xref: /linux/drivers/net/ethernet/via/via-rhine.c (revision c2933b2befe25309f4c5cfbea0ca80909735fd76)
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	Current Maintainer: Kevin Brace <kevinbrace@bracecomputerlab.com>
6 
7 	This software may be used and distributed according to the terms of
8 	the GNU General Public License (GPL), incorporated herein by reference.
9 	Drivers based on or derived from this code fall under the GPL and must
10 	retain the authorship, copyright and license notice.  This file is not
11 	a complete program and may only be used when the entire operating
12 	system is licensed under the GPL.
13 
14 	This driver is designed for the VIA VT86C100A Rhine-I.
15 	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 	and management NIC 6105M).
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 
24 	This driver contains some changes from the original Donald Becker
25 	version. He may or may not be interested in bug reports on this
26 	code. You can find his versions at:
27 	http://www.scyld.com/network/via-rhine.html
28 	[link no longer provides useful info -jgarzik]
29 
30 */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #define DRV_NAME	"via-rhine"
35 
36 #include <linux/types.h>
37 
38 /* A few user-configurable values.
39    These may be modified when a driver module is loaded. */
40 static int debug = 0;
41 #define RHINE_MSG_DEFAULT \
42         (0x0000)
43 
44 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
45    Setting to > 1518 effectively disables this feature. */
46 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
47 	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
48 	defined(__sh__) || defined(__mips__)
49 static int rx_copybreak = 1518;
50 #else
51 static int rx_copybreak;
52 #endif
53 
54 /* Work-around for broken BIOSes: they are unable to get the chip back out of
55    power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
56 static bool avoid_D3;
57 
58 /*
59  * In case you are looking for 'options[]' or 'full_duplex[]', they
60  * are gone. Use ethtool(8) instead.
61  */
62 
63 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
64    The Rhine has a 64 element 8390-like hash table. */
65 static const int multicast_filter_limit = 32;
66 
67 
68 /* Operational parameters that are set at compile time. */
69 
70 /* Keep the ring sizes a power of two for compile efficiency.
71  * The compiler will convert <unsigned>'%'<2^N> into a bit mask.
72  * Making the Tx ring too large decreases the effectiveness of channel
73  * bonding and packet priority.
74  * With BQL support, we can increase TX ring safely.
75  * There are no ill effects from too-large receive rings.
76  */
77 #define TX_RING_SIZE	64
78 #define TX_QUEUE_LEN	(TX_RING_SIZE - 6)	/* Limit ring entries actually used. */
79 #define RX_RING_SIZE	64
80 
81 /* Operational parameters that usually are not changed. */
82 
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT	(2*HZ)
85 
86 #define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
87 
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/of.h>
98 #include <linux/of_irq.h>
99 #include <linux/platform_device.h>
100 #include <linux/dma-mapping.h>
101 #include <linux/netdevice.h>
102 #include <linux/etherdevice.h>
103 #include <linux/skbuff.h>
104 #include <linux/init.h>
105 #include <linux/delay.h>
106 #include <linux/mii.h>
107 #include <linux/ethtool.h>
108 #include <linux/crc32.h>
109 #include <linux/if_vlan.h>
110 #include <linux/bitops.h>
111 #include <linux/workqueue.h>
112 #include <asm/processor.h>	/* Processor type for cache alignment. */
113 #include <asm/io.h>
114 #include <asm/irq.h>
115 #include <linux/uaccess.h>
116 #include <linux/dmi.h>
117 
118 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
119 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
120 MODULE_LICENSE("GPL");
121 
122 module_param(debug, int, 0);
123 module_param(rx_copybreak, int, 0);
124 module_param(avoid_D3, bool, 0);
125 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
126 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
127 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
128 
129 #define MCAM_SIZE	32
130 #define VCAM_SIZE	32
131 
132 /*
133 		Theory of Operation
134 
135 I. Board Compatibility
136 
137 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
138 controller.
139 
140 II. Board-specific settings
141 
142 Boards with this chip are functional only in a bus-master PCI slot.
143 
144 Many operational settings are loaded from the EEPROM to the Config word at
145 offset 0x78. For most of these settings, this driver assumes that they are
146 correct.
147 If this driver is compiled to use PCI memory space operations the EEPROM
148 must be configured to enable memory ops.
149 
150 III. Driver operation
151 
152 IIIa. Ring buffers
153 
154 This driver uses two statically allocated fixed-size descriptor lists
155 formed into rings by a branch from the final descriptor to the beginning of
156 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
157 
158 IIIb/c. Transmit/Receive Structure
159 
160 This driver attempts to use a zero-copy receive and transmit scheme.
161 
162 Alas, all data buffers are required to start on a 32 bit boundary, so
163 the driver must often copy transmit packets into bounce buffers.
164 
165 The driver allocates full frame size skbuffs for the Rx ring buffers at
166 open() time and passes the skb->data field to the chip as receive data
167 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
168 a fresh skbuff is allocated and the frame is copied to the new skbuff.
169 When the incoming frame is larger, the skbuff is passed directly up the
170 protocol stack. Buffers consumed this way are replaced by newly allocated
171 skbuffs in the last phase of rhine_rx().
172 
173 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
174 using a full-sized skbuff for small frames vs. the copying costs of larger
175 frames. New boards are typically used in generously configured machines
176 and the underfilled buffers have negligible impact compared to the benefit of
177 a single allocation size, so the default value of zero results in never
178 copying packets. When copying is done, the cost is usually mitigated by using
179 a combined copy/checksum routine. Copying also preloads the cache, which is
180 most useful with small frames.
181 
182 Since the VIA chips are only able to transfer data to buffers on 32 bit
183 boundaries, the IP header at offset 14 in an ethernet frame isn't
184 longword aligned for further processing. Copying these unaligned buffers
185 has the beneficial effect of 16-byte aligning the IP header.
186 
187 IIId. Synchronization
188 
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
192 which is single threaded by the hardware and interrupt handling software.
193 
194 The send packet thread has partial control over the Tx ring. It locks the
195 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
196 the ring is not available it stops the transmit queue by
197 calling netif_stop_queue.
198 
199 The interrupt handler has exclusive control over the Rx ring and records stats
200 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
201 empty by incrementing the dirty_tx mark. If at least half of the entries in
202 the Rx ring are available the transmit queue is woken up if it was stopped.
203 
204 IV. Notes
205 
206 IVb. References
207 
208 Preliminary VT86C100A manual from http://www.via.com.tw/
209 http://www.scyld.com/expert/100mbps.html
210 http://www.scyld.com/expert/NWay.html
211 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
212 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
213 
214 
215 IVc. Errata
216 
217 The VT86C100A manual is not reliable information.
218 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
219 in significant performance degradation for bounce buffer copies on transmit
220 and unaligned IP headers on receive.
221 The chip does not pad to minimum transmit length.
222 
223 */
224 
225 
226 /* This table drives the PCI probe routines. It's mostly boilerplate in all
227    of the drivers, and will likely be provided by some future kernel.
228    Note the matching code -- the first table entry matchs all 56** cards but
229    second only the 1234 card.
230 */
231 
232 enum rhine_revs {
233 	VT86C100A	= 0x00,
234 	VTunknown0	= 0x20,
235 	VT6102		= 0x40,
236 	VT8231		= 0x50,	/* Integrated MAC */
237 	VT8233		= 0x60,	/* Integrated MAC */
238 	VT8235		= 0x74,	/* Integrated MAC */
239 	VT8237		= 0x78,	/* Integrated MAC */
240 	VT8251		= 0x7C,	/* Integrated MAC */
241 	VT6105		= 0x80,
242 	VT6105_B0	= 0x83,
243 	VT6105L		= 0x8A,
244 	VT6107		= 0x8C,
245 	VTunknown2	= 0x8E,
246 	VT6105M		= 0x90,	/* Management adapter */
247 };
248 
249 enum rhine_quirks {
250 	rqWOL		= 0x0001,	/* Wake-On-LAN support */
251 	rqForceReset	= 0x0002,
252 	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
253 	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
254 	rqRhineI	= 0x0100,	/* See comment below */
255 	rqIntPHY	= 0x0200,	/* Integrated PHY */
256 	rqMgmt		= 0x0400,	/* Management adapter */
257 	rqNeedEnMMIO	= 0x0800,	/* Whether the core needs to be
258 					 * switched from PIO mode to MMIO
259 					 * (only applies to PCI)
260 					 */
261 };
262 /*
263  * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
264  * MMIO as well as for the collision counter and the Tx FIFO underflow
265  * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
266  */
267 
268 /* Beware of PCI posted writes */
269 #define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
270 
271 static const struct pci_device_id rhine_pci_tbl[] = {
272 	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
273 	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
274 	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
275 	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
276 	{ }	/* terminate list */
277 };
278 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
279 
280 /* OpenFirmware identifiers for platform-bus devices
281  * The .data field is currently only used to store quirks
282  */
283 static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns;
284 static const struct of_device_id rhine_of_tbl[] = {
285 	{ .compatible = "via,vt8500-rhine", .data = &vt8500_quirks },
286 	{ }	/* terminate list */
287 };
288 MODULE_DEVICE_TABLE(of, rhine_of_tbl);
289 
290 /* Offsets to the device registers. */
291 enum register_offsets {
292 	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
293 	ChipCmd1=0x09, TQWake=0x0A,
294 	IntrStatus=0x0C, IntrEnable=0x0E,
295 	MulticastFilter0=0x10, MulticastFilter1=0x14,
296 	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
297 	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
298 	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
299 	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
300 	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
301 	StickyHW=0x83, IntrStatus2=0x84,
302 	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
303 	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
304 	WOLcrClr1=0xA6, WOLcgClr=0xA7,
305 	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
306 };
307 
308 /* Bits in ConfigD */
309 enum backoff_bits {
310 	BackOptional=0x01, BackModify=0x02,
311 	BackCaptureEffect=0x04, BackRandom=0x08
312 };
313 
314 /* Bits in the TxConfig (TCR) register */
315 enum tcr_bits {
316 	TCR_PQEN=0x01,
317 	TCR_LB0=0x02,		/* loopback[0] */
318 	TCR_LB1=0x04,		/* loopback[1] */
319 	TCR_OFSET=0x08,
320 	TCR_RTGOPT=0x10,
321 	TCR_RTFT0=0x20,
322 	TCR_RTFT1=0x40,
323 	TCR_RTSF=0x80,
324 };
325 
326 /* Bits in the CamCon (CAMC) register */
327 enum camcon_bits {
328 	CAMC_CAMEN=0x01,
329 	CAMC_VCAMSL=0x02,
330 	CAMC_CAMWR=0x04,
331 	CAMC_CAMRD=0x08,
332 };
333 
334 /* Bits in the PCIBusConfig1 (BCR1) register */
335 enum bcr1_bits {
336 	BCR1_POT0=0x01,
337 	BCR1_POT1=0x02,
338 	BCR1_POT2=0x04,
339 	BCR1_CTFT0=0x08,
340 	BCR1_CTFT1=0x10,
