xref: /linux/drivers/remoteproc/remoteproc_core.c (revision e637b37a520513a04d00f4add07ec25f357e6c6d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <asm/byteorder.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/elf.h>
24 #include <linux/firmware.h>
25 #include <linux/idr.h>
26 #include <linux/iommu.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/mutex.h>
30 #include <linux/of_platform.h>
31 #include <linux/panic_notifier.h>
32 #include <linux/platform_device.h>
33 #include <linux/rculist.h>
34 #include <linux/remoteproc.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/virtio_ring.h>
38 
39 #include "remoteproc_internal.h"
40 
41 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
42 
43 static DEFINE_MUTEX(rproc_list_mutex);
44 static LIST_HEAD(rproc_list);
45 static struct notifier_block rproc_panic_nb;
46 
47 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
48 				 void *, int offset, int avail);
49 
50 static int rproc_alloc_carveout(struct rproc *rproc,
51 				struct rproc_mem_entry *mem);
52 static int rproc_release_carveout(struct rproc *rproc,
53 				  struct rproc_mem_entry *mem);
54 
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
57 static struct workqueue_struct *rproc_recovery_wq;
58 
59 static const char * const rproc_crash_names[] = {
60 	[RPROC_MMUFAULT]	= "mmufault",
61 	[RPROC_WATCHDOG]	= "watchdog",
62 	[RPROC_FATAL_ERROR]	= "fatal error",
63 };
64 
65 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)66 static const char *rproc_crash_to_string(enum rproc_crash_type type)
67 {
68 	if (type < ARRAY_SIZE(rproc_crash_names))
69 		return rproc_crash_names[type];
70 	return "unknown";
71 }
72 
73 /*
74  * This is the IOMMU fault handler we register with the IOMMU API
75  * (when relevant; not all remote processors access memory through
76  * an IOMMU).
77  *
78  * IOMMU core will invoke this handler whenever the remote processor
79  * will try to access an unmapped device address.
80  */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)81 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
82 			     unsigned long iova, int flags, void *token)
83 {
84 	struct rproc *rproc = token;
85 
86 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
87 
88 	rproc_report_crash(rproc, RPROC_MMUFAULT);
89 
90 	/*
91 	 * Let the iommu core know we're not really handling this fault;
92 	 * we just used it as a recovery trigger.
93 	 */
94 	return -ENOSYS;
95 }
96 
rproc_enable_iommu(struct rproc * rproc)97 static int rproc_enable_iommu(struct rproc *rproc)
98 {
99 	struct iommu_domain *domain;
100 	struct device *dev = rproc->dev.parent;
101 	int ret;
102 
103 	if (!rproc->has_iommu) {
104 		dev_dbg(dev, "iommu not present\n");
105 		return 0;
106 	}
107 
108 	domain = iommu_paging_domain_alloc(dev);
109 	if (IS_ERR(domain)) {
110 		dev_err(dev, "can't alloc iommu domain\n");
111 		return PTR_ERR(domain);
112 	}
113 
114 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
115 
116 	ret = iommu_attach_device(domain, dev);
117 	if (ret) {
118 		dev_err(dev, "can't attach iommu device: %d\n", ret);
119 		goto free_domain;
120 	}
121 
122 	rproc->domain = domain;
123 
124 	return 0;
125 
126 free_domain:
127 	iommu_domain_free(domain);
128 	return ret;
129 }
130 
rproc_disable_iommu(struct rproc * rproc)131 static void rproc_disable_iommu(struct rproc *rproc)
132 {
133 	struct iommu_domain *domain = rproc->domain;
134 	struct device *dev = rproc->dev.parent;
135 
136 	if (!domain)
137 		return;
138 
139 	iommu_detach_device(domain, dev);
140 	iommu_domain_free(domain);
141 }
142 
rproc_va_to_pa(void * cpu_addr)143 phys_addr_t rproc_va_to_pa(void *cpu_addr)
144 {
145 	/*
146 	 * Return physical address according to virtual address location
147 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
148 	 * - in kernel: if region allocated in generic dma memory pool
149 	 */
150 	if (is_vmalloc_addr(cpu_addr)) {
151 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
152 				    offset_in_page(cpu_addr);
153 	}
154 
155 	WARN_ON(!virt_addr_valid(cpu_addr));
156 	return virt_to_phys(cpu_addr);
157 }
158 
159 /**
160  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
161  * @rproc: handle of a remote processor
162  * @da: remoteproc device address to translate
163  * @len: length of the memory region @da is pointing to
164  * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
165  *
166  * Some remote processors will ask us to allocate them physically contiguous
167  * memory regions (which we call "carveouts"), and map them to specific
168  * device addresses (which are hardcoded in the firmware). They may also have
169  * dedicated memory regions internal to the processors, and use them either
170  * exclusively or alongside carveouts.
171  *
172  * They may then ask us to copy objects into specific device addresses (e.g.
173  * code/data sections) or expose us certain symbols in other device address
174  * (e.g. their trace buffer).
175  *
176  * This function is a helper function with which we can go over the allocated
177  * carveouts and translate specific device addresses to kernel virtual addresses
178  * so we can access the referenced memory. This function also allows to perform
179  * translations on the internal remoteproc memory regions through a platform
180  * implementation specific da_to_va ops, if present.
181  *
182  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
183  * but only on kernel direct mapped RAM memory. Instead, we're just using
184  * here the output of the DMA API for the carveouts, which should be more
185  * correct.
186  *
187  * Return: a valid kernel address on success or NULL on failure
188  */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)189 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
190 {
191 	struct rproc_mem_entry *carveout;
192 	void *ptr = NULL;
193 
194 	if (rproc->ops->da_to_va) {
195 		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
196 		if (ptr)
197 			goto out;
198 	}
199 
200 	list_for_each_entry(carveout, &rproc->carveouts, node) {
201 		int offset = da - carveout->da;
202 
203 		/*  Verify that carveout is allocated */
204 		if (!carveout->va)
205 			continue;
206 
207 		/* try next carveout if da is too small */
208 		if (offset < 0)
209 			continue;
210 
211 		/* try next carveout if da is too large */
212 		if (offset + len > carveout->len)
213 			continue;
214 
215 		ptr = carveout->va + offset;
216 
217 		if (is_iomem)
218 			*is_iomem = carveout->is_iomem;
219 
220 		break;
221 	}
222 
223 out:
224 	return ptr;
225 }
226 EXPORT_SYMBOL(rproc_da_to_va);
227 
228 /**
229  * rproc_find_carveout_by_name() - lookup the carveout region by a name
230  * @rproc: handle of a remote processor
231  * @name: carveout name to find (format string)
232  * @...: optional parameters matching @name string
233  *
234  * Platform driver has the capability to register some pre-allacoted carveout
235  * (physically contiguous memory regions) before rproc firmware loading and
236  * associated resource table analysis. These regions may be dedicated memory
237  * regions internal to the coprocessor or specified DDR region with specific
238  * attributes
239  *
240  * This function is a helper function with which we can go over the
241  * allocated carveouts and return associated region characteristics like
242  * coprocessor address, length or processor virtual address.
