1 /*
2 * Copyright (c) 2014 Redpine Signals Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/etherdevice.h>
18 #include <linux/timer.h>
19 #include "rsi_mgmt.h"
20 #include "rsi_common.h"
21 #include "rsi_ps.h"
22 #include "rsi_hal.h"
23
24 static struct bootup_params boot_params_20 = {
25 .magic_number = cpu_to_le16(0x5aa5),
26 .crystal_good_time = 0x0,
27 .valid = cpu_to_le32(VALID_20),
28 .reserved_for_valids = 0x0,
29 .bootup_mode_info = 0x0,
30 .digital_loop_back_params = 0x0,
31 .rtls_timestamp_en = 0x0,
32 .host_spi_intr_cfg = 0x0,
33 .device_clk_info = {{
34 .pll_config_g = {
35 .tapll_info_g = {
36 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
37 (TA_PLL_M_VAL_20)),
38 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
39 },
40 .pll960_info_g = {
41 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
42 (PLL960_N_VAL_20)),
43 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
44 .pll_reg_3 = 0x0,
45 },
46 .afepll_info_g = {
47 .pll_reg = cpu_to_le16(0x9f0),
48 }
49 },
50 .switch_clk_g = {
51 .switch_clk_info = cpu_to_le16(0xb),
52 .bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
53 .umac_clock_reg_config = cpu_to_le16(0x48),
54 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
55 }
56 },
57 {
58 .pll_config_g = {
59 .tapll_info_g = {
60 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
61 (TA_PLL_M_VAL_20)),
62 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
63 },
64 .pll960_info_g = {
65 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
66 (PLL960_N_VAL_20)),
67 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
68 .pll_reg_3 = 0x0,
69 },
70 .afepll_info_g = {
71 .pll_reg = cpu_to_le16(0x9f0),
72 }
73 },
74 .switch_clk_g = {
75 .switch_clk_info = 0x0,
76 .bbp_lmac_clk_reg_val = 0x0,
77 .umac_clock_reg_config = 0x0,
78 .qspi_uart_clock_reg_config = 0x0
79 }
80 },
81 {
82 .pll_config_g = {
83 .tapll_info_g = {
84 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
85 (TA_PLL_M_VAL_20)),
86 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
87 },
88 .pll960_info_g = {
89 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
90 (PLL960_N_VAL_20)),
91 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
92 .pll_reg_3 = 0x0,
93 },
94 .afepll_info_g = {
95 .pll_reg = cpu_to_le16(0x9f0),
96 }
97 },
98 .switch_clk_g = {
99 .switch_clk_info = 0x0,
100 .bbp_lmac_clk_reg_val = 0x0,
101 .umac_clock_reg_config = 0x0,
102 .qspi_uart_clock_reg_config = 0x0
103 }
104 } },
105 .buckboost_wakeup_cnt = 0x0,
106 .pmu_wakeup_wait = 0x0,
107 .shutdown_wait_time = 0x0,
108 .pmu_slp_clkout_sel = 0x0,
109 .wdt_prog_value = 0x0,
110 .wdt_soc_rst_delay = 0x0,
111 .dcdc_operation_mode = 0x0,
112 .soc_reset_wait_cnt = 0x0,
113 .waiting_time_at_fresh_sleep = 0x0,
114 .max_threshold_to_avoid_sleep = 0x0,
115 .beacon_resedue_alg_en = 0,
116 };
117
118 static struct bootup_params boot_params_40 = {
119 .magic_number = cpu_to_le16(0x5aa5),
120 .crystal_good_time = 0x0,
121 .valid = cpu_to_le32(VALID_40),
122 .reserved_for_valids = 0x0,
123 .bootup_mode_info = 0x0,
124 .digital_loop_back_params = 0x0,
125 .rtls_timestamp_en = 0x0,
126 .host_spi_intr_cfg = 0x0,
127 .device_clk_info = {{
128 .pll_config_g = {
129 .tapll_info_g = {
130 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
131 (TA_PLL_M_VAL_40)),
132 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
133 },
134 .pll960_info_g = {
135 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
136 (PLL960_N_VAL_40)),
137 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
138 .pll_reg_3 = 0x0,
139 },
140 .afepll_info_g = {
141 .pll_reg = cpu_to_le16(0x9f0),
142 }
143 },
144 .switch_clk_g = {
145 .switch_clk_info = cpu_to_le16(0x09),
146 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
147 .umac_clock_reg_config = cpu_to_le16(0x48),
148 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
149 }
150 },
151 {
152 .pll_config_g = {
153 .tapll_info_g = {
154 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
155 (TA_PLL_M_VAL_40)),
156 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
157 },
158 .pll960_info_g = {
159 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
160 (PLL960_N_VAL_40)),
161 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
162 .pll_reg_3 = 0x0,
163 },
164 .afepll_info_g = {
165 .pll_reg = cpu_to_le16(0x9f0),
166 }
167 },
168 .switch_clk_g = {
169 .switch_clk_info = 0x0,
170 .bbp_lmac_clk_reg_val = 0x0,
171 .umac_clock_reg_config = 0x0,
172 .qspi_uart_clock_reg_config = 0x0
173 }
174 },
175 {
176 .pll_config_g = {
177 .tapll_info_g = {
178 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
179 (TA_PLL_M_VAL_40)),
180 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
181 },
182 .pll960_info_g = {
183 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
184 (PLL960_N_VAL_40)),
185 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
186 .pll_reg_3 = 0x0,
187 },
188 .afepll_info_g = {
189 .pll_reg = cpu_to_le16(0x9f0),
190 }
191 },
192 .switch_clk_g = {
193 .switch_clk_info = 0x0,
194 .bbp_lmac_clk_reg_val = 0x0,
195 .umac_clock_reg_config = 0x0,
196 .qspi_uart_clock_reg_config = 0x0
197 }
198 } },
199 .buckboost_wakeup_cnt = 0x0,
200 .pmu_wakeup_wait = 0x0,
201 .shutdown_wait_time = 0x0,
202 .pmu_slp_clkout_sel = 0x0,
203 .wdt_prog_value = 0x0,
204 .wdt_soc_rst_delay = 0x0,
205 .dcdc_operation_mode = 0x0,
206 .soc_reset_wait_cnt = 0x0,
207 .waiting_time_at_fresh_sleep = 0x0,
208 .max_threshold_to_avoid_sleep = 0x0,
209 .beacon_resedue_alg_en = 0,
210 };
211
212 static struct bootup_params_9116 boot_params_9116_20 = {
213 .magic_number = cpu_to_le16(LOADED_TOKEN),
214 .valid = cpu_to_le32(VALID_20),
215 .device_clk_info_9116 = {{
216 .pll_config_9116_g = {
217 .pll_ctrl_set_reg = cpu_to_le16(0xd518),
218 .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
219 .pll_modem_conig_reg = cpu_to_le16(0x2000),
220 .soc_clk_config_reg = cpu_to_le16(0x0c18),
221 .adc_dac_strm1_config_reg = cpu_to_le16(0x1100),
222 .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
223 },
224 .switch_clk_9116_g = {
225 .switch_clk_info =
226 cpu_to_le32((RSI_SWITCH_TASS_CLK |
227 RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
228 RSI_SWITCH_BBP_LMAC_CLK_REG)),
229 .tass_clock_reg = cpu_to_le32(0x083C0503),
230 .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042001),
231 .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x02010001),
232 .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
233 }
234 },
235 },
236 };
237
238 static struct bootup_params_9116 boot_params_9116_40 = {
239 .magic_number = cpu_to_le16(LOADED_TOKEN),
240 .valid = cpu_to_le32(VALID_40),
241 .device_clk_info_9116 = {{
242 .pll_config_9116_g = {
243 .pll_ctrl_set_reg = cpu_to_le16(0xd518),
244 .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
245 .pll_modem_conig_reg = cpu_to_le16(0x3000),
246 .soc_clk_config_reg = cpu_to_le16(0x0c18),
247 .adc_dac_strm1_config_reg = cpu_to_le16(0x0000),
248 .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
249 },
250 .switch_clk_9116_g = {
251 .switch_clk_info =
252 cpu_to_le32((RSI_SWITCH_TASS_CLK |
253 RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
254 RSI_SWITCH_BBP_LMAC_CLK_REG |
255 RSI_MODEM_CLK_160MHZ)),
256 .tass_clock_reg = cpu_to_le32(0x083C0503),
257 .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042002),
258 .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x04010002),
259 .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
260 }
261 },
262 },
263 };
264
265 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
266
267 /**
268 * rsi_set_default_parameters() - This function sets default parameters.
269 * @common: Pointer to the driver private structure.
270 *
271 * Return: none
272 */
rsi_set_default_parameters(struct rsi_common * common)273 static void rsi_set_default_parameters(struct rsi_common *common)
274 {
275 common->band = NL80211_BAND_2GHZ;
276 common->channel_width = BW_20MHZ;
277 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
278 common->channel = 1;
279 memset(&common->rate_config, 0, sizeof(common->rate_config));
280 common->fsm_state = FSM_CARD_NOT_READY;
281 common->iface_down = true;
282 common->endpoint = EP_2GHZ_20MHZ;
283 common->driver_mode = 1; /* End to end mode */
284 common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
285 common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
286 common->rf_power_val = 0; /* Default 1.9V */
287 common->wlan_rf_power_mode = 0;
288 common->obm_ant_sel_val = 2;
289 common->beacon_interval = RSI_BEACON_INTERVAL;
290 common->dtim_cnt = RSI_DTIM_COUNT;
291 common->w9116_features.pll_mode = 0x0;
292 common->w9116_features.rf_type = 1;
293 common->w9116_features.wireless_mode = 0;
294 common->w9116_features.enable_ppe = 0;
295 common->w9116_features.afe_type = 1;
296 common->w9116_features.dpd = 0;
297 common->w9116_features.sifs_tx_enable = 0;
298 common->w9116_features.ps_options = 0;
299 }
300
init_bgscan_params(struct rsi_common * common)301 void init_bgscan_params(struct rsi_common *common)
302 {
303 memset((u8 *)&common->bgscan, 0, sizeof(struct rsi_bgscan_params));
304 common->bgscan.bgscan_threshold = RSI_DEF_BGSCAN_THRLD;
305 common->bgscan.roam_threshold = RSI_DEF_ROAM_THRLD;
306 common->bgscan.bgscan_periodicity = RSI_BGSCAN_PERIODICITY;
307 common->bgscan.num_bgscan_channels = 0;
308 common->bgscan.two_probe = 1;
309 common->bgscan.active_scan_duration = RSI_ACTIVE_SCAN_TIME;
310 common->bgscan.passive_scan_duration = RSI_PASSIVE_SCAN_TIME;
311 }
312
313 /**
314 * rsi_set_contention_vals() - This function sets the contention values for the
315 * backoff procedure.
