1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_platform.h>
37 #include <linux/of_reserved_mem.h>
38 #include <linux/virtio_ids.h>
39 #include <linux/virtio_ring.h>
40 #include <asm/byteorder.h>
41 #include <linux/platform_device.h>
42
43 #include "remoteproc_internal.h"
44
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 static struct notifier_block rproc_panic_nb;
50
51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52 void *, int offset, int avail);
53
54 static int rproc_alloc_carveout(struct rproc *rproc,
55 struct rproc_mem_entry *mem);
56 static int rproc_release_carveout(struct rproc *rproc,
57 struct rproc_mem_entry *mem);
58
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index);
61 static struct workqueue_struct *rproc_recovery_wq;
62
63 static const char * const rproc_crash_names[] = {
64 [RPROC_MMUFAULT] = "mmufault",
65 [RPROC_WATCHDOG] = "watchdog",
66 [RPROC_FATAL_ERROR] = "fatal error",
67 };
68
69 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)70 static const char *rproc_crash_to_string(enum rproc_crash_type type)
71 {
72 if (type < ARRAY_SIZE(rproc_crash_names))
73 return rproc_crash_names[type];
74 return "unknown";
75 }
76
77 /*
78 * This is the IOMMU fault handler we register with the IOMMU API
79 * (when relevant; not all remote processors access memory through
80 * an IOMMU).
81 *
82 * IOMMU core will invoke this handler whenever the remote processor
83 * will try to access an unmapped device address.
84 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
86 unsigned long iova, int flags, void *token)
87 {
88 struct rproc *rproc = token;
89
90 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91
92 rproc_report_crash(rproc, RPROC_MMUFAULT);
93
94 /*
95 * Let the iommu core know we're not really handling this fault;
96 * we just used it as a recovery trigger.
97 */
98 return -ENOSYS;
99 }
100
rproc_enable_iommu(struct rproc * rproc)101 static int rproc_enable_iommu(struct rproc *rproc)
102 {
103 struct iommu_domain *domain;
104 struct device *dev = rproc->dev.parent;
105 int ret;
106
107 if (!rproc->has_iommu) {
108 dev_dbg(dev, "iommu not present\n");
109 return 0;
110 }
111
112 domain = iommu_domain_alloc(dev->bus);
113 if (!domain) {
114 dev_err(dev, "can't alloc iommu domain\n");
115 return -ENOMEM;
116 }
117
118 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119
120 ret = iommu_attach_device(domain, dev);
121 if (ret) {
122 dev_err(dev, "can't attach iommu device: %d\n", ret);
123 goto free_domain;
124 }
125
126 rproc->domain = domain;
127
128 return 0;
129
130 free_domain:
131 iommu_domain_free(domain);
132 return ret;
133 }
134
rproc_disable_iommu(struct rproc * rproc)135 static void rproc_disable_iommu(struct rproc *rproc)
136 {
137 struct iommu_domain *domain = rproc->domain;
138 struct device *dev = rproc->dev.parent;
139
140 if (!domain)
141 return;
142
143 iommu_detach_device(domain, dev);
144 iommu_domain_free(domain);
145 }
146
rproc_va_to_pa(void * cpu_addr)147 phys_addr_t rproc_va_to_pa(void *cpu_addr)
148 {
149 /*
150 * Return physical address according to virtual address location
151 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152 * - in kernel: if region allocated in generic dma memory pool
153 */
154 if (is_vmalloc_addr(cpu_addr)) {
155 return page_to_phys(vmalloc_to_page(cpu_addr)) +
156 offset_in_page(cpu_addr);
157 }
158
159 WARN_ON(!virt_addr_valid(cpu_addr));
160 return virt_to_phys(cpu_addr);
161 }
162 EXPORT_SYMBOL(rproc_va_to_pa);
163
164 /**
165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166 * @rproc: handle of a remote processor
167 * @da: remoteproc device address to translate
168 * @len: length of the memory region @da is pointing to
169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
170 *
171 * Some remote processors will ask us to allocate them physically contiguous
172 * memory regions (which we call "carveouts"), and map them to specific
173 * device addresses (which are hardcoded in the firmware). They may also have
174 * dedicated memory regions internal to the processors, and use them either
175 * exclusively or alongside carveouts.
176 *
177 * They may then ask us to copy objects into specific device addresses (e.g.
178 * code/data sections) or expose us certain symbols in other device address
179 * (e.g. their trace buffer).
180 *
181 * This function is a helper function with which we can go over the allocated
182 * carveouts and translate specific device addresses to kernel virtual addresses
183 * so we can access the referenced memory. This function also allows to perform
184 * translations on the internal remoteproc memory regions through a platform
185 * implementation specific da_to_va ops, if present.
186 *
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
191 *
192 * Return: a valid kernel address on success or NULL on failure
193 */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)194 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
195 {
196 struct rproc_mem_entry *carveout;
197 void *ptr = NULL;
198
199 if (rproc->ops->da_to_va) {
200 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
201 if (ptr)
202 goto out;
203 }
204
205 list_for_each_entry(carveout, &rproc->carveouts, node) {
206 int offset = da - carveout->da;
207
208 /* Verify that carveout is allocated */
209 if (!carveout->va)
210 continue;
211
212 /* try next carveout if da is too small */
213 if (offset < 0)
214 continue;
215
216 /* try next carveout if da is too large */
217 if (offset + len > carveout->len)
218 continue;
219
220 ptr = carveout->va + offset;
221
222 if (is_iomem)
223 *is_iomem = carveout->is_iomem;
224
225 break;
226 }
227
228 out:
229 return ptr;
230 }
231 EXPORT_SYMBOL(rproc_da_to_va);
232
233 /**
234 * rproc_find_carveout_by_name() - lookup the carveout region by a name
235 * @rproc: handle of a remote processor
236 * @name: carveout name to find (format string)
237 * @...: optional parameters matching @name string
238 *
239 * Platform driver has the capability to register some pre-allacoted carveout
240 * (physically contiguous memory regions) before rproc firmware loading and
241 * associated resource table analysis. These regions may be dedicated memory
242 * regions internal to the coprocessor or specified DDR region with specific
243 * attributes
244 *
245 * This function is a helper function with which we can go over the
246 * allocated carveouts and return associated region characteristics like
247 * coprocessor address, length or processor virtual address.
248 *
249 * Return: a valid pointer on carveout entry on success or NULL on failure.
250 */
251 __printf(2, 3)
252 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)253 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
254 {
255 va_list args;
256 char _name[32];
257 struct rproc_mem_entry *carveout, *mem = NULL;
258
259 if (!name)
260 return NULL;
261
262 va_start(args, name);
263 vsnprintf(_name, sizeof(_name), name, args);
264 va_end(args);
265
266 list_for_each_entry(carveout, &rproc->carveouts, node) {
267 /* Compare carveout and requested names */
268 if (!strcmp(carveout->name, _name)) {
269 mem = carveout;
270 break;
271 }
272 }
273
274 return mem;
275 }
276
277 /**
278 * rproc_check_carveout_da() - Check specified carveout da configuration
279 * @rproc: handle of a remote processor
280 * @mem: pointer on carveout to check
281 * @da: area device address
282 * @len: associated area size
283 *
284 * This function is a helper function to verify requested device area (couple
285 * da, len) is part of specified carveout.
286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
287 * checked.
288 *
289 * Return: 0 if carveout matches request else error
290 */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)291 static int rproc_check_carveout_da(struct rproc *rproc,
292 struct rproc_mem_entry *mem, u32 da, u32 len)
293 {
294 struct device *dev = &rproc->dev;
295 int delta;
296
297 /* Check requested resource length */
298 if (len > mem->len) {
299 dev_err(dev, "Registered carveout doesn't fit len request\n");
300 return -EINVAL;
301 }
302
303 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
304 /* Address doesn't match registered carveout configuration */
305 return -EINVAL;
306 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
307 delta = da - mem->da;
308
309 /* Check requested resource belongs to registered carveout */
310 if (delta < 0) {
311 dev_err(dev,
312 "Registered carveout doesn't fit da request\n");
313 return -EINVAL;
314 }
315
316 if (delta + len > mem->len) {
317 dev_err(dev,
318 "Registered carveout doesn't fit len request\n");
319 return -EINVAL;
320 }
321 }
322
323 return 0;
324 }
325
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)326 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
327 {
328 struct rproc *rproc = rvdev->rproc;
329 struct device *dev = &rproc->dev;
330 struct rproc_vring *rvring = &rvdev->vring[i];
331 struct fw_rsc_vdev *rsc;
332 int ret, notifyid;
333 struct rproc_mem_entry *mem;
334 size_t size;
335
336 /* actual size of vring (in bytes) */
337 size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
338
339 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
340
341 /* Search for pre-registered carveout */
342 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
343 i);
344 if (mem) {
345 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
346 return -ENOMEM;
347 } else {
348 /* Register carveout in list */
349 mem = rproc_mem_entry_init(dev, NULL, 0,
350 size, rsc->vring[i].da,
351 rproc_alloc_carveout,
352 rproc_release_carveout,
353 "vdev%dvring%d",
354 rvdev->index, i);
355 if (!mem) {
356 dev_err(dev, "Can't allocate memory entry structure\n");
357 return -ENOMEM;
358 }
359
360 rproc_add_carveout(rproc, mem);
361 }
362
363 /*
364 * Assign an rproc-wide unique index for this vring
365 * TODO: assign a notifyid for rvdev updates as well
366 * TODO: support predefined notifyids (via resource table)
367 */
368 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
369 if (ret < 0) {
370 dev_err(dev, "idr_alloc failed: %d\n", ret);
371 return ret;
372 }
373 notifyid = ret;
374
375 /* Potentially bump max_notifyid */
376 if (notifyid > rproc->max_notifyid)
377 rproc->max_notifyid = notifyid;
378
379 rvring->notifyid = notifyid;
380
381 /* Let the rproc know the notifyid of this vring.*/
382 rsc->vring[i].notifyid = notifyid;
383 return 0;
384 }
385
386 int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)387 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
388 {
389 struct rproc *rproc = rvdev->rproc;
390 struct device *dev = &rproc->dev;
391 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
392 struct rproc_vring *rvring = &rvdev->vring[i];
393
394 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
395 i, vring->da, vring->num, vring->align);
396
397 /* verify queue size and vring alignment are sane */
398 if (!vring->num || !vring->align) {
399 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
400 vring->num, vring->align);
401 return -EINVAL;
402 }
403
404 rvring->num = vring->num;
405 rvring->align = vring->align;
406 rvring->rvdev = rvdev;
407
408 return 0;
409 }
410
rproc_free_vring(struct rproc_vring * rvring)411 void rproc_free_vring(struct rproc_vring *rvring)
412 {
413 struct rproc *rproc = rvring->rvdev->rproc;
414 int idx = rvring - rvring->rvdev->vring;
415 struct fw_rsc_vdev *rsc;
416
417 idr_remove(&rproc->notifyids, rvring->notifyid);
418
419 /*
420 * At this point rproc_stop() has been called and the installed resource
421 * table in the remote processor memory may no longer be accessible. As
422 * such and as per rproc_stop(), rproc->table_ptr points to the cached
423 * resource table (rproc->cached_table). The cached resource table is
424 * only available when a remote processor has been booted by the
425 * remoteproc core, otherwise it is NULL.
