1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/nvme.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/wait.h>
18 #include <linux/inet.h>
19 #include <linux/unaligned.h>
20
21 #include <rdma/ib_verbs.h>
22 #include <rdma/rdma_cm.h>
23 #include <rdma/rw.h>
24 #include <rdma/ib_cm.h>
25
26 #include <linux/nvme-rdma.h>
27 #include "nvmet.h"
28
29 /*
30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
31 */
32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
33 #define NVMET_RDMA_MAX_INLINE_SGE 4
34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
35
36 /* Assume mpsmin == device_page_size == 4KB */
37 #define NVMET_RDMA_MAX_MDTS 8
38 #define NVMET_RDMA_MAX_METADATA_MDTS 5
39
40 #define NVMET_RDMA_BACKLOG 128
41
42 #define NVMET_RDMA_DISCRETE_RSP_TAG -1
43
44 struct nvmet_rdma_srq;
45
46 struct nvmet_rdma_cmd {
47 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
48 struct ib_cqe cqe;
49 struct ib_recv_wr wr;
50 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
51 struct nvme_command *nvme_cmd;
52 struct nvmet_rdma_queue *queue;
53 struct nvmet_rdma_srq *nsrq;
54 };
55
56 enum {
57 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
58 };
59
60 struct nvmet_rdma_rsp {
61 struct ib_sge send_sge;
62 struct ib_cqe send_cqe;
63 struct ib_send_wr send_wr;
64
65 struct nvmet_rdma_cmd *cmd;
66 struct nvmet_rdma_queue *queue;
67
68 struct ib_cqe read_cqe;
69 struct ib_cqe write_cqe;
70 struct rdma_rw_ctx rw;
71
72 struct nvmet_req req;
73
74 bool allocated;
75 u8 n_rdma;
76 u32 flags;
77 u32 invalidate_rkey;
78
79 struct list_head wait_list;
80 int tag;
81 };
82
83 enum nvmet_rdma_queue_state {
84 NVMET_RDMA_Q_CONNECTING,
85 NVMET_RDMA_Q_LIVE,
86 NVMET_RDMA_Q_DISCONNECTING,
87 };
88
89 struct nvmet_rdma_queue {
90 struct rdma_cm_id *cm_id;
91 struct ib_qp *qp;
92 struct nvmet_port *port;
93 struct ib_cq *cq;
94 atomic_t sq_wr_avail;
95 struct nvmet_rdma_device *dev;
96 struct nvmet_rdma_srq *nsrq;
97 spinlock_t state_lock;
98 enum nvmet_rdma_queue_state state;
99 struct nvmet_cq nvme_cq;
100 struct nvmet_sq nvme_sq;
101
102 struct nvmet_rdma_rsp *rsps;
103 struct sbitmap rsp_tags;
104 struct nvmet_rdma_cmd *cmds;
105
106 struct work_struct release_work;
107 struct list_head rsp_wait_list;
108 struct list_head rsp_wr_wait_list;
109 spinlock_t rsp_wr_wait_lock;
110
111 int idx;
112 int host_qid;
113 int comp_vector;
114 int recv_queue_size;
115 int send_queue_size;
116
117 struct list_head queue_list;
118 };
119
120 struct nvmet_rdma_port {
121 struct nvmet_port *nport;
122 struct sockaddr_storage addr;
123 struct rdma_cm_id *cm_id;
124 struct delayed_work repair_work;
125 };
126
127 struct nvmet_rdma_srq {
128 struct ib_srq *srq;
129 struct nvmet_rdma_cmd *cmds;
130 struct nvmet_rdma_device *ndev;
131 };
132
133 struct nvmet_rdma_device {
134 struct ib_device *device;
135 struct ib_pd *pd;
136 struct nvmet_rdma_srq **srqs;
137 int srq_count;
138 size_t srq_size;
139 struct kref ref;
140 struct list_head entry;
141 int inline_data_size;
142 int inline_page_count;
143 };
144
145 static bool nvmet_rdma_use_srq;
146 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
147 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
148
149 static int srq_size_set(const char *val, const struct kernel_param *kp);
150 static const struct kernel_param_ops srq_size_ops = {
151 .set = srq_size_set,
152 .get = param_get_int,
153 };
154
155 static int nvmet_rdma_srq_size = 1024;
156 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
157 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
158
159 static DEFINE_IDA(nvmet_rdma_queue_ida);
160 static LIST_HEAD(nvmet_rdma_queue_list);
161 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
162
163 static LIST_HEAD(device_list);
164 static DEFINE_MUTEX(device_list_mutex);
165
166 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
167 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
169 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
170 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
171 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
172 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
173 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
174 struct nvmet_rdma_rsp *r);
175 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
176 struct nvmet_rdma_rsp *r,
177 int tag);
178
179 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
180
srq_size_set(const char * val,const struct kernel_param * kp)181 static int srq_size_set(const char *val, const struct kernel_param *kp)
182 {
183 int n = 0, ret;
184
185 ret = kstrtoint(val, 10, &n);
186 if (ret != 0 || n < 256)
187 return -EINVAL;
188
189 return param_set_int(val, kp);
190 }
191
num_pages(int len)192 static int num_pages(int len)
193 {
194 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
195 }
196
nvmet_rdma_need_data_in(struct nvmet_rdma_rsp * rsp)197 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
198 {
199 return nvme_is_write(rsp->req.cmd) &&
200 rsp->req.transfer_len &&
201 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
202 }
203
nvmet_rdma_need_data_out(struct nvmet_rdma_rsp * rsp)204 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
205 {
206 return !nvme_is_write(rsp->req.cmd) &&
207 rsp->req.transfer_len &&
208 !rsp->req.cqe->status &&
209 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
210 }
211
212 static inline struct nvmet_rdma_rsp *
nvmet_rdma_get_rsp(struct nvmet_rdma_queue * queue)213 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
214 {
215 struct nvmet_rdma_rsp *rsp = NULL;
216 int tag;
217
218 tag = sbitmap_get(&queue->rsp_tags);
219 if (tag >= 0)
220 rsp = &queue->rsps[tag];
221
222 if (unlikely(!rsp)) {
223 int ret;
224
225 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
226 if (unlikely(!rsp))
227 return NULL;
228 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp,
229 NVMET_RDMA_DISCRETE_RSP_TAG);
230 if (unlikely(ret)) {
231 kfree(rsp);
232 return NULL;
233 }
234 }
235
236 return rsp;
237 }
238
239 static inline void
nvmet_rdma_put_rsp(struct nvmet_rdma_rsp * rsp)240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
241 {
242 if (unlikely(rsp->tag == NVMET_RDMA_DISCRETE_RSP_TAG)) {
243 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
244 kfree(rsp);
245 return;
246 }
247
248 sbitmap_clear_bit(&rsp->queue->rsp_tags, rsp->tag);
249 }
250
nvmet_rdma_free_inline_pages(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c)251 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
252 struct nvmet_rdma_cmd *c)
253 {
254 struct scatterlist *sg;
255 struct ib_sge *sge;
256 int i;
257
258 if (!ndev->inline_data_size)
259 return;
260
261 sg = c->inline_sg;
262 sge = &c->sge[1];
263
264 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
265 if (sge->length)
266 ib_dma_unmap_page(ndev->device, sge->addr,
267 sge->length, DMA_FROM_DEVICE);
268 if (sg_page(sg))
269 __free_page(sg_page(sg));
270 }
271 }
272
nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c)273 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
274 struct nvmet_rdma_cmd *c)
275 {
276 struct scatterlist *sg;
277 struct ib_sge *sge;
278 struct page *pg;
279 int len;
280 int i;
281
282 if (!ndev->inline_data_size)
283 return 0;
284
285 sg = c->inline_sg;
286 sg_init_table(sg, ndev->inline_page_count);
287 sge = &c->sge[1];
288 len = ndev->inline_data_size;
289
290 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
291 pg = alloc_page(GFP_KERNEL);
292 if (!pg)
293 goto out_err;
294 sg_assign_page(sg, pg);
295 sge->addr = ib_dma_map_page(ndev->device,
296 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
297 if (ib_dma_mapping_error(ndev->device, sge->addr))
298 goto out_err;
299 sge->length = min_t(int, len, PAGE_SIZE);
300 sge->lkey = ndev->pd->local_dma_lkey;
301 len -= sge->length;
302 }
303
304 return 0;
305 out_err:
306 for (; i >= 0; i--, sg--, sge--) {
307 if (sge->length)
308 ib_dma_unmap_page(ndev->device, sge->addr,
309 sge->length, DMA_FROM_DEVICE);
310 if (sg_page(sg))
311 __free_page(sg_page(sg));
312 }
313 return -ENOMEM;
314 }
315
nvmet_rdma_alloc_cmd(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c,bool admin)316 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
317 struct nvmet_rdma_cmd *c, bool admin)
318 {
319 /* NVMe command / RDMA RECV */
320 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
321 if (!c->nvme_cmd)
322 goto out;
323
324 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