341 	BCR1_CTSF=0x20,
342 	BCR1_TXQNOBK=0x40,	/* for VT6105 */
343 	BCR1_VIDFR=0x80,	/* for VT6105 */
344 	BCR1_MED0=0x40,		/* for VT6102 */
345 	BCR1_MED1=0x80,		/* for VT6102 */
346 };
347 
348 /* Registers we check that mmio and reg are the same. */
349 static const int mmio_verify_registers[] = {
350 	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
351 	0
352 };
353 
354 /* Bits in the interrupt status/mask registers. */
355 enum intr_status_bits {
356 	IntrRxDone	= 0x0001,
357 	IntrTxDone	= 0x0002,
358 	IntrRxErr	= 0x0004,
359 	IntrTxError	= 0x0008,
360 	IntrRxEmpty	= 0x0020,
361 	IntrPCIErr	= 0x0040,
362 	IntrStatsMax	= 0x0080,
363 	IntrRxEarly	= 0x0100,
364 	IntrTxUnderrun	= 0x0210,
365 	IntrRxOverflow	= 0x0400,
366 	IntrRxDropped	= 0x0800,
367 	IntrRxNoBuf	= 0x1000,
368 	IntrTxAborted	= 0x2000,
369 	IntrLinkChange	= 0x4000,
370 	IntrRxWakeUp	= 0x8000,
371 	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
372 	IntrNormalSummary	= IntrRxDone | IntrTxDone,
373 	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
374 				  IntrTxUnderrun,
375 };
376 
377 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
378 enum wol_bits {
379 	WOLucast	= 0x10,
380 	WOLmagic	= 0x20,
381 	WOLbmcast	= 0x30,
382 	WOLlnkon	= 0x40,
383 	WOLlnkoff	= 0x80,
384 };
385 
386 /* The Rx and Tx buffer descriptors. */
387 struct rx_desc {
388 	__le32 rx_status;
389 	__le32 desc_length; /* Chain flag, Buffer/frame length */
390 	__le32 addr;
391 	__le32 next_desc;
392 };
393 struct tx_desc {
394 	__le32 tx_status;
395 	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
396 	__le32 addr;
397 	__le32 next_desc;
398 };
399 
400 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
401 #define TXDESC		0x00e08000
402 
403 enum rx_status_bits {
404 	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
405 };
406 
407 /* Bits in *_desc.*_status */
408 enum desc_status_bits {
409 	DescOwn=0x80000000
410 };
411 
412 /* Bits in *_desc.*_length */
413 enum desc_length_bits {
414 	DescTag=0x00010000
415 };
416 
417 /* Bits in ChipCmd. */
418 enum chip_cmd_bits {
419 	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
420 	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
421 	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
422 	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
423 };
424 
425 struct rhine_stats {
426 	u64		packets;
427 	u64		bytes;
428 	struct u64_stats_sync syncp;
429 };
430 
431 struct rhine_private {
432 	/* Bit mask for configured VLAN ids */
433 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
434 
435 	/* Descriptor rings */
436 	struct rx_desc *rx_ring;
437 	struct tx_desc *tx_ring;
438 	dma_addr_t rx_ring_dma;
439 	dma_addr_t tx_ring_dma;
440 
441 	/* The addresses of receive-in-place skbuffs. */
442 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
443 	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
444 
445 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
446 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
447 	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
448 
449 	/* Tx bounce buffers (Rhine-I only) */
450 	unsigned char *tx_buf[TX_RING_SIZE];
451 	unsigned char *tx_bufs;
452 	dma_addr_t tx_bufs_dma;
453 
454 	int irq;
455 	long pioaddr;
456 	struct net_device *dev;
457 	struct napi_struct napi;
458 	spinlock_t lock;
459 	struct mutex task_lock;
460 	bool task_enable;
461 	struct work_struct slow_event_task;
462 	struct work_struct reset_task;
463 
464 	u32 msg_enable;
465 
466 	/* Frequently used values: keep some adjacent for cache effect. */
467 	u32 quirks;
468 	unsigned int cur_rx;
469 	unsigned int cur_tx, dirty_tx;
470 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
471 	struct rhine_stats rx_stats;
472 	struct rhine_stats tx_stats;
473 	u8 wolopts;
474 
475 	u8 tx_thresh, rx_thresh;
476 
477 	struct mii_if_info mii_if;
478 	void __iomem *base;
479 };
480 
481 #define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
482 #define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
483 #define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
484 
485 #define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
486 #define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
487 #define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
488 
489 #define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
490 #define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
491 #define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
492 
493 #define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
494 #define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
495 #define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
496 
497 
498 static int  mdio_read(struct net_device *dev, int phy_id, int location);
499 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
500 static int  rhine_open(struct net_device *dev);
501 static void rhine_reset_task(struct work_struct *work);
502 static void rhine_slow_event_task(struct work_struct *work);
503 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue);
504 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
505 				  struct net_device *dev);
506 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
507 static void rhine_tx(struct net_device *dev);
508 static int rhine_rx(struct net_device *dev, int limit);
509 static void rhine_set_rx_mode(struct net_device *dev);
510 static void rhine_get_stats64(struct net_device *dev,
511 			      struct rtnl_link_stats64 *stats);
512 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
513 static const struct ethtool_ops netdev_ethtool_ops;
514 static int  rhine_close(struct net_device *dev);
515 static int rhine_vlan_rx_add_vid(struct net_device *dev,
516 				 __be16 proto, u16 vid);
517 static int rhine_vlan_rx_kill_vid(struct net_device *dev,
518 				  __be16 proto, u16 vid);
519 static void rhine_restart_tx(struct net_device *dev);
520 
rhine_wait_bit(struct rhine_private * rp,u8 reg,u8 mask,bool low)521 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
522 {
523 	void __iomem *ioaddr = rp->base;
524 	int i;
525 
526 	for (i = 0; i < 1024; i++) {
527 		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
528 
529 		if (low ^ has_mask_bits)
530 			break;
531 		udelay(10);
532 	}
533 	if (i > 64) {
534 		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
535 			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
536 	}
537 }
538 
rhine_wait_bit_high(struct rhine_private * rp,u8 reg,u8 mask)539 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
540 {
541 	rhine_wait_bit(rp, reg, mask, false);
542 }
543 
rhine_wait_bit_low(struct rhine_private * rp,u8 reg,u8 mask)544 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
545 {
546 	rhine_wait_bit(rp, reg, mask, true);
547 }
548 
rhine_get_events(struct rhine_private * rp)549 static u32 rhine_get_events(struct rhine_private *rp)
550 {
551 	void __iomem *ioaddr = rp->base;
552 	u32 intr_status;
553 
554 	intr_status = ioread16(ioaddr + IntrStatus);
555 	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
556 	if (rp->quirks & rqStatusWBRace)
557 		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
558 	return intr_status;
559 }
560 
rhine_ack_events(struct rhine_private * rp,u32 mask)561 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
562 {
563 	void __iomem *ioaddr = rp->base;
564 
565 	if (rp->quirks & rqStatusWBRace)
566 		iowrite8(mask >> 16, ioaddr + IntrStatus2);
567 	iowrite16(mask, ioaddr + IntrStatus);
568 }
569 
570 /*
571  * Get power related registers into sane state.
572  * Notify user about past WOL event.
573  */
rhine_power_init(struct net_device * dev)574 static void rhine_power_init(struct net_device *dev)
575 {
576 	struct rhine_private *rp = netdev_priv(dev);
577 	void __iomem *ioaddr = rp->base;
578 	u16 wolstat;
579 
580 	if (rp->quirks & rqWOL) {
581 		/* Make sure chip is in power state D0 */
582 		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
583 
584 		/* Disable "force PME-enable" */
585 		iowrite8(0x80, ioaddr + WOLcgClr);
586 
587 		/* Clear power-event config bits (WOL) */
588 		iowrite8(0xFF, ioaddr + WOLcrClr);
589 		/* More recent cards can manage two additional patterns */
590 		if (rp->quirks & rq6patterns)
591 			iowrite8(0x03, ioaddr + WOLcrClr1);
592 
593 		/* Save power-event status bits */
594 		wolstat = ioread8(ioaddr + PwrcsrSet);
595 		if (rp->quirks & rq6patterns)
596 			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
597 
598 		/* Clear power-event status bits */
599 		iowrite8(0xFF, ioaddr + PwrcsrClr);
600 		if (rp->quirks & rq6patterns)
601 			iowrite8(0x03, ioaddr + PwrcsrClr1);
602 
603 		if (wolstat) {
604 			char *reason;
605 			switch (wolstat) {
606 			case WOLmagic:
607 				reason = "Magic packet";
608 				break;
609 			case WOLlnkon:
610 				reason = "Link went up";
611 				break;
612 			case WOLlnkoff:
613 				reason = "Link went down";
614 				break;
615 			case WOLucast:
616 				reason = "Unicast packet";
617 				break;
618 			case WOLbmcast:
619 				reason = "Multicast/broadcast packet";
620 				break;
621 			default:
622 				reason = "Unknown";
623 			}
624 			netdev_info(dev, "Woke system up. Reason: %s\n",
625 				    reason);
626 		}
627 	}
628 }
629 
rhine_chip_reset(struct net_device * dev)630 static void rhine_chip_reset(struct net_device *dev)
631 {
632 	struct rhine_private *rp = netdev_priv(dev);
633 	void __iomem *ioaddr = rp->base;
634 	u8 cmd1;
635 
636 	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
637 	IOSYNC;
638 
639 	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
640 		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
641 
642 		/* Force reset */
643 		if (rp->quirks & rqForceReset)
644 			iowrite8(0x40, ioaddr + MiscCmd);
645 
646 		/* Reset can take somewhat longer (rare) */
647 		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
648 	}
649 
650 	cmd1 = ioread8(ioaddr + ChipCmd1);
651 	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
652 		   "failed" : "succeeded");
653 }
654 
enable_mmio(long pioaddr,u32 quirks)655 static void enable_mmio(long pioaddr, u32 quirks)
656 {
657 	int n;
658 
659 	if (quirks & rqNeedEnMMIO) {
660 		if (quirks & rqRhineI) {
661 			/* More recent docs say that this bit is reserved */
662 			n = inb(pioaddr + ConfigA) | 0x20;
663 			outb(n, pioaddr + ConfigA);
664 		} else {
665 			n = inb(pioaddr + ConfigD) | 0x80;
666 			outb(n, pioaddr + ConfigD);
667 		}
668 	}
669 }
670 
verify_mmio(struct device * hwdev,long pioaddr,void __iomem * ioaddr,u32 quirks)671 static inline int verify_mmio(struct device *hwdev,
672 			      long pioaddr,
673 			      void __iomem *ioaddr,
674 			      u32 quirks)
675 {
676 	if (quirks & rqNeedEnMMIO) {
677 		int i = 0;
678 
679 		/* Check that selected MMIO registers match the PIO ones */
680 		while (mmio_verify_registers[i]) {
681 			int reg = mmio_verify_registers[i++];
682 			unsigned char a = inb(pioaddr+reg);
683 			unsigned char b = readb(ioaddr+reg);
684 
685 			if (a != b) {
686 				dev_err(hwdev,
687 					"MMIO do not match PIO [%02x] (%02x != %02x)\n",
688 					reg, a, b);
689 				return -EIO;
690 			}
691 		}
692 	}
693 	return 0;
694 }
695 
696 /*
697  * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
698  * (plus 0x6C for Rhine-I/II)
699  */
rhine_reload_eeprom(long pioaddr,struct net_device * dev)700 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
701 {
702 	struct rhine_private *rp = netdev_priv(dev);
703 	void __iomem *ioaddr = rp->base;
704 	int i;
705 
706 	outb(0x20, pioaddr + MACRegEEcsr);
707 	for (i = 0; i < 1024; i++) {
708 		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
709 			break;
710 	}
711 	if (i > 512)
712 		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
713 
714 	/*
715 	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
716 	 * MMIO. If reloading EEPROM was done first this could be avoided, but
717 	 * it is not known if that still works with the "win98-reboot" problem.