243  *
244  * Return: a valid pointer on carveout entry on success or NULL on failure.
245  */
246 __printf(2, 3)
247 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)248 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
249 {
250 	va_list args;
251 	char _name[32];
252 	struct rproc_mem_entry *carveout, *mem = NULL;
253 
254 	if (!name)
255 		return NULL;
256 
257 	va_start(args, name);
258 	vsnprintf(_name, sizeof(_name), name, args);
259 	va_end(args);
260 
261 	list_for_each_entry(carveout, &rproc->carveouts, node) {
262 		/* Compare carveout and requested names */
263 		if (!strcmp(carveout->name, _name)) {
264 			mem = carveout;
265 			break;
266 		}
267 	}
268 
269 	return mem;
270 }
271 
272 /**
273  * rproc_check_carveout_da() - Check specified carveout da configuration
274  * @rproc: handle of a remote processor
275  * @mem: pointer on carveout to check
276  * @da: area device address
277  * @len: associated area size
278  *
279  * This function is a helper function to verify requested device area (couple
280  * da, len) is part of specified carveout.
281  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
282  * checked.
283  *
284  * Return: 0 if carveout matches request else error
285  */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)286 static int rproc_check_carveout_da(struct rproc *rproc,
287 				   struct rproc_mem_entry *mem, u32 da, u32 len)
288 {
289 	struct device *dev = &rproc->dev;
290 	int delta;
291 
292 	/* Check requested resource length */
293 	if (len > mem->len) {
294 		dev_err(dev, "Registered carveout doesn't fit len request\n");
295 		return -EINVAL;
296 	}
297 
298 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
299 		/* Address doesn't match registered carveout configuration */
300 		return -EINVAL;
301 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
302 		delta = da - mem->da;
303 
304 		/* Check requested resource belongs to registered carveout */
305 		if (delta < 0) {
306 			dev_err(dev,
307 				"Registered carveout doesn't fit da request\n");
308 			return -EINVAL;
309 		}
310 
311 		if (delta + len > mem->len) {
312 			dev_err(dev,
313 				"Registered carveout doesn't fit len request\n");
314 			return -EINVAL;
315 		}
316 	}
317 
318 	return 0;
319 }
320 
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)321 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
322 {
323 	struct rproc *rproc = rvdev->rproc;
324 	struct device *dev = &rproc->dev;
325 	struct rproc_vring *rvring = &rvdev->vring[i];
326 	struct fw_rsc_vdev *rsc;
327 	int ret, notifyid;
328 	struct rproc_mem_entry *mem;
329 	size_t size;
330 
331 	/* actual size of vring (in bytes) */
332 	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
333 
334 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
335 
336 	/* Search for pre-registered carveout */
337 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
338 					  i);
339 	if (mem) {
340 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
341 			return -ENOMEM;
342 	} else {
343 		/* Register carveout in list */
344 		mem = rproc_mem_entry_init(dev, NULL, 0,
345 					   size, rsc->vring[i].da,
346 					   rproc_alloc_carveout,
347 					   rproc_release_carveout,
348 					   "vdev%dvring%d",
349 					   rvdev->index, i);
350 		if (!mem) {
351 			dev_err(dev, "Can't allocate memory entry structure\n");
352 			return -ENOMEM;
353 		}
354 
355 		rproc_add_carveout(rproc, mem);
356 	}
357 
358 	/*
359 	 * Assign an rproc-wide unique index for this vring
360 	 * TODO: assign a notifyid for rvdev updates as well
361 	 * TODO: support predefined notifyids (via resource table)
362 	 */
363 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
364 	if (ret < 0) {
365 		dev_err(dev, "idr_alloc failed: %d\n", ret);
366 		return ret;
367 	}
368 	notifyid = ret;
369 
370 	/* Potentially bump max_notifyid */
371 	if (notifyid > rproc->max_notifyid)
372 		rproc->max_notifyid = notifyid;
373 
374 	rvring->notifyid = notifyid;
375 
376 	/* Let the rproc know the notifyid of this vring.*/
377 	rsc->vring[i].notifyid = notifyid;
378 	return 0;
379 }
380 
381 int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)382 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
383 {
384 	struct rproc *rproc = rvdev->rproc;
385 	struct device *dev = &rproc->dev;
386 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
387 	struct rproc_vring *rvring = &rvdev->vring[i];
388 
389 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
390 		i, vring->da, vring->num, vring->align);
391 
392 	/* verify queue size and vring alignment are sane */
393 	if (!vring->num || !vring->align) {
394 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
395 			vring->num, vring->align);
396 		return -EINVAL;
397 	}
398 
399 	rvring->num = vring->num;
400 	rvring->align = vring->align;
401 	rvring->rvdev = rvdev;
402 
403 	return 0;
404 }
405 
rproc_free_vring(struct rproc_vring * rvring)406 void rproc_free_vring(struct rproc_vring *rvring)
407 {
408 	struct rproc *rproc = rvring->rvdev->rproc;
409 	int idx = rvring - rvring->rvdev->vring;
410 	struct fw_rsc_vdev *rsc;
411 
412 	idr_remove(&rproc->notifyids, rvring->notifyid);
413 
414 	/*
415 	 * At this point rproc_stop() has been called and the installed resource
416 	 * table in the remote processor memory may no longer be accessible. As
417 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
418 	 * resource table (rproc->cached_table).  The cached resource table is
419 	 * only available when a remote processor has been booted by the
420 	 * remoteproc core, otherwise it is NULL.
421 	 *
422 	 * Based on the above, reset the virtio device section in the cached
423 	 * resource table only if there is one to work with.