316 * @common: Pointer to the driver private structure.
317 *
318 * Return: None.
319 */
rsi_set_contention_vals(struct rsi_common * common)320 static void rsi_set_contention_vals(struct rsi_common *common)
321 {
322 u8 ii = 0;
323
324 for (; ii < NUM_EDCA_QUEUES; ii++) {
325 common->tx_qinfo[ii].wme_params =
326 (((common->edca_params[ii].cw_min / 2) +
327 (common->edca_params[ii].aifs)) *
328 WMM_SHORT_SLOT_TIME + SIFS_DURATION);
329 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
330 common->tx_qinfo[ii].pkt_contended = 0;
331 }
332 }
333
334 /**
335 * rsi_send_internal_mgmt_frame() - This function sends management frames to
336 * firmware.Also schedules packet to queue
337 * for transmission.
338 * @common: Pointer to the driver private structure.
339 * @skb: Pointer to the socket buffer structure.
340 *
341 * Return: 0 on success, -1 on failure.
342 */
rsi_send_internal_mgmt_frame(struct rsi_common * common,struct sk_buff * skb)343 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
344 struct sk_buff *skb)
345 {
346 struct skb_info *tx_params;
347 struct rsi_cmd_desc *desc;
348
349 if (skb == NULL) {
350 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
351 return -ENOMEM;
352 }
353 desc = (struct rsi_cmd_desc *)skb->data;
354 desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
355 skb->priority = MGMT_SOFT_Q;
356 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
357 tx_params->flags |= INTERNAL_MGMT_PKT;
358 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
359 rsi_set_event(&common->tx_thread.event);
360 return 0;
361 }
362
363 /**
364 * rsi_load_radio_caps() - This function is used to send radio capabilities
365 * values to firmware.
366 * @common: Pointer to the driver private structure.
367 *
368 * Return: 0 on success, corresponding negative error code on failure.
369 */
rsi_load_radio_caps(struct rsi_common * common)370 static int rsi_load_radio_caps(struct rsi_common *common)
371 {
372 struct rsi_radio_caps *radio_caps;
373 struct rsi_hw *adapter = common->priv;
374 u16 inx = 0;
375 u8 ii;
376 u8 radio_id = 0;
377 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
378 0xf0, 0xf0, 0xf0, 0xf0,
379 0xf0, 0xf0, 0xf0, 0xf0,
380 0xf0, 0xf0, 0xf0, 0xf0,
381 0xf0, 0xf0, 0xf0, 0xf0};
382 struct sk_buff *skb;
383 u16 frame_len = sizeof(struct rsi_radio_caps);
384
385 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
386
387 skb = dev_alloc_skb(frame_len);
388
389 if (!skb) {
390 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
391 __func__);
392 return -ENOMEM;
393 }
394
395 memset(skb->data, 0, frame_len);
396 radio_caps = (struct rsi_radio_caps *)skb->data;
397
398 radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
399 radio_caps->channel_num = common->channel;
400 radio_caps->rf_model = RSI_RF_TYPE;
401
402 radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
403 if (common->channel_width == BW_40MHZ) {
404 radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
405
406 if (common->fsm_state == FSM_MAC_INIT_DONE) {
407 struct ieee80211_hw *hw = adapter->hw;
408 struct ieee80211_conf *conf = &hw->conf;
409
410 if (conf_is_ht40_plus(conf)) {
411 radio_caps->ppe_ack_rate =
412 cpu_to_le16(LOWER_20_ENABLE |
413 (LOWER_20_ENABLE >> 12));
414 } else if (conf_is_ht40_minus(conf)) {
415 radio_caps->ppe_ack_rate =
416 cpu_to_le16(UPPER_20_ENABLE |
417 (UPPER_20_ENABLE >> 12));
418 } else {
419 radio_caps->ppe_ack_rate =
420 cpu_to_le16((BW_40MHZ << 12) |
421 FULL40M_ENABLE);
422 }
423 }
424 }
425 radio_caps->radio_info |= radio_id;
426
427 if (adapter->device_model == RSI_DEV_9116 &&
428 common->channel_width == BW_20MHZ)
429 radio_caps->radio_cfg_info &= ~0x3;
430
431 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
432 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
433 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
434 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
435 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
436 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
437
438 for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
439 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
440 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
441 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
442 radio_caps->qos_params[ii].txop_q = 0;
443 }
444
445 for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
446 if (common->edca_params[ii].cw_max > 0) {
447 radio_caps->qos_params[ii].cont_win_min_q =
448 cpu_to_le16(common->edca_params[ii].cw_min);
449 radio_caps->qos_params[ii].cont_win_max_q =
450 cpu_to_le16(common->edca_params[ii].cw_max);
451 radio_caps->qos_params[ii].aifsn_val_q =
452 cpu_to_le16(common->edca_params[ii].aifs << 8);
453 radio_caps->qos_params[ii].txop_q =
454 cpu_to_le16(common->edca_params[ii].txop);
455 }
456 }
457
458 radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
459 radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
460 radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
461
462 memcpy(&common->rate_pwr[0], &gc[0], 40);
463 for (ii = 0; ii < 20; ii++)
464 radio_caps->gcpd_per_rate[inx++] =
465 cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
466
467 rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
468 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
469
470 skb_put(skb, frame_len);
471
472 return rsi_send_internal_mgmt_frame(common, skb);
473 }
474
475 /**
476 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
477 * @common: Pointer to the driver private structure.
478 * @msg: Pointer to received packet.
479 * @msg_len: Length of the received packet.
480 *
481 * Return: 0 on success, -1 on failure.
482 */
rsi_mgmt_pkt_to_core(struct rsi_common * common,u8 * msg,s32 msg_len)483 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
484 u8 *msg,
485 s32 msg_len)
486 {
487 struct rsi_hw *adapter = common->priv;
488 struct ieee80211_tx_info *info;
489 struct skb_info *rx_params;
490 u8 pad_bytes = msg[4];
491 struct sk_buff *skb;
492
493 if (!adapter->sc_nvifs)
494 return -ENOLINK;
495
496 msg_len -= pad_bytes;
497 if (msg_len <= 0) {
498 rsi_dbg(MGMT_RX_ZONE,
499 "%s: Invalid rx msg of len = %d\n",
500 __func__, msg_len);
501 return -EINVAL;
502 }
503
504 skb = dev_alloc_skb(msg_len);
505 if (!skb)
506 return -ENOMEM;
507
508 skb_put_data(skb,
509 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
510 msg_len);
511
512 info = IEEE80211_SKB_CB(skb);
513 rx_params = (struct skb_info *)info->driver_data;
514 rx_params->rssi = rsi_get_rssi(msg);
515 rx_params->channel = rsi_get_channel(msg);
516 rsi_indicate_pkt_to_os(common, skb);
517
518 return 0;
519 }
520
521 /**
522 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
523 * frame to firmware.
524 * @common: Pointer to the driver private structure.
525 * @opmode: Operating mode of device.
526 * @notify_event: Notification about station connection.
527 * @bssid: bssid.
528 * @qos_enable: Qos is enabled.
529 * @aid: Aid (unique for all STA).
530 * @sta_id: station id.
531 * @vif: Pointer to the ieee80211_vif structure.
532 *
533 * Return: status: 0 on success, corresponding negative error code on failure.
534 */
rsi_hal_send_sta_notify_frame(struct rsi_common * common,enum opmode opmode,u8 notify_event,const unsigned char * bssid,u8 qos_enable,u16 aid,u16 sta_id,struct ieee80211_vif * vif)535 int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode,
536 u8 notify_event, const unsigned char *bssid,
537 u8 qos_enable, u16 aid, u16 sta_id,
538 struct ieee80211_vif *vif)
539 {
540 struct sk_buff *skb = NULL;
541 struct rsi_peer_notify *peer_notify;
542 u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id;
543 int status;
544 u16 frame_len = sizeof(struct rsi_peer_notify);
545
546 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
547
548 skb = dev_alloc_skb(frame_len);
549
550 if (!skb) {
551 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
552 __func__);
553 return -ENOMEM;
554 }
555
556 memset(skb->data, 0, frame_len);
557 peer_notify = (struct rsi_peer_notify *)skb->data;
558
559 if (opmode == RSI_OPMODE_STA)
560 peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
561 else if (opmode == RSI_OPMODE_AP)
562 peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
563
564 switch (notify_event) {
565 case STA_CONNECTED:
566 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
567 break;
568 case STA_DISCONNECTED:
569 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
570 break;
571 default:
572 break;
573 }
574
575 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
576 ether_addr_copy(peer_notify->mac_addr, bssid);
577 peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
578 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
579
580 rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
581 (frame_len - FRAME_DESC_SZ),
582 RSI_WIFI_MGMT_Q);
583 peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
584 peer_notify->desc.desc_dword3.qid_tid = sta_id;
585 peer_notify->desc.desc_dword3.sta_id = vap_id;
586
587 skb_put(skb, frame_len);
588
589 status = rsi_send_internal_mgmt_frame(common, skb);
590
591 if ((vif->type == NL80211_IFTYPE_STATION) &&
592 (!status && qos_enable)) {
593 rsi_set_contention_vals(common);
594 status = rsi_load_radio_caps(common);
595 }
596 return status;
597 }
598
599 /**
600 * rsi_send_aggregation_params_frame() - This function sends the ampdu
601 * indication frame to firmware.