718 	 */
719 	enable_mmio(pioaddr, rp->quirks);
720 
721 	/* Turn off EEPROM-controlled wake-up (magic packet) */
722 	if (rp->quirks & rqWOL)
723 		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
724 
725 }
726 
727 #ifdef CONFIG_NET_POLL_CONTROLLER
rhine_poll(struct net_device * dev)728 static void rhine_poll(struct net_device *dev)
729 {
730 	struct rhine_private *rp = netdev_priv(dev);
731 	const int irq = rp->irq;
732 
733 	disable_irq(irq);
734 	rhine_interrupt(irq, dev);
735 	enable_irq(irq);
736 }
737 #endif
738 
rhine_kick_tx_threshold(struct rhine_private * rp)739 static void rhine_kick_tx_threshold(struct rhine_private *rp)
740 {
741 	if (rp->tx_thresh < 0xe0) {
742 		void __iomem *ioaddr = rp->base;
743 
744 		rp->tx_thresh += 0x20;
745 		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
746 	}
747 }
748 
rhine_tx_err(struct rhine_private * rp,u32 status)749 static void rhine_tx_err(struct rhine_private *rp, u32 status)
750 {
751 	struct net_device *dev = rp->dev;
752 
753 	if (status & IntrTxAborted) {
754 		netif_info(rp, tx_err, dev,
755 			   "Abort %08x, frame dropped\n", status);
756 	}
757 
758 	if (status & IntrTxUnderrun) {
759 		rhine_kick_tx_threshold(rp);
760 		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
761 			   "Tx threshold now %02x\n", rp->tx_thresh);
762 	}
763 
764 	if (status & IntrTxDescRace)
765 		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
766 
767 	if ((status & IntrTxError) &&
768 	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
769 		rhine_kick_tx_threshold(rp);
770 		netif_info(rp, tx_err, dev, "Unspecified error. "
771 			   "Tx threshold now %02x\n", rp->tx_thresh);
772 	}
773 
774 	rhine_restart_tx(dev);
775 }
776 
rhine_update_rx_crc_and_missed_errord(struct rhine_private * rp)777 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
778 {
779 	void __iomem *ioaddr = rp->base;
780 	struct net_device_stats *stats = &rp->dev->stats;
781 
782 	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
783 	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
784 
785 	/*
786 	 * Clears the "tally counters" for CRC errors and missed frames(?).
787 	 * It has been reported that some chips need a write of 0 to clear
788 	 * these, for others the counters are set to 1 when written to and
789 	 * instead cleared when read. So we clear them both ways ...
790 	 */
791 	iowrite32(0, ioaddr + RxMissed);
792 	ioread16(ioaddr + RxCRCErrs);
793 	ioread16(ioaddr + RxMissed);
794 }
795 
796 #define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
797 				 IntrRxErr | \
798 				 IntrRxEmpty | \
799 				 IntrRxOverflow	| \
800 				 IntrRxDropped | \
801 				 IntrRxNoBuf | \
802 				 IntrRxWakeUp)
803 
804 #define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
805 				 IntrTxAborted | \
806 				 IntrTxUnderrun | \
807 				 IntrTxDescRace)
808 #define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
809 
810 #define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
811 				 RHINE_EVENT_NAPI_TX | \
812 				 IntrStatsMax)
813 #define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
814 #define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
815 
rhine_napipoll(struct napi_struct * napi,int budget)816 static int rhine_napipoll(struct napi_struct *napi, int budget)
817 {
818 	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
819 	struct net_device *dev = rp->dev;
820 	void __iomem *ioaddr = rp->base;
821 	u16 enable_mask = RHINE_EVENT & 0xffff;
822 	int work_done = 0;
823 	u32 status;
824 
825 	status = rhine_get_events(rp);
826 	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
827 
828 	if (status & RHINE_EVENT_NAPI_RX)
829 		work_done += rhine_rx(dev, budget);
830 
831 	if (status & RHINE_EVENT_NAPI_TX) {
832 		if (status & RHINE_EVENT_NAPI_TX_ERR) {
833 			/* Avoid scavenging before Tx engine turned off */
834 			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
835 			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
836 				netif_warn(rp, tx_err, dev, "Tx still on\n");
837 		}
838 
839 		rhine_tx(dev);
840 
841 		if (status & RHINE_EVENT_NAPI_TX_ERR)
842 			rhine_tx_err(rp, status);
843 	}
844 
845 	if (status & IntrStatsMax) {
846 		spin_lock(&rp->lock);
847 		rhine_update_rx_crc_and_missed_errord(rp);
848 		spin_unlock(&rp->lock);
849 	}
850 
851 	if (status & RHINE_EVENT_SLOW) {
852 		enable_mask &= ~RHINE_EVENT_SLOW;
853 		schedule_work(&rp->slow_event_task);
854 	}
855 
856 	if (work_done < budget) {
857 		napi_complete_done(napi, work_done);
858 		iowrite16(enable_mask, ioaddr + IntrEnable);
859 	}
860 	return work_done;
861 }
862 
rhine_hw_init(struct net_device * dev,long pioaddr)863 static void rhine_hw_init(struct net_device *dev, long pioaddr)
864 {
865 	struct rhine_private *rp = netdev_priv(dev);
866 
867 	/* Reset the chip to erase previous misconfiguration. */
868 	rhine_chip_reset(dev);
869 
870 	/* Rhine-I needs extra time to recuperate before EEPROM reload */
871 	if (rp->quirks & rqRhineI)
872 		msleep(5);
873 
874 	/* Reload EEPROM controlled bytes cleared by soft reset */
875 	if (dev_is_pci(dev->dev.parent))
876 		rhine_reload_eeprom(pioaddr, dev);
877 }
878 
879 static const struct net_device_ops rhine_netdev_ops = {
880 	.ndo_open		 = rhine_open,
881 	.ndo_stop		 = rhine_close,
882 	.ndo_start_xmit		 = rhine_start_tx,
883 	.ndo_get_stats64	 = rhine_get_stats64,
884 	.ndo_set_rx_mode	 = rhine_set_rx_mode,
885 	.ndo_validate_addr	 = eth_validate_addr,
886 	.ndo_set_mac_address 	 = eth_mac_addr,
887 	.ndo_eth_ioctl		 = netdev_ioctl,
888 	.ndo_tx_timeout 	 = rhine_tx_timeout,
889 	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
890 	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
891 #ifdef CONFIG_NET_POLL_CONTROLLER
892 	.ndo_poll_controller	 = rhine_poll,
893 #endif
894 };
895 
rhine_init_one_common(struct device * hwdev,u32 quirks,long pioaddr,void __iomem * ioaddr,int irq)896 static int rhine_init_one_common(struct device *hwdev, u32 quirks,
897 				 long pioaddr, void __iomem *ioaddr, int irq)
898 {
899 	struct net_device *dev;
900 	struct rhine_private *rp;
901 	int i, rc, phy_id;
902 	u8 addr[ETH_ALEN];
903 	const char *name;
904 
905 	/* this should always be supported */
906 	rc = dma_set_mask(hwdev, DMA_BIT_MASK(32));
907 	if (rc) {
908 		dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n");
909 		goto err_out;
910 	}
911 
912 	dev = alloc_etherdev(sizeof(struct rhine_private));
913 	if (!dev) {
914 		rc = -ENOMEM;
915 		goto err_out;
916 	}
917 	SET_NETDEV_DEV(dev, hwdev);
918 
919 	rp = netdev_priv(dev);
920 	rp->dev = dev;
921 	rp->quirks = quirks;
922 	rp->pioaddr = pioaddr;
923 	rp->base = ioaddr;
924 	rp->irq = irq;
925 	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
926 
927 	phy_id = rp->quirks & rqIntPHY ? 1 : 0;
928 
929 	u64_stats_init(&rp->tx_stats.syncp);
930 	u64_stats_init(&rp->rx_stats.syncp);
931 
932 	/* Get chip registers into a sane state */
933 	rhine_power_init(dev);
934 	rhine_hw_init(dev, pioaddr);
935 
936 	for (i = 0; i < 6; i++)
937 		addr[i] = ioread8(ioaddr + StationAddr + i);
938 	eth_hw_addr_set(dev, addr);
939 
940 	if (!is_valid_ether_addr(dev->dev_addr)) {
941 		/* Report it and use a random ethernet address instead */
942 		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
943 		eth_hw_addr_random(dev);
944 		netdev_info(dev, "Using random MAC address: %pM\n",
945 			    dev->dev_addr);
946 	}
947 
948 	/* For Rhine-I/II, phy_id is loaded from EEPROM */
949 	if (!phy_id)
950 		phy_id = ioread8(ioaddr + 0x6C);
951 
952 	spin_lock_init(&rp->lock);
953 	mutex_init(&rp->task_lock);
954 	INIT_WORK(&rp->reset_task, rhine_reset_task);
955 	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
956 
957 	rp->mii_if.dev = dev;
958 	rp->mii_if.mdio_read = mdio_read;
959 	rp->mii_if.mdio_write = mdio_write;
960 	rp->mii_if.phy_id_mask = 0x1f;
961 	rp->mii_if.reg_num_mask = 0x1f;
962 
963 	/* The chip-specific entries in the device structure. */
964 	dev->netdev_ops = &rhine_netdev_ops;
965 	dev->ethtool_ops = &netdev_ethtool_ops;
966 	dev->watchdog_timeo = TX_TIMEOUT;
967 
968 	netif_napi_add(dev, &rp->napi, rhine_napipoll);
969 
970 	if (rp->quirks & rqRhineI)
971 		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
972 
973 	if (rp->quirks & rqMgmt)
974 		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
975 				 NETIF_F_HW_VLAN_CTAG_RX |
976 				 NETIF_F_HW_VLAN_CTAG_FILTER;
977 
978 	/* dev->name not defined before register_netdev()! */
979 	rc = register_netdev(dev);
980 	if (rc)
981 		goto err_out_free_netdev;
982 
983 	if (rp->quirks & rqRhineI)
984 		name = "Rhine";
985 	else if (rp->quirks & rqStatusWBRace)
986 		name = "Rhine II";
987 	else if (rp->quirks & rqMgmt)
988 		name = "Rhine III (Management Adapter)";
989 	else
990 		name = "Rhine III";
991 
992 	netdev_info(dev, "VIA %s at %p, %pM, IRQ %d\n",
993 		    name, ioaddr, dev->dev_addr, rp->irq);
994 
995 	dev_set_drvdata(hwdev, dev);
996 
997 	{
998 		u16 mii_cmd;
999 		int mii_status = mdio_read(dev, phy_id, 1);
1000 		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1001 		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1002 		if (mii_status != 0xffff && mii_status != 0x0000) {
1003 			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1004 			netdev_info(dev,
1005 				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1006 				    phy_id,
1007 				    mii_status, rp->mii_if.advertising,
1008 				    mdio_read(dev, phy_id, 5));
1009 
1010 			/* set IFF_RUNNING */
1011 			if (mii_status & BMSR_LSTATUS)
1012 				netif_carrier_on(dev);
1013 			else
1014 				netif_carrier_off(dev);
1015 
1016 		}
1017 	}
1018 	rp->mii_if.phy_id = phy_id;
1019 	if (avoid_D3)
1020 		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1021 
1022 	return 0;
1023 
1024 err_out_free_netdev:
1025 	free_netdev(dev);
1026 err_out:
1027 	return rc;
1028 }
1029 
rhine_init_one_pci(struct pci_dev * pdev,const struct pci_device_id * ent)1030 static int rhine_init_one_pci(struct pci_dev *pdev,
1031 			      const struct pci_device_id *ent)
1032 {
1033 	struct device *hwdev = &pdev->dev;
1034 	int rc;
1035 	long pioaddr, memaddr;
1036 	void __iomem *ioaddr;
1037 	int io_size = pdev->revision < VTunknown0 ? 128 : 256;
1038 
1039 /* This driver was written to use PCI memory space. Some early versions
1040  * of the Rhine may only work correctly with I/O space accesses.