325 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
326 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
327 goto out_free_cmd;
328
329 c->sge[0].length = sizeof(*c->nvme_cmd);
330 c->sge[0].lkey = ndev->pd->local_dma_lkey;
331
332 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
333 goto out_unmap_cmd;
334
335 c->cqe.done = nvmet_rdma_recv_done;
336
337 c->wr.wr_cqe = &c->cqe;
338 c->wr.sg_list = c->sge;
339 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
340
341 return 0;
342
343 out_unmap_cmd:
344 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
345 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
346 out_free_cmd:
347 kfree(c->nvme_cmd);
348
349 out:
350 return -ENOMEM;
351 }
352
nvmet_rdma_free_cmd(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c,bool admin)353 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
354 struct nvmet_rdma_cmd *c, bool admin)
355 {
356 if (!admin)
357 nvmet_rdma_free_inline_pages(ndev, c);
358 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
359 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
360 kfree(c->nvme_cmd);
361 }
362
363 static struct nvmet_rdma_cmd *
nvmet_rdma_alloc_cmds(struct nvmet_rdma_device * ndev,int nr_cmds,bool admin)364 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
365 int nr_cmds, bool admin)
366 {
367 struct nvmet_rdma_cmd *cmds;
368 int ret = -EINVAL, i;
369
370 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
371 if (!cmds)
372 goto out;
373
374 for (i = 0; i < nr_cmds; i++) {
375 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
376 if (ret)
377 goto out_free;
378 }
379
380 return cmds;
381
382 out_free:
383 while (--i >= 0)
384 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
385 kfree(cmds);
386 out:
387 return ERR_PTR(ret);
388 }
389
nvmet_rdma_free_cmds(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * cmds,int nr_cmds,bool admin)390 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
391 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
392 {
393 int i;
394
395 for (i = 0; i < nr_cmds; i++)
396 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
397 kfree(cmds);
398 }
399
nvmet_rdma_alloc_rsp(struct nvmet_rdma_device * ndev,struct nvmet_rdma_rsp * r,int tag)400 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
401 struct nvmet_rdma_rsp *r, int tag)
402 {
403 /* NVMe CQE / RDMA SEND */
404 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
405 if (!r->req.cqe)
406 goto out;
407
408 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
409 sizeof(*r->req.cqe), DMA_TO_DEVICE);
410 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
411 goto out_free_rsp;
412
413 if (ib_dma_pci_p2p_dma_supported(ndev->device))
414 r->req.p2p_client = &ndev->device->dev;
415 r->send_sge.length = sizeof(*r->req.cqe);
416 r->send_sge.lkey = ndev->pd->local_dma_lkey;
417
418 r->send_cqe.done = nvmet_rdma_send_done;
419
420 r->send_wr.wr_cqe = &r->send_cqe;
421 r->send_wr.sg_list = &r->send_sge;
422 r->send_wr.num_sge = 1;
423 r->send_wr.send_flags = IB_SEND_SIGNALED;
424
425 /* Data In / RDMA READ */
426 r->read_cqe.done = nvmet_rdma_read_data_done;
427 /* Data Out / RDMA WRITE */
428 r->write_cqe.done = nvmet_rdma_write_data_done;
429 r->tag = tag;
430
431 return 0;
432
433 out_free_rsp:
434 kfree(r->req.cqe);
435 out:
436 return -ENOMEM;
437 }
438
nvmet_rdma_free_rsp(struct nvmet_rdma_device * ndev,struct nvmet_rdma_rsp * r)439 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
440 struct nvmet_rdma_rsp *r)
441 {
442 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
443 sizeof(*r->req.cqe), DMA_TO_DEVICE);
444 kfree(r->req.cqe);
445 }
446
447 static int
nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue * queue)448 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
449 {
450 struct nvmet_rdma_device *ndev = queue->dev;
451 int nr_rsps = queue->recv_queue_size * 2;
452 int ret = -ENOMEM, i;
453
454 if (sbitmap_init_node(&queue->rsp_tags, nr_rsps, -1, GFP_KERNEL,
455 NUMA_NO_NODE, false, true))
456 goto out;
457
458 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
459 GFP_KERNEL);
460 if (!queue->rsps)
461 goto out_free_sbitmap;
462
463 for (i = 0; i < nr_rsps; i++) {
464 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
465
466 ret = nvmet_rdma_alloc_rsp(ndev, rsp, i);
467 if (ret)
468 goto out_free;
469 }
470
471 return 0;
472
473 out_free:
474 while (--i >= 0)
475 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]);
476 kfree(queue->rsps);
477 out_free_sbitmap:
478 sbitmap_free(&queue->rsp_tags);
479 out:
480 return ret;
481 }
482
nvmet_rdma_free_rsps(struct nvmet_rdma_queue * queue)483 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
484 {
485 struct nvmet_rdma_device *ndev = queue->dev;
486 int i, nr_rsps = queue->recv_queue_size * 2;
487
488 for (i = 0; i < nr_rsps; i++)
489 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]);
490 kfree(queue->rsps);
491 sbitmap_free(&queue->rsp_tags);
492 }
493
nvmet_rdma_post_recv(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * cmd)494 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
495 struct nvmet_rdma_cmd *cmd)
496 {
497 int ret;
498
499 ib_dma_sync_single_for_device(ndev->device,
500 cmd->sge[0].addr, cmd->sge[0].length,
501 DMA_FROM_DEVICE);
502
503 if (cmd->nsrq)
504 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
505 else
506 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
507
508 if (unlikely(ret))
509 pr_err("post_recv cmd failed\n");
510
511 return ret;
512 }
513
nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue * queue)514 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
515 {
516 spin_lock(&queue->rsp_wr_wait_lock);
517 while (!list_empty(&queue->rsp_wr_wait_list)) {
518 struct nvmet_rdma_rsp *rsp;
519 bool ret;
520
521 rsp = list_entry(queue->rsp_wr_wait_list.next,
522 struct nvmet_rdma_rsp, wait_list);
523 list_del(&rsp->wait_list);
524
525 spin_unlock(&queue->rsp_wr_wait_lock);
526 ret = nvmet_rdma_execute_command(rsp);
527 spin_lock(&queue->rsp_wr_wait_lock);
528
529 if (!ret) {
530 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
531 break;
532 }
533 }
534 spin_unlock(&queue->rsp_wr_wait_lock);
535 }
536
nvmet_rdma_check_pi_status(struct ib_mr * sig_mr)537 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
538 {
539 struct ib_mr_status mr_status;
540 int ret;
541 u16 status = 0;
542
543 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
544 if (ret) {
545 pr_err("ib_check_mr_status failed, ret %d\n", ret);
546 return NVME_SC_INVALID_PI;
547 }
548
549 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
550 switch (mr_status.sig_err.err_type) {
551 case IB_SIG_BAD_GUARD:
552 status = NVME_SC_GUARD_CHECK;
553 break;
554 case IB_SIG_BAD_REFTAG:
555 status = NVME_SC_REFTAG_CHECK;
556 break;
557 case IB_SIG_BAD_APPTAG:
558 status = NVME_SC_APPTAG_CHECK;
559 break;
560 }
561 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
562 mr_status.sig_err.err_type,
563 mr_status.sig_err.expected,
564 mr_status.sig_err.actual);
565 }
566
567 return status;
568 }
569
nvmet_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)570 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
571 struct nvme_command *cmd, struct ib_sig_domain *domain,
572 u16 control, u8 pi_type)
573 {
574 domain->sig_type = IB_SIG_TYPE_T10_DIF;
575 domain->sig.dif.bg_type = IB_T10DIF_CRC;
576 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
577 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
578 if (control & NVME_RW_PRINFO_PRCHK_REF)
579 domain->sig.dif.ref_remap = true;
580
581 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat);
582 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm);
583 domain->sig.dif.app_escape = true;
584 if (pi_type == NVME_NS_DPS_PI_TYPE3)
585 domain->sig.dif.ref_escape = true;
586 }
587
nvmet_rdma_set_sig_attrs(struct nvmet_req * req,struct ib_sig_attrs * sig_attrs)588 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
589 struct ib_sig_attrs *sig_attrs)
590 {
591 struct nvme_command *cmd = req->cmd;
592 u16 control = le16_to_cpu(cmd->rw.control);
593 u8 pi_type = req->ns->pi_type;
594 struct blk_integrity *bi;
595
596 bi = bdev_get_integrity(req->ns->bdev);
597
598 memset(sig_attrs, 0, sizeof(*sig_attrs));
599
600 if (control & NVME_RW_PRINFO_PRACT) {
601 /* for WRITE_INSERT/READ_STRIP no wire domain */
602 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
603 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
604 pi_type);