602 * @common: Pointer to the driver private structure.
603 * @tid: traffic identifier.
604 * @ssn: ssn.
605 * @buf_size: buffer size.
606 * @event: notification about station connection.
607 * @sta_id: station id.
608 *
609 * Return: 0 on success, corresponding negative error code on failure.
610 */
rsi_send_aggregation_params_frame(struct rsi_common * common,u16 tid,u16 ssn,u8 buf_size,u8 event,u8 sta_id)611 int rsi_send_aggregation_params_frame(struct rsi_common *common,
612 u16 tid,
613 u16 ssn,
614 u8 buf_size,
615 u8 event,
616 u8 sta_id)
617 {
618 struct sk_buff *skb = NULL;
619 struct rsi_aggr_params *aggr_params;
620 u16 frame_len = sizeof(struct rsi_aggr_params);
621
622 skb = dev_alloc_skb(frame_len);
623
624 if (!skb) {
625 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
626 __func__);
627 return -ENOMEM;
628 }
629
630 memset(skb->data, 0, frame_len);
631 aggr_params = (struct rsi_aggr_params *)skb->data;
632
633 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
634
635 rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
636 aggr_params->desc_dword0.frame_type = AMPDU_IND;
637
638 aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
639 aggr_params->peer_id = sta_id;
640 if (event == STA_TX_ADDBA_DONE) {
641 aggr_params->seq_start = cpu_to_le16(ssn);
642 aggr_params->baw_size = cpu_to_le16(buf_size);
643 aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
644 } else if (event == STA_RX_ADDBA_DONE) {
645 aggr_params->seq_start = cpu_to_le16(ssn);
646 aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
647 RSI_AGGR_PARAMS_RX_AGGR);
648 } else if (event == STA_RX_DELBA) {
649 aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
650 }
651
652 skb_put(skb, frame_len);
653
654 return rsi_send_internal_mgmt_frame(common, skb);
655 }
656
657 /**
658 * rsi_program_bb_rf() - This function starts base band and RF programming.
659 * This is called after initial configurations are done.
660 * @common: Pointer to the driver private structure.
661 *
662 * Return: 0 on success, corresponding negative error code on failure.
663 */
rsi_program_bb_rf(struct rsi_common * common)664 static int rsi_program_bb_rf(struct rsi_common *common)
665 {
666 struct sk_buff *skb;
667 struct rsi_bb_rf_prog *bb_rf_prog;
668 u16 frame_len = sizeof(struct rsi_bb_rf_prog);
669
670 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
671
672 skb = dev_alloc_skb(frame_len);
673 if (!skb) {
674 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
675 __func__);
676 return -ENOMEM;
677 }
678
679 memset(skb->data, 0, frame_len);
680 bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
681
682 rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
683 bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
684 bb_rf_prog->endpoint = common->endpoint;
685 bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
686
687 if (common->rf_reset) {
688 bb_rf_prog->flags = cpu_to_le16(RF_RESET_ENABLE);
689 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
690 __func__);
691 common->rf_reset = 0;
692 }
693 common->bb_rf_prog_count = 1;
694 bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
695 (RSI_RF_TYPE << 4));
696 skb_put(skb, frame_len);
697
698 return rsi_send_internal_mgmt_frame(common, skb);
699 }
700
701 /**
702 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
703 * @common: Pointer to the driver private structure.
704 * @mode: Operating mode of device.
705 * @mac_addr: MAC address
706 * @vap_id: Rate information - offset and mask
707 * @vap_status: VAP status - ADD, DELETE or UPDATE
708 *
709 * Return: 0 on success, corresponding negative error code on failure.
710 */
rsi_set_vap_capabilities(struct rsi_common * common,enum opmode mode,u8 * mac_addr,u8 vap_id,u8 vap_status)711 int rsi_set_vap_capabilities(struct rsi_common *common,
712 enum opmode mode,
713 u8 *mac_addr,
714 u8 vap_id,
715 u8 vap_status)
716 {
717 struct sk_buff *skb = NULL;
718 struct rsi_vap_caps *vap_caps;
719 struct rsi_hw *adapter = common->priv;
720 struct ieee80211_hw *hw = adapter->hw;
721 struct ieee80211_conf *conf = &hw->conf;
722 u16 frame_len = sizeof(struct rsi_vap_caps);
723
724 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
725
726 skb = dev_alloc_skb(frame_len);
727 if (!skb) {
728 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
729 __func__);
730 return -ENOMEM;
731 }
732
733 memset(skb->data, 0, frame_len);
734 vap_caps = (struct rsi_vap_caps *)skb->data;
735
736 rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
737 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
738 vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
739 vap_caps->status = vap_status;
740 vap_caps->vif_type = mode;
741 vap_caps->channel_bw = common->channel_width;
742 vap_caps->vap_id = vap_id;
743 vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
744 (common->radio_id & 0xf);
745
746 memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
747 vap_caps->keep_alive_period = cpu_to_le16(90);
748 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
749
750 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
751
752 if (common->band == NL80211_BAND_5GHZ) {
753 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
754 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
755 } else {
756 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
757 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
758 }
759 if (conf_is_ht40(conf)) {
760 if (conf_is_ht40_minus(conf))
761 vap_caps->ctrl_rate_flags =
762 cpu_to_le16(UPPER_20_ENABLE);
763 else if (conf_is_ht40_plus(conf))
764 vap_caps->ctrl_rate_flags =
765 cpu_to_le16(LOWER_20_ENABLE);
766 else
767 vap_caps->ctrl_rate_flags =
768 cpu_to_le16(FULL40M_ENABLE);
769 }
770
771 vap_caps->default_data_rate = 0;
772 vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
773 vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
774
775 skb_put(skb, frame_len);
776
777 return rsi_send_internal_mgmt_frame(common, skb);
778 }
779
780 /**
781 * rsi_hal_load_key() - This function is used to load keys within the firmware.
782 * @common: Pointer to the driver private structure.
783 * @data: Pointer to the key data.
784 * @key_len: Key length to be loaded.
785 * @key_type: Type of key: GROUP/PAIRWISE.
786 * @key_id: Key index.
787 * @cipher: Type of cipher used.
788 * @sta_id: Station id.
789 * @vif: Pointer to the ieee80211_vif structure.
790 *
791 * Return: 0 on success, -1 on failure.
792 */
rsi_hal_load_key(struct rsi_common * common,u8 * data,u16 key_len,u8 key_type,u8 key_id,u32 cipher,s16 sta_id,struct ieee80211_vif * vif)793 int rsi_hal_load_key(struct rsi_common *common,
794 u8 *data,
795 u16 key_len,
796 u8 key_type,
797 u8 key_id,
798 u32 cipher,
799 s16 sta_id,
800 struct ieee80211_vif *vif)
801 {
802 struct sk_buff *skb = NULL;
803 struct rsi_set_key *set_key;
804 u16 key_descriptor = 0;
805 u16 frame_len = sizeof(struct rsi_set_key);
806
807 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
808
809 skb = dev_alloc_skb(frame_len);
810 if (!skb) {
811 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
812 __func__);
813 return -ENOMEM;
814 }
815
816 memset(skb->data, 0, frame_len);
817 set_key = (struct rsi_set_key *)skb->data;
818
819 if (key_type == RSI_GROUP_KEY) {
820 key_descriptor = RSI_KEY_TYPE_BROADCAST;
821 if (vif->type == NL80211_IFTYPE_AP)
822 key_descriptor |= RSI_KEY_MODE_AP;
823 }
824 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
825 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
826 key_id = 0;
827 key_descriptor |= RSI_WEP_KEY;
828 if (key_len >= 13)
829 key_descriptor |= RSI_WEP_KEY_104;
830 } else if (cipher != KEY_TYPE_CLEAR) {
831 key_descriptor |= RSI_CIPHER_WPA;
832 if (cipher == WLAN_CIPHER_SUITE_TKIP)
833 key_descriptor |= RSI_CIPHER_TKIP;
834 }
835 key_descriptor |= RSI_PROTECT_DATA_FRAMES;
836 key_descriptor |= (key_id << RSI_KEY_ID_OFFSET);
837
838 rsi_set_len_qno(&set_key->desc_dword0.len_qno,
839 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
840 set_key->desc_dword0.frame_type = SET_KEY_REQ;
841 set_key->key_desc = cpu_to_le16(key_descriptor);
842 set_key->sta_id = sta_id;
843
844 if (data) {
845 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
846 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
847 memcpy(&set_key->key[key_id][1], data, key_len * 2);
848 } else {
849 memcpy(&set_key->key[0][0], data, key_len);
850 }
851 memcpy(set_key->tx_mic_key, &data[16], 8);
852 memcpy(set_key->rx_mic_key, &data[24], 8);
853 } else {
854 memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
855 }
856
857 skb_put(skb, frame_len);
858
859 return rsi_send_internal_mgmt_frame(common, skb);
860 }
861
862 /*
863 * This function sends the common device configuration parameters to device.
864 * This frame includes the useful information to make device works on
865 * specific operating mode.