426 *
427 * Based on the above, reset the virtio device section in the cached
428 * resource table only if there is one to work with.
429 */
430 if (rproc->table_ptr) {
431 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
432 rsc->vring[idx].da = 0;
433 rsc->vring[idx].notifyid = -1;
434 }
435 }
436
rproc_add_rvdev(struct rproc * rproc,struct rproc_vdev * rvdev)437 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
438 {
439 if (rvdev && rproc)
440 list_add_tail(&rvdev->node, &rproc->rvdevs);
441 }
442
rproc_remove_rvdev(struct rproc_vdev * rvdev)443 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
444 {
445 if (rvdev)
446 list_del(&rvdev->node);
447 }
448 /**
449 * rproc_handle_vdev() - handle a vdev fw resource
450 * @rproc: the remote processor
451 * @ptr: the vring resource descriptor
452 * @offset: offset of the resource entry
453 * @avail: size of available data (for sanity checking the image)
454 *
455 * This resource entry requests the host to statically register a virtio
456 * device (vdev), and setup everything needed to support it. It contains
457 * everything needed to make it possible: the virtio device id, virtio
458 * device features, vrings information, virtio config space, etc...
459 *
460 * Before registering the vdev, the vrings are allocated from non-cacheable
461 * physically contiguous memory. Currently we only support two vrings per
462 * remote processor (temporary limitation). We might also want to consider
463 * doing the vring allocation only later when ->find_vqs() is invoked, and
464 * then release them upon ->del_vqs().
465 *
466 * Note: @da is currently not really handled correctly: we dynamically
467 * allocate it using the DMA API, ignoring requested hard coded addresses,
468 * and we don't take care of any required IOMMU programming. This is all
469 * going to be taken care of when the generic iommu-based DMA API will be
470 * merged. Meanwhile, statically-addressed iommu-based firmware images should
471 * use RSC_DEVMEM resource entries to map their required @da to the physical
472 * address of their base CMA region (ouch, hacky!).
473 *
474 * Return: 0 on success, or an appropriate error code otherwise
475 */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)476 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
477 int offset, int avail)
478 {
479 struct fw_rsc_vdev *rsc = ptr;
480 struct device *dev = &rproc->dev;
481 struct rproc_vdev *rvdev;
482 size_t rsc_size;
483 struct rproc_vdev_data rvdev_data;
484 struct platform_device *pdev;
485
486 /* make sure resource isn't truncated */
487 rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
488 if (size_add(rsc_size, rsc->config_len) > avail) {
489 dev_err(dev, "vdev rsc is truncated\n");
490 return -EINVAL;
491 }
492
493 /* make sure reserved bytes are zeroes */
494 if (rsc->reserved[0] || rsc->reserved[1]) {
495 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
496 return -EINVAL;
497 }
498
499 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
500 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
501
502 /* we currently support only two vrings per rvdev */
503 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
504 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
505 return -EINVAL;
506 }
507
508 rvdev_data.id = rsc->id;
509 rvdev_data.index = rproc->nb_vdev++;
510 rvdev_data.rsc_offset = offset;
511 rvdev_data.rsc = rsc;
512
513 /*
514 * When there is more than one remote processor, rproc->nb_vdev number is
515 * same for each separate instances of "rproc". If rvdev_data.index is used
516 * as device id, then we get duplication in sysfs, so need to use
517 * PLATFORM_DEVID_AUTO to auto select device id.
518 */
519 pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
520 sizeof(rvdev_data));
521 if (IS_ERR(pdev)) {
522 dev_err(dev, "failed to create rproc-virtio device\n");
523 return PTR_ERR(pdev);
524 }
525
526 return 0;
527 }
528
529 /**
530 * rproc_handle_trace() - handle a shared trace buffer resource
531 * @rproc: the remote processor
532 * @ptr: the trace resource descriptor
533 * @offset: offset of the resource entry
534 * @avail: size of available data (for sanity checking the image)
535 *
536 * In case the remote processor dumps trace logs into memory,
537 * export it via debugfs.
538 *
539 * Currently, the 'da' member of @rsc should contain the device address
540 * where the remote processor is dumping the traces. Later we could also
541 * support dynamically allocating this address using the generic
542 * DMA API (but currently there isn't a use case for that).
543 *
544 * Return: 0 on success, or an appropriate error code otherwise
545 */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)546 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
547 int offset, int avail)
548 {
549 struct fw_rsc_trace *rsc = ptr;
550 struct rproc_debug_trace *trace;
551 struct device *dev = &rproc->dev;
552 char name[15];
553
554 if (sizeof(*rsc) > avail) {
555 dev_err(dev, "trace rsc is truncated\n");
556 return -EINVAL;
557 }
558
559 /* make sure reserved bytes are zeroes */
560 if (rsc->reserved) {
561 dev_err(dev, "trace rsc has non zero reserved bytes\n");
562 return -EINVAL;
563 }
564
565 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
566 if (!trace)
567 return -ENOMEM;
568
569 /* set the trace buffer dma properties */
570 trace->trace_mem.len = rsc->len;
571 trace->trace_mem.da = rsc->da;
572
573 /* set pointer on rproc device */
574 trace->rproc = rproc;
575
576 /* make sure snprintf always null terminates, even if truncating */
577 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
578
579 /* create the debugfs entry */
580 trace->tfile = rproc_create_trace_file(name, rproc, trace);
581
582 list_add_tail(&trace->node, &rproc->traces);
583
584 rproc->num_traces++;
585
586 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
587 name, rsc->da, rsc->len);
588
589 return 0;
590 }
591
592 /**
593 * rproc_handle_devmem() - handle devmem resource entry
594 * @rproc: remote processor handle
595 * @ptr: the devmem resource entry
596 * @offset: offset of the resource entry
597 * @avail: size of available data (for sanity checking the image)
598 *
599 * Remote processors commonly need to access certain on-chip peripherals.
600 *
601 * Some of these remote processors access memory via an iommu device,
602 * and might require us to configure their iommu before they can access
603 * the on-chip peripherals they need.
604 *
605 * This resource entry is a request to map such a peripheral device.
606 *
607 * These devmem entries will contain the physical address of the device in
608 * the 'pa' member. If a specific device address is expected, then 'da' will
609 * contain it (currently this is the only use case supported). 'len' will
610 * contain the size of the physical region we need to map.
611 *
612 * Currently we just "trust" those devmem entries to contain valid physical
613 * addresses, but this is going to change: we want the implementations to
614 * tell us ranges of physical addresses the firmware is allowed to request,
615 * and not allow firmwares to request access to physical addresses that
616 * are outside those ranges.
617 *
618 * Return: 0 on success, or an appropriate error code otherwise
619 */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)620 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
621 int offset, int avail)
622 {
623 struct fw_rsc_devmem *rsc = ptr;
624 struct rproc_mem_entry *mapping;
625 struct device *dev = &rproc->dev;
626 int ret;
627
628 /* no point in handling this resource without a valid iommu domain */
629 if (!rproc->domain)
630 return -EINVAL;
631
632 if (sizeof(*rsc) > avail) {
633 dev_err(dev, "devmem rsc is truncated\n");
634 return -EINVAL;
635 }
636
637 /* make sure reserved bytes are zeroes */
638 if (rsc->reserved) {
639 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
640 return -EINVAL;
641 }
642
643 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
644 if (!mapping)
645 return -ENOMEM;
646
647 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
648 GFP_KERNEL);
649 if (ret) {
650 dev_err(dev, "failed to map devmem: %d\n", ret);
651 goto out;
652 }
653
654 /*
655 * We'll need this info later when we'll want to unmap everything
656 * (e.g. on shutdown).
657 *
658 * We can't trust the remote processor not to change the resource
659 * table, so we must maintain this info independently.
660 */
661 mapping->da = rsc->da;
662 mapping->len = rsc->len;
663 list_add_tail(&mapping->node, &rproc->mappings);
664
665 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
666 rsc->pa, rsc->da, rsc->len);
667
668 return 0;
669
670 out:
671 kfree(mapping);
672 return ret;
673 }
674
675 /**
676 * rproc_alloc_carveout() - allocated specified carveout
677 * @rproc: rproc handle
678 * @mem: the memory entry to allocate
679 *
680 * This function allocate specified memory entry @mem using
681 * dma_alloc_coherent() as default allocator
682 *
683 * Return: 0 on success, or an appropriate error code otherwise
684 */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)685 static int rproc_alloc_carveout(struct rproc *rproc,
686 struct rproc_mem_entry *mem)
687 {
688 struct rproc_mem_entry *mapping = NULL;
689 struct device *dev = &rproc->dev;
690 dma_addr_t dma;
691 void *va;
692 int ret;
693
694 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
695 if (!va) {
696 dev_err(dev->parent,
697 "failed to allocate dma memory: len 0x%zx\n",
698 mem->len);
699 return -ENOMEM;
700 }
701
702 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
703 va, &dma, mem->len);
704
705 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
706 /*
707 * Check requested da is equal to dma address
708 * and print a warn message in case of missalignment.
709 * Don't stop rproc_start sequence as coprocessor may
710 * build pa to da translation on its side.
711 */
712 if (mem->da != (u32)dma)
713 dev_warn(dev->parent,
714 "Allocated carveout doesn't fit device address request\n");
715 }
716
717 /*
718 * Ok, this is non-standard.
719 *
720 * Sometimes we can't rely on the generic iommu-based DMA API
721 * to dynamically allocate the device address and then set the IOMMU
722 * tables accordingly, because some remote processors might
723 * _require_ us to use hard coded device addresses that their
724 * firmware was compiled with.
725 *
726 * In this case, we must use the IOMMU API directly and map
727 * the memory to the device address as expected by the remote
728 * processor.