605 /* Clear the PRACT bit since HCA will generate/verify the PI */
606 control &= ~NVME_RW_PRINFO_PRACT;
607 cmd->rw.control = cpu_to_le16(control);
608 /* PI is added by the HW */
609 req->transfer_len += req->metadata_len;
610 } else {
611 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
612 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
613 pi_type);
614 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
615 pi_type);
616 }
617
618 if (control & NVME_RW_PRINFO_PRCHK_REF)
619 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
620 if (control & NVME_RW_PRINFO_PRCHK_GUARD)
621 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
622 if (control & NVME_RW_PRINFO_PRCHK_APP)
623 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
624 }
625
nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp * rsp,u64 addr,u32 key,struct ib_sig_attrs * sig_attrs)626 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
627 struct ib_sig_attrs *sig_attrs)
628 {
629 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
630 struct nvmet_req *req = &rsp->req;
631 int ret;
632
633 if (req->metadata_len)
634 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
635 cm_id->port_num, req->sg, req->sg_cnt,
636 req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
637 addr, key, nvmet_data_dir(req));
638 else
639 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
640 req->sg, req->sg_cnt, 0, addr, key,
641 nvmet_data_dir(req));
642
643 return ret;
644 }
645
nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp * rsp)646 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
647 {
648 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
649 struct nvmet_req *req = &rsp->req;
650
651 if (req->metadata_len)
652 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
653 cm_id->port_num, req->sg, req->sg_cnt,
654 req->metadata_sg, req->metadata_sg_cnt,
655 nvmet_data_dir(req));
656 else
657 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
658 req->sg, req->sg_cnt, nvmet_data_dir(req));
659 }
660
nvmet_rdma_release_rsp(struct nvmet_rdma_rsp * rsp)661 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
662 {
663 struct nvmet_rdma_queue *queue = rsp->queue;
664
665 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
666
667 if (rsp->n_rdma)
668 nvmet_rdma_rw_ctx_destroy(rsp);
669
670 if (rsp->req.sg != rsp->cmd->inline_sg)
671 nvmet_req_free_sgls(&rsp->req);
672
673 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
674 nvmet_rdma_process_wr_wait_list(queue);
675
676 nvmet_rdma_put_rsp(rsp);
677 }
678
nvmet_rdma_error_comp(struct nvmet_rdma_queue * queue)679 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
680 {
681 if (queue->nvme_sq.ctrl) {
682 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
683 } else {
684 /*
685 * we didn't setup the controller yet in case
686 * of admin connect error, just disconnect and
687 * cleanup the queue
688 */
689 nvmet_rdma_queue_disconnect(queue);
690 }
691 }
692
nvmet_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)693 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
694 {
695 struct nvmet_rdma_rsp *rsp =
696 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
697 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
698
699 nvmet_rdma_release_rsp(rsp);
700
701 if (unlikely(wc->status != IB_WC_SUCCESS &&
702 wc->status != IB_WC_WR_FLUSH_ERR)) {
703 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
704 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
705 nvmet_rdma_error_comp(queue);
706 }
707 }
708
nvmet_rdma_queue_response(struct nvmet_req * req)709 static void nvmet_rdma_queue_response(struct nvmet_req *req)
710 {
711 struct nvmet_rdma_rsp *rsp =
712 container_of(req, struct nvmet_rdma_rsp, req);
713 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
714 struct ib_send_wr *first_wr;
715
716 if (rsp->invalidate_rkey) {
717 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
718 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
719 } else {
720 rsp->send_wr.opcode = IB_WR_SEND;
721 }
722
723 if (nvmet_rdma_need_data_out(rsp)) {
724 if (rsp->req.metadata_len)
725 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
726 cm_id->port_num, &rsp->write_cqe, NULL);
727 else
728 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
729 cm_id->port_num, NULL, &rsp->send_wr);
730 } else {
731 first_wr = &rsp->send_wr;
732 }
733
734 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
735
736 ib_dma_sync_single_for_device(rsp->queue->dev->device,
737 rsp->send_sge.addr, rsp->send_sge.length,
738 DMA_TO_DEVICE);
739
740 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
741 pr_err("sending cmd response failed\n");
742 nvmet_rdma_release_rsp(rsp);
743 }
744 }
745
nvmet_rdma_read_data_done(struct ib_cq * cq,struct ib_wc * wc)746 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
747 {
748 struct nvmet_rdma_rsp *rsp =
749 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
750 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
751 u16 status = 0;
752
753 WARN_ON(rsp->n_rdma <= 0);
754 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
755 rsp->n_rdma = 0;
756
757 if (unlikely(wc->status != IB_WC_SUCCESS)) {
758 nvmet_rdma_rw_ctx_destroy(rsp);
759 nvmet_req_uninit(&rsp->req);
760 nvmet_rdma_release_rsp(rsp);
761 if (wc->status != IB_WC_WR_FLUSH_ERR) {
762 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
763 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
764 nvmet_rdma_error_comp(queue);
765 }
766 return;
767 }
768
769 if (rsp->req.metadata_len)
770 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
771 nvmet_rdma_rw_ctx_destroy(rsp);
772
773 if (unlikely(status))
774 nvmet_req_complete(&rsp->req, status);
775 else
776 rsp->req.execute(&rsp->req);
777 }
778
nvmet_rdma_write_data_done(struct ib_cq * cq,struct ib_wc * wc)779 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
780 {
781 struct nvmet_rdma_rsp *rsp =
782 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
783 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
784 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
785 u16 status;
786
787 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
788 return;
789
790 WARN_ON(rsp->n_rdma <= 0);
791 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
792 rsp->n_rdma = 0;
793
794 if (unlikely(wc->status != IB_WC_SUCCESS)) {
795 nvmet_rdma_rw_ctx_destroy(rsp);
796 nvmet_req_uninit(&rsp->req);
797 nvmet_rdma_release_rsp(rsp);
798 if (wc->status != IB_WC_WR_FLUSH_ERR) {
799 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
800 ib_wc_status_msg(wc->status), wc->status);
801 nvmet_rdma_error_comp(queue);
802 }
803 return;
804 }
805
806 /*
807 * Upon RDMA completion check the signature status
808 * - if succeeded send good NVMe response
809 * - if failed send bad NVMe response with appropriate error
810 */
811 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
812 if (unlikely(status))
813 rsp->req.cqe->status = cpu_to_le16(status << 1);
814 nvmet_rdma_rw_ctx_destroy(rsp);
815
816 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
817 pr_err("sending cmd response failed\n");
818 nvmet_rdma_release_rsp(rsp);
819 }
820 }
821
nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp * rsp,u32 len,u64 off)822 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
823 u64 off)
824 {
825 int sg_count = num_pages(len);
826 struct scatterlist *sg;
827 int i;
828
829 sg = rsp->cmd->inline_sg;
830 for (i = 0; i < sg_count; i++, sg++) {
831 if (i < sg_count - 1)
832 sg_unmark_end(sg);
833 else
834 sg_mark_end(sg);
835 sg->offset = off;
836 sg->length = min_t(int, len, PAGE_SIZE - off);
837 len -= sg->length;
838 if (!i)
839 off = 0;
840 }
841
842 rsp->req.sg = rsp->cmd->inline_sg;
843 rsp->req.sg_cnt = sg_count;
844 }
845
nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp * rsp)846 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
847 {
848 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
849 u64 off = le64_to_cpu(sgl->addr);
850 u32 len = le32_to_cpu(sgl->length);
851
852 if (!nvme_is_write(rsp->req.cmd)) {
853 rsp->req.error_loc =
854 offsetof(struct nvme_common_command, opcode);
855 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
856 }
857
858 if (off + len > rsp->queue->dev->inline_data_size) {
859 pr_err("invalid inline data offset!\n");
860 return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
861 }
862
863 /* no data command? */
864 if (!len)
865 return 0;
866