866 */
rsi_send_common_dev_params(struct rsi_common * common)867 static int rsi_send_common_dev_params(struct rsi_common *common)
868 {
869 struct sk_buff *skb;
870 u16 frame_len;
871 struct rsi_config_vals *dev_cfgs;
872
873 frame_len = sizeof(struct rsi_config_vals);
874
875 rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
876 skb = dev_alloc_skb(frame_len);
877 if (!skb) {
878 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
879 return -ENOMEM;
880 }
881
882 memset(skb->data, 0, frame_len);
883
884 dev_cfgs = (struct rsi_config_vals *)skb->data;
885 memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
886
887 rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
888 RSI_COEX_Q);
889 dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
890
891 dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
892 dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
893
894 dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
895 dev_cfgs->unused_soc_gpio_bitmap =
896 cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
897
898 dev_cfgs->opermode = common->oper_mode;
899 dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
900 dev_cfgs->driver_mode = common->driver_mode;
901 dev_cfgs->region_code = NL80211_DFS_FCC;
902 dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
903
904 skb_put(skb, frame_len);
905
906 return rsi_send_internal_mgmt_frame(common, skb);
907 }
908
909 /*
910 * rsi_load_bootup_params() - This function send bootup params to the firmware.
911 * @common: Pointer to the driver private structure.
912 *
913 * Return: 0 on success, corresponding error code on failure.
914 */
rsi_load_bootup_params(struct rsi_common * common)915 static int rsi_load_bootup_params(struct rsi_common *common)
916 {
917 struct sk_buff *skb;
918 struct rsi_boot_params *boot_params;
919
920 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
921 skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
922 if (!skb) {
923 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
924 __func__);
925 return -ENOMEM;
926 }
927
928 memset(skb->data, 0, sizeof(struct rsi_boot_params));
929 boot_params = (struct rsi_boot_params *)skb->data;
930
931 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
932
933 if (common->channel_width == BW_40MHZ) {
934 memcpy(&boot_params->bootup_params,
935 &boot_params_40,
936 sizeof(struct bootup_params));
937 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
938 UMAC_CLK_40BW);
939 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
940 } else {
941 memcpy(&boot_params->bootup_params,
942 &boot_params_20,
943 sizeof(struct bootup_params));
944 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
945 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
946 rsi_dbg(MGMT_TX_ZONE,
947 "%s: Packet 20MHZ <=== %d\n", __func__,
948 UMAC_CLK_20BW);
949 } else {
950 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
951 rsi_dbg(MGMT_TX_ZONE,
952 "%s: Packet 20MHZ <=== %d\n", __func__,
953 UMAC_CLK_40MHZ);
954 }
955 }
956
957 /**
958 * Bit{0:11} indicates length of the Packet
959 * Bit{12:15} indicates host queue number
960 */
961 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
962 (RSI_WIFI_MGMT_Q << 12));
963 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
964
965 skb_put(skb, sizeof(struct rsi_boot_params));
966
967 return rsi_send_internal_mgmt_frame(common, skb);
968 }
969
rsi_load_9116_bootup_params(struct rsi_common * common)970 static int rsi_load_9116_bootup_params(struct rsi_common *common)
971 {
972 struct sk_buff *skb;
973 struct rsi_boot_params_9116 *boot_params;
974
975 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
976
977 skb = dev_alloc_skb(sizeof(struct rsi_boot_params_9116));
978 if (!skb)
979 return -ENOMEM;
980 memset(skb->data, 0, sizeof(struct rsi_boot_params));
981 boot_params = (struct rsi_boot_params_9116 *)skb->data;
982
983 if (common->channel_width == BW_40MHZ) {
984 memcpy(&boot_params->bootup_params,
985 &boot_params_9116_40,
986 sizeof(struct bootup_params_9116));
987 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
988 UMAC_CLK_40BW);
989 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40BW);
990 } else {
991 memcpy(&boot_params->bootup_params,
992 &boot_params_9116_20,
993 sizeof(struct bootup_params_9116));
994 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
995 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_20BW);
996 rsi_dbg(MGMT_TX_ZONE,
997 "%s: Packet 20MHZ <=== %d\n", __func__,
998 UMAC_CLK_20BW);
999 } else {
1000 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40MHZ);
1001 rsi_dbg(MGMT_TX_ZONE,
1002 "%s: Packet 20MHZ <=== %d\n", __func__,
1003 UMAC_CLK_40MHZ);
1004 }
1005 }
1006 rsi_set_len_qno(&boot_params->desc_dword0.len_qno,
1007 sizeof(struct bootup_params_9116), RSI_WIFI_MGMT_Q);
1008 boot_params->desc_dword0.frame_type = BOOTUP_PARAMS_REQUEST;
1009 skb_put(skb, sizeof(struct rsi_boot_params_9116));
1010
1011 return rsi_send_internal_mgmt_frame(common, skb);
1012 }
1013
1014 /**
1015 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
1016 * internal management frame to indicate it to firmware.
1017 * @common: Pointer to the driver private structure.
1018 *
1019 * Return: 0 on success, corresponding error code on failure.
1020 */
rsi_send_reset_mac(struct rsi_common * common)1021 static int rsi_send_reset_mac(struct rsi_common *common)
1022 {
1023 struct sk_buff *skb;
1024 struct rsi_mac_frame *mgmt_frame;
1025
1026 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
1027
1028 skb = dev_alloc_skb(FRAME_DESC_SZ);
1029 if (!skb) {
1030 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1031 __func__);
1032 return -ENOMEM;
1033 }
1034
1035 memset(skb->data, 0, FRAME_DESC_SZ);
1036 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1037
1038 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1039 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
1040 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
1041
1042 #define RSI_9116_DEF_TA_AGGR 3
1043 if (common->priv->device_model == RSI_DEV_9116)
1044 mgmt_frame->desc_word[3] |=
1045 cpu_to_le16(RSI_9116_DEF_TA_AGGR << 8);
1046
1047 skb_put(skb, FRAME_DESC_SZ);
1048
1049 return rsi_send_internal_mgmt_frame(common, skb);
1050 }
1051
1052 /**
1053 * rsi_band_check() - This function programs the band
1054 * @common: Pointer to the driver private structure.
1055 * @curchan: Pointer to the current channel structure.
1056 *
1057 * Return: 0 on success, corresponding error code on failure.
1058 */
rsi_band_check(struct rsi_common * common,struct ieee80211_channel * curchan)1059 int rsi_band_check(struct rsi_common *common,
1060 struct ieee80211_channel *curchan)
1061 {
1062 struct rsi_hw *adapter = common->priv;
1063 struct ieee80211_hw *hw = adapter->hw;
1064 u8 prev_bw = common->channel_width;
1065 u8 prev_ep = common->endpoint;
1066 int status = 0;
1067
1068 if (common->band != curchan->band) {
1069 common->rf_reset = 1;
1070 common->band = curchan->band;
1071 }
1072
1073 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
1074 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
1075 common->channel_width = BW_20MHZ;
1076 else
1077 common->channel_width = BW_40MHZ;
1078
1079 if (common->band == NL80211_BAND_2GHZ) {
1080 if (common->channel_width)
1081 common->endpoint = EP_2GHZ_40MHZ;
1082 else
1083 common->endpoint = EP_2GHZ_20MHZ;
1084 } else {
1085 if (common->channel_width)
1086 common->endpoint = EP_5GHZ_40MHZ;
1087 else
1088 common->endpoint = EP_5GHZ_20MHZ;
1089 }
1090
1091 if (common->endpoint != prev_ep) {
1092 status = rsi_program_bb_rf(common);
1093 if (status)
1094 return status;
1095 }
1096
1097 if (common->channel_width != prev_bw) {
1098 if (adapter->device_model == RSI_DEV_9116)
1099 status = rsi_load_9116_bootup_params(common);
1100 else
1101 status = rsi_load_bootup_params(common);
1102 if (status)
1103 return status;
1104
1105 status = rsi_load_radio_caps(common);
1106 if (status)
1107 return status;
1108 }
1109
1110 return status;
1111 }
1112
1113 /**
1114 * rsi_set_channel() - This function programs the channel.
1115 * @common: Pointer to the driver private structure.
1116 * @channel: Channel value to be set.
1117 *
1118 * Return: 0 on success, corresponding error code on failure.
1119 */
rsi_set_channel(struct rsi_common * common,struct ieee80211_channel * channel)1120 int rsi_set_channel(struct rsi_common *common,
1121 struct ieee80211_channel *channel)
1122 {
1123 struct sk_buff *skb = NULL;
1124 struct rsi_chan_config *chan_cfg;
1125 u16 frame_len = sizeof(struct rsi_chan_config);
1126
1127 rsi_dbg(MGMT_TX_ZONE,
1128 "%s: Sending scan req frame\n", __func__);
1129
1130 if (!channel)
1131 return 0;
1132
1133 skb = dev_alloc_skb(frame_len);
1134 if (!skb) {
1135 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1136 __func__);
1137 return -ENOMEM;
1138 }
1139
1140 memset(skb->data, 0, frame_len);
1141 chan_cfg = (struct rsi_chan_config *)skb->data;
1142
1143 rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1144 chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1145 chan_cfg->channel_number = channel->hw_value;
1146 chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1147 chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1148 chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1149
1150 if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1151 (channel->flags & IEEE80211_CHAN_RADAR)) {
1152 chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1153 } else {
1154 if (common->tx_power < channel->max_power)
1155 chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1156 else
1157 chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1158 }
1159 chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1160
1161 if (common->channel_width == BW_40MHZ)
1162 chan_cfg->channel_width = 0x1;
1163
1164 common->channel = channel->hw_value;
1165
1166 skb_put(skb, frame_len);
1167
1168 return rsi_send_internal_mgmt_frame(common, skb);
1169 }
1170
1171 /**
1172 * rsi_send_radio_params_update() - This function sends the radio
1173 * parameters update to device
1174 * @common: Pointer to the driver private structure.