424 	 */
425 	if (rproc->table_ptr) {
426 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
427 		rsc->vring[idx].da = 0;
428 		rsc->vring[idx].notifyid = -1;
429 	}
430 }
431 
rproc_add_rvdev(struct rproc * rproc,struct rproc_vdev * rvdev)432 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
433 {
434 	if (rvdev && rproc)
435 		list_add_tail(&rvdev->node, &rproc->rvdevs);
436 }
437 
rproc_remove_rvdev(struct rproc_vdev * rvdev)438 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
439 {
440 	if (rvdev)
441 		list_del(&rvdev->node);
442 }
443 /**
444  * rproc_handle_vdev() - handle a vdev fw resource
445  * @rproc: the remote processor
446  * @ptr: the vring resource descriptor
447  * @offset: offset of the resource entry
448  * @avail: size of available data (for sanity checking the image)
449  *
450  * This resource entry requests the host to statically register a virtio
451  * device (vdev), and setup everything needed to support it. It contains
452  * everything needed to make it possible: the virtio device id, virtio
453  * device features, vrings information, virtio config space, etc...
454  *
455  * Before registering the vdev, the vrings are allocated from non-cacheable
456  * physically contiguous memory. Currently we only support two vrings per
457  * remote processor (temporary limitation). We might also want to consider
458  * doing the vring allocation only later when ->find_vqs() is invoked, and
459  * then release them upon ->del_vqs().
460  *
461  * Note: @da is currently not really handled correctly: we dynamically
462  * allocate it using the DMA API, ignoring requested hard coded addresses,
463  * and we don't take care of any required IOMMU programming. This is all
464  * going to be taken care of when the generic iommu-based DMA API will be
465  * merged. Meanwhile, statically-addressed iommu-based firmware images should
466  * use RSC_DEVMEM resource entries to map their required @da to the physical
467  * address of their base CMA region (ouch, hacky!).
468  *
469  * Return: 0 on success, or an appropriate error code otherwise
470  */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)471 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
472 			     int offset, int avail)
473 {
474 	struct fw_rsc_vdev *rsc = ptr;
475 	struct device *dev = &rproc->dev;
476 	struct rproc_vdev *rvdev;
477 	size_t rsc_size;
478 	struct rproc_vdev_data rvdev_data;
479 	struct platform_device *pdev;
480 
481 	/* make sure resource isn't truncated */
482 	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
483 	if (size_add(rsc_size, rsc->config_len) > avail) {
484 		dev_err(dev, "vdev rsc is truncated\n");
485 		return -EINVAL;
486 	}
487 
488 	/* make sure reserved bytes are zeroes */
489 	if (rsc->reserved[0] || rsc->reserved[1]) {
490 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
491 		return -EINVAL;
492 	}
493 
494 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
495 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
496 
497 	/* we currently support only two vrings per rvdev */
498 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
499 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
500 		return -EINVAL;
501 	}
502 
503 	rvdev_data.id = rsc->id;
504 	rvdev_data.index = rproc->nb_vdev++;
505 	rvdev_data.rsc_offset = offset;
506 	rvdev_data.rsc = rsc;
507 
508 	/*
509 	 * When there is more than one remote processor, rproc->nb_vdev number is
510 	 * same for each separate instances of "rproc". If rvdev_data.index is used
511 	 * as device id, then we get duplication in sysfs, so need to use
512 	 * PLATFORM_DEVID_AUTO to auto select device id.
513 	 */
514 	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
515 					     sizeof(rvdev_data));
516 	if (IS_ERR(pdev)) {
517 		dev_err(dev, "failed to create rproc-virtio device\n");
518 		return PTR_ERR(pdev);
519 	}
520 
521 	return 0;
522 }
523 
524 /**
525  * rproc_handle_trace() - handle a shared trace buffer resource
526  * @rproc: the remote processor
527  * @ptr: the trace resource descriptor
528  * @offset: offset of the resource entry
529  * @avail: size of available data (for sanity checking the image)
530  *
531  * In case the remote processor dumps trace logs into memory,
532  * export it via debugfs.
533  *
534  * Currently, the 'da' member of @rsc should contain the device address
535  * where the remote processor is dumping the traces. Later we could also
536  * support dynamically allocating this address using the generic
537  * DMA API (but currently there isn't a use case for that).
538  *
539  * Return: 0 on success, or an appropriate error code otherwise
540  */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)541 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
542 			      int offset, int avail)
543 {
544 	struct fw_rsc_trace *rsc = ptr;
545 	struct rproc_debug_trace *trace;
546 	struct device *dev = &rproc->dev;
547 	char name[15];
548 
549 	if (sizeof(*rsc) > avail) {
550 		dev_err(dev, "trace rsc is truncated\n");
551 		return -EINVAL;
552 	}
553 
554 	/* make sure reserved bytes are zeroes */
555 	if (rsc->reserved) {
556 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
557 		return -EINVAL;
558 	}
559 
560 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
561 	if (!trace)
562 		return -ENOMEM;
563 
564 	/* set the trace buffer dma properties */
565 	trace->trace_mem.len = rsc->len;
566 	trace->trace_mem.da = rsc->da;
567 
568 	/* set pointer on rproc device */
569 	trace->rproc = rproc;
570 
571 	/* make sure snprintf always null terminates, even if truncating */
572 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
573 
574 	/* create the debugfs entry */
575 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
576 
577 	list_add_tail(&trace->node, &rproc->traces);
578 
579 	rproc->num_traces++;
580 
581 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
582 		name, rsc->da, rsc->len);
583 
584 	return 0;
585 }
586 
587 /**
588  * rproc_handle_devmem() - handle devmem resource entry
589  * @rproc: remote processor handle
590  * @ptr: the devmem resource entry
591  * @offset: offset of the resource entry
592  * @avail: size of available data (for sanity checking the image)
593  *
594  * Remote processors commonly need to access certain on-chip peripherals.
595  *
596  * Some of these remote processors access memory via an iommu device,
597  * and might require us to configure their iommu before they can access
598  * the on-chip peripherals they need.
599  *
600  * This resource entry is a request to map such a peripheral device.
601  *
602  * These devmem entries will contain the physical address of the device in
603  * the 'pa' member. If a specific device address is expected, then 'da' will
604  * contain it (currently this is the only use case supported). 'len' will
605  * contain the size of the physical region we need to map.