1041  * TODO: determine for which revisions this is true and assign the flag
1042  *	 in code as opposed to this Kconfig option (???)
1043  */
1044 #ifdef CONFIG_VIA_RHINE_MMIO
1045 	u32 quirks = rqNeedEnMMIO;
1046 #else
1047 	u32 quirks = 0;
1048 #endif
1049 
1050 	rc = pci_enable_device(pdev);
1051 	if (rc)
1052 		goto err_out;
1053 
1054 	if (pdev->revision < VTunknown0) {
1055 		quirks |= rqRhineI;
1056 	} else if (pdev->revision >= VT6102) {
1057 		quirks |= rqWOL | rqForceReset;
1058 		if (pdev->revision < VT6105) {
1059 			quirks |= rqStatusWBRace;
1060 		} else {
1061 			quirks |= rqIntPHY;
1062 			if (pdev->revision >= VT6105_B0)
1063 				quirks |= rq6patterns;
1064 			if (pdev->revision >= VT6105M)
1065 				quirks |= rqMgmt;
1066 		}
1067 	}
1068 
1069 	/* sanity check */
1070 	if ((pci_resource_len(pdev, 0) < io_size) ||
1071 	    (pci_resource_len(pdev, 1) < io_size)) {
1072 		rc = -EIO;
1073 		dev_err(hwdev, "Insufficient PCI resources, aborting\n");
1074 		goto err_out_pci_disable;
1075 	}
1076 
1077 	pioaddr = pci_resource_start(pdev, 0);
1078 	memaddr = pci_resource_start(pdev, 1);
1079 
1080 	pci_set_master(pdev);
1081 
1082 	rc = pci_request_regions(pdev, DRV_NAME);
1083 	if (rc)
1084 		goto err_out_pci_disable;
1085 
1086 	ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size);
1087 	if (!ioaddr) {
1088 		rc = -EIO;
1089 		dev_err(hwdev,
1090 			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
1091 			dev_name(hwdev), io_size, memaddr);
1092 		goto err_out_free_res;
1093 	}
1094 
1095 	enable_mmio(pioaddr, quirks);
1096 
1097 	rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks);
1098 	if (rc)
1099 		goto err_out_unmap;
1100 
1101 	rc = rhine_init_one_common(&pdev->dev, quirks,
1102 				   pioaddr, ioaddr, pdev->irq);
1103 	if (!rc)
1104 		return 0;
1105 
1106 err_out_unmap:
1107 	pci_iounmap(pdev, ioaddr);
1108 err_out_free_res:
1109 	pci_release_regions(pdev);
1110 err_out_pci_disable:
1111 	pci_disable_device(pdev);
1112 err_out:
1113 	return rc;
1114 }
1115 
rhine_init_one_platform(struct platform_device * pdev)1116 static int rhine_init_one_platform(struct platform_device *pdev)
1117 {
1118 	const u32 *quirks;
1119 	int irq;
1120 	void __iomem *ioaddr;
1121 
1122 	quirks = of_device_get_match_data(&pdev->dev);
1123 	if (!quirks)
1124 		return -EINVAL;
1125 
1126 	ioaddr = devm_platform_ioremap_resource(pdev, 0);
1127 	if (IS_ERR(ioaddr))
1128 		return PTR_ERR(ioaddr);
1129 
1130 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1131 	if (!irq)
1132 		return -EINVAL;
1133 
1134 	return rhine_init_one_common(&pdev->dev, *quirks,
1135 				     (long)ioaddr, ioaddr, irq);
1136 }
1137 
alloc_ring(struct net_device * dev)1138 static int alloc_ring(struct net_device* dev)
1139 {
1140 	struct rhine_private *rp = netdev_priv(dev);
1141 	struct device *hwdev = dev->dev.parent;
1142 	void *ring;
1143 	dma_addr_t ring_dma;
1144 
1145 	ring = dma_alloc_coherent(hwdev,
1146 				  RX_RING_SIZE * sizeof(struct rx_desc) +
1147 				  TX_RING_SIZE * sizeof(struct tx_desc),
1148 				  &ring_dma,
1149 				  GFP_ATOMIC);
1150 	if (!ring) {
1151 		netdev_err(dev, "Could not allocate DMA memory\n");
1152 		return -ENOMEM;
1153 	}
1154 	if (rp->quirks & rqRhineI) {
1155 		rp->tx_bufs = dma_alloc_coherent(hwdev,
1156 						 PKT_BUF_SZ * TX_RING_SIZE,
1157 						 &rp->tx_bufs_dma,
1158 						 GFP_ATOMIC);
1159 		if (rp->tx_bufs == NULL) {
1160 			dma_free_coherent(hwdev,
1161 					  RX_RING_SIZE * sizeof(struct rx_desc) +
1162 					  TX_RING_SIZE * sizeof(struct tx_desc),
1163 					  ring, ring_dma);
1164 			return -ENOMEM;
1165 		}
1166 	}
1167 
1168 	rp->rx_ring = ring;
1169 	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1170 	rp->rx_ring_dma = ring_dma;
1171 	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1172 
1173 	return 0;
1174 }
1175 
free_ring(struct net_device * dev)1176 static void free_ring(struct net_device* dev)
1177 {
1178 	struct rhine_private *rp = netdev_priv(dev);
1179 	struct device *hwdev = dev->dev.parent;
1180 
1181 	dma_free_coherent(hwdev,
1182 			  RX_RING_SIZE * sizeof(struct rx_desc) +
1183 			  TX_RING_SIZE * sizeof(struct tx_desc),
1184 			  rp->rx_ring, rp->rx_ring_dma);
1185 	rp->tx_ring = NULL;
1186 
1187 	if (rp->tx_bufs)
1188 		dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE,
1189 				  rp->tx_bufs, rp->tx_bufs_dma);
1190 
1191 	rp->tx_bufs = NULL;
1192 
1193 }
1194 
1195 struct rhine_skb_dma {
1196 	struct sk_buff *skb;
1197 	dma_addr_t dma;
1198 };
1199 
rhine_skb_dma_init(struct net_device * dev,struct rhine_skb_dma * sd)1200 static inline int rhine_skb_dma_init(struct net_device *dev,
1201 				     struct rhine_skb_dma *sd)
1202 {
1203 	struct rhine_private *rp = netdev_priv(dev);
1204 	struct device *hwdev = dev->dev.parent;
1205 	const int size = rp->rx_buf_sz;
1206 
1207 	sd->skb = netdev_alloc_skb(dev, size);
1208 	if (!sd->skb)
1209 		return -ENOMEM;
1210 
1211 	sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE);
1212 	if (unlikely(dma_mapping_error(hwdev, sd->dma))) {
1213 		netif_err(rp, drv, dev, "Rx DMA mapping failure\n");
1214 		dev_kfree_skb_any(sd->skb);
1215 		return -EIO;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
rhine_reset_rbufs(struct rhine_private * rp)1221 static void rhine_reset_rbufs(struct rhine_private *rp)
1222 {
1223 	int i;
1224 
1225 	rp->cur_rx = 0;
1226 
1227 	for (i = 0; i < RX_RING_SIZE; i++)
1228 		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1229 }
1230 
rhine_skb_dma_nic_store(struct rhine_private * rp,struct rhine_skb_dma * sd,int entry)1231 static inline void rhine_skb_dma_nic_store(struct rhine_private *rp,
1232 					   struct rhine_skb_dma *sd, int entry)
1233 {
1234 	rp->rx_skbuff_dma[entry] = sd->dma;
1235 	rp->rx_skbuff[entry] = sd->skb;
1236 
1237 	rp->rx_ring[entry].addr = cpu_to_le32(sd->dma);
1238 	dma_wmb();
1239 }
1240 
1241 static void free_rbufs(struct net_device* dev);
1242 
alloc_rbufs(struct net_device * dev)1243 static int alloc_rbufs(struct net_device *dev)
1244 {
1245 	struct rhine_private *rp = netdev_priv(dev);
1246 	dma_addr_t next;
1247 	int rc, i;
1248 
1249 	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1250 	next = rp->rx_ring_dma;
1251 
1252 	/* Init the ring entries */
1253 	for (i = 0; i < RX_RING_SIZE; i++) {
1254 		rp->rx_ring[i].rx_status = 0;
1255 		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1256 		next += sizeof(struct rx_desc);
1257 		rp->rx_ring[i].next_desc = cpu_to_le32(next);
1258 		rp->rx_skbuff[i] = NULL;
1259 	}
1260 	/* Mark the last entry as wrapping the ring. */
1261 	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1262 
1263 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1264 	for (i = 0; i < RX_RING_SIZE; i++) {
1265 		struct rhine_skb_dma sd;
1266 
1267 		rc = rhine_skb_dma_init(dev, &sd);
1268 		if (rc < 0) {
1269 			free_rbufs(dev);
1270 			goto out;
1271 		}
1272 
1273 		rhine_skb_dma_nic_store(rp, &sd, i);
1274 	}
1275 
1276 	rhine_reset_rbufs(rp);
1277 out:
1278 	return rc;
1279 }
1280 
free_rbufs(struct net_device * dev)1281 static void free_rbufs(struct net_device* dev)
1282 {
1283 	struct rhine_private *rp = netdev_priv(dev);
1284 	struct device *hwdev = dev->dev.parent;
1285 	int i;
1286 
1287 	/* Free all the skbuffs in the Rx queue. */
1288 	for (i = 0; i < RX_RING_SIZE; i++) {
1289 		rp->rx_ring[i].rx_status = 0;
1290 		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1291 		if (rp->rx_skbuff[i]) {
1292 			dma_unmap_single(hwdev,
1293 					 rp->rx_skbuff_dma[i],
1294 					 rp->rx_buf_sz, DMA_FROM_DEVICE);
1295 			dev_kfree_skb(rp->rx_skbuff[i]);
1296 		}
1297 		rp->rx_skbuff[i] = NULL;
1298 	}
1299 }
1300 
alloc_tbufs(struct net_device * dev)1301 static void alloc_tbufs(struct net_device* dev)
1302 {
1303 	struct rhine_private *rp = netdev_priv(dev);
1304 	dma_addr_t next;
1305 	int i;
1306 
1307 	rp->dirty_tx = rp->cur_tx = 0;
1308 	next = rp->tx_ring_dma;
1309 	for (i = 0; i < TX_RING_SIZE; i++) {
1310 		rp->tx_skbuff[i] = NULL;
1311 		rp->tx_ring[i].tx_status = 0;
1312 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1313 		next += sizeof(struct tx_desc);
1314 		rp->tx_ring[i].next_desc = cpu_to_le32(next);
1315 		if (rp->quirks & rqRhineI)
1316 			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1317 	}
1318 	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1319 
1320 	netdev_reset_queue(dev);
1321 }
1322 
free_tbufs(struct net_device * dev)1323 static void free_tbufs(struct net_device* dev)
1324 {
1325 	struct rhine_private *rp = netdev_priv(dev);
1326 	struct device *hwdev = dev->dev.parent;
1327 	int i;
1328 
1329 	for (i = 0; i < TX_RING_SIZE; i++) {
1330 		rp->tx_ring[i].tx_status = 0;
1331 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1332 		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1333 		if (rp->tx_skbuff[i]) {
1334 			if (rp->tx_skbuff_dma[i]) {
1335 				dma_unmap_single(hwdev,
1336 						 rp->tx_skbuff_dma[i],
1337 						 rp->tx_skbuff[i]->len,
1338 						 DMA_TO_DEVICE);
1339 			}
1340 			dev_kfree_skb(rp->tx_skbuff[i]);
1341 		}
1342 		rp->tx_skbuff[i] = NULL;
1343 		rp->tx_buf[i] = NULL;
1344 	}
1345 }
1346 
rhine_check_media(struct net_device * dev,unsigned int init_media)1347 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1348 {
1349 	struct rhine_private *rp = netdev_priv(dev);
1350 	void __iomem *ioaddr = rp->base;
1351 
1352 	if (!rp->mii_if.force_media)
1353 		mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1354 
1355 	if (rp->mii_if.full_duplex)
1356 	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1357 		   ioaddr + ChipCmd1);
1358 	else
1359 	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1360 		   ioaddr + ChipCmd1);
1361 
1362 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1363 		   rp->mii_if.force_media, netif_carrier_ok(dev));
1364 }
1365 
1366 /* Called after status of force_media possibly changed */
rhine_set_carrier(struct mii_if_info * mii)1367 static void rhine_set_carrier(struct mii_if_info *mii)
1368 {
1369 	struct net_device *dev = mii->dev;
1370 	struct rhine_private *rp = netdev_priv(dev);
1371 
1372 	if (mii->force_media) {
1373 		/* autoneg is off: Link is always assumed to be up */
1374 		if (!netif_carrier_ok(dev))
1375 			netif_carrier_on(dev);
1376 	}
1377 
1378 	rhine_check_media(dev, 0);
1379 
1380 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1381 		   mii->force_media, netif_carrier_ok(dev));
1382 }
1383 
1384 /**
1385  * rhine_set_cam - set CAM multicast filters
1386  * @ioaddr: register block of this Rhine
1387  * @idx: multicast CAM index [0..MCAM_SIZE-1]
1388  * @addr: multicast address (6 bytes)
1389  *
1390  * Load addresses into multicast filters.