1175 *
1176 * Return: 0 on success, corresponding error code on failure.
1177 */
rsi_send_radio_params_update(struct rsi_common * common)1178 int rsi_send_radio_params_update(struct rsi_common *common)
1179 {
1180 struct rsi_mac_frame *cmd_frame;
1181 struct sk_buff *skb = NULL;
1182
1183 rsi_dbg(MGMT_TX_ZONE,
1184 "%s: Sending Radio Params update frame\n", __func__);
1185
1186 skb = dev_alloc_skb(FRAME_DESC_SZ);
1187 if (!skb) {
1188 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1189 __func__);
1190 return -ENOMEM;
1191 }
1192
1193 memset(skb->data, 0, FRAME_DESC_SZ);
1194 cmd_frame = (struct rsi_mac_frame *)skb->data;
1195
1196 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1197 cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1198 cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1199
1200 cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1201
1202 skb_put(skb, FRAME_DESC_SZ);
1203
1204 return rsi_send_internal_mgmt_frame(common, skb);
1205 }
1206
1207 /* This function programs the threshold. */
rsi_send_vap_dynamic_update(struct rsi_common * common)1208 int rsi_send_vap_dynamic_update(struct rsi_common *common)
1209 {
1210 struct sk_buff *skb;
1211 struct rsi_dynamic_s *dynamic_frame;
1212
1213 rsi_dbg(MGMT_TX_ZONE,
1214 "%s: Sending vap update indication frame\n", __func__);
1215
1216 skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1217 if (!skb)
1218 return -ENOMEM;
1219
1220 memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1221 dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1222 rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1223 sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1224
1225 dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1226 dynamic_frame->desc_dword2.pkt_info =
1227 cpu_to_le32(common->rts_threshold);
1228
1229 if (common->wow_flags & RSI_WOW_ENABLED) {
1230 /* Beacon miss threshold */
1231 dynamic_frame->desc_dword3.token =
1232 cpu_to_le16(RSI_BCN_MISS_THRESHOLD);
1233 dynamic_frame->frame_body.keep_alive_period =
1234 cpu_to_le16(RSI_WOW_KEEPALIVE);
1235 } else {
1236 dynamic_frame->frame_body.keep_alive_period =
1237 cpu_to_le16(RSI_DEF_KEEPALIVE);
1238 }
1239
1240 dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1241
1242 skb_put(skb, sizeof(struct rsi_dynamic_s));
1243
1244 return rsi_send_internal_mgmt_frame(common, skb);
1245 }
1246
1247 /**
1248 * rsi_compare() - This function is used to compare two integers
1249 * @a: pointer to the first integer
1250 * @b: pointer to the second integer
1251 *
1252 * Return: 0 if both are equal, -1 if the first is smaller, else 1
1253 */
rsi_compare(const void * a,const void * b)1254 static int rsi_compare(const void *a, const void *b)
1255 {
1256 u16 _a = *(const u16 *)(a);
1257 u16 _b = *(const u16 *)(b);
1258
1259 if (_a > _b)
1260 return -1;
1261
1262 if (_a < _b)
1263 return 1;
1264
1265 return 0;
1266 }
1267
1268 /**
1269 * rsi_map_rates() - This function is used to map selected rates to hw rates.
1270 * @rate: The standard rate to be mapped.
1271 * @offset: Offset that will be returned.
1272 *
1273 * Return: 0 if it is a mcs rate, else 1
1274 */
rsi_map_rates(u16 rate,int * offset)1275 static bool rsi_map_rates(u16 rate, int *offset)
1276 {
1277 int kk;
1278 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1279 if (rate == mcs[kk]) {
1280 *offset = kk;
1281 return false;
1282 }
1283 }
1284
1285 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1286 if (rate == rsi_rates[kk].bitrate / 5) {
1287 *offset = kk;
1288 break;
1289 }
1290 }
1291 return true;
1292 }
1293
1294 /**
1295 * rsi_send_auto_rate_request() - This function is to set rates for connection
1296 * and send autorate request to firmware.
1297 * @common: Pointer to the driver private structure.
1298 * @sta: mac80211 station.
1299 * @sta_id: station id.
1300 * @vif: Pointer to the ieee80211_vif structure.
1301 *
1302 * Return: 0 on success, corresponding error code on failure.
1303 */
rsi_send_auto_rate_request(struct rsi_common * common,struct ieee80211_sta * sta,u16 sta_id,struct ieee80211_vif * vif)1304 static int rsi_send_auto_rate_request(struct rsi_common *common,
1305 struct ieee80211_sta *sta,
1306 u16 sta_id,
1307 struct ieee80211_vif *vif)
1308 {
1309 struct sk_buff *skb;
1310 struct rsi_auto_rate *auto_rate;
1311 int ii = 0, jj = 0, kk = 0;
1312 struct ieee80211_hw *hw = common->priv->hw;
1313 u8 band = hw->conf.chandef.chan->band;
1314 u8 num_supported_rates = 0;
1315 u8 rate_table_offset, rate_offset = 0;
1316 u32 rate_bitmap, configured_rates;
1317 u16 *selected_rates, min_rate;
1318 bool is_ht = false, is_sgi = false;
1319 u16 frame_len = sizeof(struct rsi_auto_rate);
1320
1321 rsi_dbg(MGMT_TX_ZONE,
1322 "%s: Sending auto rate request frame\n", __func__);
1323
1324 skb = dev_alloc_skb(frame_len);
1325 if (!skb) {
1326 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1327 __func__);
1328 return -ENOMEM;
1329 }
1330
1331 memset(skb->data, 0, frame_len);
1332 selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1333 if (!selected_rates) {
1334 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1335 __func__);
1336 dev_kfree_skb(skb);
1337 return -ENOMEM;
1338 }
1339
1340 auto_rate = (struct rsi_auto_rate *)skb->data;
1341
1342 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1343 auto_rate->collision_tolerance = cpu_to_le16(3);
1344 auto_rate->failure_limit = cpu_to_le16(3);
1345 auto_rate->initial_boundary = cpu_to_le16(3);
1346 auto_rate->max_threshold_limt = cpu_to_le16(27);
1347
1348 auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1349
1350 if (common->channel_width == BW_40MHZ)
1351 auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1352 auto_rate->desc.desc_dword3.sta_id = sta_id;
1353
1354 if (vif->type == NL80211_IFTYPE_STATION) {
1355 rate_bitmap = common->bitrate_mask[band];
1356 is_ht = common->vif_info[0].is_ht;
1357 is_sgi = common->vif_info[0].sgi;
1358 } else {
1359 rate_bitmap = sta->deflink.supp_rates[band];
1360 is_ht = sta->deflink.ht_cap.ht_supported;
1361 if ((sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1362 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1363 is_sgi = true;
1364 }
1365
1366 /* Limit to any rates administratively configured by cfg80211 */
1367 configured_rates = common->rate_config[band].configured_mask ?: 0xffffffff;
1368 rate_bitmap &= configured_rates;
1369
1370 if (band == NL80211_BAND_2GHZ) {
1371 if ((rate_bitmap == 0) && (is_ht))
1372 min_rate = RSI_RATE_MCS0;
1373 else
1374 min_rate = RSI_RATE_1;
1375 rate_table_offset = 0;
1376 } else {
1377 if ((rate_bitmap == 0) && (is_ht))
1378 min_rate = RSI_RATE_MCS0;
1379 else
1380 min_rate = RSI_RATE_6;
1381 rate_table_offset = 4;
1382 }
1383
1384 for (ii = 0, jj = 0;
1385 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1386 if (rate_bitmap & BIT(ii)) {
1387 selected_rates[jj++] =
1388 (rsi_rates[ii + rate_table_offset].bitrate / 5);
1389 rate_offset++;
1390 }
1391 }
1392 num_supported_rates = jj;
1393
1394 if (is_ht) {
1395 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++) {
1396 if (configured_rates & BIT(ii + ARRAY_SIZE(rsi_rates))) {
1397 selected_rates[jj++] = mcs[ii];
1398 num_supported_rates++;
1399 rate_offset++;
1400 }
1401 }
1402 }
1403
1404 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1405
1406 /* mapping the rates to RSI rates */
1407 for (ii = 0; ii < jj; ii++) {
1408 if (rsi_map_rates(selected_rates[ii], &kk)) {
1409 auto_rate->supported_rates[ii] =
1410 cpu_to_le16(rsi_rates[kk].hw_value);
1411 } else {
1412 auto_rate->supported_rates[ii] =
1413 cpu_to_le16(rsi_mcsrates[kk]);
1414 }
1415 }
1416
1417 /* loading HT rates in the bottom half of the auto rate table */
1418 if (is_ht) {
1419 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1420 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1421 if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1422 auto_rate->supported_rates[ii++] =
1423 cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1424 else
1425 auto_rate->supported_rates[ii++] =
1426 cpu_to_le16(rsi_mcsrates[kk]);
1427 auto_rate->supported_rates[ii] =
1428 cpu_to_le16(rsi_mcsrates[kk--]);
1429 }
1430
1431 for (; ii < (RSI_TBL_SZ - 1); ii++) {
1432 auto_rate->supported_rates[ii] =
1433 cpu_to_le16(rsi_mcsrates[0]);
1434 }
1435 }
1436
1437 for (; ii < RSI_TBL_SZ; ii++)
1438 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1439
1440 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1441 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1442 num_supported_rates *= 2;
1443
1444 rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1445 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1446
1447 skb_put(skb, frame_len);
1448 kfree(selected_rates);
1449
1450 return rsi_send_internal_mgmt_frame(common, skb);
1451 }
1452
1453 /**
1454 * rsi_inform_bss_status() - This function informs about bss status with the
1455 * help of sta notify params by sending an internal
1456 * management frame to firmware.