606  *
607  * Currently we just "trust" those devmem entries to contain valid physical
608  * addresses, but this is going to change: we want the implementations to
609  * tell us ranges of physical addresses the firmware is allowed to request,
610  * and not allow firmwares to request access to physical addresses that
611  * are outside those ranges.
612  *
613  * Return: 0 on success, or an appropriate error code otherwise
614  */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)615 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
616 			       int offset, int avail)
617 {
618 	struct fw_rsc_devmem *rsc = ptr;
619 	struct rproc_mem_entry *mapping;
620 	struct device *dev = &rproc->dev;
621 	int ret;
622 
623 	/* no point in handling this resource without a valid iommu domain */
624 	if (!rproc->domain)
625 		return -EINVAL;
626 
627 	if (sizeof(*rsc) > avail) {
628 		dev_err(dev, "devmem rsc is truncated\n");
629 		return -EINVAL;
630 	}
631 
632 	/* make sure reserved bytes are zeroes */
633 	if (rsc->reserved) {
634 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
635 		return -EINVAL;
636 	}
637 
638 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
639 	if (!mapping)
640 		return -ENOMEM;
641 
642 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
643 			GFP_KERNEL);
644 	if (ret) {
645 		dev_err(dev, "failed to map devmem: %d\n", ret);
646 		goto out;
647 	}
648 
649 	/*
650 	 * We'll need this info later when we'll want to unmap everything
651 	 * (e.g. on shutdown).
652 	 *
653 	 * We can't trust the remote processor not to change the resource
654 	 * table, so we must maintain this info independently.
655 	 */
656 	mapping->da = rsc->da;
657 	mapping->len = rsc->len;
658 	list_add_tail(&mapping->node, &rproc->mappings);
659 
660 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
661 		rsc->pa, rsc->da, rsc->len);
662 
663 	return 0;
664 
665 out:
666 	kfree(mapping);
667 	return ret;
668 }
669 
670 /**
671  * rproc_alloc_carveout() - allocated specified carveout
672  * @rproc: rproc handle
673  * @mem: the memory entry to allocate
674  *
675  * This function allocate specified memory entry @mem using
676  * dma_alloc_coherent() as default allocator
677  *
678  * Return: 0 on success, or an appropriate error code otherwise
679  */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)680 static int rproc_alloc_carveout(struct rproc *rproc,
681 				struct rproc_mem_entry *mem)
682 {
683 	struct rproc_mem_entry *mapping = NULL;
684 	struct device *dev = &rproc->dev;
685 	dma_addr_t dma;
686 	void *va;
687 	int ret;
688 
689 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
690 	if (!va) {
691 		dev_err(dev->parent,
692 			"failed to allocate dma memory: len 0x%zx\n",
693 			mem->len);
694 		return -ENOMEM;
695 	}
696 
697 	dev_dbg(dev, "carveout va %p, dma %pad, len 0x%zx\n",
698 		va, &dma, mem->len);
699 
700 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
701 		/*
702 		 * Check requested da is equal to dma address
703 		 * and print a warn message in case of missalignment.
704 		 * Don't stop rproc_start sequence as coprocessor may
705 		 * build pa to da translation on its side.
706 		 */
707 		if (mem->da != (u32)dma)
708 			dev_warn(dev->parent,
709 				 "Allocated carveout doesn't fit device address request\n");
710 	}
711 
712 	/*
713 	 * Ok, this is non-standard.
714 	 *
715 	 * Sometimes we can't rely on the generic iommu-based DMA API
716 	 * to dynamically allocate the device address and then set the IOMMU
717 	 * tables accordingly, because some remote processors might
718 	 * _require_ us to use hard coded device addresses that their
719 	 * firmware was compiled with.
720 	 *
721 	 * In this case, we must use the IOMMU API directly and map
722 	 * the memory to the device address as expected by the remote
723 	 * processor.
724 	 *
725 	 * Obviously such remote processor devices should not be configured
726 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
727 	 * physical address in this case.
728 	 */
729 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
730 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
731 		if (!mapping) {
732 			ret = -ENOMEM;
733 			goto dma_free;
734 		}
735 
736 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
737 				mem->flags, GFP_KERNEL);
738 		if (ret) {
739 			dev_err(dev, "iommu_map failed: %d\n", ret);
740 			goto free_mapping;
741 		}
742 
743 		/*
744 		 * We'll need this info later when we'll want to unmap
745 		 * everything (e.g. on shutdown).
746 		 *
747 		 * We can't trust the remote processor not to change the
748 		 * resource table, so we must maintain this info independently.
749 		 */
750 		mapping->da = mem->da;
751 		mapping->len = mem->len;
752 		list_add_tail(&mapping->node, &rproc->mappings);
753 
754 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
755 			mem->da, &dma);
756 	}
757 
758 	if (mem->da == FW_RSC_ADDR_ANY) {
759 		/* Update device address as undefined by requester */
760 		if ((u64)dma & HIGH_BITS_MASK)
761 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
762 
763 		mem->da = (u32)dma;
764 	}
765 
766 	mem->dma = dma;
767 	mem->va = va;
768 
769 	return 0;
770 
771 free_mapping:
772 	kfree(mapping);
773 dma_free:
774 	dma_free_coherent(dev->parent, mem->len, va, dma);
775 	return ret;
776 }
777 
778 /**
779  * rproc_release_carveout() - release acquired carveout
780  * @rproc: rproc handle
781  * @mem: the memory entry to release
782  *
783  * This function releases specified memory entry @mem allocated via
784  * rproc_alloc_carveout() function by @rproc.
785  *
786  * Return: 0 on success, or an appropriate error code otherwise
787  */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)788 static int rproc_release_carveout(struct rproc *rproc,
789 				  struct rproc_mem_entry *mem)
790 {
791 	struct device *dev = &rproc->dev;
792 
793 	/* clean up carveout allocations */
794 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
795 	return 0;
796 }
797 
798 /**
799  * rproc_handle_carveout() - handle phys contig memory allocation requests
800  * @rproc: rproc handle
801  * @ptr: the resource entry
802  * @offset: offset of the resource entry
803  * @avail: size of available data (for image validation)
804  *
805  * This function will handle firmware requests for allocation of physically
806  * contiguous memory regions.
807  *
808  * These request entries should come first in the firmware's resource table,
809  * as other firmware entries might request placing other data objects inside
810  * these memory regions (e.g. data/code segments, trace resource entries, ...).