867 nvmet_rdma_use_inline_sg(rsp, len, off);
868 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
869 rsp->req.transfer_len += len;
870 return 0;
871 }
872
nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp * rsp,struct nvme_keyed_sgl_desc * sgl,bool invalidate)873 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
874 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
875 {
876 u64 addr = le64_to_cpu(sgl->addr);
877 u32 key = get_unaligned_le32(sgl->key);
878 struct ib_sig_attrs sig_attrs;
879 int ret;
880
881 rsp->req.transfer_len = get_unaligned_le24(sgl->length);
882
883 /* no data command? */
884 if (!rsp->req.transfer_len)
885 return 0;
886
887 if (rsp->req.metadata_len)
888 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
889
890 ret = nvmet_req_alloc_sgls(&rsp->req);
891 if (unlikely(ret < 0))
892 goto error_out;
893
894 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
895 if (unlikely(ret < 0))
896 goto error_out;
897 rsp->n_rdma += ret;
898
899 if (invalidate)
900 rsp->invalidate_rkey = key;
901
902 return 0;
903
904 error_out:
905 rsp->req.transfer_len = 0;
906 return NVME_SC_INTERNAL;
907 }
908
nvmet_rdma_map_sgl(struct nvmet_rdma_rsp * rsp)909 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
910 {
911 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
912
913 switch (sgl->type >> 4) {
914 case NVME_SGL_FMT_DATA_DESC:
915 switch (sgl->type & 0xf) {
916 case NVME_SGL_FMT_OFFSET:
917 return nvmet_rdma_map_sgl_inline(rsp);
918 default:
919 pr_err("invalid SGL subtype: %#x\n", sgl->type);
920 rsp->req.error_loc =
921 offsetof(struct nvme_common_command, dptr);
922 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
923 }
924 case NVME_KEY_SGL_FMT_DATA_DESC:
925 switch (sgl->type & 0xf) {
926 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
927 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
928 case NVME_SGL_FMT_ADDRESS:
929 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
930 default:
931 pr_err("invalid SGL subtype: %#x\n", sgl->type);
932 rsp->req.error_loc =
933 offsetof(struct nvme_common_command, dptr);
934 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
935 }
936 default:
937 pr_err("invalid SGL type: %#x\n", sgl->type);
938 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
939 return NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR;
940 }
941 }
942
nvmet_rdma_execute_command(struct nvmet_rdma_rsp * rsp)943 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
944 {
945 struct nvmet_rdma_queue *queue = rsp->queue;
946
947 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
948 &queue->sq_wr_avail) < 0)) {
949 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
950 1 + rsp->n_rdma, queue->idx,
951 queue->nvme_sq.ctrl->cntlid);
952 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
953 return false;
954 }
955
956 if (nvmet_rdma_need_data_in(rsp)) {
957 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
958 queue->cm_id->port_num, &rsp->read_cqe, NULL))
959 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
960 } else {
961 rsp->req.execute(&rsp->req);
962 }
963
964 return true;
965 }
966
nvmet_rdma_handle_command(struct nvmet_rdma_queue * queue,struct nvmet_rdma_rsp * cmd)967 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
968 struct nvmet_rdma_rsp *cmd)
969 {
970 u16 status;
971
972 ib_dma_sync_single_for_cpu(queue->dev->device,
973 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
974 DMA_FROM_DEVICE);
975 ib_dma_sync_single_for_cpu(queue->dev->device,
976 cmd->send_sge.addr, cmd->send_sge.length,
977 DMA_TO_DEVICE);
978
979 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
980 &queue->nvme_sq, &nvmet_rdma_ops))
981 return;
982
983 status = nvmet_rdma_map_sgl(cmd);
984 if (status)
985 goto out_err;
986
987 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
988 spin_lock(&queue->rsp_wr_wait_lock);
989 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
990 spin_unlock(&queue->rsp_wr_wait_lock);
991 }
992
993 return;
994
995 out_err:
996 nvmet_req_complete(&cmd->req, status);
997 }
998
nvmet_rdma_recv_not_live(struct nvmet_rdma_queue * queue,struct nvmet_rdma_rsp * rsp)999 static bool nvmet_rdma_recv_not_live(struct nvmet_rdma_queue *queue,
1000 struct nvmet_rdma_rsp *rsp)
1001 {
1002 unsigned long flags;
1003 bool ret = true;
1004
1005 spin_lock_irqsave(&queue->state_lock, flags);
1006 /*
1007 * recheck queue state is not live to prevent a race condition
1008 * with RDMA_CM_EVENT_ESTABLISHED handler.
1009 */
1010 if (queue->state == NVMET_RDMA_Q_LIVE)
1011 ret = false;
1012 else if (queue->state == NVMET_RDMA_Q_CONNECTING)
1013 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1014 else
1015 nvmet_rdma_put_rsp(rsp);
1016 spin_unlock_irqrestore(&queue->state_lock, flags);
1017 return ret;
1018 }
1019
nvmet_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1020 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1021 {
1022 struct nvmet_rdma_cmd *cmd =
1023 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1024 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1025 struct nvmet_rdma_rsp *rsp;
1026
1027 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1028 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1029 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1030 wc->wr_cqe, ib_wc_status_msg(wc->status),
1031 wc->status);
1032 nvmet_rdma_error_comp(queue);
1033 }
1034 return;
1035 }
1036
1037 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1038 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1039 nvmet_rdma_error_comp(queue);
1040 return;
1041 }
1042
1043 cmd->queue = queue;
1044 rsp = nvmet_rdma_get_rsp(queue);
1045 if (unlikely(!rsp)) {
1046 /*
1047 * we get here only under memory pressure,
1048 * silently drop and have the host retry
1049 * as we can't even fail it.
1050 */
1051 nvmet_rdma_post_recv(queue->dev, cmd);
1052 return;
1053 }
1054 rsp->queue = queue;
1055 rsp->cmd = cmd;
1056 rsp->flags = 0;
1057 rsp->req.cmd = cmd->nvme_cmd;
1058 rsp->req.port = queue->port;
1059 rsp->n_rdma = 0;
1060 rsp->invalidate_rkey = 0;
1061
1062 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE) &&
1063 nvmet_rdma_recv_not_live(queue, rsp))
1064 return;
1065
1066 nvmet_rdma_handle_command(queue, rsp);
1067 }
1068
nvmet_rdma_destroy_srq(struct nvmet_rdma_srq * nsrq)1069 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1070 {
1071 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1072 false);
1073 ib_destroy_srq(nsrq->srq);
1074
1075 kfree(nsrq);
1076 }
1077
nvmet_rdma_destroy_srqs(struct nvmet_rdma_device * ndev)1078 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1079 {
1080 int i;
1081
1082 if (!ndev->srqs)
1083 return;
1084
1085 for (i = 0; i < ndev->srq_count; i++)
1086 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1087
1088 kfree(ndev->srqs);
1089 }
1090
1091 static struct nvmet_rdma_srq *
nvmet_rdma_init_srq(struct nvmet_rdma_device * ndev)1092 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1093 {
1094 struct ib_srq_init_attr srq_attr = { NULL, };
1095 size_t srq_size = ndev->srq_size;
1096 struct nvmet_rdma_srq *nsrq;
1097 struct ib_srq *srq;
1098 int ret, i;
1099
1100 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1101 if (!nsrq)
1102 return ERR_PTR(-ENOMEM);
1103
1104 srq_attr.attr.max_wr = srq_size;
1105 srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1106 srq_attr.attr.srq_limit = 0;
1107 srq_attr.srq_type = IB_SRQT_BASIC;
1108 srq = ib_create_srq(ndev->pd, &srq_attr);
1109 if (IS_ERR(srq)) {
1110 ret = PTR_ERR(srq);
1111 goto out_free;
1112 }
1113
1114 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1115 if (IS_ERR(nsrq->cmds)) {
1116 ret = PTR_ERR(nsrq->cmds);
1117 goto out_destroy_srq;
1118 }
1119
1120 nsrq->srq = srq;
1121 nsrq->ndev = ndev;
1122
1123 for (i = 0; i < srq_size; i++) {
1124 nsrq->cmds[i].nsrq = nsrq;
1125 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1126 if (ret)
1127 goto out_free_cmds;
1128 }
1129
1130 return nsrq;
1131
1132 out_free_cmds:
1133 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1134 out_destroy_srq:
1135 ib_destroy_srq(srq);
1136 out_free:
1137 kfree(nsrq);
1138 return ERR_PTR(ret);
1139 }
1140
nvmet_rdma_init_srqs(struct nvmet_rdma_device * ndev)1141 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1142 {
1143 int i, ret;
1144
1145 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1146 /*
1147 * If SRQs aren't supported we just go ahead and use normal
1148 * non-shared receive queues.