729 *
730 * Obviously such remote processor devices should not be configured
731 * to use the iommu-based DMA API: we expect 'dma' to contain the
732 * physical address in this case.
733 */
734 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
735 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
736 if (!mapping) {
737 ret = -ENOMEM;
738 goto dma_free;
739 }
740
741 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
742 mem->flags, GFP_KERNEL);
743 if (ret) {
744 dev_err(dev, "iommu_map failed: %d\n", ret);
745 goto free_mapping;
746 }
747
748 /*
749 * We'll need this info later when we'll want to unmap
750 * everything (e.g. on shutdown).
751 *
752 * We can't trust the remote processor not to change the
753 * resource table, so we must maintain this info independently.
754 */
755 mapping->da = mem->da;
756 mapping->len = mem->len;
757 list_add_tail(&mapping->node, &rproc->mappings);
758
759 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
760 mem->da, &dma);
761 }
762
763 if (mem->da == FW_RSC_ADDR_ANY) {
764 /* Update device address as undefined by requester */
765 if ((u64)dma & HIGH_BITS_MASK)
766 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
767
768 mem->da = (u32)dma;
769 }
770
771 mem->dma = dma;
772 mem->va = va;
773
774 return 0;
775
776 free_mapping:
777 kfree(mapping);
778 dma_free:
779 dma_free_coherent(dev->parent, mem->len, va, dma);
780 return ret;
781 }
782
783 /**
784 * rproc_release_carveout() - release acquired carveout
785 * @rproc: rproc handle
786 * @mem: the memory entry to release
787 *
788 * This function releases specified memory entry @mem allocated via
789 * rproc_alloc_carveout() function by @rproc.
790 *
791 * Return: 0 on success, or an appropriate error code otherwise
792 */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)793 static int rproc_release_carveout(struct rproc *rproc,
794 struct rproc_mem_entry *mem)
795 {
796 struct device *dev = &rproc->dev;
797
798 /* clean up carveout allocations */
799 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
800 return 0;
801 }
802
803 /**
804 * rproc_handle_carveout() - handle phys contig memory allocation requests
805 * @rproc: rproc handle
806 * @ptr: the resource entry
807 * @offset: offset of the resource entry
808 * @avail: size of available data (for image validation)
809 *
810 * This function will handle firmware requests for allocation of physically
811 * contiguous memory regions.
812 *
813 * These request entries should come first in the firmware's resource table,
814 * as other firmware entries might request placing other data objects inside
815 * these memory regions (e.g. data/code segments, trace resource entries, ...).
816 *
817 * Allocating memory this way helps utilizing the reserved physical memory
818 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
819 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
820 * pressure is important; it may have a substantial impact on performance.
821 *
822 * Return: 0 on success, or an appropriate error code otherwise
823 */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)824 static int rproc_handle_carveout(struct rproc *rproc,
825 void *ptr, int offset, int avail)
826 {
827 struct fw_rsc_carveout *rsc = ptr;
828 struct rproc_mem_entry *carveout;
829 struct device *dev = &rproc->dev;
830
831 if (sizeof(*rsc) > avail) {
832 dev_err(dev, "carveout rsc is truncated\n");
833 return -EINVAL;
834 }
835
836 /* make sure reserved bytes are zeroes */
837 if (rsc->reserved) {
838 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
839 return -EINVAL;
840 }
841
842 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
843 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
844
845 /*
846 * Check carveout rsc already part of a registered carveout,
847 * Search by name, then check the da and length
848 */
849 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
850
851 if (carveout) {
852 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
853 dev_err(dev,
854 "Carveout already associated to resource table\n");
855 return -ENOMEM;
856 }
857
858 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
859 return -ENOMEM;
860
861 /* Update memory carveout with resource table info */
862 carveout->rsc_offset = offset;
863 carveout->flags = rsc->flags;
864
865 return 0;
866 }
867
868 /* Register carveout in list */
869 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
870 rproc_alloc_carveout,
871 rproc_release_carveout, rsc->name);
872 if (!carveout) {
873 dev_err(dev, "Can't allocate memory entry structure\n");
874 return -ENOMEM;
875 }
876
877 carveout->flags = rsc->flags;
878 carveout->rsc_offset = offset;
879 rproc_add_carveout(rproc, carveout);
880
881 return 0;
882 }
883
884 /**
885 * rproc_add_carveout() - register an allocated carveout region
886 * @rproc: rproc handle
887 * @mem: memory entry to register
888 *
889 * This function registers specified memory entry in @rproc carveouts list.
890 * Specified carveout should have been allocated before registering.
891 */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)892 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
893 {
894 list_add_tail(&mem->node, &rproc->carveouts);
895 }
896 EXPORT_SYMBOL(rproc_add_carveout);
897
898 /**
899 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
900 * @dev: pointer on device struct
901 * @va: virtual address
902 * @dma: dma address
903 * @len: memory carveout length
904 * @da: device address
905 * @alloc: memory carveout allocation function
906 * @release: memory carveout release function
907 * @name: carveout name
908 *
909 * This function allocates a rproc_mem_entry struct and fill it with parameters
910 * provided by client.
911 *
912 * Return: a valid pointer on success, or NULL on failure
913 */
914 __printf(8, 9)
915 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)916 rproc_mem_entry_init(struct device *dev,
917 void *va, dma_addr_t dma, size_t len, u32 da,
918 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
919 int (*release)(struct rproc *, struct rproc_mem_entry *),
920 const char *name, ...)
921 {
922 struct rproc_mem_entry *mem;
923 va_list args;
924
925 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
926 if (!mem)
927 return mem;
928
929 mem->va = va;
930 mem->dma = dma;
931 mem->da = da;
932 mem->len = len;
933 mem->alloc = alloc;
934 mem->release = release;
935 mem->rsc_offset = FW_RSC_ADDR_ANY;
936 mem->of_resm_idx = -1;
937
938 va_start(args, name);
939 vsnprintf(mem->name, sizeof(mem->name), name, args);
940 va_end(args);
941
942 return mem;
943 }
944 EXPORT_SYMBOL(rproc_mem_entry_init);
945
946 /**
947 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
948 * from a reserved memory phandle
949 * @dev: pointer on device struct
950 * @of_resm_idx: reserved memory phandle index in "memory-region"
951 * @len: memory carveout length
952 * @da: device address
953 * @name: carveout name
954 *
955 * This function allocates a rproc_mem_entry struct and fill it with parameters
956 * provided by client.
957 *
958 * Return: a valid pointer on success, or NULL on failure
959 */
960 __printf(5, 6)
961 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)962 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
963 u32 da, const char *name, ...)
964 {
965 struct rproc_mem_entry *mem;
966 va_list args;
967
968 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
969 if (!mem)
970 return mem;
971
972 mem->da = da;
973 mem->len = len;
974 mem->rsc_offset = FW_RSC_ADDR_ANY;
975 mem->of_resm_idx = of_resm_idx;
976
977 va_start(args, name);
978 vsnprintf(mem->name, sizeof(mem->name), name, args);
979 va_end(args);
980
981 return mem;
982 }
983 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
984
985 /**
986 * rproc_of_parse_firmware() - parse and return the firmware-name
987 * @dev: pointer on device struct representing a rproc
988 * @index: index to use for the firmware-name retrieval
989 * @fw_name: pointer to a character string, in which the firmware
990 * name is returned on success and unmodified otherwise.
991 *
992 * This is an OF helper function that parses a device's DT node for
993 * the "firmware-name" property and returns the firmware name pointer
994 * in @fw_name on success.
995 *
996 * Return: 0 on success, or an appropriate failure.
997 */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)998 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
999 {
1000 int ret;
1001
1002 ret = of_property_read_string_index(dev->of_node, "firmware-name",
1003 index, fw_name);
1004 return ret ? ret : 0;
1005 }
1006 EXPORT_SYMBOL(rproc_of_parse_firmware);
1007
1008 /*
1009 * A lookup table for resource handlers. The indices are defined in
1010 * enum fw_resource_type.
1011 */
1012 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1013 [RSC_CARVEOUT] = rproc_handle_carveout,
1014 [RSC_DEVMEM] = rproc_handle_devmem,
1015 [RSC_TRACE] = rproc_handle_trace,
1016 [RSC_VDEV] = rproc_handle_vdev,
1017 };
1018
1019 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1020 static int rproc_handle_resources(struct rproc *rproc,
1021 rproc_handle_resource_t handlers[RSC_LAST])
1022 {
1023 struct device *dev = &rproc->dev;
1024 rproc_handle_resource_t handler;
1025 int ret = 0, i;
1026
1027 if (!rproc->table_ptr)
1028 return 0;
1029
1030 for (i = 0; i < rproc->table_ptr->num; i++) {
1031 int offset = rproc->table_ptr->offset[i];
1032 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1033 int avail = rproc->table_sz - offset - sizeof(*hdr);
1034 void *rsc = (void *)hdr + sizeof(*hdr);
1035
1036 /* make sure table isn't truncated */
1037 if (avail < 0) {
1038 dev_err(dev, "rsc table is truncated\n");
1039 return -EINVAL;
1040 }
1041
1042 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1043
1044 if (hdr->type >= RSC_VENDOR_START &&
1045 hdr->type <= RSC_VENDOR_END) {
1046 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1047 offset + sizeof(*hdr), avail);
1048 if (ret == RSC_HANDLED)
1049 continue;
1050 else if (ret < 0)
1051 break;
1052
1053 dev_warn(dev, "unsupported vendor resource %d\n",
1054 hdr->type);
1055 continue;
1056 }
1057
1058 if (hdr->type >= RSC_LAST) {
1059 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1060 continue;
1061 }
1062
1063 handler = handlers[hdr->type];
1064 if (!handler)
1065 continue;
1066
1067 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1068 if (ret)
1069 break;
1070 }
1071
1072 return ret;
1073 }
1074
rproc_prepare_subdevices(struct rproc * rproc)1075 static int rproc_prepare_subdevices(struct rproc *rproc)
1076 {
1077 struct rproc_subdev *subdev;
1078 int ret;
1079
1080 list_for_each_entry(subdev, &rproc->subdevs, node) {
1081 if (subdev->prepare) {
1082 ret = subdev->prepare(subdev);
1083 if (ret)
1084 goto unroll_preparation;
1085 }
1086 }
1087
1088 return 0;
1089
1090 unroll_preparation:
1091 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1092 if (subdev->unprepare)
1093 subdev->unprepare(subdev);
1094 }
1095
1096 return ret;
1097 }
1098
rproc_start_subdevices(struct rproc * rproc)1099 static int rproc_start_subdevices(struct rproc *rproc)
1100 {
1101 struct rproc_subdev *subdev;
1102 int ret;
1103
1104 list_for_each_entry(subdev, &rproc->subdevs, node) {
1105 if (subdev->start) {
1106 ret = subdev->start(subdev);
1107 if (ret)
1108 goto unroll_registration;
1109 }
1110 }
1111
1112 return 0;
1113
1114 unroll_registration:
1115 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1116 if (subdev->stop)
1117 subdev->stop(subdev, true);
1118 }
1119
1120 return ret;
1121 }
1122
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1123 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1124 {
1125 struct rproc_subdev *subdev;
1126
1127 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1128 if (subdev->stop)
1129 subdev->stop(subdev, crashed);
1130 }
1131 }
1132
rproc_unprepare_subdevices(struct rproc * rproc)1133 static void rproc_unprepare_subdevices(struct rproc *rproc)
1134 {
1135 struct rproc_subdev *subdev;
1136
1137 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1138 if (subdev->unprepare)
1139 subdev->unprepare(subdev);
1140 }
1141 }
1142
1143 /**
1144 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1145 * in the list
1146 * @rproc: the remote processor handle
1147 *
1148 * This function parses registered carveout list, performs allocation
1149 * if alloc() ops registered and updates resource table information
1150 * if rsc_offset set.