811  *
812  * Allocating memory this way helps utilizing the reserved physical memory
813  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
814  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
815  * pressure is important; it may have a substantial impact on performance.
816  *
817  * Return: 0 on success, or an appropriate error code otherwise
818  */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)819 static int rproc_handle_carveout(struct rproc *rproc,
820 				 void *ptr, int offset, int avail)
821 {
822 	struct fw_rsc_carveout *rsc = ptr;
823 	struct rproc_mem_entry *carveout;
824 	struct device *dev = &rproc->dev;
825 
826 	if (sizeof(*rsc) > avail) {
827 		dev_err(dev, "carveout rsc is truncated\n");
828 		return -EINVAL;
829 	}
830 
831 	/* make sure reserved bytes are zeroes */
832 	if (rsc->reserved) {
833 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
834 		return -EINVAL;
835 	}
836 
837 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
838 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
839 
840 	/*
841 	 * Check carveout rsc already part of a registered carveout,
842 	 * Search by name, then check the da and length
843 	 */
844 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
845 
846 	if (carveout) {
847 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
848 			dev_err(dev,
849 				"Carveout already associated to resource table\n");
850 			return -ENOMEM;
851 		}
852 
853 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
854 			return -ENOMEM;
855 
856 		/* Update memory carveout with resource table info */
857 		carveout->rsc_offset = offset;
858 		carveout->flags = rsc->flags;
859 
860 		return 0;
861 	}
862 
863 	/* Register carveout in list */
864 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
865 					rproc_alloc_carveout,
866 					rproc_release_carveout, rsc->name);
867 	if (!carveout) {
868 		dev_err(dev, "Can't allocate memory entry structure\n");
869 		return -ENOMEM;
870 	}
871 
872 	carveout->flags = rsc->flags;
873 	carveout->rsc_offset = offset;
874 	rproc_add_carveout(rproc, carveout);
875 
876 	return 0;
877 }
878 
879 /**
880  * rproc_add_carveout() - register an allocated carveout region
881  * @rproc: rproc handle
882  * @mem: memory entry to register
883  *
884  * This function registers specified memory entry in @rproc carveouts list.
885  * Specified carveout should have been allocated before registering.
886  */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)887 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
888 {
889 	list_add_tail(&mem->node, &rproc->carveouts);
890 }
891 EXPORT_SYMBOL(rproc_add_carveout);
892 
893 /**
894  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
895  * @dev: pointer on device struct
896  * @va: virtual address
897  * @dma: dma address
898  * @len: memory carveout length
899  * @da: device address
900  * @alloc: memory carveout allocation function
901  * @release: memory carveout release function
902  * @name: carveout name
903  *
904  * This function allocates a rproc_mem_entry struct and fill it with parameters
905  * provided by client.
906  *
907  * Return: a valid pointer on success, or NULL on failure
908  */
909 __printf(8, 9)
910 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)911 rproc_mem_entry_init(struct device *dev,
912 		     void *va, dma_addr_t dma, size_t len, u32 da,
913 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
914 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
915 		     const char *name, ...)
916 {
917 	struct rproc_mem_entry *mem;
918 	va_list args;
919 
920 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
921 	if (!mem)
922 		return mem;
923 
924 	mem->va = va;
925 	mem->dma = dma;
926 	mem->da = da;
927 	mem->len = len;
928 	mem->alloc = alloc;
929 	mem->release = release;
930 	mem->rsc_offset = FW_RSC_ADDR_ANY;
931 	mem->of_resm_idx = -1;
932 
933 	va_start(args, name);
934 	vsnprintf(mem->name, sizeof(mem->name), name, args);
935 	va_end(args);
936 
937 	return mem;
938 }
939 EXPORT_SYMBOL(rproc_mem_entry_init);
940 
941 /**
942  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
943  * from a reserved memory phandle
944  * @dev: pointer on device struct
945  * @of_resm_idx: reserved memory phandle index in "memory-region"
946  * @len: memory carveout length
947  * @da: device address
948  * @name: carveout name
949  *
950  * This function allocates a rproc_mem_entry struct and fill it with parameters
951  * provided by client.
952  *
953  * Return: a valid pointer on success, or NULL on failure
954  */
955 __printf(5, 6)
956 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)957 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
958 			     u32 da, const char *name, ...)
959 {
960 	struct rproc_mem_entry *mem;
961 	va_list args;
962 
963 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
964 	if (!mem)
965 		return mem;
966 
967 	mem->da = da;
968 	mem->len = len;
969 	mem->rsc_offset = FW_RSC_ADDR_ANY;
970 	mem->of_resm_idx = of_resm_idx;
971 
972 	va_start(args, name);
973 	vsnprintf(mem->name, sizeof(mem->name), name, args);
974 	va_end(args);
975 
976 	return mem;
977 }
978 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
979 
980 /**
981  * rproc_of_parse_firmware() - parse and return the firmware-name
982  * @dev: pointer on device struct representing a rproc
983  * @index: index to use for the firmware-name retrieval
984  * @fw_name: pointer to a character string, in which the firmware
985  *           name is returned on success and unmodified otherwise.
986  *
987  * This is an OF helper function that parses a device's DT node for
988  * the "firmware-name" property and returns the firmware name pointer
989  * in @fw_name on success.
990  *
991  * Return: 0 on success, or an appropriate failure.
992  */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)993 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
994 {
995 	int ret;
996 
997 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
998 					    index, fw_name);
999 	return ret ? ret : 0;
1000 }
1001 EXPORT_SYMBOL(rproc_of_parse_firmware);
1002 
1003 /*
1004  * A lookup table for resource handlers. The indices are defined in
1005  * enum fw_resource_type.