1149 */
1150 pr_info("SRQ requested but not supported.\n");
1151 return 0;
1152 }
1153
1154 ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1155 nvmet_rdma_srq_size);
1156 ndev->srq_count = min(ndev->device->num_comp_vectors,
1157 ndev->device->attrs.max_srq);
1158
1159 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1160 if (!ndev->srqs)
1161 return -ENOMEM;
1162
1163 for (i = 0; i < ndev->srq_count; i++) {
1164 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1165 if (IS_ERR(ndev->srqs[i])) {
1166 ret = PTR_ERR(ndev->srqs[i]);
1167 goto err_srq;
1168 }
1169 }
1170
1171 return 0;
1172
1173 err_srq:
1174 while (--i >= 0)
1175 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1176 kfree(ndev->srqs);
1177 return ret;
1178 }
1179
nvmet_rdma_free_dev(struct kref * ref)1180 static void nvmet_rdma_free_dev(struct kref *ref)
1181 {
1182 struct nvmet_rdma_device *ndev =
1183 container_of(ref, struct nvmet_rdma_device, ref);
1184
1185 mutex_lock(&device_list_mutex);
1186 list_del(&ndev->entry);
1187 mutex_unlock(&device_list_mutex);
1188
1189 nvmet_rdma_destroy_srqs(ndev);
1190 ib_dealloc_pd(ndev->pd);
1191
1192 kfree(ndev);
1193 }
1194
1195 static struct nvmet_rdma_device *
nvmet_rdma_find_get_device(struct rdma_cm_id * cm_id)1196 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1197 {
1198 struct nvmet_rdma_port *port = cm_id->context;
1199 struct nvmet_port *nport = port->nport;
1200 struct nvmet_rdma_device *ndev;
1201 int inline_page_count;
1202 int inline_sge_count;
1203 int ret;
1204
1205 mutex_lock(&device_list_mutex);
1206 list_for_each_entry(ndev, &device_list, entry) {
1207 if (ndev->device->node_guid == cm_id->device->node_guid &&
1208 kref_get_unless_zero(&ndev->ref))
1209 goto out_unlock;
1210 }
1211
1212 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1213 if (!ndev)
1214 goto out_err;
1215
1216 inline_page_count = num_pages(nport->inline_data_size);
1217 inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1218 cm_id->device->attrs.max_recv_sge) - 1;
1219 if (inline_page_count > inline_sge_count) {
1220 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1221 nport->inline_data_size, cm_id->device->name,
1222 inline_sge_count * PAGE_SIZE);
1223 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1224 inline_page_count = inline_sge_count;
1225 }
1226 ndev->inline_data_size = nport->inline_data_size;
1227 ndev->inline_page_count = inline_page_count;
1228
1229 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1230 IBK_INTEGRITY_HANDOVER)) {
1231 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1232 cm_id->device->name);
1233 nport->pi_enable = false;
1234 }
1235
1236 ndev->device = cm_id->device;
1237 kref_init(&ndev->ref);
1238
1239 ndev->pd = ib_alloc_pd(ndev->device, 0);
1240 if (IS_ERR(ndev->pd))
1241 goto out_free_dev;
1242
1243 if (nvmet_rdma_use_srq) {
1244 ret = nvmet_rdma_init_srqs(ndev);
1245 if (ret)
1246 goto out_free_pd;
1247 }
1248
1249 list_add(&ndev->entry, &device_list);
1250 out_unlock:
1251 mutex_unlock(&device_list_mutex);
1252 pr_debug("added %s.\n", ndev->device->name);
1253 return ndev;
1254
1255 out_free_pd:
1256 ib_dealloc_pd(ndev->pd);
1257 out_free_dev:
1258 kfree(ndev);
1259 out_err:
1260 mutex_unlock(&device_list_mutex);
1261 return NULL;
1262 }
1263
nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue * queue)1264 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1265 {
1266 struct ib_qp_init_attr qp_attr = { };
1267 struct nvmet_rdma_device *ndev = queue->dev;
1268 int nr_cqe, ret, i, factor;
1269
1270 /*
1271 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1272 */
1273 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1274
1275 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1276 queue->comp_vector, IB_POLL_WORKQUEUE);
1277 if (IS_ERR(queue->cq)) {
1278 ret = PTR_ERR(queue->cq);
1279 pr_err("failed to create CQ cqe= %d ret= %d\n",
1280 nr_cqe + 1, ret);
1281 goto out;
1282 }
1283
1284 qp_attr.qp_context = queue;
1285 qp_attr.event_handler = nvmet_rdma_qp_event;
1286 qp_attr.send_cq = queue->cq;
1287 qp_attr.recv_cq = queue->cq;
1288 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1289 qp_attr.qp_type = IB_QPT_RC;
1290 /* +1 for drain */
1291 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1292 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1293 1 << NVMET_RDMA_MAX_MDTS);
1294 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1295 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1296 ndev->device->attrs.max_send_sge);
1297
1298 if (queue->nsrq) {
1299 qp_attr.srq = queue->nsrq->srq;
1300 } else {
1301 /* +1 for drain */
1302 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1303 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1304 }
1305
1306 if (queue->port->pi_enable && queue->host_qid)
1307 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1308
1309 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1310 if (ret) {
1311 pr_err("failed to create_qp ret= %d\n", ret);
1312 goto err_destroy_cq;
1313 }
1314 queue->qp = queue->cm_id->qp;
1315
1316 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1317
1318 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1319 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1320 qp_attr.cap.max_send_wr, queue->cm_id);
1321
1322 if (!queue->nsrq) {
1323 for (i = 0; i < queue->recv_queue_size; i++) {
1324 queue->cmds[i].queue = queue;
1325 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1326 if (ret)
1327 goto err_destroy_qp;
1328 }
1329 }
1330
1331 out:
1332 return ret;
1333
1334 err_destroy_qp:
1335 rdma_destroy_qp(queue->cm_id);
1336 err_destroy_cq:
1337 ib_cq_pool_put(queue->cq, nr_cqe + 1);
1338 goto out;
1339 }
1340
nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue * queue)1341 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1342 {
1343 ib_drain_qp(queue->qp);
1344 if (queue->cm_id)
1345 rdma_destroy_id(queue->cm_id);
1346 ib_destroy_qp(queue->qp);
1347 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1348 queue->send_queue_size + 1);
1349 }
1350
nvmet_rdma_free_queue(struct nvmet_rdma_queue * queue)1351 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1352 {
1353 pr_debug("freeing queue %d\n", queue->idx);
1354
1355 nvmet_sq_destroy(&queue->nvme_sq);
1356
1357 nvmet_rdma_destroy_queue_ib(queue);
1358 if (!queue->nsrq) {
1359 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1360 queue->recv_queue_size,
1361 !queue->host_qid);
1362 }
1363 nvmet_rdma_free_rsps(queue);
1364 ida_free(&nvmet_rdma_queue_ida, queue->idx);
1365 kfree(queue);
1366 }
1367
nvmet_rdma_release_queue_work(struct work_struct * w)1368 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1369 {
1370 struct nvmet_rdma_queue *queue =
1371 container_of(w, struct nvmet_rdma_queue, release_work);
1372 struct nvmet_rdma_device *dev = queue->dev;
1373
1374 nvmet_rdma_free_queue(queue);
1375
1376 kref_put(&dev->ref, nvmet_rdma_free_dev);
1377 }
1378
1379 static int
nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param * conn,struct nvmet_rdma_queue * queue)1380 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1381 struct nvmet_rdma_queue *queue)
1382 {
1383 struct nvme_rdma_cm_req *req;
1384
1385 req = (struct nvme_rdma_cm_req *)conn->private_data;
1386 if (!req || conn->private_data_len == 0)
1387 return NVME_RDMA_CM_INVALID_LEN;
1388
1389 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1390 return NVME_RDMA_CM_INVALID_RECFMT;
1391
1392 queue->host_qid = le16_to_cpu(req->qid);
1393
1394 /*
1395 * req->hsqsize corresponds to our recv queue size plus 1
1396 * req->hrqsize corresponds to our send queue size
1397 */
1398 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1399 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1400
1401 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1402 return NVME_RDMA_CM_INVALID_HSQSIZE;
1403
1404 /* XXX: Should we enforce some kind of max for IO queues? */
1405
1406 return 0;
1407 }
1408
nvmet_rdma_cm_reject(struct rdma_cm_id * cm_id,enum nvme_rdma_cm_status status)1409 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1410 enum nvme_rdma_cm_status status)
1411 {
1412 struct nvme_rdma_cm_rej rej;
1413
1414 pr_debug("rejecting connect request: status %d (%s)\n",
1415 status, nvme_rdma_cm_msg(status));
1416
1417 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1418 rej.sts = cpu_to_le16(status);
1419
1420 return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1421 IB_CM_REJ_CONSUMER_DEFINED);
1422 }
1423
1424 static struct nvmet_rdma_queue *
nvmet_rdma_alloc_queue(struct nvmet_rdma_device * ndev,struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1425 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1426 struct rdma_cm_id *cm_id,
1427 struct rdma_cm_event *event)
1428 {
1429 struct nvmet_rdma_port *port = cm_id->context;
1430 struct nvmet_rdma_queue *queue;
1431 int ret;
1432
1433 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1434 if (!queue) {
1435 ret = NVME_RDMA_CM_NO_RSC;
1436 goto out_reject;
1437 }
1438
1439 ret = nvmet_sq_init(&queue->nvme_sq);
1440 if (ret) {
1441 ret = NVME_RDMA_CM_NO_RSC;
1442 goto out_free_queue;
1443 }
1444
1445 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1446 if (ret)
1447 goto out_destroy_sq;
1448
1449 /*
1450 * Schedules the actual release because calling rdma_destroy_id from
1451 * inside a CM callback would trigger a deadlock. (great API design..)