1457 * @common: Pointer to the driver private structure.
1458 * @opmode: Operating mode of device.
1459 * @status: Bss status type.
1460 * @addr: Address of the register.
1461 * @qos_enable: Qos is enabled.
1462 * @aid: Aid (unique for all STAs).
1463 * @sta: mac80211 station.
1464 * @sta_id: station id.
1465 * @assoc_cap: capabilities.
1466 * @vif: Pointer to the ieee80211_vif structure.
1467 *
1468 * Return: None.
1469 */
rsi_inform_bss_status(struct rsi_common * common,enum opmode opmode,u8 status,const u8 * addr,u8 qos_enable,u16 aid,struct ieee80211_sta * sta,u16 sta_id,u16 assoc_cap,struct ieee80211_vif * vif)1470 void rsi_inform_bss_status(struct rsi_common *common,
1471 enum opmode opmode,
1472 u8 status,
1473 const u8 *addr,
1474 u8 qos_enable,
1475 u16 aid,
1476 struct ieee80211_sta *sta,
1477 u16 sta_id,
1478 u16 assoc_cap,
1479 struct ieee80211_vif *vif)
1480 {
1481 if (status) {
1482 if (opmode == RSI_OPMODE_STA)
1483 common->hw_data_qs_blocked = true;
1484 rsi_hal_send_sta_notify_frame(common,
1485 opmode,
1486 STA_CONNECTED,
1487 addr,
1488 qos_enable,
1489 aid, sta_id,
1490 vif);
1491 if (!common->rate_config[common->band].fixed_enabled)
1492 rsi_send_auto_rate_request(common, sta, sta_id, vif);
1493 if (opmode == RSI_OPMODE_STA &&
1494 !(assoc_cap & WLAN_CAPABILITY_PRIVACY) &&
1495 !rsi_send_block_unblock_frame(common, false))
1496 common->hw_data_qs_blocked = false;
1497 } else {
1498 if (opmode == RSI_OPMODE_STA)
1499 common->hw_data_qs_blocked = true;
1500
1501 if (!(common->wow_flags & RSI_WOW_ENABLED))
1502 rsi_hal_send_sta_notify_frame(common, opmode,
1503 STA_DISCONNECTED, addr,
1504 qos_enable, aid, sta_id,
1505 vif);
1506 if (opmode == RSI_OPMODE_STA)
1507 rsi_send_block_unblock_frame(common, true);
1508 }
1509 }
1510
1511 /**
1512 * rsi_eeprom_read() - This function sends a frame to read the mac address
1513 * from the eeprom.
1514 * @common: Pointer to the driver private structure.
1515 *
1516 * Return: 0 on success, -1 on failure.
1517 */
rsi_eeprom_read(struct rsi_common * common)1518 static int rsi_eeprom_read(struct rsi_common *common)
1519 {
1520 struct rsi_eeprom_read_frame *mgmt_frame;
1521 struct rsi_hw *adapter = common->priv;
1522 struct sk_buff *skb;
1523
1524 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1525
1526 skb = dev_alloc_skb(FRAME_DESC_SZ);
1527 if (!skb) {
1528 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1529 __func__);
1530 return -ENOMEM;
1531 }
1532
1533 memset(skb->data, 0, FRAME_DESC_SZ);
1534 mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1535
1536 /* FrameType */
1537 rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1538 mgmt_frame->pkt_type = EEPROM_READ;
1539
1540 /* Number of bytes to read */
1541 mgmt_frame->pkt_info =
1542 cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1543 RSI_EEPROM_LEN_MASK);
1544 mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1545 RSI_EEPROM_HDR_SIZE_MASK);
1546
1547 /* Address to read */
1548 mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1549
1550 skb_put(skb, FRAME_DESC_SZ);
1551
1552 return rsi_send_internal_mgmt_frame(common, skb);
1553 }
1554
1555 /**
1556 * rsi_send_block_unblock_frame() - This function sends a frame to block/unblock
1557 * data queues in the firmware
1558 *
1559 * @common: Pointer to the driver private structure.
1560 * @block_event: Event block if true, unblock if false
1561 * returns 0 on success, -1 on failure.
1562 */
rsi_send_block_unblock_frame(struct rsi_common * common,bool block_event)1563 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1564 {
1565 struct rsi_block_unblock_data *mgmt_frame;
1566 struct sk_buff *skb;
1567
1568 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1569
1570 skb = dev_alloc_skb(FRAME_DESC_SZ);
1571 if (!skb) {
1572 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1573 __func__);
1574 return -ENOMEM;
1575 }
1576
1577 memset(skb->data, 0, FRAME_DESC_SZ);
1578 mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1579
1580 rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1581 mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1582 mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1583
1584 if (block_event) {
1585 rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1586 mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1587 mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1588 } else {
1589 rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1590 mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1591 mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1592 }
1593
1594 skb_put(skb, FRAME_DESC_SZ);
1595
1596 return rsi_send_internal_mgmt_frame(common, skb);
1597 }
1598
1599 /**
1600 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1601 *
1602 * @common: Pointer to the driver private structure.
1603 * @rx_filter_word: Flags of filter packets
1604 *
1605 * Returns 0 on success, -1 on failure.
1606 */
rsi_send_rx_filter_frame(struct rsi_common * common,u16 rx_filter_word)1607 int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1608 {
1609 struct rsi_mac_frame *cmd_frame;
1610 struct sk_buff *skb;
1611
1612 rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1613
1614 skb = dev_alloc_skb(FRAME_DESC_SZ);
1615 if (!skb) {
1616 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1617 __func__);
1618 return -ENOMEM;
1619 }
1620
1621 memset(skb->data, 0, FRAME_DESC_SZ);
1622 cmd_frame = (struct rsi_mac_frame *)skb->data;
1623
1624 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1625 cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1626 cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1627
1628 skb_put(skb, FRAME_DESC_SZ);
1629
1630 return rsi_send_internal_mgmt_frame(common, skb);
1631 }
1632
rsi_send_ps_request(struct rsi_hw * adapter,bool enable,struct ieee80211_vif * vif)1633 int rsi_send_ps_request(struct rsi_hw *adapter, bool enable,
1634 struct ieee80211_vif *vif)
1635 {
1636 struct rsi_common *common = adapter->priv;
1637 struct rsi_request_ps *ps;
1638 struct rsi_ps_info *ps_info;
1639 struct sk_buff *skb;
1640 int frame_len = sizeof(*ps);
1641
1642 skb = dev_alloc_skb(frame_len);
1643 if (!skb)
1644 return -ENOMEM;
1645 memset(skb->data, 0, frame_len);
1646
1647 ps = (struct rsi_request_ps *)skb->data;
1648 ps_info = &adapter->ps_info;
1649
1650 rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1651 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1652 ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1653 if (enable) {
1654 ps->ps_sleep.enable = RSI_PS_ENABLE;
1655 ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1656 } else {
1657 ps->ps_sleep.enable = RSI_PS_DISABLE;
1658 ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1659 ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1660 }
1661
1662 ps->ps_uapsd_acs = common->uapsd_bitmap;
1663
1664 ps->ps_sleep.sleep_type = ps_info->sleep_type;
1665 ps->ps_sleep.num_bcns_per_lis_int =
1666 cpu_to_le16(ps_info->num_bcns_per_lis_int);
1667 ps->ps_sleep.sleep_duration =
1668 cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1669
1670 if (vif->cfg.assoc)
1671 ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1672 else
1673 ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1674
1675 ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1676 ps->ps_dtim_interval_duration =
1677 cpu_to_le32(ps_info->dtim_interval_duration);
1678
1679 if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1680 ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1681
1682 ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1683 skb_put(skb, frame_len);
1684
1685 return rsi_send_internal_mgmt_frame(common, skb);
1686 }
1687
rsi_send_w9116_features(struct rsi_common * common)1688 static int rsi_send_w9116_features(struct rsi_common *common)
1689 {
1690 struct rsi_wlan_9116_features *w9116_features;
1691 u16 frame_len = sizeof(struct rsi_wlan_9116_features);
1692 struct sk_buff *skb;
1693
1694 rsi_dbg(MGMT_TX_ZONE,
1695 "%s: Sending wlan 9116 features\n", __func__);
1696
1697 skb = dev_alloc_skb(frame_len);
1698 if (!skb)
1699 return -ENOMEM;
1700 memset(skb->data, 0, frame_len);
1701
1702 w9116_features = (struct rsi_wlan_9116_features *)skb->data;
1703
1704 w9116_features->pll_mode = common->w9116_features.pll_mode;
1705 w9116_features->rf_type = common->w9116_features.rf_type;
1706 w9116_features->wireless_mode = common->w9116_features.wireless_mode;
1707 w9116_features->enable_ppe = common->w9116_features.enable_ppe;
1708 w9116_features->afe_type = common->w9116_features.afe_type;
1709 if (common->w9116_features.dpd)
1710 w9116_features->feature_enable |= cpu_to_le32(RSI_DPD);
1711 if (common->w9116_features.sifs_tx_enable)
1712 w9116_features->feature_enable |=
1713 cpu_to_le32(RSI_SIFS_TX_ENABLE);
1714 if (common->w9116_features.ps_options & RSI_DUTY_CYCLING)
1715 w9116_features->feature_enable |= cpu_to_le32(RSI_DUTY_CYCLING);
1716 if (common->w9116_features.ps_options & RSI_END_OF_FRAME)
1717 w9116_features->feature_enable |= cpu_to_le32(RSI_END_OF_FRAME);
1718 w9116_features->feature_enable |=
1719 cpu_to_le32((common->w9116_features.ps_options & ~0x3) << 2);
1720
1721 rsi_set_len_qno(&w9116_features->desc.desc_dword0.len_qno,
1722 frame_len - FRAME_DESC_SZ, RSI_WIFI_MGMT_Q);
1723 w9116_features->desc.desc_dword0.frame_type = FEATURES_ENABLE;
1724 skb_put(skb, frame_len);
1725
1726 return rsi_send_internal_mgmt_frame(common, skb);
1727 }
1728
1729 /**
1730 * rsi_set_antenna() - This function send antenna configuration request
1731 * to device
1732 *
1733 * @common: Pointer to the driver private structure.
