_class: current coverage class
5853 * @fw_version: firmware version for ethtool reporting
5854 * @hw_version: hardware version for ethtool reporting
5855 * @max_num_pmkids: maximum number of PMKIDs supported by device
5856 * @privid: a pointer that drivers can use to identify if an arbitrary
5857 * wiphy is theirs, e.g. in global notifiers
5858 * @bands: information about bands/channels supported by this device
5859 *
5860 * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or
5861 * transmitted through nl80211, points to an array indexed by interface
5862 * type
5863 *
5864 * @available_antennas_tx: bitmap of antennas which are available to be
5865 * configured as TX antennas. Antenna configuration commands will be
5866 * rejected unless this or @available_antennas_rx is set.
5867 *
5868 * @available_antennas_rx: bitmap of antennas which are available to be
5869 * configured as RX antennas. Antenna configuration commands will be
5870 * rejected unless this or @available_antennas_tx is set.
5871 *
5872 * @probe_resp_offload:
5873 * Bitmap of supported protocols for probe response offloading.
5874 * See &enum nl80211_probe_resp_offload_support_attr. Only valid
5875 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
5876 *
5877 * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation
5878 * may request, if implemented.
5879 *
5880 * @wowlan: WoWLAN support information
5881 * @wowlan_config: current WoWLAN configuration; this should usually not be
5882 * used since access to it is necessarily racy, use the parameter passed
5883 * to the suspend() operation instead.
5884 *
5885 * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features.
5886 * @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden.
5887 * If null, then none can be over-ridden.
5888 * @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden.
5889 * If null, then none can be over-ridden.
5890 *
5891 * @wdev_list: the list of associated (virtual) interfaces; this list must
5892 * not be modified by the driver, but can be read with RTNL/RCU protection.
5893 *
5894 * @max_acl_mac_addrs: Maximum number of MAC addresses that the device
5895 * supports for ACL.
5896 *
5897 * @extended_capabilities: extended capabilities supported by the driver,
5898 * additional capabilities might be supported by userspace; these are
5899 * the 802.11 extended capabilities ("Extended Capabilities element")
5900 * and are in the same format as in the information element. See
5901 * 802.11-2012 8.4.2.29 for the defined fields. These are the default
5902 * extended capabilities to be used if the capabilities are not specified
5903 * for a specific interface type in iftype_ext_capab.
5904 * @extended_capabilities_mask: mask of the valid values
5905 * @extended_capabilities_len: length of the extended capabilities
5906 * @iftype_ext_capab: array of extended capabilities per interface type
5907 * @num_iftype_ext_capab: number of interface types for which extended
5908 * capabilities are specified separately.
5909 * @coalesce: packet coalescing support information
5910 *
5911 * @vendor_commands: array of vendor commands supported by the hardware
5912 * @n_vendor_commands: number of vendor commands
5913 * @vendor_events: array of vendor events supported by the hardware
5914 * @n_vendor_events: number of vendor events
5915 *
5916 * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode
5917 * (including P2P GO) or 0 to indicate no such limit is advertised. The
5918 * driver is allowed to advertise a theoretical limit that it can reach in
5919 * some cases, but may not always reach.
5920 *
5921 * @max_num_csa_counters: Number of supported csa_counters in beacons
5922 * and probe responses. This value should be set if the driver
5923 * wishes to limit the number of csa counters. Default (0) means
5924 * infinite.
5925 * @bss_param_support: bitmask indicating which bss_parameters as defined in
5926 * &struct bss_parameters the driver can actually handle in the
5927 * .change_bss() callback. The bit positions are defined in &enum
5928 * wiphy_bss_param_flags.
5929 *
5930 * @bss_select_support: bitmask indicating the BSS selection criteria supported
5931 * by the driver in the .connect() callback. The bit position maps to the
5932 * attribute indices defined in &enum nl80211_bss_select_attr.
5933 *
5934 * @nan_supported_bands: bands supported by the device in NAN mode, a
5935 * bitmap of &enum nl80211_band values. For instance, for
5936 * NL80211_BAND_2GHZ, bit 0 would be set
5937 * (i.e. BIT(NL80211_BAND_2GHZ)).
5938 * @nan_capa: NAN capabilities
5939 *
5940 * @txq_limit: configuration of internal TX queue frame limit
5941 * @txq_memory_limit: configuration internal TX queue memory limit
5942 * @txq_quantum: configuration of internal TX queue scheduler quantum
5943 *
5944 * @tx_queue_len: allow setting transmit queue len for drivers not using
5945 * wake_tx_queue
5946 *
5947 * @support_mbssid: can HW support association with nontransmitted AP
5948 * @support_only_he_mbssid: don't parse MBSSID elements if it is not
5949 * HE AP, in order to avoid compatibility issues.
5950 * @support_mbssid must be set for this to have any effect.
5951 *
5952 * @pmsr_capa: peer measurement capabilities
5953 *
5954 * @tid_config_support: describes the per-TID config support that the
5955 * device has
5956 * @tid_config_support.vif: bitmap of attributes (configurations)
5957 * supported by the driver for each vif
5958 * @tid_config_support.peer: bitmap of attributes (configurations)
5959 * supported by the driver for each peer
5960 * @tid_config_support.max_retry: maximum supported retry count for
5961 * long/short retry configuration
5962 *
5963 * @max_data_retry_count: maximum supported per TID retry count for
5964 * configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and
5965 * %NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes
5966 * @sar_capa: SAR control capabilities
5967 * @rfkill: a pointer to the rfkill structure
5968 *
5969 * @mbssid_max_interfaces: maximum number of interfaces supported by the driver
5970 * in a multiple BSSID set. This field must be set to a non-zero value
5971 * by the driver to advertise MBSSID support.
5972 * @ema_max_profile_periodicity: maximum profile periodicity supported by
5973 * the driver. Setting this field to a non-zero value indicates that the
5974 * driver supports enhanced multi-BSSID advertisements (EMA AP).
5975 * @max_num_akm_suites: maximum number of AKM suites allowed for
5976 * configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and
5977 * %NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by
5978 * driver. If set by driver minimum allowed value is
5979 * NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with
5980 * legacy userspace and maximum allowed value is
5981 * CFG80211_MAX_NUM_AKM_SUITES.
5982 *
5983 * @hw_timestamp_max_peers: maximum number of peers that the driver supports
5984 * enabling HW timestamping for concurrently. Setting this field to a
5985 * non-zero value indicates that the driver supports HW timestamping.
5986 * A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver
5987 * supports enabling HW timestamping for all peers (i.e. no need to
5988 * specify a mac address).
5989 *
5990 * @radio_cfg: configuration of radios belonging to a muli-radio wiphy. This
5991 * struct contains a list of all radio specific attributes and should be
5992 * used only for multi-radio wiphy.
5993 *
5994 * @radio: radios belonging to this wiphy
5995 * @n_radio: number of radios
5996 */
5997 struct wiphy {
5998 struct mutex mtx;
5999
6000 /* assign these fields before you register the wiphy */
6001
6002 u8 perm_addr[ETH_ALEN];
6003 u8 addr_mask[ETH_ALEN];
6004
6005 struct mac_address *addresses;
6006
6007 const struct ieee80211_txrx_stypes *mgmt_stypes;
6008
6009 const struct ieee80211_iface_combination *iface_combinations;
6010 int n_iface_combinations;
6011 u16 software_iftypes;
6012
6013 u16 n_addresses;
6014
6015 /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
6016 u16 interface_modes;
6017
6018 u16 max_acl_mac_addrs;
6019
6020 u32 flags, regulatory_flags, features;
6021 u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)];
6022
6023 u32 ap_sme_capa;
6024
6025 enum cfg80211_signal_type signal_type;
6026
6027 int bss_priv_size;
6028 u8 max_scan_ssids;
6029 u8 max_sched_scan_reqs;
6030 u8 max_sched_scan_ssids;
6031 u8 max_match_sets;
6032 u16 max_scan_ie_len;
6033 u16 max_sched_scan_ie_len;
6034 u32 max_sched_scan_plans;
6035 u32 max_sched_scan_plan_interval;
6036 u32 max_sched_scan_plan_iterations;
6037
6038 int n_cipher_suites;
6039 const u32 *cipher_suites;
6040
6041 int n_akm_suites;
6042 const u32 *akm_suites;
6043
6044 const struct wiphy_iftype_akm_suites *iftype_akm_suites;
6045 unsigned int num_iftype_akm_suites;
6046
6047 u8 retry_short;
6048 u8 retry_long;
6049 u32 frag_threshold;
6050 u32 rts_threshold;
6051 u8 coverage_class;
6052
6053 char fw_version[ETHTOOL_FWVERS_LEN];
6054 u32 hw_version;
6055
6056 #ifdef CONFIG_PM
6057 const struct wiphy_wowlan_support *wowlan;
6058 struct cfg80211_wowlan *wowlan_config;
6059 #endif
6060
6061 u16 max_remain_on_channel_duration;
6062
6063 u8 max_num_pmkids;
6064
6065 u32 available_antennas_tx;
6066 u32 available_antennas_rx;
6067
6068 u32 probe_resp_offload;
6069
6070 const u8 *extended_capabilities, *extended_capabilities_mask;
6071 u8 extended_capabilities_len;
6072
6073 const struct wiphy_iftype_ext_capab *iftype_ext_capab;
6074 unsigned int num_iftype_ext_capab;
6075
6076 const void *privid;
6077
6078 struct ieee80211_supported_band *bands[NUM_NL80211_BANDS];
6079
6080 void (*reg_notifier)(struct wiphy *wiphy,
6081 struct regulatory_request *request);
6082
6083 struct wiphy_radio_cfg *radio_cfg;
6084
6085 /* fields below are read-only, assigned by cfg80211 */
6086
6087 const struct ieee80211_regdomain __rcu *regd;
6088
6089 struct device dev;
6090
6091 bool registered;
6092
6093 struct dentry *debugfsdir;
6094
6095 const struct ieee80211_ht_cap *ht_capa_mod_mask;
6096 const struct ieee80211_vht_cap *vht_capa_mod_mask;
6097
6098 struct list_head wdev_list;
6099
6100 possible_net_t _net;
6101
6102 #ifdef CONFIG_CFG80211_WEXT
6103 const struct iw_handler_def *wext;
6104 #endif
6105
6106 const struct wiphy_coalesce_support *coalesce;
6107
6108 const struct wiphy_vendor_command *vendor_commands;
6109 const struct nl80211_vendor_cmd_info *vendor_events;
6110 int n_vendor_commands, n_vendor_events;
6111
6112 u16 max_ap_assoc_sta;
6113
6114 u8 max_num_csa_counters;
6115
6116 u32 bss_param_support;
6117 u32 bss_select_support;
6118
6119 u8 nan_supported_bands;
6120 struct wiphy_nan_capa nan_capa;
6121
6122 u32 txq_limit;
6123 u32 txq_memory_limit;
6124 u32 txq_quantum;
6125
6126 unsigned long tx_queue_len;
6127
6128 u8 support_mbssid:1,
6129 support_only_he_mbssid:1;
6130
6131 const struct cfg80211_pmsr_capabilities *pmsr_capa;
6132
6133 struct {
6134 u64 peer, vif;
6135 u8 max_retry;
6136 } tid_config_support;
6137
6138 u8 max_data_retry_count;
6139
6140 const struct cfg80211_sar_capa *sar_capa;
6141
6142 struct rfkill *rfkill;
6143
6144 u8 mbssid_max_interfaces;
6145 u8 ema_max_profile_periodicity;
6146 u16 max_num_akm_suites;
6147
6148 u16 hw_timestamp_max_peers;
6149
6150 int n_radio;
6151 const struct wiphy_radio *radio;
6152
6153 char priv[] __aligned(NETDEV_ALIGN);
6154 };
6155
wiphy_net(struct wiphy * wiphy)6156 static inline struct net *wiphy_net(struct wiphy *wiphy)
6157 {
6158 return read_pnet(&wiphy->_net);
6159 }
6160
wiphy_net_set(struct wiphy * wiphy,struct net * net)6161 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net)
6162 {
6163 write_pnet(&wiphy->_net, net);
6164 }
6165
6166 /**
6167 * wiphy_priv - return priv from wiphy
6168 *
6169 * @wiphy: the wiphy whose priv pointer to return
6170 * Return: The priv of @wiphy.
6171 */
wiphy_priv(struct wiphy * wiphy)6172 static inline void *wiphy_priv(struct wiphy *wiphy)
6173 {
6174 BUG_ON(!wiphy);
6175 return &wiphy->priv;
6176 }
6177
6178 /**
6179 * priv_to_wiphy - return the wiphy containing the priv
6180 *
6181 * @priv: a pointer previously returned by wiphy_priv
6182 * Return: The wiphy of @priv.
6183 */
priv_to_wiphy(void * priv)6184 static inline struct wiphy *priv_to_wiphy(void *priv)
6185 {
6186 BUG_ON(!priv);
6187 return container_of(priv, struct wiphy, priv);
6188 }
6189
6190 /**
6191 * set_wiphy_dev - set device pointer for wiphy
6192 *
6193 * @wiphy: The wiphy whose device to bind
6194 * @dev: The device to parent it to
6195 */
set_wiphy_dev(struct wiphy * wiphy,struct device * dev)6196 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
6197 {
6198 wiphy->dev.parent = dev;
6199 }
6200
6201 /**
6202 * wiphy_dev - get wiphy dev pointer
6203 *
6204 * @wiphy: The wiphy whose device struct to look up
6205 * Return: The dev of @wiphy.
6206 */
wiphy_dev(struct wiphy * wiphy)6207 static inline struct device *wiphy_dev(struct wiphy *wiphy)
6208 {
6209 return wiphy->dev.parent;
6210 }
6211
6212 /**
6213 * wiphy_name - get wiphy name
6214 *
6215 * @wiphy: The wiphy whose name to return
6216 * Return: The name of @wiphy.
6217 */
wiphy_name(const struct wiphy * wiphy)6218 static inline const char *wiphy_name(const struct wiphy *wiphy)
6219 {
6220 return dev_name(&wiphy->dev);
6221 }
6222
6223 /**
6224 * wiphy_new_nm - create a new wiphy for use with cfg80211
6225 *
6226 * @ops: The configuration operations for this device
6227 * @sizeof_priv: The size of the private area to allocate
6228 * @requested_name: Request a particular name.
6229 * NULL is valid value, and means use the default phy%d naming.
6230 *
6231 * Create a new wiphy and associate the given operations with it.
6232 * @sizeof_priv bytes are allocated for private use.
6233 *
6234 * Return: A pointer to the new wiphy. This pointer must be
6235 * assigned to each netdev's ieee80211_ptr for proper operation.
6236 */
6237 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv,
6238 const char *requested_name);
6239
6240 /**
6241 * wiphy_new - create a new wiphy for use with cfg80211
6242 *
6243 * @ops: The configuration operations for this device
6244 * @sizeof_priv: The size of the private area to allocate
6245 *
6246 * Create a new wiphy and associate the given operations with it.
6247 * @sizeof_priv bytes are allocated for private use.
6248 *
6249 * Return: A pointer to the new wiphy. This pointer must be
6250 * assigned to each netdev's ieee80211_ptr for proper operation.
6251 */
wiphy_new(const struct cfg80211_ops * ops,int sizeof_priv)6252 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops,
6253 int sizeof_priv)
6254 {
6255 return wiphy_new_nm(ops, sizeof_priv, NULL);
6256 }
6257
6258 /**
6259 * wiphy_register - register a wiphy with cfg80211
6260 *
6261 * @wiphy: The wiphy to register.
6262 *
6263 * Return: A non-negative wiphy index or a negative error code.
6264 */
6265 int wiphy_register(struct wiphy *wiphy);
6266
6267 /* this is a define for better error reporting (file/line) */
6268 #define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx)
6269
6270 /**
6271 * rcu_dereference_wiphy - rcu_dereference with debug checking
6272 * @wiphy: the wiphy to check the locking on
6273 * @p: The pointer to read, prior to dereferencing
6274 *
6275 * Do an rcu_dereference(p), but check caller either holds rcu_read_lock()
6276 * or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference().
6277 */
6278 #define rcu_dereference_wiphy(wiphy, p) \
6279 rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx))
6280
6281 /**
6282 * wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx
6283 * @wiphy: the wiphy to check the locking on
6284 * @p: The pointer to read, prior to dereferencing
6285 *
6286 * Return: the value of the specified RCU-protected pointer, but omit the
6287 * READ_ONCE(), because caller holds the wiphy mutex used for updates.
6288 */
6289 #define wiphy_dereference(wiphy, p) \
6290 rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx))
6291
6292 /**
6293 * get_wiphy_regdom - get custom regdomain for the given wiphy
6294 * @wiphy: the wiphy to get the regdomain from
6295 *
6296 * Context: Requires any of RTNL, wiphy mutex or RCU protection.
6297 *
6298 * Return: pointer to the regulatory domain associated with the wiphy
6299 */
6300 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy);
6301
6302 /**
6303 * wiphy_unregister - deregister a wiphy from cfg80211
6304 *
6305 * @wiphy: The wiphy to unregister.
6306 *
6307 * After this call, no more requests can be made with this priv
6308 * pointer, but the call may sleep to wait for an outstanding
6309 * request that is being handled.
6310 */
6311 void wiphy_unregister(struct wiphy *wiphy);
6312
6313 /**
6314 * wiphy_free - free wiphy
6315 *
6316 * @wiphy: The wiphy to free
6317 */
6318 void wiphy_free(struct wiphy *wiphy);
6319
6320 /* internal structs */
6321 struct cfg80211_conn;
6322 struct cfg80211_internal_bss;
6323 struct cfg80211_cached_keys;
6324 struct cfg80211_cqm_config;
6325
6326 /**
6327 * wiphy_lock - lock the wiphy
6328 * @wiphy: the wiphy to lock
6329 *
6330 * This is needed around registering and unregistering netdevs that
6331 * aren't created through cfg80211 calls, since that requires locking
6332 * in cfg80211 when the notifiers is called, but that cannot
6333 * differentiate which way it's called.
6334 *
6335 * It can also be used by drivers for their own purposes.
6336 *
6337 * When cfg80211 ops are called, the wiphy is already locked.
6338 *
6339 * Note that this makes sure that no workers that have been queued
6340 * with wiphy_queue_work() are running.
6341 */
wiphy_lock(struct wiphy * wiphy)6342 static inline void wiphy_lock(struct wiphy *wiphy)
6343 __acquires(&wiphy->mtx)
6344 {
6345 mutex_lock(&wiphy->mtx);
6346 __acquire(&wiphy->mtx);
6347 }
6348
6349 /**
6350 * wiphy_unlock - unlock the wiphy again
6351 * @wiphy: the wiphy to unlock
6352 */
wiphy_unlock(struct wiphy * wiphy)6353 static inline void wiphy_unlock(struct wiphy *wiphy)
6354 __releases(&wiphy->mtx)
6355 {
6356 __release(&wiphy->mtx);
6357 mutex_unlock(&wiphy->mtx);
6358 }
6359
6360 DEFINE_GUARD(wiphy, struct wiphy *,
6361 mutex_lock(&_T->mtx),
6362 mutex_unlock(&_T->mtx))
6363
6364 struct wiphy_work;
6365 typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *);
6366
6367 struct wiphy_work {
6368 struct list_head entry;
6369 wiphy_work_func_t func;
6370 };
6371
wiphy_work_init(struct wiphy_work * work,wiphy_work_func_t func)6372 static inline void wiphy_work_init(struct wiphy_work *work,
6373 wiphy_work_func_t func)
6374 {
6375 INIT_LIST_HEAD(&work->entry);
6376 work->func = func;
6377 }
6378
6379 /**
6380 * wiphy_work_queue - queue work for the wiphy
6381 * @wiphy: the wiphy to queue for
6382 * @work: the work item
6383 *
6384 * This is useful for work that must be done asynchronously, and work
6385 * queued here has the special property that the wiphy mutex will be
6386 * held as if wiphy_lock() was called, and that it cannot be running
6387 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6388 * use just cancel_work() instead of cancel_work_sync(), it requires
6389 * being in a section protected by wiphy_lock().
6390 */
6391 void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work);
6392
6393 /**
6394 * wiphy_work_cancel - cancel previously queued work
6395 * @wiphy: the wiphy, for debug purposes
6396 * @work: the work to cancel
6397 *
6398 * Cancel the work *without* waiting for it, this assumes being
6399 * called under the wiphy mutex acquired by wiphy_lock().
6400 */
6401 void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work);
6402
6403 /**
6404 * wiphy_work_flush - flush previously queued work
6405 * @wiphy: the wiphy, for debug purposes
6406 * @work: the work to flush, this can be %NULL to flush all work
6407 *
6408 * Flush the work (i.e. run it if pending). This must be called
6409 * under the wiphy mutex acquired by wiphy_lock().
6410 */
6411 void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work);
6412
6413 struct wiphy_delayed_work {
6414 struct wiphy_work work;
6415 struct wiphy *wiphy;
6416 struct timer_list timer;
6417 };
6418
6419 void wiphy_delayed_work_timer(struct timer_list *t);
6420
wiphy_delayed_work_init(struct wiphy_delayed_work * dwork,wiphy_work_func_t func)6421 static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork,
6422 wiphy_work_func_t func)
6423 {
6424 timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0);
6425 wiphy_work_init(&dwork->work, func);
6426 }
6427
6428 /**
6429 * wiphy_delayed_work_queue - queue delayed work for the wiphy
6430 * @wiphy: the wiphy to queue for
6431 * @dwork: the delayable worker
6432 * @delay: number of jiffies to wait before queueing
6433 *
6434 * This is useful for work that must be done asynchronously, and work
6435 * queued here has the special property that the wiphy mutex will be
6436 * held as if wiphy_lock() was called, and that it cannot be running
6437 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6438 * use just cancel_work() instead of cancel_work_sync(), it requires
6439 * being in a section protected by wiphy_lock().