1452 */
1453 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1454 queue->dev = ndev;
1455 queue->cm_id = cm_id;
1456 queue->port = port->nport;
1457
1458 spin_lock_init(&queue->state_lock);
1459 queue->state = NVMET_RDMA_Q_CONNECTING;
1460 INIT_LIST_HEAD(&queue->rsp_wait_list);
1461 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1462 spin_lock_init(&queue->rsp_wr_wait_lock);
1463 INIT_LIST_HEAD(&queue->queue_list);
1464
1465 queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL);
1466 if (queue->idx < 0) {
1467 ret = NVME_RDMA_CM_NO_RSC;
1468 goto out_destroy_sq;
1469 }
1470
1471 /*
1472 * Spread the io queues across completion vectors,
1473 * but still keep all admin queues on vector 0.
1474 */
1475 queue->comp_vector = !queue->host_qid ? 0 :
1476 queue->idx % ndev->device->num_comp_vectors;
1477
1478
1479 ret = nvmet_rdma_alloc_rsps(queue);
1480 if (ret) {
1481 ret = NVME_RDMA_CM_NO_RSC;
1482 goto out_ida_remove;
1483 }
1484
1485 if (ndev->srqs) {
1486 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1487 } else {
1488 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1489 queue->recv_queue_size,
1490 !queue->host_qid);
1491 if (IS_ERR(queue->cmds)) {
1492 ret = NVME_RDMA_CM_NO_RSC;
1493 goto out_free_responses;
1494 }
1495 }
1496
1497 ret = nvmet_rdma_create_queue_ib(queue);
1498 if (ret) {
1499 pr_err("%s: creating RDMA queue failed (%d).\n",
1500 __func__, ret);
1501 ret = NVME_RDMA_CM_NO_RSC;
1502 goto out_free_cmds;
1503 }
1504
1505 return queue;
1506
1507 out_free_cmds:
1508 if (!queue->nsrq) {
1509 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1510 queue->recv_queue_size,
1511 !queue->host_qid);
1512 }
1513 out_free_responses:
1514 nvmet_rdma_free_rsps(queue);
1515 out_ida_remove:
1516 ida_free(&nvmet_rdma_queue_ida, queue->idx);
1517 out_destroy_sq:
1518 nvmet_sq_destroy(&queue->nvme_sq);
1519 out_free_queue:
1520 kfree(queue);
1521 out_reject:
1522 nvmet_rdma_cm_reject(cm_id, ret);
1523 return NULL;
1524 }
1525
nvmet_rdma_qp_event(struct ib_event * event,void * priv)1526 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1527 {
1528 struct nvmet_rdma_queue *queue = priv;
1529
1530 switch (event->event) {
1531 case IB_EVENT_COMM_EST:
1532 rdma_notify(queue->cm_id, event->event);
1533 break;
1534 case IB_EVENT_QP_LAST_WQE_REACHED:
1535 pr_debug("received last WQE reached event for queue=0x%p\n",
1536 queue);
1537 break;
1538 default:
1539 pr_err("received IB QP event: %s (%d)\n",
1540 ib_event_msg(event->event), event->event);
1541 break;
1542 }
1543 }
1544
nvmet_rdma_cm_accept(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue,struct rdma_conn_param * p)1545 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1546 struct nvmet_rdma_queue *queue,
1547 struct rdma_conn_param *p)
1548 {
1549 struct rdma_conn_param param = { };
1550 struct nvme_rdma_cm_rep priv = { };
1551 int ret = -ENOMEM;
1552
1553 param.rnr_retry_count = 7;
1554 param.flow_control = 1;
1555 param.initiator_depth = min_t(u8, p->initiator_depth,
1556 queue->dev->device->attrs.max_qp_init_rd_atom);
1557 param.private_data = &priv;
1558 param.private_data_len = sizeof(priv);
1559 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1560 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1561
1562 ret = rdma_accept(cm_id, ¶m);
1563 if (ret)
1564 pr_err("rdma_accept failed (error code = %d)\n", ret);
1565
1566 return ret;
1567 }
1568
nvmet_rdma_queue_connect(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1569 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1570 struct rdma_cm_event *event)
1571 {
1572 struct nvmet_rdma_device *ndev;
1573 struct nvmet_rdma_queue *queue;
1574 int ret = -EINVAL;
1575
1576 ndev = nvmet_rdma_find_get_device(cm_id);
1577 if (!ndev) {
1578 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1579 return -ECONNREFUSED;
1580 }
1581
1582 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1583 if (!queue) {
1584 ret = -ENOMEM;
1585 goto put_device;
1586 }
1587
1588 if (queue->host_qid == 0) {
1589 struct nvmet_rdma_queue *q;
1590 int pending = 0;
1591
1592 /* Check for pending controller teardown */
1593 mutex_lock(&nvmet_rdma_queue_mutex);
1594 list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) {
1595 if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl &&
1596 q->state == NVMET_RDMA_Q_DISCONNECTING)
1597 pending++;
1598 }
1599 mutex_unlock(&nvmet_rdma_queue_mutex);
1600 if (pending > NVMET_RDMA_BACKLOG)
1601 return NVME_SC_CONNECT_CTRL_BUSY;
1602 }
1603
1604 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1605 if (ret) {
1606 /*
1607 * Don't destroy the cm_id in free path, as we implicitly
1608 * destroy the cm_id here with non-zero ret code.