1391  */
rhine_set_cam(void __iomem * ioaddr,int idx,u8 * addr)1392 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1393 {
1394 	int i;
1395 
1396 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1397 	wmb();
1398 
1399 	/* Paranoid -- idx out of range should never happen */
1400 	idx &= (MCAM_SIZE - 1);
1401 
1402 	iowrite8((u8) idx, ioaddr + CamAddr);
1403 
1404 	for (i = 0; i < 6; i++, addr++)
1405 		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1406 	udelay(10);
1407 	wmb();
1408 
1409 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1410 	udelay(10);
1411 
1412 	iowrite8(0, ioaddr + CamCon);
1413 }
1414 
1415 /**
1416  * rhine_set_vlan_cam - set CAM VLAN filters
1417  * @ioaddr: register block of this Rhine
1418  * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1419  * @addr: VLAN ID (2 bytes)
1420  *
1421  * Load addresses into VLAN filters.
1422  */
rhine_set_vlan_cam(void __iomem * ioaddr,int idx,u8 * addr)1423 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1424 {
1425 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1426 	wmb();
1427 
1428 	/* Paranoid -- idx out of range should never happen */
1429 	idx &= (VCAM_SIZE - 1);
1430 
1431 	iowrite8((u8) idx, ioaddr + CamAddr);
1432 
1433 	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1434 	udelay(10);
1435 	wmb();
1436 
1437 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1438 	udelay(10);
1439 
1440 	iowrite8(0, ioaddr + CamCon);
1441 }
1442 
1443 /**
1444  * rhine_set_cam_mask - set multicast CAM mask
1445  * @ioaddr: register block of this Rhine
1446  * @mask: multicast CAM mask
1447  *
1448  * Mask sets multicast filters active/inactive.
1449  */
rhine_set_cam_mask(void __iomem * ioaddr,u32 mask)1450 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1451 {
1452 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1453 	wmb();
1454 
1455 	/* write mask */
1456 	iowrite32(mask, ioaddr + CamMask);
1457 
1458 	/* disable CAMEN */
1459 	iowrite8(0, ioaddr + CamCon);
1460 }
1461 
1462 /**
1463  * rhine_set_vlan_cam_mask - set VLAN CAM mask
1464  * @ioaddr: register block of this Rhine
1465  * @mask: VLAN CAM mask
1466  *
1467  * Mask sets VLAN filters active/inactive.
1468  */
rhine_set_vlan_cam_mask(void __iomem * ioaddr,u32 mask)1469 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1470 {
1471 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1472 	wmb();
1473 
1474 	/* write mask */
1475 	iowrite32(mask, ioaddr + CamMask);
1476 
1477 	/* disable CAMEN */
1478 	iowrite8(0, ioaddr + CamCon);
1479 }
1480 
1481 /**
1482  * rhine_init_cam_filter - initialize CAM filters
1483  * @dev: network device
1484  *
1485  * Initialize (disable) hardware VLAN and multicast support on this
1486  * Rhine.
1487  */
rhine_init_cam_filter(struct net_device * dev)1488 static void rhine_init_cam_filter(struct net_device *dev)
1489 {
1490 	struct rhine_private *rp = netdev_priv(dev);
1491 	void __iomem *ioaddr = rp->base;
1492 
1493 	/* Disable all CAMs */
1494 	rhine_set_vlan_cam_mask(ioaddr, 0);
1495 	rhine_set_cam_mask(ioaddr, 0);
1496 
1497 	/* disable hardware VLAN support */
1498 	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1499 	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1500 }
1501 
1502 /**
1503  * rhine_update_vcam - update VLAN CAM filters
1504  * @dev: rhine_private data of this Rhine
1505  *
1506  * Update VLAN CAM filters to match configuration change.
1507  */
rhine_update_vcam(struct net_device * dev)1508 static void rhine_update_vcam(struct net_device *dev)
1509 {
1510 	struct rhine_private *rp = netdev_priv(dev);
1511 	void __iomem *ioaddr = rp->base;
1512 	u16 vid;
1513 	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
1514 	unsigned int i = 0;
1515 
1516 	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1517 		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1518 		vCAMmask |= 1 << i;
1519 		if (++i >= VCAM_SIZE)
1520 			break;
1521 	}
1522 	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1523 }
1524 
rhine_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)1525 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1526 {
1527 	struct rhine_private *rp = netdev_priv(dev);
1528 
1529 	spin_lock_bh(&rp->lock);
1530 	set_bit(vid, rp->active_vlans);
1531 	rhine_update_vcam(dev);
1532 	spin_unlock_bh(&rp->lock);
1533 	return 0;
1534 }
1535 
rhine_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)1536 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1537 {
1538 	struct rhine_private *rp = netdev_priv(dev);
1539 
1540 	spin_lock_bh(&rp->lock);
1541 	clear_bit(vid, rp->active_vlans);
1542 	rhine_update_vcam(dev);
1543 	spin_unlock_bh(&rp->lock);
1544 	return 0;
1545 }
1546 
init_registers(struct net_device * dev)1547 static void init_registers(struct net_device *dev)
1548 {
1549 	struct rhine_private *rp = netdev_priv(dev);
1550 	void __iomem *ioaddr = rp->base;
1551 	int i;
1552 
1553 	for (i = 0; i < 6; i++)
1554 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1555 
1556 	/* Initialize other registers. */
1557 	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
1558 	/* Configure initial FIFO thresholds. */
1559 	iowrite8(0x20, ioaddr + TxConfig);
1560 	rp->tx_thresh = 0x20;
1561 	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
1562 
1563 	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1564 	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1565 
1566 	rhine_set_rx_mode(dev);
1567 
1568 	if (rp->quirks & rqMgmt)
1569 		rhine_init_cam_filter(dev);
1570 
1571 	napi_enable_locked(&rp->napi);
1572 
1573 	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1574 
1575 	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1576 	       ioaddr + ChipCmd);
1577 	rhine_check_media(dev, 1);
1578 }
1579 
1580 /* Enable MII link status auto-polling (required for IntrLinkChange) */
rhine_enable_linkmon(struct rhine_private * rp)1581 static void rhine_enable_linkmon(struct rhine_private *rp)
1582 {
1583 	void __iomem *ioaddr = rp->base;
1584 
1585 	iowrite8(0, ioaddr + MIICmd);
1586 	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1587 	iowrite8(0x80, ioaddr + MIICmd);
1588 
1589 	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1590 
1591 	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1592 }
1593 
1594 /* Disable MII link status auto-polling (required for MDIO access) */
rhine_disable_linkmon(struct rhine_private * rp)1595 static void rhine_disable_linkmon(struct rhine_private *rp)
1596 {
1597 	void __iomem *ioaddr = rp->base;
1598 
1599 	iowrite8(0, ioaddr + MIICmd);
1600 
1601 	if (rp->quirks & rqRhineI) {
1602 		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
1603 
1604 		/* Can be called from ISR. Evil. */
1605 		mdelay(1);
1606 
1607 		/* 0x80 must be set immediately before turning it off */
1608 		iowrite8(0x80, ioaddr + MIICmd);
1609 
1610 		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1611 
1612 		/* Heh. Now clear 0x80 again. */
1613 		iowrite8(0, ioaddr + MIICmd);
1614 	}
1615 	else
1616 		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1617 }
1618 
1619 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1620 
mdio_read(struct net_device * dev,int phy_id,int regnum)1621 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1622 {
1623 	struct rhine_private *rp = netdev_priv(dev);
1624 	void __iomem *ioaddr = rp->base;
1625 	int result;
1626 
1627 	rhine_disable_linkmon(rp);
1628 
1629 	/* rhine_disable_linkmon already cleared MIICmd */
1630 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1631 	iowrite8(regnum, ioaddr + MIIRegAddr);
1632 	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
1633 	rhine_wait_bit_low(rp, MIICmd, 0x40);
1634 	result = ioread16(ioaddr + MIIData);
1635 
1636 	rhine_enable_linkmon(rp);
1637 	return result;
1638 }
1639 
mdio_write(struct net_device * dev,int phy_id,int regnum,int value)1640 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1641 {
1642 	struct rhine_private *rp = netdev_priv(dev);
1643 	void __iomem *ioaddr = rp->base;
1644 
1645 	rhine_disable_linkmon(rp);
1646 
1647 	/* rhine_disable_linkmon already cleared MIICmd */
1648 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1649 	iowrite8(regnum, ioaddr + MIIRegAddr);
1650 	iowrite16(value, ioaddr + MIIData);
1651 	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
1652 	rhine_wait_bit_low(rp, MIICmd, 0x20);
1653 
1654 	rhine_enable_linkmon(rp);
1655 }
1656 
rhine_task_disable(struct rhine_private * rp)1657 static void rhine_task_disable(struct rhine_private *rp)
1658 {
1659 	mutex_lock(&rp->task_lock);
1660 	rp->task_enable = false;
1661 	mutex_unlock(&rp->task_lock);
1662 
1663 	cancel_work_sync(&rp->slow_event_task);
1664 	cancel_work_sync(&rp->reset_task);
1665 }
1666 
rhine_task_enable(struct rhine_private * rp)1667 static void rhine_task_enable(struct rhine_private *rp)
1668 {
1669 	mutex_lock(&rp->task_lock);
1670 	rp->task_enable = true;
1671 	mutex_unlock(&rp->task_lock);
1672 }
1673 
rhine_open(struct net_device * dev)1674 static int rhine_open(struct net_device *dev)
1675 {
1676 	struct rhine_private *rp = netdev_priv(dev);
1677 	void __iomem *ioaddr = rp->base;
1678 	int rc;
1679 
1680 	rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev);
1681 	if (rc)
1682 		goto out;
1683 
1684 	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq);
1685 
1686 	rc = alloc_ring(dev);
1687 	if (rc < 0)
1688 		goto out_free_irq;
1689 
1690 	rc = alloc_rbufs(dev);
1691 	if (rc < 0)
1692 		goto out_free_ring;
1693 
1694 	alloc_tbufs(dev);
1695 	enable_mmio(rp->pioaddr, rp->quirks);
1696 	rhine_power_init(dev);
1697 	rhine_chip_reset(dev);
1698 	rhine_task_enable(rp);
1699 
1700 	netdev_lock(dev);
1701 	init_registers(dev);
1702 	netdev_unlock(dev);
1703 
1704 	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1705 		  __func__, ioread16(ioaddr + ChipCmd),
1706 		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1707 
1708 	netif_start_queue(dev);