6440 *
6441 * Note that these are scheduled with a timer where the accuracy
6442 * becomes less the longer in the future the scheduled timer is. Use
6443 * wiphy_hrtimer_work_queue() if the timer must be not be late by more
6444 * than approximately 10 percent.
6445 */
6446 void wiphy_delayed_work_queue(struct wiphy *wiphy,
6447 struct wiphy_delayed_work *dwork,
6448 unsigned long delay);
6449
6450 /**
6451 * wiphy_delayed_work_cancel - cancel previously queued delayed work
6452 * @wiphy: the wiphy, for debug purposes
6453 * @dwork: the delayed work to cancel
6454 *
6455 * Cancel the work *without* waiting for it, this assumes being
6456 * called under the wiphy mutex acquired by wiphy_lock().
6457 */
6458 void wiphy_delayed_work_cancel(struct wiphy *wiphy,
6459 struct wiphy_delayed_work *dwork);
6460
6461 /**
6462 * wiphy_delayed_work_flush - flush previously queued delayed work
6463 * @wiphy: the wiphy, for debug purposes
6464 * @dwork: the delayed work to flush
6465 *
6466 * Flush the work (i.e. run it if pending). This must be called
6467 * under the wiphy mutex acquired by wiphy_lock().
6468 */
6469 void wiphy_delayed_work_flush(struct wiphy *wiphy,
6470 struct wiphy_delayed_work *dwork);
6471
6472 /**
6473 * wiphy_delayed_work_pending - Find out whether a wiphy delayable
6474 * work item is currently pending.
6475 *
6476 * @wiphy: the wiphy, for debug purposes
6477 * @dwork: the delayed work in question
6478 *
6479 * Return: true if timer is pending, false otherwise
6480 *
6481 * How wiphy_delayed_work_queue() works is by setting a timer which
6482 * when it expires calls wiphy_work_queue() to queue the wiphy work.
6483 * Because wiphy_delayed_work_queue() uses mod_timer(), if it is
6484 * called twice and the second call happens before the first call
6485 * deadline, the work will rescheduled for the second deadline and
6486 * won't run before that.
6487 *
6488 * wiphy_delayed_work_pending() can be used to detect if calling
6489 * wiphy_work_delayed_work_queue() would start a new work schedule
6490 * or delayed a previous one. As seen below it cannot be used to
6491 * detect precisely if the work has finished to execute nor if it
6492 * is currently executing.
6493 *
6494 * CPU0 CPU1
6495 * wiphy_delayed_work_queue(wk)
6496 * mod_timer(wk->timer)
6497 * wiphy_delayed_work_pending(wk) -> true
6498 *
6499 * [...]
6500 * expire_timers(wk->timer)
6501 * detach_timer(wk->timer)
6502 * wiphy_delayed_work_pending(wk) -> false
6503 * wk->timer->function() |
6504 * wiphy_work_queue(wk) | delayed work pending
6505 * list_add_tail() | returns false but
6506 * queue_work(cfg80211_wiphy_work) | wk->func() has not
6507 * | been run yet
6508 * [...] |
6509 * cfg80211_wiphy_work() |
6510 * wk->func() V
6511 *
6512 */
6513 bool wiphy_delayed_work_pending(struct wiphy *wiphy,
6514 struct wiphy_delayed_work *dwork);
6515
6516 struct wiphy_hrtimer_work {
6517 struct wiphy_work work;
6518 struct wiphy *wiphy;
6519 struct hrtimer timer;
6520 };
6521
6522 enum hrtimer_restart wiphy_hrtimer_work_timer(struct hrtimer *t);
6523
wiphy_hrtimer_work_init(struct wiphy_hrtimer_work * hrwork,wiphy_work_func_t func)6524 static inline void wiphy_hrtimer_work_init(struct wiphy_hrtimer_work *hrwork,
6525 wiphy_work_func_t func)
6526 {
6527 hrtimer_setup(&hrwork->timer, wiphy_hrtimer_work_timer,
6528 CLOCK_BOOTTIME, HRTIMER_MODE_REL);
6529 wiphy_work_init(&hrwork->work, func);
6530 }
6531
6532 /**
6533 * wiphy_hrtimer_work_queue - queue hrtimer work for the wiphy
6534 * @wiphy: the wiphy to queue for
6535 * @hrwork: the high resolution timer worker
6536 * @delay: the delay given as a ktime_t
6537 *
6538 * Please refer to wiphy_delayed_work_queue(). The difference is that
6539 * the hrtimer work uses a high resolution timer for scheduling. This
6540 * may be needed if timeouts might be scheduled further in the future
6541 * and the accuracy of the normal timer is not sufficient.
6542 *
6543 * Expect a delay of a few milliseconds as the timer is scheduled
6544 * with some slack and some more time may pass between queueing the
6545 * work and its start.
6546 */
6547 void wiphy_hrtimer_work_queue(struct wiphy *wiphy,
6548 struct wiphy_hrtimer_work *hrwork,
6549 ktime_t delay);
6550
6551 /**
6552 * wiphy_hrtimer_work_cancel - cancel previously queued hrtimer work
6553 * @wiphy: the wiphy, for debug purposes
6554 * @hrtimer: the hrtimer work to cancel
6555 *
6556 * Cancel the work *without* waiting for it, this assumes being
6557 * called under the wiphy mutex acquired by wiphy_lock().
6558 */
6559 void wiphy_hrtimer_work_cancel(struct wiphy *wiphy,
6560 struct wiphy_hrtimer_work *hrtimer);
6561
6562 /**
6563 * wiphy_hrtimer_work_flush - flush previously queued hrtimer work
6564 * @wiphy: the wiphy, for debug purposes
6565 * @hrwork: the hrtimer work to flush
6566 *
6567 * Flush the work (i.e. run it if pending). This must be called
6568 * under the wiphy mutex acquired by wiphy_lock().
6569 */
6570 void wiphy_hrtimer_work_flush(struct wiphy *wiphy,
6571 struct wiphy_hrtimer_work *hrwork);
6572
6573 /**
6574 * wiphy_hrtimer_work_pending - Find out whether a wiphy hrtimer
6575 * work item is currently pending.
6576 *
6577 * @wiphy: the wiphy, for debug purposes
6578 * @hrwork: the hrtimer work in question
6579 *
6580 * Return: true if timer is pending, false otherwise
6581 *
6582 * Please refer to the wiphy_delayed_work_pending() documentation as
6583 * this is the equivalent function for hrtimer based delayed work
6584 * items.
6585 */
6586 bool wiphy_hrtimer_work_pending(struct wiphy *wiphy,
6587 struct wiphy_hrtimer_work *hrwork);
6588
6589 /**
6590 * enum ieee80211_ap_reg_power - regulatory power for an Access Point
6591 *
6592 * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode
6593 * @IEEE80211_REG_LPI_AP: Indoor Access Point
6594 * @IEEE80211_REG_SP_AP: Standard power Access Point
6595 * @IEEE80211_REG_VLP_AP: Very low power Access Point
6596 */
6597 enum ieee80211_ap_reg_power {
6598 IEEE80211_REG_UNSET_AP,
6599 IEEE80211_REG_LPI_AP,
6600 IEEE80211_REG_SP_AP,
6601 IEEE80211_REG_VLP_AP,
6602 };
6603
6604 /**
6605 * struct wireless_dev - wireless device state
6606 *
6607 * For netdevs, this structure must be allocated by the driver
6608 * that uses the ieee80211_ptr field in struct net_device (this
6609 * is intentional so it can be allocated along with the netdev.)
6610 * It need not be registered then as netdev registration will
6611 * be intercepted by cfg80211 to see the new wireless device,
6612 * however, drivers must lock the wiphy before registering or
6613 * unregistering netdevs if they pre-create any netdevs (in ops
6614 * called from cfg80211, the wiphy is already locked.)
6615 *
6616 * For non-netdev uses, it must also be allocated by the driver
6617 * in response to the cfg80211 callbacks that require it, as
6618 * there's no netdev registration in that case it may not be
6619 * allocated outside of callback operations that return it.
6620 *
6621 * @wiphy: pointer to hardware description
6622 * @iftype: interface type
6623 * @registered: is this wdev already registered with cfg80211
6624 * @registering: indicates we're doing registration under wiphy lock
6625 * for the notifier
6626 * @list: (private) Used to collect the interfaces
6627 * @netdev: (private) Used to reference back to the netdev, may be %NULL
6628 * @identifier: (private) Identifier used in nl80211 to identify this
6629 * wireless device if it has no netdev
6630 * @u: union containing data specific to @iftype
6631 * @connected: indicates if connected or not (STA mode)
6632 * @wext: (private) Used by the internal wireless extensions compat code
6633 * @wext.ibss: (private) IBSS data part of wext handling
6634 * @wext.connect: (private) connection handling data
6635 * @wext.keys: (private) (WEP) key data
6636 * @wext.ie: (private) extra elements for association
6637 * @wext.ie_len: (private) length of extra elements
6638 * @wext.bssid: (private) selected network BSSID
6639 * @wext.ssid: (private) selected network SSID
6640 * @wext.default_key: (private) selected default key index
6641 * @wext.default_mgmt_key: (private) selected default management key index
6642 * @wext.prev_bssid: (private) previous BSSID for reassociation
6643 * @wext.prev_bssid_valid: (private) previous BSSID validity
6644 * @use_4addr: indicates 4addr mode is used on this interface, must be
6645 * set by driver (if supported) on add_interface BEFORE registering the
6646 * netdev and may otherwise be used by driver read-only, will be update
6647 * by cfg80211 on change_interface
6648 * @mgmt_registrations: list of registrations for management frames
6649 * @mgmt_registrations_need_update: mgmt registrations were updated,
6650 * need to propagate the update to the driver
6651 * @address: The address for this device, valid only if @netdev is %NULL
6652 * @is_running: true if this is a non-netdev device that has been started, e.g.
6653 * the P2P Device.
6654 * @ps: powersave mode is enabled
6655 * @ps_timeout: dynamic powersave timeout
6656 * @ap_unexpected_nlportid: (private) netlink port ID of application
6657 * registered for unexpected class 3 frames (AP mode)
6658 * @conn: (private) cfg80211 software SME connection state machine data
6659 * @connect_keys: (private) keys to set after connection is established
6660 * @conn_bss_type: connecting/connected BSS type
6661 * @conn_owner_nlportid: (private) connection owner socket port ID
6662 * @disconnect_wk: (private) auto-disconnect work
6663 * @disconnect_bssid: (private) the BSSID to use for auto-disconnect
6664 * @event_list: (private) list for internal event processing
6665 * @event_lock: (private) lock for event list
6666 * @owner_nlportid: (private) owner socket port ID
6667 * @nl_owner_dead: (private) owner socket went away
6668 * @cqm_rssi_work: (private) CQM RSSI reporting work
6669 * @cqm_config: (private) nl80211 RSSI monitor state
6670 * @pmsr_list: (private) peer measurement requests
6671 * @pmsr_lock: (private) peer measurements requests/results lock
6672 * @pmsr_free_wk: (private) peer measurements cleanup work
6673 * @unprot_beacon_reported: (private) timestamp of last
6674 * unprotected beacon report
6675 * @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr
6676 * @ap and @client for each link
6677 * @links.cac_started: true if DFS channel availability check has been
6678 * started
6679 * @links.cac_start_time: timestamp (jiffies) when the dfs state was
6680 * entered.
6681 * @links.cac_time_ms: CAC time in ms
6682 * @valid_links: bitmap describing what elements of @links are valid
6683 * @radio_mask: Bitmask of radios that this interface is allowed to operate on.
6684 */
6685 struct wireless_dev {
6686 struct wiphy *wiphy;
6687 enum nl80211_iftype iftype;
6688
6689 /* the remainder of this struct should be private to cfg80211 */
6690 struct list_head list;
6691 struct net_device *netdev;
6692
6693 u32 identifier;
6694
6695 struct list_head mgmt_registrations;
6696 u8 mgmt_registrations_need_update:1;
6697
6698 bool use_4addr, is_running, registered, registering;
6699
6700 u8 address[ETH_ALEN] __aligned(sizeof(u16));
6701
6702 /* currently used for IBSS and SME - might be rearranged later */
6703 struct cfg80211_conn *conn;
6704 struct cfg80211_cached_keys *connect_keys;
6705 enum ieee80211_bss_type conn_bss_type;
6706 u32 conn_owner_nlportid;
6707
6708 struct work_struct disconnect_wk;
6709 u8 disconnect_bssid[ETH_ALEN];
6710
6711 struct list_head event_list;
6712 spinlock_t event_lock;
6713
6714 u8 connected:1;
6715
6716 bool ps;
6717 int ps_timeout;
6718
6719 u32 ap_unexpected_nlportid;
6720
6721 u32 owner_nlportid;
6722 bool nl_owner_dead;
6723
6724 #ifdef CONFIG_CFG80211_WEXT
6725 /* wext data */
6726 struct {
6727 struct cfg80211_ibss_params ibss;
6728 struct cfg80211_connect_params connect;
6729 struct cfg80211_cached_keys *keys;
6730 const u8 *ie;
6731 size_t ie_len;
6732 u8 bssid[ETH_ALEN];
6733 u8 prev_bssid[ETH_ALEN];
6734 u8 ssid[IEEE80211_MAX_SSID_LEN];
6735 s8 default_key, default_mgmt_key;
6736 bool prev_bssid_valid;
6737 } wext;
6738 #endif
6739
6740 struct wiphy_work cqm_rssi_work;
6741 struct cfg80211_cqm_config __rcu *cqm_config;
6742
6743 struct list_head pmsr_list;
6744 spinlock_t pmsr_lock;
6745 struct work_struct pmsr_free_wk;
6746
6747 unsigned long unprot_beacon_reported;
6748
6749 union {
6750 struct {
6751 u8 connected_addr[ETH_ALEN] __aligned(2);
6752 u8 ssid[IEEE80211_MAX_SSID_LEN];
6753 u8 ssid_len;
6754 } client;
6755 struct {
6756 int beacon_interval;
6757 struct cfg80211_chan_def preset_chandef;
6758 struct cfg80211_chan_def chandef;
6759 u8 id[IEEE80211_MAX_MESH_ID_LEN];
6760 u8 id_len, id_up_len;
6761 } mesh;
6762 struct {
6763 struct cfg80211_chan_def preset_chandef;
6764 u8 ssid[IEEE80211_MAX_SSID_LEN];
6765 u8 ssid_len;
6766 } ap;
6767 struct {
6768 struct cfg80211_internal_bss *current_bss;
6769 struct cfg80211_chan_def chandef;
6770 int beacon_interval;
6771 u8 ssid[IEEE80211_MAX_SSID_LEN];
6772 u8 ssid_len;
6773 } ibss;
6774 struct {
6775 struct cfg80211_chan_def chandef;
6776 } ocb;
6777 struct {
6778 u8 cluster_id[ETH_ALEN] __aligned(2);
6779 } nan;
6780 } u;
6781
6782 struct {
6783 u8 addr[ETH_ALEN] __aligned(2);
6784 union {
6785 struct {
6786 unsigned int beacon_interval;
6787 struct cfg80211_chan_def chandef;
6788 } ap;
6789 struct {
6790 struct cfg80211_internal_bss *current_bss;
6791 } client;
6792 };
6793
6794 bool cac_started;
6795 unsigned long cac_start_time;
6796 unsigned int cac_time_ms;
6797 } links[IEEE80211_MLD_MAX_NUM_LINKS];
6798 u16 valid_links;
6799
6800 u32 radio_mask;
6801 };
6802
wdev_address(struct wireless_dev * wdev)6803 static inline const u8 *wdev_address(struct wireless_dev *wdev)
6804 {
6805 if (wdev->netdev)
6806 return wdev->netdev->dev_addr;
6807 return wdev->address;
6808 }
6809
wdev_running(struct wireless_dev * wdev)6810 static inline bool wdev_running(struct wireless_dev *wdev)
6811 {
6812 if (wdev->netdev)
6813 return netif_running(wdev->netdev);
6814 return wdev->is_running;
6815 }
6816
6817 /**
6818 * wdev_priv - return wiphy priv from wireless_dev
6819 *
6820 * @wdev: The wireless device whose wiphy's priv pointer to return
6821 * Return: The wiphy priv of @wdev.
6822 */
wdev_priv(struct wireless_dev * wdev)6823 static inline void *wdev_priv(struct wireless_dev *wdev)
6824 {
6825 BUG_ON(!wdev);
6826 return wiphy_priv(wdev->wiphy);
6827 }
6828
6829 /**
6830 * wdev_chandef - return chandef pointer from wireless_dev
6831 * @wdev: the wdev
6832 * @link_id: the link ID for MLO
6833 *
6834 * Return: The chandef depending on the mode, or %NULL.
6835 */
6836 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
6837 unsigned int link_id);
6838
WARN_INVALID_LINK_ID(struct wireless_dev * wdev,unsigned int link_id)6839 static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev,
6840 unsigned int link_id)
6841 {
6842 WARN_ON(link_id && !wdev->valid_links);
6843 WARN_ON(wdev->valid_links &&
6844 !(wdev->valid_links & BIT(link_id)));
6845 }
6846
6847 #define for_each_valid_link(link_info, link_id) \
6848 for (link_id = 0; \
6849 link_id < ((link_info)->valid_links ? \
6850 ARRAY_SIZE((link_info)->links) : 1); \
6851 link_id++) \
6852 if (!(link_info)->valid_links || \
6853 ((link_info)->valid_links & BIT(link_id)))
6854
6855 /**
6856 * DOC: Utility functions
6857 *
6858 * cfg80211 offers a number of utility functions that can be useful.
6859 */
6860
6861 /**
6862 * ieee80211_channel_equal - compare two struct ieee80211_channel
6863 *
6864 * @a: 1st struct ieee80211_channel
6865 * @b: 2nd struct ieee80211_channel
6866 * Return: true if center frequency of @a == @b
6867 */
6868 static inline bool
ieee80211_channel_equal(struct ieee80211_channel * a,struct ieee80211_channel * b)6869 ieee80211_channel_equal(struct ieee80211_channel *a,
6870 struct ieee80211_channel *b)
6871 {
6872 return (a->center_freq == b->center_freq &&
6873 a->freq_offset == b->freq_offset);
6874 }
6875
6876 /**
6877 * ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz
6878 * @chan: struct ieee80211_channel to convert
6879 * Return: The corresponding frequency (in KHz)
6880 */
6881 static inline u32
ieee80211_channel_to_khz(const struct ieee80211_channel * chan)6882 ieee80211_channel_to_khz(const struct ieee80211_channel *chan)
6883 {
6884 return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset;
6885 }
6886
6887 /**
6888 * ieee80211_channel_to_freq_khz - convert channel number to frequency
6889 * @chan: channel number
6890 * @band: band, necessary due to channel number overlap
6891 * Return: The corresponding frequency (in KHz), or 0 if the conversion failed.
6892 */
6893 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band);
6894
6895 /**
6896 * ieee80211_channel_to_frequency - convert channel number to frequency
6897 * @chan: channel number
6898 * @band: band, necessary due to channel number overlap
6899 * Return: The corresponding frequency (in MHz), or 0 if the conversion failed.
6900 */
6901 static inline int
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)6902 ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
6903 {
6904 return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band));
6905 }
6906
6907 /**
6908 * ieee80211_freq_khz_to_channel - convert frequency to channel number
6909 * @freq: center frequency in KHz
6910 * Return: The corresponding channel, or 0 if the conversion failed.
6911 */
6912 int ieee80211_freq_khz_to_channel(u32 freq);
6913
6914 /**
6915 * ieee80211_frequency_to_channel - convert frequency to channel number
6916 * @freq: center frequency in MHz
6917 * Return: The corresponding channel, or 0 if the conversion failed.
6918 */
6919 static inline int
ieee80211_frequency_to_channel(int freq)6920 ieee80211_frequency_to_channel(int freq)
6921 {
6922 return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq));
6923 }
6924
6925 /**
6926 * ieee80211_get_channel_khz - get channel struct from wiphy for specified
6927 * frequency
6928 * @wiphy: the struct wiphy to get the channel for
6929 * @freq: the center frequency (in KHz) of the channel
6930 * Return: The channel struct from @wiphy at @freq.
6931 */
6932 struct ieee80211_channel *
6933 ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq);
6934
6935 /**
6936 * ieee80211_get_channel - get channel struct from wiphy for specified frequency
6937 *
6938 * @wiphy: the struct wiphy to get the channel for
6939 * @freq: the center frequency (in MHz) of the channel
6940 * Return: The channel struct from @wiphy at @freq.
6941 */
6942 static inline struct ieee80211_channel *
ieee80211_get_channel(struct wiphy * wiphy,int freq)6943 ieee80211_get_channel(struct wiphy *wiphy, int freq)
6944 {
6945 return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq));
6946 }
6947
6948 /**
6949 * cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC
6950 * @chan: control channel to check
6951 *
6952 * The Preferred Scanning Channels (PSC) are defined in
6953 * Draft IEEE P802.11ax/D5.0, 26.17.2.3.3
6954 *
6955 * Return: %true if channel is a PSC, %false otherwise
6956 */
cfg80211_channel_is_psc(struct ieee80211_channel * chan)6957 static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan)
6958 {
6959 if (chan->band != NL80211_BAND_6GHZ)
6960 return false;
6961
6962 return ieee80211_frequency_to_channel(chan->center_freq) % 16 == 5;
6963 }
6964
6965 /**
6966 * ieee80211_radio_freq_range_valid - Check if the radio supports the
6967 * specified frequency range
6968 *
6969 * @radio: wiphy radio
6970 * @freq: the frequency (in KHz) to be queried
6971 * @width: the bandwidth (in KHz) to be queried
6972 *
6973 * Return: whether or not the given frequency range is valid for the given radio
6974 */
6975 bool ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
6976 u32 freq, u32 width);
6977
6978 /**
6979 * cfg80211_radio_chandef_valid - Check if the radio supports the chandef
6980 *
6981 * @radio: wiphy radio
6982 * @chandef: chandef for current channel
6983 *
6984 * Return: whether or not the given chandef is valid for the given radio
6985 */
6986 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
6987 const struct cfg80211_chan_def *chandef);
6988
6989 /**
6990 * cfg80211_wdev_channel_allowed - Check if the wdev may use the channel
6991 *
6992 * @wdev: the wireless device
6993 * @chan: channel to check
6994 *
6995 * Return: whether or not the wdev may use the channel
6996 */
6997 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
6998 struct ieee80211_channel *chan);
6999
7000 /**
7001 * ieee80211_get_response_rate - get basic rate for a given rate
7002 *
7003 * @sband: the band to look for rates in
7004 * @basic_rates: bitmap of basic rates
7005 * @bitrate: the bitrate for which to find the basic rate
7006 *
7007 * Return: The basic rate corresponding to a given bitrate, that
7008 * is the next lower bitrate contained in the basic rate map,
7009 * which is, for this function, given as a bitmap of indices of
7010 * rates in the band's bitrate table.