1151 *
1152 * Return: 0 on success
1153 */
rproc_alloc_registered_carveouts(struct rproc * rproc)1154 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1155 {
1156 struct rproc_mem_entry *entry, *tmp;
1157 struct fw_rsc_carveout *rsc;
1158 struct device *dev = &rproc->dev;
1159 u64 pa;
1160 int ret;
1161
1162 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1163 if (entry->alloc) {
1164 ret = entry->alloc(rproc, entry);
1165 if (ret) {
1166 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1167 entry->name, ret);
1168 return -ENOMEM;
1169 }
1170 }
1171
1172 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1173 /* update resource table */
1174 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1175
1176 /*
1177 * Some remote processors might need to know the pa
1178 * even though they are behind an IOMMU. E.g., OMAP4's
1179 * remote M3 processor needs this so it can control
1180 * on-chip hardware accelerators that are not behind
1181 * the IOMMU, and therefor must know the pa.
1182 *
1183 * Generally we don't want to expose physical addresses
1184 * if we don't have to (remote processors are generally
1185 * _not_ trusted), so we might want to do this only for
1186 * remote processor that _must_ have this (e.g. OMAP4's
1187 * dual M3 subsystem).
1188 *
1189 * Non-IOMMU processors might also want to have this info.
1190 * In this case, the device address and the physical address
1191 * are the same.
1192 */
1193
1194 /* Use va if defined else dma to generate pa */
1195 if (entry->va)
1196 pa = (u64)rproc_va_to_pa(entry->va);
1197 else
1198 pa = (u64)entry->dma;
1199
1200 if (((u64)pa) & HIGH_BITS_MASK)
1201 dev_warn(dev,
1202 "Physical address cast in 32bit to fit resource table format\n");
1203
1204 rsc->pa = (u32)pa;
1205 rsc->da = entry->da;
1206 rsc->len = entry->len;
1207 }
1208 }
1209
1210 return 0;
1211 }
1212
1213
1214 /**
1215 * rproc_resource_cleanup() - clean up and free all acquired resources
1216 * @rproc: rproc handle
1217 *
1218 * This function will free all resources acquired for @rproc, and it
1219 * is called whenever @rproc either shuts down or fails to boot.
1220 */
rproc_resource_cleanup(struct rproc * rproc)1221 void rproc_resource_cleanup(struct rproc *rproc)
1222 {
1223 struct rproc_mem_entry *entry, *tmp;
1224 struct rproc_debug_trace *trace, *ttmp;
1225 struct rproc_vdev *rvdev, *rvtmp;
1226 struct device *dev = &rproc->dev;
1227
1228 /* clean up debugfs trace entries */
1229 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1230 rproc_remove_trace_file(trace->tfile);
1231 rproc->num_traces--;
1232 list_del(&trace->node);
1233 kfree(trace);
1234 }
1235
1236 /* clean up iommu mapping entries */
1237 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1238 size_t unmapped;
1239
1240 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1241 if (unmapped != entry->len) {
1242 /* nothing much to do besides complaining */
1243 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1244 unmapped);
1245 }
1246
1247 list_del(&entry->node);
1248 kfree(entry);
1249 }
1250
1251 /* clean up carveout allocations */
1252 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1253 if (entry->release)
1254 entry->release(rproc, entry);
1255 list_del(&entry->node);
1256 kfree(entry);
1257 }
1258
1259 /* clean up remote vdev entries */
1260 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1261 platform_device_unregister(rvdev->pdev);
1262
1263 rproc_coredump_cleanup(rproc);
1264 }
1265 EXPORT_SYMBOL(rproc_resource_cleanup);
1266
rproc_start(struct rproc * rproc,const struct firmware * fw)1267 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1268 {
1269 struct resource_table *loaded_table;
1270 struct device *dev = &rproc->dev;
1271 int ret;
1272
1273 /* load the ELF segments to memory */
1274 ret = rproc_load_segments(rproc, fw);
1275 if (ret) {
1276 dev_err(dev, "Failed to load program segments: %d\n", ret);
1277 return ret;
1278 }
1279
1280 /*
1281 * The starting device has been given the rproc->cached_table as the
1282 * resource table. The address of the vring along with the other
1283 * allocated resources (carveouts etc) is stored in cached_table.
1284 * In order to pass this information to the remote device we must copy
1285 * this information to device memory. We also update the table_ptr so
1286 * that any subsequent changes will be applied to the loaded version.
1287 */
1288 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1289 if (loaded_table) {
1290 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1291 rproc->table_ptr = loaded_table;
1292 }
1293
1294 ret = rproc_prepare_subdevices(rproc);
1295 if (ret) {
1296 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1297 rproc->name, ret);
1298 goto reset_table_ptr;
1299 }
1300
1301 /* power up the remote processor */
1302 ret = rproc->ops->start(rproc);
1303 if (ret) {
1304 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1305 goto unprepare_subdevices;
1306 }
1307
1308 /* Start any subdevices for the remote processor */
1309 ret = rproc_start_subdevices(rproc);
1310 if (ret) {
1311 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1312 rproc->name, ret);
1313 goto stop_rproc;
1314 }
1315
1316 rproc->state = RPROC_RUNNING;
1317
1318 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1319
1320 return 0;
1321
1322 stop_rproc:
1323 rproc->ops->stop(rproc);
1324 unprepare_subdevices:
1325 rproc_unprepare_subdevices(rproc);
1326 reset_table_ptr:
1327 rproc->table_ptr = rproc->cached_table;
1328
1329 return ret;
1330 }
1331
__rproc_attach(struct rproc * rproc)1332 static int __rproc_attach(struct rproc *rproc)
1333 {
1334 struct device *dev = &rproc->dev;
1335 int ret;
1336
1337 ret = rproc_prepare_subdevices(rproc);
1338 if (ret) {
1339 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1340 rproc->name, ret);
1341 goto out;
1342 }
1343
1344 /* Attach to the remote processor */
1345 ret = rproc_attach_device(rproc);
1346 if (ret) {
1347 dev_err(dev, "can't attach to rproc %s: %d\n",
1348 rproc->name, ret);
1349 goto unprepare_subdevices;
1350 }
1351
1352 /* Start any subdevices for the remote processor */
1353 ret = rproc_start_subdevices(rproc);
1354 if (ret) {
1355 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1356 rproc->name, ret);
1357 goto stop_rproc;
1358 }
1359
1360 rproc->state = RPROC_ATTACHED;
1361
1362 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1363
1364 return 0;
1365
1366 stop_rproc:
1367 rproc->ops->stop(rproc);
1368 unprepare_subdevices:
1369 rproc_unprepare_subdevices(rproc);
1370 out:
1371 return ret;
1372 }
1373
1374 /*
1375 * take a firmware and boot a remote processor with it.
1376 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1377 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1378 {
1379 struct device *dev = &rproc->dev;
1380 const char *name = rproc->firmware;
1381 int ret;
1382
1383 ret = rproc_fw_sanity_check(rproc, fw);
1384 if (ret)
1385 return ret;
1386
1387 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1388
1389 /*
1390 * if enabling an IOMMU isn't relevant for this rproc, this is
1391 * just a nop
1392 */
1393 ret = rproc_enable_iommu(rproc);
1394 if (ret) {
1395 dev_err(dev, "can't enable iommu: %d\n", ret);
1396 return ret;
1397 }
1398
1399 /* Prepare rproc for firmware loading if needed */
1400 ret = rproc_prepare_device(rproc);
1401 if (ret) {
1402 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1403 goto disable_iommu;
1404 }
1405
1406 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1407
1408 /* Load resource table, core dump segment list etc from the firmware */
1409 ret = rproc_parse_fw(rproc, fw);
1410 if (ret)
1411 goto unprepare_rproc;
1412
1413 /* reset max_notifyid */
1414 rproc->max_notifyid = -1;
1415
1416 /* reset handled vdev */
1417 rproc->nb_vdev = 0;
1418
1419 /* handle fw resources which are required to boot rproc */
1420 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1421 if (ret) {
1422 dev_err(dev, "Failed to process resources: %d\n", ret);
1423 goto clean_up_resources;
1424 }
1425
1426 /* Allocate carveout resources associated to rproc */
1427 ret = rproc_alloc_registered_carveouts(rproc);
1428 if (ret) {
1429 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1430 ret);
1431 goto clean_up_resources;
1432 }
1433
1434 ret = rproc_start(rproc, fw);
1435 if (ret)
1436 goto clean_up_resources;
1437
1438 return 0;
1439
1440 clean_up_resources:
1441 rproc_resource_cleanup(rproc);
1442 kfree(rproc->cached_table);
1443 rproc->cached_table = NULL;
1444 rproc->table_ptr = NULL;
1445 unprepare_rproc:
1446 /* release HW resources if needed */
1447 rproc_unprepare_device(rproc);
1448 disable_iommu:
1449 rproc_disable_iommu(rproc);
1450 return ret;
1451 }
1452
rproc_set_rsc_table(struct rproc * rproc)1453 static int rproc_set_rsc_table(struct rproc *rproc)
1454 {
1455 struct resource_table *table_ptr;
1456 struct device *dev = &rproc->dev;
1457 size_t table_sz;
1458 int ret;
1459
1460 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1461 if (!table_ptr) {
1462 /* Not having a resource table is acceptable */
1463 return 0;
1464 }
1465
1466 if (IS_ERR(table_ptr)) {
1467 ret = PTR_ERR(table_ptr);
1468 dev_err(dev, "can't load resource table: %d\n", ret);
1469 return ret;
1470 }
1471
1472 /*
1473 * If it is possible to detach the remote processor, keep an untouched
1474 * copy of the resource table. That way we can start fresh again when
1475 * the remote processor is re-attached, that is:
1476 *
1477 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1478 *
1479 * Free'd in rproc_reset_rsc_table_on_detach() and
1480 * rproc_reset_rsc_table_on_stop().