1709 
1710 out:
1711 	return rc;
1712 
1713 out_free_ring:
1714 	free_ring(dev);
1715 out_free_irq:
1716 	free_irq(rp->irq, dev);
1717 	goto out;
1718 }
1719 
rhine_reset_task(struct work_struct * work)1720 static void rhine_reset_task(struct work_struct *work)
1721 {
1722 	struct rhine_private *rp = container_of(work, struct rhine_private,
1723 						reset_task);
1724 	struct net_device *dev = rp->dev;
1725 
1726 	mutex_lock(&rp->task_lock);
1727 
1728 	if (!rp->task_enable)
1729 		goto out_unlock;
1730 
1731 	napi_disable(&rp->napi);
1732 	netif_tx_disable(dev);
1733 
1734 	netdev_lock(dev);
1735 	spin_lock_bh(&rp->lock);
1736 
1737 	/* clear all descriptors */
1738 	free_tbufs(dev);
1739 	alloc_tbufs(dev);
1740 
1741 	rhine_reset_rbufs(rp);
1742 
1743 	/* Reinitialize the hardware. */
1744 	rhine_chip_reset(dev);
1745 	init_registers(dev);
1746 
1747 	spin_unlock_bh(&rp->lock);
1748 	netdev_unlock(dev);
1749 
1750 	netif_trans_update(dev); /* prevent tx timeout */
1751 	dev->stats.tx_errors++;
1752 	netif_wake_queue(dev);
1753 
1754 out_unlock:
1755 	mutex_unlock(&rp->task_lock);
1756 }
1757 
rhine_tx_timeout(struct net_device * dev,unsigned int txqueue)1758 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue)
1759 {
1760 	struct rhine_private *rp = netdev_priv(dev);
1761 	void __iomem *ioaddr = rp->base;
1762 
1763 	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1764 		    ioread16(ioaddr + IntrStatus),
1765 		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1766 
1767 	schedule_work(&rp->reset_task);
1768 }
1769 
rhine_tx_queue_full(struct rhine_private * rp)1770 static inline bool rhine_tx_queue_full(struct rhine_private *rp)
1771 {
1772 	return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN;
1773 }
1774 
rhine_start_tx(struct sk_buff * skb,struct net_device * dev)1775 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1776 				  struct net_device *dev)
1777 {
1778 	struct rhine_private *rp = netdev_priv(dev);
1779 	struct device *hwdev = dev->dev.parent;
1780 	void __iomem *ioaddr = rp->base;
1781 	unsigned entry;
1782 
1783 	/* Caution: the write order is important here, set the field
1784 	   with the "ownership" bits last. */
1785 
1786 	/* Calculate the next Tx descriptor entry. */
1787 	entry = rp->cur_tx % TX_RING_SIZE;
1788 
1789 	if (skb_padto(skb, ETH_ZLEN))
1790 		return NETDEV_TX_OK;
1791 
1792 	rp->tx_skbuff[entry] = skb;
1793 
1794 	if ((rp->quirks & rqRhineI) &&
1795 	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1796 		/* Must use alignment buffer. */
1797 		if (skb->len > PKT_BUF_SZ) {
1798 			/* packet too long, drop it */
1799 			dev_kfree_skb_any(skb);
1800 			rp->tx_skbuff[entry] = NULL;
1801 			dev->stats.tx_dropped++;
1802 			return NETDEV_TX_OK;
1803 		}
1804 
1805 		/* Padding is not copied and so must be redone. */
1806 		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1807 		if (skb->len < ETH_ZLEN)
1808 			memset(rp->tx_buf[entry] + skb->len, 0,
1809 			       ETH_ZLEN - skb->len);
1810 		rp->tx_skbuff_dma[entry] = 0;
1811 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1812 						      (rp->tx_buf[entry] -
1813 						       rp->tx_bufs));
1814 	} else {
1815 		rp->tx_skbuff_dma[entry] =
1816 			dma_map_single(hwdev, skb->data, skb->len,
1817 				       DMA_TO_DEVICE);
1818 		if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) {
1819 			dev_kfree_skb_any(skb);
1820 			rp->tx_skbuff_dma[entry] = 0;
1821 			dev->stats.tx_dropped++;
1822 			return NETDEV_TX_OK;
1823 		}
1824 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1825 	}
1826 
1827 	rp->tx_ring[entry].desc_length =
1828 		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1829 
1830 	if (unlikely(skb_vlan_tag_present(skb))) {
1831 		u16 vid_pcp = skb_vlan_tag_get(skb);
1832 
1833 		/* drop CFI/DEI bit, register needs VID and PCP */
1834 		vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1835 			  ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1836 		rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1837 		/* request tagging */
1838 		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1839 	}
1840 	else
1841 		rp->tx_ring[entry].tx_status = 0;
1842 
1843 	netdev_sent_queue(dev, skb->len);
1844 	/* lock eth irq */
1845 	dma_wmb();
1846 	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1847 	wmb();
1848 
1849 	rp->cur_tx++;
1850 	/*
1851 	 * Nobody wants cur_tx write to rot for ages after the NIC will have
1852 	 * seen the transmit request, especially as the transmit completion
1853 	 * handler could miss it.
1854 	 */
1855 	smp_wmb();
1856 
1857 	/* Non-x86 Todo: explicitly flush cache lines here. */
1858 
1859 	if (skb_vlan_tag_present(skb))
1860 		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1861 		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1862 
1863 	/* Wake the potentially-idle transmit channel */
1864 	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1865 	       ioaddr + ChipCmd1);
1866 	IOSYNC;
1867 
1868 	/* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */
1869 	if (rhine_tx_queue_full(rp)) {
1870 		netif_stop_queue(dev);
1871 		smp_rmb();
1872 		/* Rejuvenate. */
1873 		if (!rhine_tx_queue_full(rp))
1874 			netif_wake_queue(dev);
1875 	}
1876 
1877 	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1878 		  rp->cur_tx - 1, entry);
1879 
1880 	return NETDEV_TX_OK;
1881 }
1882 
rhine_irq_disable(struct rhine_private * rp)1883 static void rhine_irq_disable(struct rhine_private *rp)
1884 {
1885 	iowrite16(0x0000, rp->base + IntrEnable);
1886 }
1887 
1888 /* The interrupt handler does all of the Rx thread work and cleans up
1889    after the Tx thread. */
rhine_interrupt(int irq,void * dev_instance)1890 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1891 {
1892 	struct net_device *dev = dev_instance;
1893 	struct rhine_private *rp = netdev_priv(dev);
1894 	u32 status;
1895 	int handled = 0;
1896 
1897 	status = rhine_get_events(rp);
1898 
1899 	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1900 
1901 	if (status & RHINE_EVENT) {
1902 		handled = 1;
1903 
1904 		rhine_irq_disable(rp);
1905 		napi_schedule(&rp->napi);
1906 	}
1907 
1908 	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1909 		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1910 			  status);
1911 	}
1912 
1913 	return IRQ_RETVAL(handled);
1914 }
1915 
1916 /* This routine is logically part of the interrupt handler, but isolated
1917    for clarity. */
rhine_tx(struct net_device * dev)1918 static void rhine_tx(struct net_device *dev)
1919 {
1920 	struct rhine_private *rp = netdev_priv(dev);
1921 	struct device *hwdev = dev->dev.parent;
1922 	unsigned int pkts_compl = 0, bytes_compl = 0;
1923 	unsigned int dirty_tx = rp->dirty_tx;
1924 	unsigned int cur_tx;
1925 	struct sk_buff *skb;
1926 
1927 	/*
1928 	 * The race with rhine_start_tx does not matter here as long as the
1929 	 * driver enforces a value of cur_tx that was relevant when the
1930 	 * packet was scheduled to the network chipset.
1931 	 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx.
1932 	 */
1933 	smp_rmb();
1934 	cur_tx = rp->cur_tx;
1935 	/* find and cleanup dirty tx descriptors */
1936 	while (dirty_tx != cur_tx) {
1937 		unsigned int entry = dirty_tx % TX_RING_SIZE;
1938 		u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1939 
1940 		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1941 			  entry, txstatus);
1942 		if (txstatus & DescOwn)
1943 			break;
1944 		skb = rp->tx_skbuff[entry];
1945 		if (txstatus & 0x8000) {
1946 			netif_dbg(rp, tx_done, dev,
1947 				  "Transmit error, Tx status %08x\n", txstatus);
1948 			dev->stats.tx_errors++;
1949 			if (txstatus & 0x0400)
1950 				dev->stats.tx_carrier_errors++;
1951 			if (txstatus & 0x0200)
1952 				dev->stats.tx_window_errors++;
1953 			if (txstatus & 0x0100)
1954 				dev->stats.tx_aborted_errors++;
1955 			if (txstatus & 0x0080)
1956 				dev->stats.tx_heartbeat_errors++;
1957 			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1958 			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
1959 				dev->stats.tx_fifo_errors++;
1960 				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1961 				break; /* Keep the skb - we try again */
1962 			}
1963 			/* Transmitter restarted in 'abnormal' handler. */
1964 		} else {
1965 			if (rp->quirks & rqRhineI)
1966 				dev->stats.collisions += (txstatus >> 3) & 0x0F;
1967 			else
1968 				dev->stats.collisions += txstatus & 0x0F;
1969 			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1970 				  (txstatus >> 3) & 0xF, txstatus & 0xF);
1971 
1972 			u64_stats_update_begin(&rp->tx_stats.syncp);
1973 			rp->tx_stats.bytes += skb->len;
1974 			rp->tx_stats.packets++;
1975 			u64_stats_update_end(&rp->tx_stats.syncp);
1976 		}
1977 		/* Free the original skb. */
1978 		if (rp->tx_skbuff_dma[entry]) {
1979 			dma_unmap_single(hwdev,
1980 					 rp->tx_skbuff_dma[entry],
1981 					 skb->len,
1982 					 DMA_TO_DEVICE);
1983 		}
1984 		bytes_compl += skb->len;
1985 		pkts_compl++;
1986 		dev_consume_skb_any(skb);
1987 		rp->tx_skbuff[entry] = NULL;
1988 		dirty_tx++;
1989 	}
1990 
1991 	rp->dirty_tx = dirty_tx;
1992 	/* Pity we can't rely on the nearby BQL completion implicit barrier. */
1993 	smp_wmb();
1994 
1995 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
1996 
1997 	/* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */
1998 	if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) {
1999 		netif_wake_queue(dev);
2000 		smp_rmb();
2001 		/* Rejuvenate. */
2002 		if (rhine_tx_queue_full(rp))
2003 			netif_stop_queue(dev);
2004 	}
2005 }
2006 
2007 /**
2008  * rhine_get_vlan_tci - extract TCI from Rx data buffer
2009  * @skb: pointer to sk_buff
2010  * @data_size: used data area of the buffer including CRC
2011  *
2012  * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
2013  * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
2014  * aligned following the CRC.