7011 */
7012 const struct ieee80211_rate *
7013 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
7014 u32 basic_rates, int bitrate);
7015
7016 /**
7017 * ieee80211_mandatory_rates - get mandatory rates for a given band
7018 * @sband: the band to look for rates in
7019 *
7020 * Return: a bitmap of the mandatory rates for the given band, bits
7021 * are set according to the rate position in the bitrates array.
7022 */
7023 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband);
7024
7025 /*
7026 * Radiotap parsing functions -- for controlled injection support
7027 *
7028 * Implemented in net/wireless/radiotap.c
7029 * Documentation in Documentation/networking/radiotap-headers.rst
7030 */
7031
7032 struct radiotap_align_size {
7033 uint8_t align:4, size:4;
7034 };
7035
7036 struct ieee80211_radiotap_namespace {
7037 const struct radiotap_align_size *align_size;
7038 int n_bits;
7039 uint32_t oui;
7040 uint8_t subns;
7041 };
7042
7043 struct ieee80211_radiotap_vendor_namespaces {
7044 const struct ieee80211_radiotap_namespace *ns;
7045 int n_ns;
7046 };
7047
7048 /**
7049 * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
7050 * @this_arg_index: index of current arg, valid after each successful call
7051 * to ieee80211_radiotap_iterator_next()
7052 * @this_arg: pointer to current radiotap arg; it is valid after each
7053 * call to ieee80211_radiotap_iterator_next() but also after
7054 * ieee80211_radiotap_iterator_init() where it will point to
7055 * the beginning of the actual data portion
7056 * @this_arg_size: length of the current arg, for convenience
7057 * @current_namespace: pointer to the current namespace definition
7058 * (or internally %NULL if the current namespace is unknown)
7059 * @is_radiotap_ns: indicates whether the current namespace is the default
7060 * radiotap namespace or not
7061 *
7062 * @_rtheader: pointer to the radiotap header we are walking through
7063 * @_max_length: length of radiotap header in cpu byte ordering
7064 * @_arg_index: next argument index
7065 * @_arg: next argument pointer
7066 * @_next_bitmap: internal pointer to next present u32
7067 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
7068 * @_vns: vendor namespace definitions
7069 * @_next_ns_data: beginning of the next namespace's data
7070 * @_reset_on_ext: internal; reset the arg index to 0 when going to the
7071 * next bitmap word
7072 *
7073 * Describes the radiotap parser state. Fields prefixed with an underscore
7074 * must not be used by users of the parser, only by the parser internally.
7075 */
7076
7077 struct ieee80211_radiotap_iterator {
7078 struct ieee80211_radiotap_header *_rtheader;
7079 const struct ieee80211_radiotap_vendor_namespaces *_vns;
7080 const struct ieee80211_radiotap_namespace *current_namespace;
7081
7082 unsigned char *_arg, *_next_ns_data;
7083 __le32 *_next_bitmap;
7084
7085 unsigned char *this_arg;
7086 int this_arg_index;
7087 int this_arg_size;
7088
7089 int is_radiotap_ns;
7090
7091 int _max_length;
7092 int _arg_index;
7093 uint32_t _bitmap_shifter;
7094 int _reset_on_ext;
7095 };
7096
7097 int
7098 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,
7099 struct ieee80211_radiotap_header *radiotap_header,
7100 int max_length,
7101 const struct ieee80211_radiotap_vendor_namespaces *vns);
7102
7103 int
7104 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator);
7105
7106
7107 extern const unsigned char rfc1042_header[6];
7108 extern const unsigned char bridge_tunnel_header[6];
7109
7110 /**
7111 * ieee80211_get_hdrlen_from_skb - get header length from data
7112 *
7113 * @skb: the frame
7114 *
7115 * Given an skb with a raw 802.11 header at the data pointer this function
7116 * returns the 802.11 header length.
7117 *
7118 * Return: The 802.11 header length in bytes (not including encryption
7119 * headers). Or 0 if the data in the sk_buff is too short to contain a valid
7120 * 802.11 header.
7121 */
7122 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
7123
7124 /**
7125 * ieee80211_hdrlen - get header length in bytes from frame control
7126 * @fc: frame control field in little-endian format
7127 * Return: The header length in bytes.
7128 */
7129 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc);
7130
7131 /**
7132 * ieee80211_get_mesh_hdrlen - get mesh extension header length
7133 * @meshhdr: the mesh extension header, only the flags field
7134 * (first byte) will be accessed
7135 * Return: The length of the extension header, which is always at
7136 * least 6 bytes and at most 18 if address 5 and 6 are present.
7137 */
7138 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr);
7139
7140 /**
7141 * DOC: Data path helpers
7142 *
7143 * In addition to generic utilities, cfg80211 also offers
7144 * functions that help implement the data path for devices
7145 * that do not do the 802.11/802.3 conversion on the device.
7146 */
7147
7148 /**
7149 * ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3
7150 * @skb: the 802.11 data frame
7151 * @ehdr: pointer to a &struct ethhdr that will get the header, instead
7152 * of it being pushed into the SKB
7153 * @addr: the device MAC address
7154 * @iftype: the virtual interface type
7155 * @data_offset: offset of payload after the 802.11 header
7156 * @is_amsdu: true if the 802.11 header is A-MSDU
7157 * Return: 0 on success. Non-zero on error.
7158 */
7159 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
7160 const u8 *addr, enum nl80211_iftype iftype,
7161 u8 data_offset, bool is_amsdu);
7162
7163 /**
7164 * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3
7165 * @skb: the 802.11 data frame
7166 * @addr: the device MAC address
7167 * @iftype: the virtual interface type
7168 * Return: 0 on success. Non-zero on error.
7169 */
ieee80211_data_to_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype)7170 static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
7171 enum nl80211_iftype iftype)
7172 {
7173 return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, 0, false);
7174 }
7175
7176 /**
7177 * ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid
7178 *
7179 * This is used to detect non-standard A-MSDU frames, e.g. the ones generated
7180 * by ath10k and ath11k, where the subframe length includes the length of the
7181 * mesh control field.
7182 *
7183 * @skb: The input A-MSDU frame without any headers.
7184 * @mesh_hdr: the type of mesh header to test
7185 * 0: non-mesh A-MSDU length field
7186 * 1: big-endian mesh A-MSDU length field
7187 * 2: little-endian mesh A-MSDU length field
7188 * Returns: true if subframe header lengths are valid for the @mesh_hdr mode
7189 */
7190 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr);
7191
7192 /**
7193 * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame
7194 *
7195 * Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames.
7196 * The @list will be empty if the decode fails. The @skb must be fully
7197 * header-less before being passed in here; it is freed in this function.
7198 *
7199 * @skb: The input A-MSDU frame without any headers.
7200 * @list: The output list of 802.3 frames. It must be allocated and
7201 * initialized by the caller.
7202 * @addr: The device MAC address.
7203 * @iftype: The device interface type.
7204 * @extra_headroom: The hardware extra headroom for SKBs in the @list.
7205 * @check_da: DA to check in the inner ethernet header, or NULL
7206 * @check_sa: SA to check in the inner ethernet header, or NULL
7207 * @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu
7208 */
7209 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
7210 const u8 *addr, enum nl80211_iftype iftype,
7211 const unsigned int extra_headroom,
7212 const u8 *check_da, const u8 *check_sa,
7213 u8 mesh_control);
7214
7215 /**
7216 * ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol
7217 *
7218 * Check for RFC1042 or bridge tunnel header and fetch the encapsulated
7219 * protocol.
7220 *
7221 * @hdr: pointer to the MSDU payload
7222 * @proto: destination pointer to store the protocol
7223 * Return: true if encapsulation was found
7224 */
7225 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto);
7226
7227 /**
7228 * ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames
7229 *
7230 * Strip the mesh header, which was left in by ieee80211_data_to_8023 as part
7231 * of the MSDU data. Also move any source/destination addresses from the mesh
7232 * header to the ethernet header (if present).
7233 *
7234 * @skb: The 802.3 frame with embedded mesh header
7235 *
7236 * Return: 0 on success. Non-zero on error.
7237 */
7238 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb);
7239
7240 /**
7241 * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame
7242 * @skb: the data frame
7243 * @qos_map: Interworking QoS mapping or %NULL if not in use
7244 * Return: The 802.1p/1d tag.
7245 */
7246 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
7247 struct cfg80211_qos_map *qos_map);
7248
7249 /**
7250 * cfg80211_find_elem_match - match information element and byte array in data
7251 *
7252 * @eid: element ID
7253 * @ies: data consisting of IEs
7254 * @len: length of data
7255 * @match: byte array to match
7256 * @match_len: number of bytes in the match array
7257 * @match_offset: offset in the IE data where the byte array should match.
7258 * Note the difference to cfg80211_find_ie_match() which considers
7259 * the offset to start from the element ID byte, but here we take
7260 * the data portion instead.
7261 *
7262 * Return: %NULL if the element ID could not be found or if
7263 * the element is invalid (claims to be longer than the given
7264 * data) or if the byte array doesn't match; otherwise return the
7265 * requested element struct.
7266 *
7267 * Note: There are no checks on the element length other than
7268 * having to fit into the given data and being large enough for the
7269 * byte array to match.
7270 */
7271 const struct element *
7272 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
7273 const u8 *match, unsigned int match_len,
7274 unsigned int match_offset);
7275
7276 /**
7277 * cfg80211_find_ie_match - match information element and byte array in data
7278 *
7279 * @eid: element ID
7280 * @ies: data consisting of IEs
7281 * @len: length of data
7282 * @match: byte array to match
7283 * @match_len: number of bytes in the match array
7284 * @match_offset: offset in the IE where the byte array should match.
7285 * If match_len is zero, this must also be set to zero.
7286 * Otherwise this must be set to 2 or more, because the first
7287 * byte is the element id, which is already compared to eid, and
7288 * the second byte is the IE length.
7289 *
7290 * Return: %NULL if the element ID could not be found or if
7291 * the element is invalid (claims to be longer than the given
7292 * data) or if the byte array doesn't match, or a pointer to the first
7293 * byte of the requested element, that is the byte containing the
7294 * element ID.
7295 *
7296 * Note: There are no checks on the element length other than
7297 * having to fit into the given data and being large enough for the
7298 * byte array to match.
7299 */
7300 static inline const u8 *
cfg80211_find_ie_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)7301 cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len,
7302 const u8 *match, unsigned int match_len,
7303 unsigned int match_offset)
7304 {
7305 /* match_offset can't be smaller than 2, unless match_len is
7306 * zero, in which case match_offset must be zero as well.
7307 */
7308 if (WARN_ON((match_len && match_offset < 2) ||
7309 (!match_len && match_offset)))
7310 return NULL;
7311
7312 return (const void *)cfg80211_find_elem_match(eid, ies, len,
7313 match, match_len,
7314 match_offset ?
7315 match_offset - 2 : 0);
7316 }
7317
7318 /**
7319 * cfg80211_find_elem - find information element in data
7320 *
7321 * @eid: element ID
7322 * @ies: data consisting of IEs
7323 * @len: length of data
7324 *
7325 * Return: %NULL if the element ID could not be found or if
7326 * the element is invalid (claims to be longer than the given
7327 * data) or if the byte array doesn't match; otherwise return the
7328 * requested element struct.
7329 *
7330 * Note: There are no checks on the element length other than
7331 * having to fit into the given data.
7332 */
7333 static inline const struct element *
cfg80211_find_elem(u8 eid,const u8 * ies,int len)7334 cfg80211_find_elem(u8 eid, const u8 *ies, int len)
7335 {
7336 return cfg80211_find_elem_match(eid, ies, len, NULL, 0, 0);
7337 }
7338
7339 /**
7340 * cfg80211_find_ie - find information element in data
7341 *
7342 * @eid: element ID
7343 * @ies: data consisting of IEs
7344 * @len: length of data
7345 *
7346 * Return: %NULL if the element ID could not be found or if
7347 * the element is invalid (claims to be longer than the given
7348 * data), or a pointer to the first byte of the requested
7349 * element, that is the byte containing the element ID.
7350 *
7351 * Note: There are no checks on the element length other than
7352 * having to fit into the given data.
7353 */
cfg80211_find_ie(u8 eid,const u8 * ies,int len)7354 static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
7355 {
7356 return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0);
7357 }
7358
7359 /**
7360 * cfg80211_find_ext_elem - find information element with EID Extension in data
7361 *
7362 * @ext_eid: element ID Extension
7363 * @ies: data consisting of IEs
7364 * @len: length of data
7365 *
7366 * Return: %NULL if the extended element could not be found or if
7367 * the element is invalid (claims to be longer than the given
7368 * data) or if the byte array doesn't match; otherwise return the
7369 * requested element struct.
7370 *
7371 * Note: There are no checks on the element length other than
7372 * having to fit into the given data.
7373 */
7374 static inline const struct element *
cfg80211_find_ext_elem(u8 ext_eid,const u8 * ies,int len)7375 cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len)
7376 {
7377 return cfg80211_find_elem_match(WLAN_EID_EXTENSION, ies, len,
7378 &ext_eid, 1, 0);
7379 }
7380
7381 /**
7382 * cfg80211_find_ext_ie - find information element with EID Extension in data
7383 *
7384 * @ext_eid: element ID Extension
7385 * @ies: data consisting of IEs
7386 * @len: length of data
7387 *
7388 * Return: %NULL if the extended element ID could not be found or if
7389 * the element is invalid (claims to be longer than the given
7390 * data), or a pointer to the first byte of the requested
7391 * element, that is the byte containing the element ID.
7392 *
7393 * Note: There are no checks on the element length other than
7394 * having to fit into the given data.
7395 */
cfg80211_find_ext_ie(u8 ext_eid,const u8 * ies,int len)7396 static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len)
7397 {
7398 return cfg80211_find_ie_match(WLAN_EID_EXTENSION, ies, len,
7399 &ext_eid, 1, 2);
7400 }
7401
7402 /**
7403 * cfg80211_find_vendor_elem - find vendor specific information element in data
7404 *
7405 * @oui: vendor OUI
7406 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
7407 * @ies: data consisting of IEs
7408 * @len: length of data
7409 *
7410 * Return: %NULL if the vendor specific element ID could not be found or if the
7411 * element is invalid (claims to be longer than the given data); otherwise
7412 * return the element structure for the requested element.
7413 *
7414 * Note: There are no checks on the element length other than having to fit into
7415 * the given data.
7416 */
7417 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
7418 const u8 *ies,
7419 unsigned int len);
7420
7421 /**
7422 * cfg80211_find_vendor_ie - find vendor specific information element in data
7423 *
7424 * @oui: vendor OUI
7425 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
7426 * @ies: data consisting of IEs
7427 * @len: length of data
7428 *
7429 * Return: %NULL if the vendor specific element ID could not be found or if the
7430 * element is invalid (claims to be longer than the given data), or a pointer to
7431 * the first byte of the requested element, that is the byte containing the
7432 * element ID.
7433 *
7434 * Note: There are no checks on the element length other than having to fit into
7435 * the given data.
7436 */
7437 static inline const u8 *
cfg80211_find_vendor_ie(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)7438 cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
7439 const u8 *ies, unsigned int len)
7440 {
7441 return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len);
7442 }
7443
7444 /**
7445 * enum cfg80211_rnr_iter_ret - reduced neighbor report iteration state
7446 * @RNR_ITER_CONTINUE: continue iterating with the next entry
7447 * @RNR_ITER_BREAK: break iteration and return success
7448 * @RNR_ITER_ERROR: break iteration and return error
7449 */
7450 enum cfg80211_rnr_iter_ret {
7451 RNR_ITER_CONTINUE,
7452 RNR_ITER_BREAK,
7453 RNR_ITER_ERROR,
7454 };
7455
7456 /**
7457 * cfg80211_iter_rnr - iterate reduced neighbor report entries
7458 * @elems: the frame elements to iterate RNR elements and then
7459 * their entries in
7460 * @elems_len: length of the elements
7461 * @iter: iteration function, see also &enum cfg80211_rnr_iter_ret
7462 * for the return value
7463 * @iter_data: additional data passed to the iteration function
7464 * Return: %true on success (after successfully iterating all entries
7465 * or if the iteration function returned %RNR_ITER_BREAK),
7466 * %false on error (iteration function returned %RNR_ITER_ERROR
7467 * or elements were malformed.)
7468 */
7469 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
7470 enum cfg80211_rnr_iter_ret
7471 (*iter)(void *data, u8 type,
7472 const struct ieee80211_neighbor_ap_info *info,
7473 const u8 *tbtt_info, u8 tbtt_info_len),
7474 void *iter_data);
7475
7476 /**
7477 * cfg80211_defragment_element - Defrag the given element data into a buffer
7478 *
7479 * @elem: the element to defragment
7480 * @ies: elements where @elem is contained
7481 * @ieslen: length of @ies
7482 * @data: buffer to store element data, or %NULL to just determine size
7483 * @data_len: length of @data, or 0
7484 * @frag_id: the element ID of fragments
7485 *
7486 * Return: length of @data, or -EINVAL on error
7487 *
7488 * Copy out all data from an element that may be fragmented into @data, while
7489 * skipping all headers.
7490 *
7491 * The function uses memmove() internally. It is acceptable to defragment an
7492 * element in-place.
7493 */
7494 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
7495 size_t ieslen, u8 *data, size_t data_len,
7496 u8 frag_id);
7497
7498 /**
7499 * cfg80211_send_layer2_update - send layer 2 update frame
7500 *
7501 * @dev: network device
7502 * @addr: STA MAC address
7503 *
7504 * Wireless drivers can use this function to update forwarding tables in bridge
7505 * devices upon STA association.
7506 */
7507 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr);
7508
7509 /**
7510 * DOC: Regulatory enforcement infrastructure
7511 *
7512 * TODO
7513 */
7514
7515 /**
7516 * regulatory_hint - driver hint to the wireless core a regulatory domain
7517 * @wiphy: the wireless device giving the hint (used only for reporting
7518 * conflicts)
7519 * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
7520 * should be in. If @rd is set this should be NULL. Note that if you
7521 * set this to NULL you should still set rd->alpha2 to some accepted
7522 * alpha2.
7523 *
7524 * Wireless drivers can use this function to hint to the wireless core
7525 * what it believes should be the current regulatory domain by
7526 * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
7527 * domain should be in or by providing a completely build regulatory domain.
7528 * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
7529 * for a regulatory domain structure for the respective country.
7530 *
7531 * The wiphy must have been registered to cfg80211 prior to this call.
7532 * For cfg80211 drivers this means you must first use wiphy_register(),
7533 * for mac80211 drivers you must first use ieee80211_register_hw().
7534 *
7535 * Drivers should check the return value, its possible you can get
7536 * an -ENOMEM.
7537 *
7538 * Return: 0 on success. -ENOMEM.
7539 */
7540 int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
7541
7542 /**
7543 * regulatory_set_wiphy_regd - set regdom info for self managed drivers
7544 * @wiphy: the wireless device we want to process the regulatory domain on
7545 * @rd: the regulatory domain information to use for this wiphy
7546 *
7547 * Set the regulatory domain information for self-managed wiphys, only they
7548 * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more
7549 * information.
7550 *
7551 * Return: 0 on success. -EINVAL, -EPERM
7552 */
7553 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
7554 struct ieee80211_regdomain *rd);
7555
7556 /**
7557 * regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers
7558 * @wiphy: the wireless device we want to process the regulatory domain on
7559 * @rd: the regulatory domain information to use for this wiphy
7560 *
7561 * This functions requires the RTNL and the wiphy mutex to be held and
7562 * applies the new regdomain synchronously to this wiphy. For more details
7563 * see regulatory_set_wiphy_regd().
7564 *
7565 * Return: 0 on success. -EINVAL, -EPERM
7566 */
7567 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
7568 struct ieee80211_regdomain *rd);
7569
7570 /**
7571 * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
7572 * @wiphy: the wireless device we want to process the regulatory domain on
7573 * @regd: the custom regulatory domain to use for this wiphy
7574 *
7575 * Drivers can sometimes have custom regulatory domains which do not apply
7576 * to a specific country. Drivers can use this to apply such custom regulatory
7577 * domains. This routine must be called prior to wiphy registration. The
7578 * custom regulatory domain will be trusted completely and as such previous
7579 * default channel settings will be disregarded. If no rule is found for a
7580 * channel on the regulatory domain the channel will be disabled.
7581 * Drivers using this for a wiphy should also set the wiphy flag
7582 * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy
7583 * that called this helper.
7584 */
7585 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
7586 const struct ieee80211_regdomain *regd);
7587
7588 /**
7589 * freq_reg_info - get regulatory information for the given frequency
7590 * @wiphy: the wiphy for which we want to process this rule for
7591 * @center_freq: Frequency in KHz for which we want regulatory information for
7592 *
7593 * Use this function to get the regulatory rule for a specific frequency on
7594 * a given wireless device. If the device has a specific regulatory domain
7595 * it wants to follow we respect that unless a country IE has been received
7596 * and processed already.