1734 * @antenna: bitmap for tx antenna selection
1735 *
1736 * Return: 0 on Success, negative error code on failure
1737 */
rsi_set_antenna(struct rsi_common * common,u8 antenna)1738 int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1739 {
1740 struct rsi_ant_sel_frame *ant_sel_frame;
1741 struct sk_buff *skb;
1742
1743 skb = dev_alloc_skb(FRAME_DESC_SZ);
1744 if (!skb) {
1745 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1746 __func__);
1747 return -ENOMEM;
1748 }
1749
1750 memset(skb->data, 0, FRAME_DESC_SZ);
1751
1752 ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1753 ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1754 ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1755 ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1756 rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1757 0, RSI_WIFI_MGMT_Q);
1758 skb_put(skb, FRAME_DESC_SZ);
1759
1760 return rsi_send_internal_mgmt_frame(common, skb);
1761 }
1762
rsi_send_beacon(struct rsi_common * common)1763 static int rsi_send_beacon(struct rsi_common *common)
1764 {
1765 struct sk_buff *skb = NULL;
1766 u8 dword_align_bytes = 0;
1767
1768 skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1769 if (!skb)
1770 return -ENOMEM;
1771
1772 memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1773
1774 dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1775 if (dword_align_bytes)
1776 skb_pull(skb, (64 - dword_align_bytes));
1777 if (rsi_prepare_beacon(common, skb)) {
1778 rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1779 dev_kfree_skb(skb);
1780 return -EINVAL;
1781 }
1782 skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1783 rsi_set_event(&common->tx_thread.event);
1784 rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1785
1786 return 0;
1787 }
1788
1789 #ifdef CONFIG_PM
rsi_send_wowlan_request(struct rsi_common * common,u16 flags,u16 sleep_status)1790 int rsi_send_wowlan_request(struct rsi_common *common, u16 flags,
1791 u16 sleep_status)
1792 {
1793 struct rsi_wowlan_req *cmd_frame;
1794 struct sk_buff *skb;
1795 u8 length;
1796
1797 rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__);
1798
1799 length = sizeof(*cmd_frame);
1800 skb = dev_alloc_skb(length);
1801 if (!skb)
1802 return -ENOMEM;
1803 memset(skb->data, 0, length);
1804 cmd_frame = (struct rsi_wowlan_req *)skb->data;
1805
1806 rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno,
1807 (length - FRAME_DESC_SZ),
1808 RSI_WIFI_MGMT_Q);
1809 cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS;
1810 cmd_frame->host_sleep_status = sleep_status;
1811 if (common->secinfo.gtk_cipher)
1812 flags |= RSI_WOW_GTK_REKEY;
1813 if (sleep_status)
1814 cmd_frame->wow_flags = flags;
1815 rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n",
1816 cmd_frame->host_sleep_status, cmd_frame->wow_flags);
1817
1818 skb_put(skb, length);
1819
1820 return rsi_send_internal_mgmt_frame(common, skb);
1821 }
1822 #endif
1823
rsi_send_bgscan_params(struct rsi_common * common,int enable)1824 int rsi_send_bgscan_params(struct rsi_common *common, int enable)
1825 {
1826 struct rsi_bgscan_params *params = &common->bgscan;
1827 struct cfg80211_scan_request *scan_req = common->hwscan;
1828 struct rsi_bgscan_config *bgscan;
1829 struct sk_buff *skb;
1830 u16 frame_len = sizeof(*bgscan);
1831 u8 i;
1832
1833 rsi_dbg(MGMT_TX_ZONE, "%s: Sending bgscan params frame\n", __func__);
1834
1835 skb = dev_alloc_skb(frame_len);
1836 if (!skb)
1837 return -ENOMEM;
1838 memset(skb->data, 0, frame_len);
1839
1840 bgscan = (struct rsi_bgscan_config *)skb->data;
1841 rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1842 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1843 bgscan->desc_dword0.frame_type = BG_SCAN_PARAMS;
1844 bgscan->bgscan_threshold = cpu_to_le16(params->bgscan_threshold);
1845 bgscan->roam_threshold = cpu_to_le16(params->roam_threshold);
1846 if (enable)
1847 bgscan->bgscan_periodicity =
1848 cpu_to_le16(params->bgscan_periodicity);
1849 bgscan->active_scan_duration =
1850 cpu_to_le16(params->active_scan_duration);
1851 bgscan->passive_scan_duration =
1852 cpu_to_le16(params->passive_scan_duration);
1853 bgscan->two_probe = params->two_probe;
1854
1855 bgscan->num_bgscan_channels = scan_req->n_channels;
1856 for (i = 0; i < bgscan->num_bgscan_channels; i++)
1857 bgscan->channels2scan[i] =
1858 cpu_to_le16(scan_req->channels[i]->hw_value);
1859
1860 skb_put(skb, frame_len);
1861
1862 return rsi_send_internal_mgmt_frame(common, skb);
1863 }
1864
1865 /* This function sends the probe request to be used by firmware in
1866 * background scan
1867 */
rsi_send_bgscan_probe_req(struct rsi_common * common,struct ieee80211_vif * vif)1868 int rsi_send_bgscan_probe_req(struct rsi_common *common,
1869 struct ieee80211_vif *vif)
1870 {
1871 struct cfg80211_scan_request *scan_req = common->hwscan;
1872 struct rsi_bgscan_probe *bgscan;
1873 struct sk_buff *skb;
1874 struct sk_buff *probereq_skb;
1875 u16 frame_len = sizeof(*bgscan);
1876 size_t ssid_len = 0;
1877 u8 *ssid = NULL;
1878
1879 rsi_dbg(MGMT_TX_ZONE,
1880 "%s: Sending bgscan probe req frame\n", __func__);
1881
1882 if (common->priv->sc_nvifs <= 0)
1883 return -ENODEV;
1884
1885 if (scan_req->n_ssids) {
1886 ssid = scan_req->ssids[0].ssid;
1887 ssid_len = scan_req->ssids[0].ssid_len;
1888 }
1889
1890 skb = dev_alloc_skb(frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1891 if (!skb)
1892 return -ENOMEM;
1893 memset(skb->data, 0, frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1894
1895 bgscan = (struct rsi_bgscan_probe *)skb->data;
1896 bgscan->desc_dword0.frame_type = BG_SCAN_PROBE_REQ;
1897 bgscan->flags = cpu_to_le16(HOST_BG_SCAN_TRIG);
1898 if (common->band == NL80211_BAND_5GHZ) {
1899 bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_6);
1900 bgscan->def_chan = cpu_to_le16(40);
1901 } else {
1902 bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_1);
1903 bgscan->def_chan = cpu_to_le16(11);
1904 }
1905 bgscan->channel_scan_time = cpu_to_le16(RSI_CHANNEL_SCAN_TIME);
1906
1907 probereq_skb = ieee80211_probereq_get(common->priv->hw, vif->addr, ssid,
1908 ssid_len, scan_req->ie_len);
1909 if (!probereq_skb) {
1910 dev_kfree_skb(skb);
1911 return -ENOMEM;
1912 }
1913
1914 memcpy(&skb->data[frame_len], probereq_skb->data, probereq_skb->len);
1915
1916 bgscan->probe_req_length = cpu_to_le16(probereq_skb->len);
1917
1918 rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1919 (frame_len - FRAME_DESC_SZ + probereq_skb->len),
1920 RSI_WIFI_MGMT_Q);
1921
1922 skb_put(skb, frame_len + probereq_skb->len);
1923
1924 dev_kfree_skb(probereq_skb);
1925
1926 return rsi_send_internal_mgmt_frame(common, skb);
1927 }
1928
1929 /**
1930 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1931 * @common: Pointer to the driver private structure.
1932 * @msg: Pointer to received packet.
1933 *
1934 * Return: 0 on success, -1 on failure.