2015  */
rhine_get_vlan_tci(struct sk_buff * skb,int data_size)2016 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
2017 {
2018 	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
2019 	return be16_to_cpup((__be16 *)trailer);
2020 }
2021 
rhine_rx_vlan_tag(struct sk_buff * skb,struct rx_desc * desc,int data_size)2022 static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc,
2023 				     int data_size)
2024 {
2025 	dma_rmb();
2026 	if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) {
2027 		u16 vlan_tci;
2028 
2029 		vlan_tci = rhine_get_vlan_tci(skb, data_size);
2030 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
2031 	}
2032 }
2033 
2034 /* Process up to limit frames from receive ring */
rhine_rx(struct net_device * dev,int limit)2035 static int rhine_rx(struct net_device *dev, int limit)
2036 {
2037 	struct rhine_private *rp = netdev_priv(dev);
2038 	struct device *hwdev = dev->dev.parent;
2039 	int entry = rp->cur_rx % RX_RING_SIZE;
2040 	int count;
2041 
2042 	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
2043 		  entry, le32_to_cpu(rp->rx_ring[entry].rx_status));
2044 
2045 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
2046 	for (count = 0; count < limit; ++count) {
2047 		struct rx_desc *desc = rp->rx_ring + entry;
2048 		u32 desc_status = le32_to_cpu(desc->rx_status);
2049 		int data_size = desc_status >> 16;
2050 
2051 		if (desc_status & DescOwn)
2052 			break;
2053 
2054 		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
2055 			  desc_status);
2056 
2057 		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
2058 			if ((desc_status & RxWholePkt) != RxWholePkt) {
2059 				netdev_warn(dev,
2060 	"Oversized Ethernet frame spanned multiple buffers, "
2061 	"entry %#x length %d status %08x!\n",
2062 					    entry, data_size,
2063 					    desc_status);
2064 				dev->stats.rx_length_errors++;
2065 			} else if (desc_status & RxErr) {
2066 				/* There was a error. */
2067 				netif_dbg(rp, rx_err, dev,
2068 					  "%s() Rx error %08x\n", __func__,
2069 					  desc_status);
2070 				dev->stats.rx_errors++;
2071 				if (desc_status & 0x0030)
2072 					dev->stats.rx_length_errors++;
2073 				if (desc_status & 0x0048)
2074 					dev->stats.rx_fifo_errors++;
2075 				if (desc_status & 0x0004)
2076 					dev->stats.rx_frame_errors++;
2077 				if (desc_status & 0x0002) {
2078 					/* this can also be updated outside the interrupt handler */
2079 					spin_lock(&rp->lock);
2080 					dev->stats.rx_crc_errors++;
2081 					spin_unlock(&rp->lock);
2082 				}
2083 			}
2084 		} else {
2085 			/* Length should omit the CRC */
2086 			int pkt_len = data_size - 4;
2087 			struct sk_buff *skb;
2088 
2089 			/* Check if the packet is long enough to accept without
2090 			   copying to a minimally-sized skbuff. */
2091 			if (pkt_len < rx_copybreak) {
2092 				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
2093 				if (unlikely(!skb))
2094 					goto drop;
2095 
2096 				dma_sync_single_for_cpu(hwdev,
2097 							rp->rx_skbuff_dma[entry],
2098 							rp->rx_buf_sz,
2099 							DMA_FROM_DEVICE);
2100 
2101 				skb_copy_to_linear_data(skb,
2102 						 rp->rx_skbuff[entry]->data,
2103 						 pkt_len);
2104 
2105 				dma_sync_single_for_device(hwdev,
2106 							   rp->rx_skbuff_dma[entry],
2107 							   rp->rx_buf_sz,
2108 							   DMA_FROM_DEVICE);
2109 			} else {
2110 				struct rhine_skb_dma sd;
2111 
2112 				if (unlikely(rhine_skb_dma_init(dev, &sd) < 0))
2113 					goto drop;
2114 
2115 				skb = rp->rx_skbuff[entry];
2116 
2117 				dma_unmap_single(hwdev,
2118 						 rp->rx_skbuff_dma[entry],
2119 						 rp->rx_buf_sz,
2120 						 DMA_FROM_DEVICE);
2121 				rhine_skb_dma_nic_store(rp, &sd, entry);
2122 			}
2123 
2124 			skb_put(skb, pkt_len);
2125 
2126 			rhine_rx_vlan_tag(skb, desc, data_size);
2127 
2128 			skb->protocol = eth_type_trans(skb, dev);
2129 
2130 			netif_receive_skb(skb);
2131 
2132 			u64_stats_update_begin(&rp->rx_stats.syncp);
2133 			rp->rx_stats.bytes += pkt_len;
2134 			rp->rx_stats.packets++;
2135 			u64_stats_update_end(&rp->rx_stats.syncp);
2136 		}
2137 give_descriptor_to_nic:
2138 		desc->rx_status = cpu_to_le32(DescOwn);
2139 		entry = (++rp->cur_rx) % RX_RING_SIZE;
2140 	}
2141 
2142 	return count;
2143 
2144 drop:
2145 	dev->stats.rx_dropped++;
2146 	goto give_descriptor_to_nic;
2147 }
2148 
rhine_restart_tx(struct net_device * dev)2149 static void rhine_restart_tx(struct net_device *dev) {
2150 	struct rhine_private *rp = netdev_priv(dev);
2151 	void __iomem *ioaddr = rp->base;
2152 	int entry = rp->dirty_tx % TX_RING_SIZE;
2153 	u32 intr_status;
2154 
2155 	/*
2156 	 * If new errors occurred, we need to sort them out before doing Tx.
2157 	 * In that case the ISR will be back here RSN anyway.
2158 	 */
2159 	intr_status = rhine_get_events(rp);
2160 
2161 	if ((intr_status & IntrTxErrSummary) == 0) {
2162 
2163 		/* We know better than the chip where it should continue. */
2164 		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2165 		       ioaddr + TxRingPtr);
2166 
2167 		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2168 		       ioaddr + ChipCmd);
2169 
2170 		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2171 			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2172 			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2173 
2174 		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2175 		       ioaddr + ChipCmd1);
2176 		IOSYNC;
2177 	}
2178 	else {
2179 		/* This should never happen */
2180 		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2181 			   intr_status);
2182 	}
2183 
2184 }
2185 
rhine_slow_event_task(struct work_struct * work)2186 static void rhine_slow_event_task(struct work_struct *work)
2187 {
2188 	struct rhine_private *rp =
2189 		container_of(work, struct rhine_private, slow_event_task);
2190 	struct net_device *dev = rp->dev;
2191 	u32 intr_status;
2192 
2193 	mutex_lock(&rp->task_lock);
2194 
2195 	if (!rp->task_enable)
2196 		goto out_unlock;
2197 
2198 	intr_status = rhine_get_events(rp);
2199 	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2200 
2201 	if (intr_status & IntrLinkChange)
2202 		rhine_check_media(dev, 0);
2203 
2204 	if (intr_status & IntrPCIErr)
2205 		netif_warn(rp, hw, dev, "PCI error\n");
2206 
2207 	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2208 
2209 out_unlock:
2210 	mutex_unlock(&rp->task_lock);
2211 }
2212 
2213 static void
rhine_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)2214 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2215 {
2216 	struct rhine_private *rp = netdev_priv(dev);
2217 	unsigned int start;
2218 
2219 	spin_lock_bh(&rp->lock);
2220 	rhine_update_rx_crc_and_missed_errord(rp);
2221 	spin_unlock_bh(&rp->lock);
2222 
2223 	netdev_stats_to_stats64(stats, &dev->stats);
2224 
2225 	do {
2226 		start = u64_stats_fetch_begin(&rp->rx_stats.syncp);
2227 		stats->rx_packets = rp->rx_stats.packets;
2228 		stats->rx_bytes = rp->rx_stats.bytes;
2229 	} while (u64_stats_fetch_retry(&rp->rx_stats.syncp, start));
2230 
2231 	do {
2232 		start = u64_stats_fetch_begin(&rp->tx_stats.syncp);
2233 		stats->tx_packets = rp->tx_stats.packets;
2234 		stats->tx_bytes = rp->tx_stats.bytes;
2235 	} while (u64_stats_fetch_retry(&rp->tx_stats.syncp, start));
2236 }
2237 
rhine_set_rx_mode(struct net_device * dev)2238 static void rhine_set_rx_mode(struct net_device *dev)
2239 {
2240 	struct rhine_private *rp = netdev_priv(dev);
2241 	void __iomem *ioaddr = rp->base;
2242 	u32 mc_filter[2];	/* Multicast hash filter */
2243 	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
2244 	struct netdev_hw_addr *ha;
2245 
2246 	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
2247 		rx_mode = 0x1C;
2248 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2249 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2250 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2251 		   (dev->flags & IFF_ALLMULTI)) {
2252 		/* Too many to match, or accept all multicasts. */
2253 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2254 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2255 	} else if (rp->quirks & rqMgmt) {
2256 		int i = 0;
2257 		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
2258 		netdev_for_each_mc_addr(ha, dev) {
2259 			if (i == MCAM_SIZE)
2260 				break;
2261 			rhine_set_cam(ioaddr, i, ha->addr);
2262 			mCAMmask |= 1 << i;
2263 			i++;
2264 		}
2265 		rhine_set_cam_mask(ioaddr, mCAMmask);
2266 	} else {
2267 		memset(mc_filter, 0, sizeof(mc_filter));
2268 		netdev_for_each_mc_addr(ha, dev) {
2269 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2270 
2271 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2272 		}
2273 		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2274 		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2275 	}
2276 	/* enable/disable VLAN receive filtering */
2277 	if (rp->quirks & rqMgmt) {
2278 		if (dev->flags & IFF_PROMISC)
2279 			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2280 		else
2281 			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2282 	}
2283 	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2284 }
2285 
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2286 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2287 {
2288 	struct device *hwdev = dev->dev.parent;
2289 
2290 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2291 	strscpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info));
2292 }
2293 
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)2294 static int netdev_get_link_ksettings(struct net_device *dev,
2295 				     struct ethtool_link_ksettings *cmd)
2296 {
2297 	struct rhine_private *rp = netdev_priv(dev);
2298 
2299 	mutex_lock(&rp->task_lock);
2300 	mii_ethtool_get_link_ksettings(&rp->mii_if, cmd);
2301 	mutex_unlock(&rp->task_lock);