7597 *
7598 * Return: A valid pointer, or, when an error occurs, for example if no rule
7599 * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to
7600 * check and PTR_ERR() to obtain the numeric return value. The numeric return
7601 * value will be -ERANGE if we determine the given center_freq does not even
7602 * have a regulatory rule for a frequency range in the center_freq's band.
7603 * See freq_in_rule_band() for our current definition of a band -- this is
7604 * purely subjective and right now it's 802.11 specific.
7605 */
7606 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
7607 u32 center_freq);
7608
7609 /**
7610 * reg_initiator_name - map regulatory request initiator enum to name
7611 * @initiator: the regulatory request initiator
7612 *
7613 * You can use this to map the regulatory request initiator enum to a
7614 * proper string representation.
7615 *
7616 * Return: pointer to string representation of the initiator
7617 */
7618 const char *reg_initiator_name(enum nl80211_reg_initiator initiator);
7619
7620 /**
7621 * regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom
7622 * @wiphy: wiphy for which pre-CAC capability is checked.
7623 *
7624 * Pre-CAC is allowed only in some regdomains (notable ETSI).
7625 *
7626 * Return: %true if allowed, %false otherwise
7627 */
7628 bool regulatory_pre_cac_allowed(struct wiphy *wiphy);
7629
7630 /**
7631 * DOC: Internal regulatory db functions
7632 *
7633 */
7634
7635 /**
7636 * reg_query_regdb_wmm - Query internal regulatory db for wmm rule
7637 * Regulatory self-managed driver can use it to proactively
7638 *
7639 * @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried.
7640 * @freq: the frequency (in MHz) to be queried.
7641 * @rule: pointer to store the wmm rule from the regulatory db.
7642 *
7643 * Self-managed wireless drivers can use this function to query
7644 * the internal regulatory database to check whether the given
7645 * ISO/IEC 3166 alpha2 country and freq have wmm rule limitations.
7646 *
7647 * Drivers should check the return value, its possible you can get
7648 * an -ENODATA.
7649 *
7650 * Return: 0 on success. -ENODATA.
7651 */
7652 int reg_query_regdb_wmm(char *alpha2, int freq,
7653 struct ieee80211_reg_rule *rule);
7654
7655 /*
7656 * callbacks for asynchronous cfg80211 methods, notification
7657 * functions and BSS handling helpers
7658 */
7659
7660 /**
7661 * cfg80211_scan_done - notify that scan finished
7662 *
7663 * @request: the corresponding scan request
7664 * @info: information about the completed scan
7665 */
7666 void cfg80211_scan_done(struct cfg80211_scan_request *request,
7667 struct cfg80211_scan_info *info);
7668
7669 /**
7670 * cfg80211_sched_scan_results - notify that new scan results are available
7671 *
7672 * @wiphy: the wiphy which got scheduled scan results
7673 * @reqid: identifier for the related scheduled scan request
7674 */
7675 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid);
7676
7677 /**
7678 * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped
7679 *
7680 * @wiphy: the wiphy on which the scheduled scan stopped
7681 * @reqid: identifier for the related scheduled scan request
7682 *
7683 * The driver can call this function to inform cfg80211 that the
7684 * scheduled scan had to be stopped, for whatever reason. The driver
7685 * is then called back via the sched_scan_stop operation when done.
7686 */
7687 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid);
7688
7689 /**
7690 * cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped
7691 *
7692 * @wiphy: the wiphy on which the scheduled scan stopped
7693 * @reqid: identifier for the related scheduled scan request
7694 *
7695 * The driver can call this function to inform cfg80211 that the
7696 * scheduled scan had to be stopped, for whatever reason. The driver
7697 * is then called back via the sched_scan_stop operation when done.
7698 * This function should be called with the wiphy mutex held.
7699 */
7700 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid);
7701
7702 /**
7703 * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame
7704 * @wiphy: the wiphy reporting the BSS
7705 * @data: the BSS metadata
7706 * @mgmt: the management frame (probe response or beacon)
7707 * @len: length of the management frame
7708 * @gfp: context flags
7709 *
7710 * This informs cfg80211 that BSS information was found and
7711 * the BSS should be updated/added.
7712 *
7713 * Return: A referenced struct, must be released with cfg80211_put_bss()!
7714 * Or %NULL on error.
7715 */
7716 struct cfg80211_bss * __must_check
7717 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
7718 struct cfg80211_inform_bss *data,
7719 struct ieee80211_mgmt *mgmt, size_t len,
7720 gfp_t gfp);
7721
7722 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss_frame(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,struct ieee80211_mgmt * mgmt,size_t len,s32 signal,gfp_t gfp)7723 cfg80211_inform_bss_frame(struct wiphy *wiphy,
7724 struct ieee80211_channel *rx_channel,
7725 struct ieee80211_mgmt *mgmt, size_t len,
7726 s32 signal, gfp_t gfp)
7727 {
7728 struct cfg80211_inform_bss data = {
7729 .chan = rx_channel,
7730 .signal = signal,
7731 };
7732
7733 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp);
7734 }
7735
7736 /**
7737 * cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID
7738 * @bssid: transmitter BSSID
7739 * @max_bssid: max BSSID indicator, taken from Multiple BSSID element
7740 * @mbssid_index: BSSID index, taken from Multiple BSSID index element
7741 * @new_bssid: calculated nontransmitted BSSID
7742 */
cfg80211_gen_new_bssid(const u8 * bssid,u8 max_bssid,u8 mbssid_index,u8 * new_bssid)7743 static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid,
7744 u8 mbssid_index, u8 *new_bssid)
7745 {
7746 u64 bssid_u64 = ether_addr_to_u64(bssid);
7747 u64 mask = GENMASK_ULL(max_bssid - 1, 0);
7748 u64 new_bssid_u64;
7749
7750 new_bssid_u64 = bssid_u64 & ~mask;
7751
7752 new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask;
7753
7754 u64_to_ether_addr(new_bssid_u64, new_bssid);
7755 }
7756
7757 /**
7758 * cfg80211_is_element_inherited - returns if element ID should be inherited
7759 * @element: element to check
7760 * @non_inherit_element: non inheritance element
7761 *
7762 * Return: %true if should be inherited, %false otherwise
7763 */
7764 bool cfg80211_is_element_inherited(const struct element *element,
7765 const struct element *non_inherit_element);
7766
7767 /**
7768 * cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs
7769 * @ie: ies
7770 * @ielen: length of IEs
7771 * @mbssid_elem: current MBSSID element
7772 * @sub_elem: current MBSSID subelement (profile)
7773 * @merged_ie: location of the merged profile
7774 * @max_copy_len: max merged profile length
7775 *
7776 * Return: the number of bytes merged
7777 */
7778 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
7779 const struct element *mbssid_elem,
7780 const struct element *sub_elem,
7781 u8 *merged_ie, size_t max_copy_len);
7782
7783 /**
7784 * enum cfg80211_bss_frame_type - frame type that the BSS data came from
7785 * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is
7786 * from a beacon or probe response
7787 * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon
7788 * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response
7789 * @CFG80211_BSS_FTYPE_S1G_BEACON: data comes from an S1G beacon
7790 */
7791 enum cfg80211_bss_frame_type {
7792 CFG80211_BSS_FTYPE_UNKNOWN,
7793 CFG80211_BSS_FTYPE_BEACON,
7794 CFG80211_BSS_FTYPE_PRESP,
7795 CFG80211_BSS_FTYPE_S1G_BEACON,
7796 };
7797
7798 /**
7799 * cfg80211_get_ies_channel_number - returns the channel number from ies
7800 * @ie: IEs
7801 * @ielen: length of IEs
7802 * @band: enum nl80211_band of the channel
7803 *
7804 * Return: the channel number, or -1 if none could be determined.
7805 */
7806 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
7807 enum nl80211_band band);
7808
7809 /**
7810 * cfg80211_ssid_eq - compare two SSIDs
7811 * @a: first SSID
7812 * @b: second SSID
7813 *
7814 * Return: %true if SSIDs are equal, %false otherwise.
7815 */
7816 static inline bool
cfg80211_ssid_eq(struct cfg80211_ssid * a,struct cfg80211_ssid * b)7817 cfg80211_ssid_eq(struct cfg80211_ssid *a, struct cfg80211_ssid *b)
7818 {
7819 if (WARN_ON(!a || !b))
7820 return false;
7821 if (a->ssid_len != b->ssid_len)
7822 return false;
7823 return memcmp(a->ssid, b->ssid, a->ssid_len) ? false : true;
7824 }
7825
7826 /**
7827 * cfg80211_inform_bss_data - inform cfg80211 of a new BSS
7828 *
7829 * @wiphy: the wiphy reporting the BSS
7830 * @data: the BSS metadata
7831 * @ftype: frame type (if known)
7832 * @bssid: the BSSID of the BSS
7833 * @tsf: the TSF sent by the peer in the beacon/probe response (or 0)
7834 * @capability: the capability field sent by the peer
7835 * @beacon_interval: the beacon interval announced by the peer
7836 * @ie: additional IEs sent by the peer
7837 * @ielen: length of the additional IEs
7838 * @gfp: context flags
7839 *
7840 * This informs cfg80211 that BSS information was found and
7841 * the BSS should be updated/added.
7842 *
7843 * Return: A referenced struct, must be released with cfg80211_put_bss()!
7844 * Or %NULL on error.
7845 */
7846 struct cfg80211_bss * __must_check
7847 cfg80211_inform_bss_data(struct wiphy *wiphy,
7848 struct cfg80211_inform_bss *data,
7849 enum cfg80211_bss_frame_type ftype,
7850 const u8 *bssid, u64 tsf, u16 capability,
7851 u16 beacon_interval, const u8 *ie, size_t ielen,
7852 gfp_t gfp);
7853
7854 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,s32 signal,gfp_t gfp)7855 cfg80211_inform_bss(struct wiphy *wiphy,
7856 struct ieee80211_channel *rx_channel,
7857 enum cfg80211_bss_frame_type ftype,
7858 const u8 *bssid, u64 tsf, u16 capability,
7859 u16 beacon_interval, const u8 *ie, size_t ielen,
7860 s32 signal, gfp_t gfp)
7861 {
7862 struct cfg80211_inform_bss data = {
7863 .chan = rx_channel,
7864 .signal = signal,
7865 };
7866
7867 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf,
7868 capability, beacon_interval, ie, ielen,
7869 gfp);
7870 }
7871
7872 /**
7873 * __cfg80211_get_bss - get a BSS reference
7874 * @wiphy: the wiphy this BSS struct belongs to
7875 * @channel: the channel to search on (or %NULL)
7876 * @bssid: the desired BSSID (or %NULL)
7877 * @ssid: the desired SSID (or %NULL)
7878 * @ssid_len: length of the SSID (or 0)
7879 * @bss_type: type of BSS, see &enum ieee80211_bss_type
7880 * @privacy: privacy filter, see &enum ieee80211_privacy
7881 * @use_for: indicates which use is intended
7882 *
7883 * Return: Reference-counted BSS on success. %NULL on error.
7884 */
7885 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
7886 struct ieee80211_channel *channel,
7887 const u8 *bssid,
7888 const u8 *ssid, size_t ssid_len,
7889 enum ieee80211_bss_type bss_type,
7890 enum ieee80211_privacy privacy,
7891 u32 use_for);
7892
7893 /**
7894 * cfg80211_get_bss - get a BSS reference
7895 * @wiphy: the wiphy this BSS struct belongs to
7896 * @channel: the channel to search on (or %NULL)
7897 * @bssid: the desired BSSID (or %NULL)
7898 * @ssid: the desired SSID (or %NULL)
7899 * @ssid_len: length of the SSID (or 0)
7900 * @bss_type: type of BSS, see &enum ieee80211_bss_type
7901 * @privacy: privacy filter, see &enum ieee80211_privacy
7902 *
7903 * This version implies regular usage, %NL80211_BSS_USE_FOR_NORMAL.
7904 *
7905 * Return: Reference-counted BSS on success. %NULL on error.
7906 */
7907 static inline struct cfg80211_bss *
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)7908 cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel,
7909 const u8 *bssid, const u8 *ssid, size_t ssid_len,
7910 enum ieee80211_bss_type bss_type,
7911 enum ieee80211_privacy privacy)
7912 {
7913 return __cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len,
7914 bss_type, privacy,
7915 NL80211_BSS_USE_FOR_NORMAL);
7916 }
7917
7918 static inline struct cfg80211_bss *
cfg80211_get_ibss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * ssid,size_t ssid_len)7919 cfg80211_get_ibss(struct wiphy *wiphy,
7920 struct ieee80211_channel *channel,
7921 const u8 *ssid, size_t ssid_len)
7922 {
7923 return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len,
7924 IEEE80211_BSS_TYPE_IBSS,
7925 IEEE80211_PRIVACY_ANY);
7926 }
7927
7928 /**
7929 * cfg80211_ref_bss - reference BSS struct
7930 * @wiphy: the wiphy this BSS struct belongs to
7931 * @bss: the BSS struct to reference
7932 *
7933 * Increments the refcount of the given BSS struct.
7934 */
7935 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7936
7937 /**
7938 * cfg80211_put_bss - unref BSS struct
7939 * @wiphy: the wiphy this BSS struct belongs to
7940 * @bss: the BSS struct
7941 *
7942 * Decrements the refcount of the given BSS struct.
7943 */
7944 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7945
7946 /**
7947 * cfg80211_unlink_bss - unlink BSS from internal data structures
7948 * @wiphy: the wiphy
7949 * @bss: the bss to remove
7950 *
7951 * This function removes the given BSS from the internal data structures
7952 * thereby making it no longer show up in scan results etc. Use this
7953 * function when you detect a BSS is gone. Normally BSSes will also time
7954 * out, so it is not necessary to use this function at all.
7955 */
7956 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7957
7958 /**
7959 * cfg80211_bss_iter - iterate all BSS entries
7960 *
7961 * This function iterates over the BSS entries associated with the given wiphy
7962 * and calls the callback for the iterated BSS. The iterator function is not
7963 * allowed to call functions that might modify the internal state of the BSS DB.
7964 *
7965 * @wiphy: the wiphy
7966 * @chandef: if given, the iterator function will be called only if the channel
7967 * of the currently iterated BSS is a subset of the given channel.
7968 * @iter: the iterator function to call
7969 * @iter_data: an argument to the iterator function
7970 */
7971 void cfg80211_bss_iter(struct wiphy *wiphy,
7972 struct cfg80211_chan_def *chandef,
7973 void (*iter)(struct wiphy *wiphy,
7974 struct cfg80211_bss *bss,
7975 void *data),
7976 void *iter_data);
7977
7978 /**
7979 * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame
7980 * @dev: network device
7981 * @buf: authentication frame (header + body)
7982 * @len: length of the frame data
7983 *
7984 * This function is called whenever an authentication, disassociation or
7985 * deauthentication frame has been received and processed in station mode.
7986 * After being asked to authenticate via cfg80211_ops::auth() the driver must
7987 * call either this function or cfg80211_auth_timeout().
7988 * After being asked to associate via cfg80211_ops::assoc() the driver must
7989 * call either this function or cfg80211_auth_timeout().
7990 * While connected, the driver must calls this for received and processed
7991 * disassociation and deauthentication frames. If the frame couldn't be used
7992 * because it was unprotected, the driver must call the function
7993 * cfg80211_rx_unprot_mlme_mgmt() instead.
7994 *
7995 * This function may sleep. The caller must hold the corresponding wdev's mutex.
7996 */
7997 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
7998
7999 /**
8000 * cfg80211_auth_timeout - notification of timed out authentication
8001 * @dev: network device
8002 * @addr: The MAC address of the device with which the authentication timed out
8003 *
8004 * This function may sleep. The caller must hold the corresponding wdev's
8005 * mutex.
8006 */
8007 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr);
8008
8009 /**
8010 * struct cfg80211_rx_assoc_resp_data - association response data
8011 * @buf: (Re)Association Response frame (header + body)
8012 * @len: length of the frame data
8013 * @uapsd_queues: bitmap of queues configured for uapsd. Same format
8014 * as the AC bitmap in the QoS info field
8015 * @req_ies: information elements from the (Re)Association Request frame
8016 * @req_ies_len: length of req_ies data
8017 * @ap_mld_addr: AP MLD address (in case of MLO)
8018 * @links: per-link information indexed by link ID, use links[0] for
8019 * non-MLO connections
8020 * @links.bss: the BSS that association was requested with, ownership of the
8021 * pointer moves to cfg80211 in the call to cfg80211_rx_assoc_resp()
8022 * @links.status: Set this (along with a BSS pointer) for links that
8023 * were rejected by the AP.
8024 */
8025 struct cfg80211_rx_assoc_resp_data {
8026 const u8 *buf;
8027 size_t len;
8028 const u8 *req_ies;
8029 size_t req_ies_len;
8030 int uapsd_queues;
8031 const u8 *ap_mld_addr;
8032 struct {
8033 u8 addr[ETH_ALEN] __aligned(2);
8034 struct cfg80211_bss *bss;
8035 u16 status;
8036 } links[IEEE80211_MLD_MAX_NUM_LINKS];
8037 };
8038
8039 /**
8040 * cfg80211_rx_assoc_resp - notification of processed association response
8041 * @dev: network device
8042 * @data: association response data, &struct cfg80211_rx_assoc_resp_data
8043 *
8044 * After being asked to associate via cfg80211_ops::assoc() the driver must
8045 * call either this function or cfg80211_auth_timeout().
8046 *
8047 * This function may sleep. The caller must hold the corresponding wdev's mutex.
8048 */
8049 void cfg80211_rx_assoc_resp(struct net_device *dev,
8050 const struct cfg80211_rx_assoc_resp_data *data);
8051
8052 /**
8053 * struct cfg80211_assoc_failure - association failure data
8054 * @ap_mld_addr: AP MLD address, or %NULL
8055 * @bss: list of BSSes, must use entry 0 for non-MLO connections
8056 * (@ap_mld_addr is %NULL)
8057 * @timeout: indicates the association failed due to timeout, otherwise
8058 * the association was abandoned for a reason reported through some
8059 * other API (e.g. deauth RX)
8060 */
8061 struct cfg80211_assoc_failure {
8062 const u8 *ap_mld_addr;
8063 struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS];
8064 bool timeout;
8065 };
8066
8067 /**
8068 * cfg80211_assoc_failure - notification of association failure
8069 * @dev: network device
8070 * @data: data describing the association failure
8071 *
8072 * This function may sleep. The caller must hold the corresponding wdev's mutex.
8073 */
8074 void cfg80211_assoc_failure(struct net_device *dev,
8075 struct cfg80211_assoc_failure *data);
8076
8077 /**
8078 * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame
8079 * @dev: network device
8080 * @buf: 802.11 frame (header + body)
8081 * @len: length of the frame data
8082 * @reconnect: immediate reconnect is desired (include the nl80211 attribute)
8083 *
8084 * This function is called whenever deauthentication has been processed in
8085 * station mode. This includes both received deauthentication frames and
8086 * locally generated ones. This function may sleep. The caller must hold the
8087 * corresponding wdev's mutex.
8088 */
8089 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len,
8090 bool reconnect);
8091
8092 /**
8093 * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame
8094 * @dev: network device
8095 * @buf: received management frame (header + body)
8096 * @len: length of the frame data
8097 *
8098 * This function is called whenever a received deauthentication or dissassoc
8099 * frame has been dropped in station mode because of MFP being used but the
8100 * frame was not protected. This is also used to notify reception of a Beacon
8101 * frame that was dropped because it did not include a valid MME MIC while
8102 * beacon protection was enabled (BIGTK configured in station mode).
8103 *
8104 * This function may sleep.
8105 */
8106 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev,
8107 const u8 *buf, size_t len);
8108
8109 /**
8110 * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP)
8111 * @dev: network device
8112 * @addr: The source MAC address of the frame
8113 * @key_type: The key type that the received frame used
8114 * @key_id: Key identifier (0..3). Can be -1 if missing.
8115 * @tsc: The TSC value of the frame that generated the MIC failure (6 octets)
8116 * @gfp: allocation flags
8117 *
8118 * This function is called whenever the local MAC detects a MIC failure in a
8119 * received frame. This matches with MLME-MICHAELMICFAILURE.indication()
8120 * primitive.
8121 */
8122 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
8123 enum nl80211_key_type key_type, int key_id,
8124 const u8 *tsc, gfp_t gfp);
8125
8126 /**
8127 * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS
8128 *
8129 * @dev: network device
8130 * @bssid: the BSSID of the IBSS joined
8131 * @channel: the channel of the IBSS joined
8132 * @gfp: allocation flags
8133 *
8134 * This function notifies cfg80211 that the device joined an IBSS or
8135 * switched to a different BSSID. Before this function can be called,
8136 * either a beacon has to have been received from the IBSS, or one of
8137 * the cfg80211_inform_bss{,_frame} functions must have been called
8138 * with the locally generated beacon -- this guarantees that there is
8139 * always a scan result for this IBSS. cfg80211 will handle the rest.
8140 */
8141 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid,
8142 struct ieee80211_channel *channel, gfp_t gfp);
8143
8144 /**
8145 * cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer
8146 * candidate
8147 *
8148 * @dev: network device
8149 * @macaddr: the MAC address of the new candidate
8150 * @ie: information elements advertised by the peer candidate
8151 * @ie_len: length of the information elements buffer
8152 * @sig_dbm: signal level in dBm
8153 * @gfp: allocation flags
8154 *
8155 * This function notifies cfg80211 that the mesh peer candidate has been
8156 * detected, most likely via a beacon or, less likely, via a probe response.
8157 * cfg80211 then sends a notification to userspace.