1006  */
1007 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1008 	[RSC_CARVEOUT] = rproc_handle_carveout,
1009 	[RSC_DEVMEM] = rproc_handle_devmem,
1010 	[RSC_TRACE] = rproc_handle_trace,
1011 	[RSC_VDEV] = rproc_handle_vdev,
1012 };
1013 
1014 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1015 static int rproc_handle_resources(struct rproc *rproc,
1016 				  rproc_handle_resource_t handlers[RSC_LAST])
1017 {
1018 	struct device *dev = &rproc->dev;
1019 	rproc_handle_resource_t handler;
1020 	int ret = 0, i;
1021 
1022 	if (!rproc->table_ptr)
1023 		return 0;
1024 
1025 	for (i = 0; i < rproc->table_ptr->num; i++) {
1026 		int offset = rproc->table_ptr->offset[i];
1027 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1028 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1029 		void *rsc = (void *)hdr + sizeof(*hdr);
1030 
1031 		/* make sure table isn't truncated */
1032 		if (avail < 0) {
1033 			dev_err(dev, "rsc table is truncated\n");
1034 			return -EINVAL;
1035 		}
1036 
1037 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1038 
1039 		if (hdr->type >= RSC_VENDOR_START &&
1040 		    hdr->type <= RSC_VENDOR_END) {
1041 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1042 					       offset + sizeof(*hdr), avail);
1043 			if (ret == RSC_HANDLED)
1044 				continue;
1045 			else if (ret < 0)
1046 				break;
1047 
1048 			dev_warn(dev, "unsupported vendor resource %d\n",
1049 				 hdr->type);
1050 			continue;
1051 		}
1052 
1053 		if (hdr->type >= RSC_LAST) {
1054 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1055 			continue;
1056 		}
1057 
1058 		handler = handlers[hdr->type];
1059 		if (!handler)
1060 			continue;
1061 
1062 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1063 		if (ret)
1064 			break;
1065 	}
1066 
1067 	return ret;
1068 }
1069 
rproc_prepare_subdevices(struct rproc * rproc)1070 static int rproc_prepare_subdevices(struct rproc *rproc)
1071 {
1072 	struct rproc_subdev *subdev;
1073 	int ret;
1074 
1075 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1076 		if (subdev->prepare) {
1077 			ret = subdev->prepare(subdev);
1078 			if (ret)
1079 				goto unroll_preparation;
1080 		}
1081 	}
1082 
1083 	return 0;
1084 
1085 unroll_preparation:
1086 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1087 		if (subdev->unprepare)
1088 			subdev->unprepare(subdev);
1089 	}
1090 
1091 	return ret;
1092 }
1093 
rproc_start_subdevices(struct rproc * rproc)1094 static int rproc_start_subdevices(struct rproc *rproc)
1095 {
1096 	struct rproc_subdev *subdev;
1097 	int ret;
1098 
1099 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1100 		if (subdev->start) {
1101 			ret = subdev->start(subdev);
1102 			if (ret)
1103 				goto unroll_registration;
1104 		}
1105 	}
1106 
1107 	return 0;
1108 
1109 unroll_registration:
1110 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1111 		if (subdev->stop)
1112 			subdev->stop(subdev, true);
1113 	}
1114 
1115 	return ret;
1116 }
1117 
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1118 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1119 {
1120 	struct rproc_subdev *subdev;
1121 
1122 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1123 		if (subdev->stop)
1124 			subdev->stop(subdev, crashed);
1125 	}
1126 }
1127 
rproc_unprepare_subdevices(struct rproc * rproc)1128 static void rproc_unprepare_subdevices(struct rproc *rproc)
1129 {
1130 	struct rproc_subdev *subdev;
1131 
1132 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1133 		if (subdev->unprepare)
1134 			subdev->unprepare(subdev);
1135 	}
1136 }
1137 
1138 /**
1139  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1140  * in the list
1141  * @rproc: the remote processor handle
1142  *
1143  * This function parses registered carveout list, performs allocation
1144  * if alloc() ops registered and updates resource table information
1145  * if rsc_offset set.
1146  *
1147  * Return: 0 on success
1148  */
rproc_alloc_registered_carveouts(struct rproc * rproc)1149 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1150 {
1151 	struct rproc_mem_entry *entry, *tmp;
1152 	struct fw_rsc_carveout *rsc;
1153 	struct device *dev = &rproc->dev;
1154 	u64 pa;
1155 	int ret;
1156 
1157 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1158 		if (entry->alloc) {
1159 			ret = entry->alloc(rproc, entry);
1160 			if (ret) {
1161 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1162 					entry->name, ret);
1163 				return -ENOMEM;
1164 			}
1165 		}
1166 
1167 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1168 			/* update resource table */
1169 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1170 
1171 			/*
1172 			 * Some remote processors might need to know the pa
1173 			 * even though they are behind an IOMMU. E.g., OMAP4's
1174 			 * remote M3 processor needs this so it can control
1175 			 * on-chip hardware accelerators that are not behind
1176 			 * the IOMMU, and therefor must know the pa.
1177 			 *
1178 			 * Generally we don't want to expose physical addresses
1179 			 * if we don't have to (remote processors are generally
1180 			 * _not_ trusted), so we might want to do this only for
1181 			 * remote processor that _must_ have this (e.g. OMAP4's
1182 			 * dual M3 subsystem).
1183 			 *
1184 			 * Non-IOMMU processors might also want to have this info.
1185 			 * In this case, the device address and the physical address
1186 			 * are the same.
1187 			 */
1188 
1189 			/* Use va if defined else dma to generate pa */
1190 			if (entry->va)
1191 				pa = (u64)rproc_va_to_pa(entry->va);
1192 			else
1193 				pa = (u64)entry->dma;
1194 
1195 			if (((u64)pa) & HIGH_BITS_MASK)
1196 				dev_warn(dev,
1197 					 "Physical address cast in 32bit to fit resource table format\n");
1198 
1199 			rsc->pa = (u32)pa;
1200 			rsc->da = entry->da;
1201 			rsc->len = entry->len;
1202 		}
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 
1209 /**
1210  * rproc_resource_cleanup() - clean up and free all acquired resources
1211  * @rproc: rproc handle
1212  *
1213  * This function will free all resources acquired for @rproc, and it
1214  * is called whenever @rproc either shuts down or fails to boot.