1609 */
1610 queue->cm_id = NULL;
1611 goto free_queue;
1612 }
1613
1614 mutex_lock(&nvmet_rdma_queue_mutex);
1615 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1616 mutex_unlock(&nvmet_rdma_queue_mutex);
1617
1618 return 0;
1619
1620 free_queue:
1621 nvmet_rdma_free_queue(queue);
1622 put_device:
1623 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1624
1625 return ret;
1626 }
1627
nvmet_rdma_queue_established(struct nvmet_rdma_queue * queue)1628 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1629 {
1630 unsigned long flags;
1631
1632 spin_lock_irqsave(&queue->state_lock, flags);
1633 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1634 pr_warn("trying to establish a connected queue\n");
1635 goto out_unlock;
1636 }
1637 queue->state = NVMET_RDMA_Q_LIVE;
1638
1639 while (!list_empty(&queue->rsp_wait_list)) {
1640 struct nvmet_rdma_rsp *cmd;
1641
1642 cmd = list_first_entry(&queue->rsp_wait_list,
1643 struct nvmet_rdma_rsp, wait_list);
1644 list_del(&cmd->wait_list);
1645
1646 spin_unlock_irqrestore(&queue->state_lock, flags);
1647 nvmet_rdma_handle_command(queue, cmd);
1648 spin_lock_irqsave(&queue->state_lock, flags);
1649 }
1650
1651 out_unlock:
1652 spin_unlock_irqrestore(&queue->state_lock, flags);
1653 }
1654
__nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue * queue)1655 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1656 {
1657 bool disconnect = false;
1658 unsigned long flags;
1659
1660 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1661
1662 spin_lock_irqsave(&queue->state_lock, flags);
1663 switch (queue->state) {
1664 case NVMET_RDMA_Q_CONNECTING:
1665 while (!list_empty(&queue->rsp_wait_list)) {
1666 struct nvmet_rdma_rsp *rsp;
1667
1668 rsp = list_first_entry(&queue->rsp_wait_list,
1669 struct nvmet_rdma_rsp,
1670 wait_list);
1671 list_del(&rsp->wait_list);
1672 nvmet_rdma_put_rsp(rsp);
1673 }
1674 fallthrough;
1675 case NVMET_RDMA_Q_LIVE:
1676 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1677 disconnect = true;
1678 break;
1679 case NVMET_RDMA_Q_DISCONNECTING:
1680 break;
1681 }
1682 spin_unlock_irqrestore(&queue->state_lock, flags);
1683
1684 if (disconnect) {
1685 rdma_disconnect(queue->cm_id);
1686 queue_work(nvmet_wq, &queue->release_work);
1687 }
1688 }
1689
nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue * queue)1690 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1691 {
1692 bool disconnect = false;
1693
1694 mutex_lock(&nvmet_rdma_queue_mutex);
1695 if (!list_empty(&queue->queue_list)) {
1696 list_del_init(&queue->queue_list);
1697 disconnect = true;
1698 }
1699 mutex_unlock(&nvmet_rdma_queue_mutex);
1700
1701 if (disconnect)
1702 __nvmet_rdma_queue_disconnect(queue);
1703 }
1704
nvmet_rdma_queue_connect_fail(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue)1705 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1706 struct nvmet_rdma_queue *queue)
1707 {
1708 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1709
1710 mutex_lock(&nvmet_rdma_queue_mutex);
1711 if (!list_empty(&queue->queue_list))
1712 list_del_init(&queue->queue_list);
1713 mutex_unlock(&nvmet_rdma_queue_mutex);
1714
1715 pr_err("failed to connect queue %d\n", queue->idx);
1716 queue_work(nvmet_wq, &queue->release_work);
1717 }
1718
1719 /**
1720 * nvmet_rdma_device_removal() - Handle RDMA device removal
1721 * @cm_id: rdma_cm id, used for nvmet port
1722 * @queue: nvmet rdma queue (cm id qp_context)
1723 *
1724 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1725 * to unplug. Note that this event can be generated on a normal
1726 * queue cm_id and/or a device bound listener cm_id (where in this
1727 * case queue will be null).
1728 *
1729 * We registered an ib_client to handle device removal for queues,
1730 * so we only need to handle the listening port cm_ids. In this case
1731 * we nullify the priv to prevent double cm_id destruction and destroying
1732 * the cm_id implicitely by returning a non-zero rc to the callout.
1733 */
nvmet_rdma_device_removal(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue)1734 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1735 struct nvmet_rdma_queue *queue)
1736 {
1737 struct nvmet_rdma_port *port;
1738
1739 if (queue) {
1740 /*
1741 * This is a queue cm_id. we have registered
1742 * an ib_client to handle queues removal
1743 * so don't interfear and just return.
1744 */
1745 return 0;
1746 }
1747
1748 port = cm_id->context;
1749
1750 /*
1751 * This is a listener cm_id. Make sure that
1752 * future remove_port won't invoke a double
1753 * cm_id destroy. use atomic xchg to make sure
1754 * we don't compete with remove_port.
1755 */
1756 if (xchg(&port->cm_id, NULL) != cm_id)
1757 return 0;
1758
1759 /*
1760 * We need to return 1 so that the core will destroy
1761 * it's own ID. What a great API design..
1762 */
1763 return 1;
1764 }
1765
nvmet_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1766 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1767 struct rdma_cm_event *event)
1768 {
1769 struct nvmet_rdma_queue *queue = NULL;
1770 int ret = 0;
1771
1772 if (cm_id->qp)
1773 queue = cm_id->qp->qp_context;
1774
1775 pr_debug("%s (%d): status %d id %p\n",
1776 rdma_event_msg(event->event), event->event,
1777 event->status, cm_id);
1778
1779 switch (event->event) {
1780 case RDMA_CM_EVENT_CONNECT_REQUEST:
1781 ret = nvmet_rdma_queue_connect(cm_id, event);
1782 break;
1783 case RDMA_CM_EVENT_ESTABLISHED:
1784 nvmet_rdma_queue_established(queue);
1785 break;
1786 case RDMA_CM_EVENT_ADDR_CHANGE:
1787 if (!queue) {
1788 struct nvmet_rdma_port *port = cm_id->context;
1789
1790 queue_delayed_work(nvmet_wq, &port->repair_work, 0);
1791 break;
1792 }
1793 fallthrough;
1794 case RDMA_CM_EVENT_DISCONNECTED:
1795 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1796 nvmet_rdma_queue_disconnect(queue);
1797 break;
1798 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1799 ret = nvmet_rdma_device_removal(cm_id, queue);
1800 break;
1801 case RDMA_CM_EVENT_REJECTED:
1802 pr_debug("Connection rejected: %s\n",
1803 rdma_reject_msg(cm_id, event->status));
1804 fallthrough;
1805 case RDMA_CM_EVENT_UNREACHABLE:
1806 case RDMA_CM_EVENT_CONNECT_ERROR:
1807 nvmet_rdma_queue_connect_fail(cm_id, queue);
1808 break;
1809 default:
1810 pr_err("received unrecognized RDMA CM event %d\n",
1811 event->event);
1812 break;
1813 }
1814
1815 return ret;
1816 }
1817
nvmet_rdma_delete_ctrl(struct nvmet_ctrl * ctrl)1818 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1819 {
1820 struct nvmet_rdma_queue *queue, *n;
1821
1822 mutex_lock(&nvmet_rdma_queue_mutex);
1823 list_for_each_entry_safe(queue, n, &nvmet_rdma_queue_list, queue_list) {
1824 if (queue->nvme_sq.ctrl != ctrl)
1825 continue;
1826 list_del_init(&queue->queue_list);
1827 __nvmet_rdma_queue_disconnect(queue);
1828 }
1829 mutex_unlock(&nvmet_rdma_queue_mutex);
1830 }
1831
nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port * port)1832 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1833 {
1834 struct nvmet_rdma_queue *queue, *tmp;
1835 struct nvmet_port *nport = port->nport;
1836
1837 mutex_lock(&nvmet_rdma_queue_mutex);
1838 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1839 queue_list) {
1840 if (queue->port != nport)
1841 continue;
1842
1843 list_del_init(&queue->queue_list);
1844 __nvmet_rdma_queue_disconnect(queue);
1845 }
1846 mutex_unlock(&nvmet_rdma_queue_mutex);
1847 }
1848
nvmet_rdma_disable_port(struct nvmet_rdma_port * port)1849 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1850 {
1851 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1852
1853 if (cm_id)
1854 rdma_destroy_id(cm_id);
1855
1856 /*
1857 * Destroy the remaining queues, which are not belong to any
1858 * controller yet. Do it here after the RDMA-CM was destroyed
1859 * guarantees that no new queue will be created.
1860 */
1861 nvmet_rdma_destroy_port_queues(port);
1862 }
1863
nvmet_rdma_enable_port(struct nvmet_rdma_port * port)1864 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1865 {
1866 struct sockaddr *addr = (struct sockaddr *)&port->addr;
1867 struct rdma_cm_id *cm_id;
1868 int ret;
1869
1870 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1871 RDMA_PS_TCP, IB_QPT_RC);
1872 if (IS_ERR(cm_id)) {
1873 pr_err("CM ID creation failed\n");
1874 return PTR_ERR(cm_id);
1875 }
1876
1877 /*
1878 * Allow both IPv4 and IPv6 sockets to bind a single port
1879 * at the same time.