8158 */
8159 void cfg80211_notify_new_peer_candidate(struct net_device *dev,
8160 const u8 *macaddr, const u8 *ie, u8 ie_len,
8161 int sig_dbm, gfp_t gfp);
8162
8163 /**
8164 * DOC: RFkill integration
8165 *
8166 * RFkill integration in cfg80211 is almost invisible to drivers,
8167 * as cfg80211 automatically registers an rfkill instance for each
8168 * wireless device it knows about. Soft kill is also translated
8169 * into disconnecting and turning all interfaces off. Drivers are
8170 * expected to turn off the device when all interfaces are down.
8171 *
8172 * However, devices may have a hard RFkill line, in which case they
8173 * also need to interact with the rfkill subsystem, via cfg80211.
8174 * They can do this with a few helper functions documented here.
8175 */
8176
8177 /**
8178 * wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state
8179 * @wiphy: the wiphy
8180 * @blocked: block status
8181 * @reason: one of reasons in &enum rfkill_hard_block_reasons
8182 */
8183 void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked,
8184 enum rfkill_hard_block_reasons reason);
8185
wiphy_rfkill_set_hw_state(struct wiphy * wiphy,bool blocked)8186 static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked)
8187 {
8188 wiphy_rfkill_set_hw_state_reason(wiphy, blocked,
8189 RFKILL_HARD_BLOCK_SIGNAL);
8190 }
8191
8192 /**
8193 * wiphy_rfkill_start_polling - start polling rfkill
8194 * @wiphy: the wiphy
8195 */
8196 void wiphy_rfkill_start_polling(struct wiphy *wiphy);
8197
8198 /**
8199 * wiphy_rfkill_stop_polling - stop polling rfkill
8200 * @wiphy: the wiphy
8201 */
wiphy_rfkill_stop_polling(struct wiphy * wiphy)8202 static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy)
8203 {
8204 rfkill_pause_polling(wiphy->rfkill);
8205 }
8206
8207 /**
8208 * DOC: Vendor commands
8209 *
8210 * Occasionally, there are special protocol or firmware features that
8211 * can't be implemented very openly. For this and similar cases, the
8212 * vendor command functionality allows implementing the features with
8213 * (typically closed-source) userspace and firmware, using nl80211 as
8214 * the configuration mechanism.
8215 *
8216 * A driver supporting vendor commands must register them as an array
8217 * in struct wiphy, with handlers for each one. Each command has an
8218 * OUI and sub command ID to identify it.
8219 *
8220 * Note that this feature should not be (ab)used to implement protocol
8221 * features that could openly be shared across drivers. In particular,
8222 * it must never be required to use vendor commands to implement any
8223 * "normal" functionality that higher-level userspace like connection
8224 * managers etc. need.
8225 */
8226
8227 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
8228 enum nl80211_commands cmd,
8229 enum nl80211_attrs attr,
8230 int approxlen);
8231
8232 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
8233 struct wireless_dev *wdev,
8234 enum nl80211_commands cmd,
8235 enum nl80211_attrs attr,
8236 unsigned int portid,
8237 int vendor_event_idx,
8238 int approxlen, gfp_t gfp);
8239
8240 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
8241
8242 /**
8243 * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
8244 * @wiphy: the wiphy
8245 * @approxlen: an upper bound of the length of the data that will
8246 * be put into the skb
8247 *
8248 * This function allocates and pre-fills an skb for a reply to
8249 * a vendor command. Since it is intended for a reply, calling
8250 * it outside of a vendor command's doit() operation is invalid.
8251 *
8252 * The returned skb is pre-filled with some identifying data in
8253 * a way that any data that is put into the skb (with skb_put(),
8254 * nla_put() or similar) will end up being within the
8255 * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
8256 * with the skb is adding data for the corresponding userspace tool
8257 * which can then read that data out of the vendor data attribute.
8258 * You must not modify the skb in any other way.
8259 *
8260 * When done, call cfg80211_vendor_cmd_reply() with the skb and return
8261 * its error code as the result of the doit() operation.
8262 *
8263 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8264 */
8265 static inline struct sk_buff *
cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy * wiphy,int approxlen)8266 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
8267 {
8268 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR,
8269 NL80211_ATTR_VENDOR_DATA, approxlen);
8270 }
8271
8272 /**
8273 * cfg80211_vendor_cmd_reply - send the reply skb
8274 * @skb: The skb, must have been allocated with
8275 * cfg80211_vendor_cmd_alloc_reply_skb()
8276 *
8277 * Since calling this function will usually be the last thing
8278 * before returning from the vendor command doit() you should
8279 * return the error code. Note that this function consumes the
8280 * skb regardless of the return value.
8281 *
8282 * Return: An error code or 0 on success.
8283 */
8284 int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
8285
8286 /**
8287 * cfg80211_vendor_cmd_get_sender - get the current sender netlink ID
8288 * @wiphy: the wiphy
8289 *
8290 * Return: the current netlink port ID in a vendor command handler.
8291 *
8292 * Context: May only be called from a vendor command handler
8293 */
8294 unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy);
8295
8296 /**
8297 * cfg80211_vendor_event_alloc - allocate vendor-specific event skb
8298 * @wiphy: the wiphy
8299 * @wdev: the wireless device
8300 * @event_idx: index of the vendor event in the wiphy's vendor_events
8301 * @approxlen: an upper bound of the length of the data that will
8302 * be put into the skb
8303 * @gfp: allocation flags
8304 *
8305 * This function allocates and pre-fills an skb for an event on the
8306 * vendor-specific multicast group.
8307 *
8308 * If wdev != NULL, both the ifindex and identifier of the specified
8309 * wireless device are added to the event message before the vendor data
8310 * attribute.
8311 *
8312 * When done filling the skb, call cfg80211_vendor_event() with the
8313 * skb to send the event.
8314 *
8315 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8316 */
8317 static inline struct sk_buff *
cfg80211_vendor_event_alloc(struct wiphy * wiphy,struct wireless_dev * wdev,int approxlen,int event_idx,gfp_t gfp)8318 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev,
8319 int approxlen, int event_idx, gfp_t gfp)
8320 {
8321 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
8322 NL80211_ATTR_VENDOR_DATA,
8323 0, event_idx, approxlen, gfp);
8324 }
8325
8326 /**
8327 * cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb
8328 * @wiphy: the wiphy
8329 * @wdev: the wireless device
8330 * @event_idx: index of the vendor event in the wiphy's vendor_events
8331 * @portid: port ID of the receiver
8332 * @approxlen: an upper bound of the length of the data that will
8333 * be put into the skb
8334 * @gfp: allocation flags
8335 *
8336 * This function allocates and pre-fills an skb for an event to send to
8337 * a specific (userland) socket. This socket would previously have been
8338 * obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take
8339 * care to register a netlink notifier to see when the socket closes.
8340 *
8341 * If wdev != NULL, both the ifindex and identifier of the specified
8342 * wireless device are added to the event message before the vendor data
8343 * attribute.
8344 *
8345 * When done filling the skb, call cfg80211_vendor_event() with the
8346 * skb to send the event.
8347 *
8348 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8349 */
8350 static inline struct sk_buff *
cfg80211_vendor_event_alloc_ucast(struct wiphy * wiphy,struct wireless_dev * wdev,unsigned int portid,int approxlen,int event_idx,gfp_t gfp)8351 cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy,
8352 struct wireless_dev *wdev,
8353 unsigned int portid, int approxlen,
8354 int event_idx, gfp_t gfp)
8355 {
8356 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
8357 NL80211_ATTR_VENDOR_DATA,
8358 portid, event_idx, approxlen, gfp);
8359 }
8360
8361 /**
8362 * cfg80211_vendor_event - send the event
8363 * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
8364 * @gfp: allocation flags
8365 *
8366 * This function sends the given @skb, which must have been allocated
8367 * by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
8368 */
cfg80211_vendor_event(struct sk_buff * skb,gfp_t gfp)8369 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
8370 {
8371 __cfg80211_send_event_skb(skb, gfp);
8372 }
8373
8374 #ifdef CONFIG_NL80211_TESTMODE
8375 /**
8376 * DOC: Test mode
8377 *
8378 * Test mode is a set of utility functions to allow drivers to
8379 * interact with driver-specific tools to aid, for instance,
8380 * factory programming.
8381 *
8382 * This chapter describes how drivers interact with it. For more
8383 * information see the nl80211 book's chapter on it.
8384 */
8385
8386 /**
8387 * cfg80211_testmode_alloc_reply_skb - allocate testmode reply
8388 * @wiphy: the wiphy
8389 * @approxlen: an upper bound of the length of the data that will
8390 * be put into the skb
8391 *
8392 * This function allocates and pre-fills an skb for a reply to
8393 * the testmode command. Since it is intended for a reply, calling
8394 * it outside of the @testmode_cmd operation is invalid.
8395 *
8396 * The returned skb is pre-filled with the wiphy index and set up in
8397 * a way that any data that is put into the skb (with skb_put(),
8398 * nla_put() or similar) will end up being within the
8399 * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done
8400 * with the skb is adding data for the corresponding userspace tool
8401 * which can then read that data out of the testdata attribute. You
8402 * must not modify the skb in any other way.
8403 *
8404 * When done, call cfg80211_testmode_reply() with the skb and return
8405 * its error code as the result of the @testmode_cmd operation.
8406 *
8407 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8408 */
8409 static inline struct sk_buff *
cfg80211_testmode_alloc_reply_skb(struct wiphy * wiphy,int approxlen)8410 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
8411 {
8412 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE,
8413 NL80211_ATTR_TESTDATA, approxlen);
8414 }
8415
8416 /**
8417 * cfg80211_testmode_reply - send the reply skb
8418 * @skb: The skb, must have been allocated with
8419 * cfg80211_testmode_alloc_reply_skb()
8420 *
8421 * Since calling this function will usually be the last thing
8422 * before returning from the @testmode_cmd you should return
8423 * the error code. Note that this function consumes the skb
8424 * regardless of the return value.
8425 *
8426 * Return: An error code or 0 on success.
8427 */
cfg80211_testmode_reply(struct sk_buff * skb)8428 static inline int cfg80211_testmode_reply(struct sk_buff *skb)
8429 {
8430 return cfg80211_vendor_cmd_reply(skb);
8431 }
8432
8433 /**
8434 * cfg80211_testmode_alloc_event_skb - allocate testmode event
8435 * @wiphy: the wiphy
8436 * @approxlen: an upper bound of the length of the data that will
8437 * be put into the skb
8438 * @gfp: allocation flags
8439 *
8440 * This function allocates and pre-fills an skb for an event on the
8441 * testmode multicast group.
8442 *
8443 * The returned skb is set up in the same way as with
8444 * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As
8445 * there, you should simply add data to it that will then end up in the
8446 * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb
8447 * in any other way.
8448 *
8449 * When done filling the skb, call cfg80211_testmode_event() with the
8450 * skb to send the event.
8451 *
8452 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8453 */
8454 static inline struct sk_buff *
cfg80211_testmode_alloc_event_skb(struct wiphy * wiphy,int approxlen,gfp_t gfp)8455 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
8456 {
8457 return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE,
8458 NL80211_ATTR_TESTDATA, 0, -1,
8459 approxlen, gfp);
8460 }
8461
8462 /**
8463 * cfg80211_testmode_event - send the event
8464 * @skb: The skb, must have been allocated with
8465 * cfg80211_testmode_alloc_event_skb()
8466 * @gfp: allocation flags
8467 *
8468 * This function sends the given @skb, which must have been allocated
8469 * by cfg80211_testmode_alloc_event_skb(), as an event. It always
8470 * consumes it.
8471 */
cfg80211_testmode_event(struct sk_buff * skb,gfp_t gfp)8472 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
8473 {
8474 __cfg80211_send_event_skb(skb, gfp);
8475 }
8476
8477 #define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd),
8478 #define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd),
8479 #else
8480 #define CFG80211_TESTMODE_CMD(cmd)
8481 #define CFG80211_TESTMODE_DUMP(cmd)
8482 #endif
8483
8484 /**
8485 * struct cfg80211_fils_resp_params - FILS connection response params
8486 * @kek: KEK derived from a successful FILS connection (may be %NULL)
8487 * @kek_len: Length of @fils_kek in octets
8488 * @update_erp_next_seq_num: Boolean value to specify whether the value in
8489 * @erp_next_seq_num is valid.
8490 * @erp_next_seq_num: The next sequence number to use in ERP message in
8491 * FILS Authentication. This value should be specified irrespective of the
8492 * status for a FILS connection.
8493 * @pmk: A new PMK if derived from a successful FILS connection (may be %NULL).
8494 * @pmk_len: Length of @pmk in octets
8495 * @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID
8496 * used for this FILS connection (may be %NULL).
8497 */
8498 struct cfg80211_fils_resp_params {
8499 const u8 *kek;
8500 size_t kek_len;
8501 bool update_erp_next_seq_num;
8502 u16 erp_next_seq_num;
8503 const u8 *pmk;
8504 size_t pmk_len;
8505 const u8 *pmkid;
8506 };
8507
8508 /**
8509 * struct cfg80211_connect_resp_params - Connection response params
8510 * @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use
8511 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8512 * the real status code for failures. If this call is used to report a
8513 * failure due to a timeout (e.g., not receiving an Authentication frame
8514 * from the AP) instead of an explicit rejection by the AP, -1 is used to
8515 * indicate that this is a failure, but without a status code.
8516 * @timeout_reason is used to report the reason for the timeout in that
8517 * case.
8518 * @req_ie: Association request IEs (may be %NULL)
8519 * @req_ie_len: Association request IEs length
8520 * @resp_ie: Association response IEs (may be %NULL)
8521 * @resp_ie_len: Association response IEs length
8522 * @fils: FILS connection response parameters.
8523 * @timeout_reason: Reason for connection timeout. This is used when the
8524 * connection fails due to a timeout instead of an explicit rejection from
8525 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8526 * not known. This value is used only if @status < 0 to indicate that the
8527 * failure is due to a timeout and not due to explicit rejection by the AP.
8528 * This value is ignored in other cases (@status >= 0).
8529 * @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise
8530 * zero.
8531 * @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL.
8532 * @links : For MLO connection, contains link info for the valid links indicated
8533 * using @valid_links. For non-MLO connection, links[0] contains the
8534 * connected AP info.
8535 * @links.addr: For MLO connection, MAC address of the STA link. Otherwise
8536 * %NULL.
8537 * @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO
8538 * connection, links[0].bssid points to the BSSID of the AP (may be %NULL).
8539 * @links.bss: For MLO connection, entry of bss to which STA link is connected.
8540 * For non-MLO connection, links[0].bss points to entry of bss to which STA
8541 * is connected. It can be obtained through cfg80211_get_bss() (may be
8542 * %NULL). It is recommended to store the bss from the connect_request and
8543 * hold a reference to it and return through this param to avoid a warning
8544 * if the bss is expired during the connection, esp. for those drivers
8545 * implementing connect op. Only one parameter among @bssid and @bss needs
8546 * to be specified.
8547 * @links.status: per-link status code, to report a status code that's not
8548 * %WLAN_STATUS_SUCCESS for a given link, it must also be in the
8549 * @valid_links bitmap and may have a BSS pointer (which is then released)
8550 */
8551 struct cfg80211_connect_resp_params {
8552 int status;
8553 const u8 *req_ie;
8554 size_t req_ie_len;
8555 const u8 *resp_ie;
8556 size_t resp_ie_len;
8557 struct cfg80211_fils_resp_params fils;
8558 enum nl80211_timeout_reason timeout_reason;
8559
8560 const u8 *ap_mld_addr;
8561 u16 valid_links;
8562 struct {
8563 const u8 *addr;
8564 const u8 *bssid;
8565 struct cfg80211_bss *bss;
8566 u16 status;
8567 } links[IEEE80211_MLD_MAX_NUM_LINKS];
8568 };
8569
8570 /**
8571 * cfg80211_connect_done - notify cfg80211 of connection result
8572 *
8573 * @dev: network device
8574 * @params: connection response parameters
8575 * @gfp: allocation flags
8576 *
8577 * It should be called by the underlying driver once execution of the connection
8578 * request from connect() has been completed. This is similar to
8579 * cfg80211_connect_bss(), but takes a structure pointer for connection response
8580 * parameters. Only one of the functions among cfg80211_connect_bss(),
8581 * cfg80211_connect_result(), cfg80211_connect_timeout(),
8582 * and cfg80211_connect_done() should be called.
8583 */
8584 void cfg80211_connect_done(struct net_device *dev,
8585 struct cfg80211_connect_resp_params *params,
8586 gfp_t gfp);
8587
8588 /**
8589 * cfg80211_connect_bss - notify cfg80211 of connection result
8590 *
8591 * @dev: network device
8592 * @bssid: the BSSID of the AP
8593 * @bss: Entry of bss to which STA got connected to, can be obtained through
8594 * cfg80211_get_bss() (may be %NULL). But it is recommended to store the
8595 * bss from the connect_request and hold a reference to it and return
8596 * through this param to avoid a warning if the bss is expired during the
8597 * connection, esp. for those drivers implementing connect op.
8598 * Only one parameter among @bssid and @bss needs to be specified.
8599 * @req_ie: association request IEs (maybe be %NULL)
8600 * @req_ie_len: association request IEs length
8601 * @resp_ie: association response IEs (may be %NULL)
8602 * @resp_ie_len: assoc response IEs length
8603 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8604 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8605 * the real status code for failures. If this call is used to report a
8606 * failure due to a timeout (e.g., not receiving an Authentication frame
8607 * from the AP) instead of an explicit rejection by the AP, -1 is used to
8608 * indicate that this is a failure, but without a status code.
8609 * @timeout_reason is used to report the reason for the timeout in that
8610 * case.
8611 * @gfp: allocation flags
8612 * @timeout_reason: reason for connection timeout. This is used when the
8613 * connection fails due to a timeout instead of an explicit rejection from
8614 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8615 * not known. This value is used only if @status < 0 to indicate that the
8616 * failure is due to a timeout and not due to explicit rejection by the AP.
8617 * This value is ignored in other cases (@status >= 0).
8618 *
8619 * It should be called by the underlying driver once execution of the connection
8620 * request from connect() has been completed. This is similar to
8621 * cfg80211_connect_result(), but with the option of identifying the exact bss
8622 * entry for the connection. Only one of the functions among
8623 * cfg80211_connect_bss(), cfg80211_connect_result(),
8624 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8625 */
8626 static inline void
cfg80211_connect_bss(struct net_device * dev,const u8 * bssid,struct cfg80211_bss * bss,const u8 * req_ie,size_t req_ie_len,const u8 * resp_ie,size_t resp_ie_len,int status,gfp_t gfp,enum nl80211_timeout_reason timeout_reason)8627 cfg80211_connect_bss(struct net_device *dev, const u8 *bssid,
8628 struct cfg80211_bss *bss, const u8 *req_ie,
8629 size_t req_ie_len, const u8 *resp_ie,
8630 size_t resp_ie_len, int status, gfp_t gfp,
8631 enum nl80211_timeout_reason timeout_reason)
8632 {
8633 struct cfg80211_connect_resp_params params;
8634
8635 memset(¶ms, 0, sizeof(params));
8636 params.status = status;
8637 params.links[0].bssid = bssid;
8638 params.links[0].bss = bss;
8639 params.req_ie = req_ie;
8640 params.req_ie_len = req_ie_len;
8641 params.resp_ie = resp_ie;
8642 params.resp_ie_len = resp_ie_len;
8643 params.timeout_reason = timeout_reason;
8644
8645 cfg80211_connect_done(dev, ¶ms, gfp);
8646 }
8647
8648 /**
8649 * cfg80211_connect_result - notify cfg80211 of connection result
8650 *
8651 * @dev: network device
8652 * @bssid: the BSSID of the AP
8653 * @req_ie: association request IEs (maybe be %NULL)
8654 * @req_ie_len: association request IEs length
8655 * @resp_ie: association response IEs (may be %NULL)
8656 * @resp_ie_len: assoc response IEs length
8657 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8658 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8659 * the real status code for failures.
8660 * @gfp: allocation flags
8661 *
8662 * It should be called by the underlying driver once execution of the connection
8663 * request from connect() has been completed. This is similar to
8664 * cfg80211_connect_bss() which allows the exact bss entry to be specified. Only
8665 * one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(),
8666 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8667 */
8668 static inline void
cfg80211_connect_result(struct net_device * dev,const u8 * bssid,const u8 * req_ie,size_t req_ie_len,const u8 * resp_ie,size_t resp_ie_len,u16 status,gfp_t gfp)8669 cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
8670 const u8 *req_ie, size_t req_ie_len,
8671 const u8 *resp_ie, size_t resp_ie_len,
8672 u16 status, gfp_t gfp)
8673 {
8674 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie,
8675 resp_ie_len, status, gfp,
8676 NL80211_TIMEOUT_UNSPECIFIED);
8677 }
8678
8679 /**
8680 * cfg80211_connect_timeout - notify cfg80211 of connection timeout
8681 *
8682 * @dev: network device
8683 * @bssid: the BSSID of the AP
8684 * @req_ie: association request IEs (maybe be %NULL)
8685 * @req_ie_len: association request IEs length
8686 * @gfp: allocation flags
8687 * @timeout_reason: reason for connection timeout.
8688 *
8689 * It should be called by the underlying driver whenever connect() has failed
8690 * in a sequence where no explicit authentication/association rejection was
8691 * received from the AP. This could happen, e.g., due to not being able to send
8692 * out the Authentication or Association Request frame or timing out while
8693 * waiting for the response. Only one of the functions among
8694 * cfg80211_connect_bss(), cfg80211_connect_result(),
8695 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8696 */
8697 static inline void
cfg80211_connect_timeout(struct net_device * dev,const u8 * bssid,const u8 * req_ie,size_t req_ie_len,gfp_t gfp,enum nl80211_timeout_reason timeout_reason)8698 cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid,
8699 const u8 *req_ie, size_t req_ie_len, gfp_t gfp,
8700 enum nl80211_timeout_reason timeout_reason)
8701 {
8702 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1,
8703 gfp, timeout_reason);
8704 }
8705
8706 /**
8707 * struct cfg80211_roam_info - driver initiated roaming information
8708 *
8709 * @req_ie: association request IEs (maybe be %NULL)
8710 * @req_ie_len: association request IEs length
8711 * @resp_ie: association response IEs (may be %NULL)
8712 * @resp_ie_len: assoc response IEs length
8713 * @fils: FILS related roaming information.