1215  */
rproc_resource_cleanup(struct rproc * rproc)1216 void rproc_resource_cleanup(struct rproc *rproc)
1217 {
1218 	struct rproc_mem_entry *entry, *tmp;
1219 	struct rproc_debug_trace *trace, *ttmp;
1220 	struct rproc_vdev *rvdev, *rvtmp;
1221 	struct device *dev = &rproc->dev;
1222 
1223 	/* clean up debugfs trace entries */
1224 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1225 		rproc_remove_trace_file(trace->tfile);
1226 		rproc->num_traces--;
1227 		list_del(&trace->node);
1228 		kfree(trace);
1229 	}
1230 
1231 	/* clean up iommu mapping entries */
1232 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1233 		size_t unmapped;
1234 
1235 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1236 		if (unmapped != entry->len) {
1237 			/* nothing much to do besides complaining */
1238 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1239 				unmapped);
1240 		}
1241 
1242 		list_del(&entry->node);
1243 		kfree(entry);
1244 	}
1245 
1246 	/* clean up carveout allocations */
1247 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1248 		if (entry->release)
1249 			entry->release(rproc, entry);
1250 		list_del(&entry->node);
1251 		kfree(entry);
1252 	}
1253 
1254 	/* clean up remote vdev entries */
1255 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1256 		platform_device_unregister(rvdev->pdev);
1257 
1258 	rproc_coredump_cleanup(rproc);
1259 }
1260 EXPORT_SYMBOL(rproc_resource_cleanup);
1261 
rproc_start(struct rproc * rproc,const struct firmware * fw)1262 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1263 {
1264 	struct resource_table *loaded_table;
1265 	struct device *dev = &rproc->dev;
1266 	int ret;
1267 
1268 	/* load the ELF segments to memory */
1269 	ret = rproc_load_segments(rproc, fw);
1270 	if (ret) {
1271 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1272 		return ret;
1273 	}
1274 
1275 	/*
1276 	 * The starting device has been given the rproc->cached_table as the
1277 	 * resource table. The address of the vring along with the other
1278 	 * allocated resources (carveouts etc) is stored in cached_table.
1279 	 * In order to pass this information to the remote device we must copy
1280 	 * this information to device memory. We also update the table_ptr so
1281 	 * that any subsequent changes will be applied to the loaded version.
1282 	 */
1283 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1284 	if (loaded_table) {
1285 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1286 		rproc->table_ptr = loaded_table;
1287 	}
1288 
1289 	ret = rproc_prepare_subdevices(rproc);
1290 	if (ret) {
1291 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1292 			rproc->name, ret);
1293 		goto reset_table_ptr;
1294 	}
1295 
1296 	/* power up the remote processor */
1297 	ret = rproc->ops->start(rproc);
1298 	if (ret) {
1299 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1300 		goto unprepare_subdevices;
1301 	}
1302 
1303 	/* Start any subdevices for the remote processor */
1304 	ret = rproc_start_subdevices(rproc);
1305 	if (ret) {
1306 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1307 			rproc->name, ret);
1308 		goto stop_rproc;
1309 	}
1310 
1311 	rproc->state = RPROC_RUNNING;
1312 
1313 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1314 
1315 	return 0;
1316 
1317 stop_rproc:
1318 	rproc->ops->stop(rproc);
1319 unprepare_subdevices:
1320 	rproc_unprepare_subdevices(rproc);
1321 reset_table_ptr:
1322 	rproc->table_ptr = rproc->cached_table;
1323 
1324 	return ret;
1325 }
1326 
__rproc_attach(struct rproc * rproc)1327 static int __rproc_attach(struct rproc *rproc)
1328 {
1329 	struct device *dev = &rproc->dev;
1330 	int ret;
1331 
1332 	ret = rproc_prepare_subdevices(rproc);
1333 	if (ret) {
1334 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1335 			rproc->name, ret);
1336 		goto out;
1337 	}
1338 
1339 	/* Attach to the remote processor */
1340 	ret = rproc_attach_device(rproc);
1341 	if (ret) {
1342 		dev_err(dev, "can't attach to rproc %s: %d\n",
1343 			rproc->name, ret);
1344 		goto unprepare_subdevices;
1345 	}
1346 
1347 	/* Start any subdevices for the remote processor */
1348 	ret = rproc_start_subdevices(rproc);
1349 	if (ret) {
1350 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1351 			rproc->name, ret);
1352 		goto stop_rproc;
1353 	}
1354 
1355 	rproc->state = RPROC_ATTACHED;
1356 
1357 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1358 
1359 	return 0;
1360 
1361 stop_rproc:
1362 	rproc->ops->stop(rproc);
1363 unprepare_subdevices:
1364 	rproc_unprepare_subdevices(rproc);
1365 out:
1366 	return ret;
1367 }
1368 
1369 /*
1370  * take a firmware and boot a remote processor with it.
1371  */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1372 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1373 {
1374 	struct device *dev = &rproc->dev;
1375 	const char *name = rproc->firmware;
1376 	int ret;
1377 
1378 	ret = rproc_fw_sanity_check(rproc, fw);
1379 	if (ret)
1380 		return ret;
1381 
1382 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1383 
1384 	/*
1385 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1386 	 * just a nop
1387 	 */
1388 	ret = rproc_enable_iommu(rproc);
1389 	if (ret) {
1390 		dev_err(dev, "can't enable iommu: %d\n", ret);
1391 		return ret;
1392 	}
1393 
1394 	/* Prepare rproc for firmware loading if needed */
1395 	ret = rproc_prepare_device(rproc);
1396 	if (ret) {
1397 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1398 		goto disable_iommu;
1399 	}
1400 
1401 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1402 
1403 	/* Load resource table, core dump segment list etc from the firmware */
1404 	ret = rproc_parse_fw(rproc, fw);
1405 	if (ret)
1406 		goto unprepare_rproc;
1407 
1408 	/* reset max_notifyid */
1409 	rproc->max_notifyid = -1;
1410 
1411 	/* reset handled vdev */
1412 	rproc->nb_vdev = 0;
1413 
1414 	/* handle fw resources which are required to boot rproc */
1415 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1416 	if (ret) {
1417 		dev_err(dev, "Failed to process resources: %d\n", ret);
1418 		goto clean_up_resources;
1419 	}
1420 
1421 	/* Allocate carveout resources associated to rproc */
1422 	ret = rproc_alloc_registered_carveouts(rproc);
1423 	if (ret) {
1424 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1425 			ret);
1426 		goto clean_up_resources;
1427 	}
1428 
1429 	ret = rproc_start(rproc, fw);
1430 	if (ret)
1431 		goto clean_up_resources;
1432 
1433 	return 0;
1434 
1435 clean_up_resources:
1436 	rproc_resource_cleanup(rproc);
1437 	kfree(rproc->cached_table);
1438 	rproc->cached_table = NULL;
1439 	rproc->table_ptr = NULL;
1440 unprepare_rproc:
1441 	/* release HW resources if needed */
1442 	rproc_unprepare_device(rproc);
1443 disable_iommu:
1444 	rproc_disable_iommu(rproc);
1445 	return ret;
1446 }
1447 
rproc_set_rsc_table(struct rproc * rproc)1448 static int rproc_set_rsc_table(struct rproc *rproc)
1449 {
1450 	struct resource_table *table_ptr;
1451 	struct device *dev = &rproc->dev;
1452 	size_t table_sz;
1453 	int ret;
1454 
1455 	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1456 	if (!table_ptr) {
1457 		/* Not having a resource table is acceptable */
1458 		return 0;
1459 	}
1460 
1461 	if (IS_ERR(table_ptr)) {
1462 		ret = PTR_ERR(table_ptr);
1463 		dev_err(dev, "can't load resource table: %d\n", ret);
1464 		return ret;
1465 	}
1466 
1467 	/*
1468 	 * If it is possible to detach the remote processor, keep an untouched
1469 	 * copy of the resource table.  That way we can start fresh again when
1470 	 * the remote processor is re-attached, that is:
1471 	 *
1472 	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1473 	 *
1474 	 * Free'd in rproc_reset_rsc_table_on_detach() and
1475 	 * rproc_reset_rsc_table_on_stop().