1481 */
1482 if (rproc->ops->detach) {
1483 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1484 if (!rproc->clean_table)
1485 return -ENOMEM;
1486 } else {
1487 rproc->clean_table = NULL;
1488 }
1489
1490 rproc->cached_table = NULL;
1491 rproc->table_ptr = table_ptr;
1492 rproc->table_sz = table_sz;
1493
1494 return 0;
1495 }
1496
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1497 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1498 {
1499 struct resource_table *table_ptr;
1500
1501 /* A resource table was never retrieved, nothing to do here */
1502 if (!rproc->table_ptr)
1503 return 0;
1504
1505 /*
1506 * If we made it to this point a clean_table _must_ have been
1507 * allocated in rproc_set_rsc_table(). If one isn't present
1508 * something went really wrong and we must complain.
1509 */
1510 if (WARN_ON(!rproc->clean_table))
1511 return -EINVAL;
1512
1513 /* Remember where the external entity installed the resource table */
1514 table_ptr = rproc->table_ptr;
1515
1516 /*
1517 * If we made it here the remote processor was started by another
1518 * entity and a cache table doesn't exist. As such make a copy of
1519 * the resource table currently used by the remote processor and
1520 * use that for the rest of the shutdown process. The memory
1521 * allocated here is free'd in rproc_detach().
1522 */
1523 rproc->cached_table = kmemdup(rproc->table_ptr,
1524 rproc->table_sz, GFP_KERNEL);
1525 if (!rproc->cached_table)
1526 return -ENOMEM;
1527
1528 /*
1529 * Use a copy of the resource table for the remainder of the
1530 * shutdown process.
1531 */
1532 rproc->table_ptr = rproc->cached_table;
1533
1534 /*
1535 * Reset the memory area where the firmware loaded the resource table
1536 * to its original value. That way when we re-attach the remote
1537 * processor the resource table is clean and ready to be used again.
1538 */
1539 memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1540
1541 /*
1542 * The clean resource table is no longer needed. Allocated in
1543 * rproc_set_rsc_table().
1544 */
1545 kfree(rproc->clean_table);
1546
1547 return 0;
1548 }
1549
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1550 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1551 {
1552 /* A resource table was never retrieved, nothing to do here */
1553 if (!rproc->table_ptr)
1554 return 0;
1555
1556 /*
1557 * If a cache table exists the remote processor was started by
1558 * the remoteproc core. That cache table should be used for
1559 * the rest of the shutdown process.
1560 */
1561 if (rproc->cached_table)
1562 goto out;
1563
1564 /*
1565 * If we made it here the remote processor was started by another
1566 * entity and a cache table doesn't exist. As such make a copy of
1567 * the resource table currently used by the remote processor and
1568 * use that for the rest of the shutdown process. The memory
1569 * allocated here is free'd in rproc_shutdown().
1570 */
1571 rproc->cached_table = kmemdup(rproc->table_ptr,
1572 rproc->table_sz, GFP_KERNEL);
1573 if (!rproc->cached_table)
1574 return -ENOMEM;
1575
1576 /*
1577 * Since the remote processor is being switched off the clean table
1578 * won't be needed. Allocated in rproc_set_rsc_table().
1579 */
1580 kfree(rproc->clean_table);
1581
1582 out:
1583 /*
1584 * Use a copy of the resource table for the remainder of the
1585 * shutdown process.
1586 */
1587 rproc->table_ptr = rproc->cached_table;
1588 return 0;
1589 }
1590
1591 /*
1592 * Attach to remote processor - similar to rproc_fw_boot() but without
1593 * the steps that deal with the firmware image.
1594 */
rproc_attach(struct rproc * rproc)1595 static int rproc_attach(struct rproc *rproc)
1596 {
1597 struct device *dev = &rproc->dev;
1598 int ret;
1599
1600 /*
1601 * if enabling an IOMMU isn't relevant for this rproc, this is
1602 * just a nop
1603 */
1604 ret = rproc_enable_iommu(rproc);
1605 if (ret) {
1606 dev_err(dev, "can't enable iommu: %d\n", ret);
1607 return ret;
1608 }
1609
1610 /* Do anything that is needed to boot the remote processor */
1611 ret = rproc_prepare_device(rproc);
1612 if (ret) {
1613 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1614 goto disable_iommu;
1615 }
1616
1617 ret = rproc_set_rsc_table(rproc);
1618 if (ret) {
1619 dev_err(dev, "can't load resource table: %d\n", ret);
1620 goto unprepare_device;
1621 }
1622
1623 /* reset max_notifyid */
1624 rproc->max_notifyid = -1;
1625
1626 /* reset handled vdev */
1627 rproc->nb_vdev = 0;
1628
1629 /*
1630 * Handle firmware resources required to attach to a remote processor.
1631 * Because we are attaching rather than booting the remote processor,
1632 * we expect the platform driver to properly set rproc->table_ptr.
1633 */
1634 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1635 if (ret) {
1636 dev_err(dev, "Failed to process resources: %d\n", ret);
1637 goto unprepare_device;
1638 }
1639
1640 /* Allocate carveout resources associated to rproc */
1641 ret = rproc_alloc_registered_carveouts(rproc);
1642 if (ret) {
1643 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1644 ret);
1645 goto clean_up_resources;
1646 }
1647
1648 ret = __rproc_attach(rproc);
1649 if (ret)
1650 goto clean_up_resources;
1651
1652 return 0;
1653
1654 clean_up_resources:
1655 rproc_resource_cleanup(rproc);
1656 unprepare_device:
1657 /* release HW resources if needed */
1658 rproc_unprepare_device(rproc);
1659 disable_iommu:
1660 rproc_disable_iommu(rproc);
1661 return ret;
1662 }
1663
1664 /*
1665 * take a firmware and boot it up.
1666 *
1667 * Note: this function is called asynchronously upon registration of the
1668 * remote processor (so we must wait until it completes before we try
1669 * to unregister the device. one other option is just to use kref here,
1670 * that might be cleaner).
1671 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1672 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1673 {
1674 struct rproc *rproc = context;
1675
1676 rproc_boot(rproc);
1677
1678 release_firmware(fw);
1679 }
1680
rproc_trigger_auto_boot(struct rproc * rproc)1681 static int rproc_trigger_auto_boot(struct rproc *rproc)
1682 {
1683 int ret;
1684
1685 /*
1686 * Since the remote processor is in a detached state, it has already
1687 * been booted by another entity. As such there is no point in waiting
1688 * for a firmware image to be loaded, we can simply initiate the process
1689 * of attaching to it immediately.
1690 */
1691 if (rproc->state == RPROC_DETACHED)
1692 return rproc_boot(rproc);
1693
1694 /*
1695 * We're initiating an asynchronous firmware loading, so we can
1696 * be built-in kernel code, without hanging the boot process.
1697 */
1698 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1699 rproc->firmware, &rproc->dev, GFP_KERNEL,
1700 rproc, rproc_auto_boot_callback);
1701 if (ret < 0)
1702 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1703
1704 return ret;
1705 }
1706
rproc_stop(struct rproc * rproc,bool crashed)1707 static int rproc_stop(struct rproc *rproc, bool crashed)
1708 {
1709 struct device *dev = &rproc->dev;
1710 int ret;
1711
1712 /* No need to continue if a stop() operation has not been provided */
1713 if (!rproc->ops->stop)
1714 return -EINVAL;
1715
1716 /* Stop any subdevices for the remote processor */
1717 rproc_stop_subdevices(rproc, crashed);
1718
1719 /* the installed resource table is no longer accessible */
1720 ret = rproc_reset_rsc_table_on_stop(rproc);
1721 if (ret) {
1722 dev_err(dev, "can't reset resource table: %d\n", ret);
1723 return ret;
1724 }
1725
1726
1727 /* power off the remote processor */
1728 ret = rproc->ops->stop(rproc);
1729 if (ret) {
1730 dev_err(dev, "can't stop rproc: %d\n", ret);
1731 return ret;
1732 }
1733
1734 rproc_unprepare_subdevices(rproc);
1735
1736 rproc->state = RPROC_OFFLINE;
1737
1738 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1739
1740 return 0;
1741 }
1742
1743 /*
1744 * __rproc_detach(): Does the opposite of __rproc_attach()
1745 */
__rproc_detach(struct rproc * rproc)1746 static int __rproc_detach(struct rproc *rproc)
1747 {
1748 struct device *dev = &rproc->dev;
1749 int ret;
1750
1751 /* No need to continue if a detach() operation has not been provided */
1752 if (!rproc->ops->detach)
1753 return -EINVAL;
1754
1755 /* Stop any subdevices for the remote processor */
1756 rproc_stop_subdevices(rproc, false);
1757
1758 /* the installed resource table is no longer accessible */
1759 ret = rproc_reset_rsc_table_on_detach(rproc);
1760 if (ret) {
1761 dev_err(dev, "can't reset resource table: %d\n", ret);
1762 return ret;
1763 }
1764
1765 /* Tell the remote processor the core isn't available anymore */
1766 ret = rproc->ops->detach(rproc);
1767 if (ret) {
1768 dev_err(dev, "can't detach from rproc: %d\n", ret);
1769 return ret;
1770 }
1771
1772 rproc_unprepare_subdevices(rproc);
1773
1774 rproc->state = RPROC_DETACHED;
1775
1776 dev_info(dev, "detached remote processor %s\n", rproc->name);
1777
1778 return 0;
1779 }
1780
rproc_attach_recovery(struct rproc * rproc)1781 static int rproc_attach_recovery(struct rproc *rproc)
1782 {
1783 int ret;
1784
1785 ret = __rproc_detach(rproc);
1786 if (ret)
1787 return ret;
1788
1789 return __rproc_attach(rproc);
1790 }
1791
rproc_boot_recovery(struct rproc * rproc)1792 static int rproc_boot_recovery(struct rproc *rproc)
1793 {
1794 const struct firmware *firmware_p;
1795 struct device *dev = &rproc->dev;
1796 int ret;
1797
1798 ret = rproc_stop(rproc, true);
1799 if (ret)
1800 return ret;
1801
1802 /* generate coredump */
1803 rproc->ops->coredump(rproc);
1804
1805 /* load firmware */
1806 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1807 if (ret < 0) {
1808 dev_err(dev, "request_firmware failed: %d\n", ret);
1809 return ret;
1810 }
1811
1812 /* boot the remote processor up again */
1813 ret = rproc_start(rproc, firmware_p);
1814
1815 release_firmware(firmware_p);
1816
1817 return ret;
1818 }
1819
1820 /**
1821 * rproc_trigger_recovery() - recover a remoteproc
1822 * @rproc: the remote processor
1823 *
1824 * The recovery is done by resetting all the virtio devices, that way all the
1825 * rpmsg drivers will be reseted along with the remote processor making the
1826 * remoteproc functional again.