8714 * @valid_links: For MLO roaming, BIT mask of the new valid links is set.
8715 * Otherwise zero.
8716 * @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL.
8717 * @links : For MLO roaming, contains new link info for the valid links set in
8718 * @valid_links. For non-MLO roaming, links[0] contains the new AP info.
8719 * @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL.
8720 * @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO
8721 * roaming, links[0].bssid points to the BSSID of the new AP. May be
8722 * %NULL if %links.bss is set.
8723 * @links.channel: the channel of the new AP.
8724 * @links.bss: For MLO roaming, entry of new bss to which STA link got
8725 * roamed. For non-MLO roaming, links[0].bss points to entry of bss to
8726 * which STA got roamed (may be %NULL if %links.bssid is set)
8727 */
8728 struct cfg80211_roam_info {
8729 const u8 *req_ie;
8730 size_t req_ie_len;
8731 const u8 *resp_ie;
8732 size_t resp_ie_len;
8733 struct cfg80211_fils_resp_params fils;
8734
8735 const u8 *ap_mld_addr;
8736 u16 valid_links;
8737 struct {
8738 const u8 *addr;
8739 const u8 *bssid;
8740 struct ieee80211_channel *channel;
8741 struct cfg80211_bss *bss;
8742 } links[IEEE80211_MLD_MAX_NUM_LINKS];
8743 };
8744
8745 /**
8746 * cfg80211_roamed - notify cfg80211 of roaming
8747 *
8748 * @dev: network device
8749 * @info: information about the new BSS. struct &cfg80211_roam_info.
8750 * @gfp: allocation flags
8751 *
8752 * This function may be called with the driver passing either the BSSID of the
8753 * new AP or passing the bss entry to avoid a race in timeout of the bss entry.
8754 * It should be called by the underlying driver whenever it roamed from one AP
8755 * to another while connected. Drivers which have roaming implemented in
8756 * firmware should pass the bss entry to avoid a race in bss entry timeout where
8757 * the bss entry of the new AP is seen in the driver, but gets timed out by the
8758 * time it is accessed in __cfg80211_roamed() due to delay in scheduling
8759 * rdev->event_work. In case of any failures, the reference is released
8760 * either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be
8761 * released while disconnecting from the current bss.
8762 */
8763 void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info,
8764 gfp_t gfp);
8765
8766 /**
8767 * cfg80211_port_authorized - notify cfg80211 of successful security association
8768 *
8769 * @dev: network device
8770 * @peer_addr: BSSID of the AP/P2P GO in case of STA/GC or STA/GC MAC address
8771 * in case of AP/P2P GO
8772 * @td_bitmap: transition disable policy
8773 * @td_bitmap_len: Length of transition disable policy
8774 * @gfp: allocation flags
8775 *
8776 * This function should be called by a driver that supports 4 way handshake
8777 * offload after a security association was successfully established (i.e.,
8778 * the 4 way handshake was completed successfully). The call to this function
8779 * should be preceded with a call to cfg80211_connect_result(),
8780 * cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to
8781 * indicate the 802.11 association.
8782 * This function can also be called by AP/P2P GO driver that supports
8783 * authentication offload. In this case the peer_mac passed is that of
8784 * associated STA/GC.
8785 */
8786 void cfg80211_port_authorized(struct net_device *dev, const u8 *peer_addr,
8787 const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp);
8788
8789 /**
8790 * cfg80211_disconnected - notify cfg80211 that connection was dropped
8791 *
8792 * @dev: network device
8793 * @ie: information elements of the deauth/disassoc frame (may be %NULL)
8794 * @ie_len: length of IEs
8795 * @reason: reason code for the disconnection, set it to 0 if unknown
8796 * @locally_generated: disconnection was requested locally
8797 * @gfp: allocation flags
8798 *
8799 * After it calls this function, the driver should enter an idle state
8800 * and not try to connect to any AP any more.
8801 */
8802 void cfg80211_disconnected(struct net_device *dev, u16 reason,
8803 const u8 *ie, size_t ie_len,
8804 bool locally_generated, gfp_t gfp);
8805
8806 /**
8807 * cfg80211_ready_on_channel - notification of remain_on_channel start
8808 * @wdev: wireless device
8809 * @cookie: the request cookie
8810 * @chan: The current channel (from remain_on_channel request)
8811 * @duration: Duration in milliseconds that the driver intents to remain on the
8812 * channel
8813 * @gfp: allocation flags
8814 */
8815 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie,
8816 struct ieee80211_channel *chan,
8817 unsigned int duration, gfp_t gfp);
8818
8819 /**
8820 * cfg80211_remain_on_channel_expired - remain_on_channel duration expired
8821 * @wdev: wireless device
8822 * @cookie: the request cookie
8823 * @chan: The current channel (from remain_on_channel request)
8824 * @gfp: allocation flags
8825 */
8826 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie,
8827 struct ieee80211_channel *chan,
8828 gfp_t gfp);
8829
8830 /**
8831 * cfg80211_tx_mgmt_expired - tx_mgmt duration expired
8832 * @wdev: wireless device
8833 * @cookie: the requested cookie
8834 * @chan: The current channel (from tx_mgmt request)
8835 * @gfp: allocation flags
8836 */
8837 void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie,
8838 struct ieee80211_channel *chan, gfp_t gfp);
8839
8840 /**
8841 * cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics.
8842 *
8843 * @sinfo: the station information
8844 * @gfp: allocation flags
8845 *
8846 * Return: 0 on success. Non-zero on error.
8847 */
8848 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp);
8849
8850 /**
8851 * cfg80211_link_sinfo_alloc_tid_stats - allocate per-tid statistics.
8852 *
8853 * @link_sinfo: the link station information
8854 * @gfp: allocation flags
8855 *
8856 * Return: 0 on success. Non-zero on error.
8857 */
8858 int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo,
8859 gfp_t gfp);
8860
8861 /**
8862 * cfg80211_sinfo_release_content - release contents of station info
8863 * @sinfo: the station information
8864 *
8865 * Releases any potentially allocated sub-information of the station
8866 * information, but not the struct itself (since it's typically on
8867 * the stack.)
8868 */
cfg80211_sinfo_release_content(struct station_info * sinfo)8869 static inline void cfg80211_sinfo_release_content(struct station_info *sinfo)
8870 {
8871 kfree(sinfo->pertid);
8872
8873 for (int link_id = 0; link_id < ARRAY_SIZE(sinfo->links); link_id++) {
8874 if (sinfo->links[link_id]) {
8875 kfree(sinfo->links[link_id]->pertid);
8876 kfree(sinfo->links[link_id]);
8877 }
8878 }
8879 }
8880
8881 /**
8882 * cfg80211_new_sta - notify userspace about station
8883 *
8884 * @dev: the netdev
8885 * @mac_addr: the station's address
8886 * @sinfo: the station information
8887 * @gfp: allocation flags
8888 */
8889 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr,
8890 struct station_info *sinfo, gfp_t gfp);
8891
8892 /**
8893 * cfg80211_del_sta_sinfo - notify userspace about deletion of a station
8894 * @dev: the netdev
8895 * @mac_addr: the station's address. For MLD station, MLD address is used.
8896 * @sinfo: the station information/statistics
8897 * @gfp: allocation flags
8898 */
8899 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr,
8900 struct station_info *sinfo, gfp_t gfp);
8901
8902 /**
8903 * cfg80211_del_sta - notify userspace about deletion of a station
8904 *
8905 * @dev: the netdev
8906 * @mac_addr: the station's address. For MLD station, MLD address is used.
8907 * @gfp: allocation flags
8908 */
cfg80211_del_sta(struct net_device * dev,const u8 * mac_addr,gfp_t gfp)8909 static inline void cfg80211_del_sta(struct net_device *dev,
8910 const u8 *mac_addr, gfp_t gfp)
8911 {
8912 cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp);
8913 }
8914
8915 /**
8916 * cfg80211_conn_failed - connection request failed notification
8917 *
8918 * @dev: the netdev
8919 * @mac_addr: the station's address
8920 * @reason: the reason for connection failure
8921 * @gfp: allocation flags
8922 *
8923 * Whenever a station tries to connect to an AP and if the station
8924 * could not connect to the AP as the AP has rejected the connection
8925 * for some reasons, this function is called.
8926 *
8927 * The reason for connection failure can be any of the value from
8928 * nl80211_connect_failed_reason enum
8929 */
8930 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr,
8931 enum nl80211_connect_failed_reason reason,
8932 gfp_t gfp);
8933
8934 /**
8935 * struct cfg80211_rx_info - received management frame info
8936 *
8937 * @freq: Frequency on which the frame was received in kHz
8938 * @sig_dbm: signal strength in dBm, or 0 if unknown
8939 * @have_link_id: indicates the frame was received on a link of
8940 * an MLD, i.e. the @link_id field is valid
8941 * @link_id: the ID of the link the frame was received on
8942 * @buf: Management frame (header + body)
8943 * @len: length of the frame data
8944 * @flags: flags, as defined in &enum nl80211_rxmgmt_flags
8945 * @rx_tstamp: Hardware timestamp of frame RX in nanoseconds
8946 * @ack_tstamp: Hardware timestamp of ack TX in nanoseconds
8947 */
8948 struct cfg80211_rx_info {
8949 int freq;
8950 int sig_dbm;
8951 bool have_link_id;
8952 u8 link_id;
8953 const u8 *buf;
8954 size_t len;
8955 u32 flags;
8956 u64 rx_tstamp;
8957 u64 ack_tstamp;
8958 };
8959
8960 /**
8961 * cfg80211_rx_mgmt_ext - management frame notification with extended info
8962 * @wdev: wireless device receiving the frame
8963 * @info: RX info as defined in struct cfg80211_rx_info
8964 *
8965 * This function is called whenever an Action frame is received for a station
8966 * mode interface, but is not processed in kernel.
8967 *
8968 * Return: %true if a user space application has registered for this frame.
8969 * For action frames, that makes it responsible for rejecting unrecognized
8970 * action frames; %false otherwise, in which case for action frames the
8971 * driver is responsible for rejecting the frame.
8972 */
8973 bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev,
8974 struct cfg80211_rx_info *info);
8975
8976 /**
8977 * cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame
8978 * @wdev: wireless device receiving the frame
8979 * @freq: Frequency on which the frame was received in KHz
8980 * @sig_dbm: signal strength in dBm, or 0 if unknown
8981 * @buf: Management frame (header + body)
8982 * @len: length of the frame data
8983 * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8984 *
8985 * This function is called whenever an Action frame is received for a station
8986 * mode interface, but is not processed in kernel.
8987 *
8988 * Return: %true if a user space application has registered for this frame.
8989 * For action frames, that makes it responsible for rejecting unrecognized
8990 * action frames; %false otherwise, in which case for action frames the
8991 * driver is responsible for rejecting the frame.
8992 */
cfg80211_rx_mgmt_khz(struct wireless_dev * wdev,int freq,int sig_dbm,const u8 * buf,size_t len,u32 flags)8993 static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq,
8994 int sig_dbm, const u8 *buf, size_t len,
8995 u32 flags)
8996 {
8997 struct cfg80211_rx_info info = {
8998 .freq = freq,
8999 .sig_dbm = sig_dbm,
9000 .buf = buf,
9001 .len = len,
9002 .flags = flags
9003 };
9004
9005 return cfg80211_rx_mgmt_ext(wdev, &info);
9006 }
9007
9008 /**
9009 * cfg80211_rx_mgmt - notification of received, unprocessed management frame
9010 * @wdev: wireless device receiving the frame
9011 * @freq: Frequency on which the frame was received in MHz
9012 * @sig_dbm: signal strength in dBm, or 0 if unknown
9013 * @buf: Management frame (header + body)
9014 * @len: length of the frame data
9015 * @flags: flags, as defined in enum nl80211_rxmgmt_flags
9016 *
9017 * This function is called whenever an Action frame is received for a station
9018 * mode interface, but is not processed in kernel.
9019 *
9020 * Return: %true if a user space application has registered for this frame.
9021 * For action frames, that makes it responsible for rejecting unrecognized
9022 * action frames; %false otherwise, in which case for action frames the
9023 * driver is responsible for rejecting the frame.
9024 */
cfg80211_rx_mgmt(struct wireless_dev * wdev,int freq,int sig_dbm,const u8 * buf,size_t len,u32 flags)9025 static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq,
9026 int sig_dbm, const u8 *buf, size_t len,
9027 u32 flags)
9028 {
9029 struct cfg80211_rx_info info = {
9030 .freq = MHZ_TO_KHZ(freq),
9031 .sig_dbm = sig_dbm,
9032 .buf = buf,
9033 .len = len,
9034 .flags = flags
9035 };
9036
9037 return cfg80211_rx_mgmt_ext(wdev, &info);
9038 }
9039
9040 /**
9041 * struct cfg80211_tx_status - TX status for management frame information
9042 *
9043 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
9044 * @tx_tstamp: hardware TX timestamp in nanoseconds
9045 * @ack_tstamp: hardware ack RX timestamp in nanoseconds
9046 * @buf: Management frame (header + body)
9047 * @len: length of the frame data
9048 * @ack: Whether frame was acknowledged
9049 */
9050 struct cfg80211_tx_status {
9051 u64 cookie;
9052 u64 tx_tstamp;
9053 u64 ack_tstamp;
9054 const u8 *buf;
9055 size_t len;
9056 bool ack;
9057 };
9058
9059 /**
9060 * cfg80211_mgmt_tx_status_ext - TX status notification with extended info
9061 * @wdev: wireless device receiving the frame
9062 * @status: TX status data
9063 * @gfp: context flags
9064 *
9065 * This function is called whenever a management frame was requested to be
9066 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
9067 * transmission attempt with extended info.
9068 */
9069 void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev,
9070 struct cfg80211_tx_status *status, gfp_t gfp);
9071
9072 /**
9073 * cfg80211_mgmt_tx_status - notification of TX status for management frame
9074 * @wdev: wireless device receiving the frame
9075 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
9076 * @buf: Management frame (header + body)
9077 * @len: length of the frame data
9078 * @ack: Whether frame was acknowledged
9079 * @gfp: context flags
9080 *
9081 * This function is called whenever a management frame was requested to be
9082 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
9083 * transmission attempt.
9084 */
cfg80211_mgmt_tx_status(struct wireless_dev * wdev,u64 cookie,const u8 * buf,size_t len,bool ack,gfp_t gfp)9085 static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev,
9086 u64 cookie, const u8 *buf,
9087 size_t len, bool ack, gfp_t gfp)
9088 {
9089 struct cfg80211_tx_status status = {
9090 .cookie = cookie,
9091 .buf = buf,
9092 .len = len,
9093 .ack = ack
9094 };
9095
9096 cfg80211_mgmt_tx_status_ext(wdev, &status, gfp);
9097 }
9098
9099 /**
9100 * cfg80211_control_port_tx_status - notification of TX status for control
9101 * port frames
9102 * @wdev: wireless device receiving the frame
9103 * @cookie: Cookie returned by cfg80211_ops::tx_control_port()
9104 * @buf: Data frame (header + body)
9105 * @len: length of the frame data
9106 * @ack: Whether frame was acknowledged
9107 * @gfp: context flags
9108 *
9109 * This function is called whenever a control port frame was requested to be
9110 * transmitted with cfg80211_ops::tx_control_port() to report the TX status of
9111 * the transmission attempt.
9112 */
9113 void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie,
9114 const u8 *buf, size_t len, bool ack,
9115 gfp_t gfp);
9116
9117 /**
9118 * cfg80211_rx_control_port - notification about a received control port frame
9119 * @dev: The device the frame matched to
9120 * @skb: The skbuf with the control port frame. It is assumed that the skbuf
9121 * is 802.3 formatted (with 802.3 header). The skb can be non-linear.
9122 * This function does not take ownership of the skb, so the caller is
9123 * responsible for any cleanup. The caller must also ensure that
9124 * skb->protocol is set appropriately.
9125 * @unencrypted: Whether the frame was received unencrypted
9126 * @link_id: the link the frame was received on, -1 if not applicable or unknown
9127 *
9128 * This function is used to inform userspace about a received control port
9129 * frame. It should only be used if userspace indicated it wants to receive
9130 * control port frames over nl80211.
9131 *
9132 * The frame is the data portion of the 802.3 or 802.11 data frame with all
9133 * network layer headers removed (e.g. the raw EAPoL frame).
9134 *
9135 * Return: %true if the frame was passed to userspace
9136 */
9137 bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb,
9138 bool unencrypted, int link_id);
9139
9140 /**
9141 * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event
9142 * @dev: network device
9143 * @rssi_event: the triggered RSSI event
9144 * @rssi_level: new RSSI level value or 0 if not available
9145 * @gfp: context flags
9146 *
9147 * This function is called when a configured connection quality monitoring
9148 * rssi threshold reached event occurs.
9149 */
9150 void cfg80211_cqm_rssi_notify(struct net_device *dev,
9151 enum nl80211_cqm_rssi_threshold_event rssi_event,
9152 s32 rssi_level, gfp_t gfp);
9153
9154 /**
9155 * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer
9156 * @dev: network device
9157 * @peer: peer's MAC address
9158 * @num_packets: how many packets were lost -- should be a fixed threshold
9159 * but probably no less than maybe 50, or maybe a throughput dependent
9160 * threshold (to account for temporary interference)
9161 * @gfp: context flags
9162 */
9163 void cfg80211_cqm_pktloss_notify(struct net_device *dev,
9164 const u8 *peer, u32 num_packets, gfp_t gfp);
9165
9166 /**
9167 * cfg80211_cqm_txe_notify - TX error rate event
9168 * @dev: network device
9169 * @peer: peer's MAC address
9170 * @num_packets: how many packets were lost
9171 * @rate: % of packets which failed transmission
9172 * @intvl: interval (in s) over which the TX failure threshold was breached.
9173 * @gfp: context flags
9174 *
9175 * Notify userspace when configured % TX failures over number of packets in a
9176 * given interval is exceeded.
9177 */
9178 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer,
9179 u32 num_packets, u32 rate, u32 intvl, gfp_t gfp);
9180
9181 /**
9182 * cfg80211_cqm_beacon_loss_notify - beacon loss event
9183 * @dev: network device
9184 * @gfp: context flags
9185 *
9186 * Notify userspace about beacon loss from the connected AP.
9187 */
9188 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp);
9189
9190 /**
9191 * __cfg80211_radar_event - radar detection event
9192 * @wiphy: the wiphy
9193 * @chandef: chandef for the current channel
9194 * @offchan: the radar has been detected on the offchannel chain
9195 * @gfp: context flags
9196 *
9197 * This function is called when a radar is detected on the current chanenl.
9198 */
9199 void __cfg80211_radar_event(struct wiphy *wiphy,
9200 struct cfg80211_chan_def *chandef,
9201 bool offchan, gfp_t gfp);
9202
9203 static inline void
cfg80211_radar_event(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,gfp_t gfp)9204 cfg80211_radar_event(struct wiphy *wiphy,
9205 struct cfg80211_chan_def *chandef,
9206 gfp_t gfp)
9207 {
9208 __cfg80211_radar_event(wiphy, chandef, false, gfp);
9209 }
9210
9211 static inline void
cfg80211_background_radar_event(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,gfp_t gfp)9212 cfg80211_background_radar_event(struct wiphy *wiphy,
9213 struct cfg80211_chan_def *chandef,
9214 gfp_t gfp)
9215 {
9216 __cfg80211_radar_event(wiphy, chandef, true, gfp);
9217 }
9218
9219 /**
9220 * cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event
9221 * @dev: network device
9222 * @mac: MAC address of a station which opmode got modified
9223 * @sta_opmode: station's current opmode value
9224 * @gfp: context flags
9225 *
9226 * Driver should call this function when station's opmode modified via action
9227 * frame.
9228 */
9229 void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac,
9230 struct sta_opmode_info *sta_opmode,
9231 gfp_t gfp);
9232
9233 /**
9234 * cfg80211_cac_event - Channel availability check (CAC) event
9235 * @netdev: network device
9236 * @chandef: chandef for the current channel
9237 * @event: type of event
9238 * @gfp: context flags
9239 * @link_id: valid link_id for MLO operation or 0 otherwise.
9240 *
9241 * This function is called when a Channel availability check (CAC) is finished
9242 * or aborted. This must be called to notify the completion of a CAC process,
9243 * also by full-MAC drivers.
9244 */
9245 void cfg80211_cac_event(struct net_device *netdev,
9246 const struct cfg80211_chan_def *chandef,
9247 enum nl80211_radar_event event, gfp_t gfp,
9248 unsigned int link_id);
9249
9250 /**
9251 * cfg80211_background_cac_abort - Channel Availability Check offchan abort event
9252 * @wiphy: the wiphy
9253 *
9254 * This function is called by the driver when a Channel Availability Check
9255 * (CAC) is aborted by a offchannel dedicated chain.