1880 */
1881 ret = rdma_set_afonly(cm_id, 1);
1882 if (ret) {
1883 pr_err("rdma_set_afonly failed (%d)\n", ret);
1884 goto out_destroy_id;
1885 }
1886
1887 ret = rdma_bind_addr(cm_id, addr);
1888 if (ret) {
1889 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1890 goto out_destroy_id;
1891 }
1892
1893 ret = rdma_listen(cm_id, NVMET_RDMA_BACKLOG);
1894 if (ret) {
1895 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1896 goto out_destroy_id;
1897 }
1898
1899 port->cm_id = cm_id;
1900 return 0;
1901
1902 out_destroy_id:
1903 rdma_destroy_id(cm_id);
1904 return ret;
1905 }
1906
nvmet_rdma_repair_port_work(struct work_struct * w)1907 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1908 {
1909 struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1910 struct nvmet_rdma_port, repair_work);
1911 int ret;
1912
1913 nvmet_rdma_disable_port(port);
1914 ret = nvmet_rdma_enable_port(port);
1915 if (ret)
1916 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ);
1917 }
1918
nvmet_rdma_add_port(struct nvmet_port * nport)1919 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1920 {
1921 struct nvmet_rdma_port *port;
1922 __kernel_sa_family_t af;
1923 int ret;
1924
1925 port = kzalloc(sizeof(*port), GFP_KERNEL);
1926 if (!port)
1927 return -ENOMEM;
1928
1929 nport->priv = port;
1930 port->nport = nport;
1931 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1932
1933 switch (nport->disc_addr.adrfam) {
1934 case NVMF_ADDR_FAMILY_IP4:
1935 af = AF_INET;
1936 break;
1937 case NVMF_ADDR_FAMILY_IP6:
1938 af = AF_INET6;
1939 break;
1940 default:
1941 pr_err("address family %d not supported\n",
1942 nport->disc_addr.adrfam);
1943 ret = -EINVAL;
1944 goto out_free_port;
1945 }
1946
1947 if (nport->inline_data_size < 0) {
1948 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1949 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1950 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1951 nport->inline_data_size,
1952 NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1953 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1954 }
1955
1956 if (nport->max_queue_size < 0) {
1957 nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE;
1958 } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) {
1959 pr_warn("max_queue_size %u is too large, reducing to %u\n",
1960 nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE);
1961 nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE;
1962 }
1963
1964 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1965 nport->disc_addr.trsvcid, &port->addr);
1966 if (ret) {
1967 pr_err("malformed ip/port passed: %s:%s\n",
1968 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1969 goto out_free_port;
1970 }
1971
1972 ret = nvmet_rdma_enable_port(port);
1973 if (ret)
1974 goto out_free_port;
1975
1976 pr_info("enabling port %d (%pISpcs)\n",
1977 le16_to_cpu(nport->disc_addr.portid),
1978 (struct sockaddr *)&port->addr);
1979
1980 return 0;
1981
1982 out_free_port:
1983 kfree(port);
1984 return ret;
1985 }
1986
nvmet_rdma_remove_port(struct nvmet_port * nport)1987 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1988 {
1989 struct nvmet_rdma_port *port = nport->priv;
1990
1991 cancel_delayed_work_sync(&port->repair_work);
1992 nvmet_rdma_disable_port(port);
1993 kfree(port);
1994 }
1995
nvmet_rdma_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)1996 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1997 struct nvmet_port *nport, char *traddr)
1998 {
1999 struct nvmet_rdma_port *port = nport->priv;
2000 struct rdma_cm_id *cm_id = port->cm_id;
2001
2002 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
2003 struct nvmet_rdma_rsp *rsp =
2004 container_of(req, struct nvmet_rdma_rsp, req);
2005 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
2006 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
2007
2008 sprintf(traddr, "%pISc", addr);
2009 } else {
2010 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2011 }
2012 }
2013
nvmet_rdma_host_port_addr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)2014 static ssize_t nvmet_rdma_host_port_addr(struct nvmet_ctrl *ctrl,
2015 char *traddr, size_t traddr_len)
2016 {
2017 struct nvmet_sq *nvme_sq = ctrl->sqs[0];
2018 struct nvmet_rdma_queue *queue =
2019 container_of(nvme_sq, struct nvmet_rdma_queue, nvme_sq);
2020
2021 return snprintf(traddr, traddr_len, "%pISc",
2022 (struct sockaddr *)&queue->cm_id->route.addr.dst_addr);
2023 }
2024
nvmet_rdma_get_mdts(const struct nvmet_ctrl * ctrl)2025 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
2026 {
2027 if (ctrl->pi_support)
2028 return NVMET_RDMA_MAX_METADATA_MDTS;
2029 return NVMET_RDMA_MAX_MDTS;
2030 }
2031
nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl * ctrl)2032 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
2033 {
2034 if (ctrl->pi_support)
2035 return NVME_RDMA_MAX_METADATA_QUEUE_SIZE;
2036 return NVME_RDMA_MAX_QUEUE_SIZE;
2037 }
2038
2039 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2040 .owner = THIS_MODULE,
2041 .type = NVMF_TRTYPE_RDMA,
2042 .msdbd = 1,
2043 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2044 .add_port = nvmet_rdma_add_port,
2045 .remove_port = nvmet_rdma_remove_port,
2046 .queue_response = nvmet_rdma_queue_response,
2047 .delete_ctrl = nvmet_rdma_delete_ctrl,
2048 .disc_traddr = nvmet_rdma_disc_port_addr,
2049 .host_traddr = nvmet_rdma_host_port_addr,
2050 .get_mdts = nvmet_rdma_get_mdts,
2051 .get_max_queue_size = nvmet_rdma_get_max_queue_size,
2052 };
2053
nvmet_rdma_remove_one(struct ib_device * ib_device,void * client_data)2054 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2055 {
2056 struct nvmet_rdma_queue *queue, *tmp;
2057 struct nvmet_rdma_device *ndev;
2058 bool found = false;
2059
2060 mutex_lock(&device_list_mutex);
2061 list_for_each_entry(ndev, &device_list, entry) {
2062 if (ndev->device == ib_device) {
2063 found = true;
2064 break;
2065 }
2066 }
2067 mutex_unlock(&device_list_mutex);
2068
2069 if (!found)
2070 return;
2071
2072 /*
2073 * IB Device that is used by nvmet controllers is being removed,
2074 * delete all queues using this device.
2075 */
2076 mutex_lock(&nvmet_rdma_queue_mutex);
2077 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2078 queue_list) {
2079 if (queue->dev->device != ib_device)
2080 continue;
2081
2082 pr_info("Removing queue %d\n", queue->idx);
2083 list_del_init(&queue->queue_list);
2084 __nvmet_rdma_queue_disconnect(queue);
2085 }
2086 mutex_unlock(&nvmet_rdma_queue_mutex);
2087
2088 flush_workqueue(nvmet_wq);
2089 }
2090
2091 static struct ib_client nvmet_rdma_ib_client = {
2092 .name = "nvmet_rdma",
2093 .remove = nvmet_rdma_remove_one
2094 };
2095
nvmet_rdma_init(void)2096 static int __init nvmet_rdma_init(void)
2097 {
2098 int ret;
2099
2100 ret = ib_register_client(&nvmet_rdma_ib_client);
2101 if (ret)
2102 return ret;
2103
2104 ret = nvmet_register_transport(&nvmet_rdma_ops);
2105 if (ret)
2106 goto err_ib_client;
2107
2108 return 0;
2109
2110 err_ib_client:
2111 ib_unregister_client(&nvmet_rdma_ib_client);
2112 return ret;
2113 }
2114
nvmet_rdma_exit(void)2115 static void __exit nvmet_rdma_exit(void)
2116 {
2117 nvmet_unregister_transport(&nvmet_rdma_ops);
2118 ib_unregister_client(&nvmet_rdma_ib_client);
2119 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2120 ida_destroy(&nvmet_rdma_queue_ida);
2121 }
2122
2123 module_init(nvmet_rdma_init);
2124 module_exit(nvmet_rdma_exit);
2125
2126 MODULE_DESCRIPTION("NVMe target RDMA transport driver");
2127 MODULE_LICENSE("GPL v2");
2128 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2129