1827 *
1828 * This function can sleep, so it cannot be called from atomic context.
1829 *
1830 * Return: 0 on success or a negative value upon failure
1831 */
rproc_trigger_recovery(struct rproc * rproc)1832 int rproc_trigger_recovery(struct rproc *rproc)
1833 {
1834 struct device *dev = &rproc->dev;
1835 int ret;
1836
1837 ret = mutex_lock_interruptible(&rproc->lock);
1838 if (ret)
1839 return ret;
1840
1841 /* State could have changed before we got the mutex */
1842 if (rproc->state != RPROC_CRASHED)
1843 goto unlock_mutex;
1844
1845 dev_err(dev, "recovering %s\n", rproc->name);
1846
1847 if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1848 ret = rproc_attach_recovery(rproc);
1849 else
1850 ret = rproc_boot_recovery(rproc);
1851
1852 unlock_mutex:
1853 mutex_unlock(&rproc->lock);
1854 return ret;
1855 }
1856
1857 /**
1858 * rproc_crash_handler_work() - handle a crash
1859 * @work: work treating the crash
1860 *
1861 * This function needs to handle everything related to a crash, like cpu
1862 * registers and stack dump, information to help to debug the fatal error, etc.
1863 */
rproc_crash_handler_work(struct work_struct * work)1864 static void rproc_crash_handler_work(struct work_struct *work)
1865 {
1866 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1867 struct device *dev = &rproc->dev;
1868
1869 dev_dbg(dev, "enter %s\n", __func__);
1870
1871 mutex_lock(&rproc->lock);
1872
1873 if (rproc->state == RPROC_CRASHED) {
1874 /* handle only the first crash detected */
1875 mutex_unlock(&rproc->lock);
1876 return;
1877 }
1878
1879 if (rproc->state == RPROC_OFFLINE) {
1880 /* Don't recover if the remote processor was stopped */
1881 mutex_unlock(&rproc->lock);
1882 goto out;
1883 }
1884
1885 rproc->state = RPROC_CRASHED;
1886 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1887 rproc->name);
1888
1889 mutex_unlock(&rproc->lock);
1890
1891 if (!rproc->recovery_disabled)
1892 rproc_trigger_recovery(rproc);
1893
1894 out:
1895 pm_relax(rproc->dev.parent);
1896 }
1897
1898 /**
1899 * rproc_boot() - boot a remote processor
1900 * @rproc: handle of a remote processor
1901 *
1902 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1903 *
1904 * If the remote processor is already powered on, this function immediately
1905 * returns (successfully).
1906 *
1907 * Return: 0 on success, and an appropriate error value otherwise
1908 */
rproc_boot(struct rproc * rproc)1909 int rproc_boot(struct rproc *rproc)
1910 {
1911 const struct firmware *firmware_p;
1912 struct device *dev;
1913 int ret;
1914
1915 if (!rproc) {
1916 pr_err("invalid rproc handle\n");
1917 return -EINVAL;
1918 }
1919
1920 dev = &rproc->dev;
1921
1922 ret = mutex_lock_interruptible(&rproc->lock);
1923 if (ret) {
1924 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1925 return ret;
1926 }
1927
1928 if (rproc->state == RPROC_DELETED) {
1929 ret = -ENODEV;
1930 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1931 goto unlock_mutex;
1932 }
1933
1934 /* skip the boot or attach process if rproc is already powered up */
1935 if (atomic_inc_return(&rproc->power) > 1) {
1936 ret = 0;
1937 goto unlock_mutex;
1938 }
1939
1940 if (rproc->state == RPROC_DETACHED) {
1941 dev_info(dev, "attaching to %s\n", rproc->name);
1942
1943 ret = rproc_attach(rproc);
1944 } else {
1945 dev_info(dev, "powering up %s\n", rproc->name);
1946
1947 /* load firmware */
1948 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1949 if (ret < 0) {
1950 dev_err(dev, "request_firmware failed: %d\n", ret);
1951 goto downref_rproc;
1952 }
1953
1954 ret = rproc_fw_boot(rproc, firmware_p);
1955
1956 release_firmware(firmware_p);
1957 }
1958
1959 downref_rproc:
1960 if (ret)
1961 atomic_dec(&rproc->power);
1962 unlock_mutex:
1963 mutex_unlock(&rproc->lock);
1964 return ret;
1965 }
1966 EXPORT_SYMBOL(rproc_boot);
1967
1968 /**
1969 * rproc_shutdown() - power off the remote processor
1970 * @rproc: the remote processor
1971 *
1972 * Power off a remote processor (previously booted with rproc_boot()).
1973 *
1974 * In case @rproc is still being used by an additional user(s), then
1975 * this function will just decrement the power refcount and exit,
1976 * without really powering off the device.
1977 *
1978 * Every call to rproc_boot() must (eventually) be accompanied by a call
1979 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1980 *
1981 * Notes:
1982 * - we're not decrementing the rproc's refcount, only the power refcount.
1983 * which means that the @rproc handle stays valid even after rproc_shutdown()
1984 * returns, and users can still use it with a subsequent rproc_boot(), if
1985 * needed.
1986 *
1987 * Return: 0 on success, and an appropriate error value otherwise
1988 */
rproc_shutdown(struct rproc * rproc)1989 int rproc_shutdown(struct rproc *rproc)
1990 {
1991 struct device *dev = &rproc->dev;
1992 int ret = 0;
1993
1994 ret = mutex_lock_interruptible(&rproc->lock);
1995 if (ret) {
1996 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1997 return ret;
1998 }
1999
2000 if (rproc->state != RPROC_RUNNING &&
2001 rproc->state != RPROC_ATTACHED) {
2002 ret = -EINVAL;
2003 goto out;
2004 }
2005
2006 /* if the remote proc is still needed, bail out */
2007 if (!atomic_dec_and_test(&rproc->power))
2008 goto out;
2009
2010 ret = rproc_stop(rproc, false);
2011 if (ret) {
2012 atomic_inc(&rproc->power);
2013 goto out;
2014 }
2015
2016 /* clean up all acquired resources */
2017 rproc_resource_cleanup(rproc);
2018
2019 /* release HW resources if needed */
2020 rproc_unprepare_device(rproc);
2021
2022 rproc_disable_iommu(rproc);
2023
2024 /* Free the copy of the resource table */
2025 kfree(rproc->cached_table);
2026 rproc->cached_table = NULL;
2027 rproc->table_ptr = NULL;
2028 out:
2029 mutex_unlock(&rproc->lock);
2030 return ret;
2031 }
2032 EXPORT_SYMBOL(rproc_shutdown);
2033
2034 /**
2035 * rproc_detach() - Detach the remote processor from the
2036 * remoteproc core
2037 *
2038 * @rproc: the remote processor
2039 *
2040 * Detach a remote processor (previously attached to with rproc_attach()).
2041 *
2042 * In case @rproc is still being used by an additional user(s), then
2043 * this function will just decrement the power refcount and exit,
2044 * without disconnecting the device.
2045 *
2046 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2047 * processor know that services provided by the application processor are
2048 * no longer available. From there it should be possible to remove the
2049 * platform driver and even power cycle the application processor (if the HW
2050 * supports it) without needing to switch off the remote processor.
2051 *
2052 * Return: 0 on success, and an appropriate error value otherwise
2053 */
rproc_detach(struct rproc * rproc)2054 int rproc_detach(struct rproc *rproc)
2055 {
2056 struct device *dev = &rproc->dev;
2057 int ret;
2058
2059 ret = mutex_lock_interruptible(&rproc->lock);
2060 if (ret) {
2061 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2062 return ret;
2063 }
2064
2065 if (rproc->state != RPROC_ATTACHED) {
2066 ret = -EINVAL;
2067 goto out;
2068 }
2069
2070 /* if the remote proc is still needed, bail out */
2071 if (!atomic_dec_and_test(&rproc->power)) {
2072 ret = 0;
2073 goto out;
2074 }
2075
2076 ret = __rproc_detach(rproc);
2077 if (ret) {
2078 atomic_inc(&rproc->power);
2079 goto out;
2080 }
2081
2082 /* clean up all acquired resources */
2083 rproc_resource_cleanup(rproc);
2084
2085 /* release HW resources if needed */
2086 rproc_unprepare_device(rproc);
2087
2088 rproc_disable_iommu(rproc);
2089
2090 /* Free the copy of the resource table */
2091 kfree(rproc->cached_table);
2092 rproc->cached_table = NULL;
2093 rproc->table_ptr = NULL;
2094 out:
2095 mutex_unlock(&rproc->lock);
2096 return ret;
2097 }
2098 EXPORT_SYMBOL(rproc_detach);
2099
2100 /**
2101 * rproc_get_by_phandle() - find a remote processor by phandle
2102 * @phandle: phandle to the rproc
2103 *
2104 * Finds an rproc handle using the remote processor's phandle, and then
2105 * return a handle to the rproc.
2106 *
2107 * This function increments the remote processor's refcount, so always
2108 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2109 *
2110 * Return: rproc handle on success, and NULL on failure
2111 */
2112 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2113 struct rproc *rproc_get_by_phandle(phandle phandle)
2114 {
2115 struct rproc *rproc = NULL, *r;
2116 struct device_driver *driver;
2117 struct device_node *np;
2118
2119 np = of_find_node_by_phandle(phandle);
2120 if (!np)
2121 return NULL;
2122
2123 rcu_read_lock();
2124 list_for_each_entry_rcu(r, &rproc_list, node) {
2125 if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2126 /* prevent underlying implementation from being removed */
2127
2128 /*
2129 * If the remoteproc's parent has a driver, the
2130 * remoteproc is not part of a cluster and we can use
2131 * that driver.