1935 */
rsi_handle_ta_confirm_type(struct rsi_common * common,u8 * msg)1936 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1937 u8 *msg)
1938 {
1939 struct rsi_hw *adapter = common->priv;
1940 u8 sub_type = (msg[15] & 0xff);
1941 u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1942 u8 offset;
1943
1944 switch (sub_type) {
1945 case BOOTUP_PARAMS_REQUEST:
1946 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1947 __func__);
1948 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1949 if (adapter->device_model == RSI_DEV_9116) {
1950 common->band = NL80211_BAND_5GHZ;
1951 common->num_supp_bands = 2;
1952
1953 if (rsi_send_reset_mac(common))
1954 goto out;
1955 else
1956 common->fsm_state = FSM_RESET_MAC_SENT;
1957 } else {
1958 adapter->eeprom.length =
1959 (IEEE80211_ADDR_LEN +
1960 WLAN_MAC_MAGIC_WORD_LEN +
1961 WLAN_HOST_MODE_LEN);
1962 adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1963 if (rsi_eeprom_read(common)) {
1964 common->fsm_state = FSM_CARD_NOT_READY;
1965 goto out;
1966 }
1967 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1968 }
1969 } else {
1970 rsi_dbg(INFO_ZONE,
1971 "%s: Received bootup params cfm in %d state\n",
1972 __func__, common->fsm_state);
1973 return 0;
1974 }
1975 break;
1976
1977 case EEPROM_READ:
1978 rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1979 if (msg_len <= 0) {
1980 rsi_dbg(FSM_ZONE,
1981 "%s: [EEPROM_READ] Invalid len %d\n",
1982 __func__, msg_len);
1983 goto out;
1984 }
1985 if (msg[16] != MAGIC_WORD) {
1986 rsi_dbg(FSM_ZONE,
1987 "%s: [EEPROM_READ] Invalid token\n", __func__);
1988 common->fsm_state = FSM_CARD_NOT_READY;
1989 goto out;
1990 }
1991 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1992 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1993 WLAN_MAC_MAGIC_WORD_LEN);
1994 memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1995 adapter->eeprom.length =
1996 ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1997 adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1998 if (rsi_eeprom_read(common)) {
1999 rsi_dbg(ERR_ZONE,
2000 "%s: Failed reading RF band\n",
2001 __func__);
2002 common->fsm_state = FSM_CARD_NOT_READY;
2003 goto out;
2004 }
2005 common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
2006 } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
2007 if ((msg[17] & 0x3) == 0x3) {
2008 rsi_dbg(INIT_ZONE, "Dual band supported\n");
2009 common->band = NL80211_BAND_5GHZ;
2010 common->num_supp_bands = 2;
2011 } else if ((msg[17] & 0x3) == 0x1) {
2012 rsi_dbg(INIT_ZONE,
2013 "Only 2.4Ghz band supported\n");
2014 common->band = NL80211_BAND_2GHZ;
2015 common->num_supp_bands = 1;
2016 }
2017 if (rsi_send_reset_mac(common))
2018 goto out;
2019 common->fsm_state = FSM_RESET_MAC_SENT;
2020 } else {
2021 rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
2022 __func__);
2023 return 0;
2024 }
2025 break;
2026
2027 case RESET_MAC_REQ:
2028 if (common->fsm_state == FSM_RESET_MAC_SENT) {
2029 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
2030 __func__);
2031
2032 if (rsi_load_radio_caps(common))
2033 goto out;
2034 else
2035 common->fsm_state = FSM_RADIO_CAPS_SENT;
2036 } else {
2037 rsi_dbg(ERR_ZONE,
2038 "%s: Received reset mac cfm in %d state\n",
2039 __func__, common->fsm_state);
2040 return 0;
2041 }
2042 break;
2043
2044 case RADIO_CAPABILITIES:
2045 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
2046 common->rf_reset = 1;
2047 if (adapter->device_model == RSI_DEV_9116 &&
2048 rsi_send_w9116_features(common)) {
2049 rsi_dbg(ERR_ZONE,
2050 "Failed to send 9116 features\n");
2051 goto out;
2052 }
2053 if (rsi_program_bb_rf(common)) {
2054 goto out;
2055 } else {
2056 common->fsm_state = FSM_BB_RF_PROG_SENT;
2057 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
2058 __func__);
2059 }
2060 } else {
2061 rsi_dbg(INFO_ZONE,
2062 "%s: Received radio caps cfm in %d state\n",
2063 __func__, common->fsm_state);
2064 return 0;
2065 }
2066 break;
2067
2068 case BB_PROG_VALUES_REQUEST:
2069 case RF_PROG_VALUES_REQUEST:
2070 case BBP_PROG_IN_TA:
2071 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
2072 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
2073 common->bb_rf_prog_count--;
2074 if (!common->bb_rf_prog_count) {
2075 common->fsm_state = FSM_MAC_INIT_DONE;
2076 if (common->reinit_hw) {
2077 complete(&common->wlan_init_completion);
2078 } else {
2079 if (common->bt_defer_attach)
2080 rsi_attach_bt(common);
2081
2082 return rsi_mac80211_attach(common);
2083 }
2084 }
2085 } else {
2086 rsi_dbg(INFO_ZONE,
2087 "%s: Received bbb_rf cfm in %d state\n",
2088 __func__, common->fsm_state);
2089 return 0;
2090 }
2091 break;
2092
2093 case SCAN_REQUEST:
2094 rsi_dbg(INFO_ZONE, "Set channel confirm\n");
2095 break;
2096
2097 case WAKEUP_SLEEP_REQUEST:
2098 rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
2099 return rsi_handle_ps_confirm(adapter, msg);
2100
2101 case BG_SCAN_PROBE_REQ:
2102 rsi_dbg(INFO_ZONE, "BG scan complete event\n");
2103 if (common->bgscan_en) {
2104 struct cfg80211_scan_info info;
2105
2106 if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN))
2107 common->bgscan_en = 0;
2108 info.aborted = false;
2109 ieee80211_scan_completed(adapter->hw, &info);
2110 }
2111 rsi_dbg(INFO_ZONE, "Background scan completed\n");
2112 break;
2113
2114 default:
2115 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
2116 __func__);
2117 break;
2118 }
2119 return 0;
2120 out:
2121 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
2122 __func__);
2123 return -EINVAL;
2124 }
2125
rsi_handle_card_ready(struct rsi_common * common,u8 * msg)2126 int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
2127 {
2128 int status;
2129
2130 switch (common->fsm_state) {
2131 case FSM_CARD_NOT_READY:
2132 rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
2133 rsi_set_default_parameters(common);
2134 if (rsi_send_common_dev_params(common) < 0)
2135 return -EINVAL;
2136 common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
2137 break;
2138 case FSM_COMMON_DEV_PARAMS_SENT:
2139 rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
2140
2141 if (common->priv->device_model == RSI_DEV_9116) {
2142 if (msg[16] != MAGIC_WORD) {
2143 rsi_dbg(FSM_ZONE,
2144 "%s: [EEPROM_READ] Invalid token\n",
2145 __func__);
2146 common->fsm_state = FSM_CARD_NOT_READY;
2147 return -EINVAL;
2148 }
2149 memcpy(common->mac_addr, &msg[20], ETH_ALEN);
2150 rsi_dbg(INIT_ZONE, "MAC Addr %pM", common->mac_addr);
2151 }
2152 /* Get usb buffer status register address */
2153 common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
2154 rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
2155 common->priv->usb_buffer_status_reg);
2156
2157 if (common->priv->device_model == RSI_DEV_9116)
2158 status = rsi_load_9116_bootup_params(common);
2159 else
2160 status = rsi_load_bootup_params(common);
2161 if (status < 0) {
2162 common->fsm_state = FSM_CARD_NOT_READY;
2163 return status;
2164 }
2165 common->fsm_state = FSM_BOOT_PARAMS_SENT;
2166 break;
2167 default:
2168 rsi_dbg(ERR_ZONE,
2169 "%s: card ready indication in invalid state %d.\n",
2170 __func__, common->fsm_state);
2171 return -EINVAL;
2172 }
2173
2174 return 0;
2175 }
2176
2177 /**
2178 * rsi_mgmt_pkt_recv() - This function processes the management packets
2179 * received from the hardware.
2180 * @common: Pointer to the driver private structure.
2181 * @msg: Pointer to the received packet.
2182 *
2183 * Return: 0 on success, -1 on failure.
2184 */
rsi_mgmt_pkt_recv(struct rsi_common * common,u8 * msg)2185 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
2186 {
2187 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
2188 u16 msg_type = (msg[2]);
2189
2190 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
2191 __func__, msg_len, msg_type);
2192
2193 switch (msg_type) {
2194 case TA_CONFIRM_TYPE:
2195 return rsi_handle_ta_confirm_type(common, msg);
2196 case CARD_READY_IND:
2197 common->hibernate_resume = false;
2198 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
2199 __func__);
2200 return rsi_handle_card_ready(common, msg);
2201 case TX_STATUS_IND:
2202 switch (msg[RSI_TX_STATUS_TYPE]) {
2203 case PROBEREQ_CONFIRM:
2204 common->mgmt_q_block = false;
2205 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
2206 __func__);
2207 break;
2208 case EAPOL4_CONFIRM:
2209 if (msg[RSI_TX_STATUS]) {
2210 common->eapol4_confirm = true;
2211 if (!rsi_send_block_unblock_frame(common,
2212 false))
2213 common->hw_data_qs_blocked = false;
2214 }
2215 }
2216 break;
2217 case BEACON_EVENT_IND:
2218 rsi_dbg(INFO_ZONE, "Beacon event\n");
2219 if (common->fsm_state != FSM_MAC_INIT_DONE)
2220 return -1;
2221 if (common->iface_down)
2222 return -1;
2223 if (!common->beacon_enabled)
2224 return -1;
2225 rsi_send_beacon(common);
2226 break;
2227 case WOWLAN_WAKEUP_REASON:
2228 rsi_dbg(ERR_ZONE, "\n\nWakeup Type: %x\n", msg[15]);
2229 switch (msg[15]) {
2230 case RSI_UNICAST_MAGIC_PKT:
2231 rsi_dbg(ERR_ZONE,
2232 "*** Wakeup for Unicast magic packet ***\n");
2233 break;
2234 case RSI_BROADCAST_MAGICPKT:
2235 rsi_dbg(ERR_ZONE,
2236 "*** Wakeup for Broadcast magic packet ***\n");
2237 break;
2238 case RSI_EAPOL_PKT:
2239 rsi_dbg(ERR_ZONE,
2240 "*** Wakeup for GTK renewal ***\n");
2241 break;
2242 case RSI_DISCONNECT_PKT:
2243 rsi_dbg(ERR_ZONE,
2244 "*** Wakeup for Disconnect ***\n");
2245 break;
2246 case RSI_HW_BMISS_PKT:
2247 rsi_dbg(ERR_ZONE,
2248 "*** Wakeup for HW Beacon miss ***\n");
2249 break;
2250 default:
2251 rsi_dbg(ERR_ZONE,
2252 "##### Un-intentional Wakeup #####\n");
2253 break;
2254 }
2255 break;
2256 case RX_DOT11_MGMT:
2257 return rsi_mgmt_pkt_to_core(common, msg, msg_len);
2258 default:
2259 rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
2260 }
2261 return 0;
2262 }
2263