9256 */
9257 void cfg80211_background_cac_abort(struct wiphy *wiphy);
9258
9259 /**
9260 * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying
9261 * @dev: network device
9262 * @bssid: BSSID of AP (to avoid races)
9263 * @replay_ctr: new replay counter
9264 * @gfp: allocation flags
9265 */
9266 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid,
9267 const u8 *replay_ctr, gfp_t gfp);
9268
9269 /**
9270 * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate
9271 * @dev: network device
9272 * @index: candidate index (the smaller the index, the higher the priority)
9273 * @bssid: BSSID of AP
9274 * @preauth: Whether AP advertises support for RSN pre-authentication
9275 * @gfp: allocation flags
9276 */
9277 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index,
9278 const u8 *bssid, bool preauth, gfp_t gfp);
9279
9280 /**
9281 * cfg80211_rx_spurious_frame - inform userspace about a spurious frame
9282 * @dev: The device the frame matched to
9283 * @link_id: the link the frame was received on, -1 if not applicable or unknown
9284 * @addr: the transmitter address
9285 * @gfp: context flags
9286 *
9287 * This function is used in AP mode (only!) to inform userspace that
9288 * a spurious class 3 frame was received, to be able to deauth the
9289 * sender.
9290 * Return: %true if the frame was passed to userspace (or this failed
9291 * for a reason other than not having a subscription.)
9292 */
9293 bool cfg80211_rx_spurious_frame(struct net_device *dev, const u8 *addr,
9294 int link_id, gfp_t gfp);
9295
9296 /**
9297 * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame
9298 * @dev: The device the frame matched to
9299 * @addr: the transmitter address
9300 * @link_id: the link the frame was received on, -1 if not applicable or unknown
9301 * @gfp: context flags
9302 *
9303 * This function is used in AP mode (only!) to inform userspace that
9304 * an associated station sent a 4addr frame but that wasn't expected.
9305 * It is allowed and desirable to send this event only once for each
9306 * station to avoid event flooding.
9307 * Return: %true if the frame was passed to userspace (or this failed
9308 * for a reason other than not having a subscription.)
9309 */
9310 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev, const u8 *addr,
9311 int link_id, gfp_t gfp);
9312
9313 /**
9314 * cfg80211_probe_status - notify userspace about probe status
9315 * @dev: the device the probe was sent on
9316 * @addr: the address of the peer
9317 * @cookie: the cookie filled in @probe_client previously
9318 * @acked: indicates whether probe was acked or not
9319 * @ack_signal: signal strength (in dBm) of the ACK frame.
9320 * @is_valid_ack_signal: indicates the ack_signal is valid or not.
9321 * @gfp: allocation flags
9322 */
9323 void cfg80211_probe_status(struct net_device *dev, const u8 *addr,
9324 u64 cookie, bool acked, s32 ack_signal,
9325 bool is_valid_ack_signal, gfp_t gfp);
9326
9327 /**
9328 * cfg80211_report_obss_beacon_khz - report beacon from other APs
9329 * @wiphy: The wiphy that received the beacon
9330 * @frame: the frame
9331 * @len: length of the frame
9332 * @freq: frequency the frame was received on in KHz
9333 * @sig_dbm: signal strength in dBm, or 0 if unknown
9334 *
9335 * Use this function to report to userspace when a beacon was
9336 * received. It is not useful to call this when there is no
9337 * netdev that is in AP/GO mode.
9338 */
9339 void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame,
9340 size_t len, int freq, int sig_dbm);
9341
9342 /**
9343 * cfg80211_report_obss_beacon - report beacon from other APs
9344 * @wiphy: The wiphy that received the beacon
9345 * @frame: the frame
9346 * @len: length of the frame
9347 * @freq: frequency the frame was received on
9348 * @sig_dbm: signal strength in dBm, or 0 if unknown
9349 *
9350 * Use this function to report to userspace when a beacon was
9351 * received. It is not useful to call this when there is no
9352 * netdev that is in AP/GO mode.
9353 */
cfg80211_report_obss_beacon(struct wiphy * wiphy,const u8 * frame,size_t len,int freq,int sig_dbm)9354 static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy,
9355 const u8 *frame, size_t len,
9356 int freq, int sig_dbm)
9357 {
9358 cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq),
9359 sig_dbm);
9360 }
9361
9362 /**
9363 * struct cfg80211_beaconing_check_config - beacon check configuration
9364 * @iftype: the interface type to check for
9365 * @relax: allow IR-relaxation conditions to apply (e.g. another
9366 * interface connected already on the same channel)
9367 * NOTE: If this is set, wiphy mutex must be held.
9368 * @reg_power: &enum ieee80211_ap_reg_power value indicating the
9369 * advertised/used 6 GHz regulatory power setting
9370 */
9371 struct cfg80211_beaconing_check_config {
9372 enum nl80211_iftype iftype;
9373 enum ieee80211_ap_reg_power reg_power;
9374 bool relax;
9375 };
9376
9377 /**
9378 * cfg80211_reg_check_beaconing - check if beaconing is allowed
9379 * @wiphy: the wiphy
9380 * @chandef: the channel definition
9381 * @cfg: additional parameters for the checking
9382 *
9383 * Return: %true if there is no secondary channel or the secondary channel(s)
9384 * can be used for beaconing (i.e. is not a radar channel etc.)
9385 */
9386 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
9387 struct cfg80211_chan_def *chandef,
9388 struct cfg80211_beaconing_check_config *cfg);
9389
9390 /**
9391 * cfg80211_reg_can_beacon - check if beaconing is allowed
9392 * @wiphy: the wiphy
9393 * @chandef: the channel definition
9394 * @iftype: interface type
9395 *
9396 * Return: %true if there is no secondary channel or the secondary channel(s)
9397 * can be used for beaconing (i.e. is not a radar channel etc.)
9398 */
9399 static inline bool
cfg80211_reg_can_beacon(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)9400 cfg80211_reg_can_beacon(struct wiphy *wiphy,
9401 struct cfg80211_chan_def *chandef,
9402 enum nl80211_iftype iftype)
9403 {
9404 struct cfg80211_beaconing_check_config config = {
9405 .iftype = iftype,
9406 };
9407
9408 return cfg80211_reg_check_beaconing(wiphy, chandef, &config);
9409 }
9410
9411 /**
9412 * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation
9413 * @wiphy: the wiphy
9414 * @chandef: the channel definition
9415 * @iftype: interface type
9416 *
9417 * Return: %true if there is no secondary channel or the secondary channel(s)
9418 * can be used for beaconing (i.e. is not a radar channel etc.). This version
9419 * also checks if IR-relaxation conditions apply, to allow beaconing under
9420 * more permissive conditions.
9421 *
9422 * Context: Requires the wiphy mutex to be held.
9423 */
9424 static inline bool
cfg80211_reg_can_beacon_relax(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)9425 cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
9426 struct cfg80211_chan_def *chandef,
9427 enum nl80211_iftype iftype)
9428 {
9429 struct cfg80211_beaconing_check_config config = {
9430 .iftype = iftype,
9431 .relax = true,
9432 };
9433
9434 return cfg80211_reg_check_beaconing(wiphy, chandef, &config);
9435 }
9436
9437 /**
9438 * cfg80211_ch_switch_notify - update wdev channel and notify userspace
9439 * @dev: the device which switched channels
9440 * @chandef: the new channel definition
9441 * @link_id: the link ID for MLO, must be 0 for non-MLO
9442 *
9443 * Caller must hold wiphy mutex, therefore must only be called from sleepable
9444 * driver context!
9445 */
9446 void cfg80211_ch_switch_notify(struct net_device *dev,
9447 struct cfg80211_chan_def *chandef,
9448 unsigned int link_id);
9449
9450 /**
9451 * cfg80211_ch_switch_started_notify - notify channel switch start
9452 * @dev: the device on which the channel switch started
9453 * @chandef: the future channel definition
9454 * @link_id: the link ID for MLO, must be 0 for non-MLO
9455 * @count: the number of TBTTs until the channel switch happens
9456 * @quiet: whether or not immediate quiet was requested by the AP
9457 *
9458 * Inform the userspace about the channel switch that has just
9459 * started, so that it can take appropriate actions (eg. starting
9460 * channel switch on other vifs), if necessary.
9461 */
9462 void cfg80211_ch_switch_started_notify(struct net_device *dev,
9463 struct cfg80211_chan_def *chandef,
9464 unsigned int link_id, u8 count,
9465 bool quiet);
9466
9467 /**
9468 * ieee80211_operating_class_to_band - convert operating class to band
9469 *
9470 * @operating_class: the operating class to convert
9471 * @band: band pointer to fill
9472 *
9473 * Return: %true if the conversion was successful, %false otherwise.
9474 */
9475 bool ieee80211_operating_class_to_band(u8 operating_class,
9476 enum nl80211_band *band);
9477
9478 /**
9479 * ieee80211_operating_class_to_chandef - convert operating class to chandef
9480 *
9481 * @operating_class: the operating class to convert
9482 * @chan: the ieee80211_channel to convert
9483 * @chandef: a pointer to the resulting chandef
9484 *
9485 * Return: %true if the conversion was successful, %false otherwise.
9486 */
9487 bool ieee80211_operating_class_to_chandef(u8 operating_class,
9488 struct ieee80211_channel *chan,
9489 struct cfg80211_chan_def *chandef);
9490
9491 /**
9492 * ieee80211_chandef_to_operating_class - convert chandef to operation class
9493 *
9494 * @chandef: the chandef to convert
9495 * @op_class: a pointer to the resulting operating class
9496 *
9497 * Return: %true if the conversion was successful, %false otherwise.
9498 */
9499 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
9500 u8 *op_class);
9501
9502 /**
9503 * ieee80211_chandef_to_khz - convert chandef to frequency in KHz
9504 *
9505 * @chandef: the chandef to convert
9506 *
9507 * Return: the center frequency of chandef (1st segment) in KHz.
9508 */
9509 static inline u32
ieee80211_chandef_to_khz(const struct cfg80211_chan_def * chandef)9510 ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef)
9511 {
9512 return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
9513 }
9514
9515 /**
9516 * cfg80211_tdls_oper_request - request userspace to perform TDLS operation
9517 * @dev: the device on which the operation is requested
9518 * @peer: the MAC address of the peer device
9519 * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or
9520 * NL80211_TDLS_TEARDOWN)
9521 * @reason_code: the reason code for teardown request
9522 * @gfp: allocation flags
9523 *
9524 * This function is used to request userspace to perform TDLS operation that
9525 * requires knowledge of keys, i.e., link setup or teardown when the AP
9526 * connection uses encryption. This is optional mechanism for the driver to use
9527 * if it can automatically determine when a TDLS link could be useful (e.g.,
9528 * based on traffic and signal strength for a peer).
9529 */
9530 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer,
9531 enum nl80211_tdls_operation oper,
9532 u16 reason_code, gfp_t gfp);
9533
9534 /**
9535 * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units)
9536 * @rate: given rate_info to calculate bitrate from
9537 *
9538 * Return: calculated bitrate
9539 */
9540 u32 cfg80211_calculate_bitrate(struct rate_info *rate);
9541
9542 /**
9543 * cfg80211_unregister_wdev - remove the given wdev
9544 * @wdev: struct wireless_dev to remove
9545 *
9546 * This function removes the device so it can no longer be used. It is necessary
9547 * to call this function even when cfg80211 requests the removal of the device
9548 * by calling the del_virtual_intf() callback. The function must also be called
9549 * when the driver wishes to unregister the wdev, e.g. when the hardware device
9550 * is unbound from the driver.
9551 *
9552 * Context: Requires the RTNL and wiphy mutex to be held.
9553 */
9554 void cfg80211_unregister_wdev(struct wireless_dev *wdev);
9555
9556 /**
9557 * cfg80211_register_netdevice - register the given netdev
9558 * @dev: the netdev to register
9559 *
9560 * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9561 * than register_netdevice(), unregister_netdev() is impossible as the RTNL is
9562 * held. Otherwise, both register_netdevice() and register_netdev() are usable
9563 * instead as well.
9564 *
9565 * Context: Requires the RTNL and wiphy mutex to be held.
9566 *
9567 * Return: 0 on success. Non-zero on error.
9568 */
9569 int cfg80211_register_netdevice(struct net_device *dev);
9570
9571 /**
9572 * cfg80211_unregister_netdevice - unregister the given netdev
9573 * @dev: the netdev to register
9574 *
9575 * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9576 * than unregister_netdevice(), unregister_netdev() is impossible as the RTNL
9577 * is held. Otherwise, both unregister_netdevice() and unregister_netdev() are
9578 * usable instead as well.
9579 *
9580 * Context: Requires the RTNL and wiphy mutex to be held.
9581 */
cfg80211_unregister_netdevice(struct net_device * dev)9582 static inline void cfg80211_unregister_netdevice(struct net_device *dev)
9583 {
9584 #if IS_ENABLED(CONFIG_CFG80211)
9585 cfg80211_unregister_wdev(dev->ieee80211_ptr);
9586 #endif
9587 }
9588
9589 /**
9590 * struct cfg80211_ft_event_params - FT Information Elements
9591 * @ies: FT IEs
9592 * @ies_len: length of the FT IE in bytes
9593 * @target_ap: target AP's MAC address
9594 * @ric_ies: RIC IE
9595 * @ric_ies_len: length of the RIC IE in bytes
9596 */
9597 struct cfg80211_ft_event_params {
9598 const u8 *ies;
9599 size_t ies_len;
9600 const u8 *target_ap;
9601 const u8 *ric_ies;
9602 size_t ric_ies_len;
9603 };
9604
9605 /**
9606 * cfg80211_ft_event - notify userspace about FT IE and RIC IE
9607 * @netdev: network device
9608 * @ft_event: IE information
9609 */
9610 void cfg80211_ft_event(struct net_device *netdev,
9611 struct cfg80211_ft_event_params *ft_event);
9612
9613 /**
9614 * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer
9615 * @ies: the input IE buffer
9616 * @len: the input length
9617 * @attr: the attribute ID to find
9618 * @buf: output buffer, can be %NULL if the data isn't needed, e.g.
9619 * if the function is only called to get the needed buffer size
9620 * @bufsize: size of the output buffer
9621 *
9622 * The function finds a given P2P attribute in the (vendor) IEs and
9623 * copies its contents to the given buffer.
9624 *
9625 * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is
9626 * malformed or the attribute can't be found (respectively), or the
9627 * length of the found attribute (which can be zero).
9628 */
9629 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
9630 enum ieee80211_p2p_attr_id attr,
9631 u8 *buf, unsigned int bufsize);
9632
9633 /**
9634 * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC)
9635 * @ies: the IE buffer
9636 * @ielen: the length of the IE buffer
9637 * @ids: an array with element IDs that are allowed before
9638 * the split. A WLAN_EID_EXTENSION value means that the next
9639 * EID in the list is a sub-element of the EXTENSION IE.
9640 * @n_ids: the size of the element ID array
9641 * @after_ric: array IE types that come after the RIC element
9642 * @n_after_ric: size of the @after_ric array
9643 * @offset: offset where to start splitting in the buffer
9644 *
9645 * This function splits an IE buffer by updating the @offset
9646 * variable to point to the location where the buffer should be
9647 * split.
9648 *
9649 * It assumes that the given IE buffer is well-formed, this
9650 * has to be guaranteed by the caller!
9651 *
9652 * It also assumes that the IEs in the buffer are ordered
9653 * correctly, if not the result of using this function will not
9654 * be ordered correctly either, i.e. it does no reordering.
9655 *
9656 * Return: The offset where the next part of the buffer starts, which
9657 * may be @ielen if the entire (remainder) of the buffer should be
9658 * used.
9659 */
9660 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
9661 const u8 *ids, int n_ids,
9662 const u8 *after_ric, int n_after_ric,
9663 size_t offset);
9664
9665 /**
9666 * ieee80211_ie_split - split an IE buffer according to ordering
9667 * @ies: the IE buffer
9668 * @ielen: the length of the IE buffer
9669 * @ids: an array with element IDs that are allowed before
9670 * the split. A WLAN_EID_EXTENSION value means that the next
9671 * EID in the list is a sub-element of the EXTENSION IE.
9672 * @n_ids: the size of the element ID array
9673 * @offset: offset where to start splitting in the buffer
9674 *
9675 * This function splits an IE buffer by updating the @offset
9676 * variable to point to the location where the buffer should be
9677 * split.
9678 *
9679 * It assumes that the given IE buffer is well-formed, this
9680 * has to be guaranteed by the caller!
9681 *
9682 * It also assumes that the IEs in the buffer are ordered
9683 * correctly, if not the result of using this function will not
9684 * be ordered correctly either, i.e. it does no reordering.
9685 *
9686 * Return: The offset where the next part of the buffer starts, which
9687 * may be @ielen if the entire (remainder) of the buffer should be
9688 * used.
9689 */
ieee80211_ie_split(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,size_t offset)9690 static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
9691 const u8 *ids, int n_ids, size_t offset)
9692 {
9693 return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset);
9694 }
9695
9696 /**
9697 * ieee80211_fragment_element - fragment the last element in skb
9698 * @skb: The skbuf that the element was added to
9699 * @len_pos: Pointer to length of the element to fragment
9700 * @frag_id: The element ID to use for fragments
9701 *
9702 * This function fragments all data after @len_pos, adding fragmentation
9703 * elements with the given ID as appropriate. The SKB will grow in size
9704 * accordingly.
9705 */
9706 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id);
9707
9708 /**
9709 * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN
9710 * @wdev: the wireless device reporting the wakeup
9711 * @wakeup: the wakeup report
9712 * @gfp: allocation flags
9713 *
9714 * This function reports that the given device woke up. If it
9715 * caused the wakeup, report the reason(s), otherwise you may
9716 * pass %NULL as the @wakeup parameter to advertise that something
9717 * else caused the wakeup.
9718 */
9719 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev,
9720 struct cfg80211_wowlan_wakeup *wakeup,
9721 gfp_t gfp);
9722
9723 /**
9724 * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver.
9725 *
9726 * @wdev: the wireless device for which critical protocol is stopped.
9727 * @gfp: allocation flags
9728 *
9729 * This function can be called by the driver to indicate it has reverted
9730 * operation back to normal. One reason could be that the duration given
9731 * by .crit_proto_start() has expired.
9732 */
9733 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp);
9734
9735 /**
9736 * ieee80211_get_num_supported_channels - get number of channels device has
9737 * @wiphy: the wiphy
9738 *
9739 * Return: the number of channels supported by the device.
9740 */
9741 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy);
9742
9743 /**
9744 * cfg80211_check_combinations - check interface combinations
9745 *
9746 * @wiphy: the wiphy
9747 * @params: the interface combinations parameter
9748 *
9749 * This function can be called by the driver to check whether a
9750 * combination of interfaces and their types are allowed according to
9751 * the interface combinations.
9752 *
9753 * Return: 0 if combinations are allowed. Non-zero on error.
9754 */
9755 int cfg80211_check_combinations(struct wiphy *wiphy,
9756 struct iface_combination_params *params);
9757
9758 /**
9759 * cfg80211_iter_combinations - iterate over matching combinations
9760 *
9761 * @wiphy: the wiphy
9762 * @params: the interface combinations parameter
9763 * @iter: function to call for each matching combination
9764 * @data: pointer to pass to iter function
9765 *
9766 * This function can be called by the driver to check what possible
9767 * combinations it fits in at a given moment, e.g. for channel switching
9768 * purposes.
9769 *
9770 * Return: 0 on success. Non-zero on error.
9771 */
9772 int cfg80211_iter_combinations(struct wiphy *wiphy,
9773 struct iface_combination_params *params,
9774 void (*iter)(const struct ieee80211_iface_combination *c,
9775 void *data),
9776 void *data);
9777 /**
9778 * cfg80211_get_radio_idx_by_chan - get the radio index by the channel
9779 *
9780 * @wiphy: the wiphy
9781 * @chan: channel for which the supported radio index is required
9782 *
9783 * Return: radio index on success or -EINVAL otherwise
9784 */
9785 int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy,
9786 const struct ieee80211_channel *chan);
9787
9788
9789 /**
9790 * cfg80211_stop_iface - trigger interface disconnection
9791 *
9792 * @wiphy: the wiphy
9793 * @wdev: wireless device
9794 * @gfp: context flags
9795 *
9796 * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA
9797 * disconnected.
9798 *
9799 * Note: This doesn't need any locks and is asynchronous.
9800 */
9801 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev,
9802 gfp_t gfp);
9803
9804 /**
9805 * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy
9806 * @wiphy: the wiphy to shut down
9807 *
9808 * This function shuts down all interfaces belonging to this wiphy by
9809 * calling dev_close() (and treating non-netdev interfaces as needed).
9810 * It shouldn't really be used unless there are some fatal device errors
9811 * that really can't be recovered in any other way.
9812 *
9813 * Callers must hold the RTNL and be able to deal with callbacks into
9814 * the driver while the function is running.
9815 */
9816 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy);
9817
9818 /**
9819 * wiphy_ext_feature_set - set the extended feature flag
9820 *
9821 * @wiphy: the wiphy to modify.
9822 * @ftidx: extended feature bit index.
9823 *
9824 * The extended features are flagged in multiple bytes (see
9825 * &struct wiphy.@ext_features)
9826 */
wiphy_ext_feature_set(struct wiphy * wiphy,enum nl80211_ext_feature_index ftidx)9827 static inline void wiphy_ext_feature_set(struct wiphy *wiphy,
9828 enum nl80211_ext_feature_index ftidx)
9829 {
9830 u8 *ft_byte;
9831
9832 ft_byte = &wiphy->ext_features[ftidx / 8];
9833 *ft_byte |= BIT(ftidx % 8);
9834 }
9835
9836 /**
9837 * wiphy_ext_feature_isset - check the extended feature flag
9838 *
9839 * @wiphy: the wiphy to modify.
9840 * @ftidx: extended feature bit index.