2132 */
2133 driver = r->dev.parent->driver;
2134
2135 /*
2136 * If the remoteproc's parent does not have a driver,
2137 * look for the driver associated with the cluster.
2138 */
2139 if (!driver) {
2140 if (r->dev.parent->parent)
2141 driver = r->dev.parent->parent->driver;
2142 if (!driver)
2143 break;
2144 }
2145
2146 if (!try_module_get(driver->owner)) {
2147 dev_err(&r->dev, "can't get owner\n");
2148 break;
2149 }
2150
2151 rproc = r;
2152 get_device(&rproc->dev);
2153 break;
2154 }
2155 }
2156 rcu_read_unlock();
2157
2158 of_node_put(np);
2159
2160 return rproc;
2161 }
2162 #else
rproc_get_by_phandle(phandle phandle)2163 struct rproc *rproc_get_by_phandle(phandle phandle)
2164 {
2165 return NULL;
2166 }
2167 #endif
2168 EXPORT_SYMBOL(rproc_get_by_phandle);
2169
2170 /**
2171 * rproc_set_firmware() - assign a new firmware
2172 * @rproc: rproc handle to which the new firmware is being assigned
2173 * @fw_name: new firmware name to be assigned
2174 *
2175 * This function allows remoteproc drivers or clients to configure a custom
2176 * firmware name that is different from the default name used during remoteproc
2177 * registration. The function does not trigger a remote processor boot,
2178 * only sets the firmware name used for a subsequent boot. This function
2179 * should also be called only when the remote processor is offline.
2180 *
2181 * This allows either the userspace to configure a different name through
2182 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2183 * a specific firmware when it is controlling the boot and shutdown of the
2184 * remote processor.
2185 *
2186 * Return: 0 on success or a negative value upon failure
2187 */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2188 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2189 {
2190 struct device *dev;
2191 int ret, len;
2192 char *p;
2193
2194 if (!rproc || !fw_name)
2195 return -EINVAL;
2196
2197 dev = rproc->dev.parent;
2198
2199 ret = mutex_lock_interruptible(&rproc->lock);
2200 if (ret) {
2201 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2202 return -EINVAL;
2203 }
2204
2205 if (rproc->state != RPROC_OFFLINE) {
2206 dev_err(dev, "can't change firmware while running\n");
2207 ret = -EBUSY;
2208 goto out;
2209 }
2210
2211 len = strcspn(fw_name, "\n");
2212 if (!len) {
2213 dev_err(dev, "can't provide empty string for firmware name\n");
2214 ret = -EINVAL;
2215 goto out;
2216 }
2217
2218 p = kstrndup(fw_name, len, GFP_KERNEL);
2219 if (!p) {
2220 ret = -ENOMEM;
2221 goto out;
2222 }
2223
2224 kfree_const(rproc->firmware);
2225 rproc->firmware = p;
2226
2227 out:
2228 mutex_unlock(&rproc->lock);
2229 return ret;
2230 }
2231 EXPORT_SYMBOL(rproc_set_firmware);
2232
rproc_validate(struct rproc * rproc)2233 static int rproc_validate(struct rproc *rproc)
2234 {
2235 switch (rproc->state) {
2236 case RPROC_OFFLINE:
2237 /*
2238 * An offline processor without a start()
2239 * function makes no sense.
2240 */
2241 if (!rproc->ops->start)
2242 return -EINVAL;
2243 break;
2244 case RPROC_DETACHED:
2245 /*
2246 * A remote processor in a detached state without an
2247 * attach() function makes not sense.
2248 */
2249 if (!rproc->ops->attach)
2250 return -EINVAL;
2251 /*
2252 * When attaching to a remote processor the device memory
2253 * is already available and as such there is no need to have a
2254 * cached table.
2255 */
2256 if (rproc->cached_table)
2257 return -EINVAL;
2258 break;
2259 default:
2260 /*
2261 * When adding a remote processor, the state of the device
2262 * can be offline or detached, nothing else.
2263 */
2264 return -EINVAL;
2265 }
2266
2267 return 0;
2268 }
2269
2270 /**
2271 * rproc_add() - register a remote processor
2272 * @rproc: the remote processor handle to register
2273 *
2274 * Registers @rproc with the remoteproc framework, after it has been
2275 * allocated with rproc_alloc().
2276 *
2277 * This is called by the platform-specific rproc implementation, whenever
2278 * a new remote processor device is probed.
2279 *
2280 * Note: this function initiates an asynchronous firmware loading
2281 * context, which will look for virtio devices supported by the rproc's
2282 * firmware.
2283 *
2284 * If found, those virtio devices will be created and added, so as a result
2285 * of registering this remote processor, additional virtio drivers might be
2286 * probed.
2287 *
2288 * Return: 0 on success and an appropriate error code otherwise
2289 */
rproc_add(struct rproc * rproc)2290 int rproc_add(struct rproc *rproc)
2291 {
2292 struct device *dev = &rproc->dev;
2293 int ret;
2294
2295 ret = rproc_validate(rproc);
2296 if (ret < 0)
2297 return ret;
2298
2299 /* add char device for this remoteproc */
2300 ret = rproc_char_device_add(rproc);
2301 if (ret < 0)
2302 return ret;
2303
2304 ret = device_add(dev);
2305 if (ret < 0) {
2306 put_device(dev);
2307 goto rproc_remove_cdev;
2308 }
2309
2310 dev_info(dev, "%s is available\n", rproc->name);
2311
2312 /* create debugfs entries */
2313 rproc_create_debug_dir(rproc);
2314
2315 /* if rproc is marked always-on, request it to boot */
2316 if (rproc->auto_boot) {
2317 ret = rproc_trigger_auto_boot(rproc);
2318 if (ret < 0)
2319 goto rproc_remove_dev;
2320 }
2321
2322 /* expose to rproc_get_by_phandle users */
2323 mutex_lock(&rproc_list_mutex);
2324 list_add_rcu(&rproc->node, &rproc_list);
2325 mutex_unlock(&rproc_list_mutex);
2326
2327 return 0;
2328
2329 rproc_remove_dev:
2330 rproc_delete_debug_dir(rproc);
2331 device_del(dev);
2332 rproc_remove_cdev:
2333 rproc_char_device_remove(rproc);
2334 return ret;
2335 }
2336 EXPORT_SYMBOL(rproc_add);
2337
devm_rproc_remove(void * rproc)2338 static void devm_rproc_remove(void *rproc)
2339 {
2340 rproc_del(rproc);
2341 }
2342
2343 /**
2344 * devm_rproc_add() - resource managed rproc_add()
2345 * @dev: the underlying device
2346 * @rproc: the remote processor handle to register
2347 *
2348 * This function performs like rproc_add() but the registered rproc device will
2349 * automatically be removed on driver detach.
2350 *
2351 * Return: 0 on success, negative errno on failure
2352 */
devm_rproc_add(struct device * dev,struct rproc * rproc)2353 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2354 {
2355 int err;
2356
2357 err = rproc_add(rproc);
2358 if (err)
2359 return err;
2360
2361 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2362 }
2363 EXPORT_SYMBOL(devm_rproc_add);
2364
2365 /**
2366 * rproc_type_release() - release a remote processor instance
2367 * @dev: the rproc's device
2368 *
2369 * This function should _never_ be called directly.
2370 *
2371 * It will be called by the driver core when no one holds a valid pointer
2372 * to @dev anymore.
2373 */
rproc_type_release(struct device * dev)2374 static void rproc_type_release(struct device *dev)
2375 {
2376 struct rproc *rproc = container_of(dev, struct rproc, dev);
2377
2378 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2379
2380 idr_destroy(&rproc->notifyids);
2381
2382 if (rproc->index >= 0)
2383 ida_free(&rproc_dev_index, rproc->index);
2384
2385 kfree_const(rproc->firmware);
2386 kfree_const(rproc->name);
2387 kfree(rproc->ops);
2388 kfree(rproc);
2389 }
2390
2391 static const struct device_type rproc_type = {
2392 .name = "remoteproc",
2393 .release = rproc_type_release,
2394 };
2395
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2396 static int rproc_alloc_firmware(struct rproc *rproc,
2397 const char *name, const char *firmware)
2398 {
2399 const char *p;
2400
2401 /*
2402 * Allocate a firmware name if the caller gave us one to work
2403 * with. Otherwise construct a new one using a default pattern.
2404 */
2405 if (firmware)
2406 p = kstrdup_const(firmware, GFP_KERNEL);
2407 else
2408 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2409
2410 if (!p)
2411 return -ENOMEM;
2412
2413 rproc->firmware = p;
2414
2415 return 0;
2416 }
2417
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2418 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2419 {
2420 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2421 if (!rproc->ops)
2422 return -ENOMEM;
2423
2424 /* Default to rproc_coredump if no coredump function is specified */
2425 if (!rproc->ops->coredump)
2426 rproc->ops->coredump = rproc_coredump;
2427
2428 if (rproc->ops->load)
2429 return 0;
2430
2431 /* Default to ELF loader if no load function is specified */
2432 rproc->ops->load = rproc_elf_load_segments;
2433 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2434 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2435 rproc->ops->sanity_check = rproc_elf_sanity_check;
2436 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2437
2438 return 0;
2439 }
2440
2441 /**
2442 * rproc_alloc() - allocate a remote processor handle
2443 * @dev: the underlying device
2444 * @name: name of this remote processor
2445 * @ops: platform-specific handlers (mainly start/stop)
2446 * @firmware: name of firmware file to load, can be NULL
2447 * @len: length of private data needed by the rproc driver (in bytes)
2448 *
2449 * Allocates a new remote processor handle, but does not register
2450 * it yet. if @firmware is NULL, a default name is used.
2451 *
2452 * This function should be used by rproc implementations during initialization
2453 * of the remote processor.
2454 *
2455 * After creating an rproc handle using this function, and when ready,
2456 * implementations should then call rproc_add() to complete
2457 * the registration of the remote processor.