2302 
2303 	return 0;
2304 }
2305 
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)2306 static int netdev_set_link_ksettings(struct net_device *dev,
2307 				     const struct ethtool_link_ksettings *cmd)
2308 {
2309 	struct rhine_private *rp = netdev_priv(dev);
2310 	int rc;
2311 
2312 	mutex_lock(&rp->task_lock);
2313 	rc = mii_ethtool_set_link_ksettings(&rp->mii_if, cmd);
2314 	rhine_set_carrier(&rp->mii_if);
2315 	mutex_unlock(&rp->task_lock);
2316 
2317 	return rc;
2318 }
2319 
netdev_nway_reset(struct net_device * dev)2320 static int netdev_nway_reset(struct net_device *dev)
2321 {
2322 	struct rhine_private *rp = netdev_priv(dev);
2323 
2324 	return mii_nway_restart(&rp->mii_if);
2325 }
2326 
netdev_get_link(struct net_device * dev)2327 static u32 netdev_get_link(struct net_device *dev)
2328 {
2329 	struct rhine_private *rp = netdev_priv(dev);
2330 
2331 	return mii_link_ok(&rp->mii_if);
2332 }
2333 
netdev_get_msglevel(struct net_device * dev)2334 static u32 netdev_get_msglevel(struct net_device *dev)
2335 {
2336 	struct rhine_private *rp = netdev_priv(dev);
2337 
2338 	return rp->msg_enable;
2339 }
2340 
netdev_set_msglevel(struct net_device * dev,u32 value)2341 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2342 {
2343 	struct rhine_private *rp = netdev_priv(dev);
2344 
2345 	rp->msg_enable = value;
2346 }
2347 
rhine_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2348 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2349 {
2350 	struct rhine_private *rp = netdev_priv(dev);
2351 
2352 	if (!(rp->quirks & rqWOL))
2353 		return;
2354 
2355 	spin_lock_irq(&rp->lock);
2356 	wol->supported = WAKE_PHY | WAKE_MAGIC |
2357 			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2358 	wol->wolopts = rp->wolopts;
2359 	spin_unlock_irq(&rp->lock);
2360 }
2361 
rhine_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2362 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2363 {
2364 	struct rhine_private *rp = netdev_priv(dev);
2365 	u32 support = WAKE_PHY | WAKE_MAGIC |
2366 		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2367 
2368 	if (!(rp->quirks & rqWOL))
2369 		return -EINVAL;
2370 
2371 	if (wol->wolopts & ~support)
2372 		return -EINVAL;
2373 
2374 	spin_lock_irq(&rp->lock);
2375 	rp->wolopts = wol->wolopts;
2376 	spin_unlock_irq(&rp->lock);
2377 
2378 	return 0;
2379 }
2380 
2381 static const struct ethtool_ops netdev_ethtool_ops = {
2382 	.get_drvinfo		= netdev_get_drvinfo,
2383 	.nway_reset		= netdev_nway_reset,
2384 	.get_link		= netdev_get_link,
2385 	.get_msglevel		= netdev_get_msglevel,
2386 	.set_msglevel		= netdev_set_msglevel,
2387 	.get_wol		= rhine_get_wol,
2388 	.set_wol		= rhine_set_wol,
2389 	.get_link_ksettings	= netdev_get_link_ksettings,
2390 	.set_link_ksettings	= netdev_set_link_ksettings,
2391 };
2392 
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2393 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2394 {
2395 	struct rhine_private *rp = netdev_priv(dev);
2396 	int rc;
2397 
2398 	if (!netif_running(dev))
2399 		return -EINVAL;
2400 
2401 	mutex_lock(&rp->task_lock);
2402 	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2403 	rhine_set_carrier(&rp->mii_if);
2404 	mutex_unlock(&rp->task_lock);
2405 
2406 	return rc;
2407 }
2408 
rhine_close(struct net_device * dev)2409 static int rhine_close(struct net_device *dev)
2410 {
2411 	struct rhine_private *rp = netdev_priv(dev);
2412 	void __iomem *ioaddr = rp->base;
2413 
2414 	rhine_task_disable(rp);
2415 	napi_disable(&rp->napi);
2416 	netif_stop_queue(dev);
2417 
2418 	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2419 		  ioread16(ioaddr + ChipCmd));
2420 
2421 	/* Switch to loopback mode to avoid hardware races. */
2422 	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2423 
2424 	rhine_irq_disable(rp);
2425 
2426 	/* Stop the chip's Tx and Rx processes. */
2427 	iowrite16(CmdStop, ioaddr + ChipCmd);
2428 
2429 	free_irq(rp->irq, dev);
2430 	free_rbufs(dev);
2431 	free_tbufs(dev);
2432 	free_ring(dev);
2433 
2434 	return 0;
2435 }
2436 
2437 
rhine_remove_one_pci(struct pci_dev * pdev)2438 static void rhine_remove_one_pci(struct pci_dev *pdev)
2439 {
2440 	struct net_device *dev = pci_get_drvdata(pdev);
2441 	struct rhine_private *rp = netdev_priv(dev);
2442 
2443 	unregister_netdev(dev);
2444 
2445 	pci_iounmap(pdev, rp->base);
2446 	pci_release_regions(pdev);
2447 
2448 	free_netdev(dev);
2449 	pci_disable_device(pdev);
2450 }
2451 
rhine_remove_one_platform(struct platform_device * pdev)2452 static void rhine_remove_one_platform(struct platform_device *pdev)
2453 {
2454 	struct net_device *dev = platform_get_drvdata(pdev);
2455 	struct rhine_private *rp = netdev_priv(dev);
2456 
2457 	unregister_netdev(dev);
2458 
2459 	iounmap(rp->base);
2460 
2461 	free_netdev(dev);
2462 }
2463 
rhine_shutdown_pci(struct pci_dev * pdev)2464 static void rhine_shutdown_pci(struct pci_dev *pdev)
2465 {
2466 	struct net_device *dev = pci_get_drvdata(pdev);
2467 	struct rhine_private *rp = netdev_priv(dev);
2468 	void __iomem *ioaddr = rp->base;
2469 
2470 	if (!(rp->quirks & rqWOL))
2471 		return; /* Nothing to do for non-WOL adapters */
2472 
2473 	rhine_power_init(dev);
2474 
2475 	/* Make sure we use pattern 0, 1 and not 4, 5 */
2476 	if (rp->quirks & rq6patterns)
2477 		iowrite8(0x04, ioaddr + WOLcgClr);
2478 
2479 	spin_lock(&rp->lock);
2480 
2481 	if (rp->wolopts & WAKE_MAGIC) {
2482 		iowrite8(WOLmagic, ioaddr + WOLcrSet);
2483 		/*
2484 		 * Turn EEPROM-controlled wake-up back on -- some hardware may
2485 		 * not cooperate otherwise.
2486 		 */
2487 		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2488 	}
2489 
2490 	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2491 		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2492 
2493 	if (rp->wolopts & WAKE_PHY)
2494 		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2495 
2496 	if (rp->wolopts & WAKE_UCAST)
2497 		iowrite8(WOLucast, ioaddr + WOLcrSet);
2498 
2499 	if (rp->wolopts) {
2500 		/* Enable legacy WOL (for old motherboards) */
2501 		iowrite8(0x01, ioaddr + PwcfgSet);
2502 		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2503 	}
2504 
2505 	spin_unlock(&rp->lock);
2506 
2507 	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2508 		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2509 
2510 		pci_wake_from_d3(pdev, true);
2511 		pci_set_power_state(pdev, PCI_D3hot);
2512 	}
2513 }
2514 
2515 #ifdef CONFIG_PM_SLEEP
rhine_suspend(struct device * device)2516 static int rhine_suspend(struct device *device)
2517 {
2518 	struct net_device *dev = dev_get_drvdata(device);
2519 	struct rhine_private *rp = netdev_priv(dev);
2520 
2521 	if (!netif_running(dev))
2522 		return 0;
2523 
2524 	rhine_task_disable(rp);
2525 	rhine_irq_disable(rp);
2526 	napi_disable(&rp->napi);
2527 
2528 	netif_device_detach(dev);
2529 
2530 	if (dev_is_pci(device))
2531 		rhine_shutdown_pci(to_pci_dev(device));
2532 
2533 	return 0;
2534 }
2535 
rhine_resume(struct device * device)2536 static int rhine_resume(struct device *device)
2537 {
2538 	struct net_device *dev = dev_get_drvdata(device);
2539 	struct rhine_private *rp = netdev_priv(dev);
2540 
2541 	if (!netif_running(dev))
2542 		return 0;
2543 
2544 	enable_mmio(rp->pioaddr, rp->quirks);
2545 	rhine_power_init(dev);
2546 	free_tbufs(dev);
2547 	alloc_tbufs(dev);
2548 	rhine_reset_rbufs(rp);
2549 	rhine_task_enable(rp);
2550 
2551 	netdev_lock(dev);
2552 	spin_lock_bh(&rp->lock);
2553 	init_registers(dev);
2554 	spin_unlock_bh(&rp->lock);
2555 	netdev_unlock(dev);
2556 
2557 	netif_device_attach(dev);
2558 
2559 	return 0;
2560 }
2561 
2562 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2563 #define RHINE_PM_OPS	(&rhine_pm_ops)
2564 
2565 #else
2566 
2567 #define RHINE_PM_OPS	NULL
2568 
2569 #endif /* !CONFIG_PM_SLEEP */
2570 
2571 static struct pci_driver rhine_driver_pci = {
2572 	.name		= DRV_NAME,
2573 	.id_table	= rhine_pci_tbl,
2574 	.probe		= rhine_init_one_pci,
2575 	.remove		= rhine_remove_one_pci,
2576 	.shutdown	= rhine_shutdown_pci,
2577 	.driver.pm	= RHINE_PM_OPS,
2578 };
2579 
2580 static struct platform_driver rhine_driver_platform = {
2581 	.probe		= rhine_init_one_platform,
2582 	.remove		= rhine_remove_one_platform,
2583 	.driver = {
2584 		.name	= DRV_NAME,
2585 		.of_match_table	= rhine_of_tbl,
2586 		.pm		= RHINE_PM_OPS,
2587 	}
2588 };
2589 
2590 static const struct dmi_system_id rhine_dmi_table[] __initconst = {
2591 	{
2592 		.ident = "EPIA-M",
2593 		.matches = {
2594 			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2595 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2596 		},
2597 	},
2598 	{
2599 		.ident = "KV7",
2600 		.matches = {
2601 			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2602 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2603 		},
2604 	},
2605 	{ NULL }
2606 };
2607 
rhine_init(void)2608 static int __init rhine_init(void)
2609 {
2610 	int ret_pci, ret_platform;
2611 
2612 /* when a module, this is printed whether or not devices are found in probe */
2613 	if (dmi_check_system(rhine_dmi_table)) {
2614 		/* these BIOSes fail at PXE boot if chip is in D3 */
2615 		avoid_D3 = true;
2616 		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2617 	}
2618 	else if (avoid_D3)
2619 		pr_info("avoid_D3 set\n");
2620 
2621 	ret_pci = pci_register_driver(&rhine_driver_pci);
2622 	ret_platform = platform_driver_register(&rhine_driver_platform);
2623 	if ((ret_pci < 0) && (ret_platform < 0))
2624 		return ret_pci;
2625 
2626 	return 0;
2627 }
2628 
2629 
rhine_cleanup(void)2630 static void __exit rhine_cleanup(void)
2631 {
2632 	platform_driver_unregister(&rhine_driver_platform);
2633 	pci_unregister_driver(&rhine_driver_pci);
2634 }
2635 
2636 
2637 module_init(rhine_init);
2638 module_exit(rhine_cleanup);
2639