9841 *
9842 * The extended features are flagged in multiple bytes (see
9843 * &struct wiphy.@ext_features)
9844 *
9845 * Return: %true if extended feature flag is set, %false otherwise
9846 */
9847 static inline bool
wiphy_ext_feature_isset(struct wiphy * wiphy,enum nl80211_ext_feature_index ftidx)9848 wiphy_ext_feature_isset(struct wiphy *wiphy,
9849 enum nl80211_ext_feature_index ftidx)
9850 {
9851 u8 ft_byte;
9852
9853 ft_byte = wiphy->ext_features[ftidx / 8];
9854 return (ft_byte & BIT(ftidx % 8)) != 0;
9855 }
9856
9857 /**
9858 * cfg80211_free_nan_func - free NAN function
9859 * @f: NAN function that should be freed
9860 *
9861 * Frees all the NAN function and all it's allocated members.
9862 */
9863 void cfg80211_free_nan_func(struct cfg80211_nan_func *f);
9864
9865 /**
9866 * struct cfg80211_nan_match_params - NAN match parameters
9867 * @type: the type of the function that triggered a match. If it is
9868 * %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber.
9869 * If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery
9870 * result.
9871 * If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up.
9872 * @inst_id: the local instance id
9873 * @peer_inst_id: the instance id of the peer's function
9874 * @addr: the MAC address of the peer
9875 * @info_len: the length of the &info
9876 * @info: the Service Specific Info from the peer (if any)
9877 * @cookie: unique identifier of the corresponding function
9878 */
9879 struct cfg80211_nan_match_params {
9880 enum nl80211_nan_function_type type;
9881 u8 inst_id;
9882 u8 peer_inst_id;
9883 const u8 *addr;
9884 u8 info_len;
9885 const u8 *info;
9886 u64 cookie;
9887 };
9888
9889 /**
9890 * cfg80211_nan_match - report a match for a NAN function.
9891 * @wdev: the wireless device reporting the match
9892 * @match: match notification parameters
9893 * @gfp: allocation flags
9894 *
9895 * This function reports that the a NAN function had a match. This
9896 * can be a subscribe that had a match or a solicited publish that
9897 * was sent. It can also be a follow up that was received.
9898 */
9899 void cfg80211_nan_match(struct wireless_dev *wdev,
9900 struct cfg80211_nan_match_params *match, gfp_t gfp);
9901
9902 /**
9903 * cfg80211_nan_func_terminated - notify about NAN function termination.
9904 *
9905 * @wdev: the wireless device reporting the match
9906 * @inst_id: the local instance id
9907 * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*)
9908 * @cookie: unique NAN function identifier
9909 * @gfp: allocation flags
9910 *
9911 * This function reports that the a NAN function is terminated.
9912 */
9913 void cfg80211_nan_func_terminated(struct wireless_dev *wdev,
9914 u8 inst_id,
9915 enum nl80211_nan_func_term_reason reason,
9916 u64 cookie, gfp_t gfp);
9917
9918 /* ethtool helper */
9919 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info);
9920
9921 /**
9922 * cfg80211_external_auth_request - userspace request for authentication
9923 * @netdev: network device
9924 * @params: External authentication parameters
9925 * @gfp: allocation flags
9926 * Returns: 0 on success, < 0 on error
9927 */
9928 int cfg80211_external_auth_request(struct net_device *netdev,
9929 struct cfg80211_external_auth_params *params,
9930 gfp_t gfp);
9931
9932 /**
9933 * cfg80211_pmsr_report - report peer measurement result data
9934 * @wdev: the wireless device reporting the measurement
9935 * @req: the original measurement request
9936 * @result: the result data
9937 * @gfp: allocation flags
9938 */
9939 void cfg80211_pmsr_report(struct wireless_dev *wdev,
9940 struct cfg80211_pmsr_request *req,
9941 struct cfg80211_pmsr_result *result,
9942 gfp_t gfp);
9943
9944 /**
9945 * cfg80211_pmsr_complete - report peer measurement completed
9946 * @wdev: the wireless device reporting the measurement
9947 * @req: the original measurement request
9948 * @gfp: allocation flags
9949 *
9950 * Report that the entire measurement completed, after this
9951 * the request pointer will no longer be valid.
9952 */
9953 void cfg80211_pmsr_complete(struct wireless_dev *wdev,
9954 struct cfg80211_pmsr_request *req,
9955 gfp_t gfp);
9956
9957 /**
9958 * cfg80211_iftype_allowed - check whether the interface can be allowed
9959 * @wiphy: the wiphy
9960 * @iftype: interface type
9961 * @is_4addr: use_4addr flag, must be '0' when check_swif is '1'
9962 * @check_swif: check iftype against software interfaces
9963 *
9964 * Check whether the interface is allowed to operate; additionally, this API
9965 * can be used to check iftype against the software interfaces when
9966 * check_swif is '1'.
9967 *
9968 * Return: %true if allowed, %false otherwise
9969 */
9970 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
9971 bool is_4addr, u8 check_swif);
9972
9973
9974 /**
9975 * cfg80211_assoc_comeback - notification of association that was
9976 * temporarily rejected with a comeback
9977 * @netdev: network device
9978 * @ap_addr: AP (MLD) address that rejected the association
9979 * @timeout: timeout interval value TUs.
9980 *
9981 * this function may sleep. the caller must hold the corresponding wdev's mutex.
9982 */
9983 void cfg80211_assoc_comeback(struct net_device *netdev,
9984 const u8 *ap_addr, u32 timeout);
9985
9986 /* Logging, debugging and troubleshooting/diagnostic helpers. */
9987
9988 /* wiphy_printk helpers, similar to dev_printk */
9989
9990 #define wiphy_printk(level, wiphy, format, args...) \
9991 dev_printk(level, &(wiphy)->dev, format, ##args)
9992 #define wiphy_emerg(wiphy, format, args...) \
9993 dev_emerg(&(wiphy)->dev, format, ##args)
9994 #define wiphy_alert(wiphy, format, args...) \
9995 dev_alert(&(wiphy)->dev, format, ##args)
9996 #define wiphy_crit(wiphy, format, args...) \
9997 dev_crit(&(wiphy)->dev, format, ##args)
9998 #define wiphy_err(wiphy, format, args...) \
9999 dev_err(&(wiphy)->dev, format, ##args)
10000 #define wiphy_warn(wiphy, format, args...) \
10001 dev_warn(&(wiphy)->dev, format, ##args)
10002 #define wiphy_notice(wiphy, format, args...) \
10003 dev_notice(&(wiphy)->dev, format, ##args)
10004 #define wiphy_info(wiphy, format, args...) \
10005 dev_info(&(wiphy)->dev, format, ##args)
10006 #define wiphy_info_once(wiphy, format, args...) \
10007 dev_info_once(&(wiphy)->dev, format, ##args)
10008
10009 #define wiphy_err_ratelimited(wiphy, format, args...) \
10010 dev_err_ratelimited(&(wiphy)->dev, format, ##args)
10011 #define wiphy_warn_ratelimited(wiphy, format, args...) \
10012 dev_warn_ratelimited(&(wiphy)->dev, format, ##args)
10013
10014 #define wiphy_debug(wiphy, format, args...) \
10015 wiphy_printk(KERN_DEBUG, wiphy, format, ##args)
10016
10017 #define wiphy_dbg(wiphy, format, args...) \
10018 dev_dbg(&(wiphy)->dev, format, ##args)
10019
10020 #if defined(VERBOSE_DEBUG)
10021 #define wiphy_vdbg wiphy_dbg
10022 #else
10023 #define wiphy_vdbg(wiphy, format, args...) \
10024 ({ \
10025 if (0) \
10026 wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \
10027 0; \
10028 })
10029 #endif
10030
10031 /*
10032 * wiphy_WARN() acts like wiphy_printk(), but with the key difference
10033 * of using a WARN/WARN_ON to get the message out, including the
10034 * file/line information and a backtrace.
10035 */
10036 #define wiphy_WARN(wiphy, format, args...) \
10037 WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args);
10038
10039 /**
10040 * cfg80211_update_owe_info_event - Notify the peer's OWE info to user space
10041 * @netdev: network device
10042 * @owe_info: peer's owe info
10043 * @gfp: allocation flags
10044 */
10045 void cfg80211_update_owe_info_event(struct net_device *netdev,
10046 struct cfg80211_update_owe_info *owe_info,
10047 gfp_t gfp);
10048
10049 /**
10050 * cfg80211_bss_flush - resets all the scan entries
10051 * @wiphy: the wiphy
10052 */
10053 void cfg80211_bss_flush(struct wiphy *wiphy);
10054
10055 /**
10056 * cfg80211_bss_color_notify - notify about bss color event
10057 * @dev: network device
10058 * @cmd: the actual event we want to notify
10059 * @count: the number of TBTTs until the color change happens
10060 * @color_bitmap: representations of the colors that the local BSS is aware of
10061 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10062 *
10063 * Return: 0 on success. Non-zero on error.
10064 */
10065 int cfg80211_bss_color_notify(struct net_device *dev,
10066 enum nl80211_commands cmd, u8 count,
10067 u64 color_bitmap, u8 link_id);
10068
10069 /**
10070 * cfg80211_obss_color_collision_notify - notify about bss color collision
10071 * @dev: network device
10072 * @color_bitmap: representations of the colors that the local BSS is aware of
10073 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10074 *
10075 * Return: 0 on success. Non-zero on error.
10076 */
cfg80211_obss_color_collision_notify(struct net_device * dev,u64 color_bitmap,u8 link_id)10077 static inline int cfg80211_obss_color_collision_notify(struct net_device *dev,
10078 u64 color_bitmap,
10079 u8 link_id)
10080 {
10081 return cfg80211_bss_color_notify(dev, NL80211_CMD_OBSS_COLOR_COLLISION,
10082 0, color_bitmap, link_id);
10083 }
10084
10085 /**
10086 * cfg80211_color_change_started_notify - notify color change start
10087 * @dev: the device on which the color is switched
10088 * @count: the number of TBTTs until the color change happens
10089 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10090 *
10091 * Inform the userspace about the color change that has started.
10092 *
10093 * Return: 0 on success. Non-zero on error.
10094 */
cfg80211_color_change_started_notify(struct net_device * dev,u8 count,u8 link_id)10095 static inline int cfg80211_color_change_started_notify(struct net_device *dev,
10096 u8 count, u8 link_id)
10097 {
10098 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_STARTED,
10099 count, 0, link_id);
10100 }
10101
10102 /**
10103 * cfg80211_color_change_aborted_notify - notify color change abort
10104 * @dev: the device on which the color is switched
10105 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10106 *
10107 * Inform the userspace about the color change that has aborted.
10108 *
10109 * Return: 0 on success. Non-zero on error.
10110 */
cfg80211_color_change_aborted_notify(struct net_device * dev,u8 link_id)10111 static inline int cfg80211_color_change_aborted_notify(struct net_device *dev,
10112 u8 link_id)
10113 {
10114 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_ABORTED,
10115 0, 0, link_id);
10116 }
10117
10118 /**
10119 * cfg80211_color_change_notify - notify color change completion
10120 * @dev: the device on which the color was switched
10121 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10122 *
10123 * Inform the userspace about the color change that has completed.
10124 *
10125 * Return: 0 on success. Non-zero on error.
10126 */
cfg80211_color_change_notify(struct net_device * dev,u8 link_id)10127 static inline int cfg80211_color_change_notify(struct net_device *dev,
10128 u8 link_id)
10129 {
10130 return cfg80211_bss_color_notify(dev,
10131 NL80211_CMD_COLOR_CHANGE_COMPLETED,
10132 0, 0, link_id);
10133 }
10134
10135 /**
10136 * cfg80211_6ghz_power_type - determine AP regulatory power type
10137 * @control: control flags
10138 * @client_flags: &enum ieee80211_channel_flags for station mode to enable
10139 * SP to LPI fallback, zero otherwise.
10140 *
10141 * Return: regulatory power type from &enum ieee80211_ap_reg_power
10142 */
10143 static inline enum ieee80211_ap_reg_power
cfg80211_6ghz_power_type(u8 control,u32 client_flags)10144 cfg80211_6ghz_power_type(u8 control, u32 client_flags)
10145 {
10146 switch (u8_get_bits(control, IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
10147 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
10148 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
10149 case IEEE80211_6GHZ_CTRL_REG_AP_ROLE_NOT_RELEVANT:
10150 return IEEE80211_REG_LPI_AP;
10151 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
10152 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP_OLD:
10153 return IEEE80211_REG_SP_AP;
10154 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
10155 return IEEE80211_REG_VLP_AP;
10156 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
10157 if (client_flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT)
10158 return IEEE80211_REG_LPI_AP;
10159 return IEEE80211_REG_SP_AP;
10160 default:
10161 return IEEE80211_REG_UNSET_AP;
10162 }
10163 }
10164
10165 /**
10166 * cfg80211_links_removed - Notify about removed STA MLD setup links.
10167 * @dev: network device.
10168 * @link_mask: BIT mask of removed STA MLD setup link IDs.
10169 *
10170 * Inform cfg80211 and the userspace about removed STA MLD setup links due to
10171 * AP MLD removing the corresponding affiliated APs with Multi-Link
10172 * reconfiguration. Note that it's not valid to remove all links, in this
10173 * case disconnect instead.
10174 * Also note that the wdev mutex must be held.
10175 */
10176 void cfg80211_links_removed(struct net_device *dev, u16 link_mask);
10177
10178 /**
10179 * struct cfg80211_mlo_reconf_done_data - MLO reconfiguration data
10180 * @buf: MLO Reconfiguration Response frame (header + body)
10181 * @len: length of the frame data
10182 * @driver_initiated: Indicates whether the add links request is initiated by
10183 * driver. This is set to true when the link reconfiguration request
10184 * initiated by driver due to AP link recommendation requests
10185 * (Ex: BTM (BSS Transition Management) request) handling offloaded to
10186 * driver.
10187 * @added_links: BIT mask of links successfully added to the association
10188 * @links: per-link information indexed by link ID
10189 * @links.bss: the BSS that MLO reconfiguration was requested for, ownership of
10190 * the pointer moves to cfg80211 in the call to
10191 * cfg80211_mlo_reconf_add_done().
10192 *
10193 * The BSS pointer must be set for each link for which 'add' operation was
10194 * requested in the assoc_ml_reconf callback.
10195 */
10196 struct cfg80211_mlo_reconf_done_data {
10197 const u8 *buf;
10198 size_t len;
10199 bool driver_initiated;
10200 u16 added_links;
10201 struct {
10202 struct cfg80211_bss *bss;
10203 u8 *addr;
10204 } links[IEEE80211_MLD_MAX_NUM_LINKS];
10205 };
10206
10207 /**
10208 * cfg80211_mlo_reconf_add_done - Notify about MLO reconfiguration result
10209 * @dev: network device.
10210 * @data: MLO reconfiguration done data, &struct cfg80211_mlo_reconf_done_data
10211 *
10212 * Inform cfg80211 and the userspace that processing of ML reconfiguration
10213 * request to add links to the association is done.
10214 */
10215 void cfg80211_mlo_reconf_add_done(struct net_device *dev,
10216 struct cfg80211_mlo_reconf_done_data *data);
10217
10218 /**
10219 * cfg80211_schedule_channels_check - schedule regulatory check if needed
10220 * @wdev: the wireless device to check
10221 *
10222 * In case the device supports NO_IR or DFS relaxations, schedule regulatory
10223 * channels check, as previous concurrent operation conditions may not
10224 * hold anymore.
10225 */
10226 void cfg80211_schedule_channels_check(struct wireless_dev *wdev);
10227
10228 /**
10229 * cfg80211_epcs_changed - Notify about a change in EPCS state
10230 * @netdev: the wireless device whose EPCS state changed
10231 * @enabled: set to true if EPCS was enabled, otherwise set to false.
10232 */
10233 void cfg80211_epcs_changed(struct net_device *netdev, bool enabled);
10234
10235 /**
10236 * cfg80211_next_nan_dw_notif - Notify about the next NAN Discovery Window (DW)
10237 * @wdev: Pointer to the wireless device structure
10238 * @chan: DW channel (6, 44 or 149)
10239 * @gfp: Memory allocation flags
10240 */
10241 void cfg80211_next_nan_dw_notif(struct wireless_dev *wdev,
10242 struct ieee80211_channel *chan, gfp_t gfp);
10243
10244 /**
10245 * cfg80211_nan_cluster_joined - Notify about NAN cluster join
10246 * @wdev: Pointer to the wireless device structure
10247 * @cluster_id: Cluster ID of the NAN cluster that was joined or started
10248 * @new_cluster: Indicates if this is a new cluster or an existing one
10249 * @gfp: Memory allocation flags
10250 *
10251 * This function is used to notify user space when a NAN cluster has been
10252 * joined, providing the cluster ID and a flag whether it is a new cluster.
10253 */
10254 void cfg80211_nan_cluster_joined(struct wireless_dev *wdev,
10255 const u8 *cluster_id, bool new_cluster,
10256 gfp_t gfp);
10257
10258 #ifdef CONFIG_CFG80211_DEBUGFS
10259 /**
10260 * wiphy_locked_debugfs_read - do a locked read in debugfs
10261 * @wiphy: the wiphy to use
10262 * @file: the file being read
10263 * @buf: the buffer to fill and then read from
10264 * @bufsize: size of the buffer
10265 * @userbuf: the user buffer to copy to
10266 * @count: read count
10267 * @ppos: read position
10268 * @handler: the read handler to call (under wiphy lock)
10269 * @data: additional data to pass to the read handler
10270 *
10271 * Return: the number of characters read, or a negative errno
10272 */
10273 ssize_t wiphy_locked_debugfs_read(struct wiphy *wiphy, struct file *file,
10274 char *buf, size_t bufsize,
10275 char __user *userbuf, size_t count,
10276 loff_t *ppos,
10277 ssize_t (*handler)(struct wiphy *wiphy,
10278 struct file *file,
10279 char *buf,
10280 size_t bufsize,
10281 void *data),
10282 void *data);
10283
10284 /**
10285 * wiphy_locked_debugfs_write - do a locked write in debugfs
10286 * @wiphy: the wiphy to use
10287 * @file: the file being written to
10288 * @buf: the buffer to copy the user data to
10289 * @bufsize: size of the buffer
10290 * @userbuf: the user buffer to copy from
10291 * @count: read count
10292 * @handler: the write handler to call (under wiphy lock)
10293 * @data: additional data to pass to the write handler
10294 *
10295 * Return: the number of characters written, or a negative errno
10296 */
10297 ssize_t wiphy_locked_debugfs_write(struct wiphy *wiphy, struct file *file,
10298 char *buf, size_t bufsize,
10299 const char __user *userbuf, size_t count,
10300 ssize_t (*handler)(struct wiphy *wiphy,
10301 struct file *file,
10302 char *buf,
10303 size_t count,
10304 void *data),
10305 void *data);
10306 #endif
10307
10308 /**
10309 * cfg80211_s1g_get_start_freq_khz - get S1G chandef start frequency
10310 * @chandef: the chandef to use
10311 *
10312 * Return: the chandefs starting frequency in KHz
10313 */
10314 static inline u32
cfg80211_s1g_get_start_freq_khz(const struct cfg80211_chan_def * chandef)10315 cfg80211_s1g_get_start_freq_khz(const struct cfg80211_chan_def *chandef)
10316 {
10317 u32 bw_mhz = cfg80211_chandef_get_width(chandef);
10318 u32 center_khz =
10319 MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
10320 return center_khz - bw_mhz * 500 + 500;
10321 }
10322
10323 /**
10324 * cfg80211_s1g_get_end_freq_khz - get S1G chandef end frequency
10325 * @chandef: the chandef to use
10326 *
10327 * Return: the chandefs ending frequency in KHz
10328 */
10329 static inline u32
cfg80211_s1g_get_end_freq_khz(const struct cfg80211_chan_def * chandef)10330 cfg80211_s1g_get_end_freq_khz(const struct cfg80211_chan_def *chandef)
10331 {
10332 u32 bw_mhz = cfg80211_chandef_get_width(chandef);
10333 u32 center_khz =
10334 MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
10335 return center_khz + bw_mhz * 500 - 500;
10336 }
10337
10338 /**
10339 * cfg80211_s1g_get_primary_sibling - retrieve the sibling 1MHz subchannel
10340 * for an S1G chandef using a 2MHz primary channel.
10341 * @wiphy: wiphy the channel belongs to
10342 * @chandef: the chandef to use
10343 *
10344 * When chandef::s1g_primary_2mhz is set to true, we are operating on a 2MHz
10345 * primary channel. The 1MHz subchannel designated by the primary channel
10346 * location exists within chandef::chan, whilst the 'sibling' is denoted as
10347 * being the other 1MHz subchannel that make up the 2MHz primary channel.
10348 *
10349 * Returns: the sibling 1MHz &struct ieee80211_channel, or %NULL on failure.
10350 */
10351 static inline struct ieee80211_channel *
cfg80211_s1g_get_primary_sibling(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef)10352 cfg80211_s1g_get_primary_sibling(struct wiphy *wiphy,
10353 const struct cfg80211_chan_def *chandef)
10354 {
10355 int width_mhz = cfg80211_chandef_get_width(chandef);
10356 u32 pri_1mhz_khz, sibling_1mhz_khz, op_low_1mhz_khz, pri_index;
10357
10358 if (!chandef->s1g_primary_2mhz || width_mhz < 2)
10359 return NULL;
10360
10361 pri_1mhz_khz = ieee80211_channel_to_khz(chandef->chan);
10362 op_low_1mhz_khz = cfg80211_s1g_get_start_freq_khz(chandef);
10363
10364 /*
10365 * Compute the index of the primary 1 MHz subchannel within the
10366 * operating channel, relative to the lowest 1 MHz center frequency.
10367 * Flip the least significant bit to select the even/odd sibling,
10368 * then translate that index back into a channel frequency.
10369 */
10370 pri_index = (pri_1mhz_khz - op_low_1mhz_khz) / 1000;
10371 sibling_1mhz_khz = op_low_1mhz_khz + ((pri_index ^ 1) * 1000);
10372
10373 return ieee80211_get_channel_khz(wiphy, sibling_1mhz_khz);
10374 }
10375
10376 #endif /* __NET_CFG80211_H */
10377