2458 *
2459 * Note: _never_ directly deallocate @rproc, even if it was not registered
2460 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2461 *
2462 * Return: new rproc pointer on success, and NULL on failure
2463 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2464 struct rproc *rproc_alloc(struct device *dev, const char *name,
2465 const struct rproc_ops *ops,
2466 const char *firmware, int len)
2467 {
2468 struct rproc *rproc;
2469
2470 if (!dev || !name || !ops)
2471 return NULL;
2472
2473 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2474 if (!rproc)
2475 return NULL;
2476
2477 rproc->priv = &rproc[1];
2478 rproc->auto_boot = true;
2479 rproc->elf_class = ELFCLASSNONE;
2480 rproc->elf_machine = EM_NONE;
2481
2482 device_initialize(&rproc->dev);
2483 rproc->dev.parent = dev;
2484 rproc->dev.type = &rproc_type;
2485 rproc->dev.class = &rproc_class;
2486 rproc->dev.driver_data = rproc;
2487 idr_init(&rproc->notifyids);
2488
2489 rproc->name = kstrdup_const(name, GFP_KERNEL);
2490 if (!rproc->name)
2491 goto put_device;
2492
2493 if (rproc_alloc_firmware(rproc, name, firmware))
2494 goto put_device;
2495
2496 if (rproc_alloc_ops(rproc, ops))
2497 goto put_device;
2498
2499 /* Assign a unique device index and name */
2500 rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2501 if (rproc->index < 0) {
2502 dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2503 goto put_device;
2504 }
2505
2506 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2507
2508 atomic_set(&rproc->power, 0);
2509
2510 mutex_init(&rproc->lock);
2511
2512 INIT_LIST_HEAD(&rproc->carveouts);
2513 INIT_LIST_HEAD(&rproc->mappings);
2514 INIT_LIST_HEAD(&rproc->traces);
2515 INIT_LIST_HEAD(&rproc->rvdevs);
2516 INIT_LIST_HEAD(&rproc->subdevs);
2517 INIT_LIST_HEAD(&rproc->dump_segments);
2518
2519 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2520
2521 rproc->state = RPROC_OFFLINE;
2522
2523 return rproc;
2524
2525 put_device:
2526 put_device(&rproc->dev);
2527 return NULL;
2528 }
2529 EXPORT_SYMBOL(rproc_alloc);
2530
2531 /**
2532 * rproc_free() - unroll rproc_alloc()
2533 * @rproc: the remote processor handle
2534 *
2535 * This function decrements the rproc dev refcount.
2536 *
2537 * If no one holds any reference to rproc anymore, then its refcount would
2538 * now drop to zero, and it would be freed.
2539 */
rproc_free(struct rproc * rproc)2540 void rproc_free(struct rproc *rproc)
2541 {
2542 put_device(&rproc->dev);
2543 }
2544 EXPORT_SYMBOL(rproc_free);
2545
2546 /**
2547 * rproc_put() - release rproc reference
2548 * @rproc: the remote processor handle
2549 *
2550 * This function decrements the rproc dev refcount.
2551 *
2552 * If no one holds any reference to rproc anymore, then its refcount would
2553 * now drop to zero, and it would be freed.
2554 */
rproc_put(struct rproc * rproc)2555 void rproc_put(struct rproc *rproc)
2556 {
2557 if (rproc->dev.parent->driver)
2558 module_put(rproc->dev.parent->driver->owner);
2559 else
2560 module_put(rproc->dev.parent->parent->driver->owner);
2561
2562 put_device(&rproc->dev);
2563 }
2564 EXPORT_SYMBOL(rproc_put);
2565
2566 /**
2567 * rproc_del() - unregister a remote processor
2568 * @rproc: rproc handle to unregister
2569 *
2570 * This function should be called when the platform specific rproc
2571 * implementation decides to remove the rproc device. it should
2572 * _only_ be called if a previous invocation of rproc_add()
2573 * has completed successfully.
2574 *
2575 * After rproc_del() returns, @rproc isn't freed yet, because
2576 * of the outstanding reference created by rproc_alloc. To decrement that
2577 * one last refcount, one still needs to call rproc_free().
2578 *
2579 * Return: 0 on success and -EINVAL if @rproc isn't valid
2580 */
rproc_del(struct rproc * rproc)2581 int rproc_del(struct rproc *rproc)
2582 {
2583 if (!rproc)
2584 return -EINVAL;
2585
2586 /* TODO: make sure this works with rproc->power > 1 */
2587 rproc_shutdown(rproc);
2588
2589 mutex_lock(&rproc->lock);
2590 rproc->state = RPROC_DELETED;
2591 mutex_unlock(&rproc->lock);
2592
2593 rproc_delete_debug_dir(rproc);
2594
2595 /* the rproc is downref'ed as soon as it's removed from the klist */
2596 mutex_lock(&rproc_list_mutex);
2597 list_del_rcu(&rproc->node);
2598 mutex_unlock(&rproc_list_mutex);
2599
2600 /* Ensure that no readers of rproc_list are still active */
2601 synchronize_rcu();
2602
2603 device_del(&rproc->dev);
2604 rproc_char_device_remove(rproc);
2605
2606 return 0;
2607 }
2608 EXPORT_SYMBOL(rproc_del);
2609
devm_rproc_free(struct device * dev,void * res)2610 static void devm_rproc_free(struct device *dev, void *res)
2611 {
2612 rproc_free(*(struct rproc **)res);
2613 }
2614
2615 /**
2616 * devm_rproc_alloc() - resource managed rproc_alloc()
2617 * @dev: the underlying device
2618 * @name: name of this remote processor
2619 * @ops: platform-specific handlers (mainly start/stop)
2620 * @firmware: name of firmware file to load, can be NULL
2621 * @len: length of private data needed by the rproc driver (in bytes)
2622 *
2623 * This function performs like rproc_alloc() but the acquired rproc device will
2624 * automatically be released on driver detach.
2625 *
2626 * Return: new rproc instance, or NULL on failure
2627 */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2628 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2629 const struct rproc_ops *ops,
2630 const char *firmware, int len)
2631 {
2632 struct rproc **ptr, *rproc;
2633
2634 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2635 if (!ptr)
2636 return NULL;
2637
2638 rproc = rproc_alloc(dev, name, ops, firmware, len);
2639 if (rproc) {
2640 *ptr = rproc;
2641 devres_add(dev, ptr);
2642 } else {
2643 devres_free(ptr);
2644 }
2645
2646 return rproc;
2647 }
2648 EXPORT_SYMBOL(devm_rproc_alloc);
2649
2650 /**
2651 * rproc_add_subdev() - add a subdevice to a remoteproc
2652 * @rproc: rproc handle to add the subdevice to
2653 * @subdev: subdev handle to register
2654 *
2655 * Caller is responsible for populating optional subdevice function pointers.
2656 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2657 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2658 {
2659 list_add_tail(&subdev->node, &rproc->subdevs);
2660 }
2661 EXPORT_SYMBOL(rproc_add_subdev);
2662
2663 /**
2664 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2665 * @rproc: rproc handle to remove the subdevice from
2666 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2667 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2668 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2669 {
2670 list_del(&subdev->node);
2671 }
2672 EXPORT_SYMBOL(rproc_remove_subdev);
2673
2674 /**
2675 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2676 * @dev: child device to find ancestor of
2677 *
2678 * Return: the ancestor rproc instance, or NULL if not found
2679 */
rproc_get_by_child(struct device * dev)2680 struct rproc *rproc_get_by_child(struct device *dev)
2681 {
2682 for (dev = dev->parent; dev; dev = dev->parent) {
2683 if (dev->type == &rproc_type)
2684 return dev->driver_data;
2685 }
2686
2687 return NULL;
2688 }
2689 EXPORT_SYMBOL(rproc_get_by_child);
2690
2691 /**
2692 * rproc_report_crash() - rproc crash reporter function
2693 * @rproc: remote processor
2694 * @type: crash type
2695 *
2696 * This function must be called every time a crash is detected by the low-level
2697 * drivers implementing a specific remoteproc. This should not be called from a
2698 * non-remoteproc driver.
2699 *
2700 * This function can be called from atomic/interrupt context.
2701 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2702 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2703 {
2704 if (!rproc) {
2705 pr_err("NULL rproc pointer\n");
2706 return;
2707 }
2708
2709 /* Prevent suspend while the remoteproc is being recovered */
2710 pm_stay_awake(rproc->dev.parent);
2711
2712 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2713 rproc->name, rproc_crash_to_string(type));
2714
2715 queue_work(rproc_recovery_wq, &rproc->crash_handler);
2716 }
2717 EXPORT_SYMBOL(rproc_report_crash);
2718
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2719 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2720 void *ptr)
2721 {
2722 unsigned int longest = 0;
2723 struct rproc *rproc;
2724 unsigned int d;
2725
2726 rcu_read_lock();
2727 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2728 if (!rproc->ops->panic)
2729 continue;
2730
2731 if (rproc->state != RPROC_RUNNING &&
2732 rproc->state != RPROC_ATTACHED)
2733 continue;
2734
2735 d = rproc->ops->panic(rproc);
2736 longest = max(longest, d);
2737 }
2738 rcu_read_unlock();
2739
2740 /*
2741 * Delay for the longest requested duration before returning. This can
2742 * be used by the remoteproc drivers to give the remote processor time
2743 * to perform any requested operations (such as flush caches), when
2744 * it's not possible to signal the Linux side due to the panic.
2745 */
2746 mdelay(longest);
2747
2748 return NOTIFY_DONE;
2749 }
2750
rproc_init_panic(void)2751 static void __init rproc_init_panic(void)
2752 {
2753 rproc_panic_nb.notifier_call = rproc_panic_handler;
2754 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2755 }
2756
rproc_exit_panic(void)2757 static void __exit rproc_exit_panic(void)
2758 {
2759 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2760 }
2761
remoteproc_init(void)2762 static int __init remoteproc_init(void)
2763 {
2764 rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2765 WQ_UNBOUND | WQ_FREEZABLE, 0);
2766 if (!rproc_recovery_wq) {
2767 pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2768 return -ENOMEM;
2769 }
2770
2771 rproc_init_sysfs();
2772 rproc_init_debugfs();
2773 rproc_init_cdev();
2774 rproc_init_panic();
2775
2776 return 0;
2777 }
2778 subsys_initcall(remoteproc_init);
2779
remoteproc_exit(void)2780 static void __exit remoteproc_exit(void)
2781 {
2782 ida_destroy(&rproc_dev_index);
2783
2784 if (!rproc_recovery_wq)
2785 return;
2786
2787 rproc_exit_panic();
2788 rproc_exit_debugfs();
2789 rproc_exit_sysfs();
2790 destroy_workqueue(rproc_recovery_wq);
2791 }
2792 module_exit(remoteproc_exit);
2793
2794 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2795