1476 	 */
1477 	if (rproc->ops->detach) {
1478 		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1479 		if (!rproc->clean_table)
1480 			return -ENOMEM;
1481 	} else {
1482 		rproc->clean_table = NULL;
1483 	}
1484 
1485 	rproc->cached_table = NULL;
1486 	rproc->table_ptr = table_ptr;
1487 	rproc->table_sz = table_sz;
1488 
1489 	return 0;
1490 }
1491 
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1492 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1493 {
1494 	struct resource_table *table_ptr;
1495 
1496 	/* A resource table was never retrieved, nothing to do here */
1497 	if (!rproc->table_ptr)
1498 		return 0;
1499 
1500 	/*
1501 	 * If we made it to this point a clean_table _must_ have been
1502 	 * allocated in rproc_set_rsc_table().  If one isn't present
1503 	 * something went really wrong and we must complain.
1504 	 */
1505 	if (WARN_ON(!rproc->clean_table))
1506 		return -EINVAL;
1507 
1508 	/* Remember where the external entity installed the resource table */
1509 	table_ptr = rproc->table_ptr;
1510 
1511 	/*
1512 	 * If we made it here the remote processor was started by another
1513 	 * entity and a cache table doesn't exist.  As such make a copy of
1514 	 * the resource table currently used by the remote processor and
1515 	 * use that for the rest of the shutdown process.  The memory
1516 	 * allocated here is free'd in rproc_detach().
1517 	 */
1518 	rproc->cached_table = kmemdup(rproc->table_ptr,
1519 				      rproc->table_sz, GFP_KERNEL);
1520 	if (!rproc->cached_table)
1521 		return -ENOMEM;
1522 
1523 	/*
1524 	 * Use a copy of the resource table for the remainder of the
1525 	 * shutdown process.
1526 	 */
1527 	rproc->table_ptr = rproc->cached_table;
1528 
1529 	/*
1530 	 * Reset the memory area where the firmware loaded the resource table
1531 	 * to its original value.  That way when we re-attach the remote
1532 	 * processor the resource table is clean and ready to be used again.
1533 	 */
1534 	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1535 
1536 	/*
1537 	 * The clean resource table is no longer needed.  Allocated in
1538 	 * rproc_set_rsc_table().
1539 	 */
1540 	kfree(rproc->clean_table);
1541 
1542 	return 0;
1543 }
1544 
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1545 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1546 {
1547 	/* A resource table was never retrieved, nothing to do here */
1548 	if (!rproc->table_ptr)
1549 		return 0;
1550 
1551 	/*
1552 	 * If a cache table exists the remote processor was started by
1553 	 * the remoteproc core.  That cache table should be used for
1554 	 * the rest of the shutdown process.
1555 	 */
1556 	if (rproc->cached_table)
1557 		goto out;
1558 
1559 	/*
1560 	 * If we made it here the remote processor was started by another
1561 	 * entity and a cache table doesn't exist.  As such make a copy of
1562 	 * the resource table currently used by the remote processor and
1563 	 * use that for the rest of the shutdown process.  The memory
1564 	 * allocated here is free'd in rproc_shutdown().
1565 	 */
1566 	rproc->cached_table = kmemdup(rproc->table_ptr,
1567 				      rproc->table_sz, GFP_KERNEL);
1568 	if (!rproc->cached_table)
1569 		return -ENOMEM;
1570 
1571 	/*
1572 	 * Since the remote processor is being switched off the clean table
1573 	 * won't be needed.  Allocated in rproc_set_rsc_table().
1574 	 */
1575 	kfree(rproc->clean_table);
1576 
1577 out:
1578 	/*
1579 	 * Use a copy of the resource table for the remainder of the
1580 	 * shutdown process.
1581 	 */
1582 	rproc->table_ptr = rproc->cached_table;
1583 	return 0;
1584 }
1585 
1586 /*
1587  * Attach to remote processor - similar to rproc_fw_boot() but without
1588  * the steps that deal with the firmware image.
1589  */
rproc_attach(struct rproc * rproc)1590 static int rproc_attach(struct rproc *rproc)
1591 {
1592 	struct device *dev = &rproc->dev;
1593 	int ret;
1594 
1595 	/*
1596 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1597 	 * just a nop
1598 	 */
1599 	ret = rproc_enable_iommu(rproc);
1600 	if (ret) {
1601 		dev_err(dev, "can't enable iommu: %d\n", ret);
1602 		return ret;
1603 	}
1604 
1605 	/* Do anything that is needed to boot the remote processor */
1606 	ret = rproc_prepare_device(rproc);
1607 	if (ret) {
1608 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1609 		goto disable_iommu;
1610 	}
1611 
1612 	ret = rproc_set_rsc_table(rproc);
1613 	if (ret) {
1614 		dev_err(dev, "can't load resource table: %d\n", ret);
1615 		goto clean_up_resources;
1616 	}
1617 
1618 	/* reset max_notifyid */
1619 	rproc->max_notifyid = -1;
1620 
1621 	/* reset handled vdev */
1622 	rproc->nb_vdev = 0;
1623 
1624 	/*
1625 	 * Handle firmware resources required to attach to a remote processor.
1626 	 * Because we are attaching rather than booting the remote processor,
1627 	 * we expect the platform driver to properly set rproc->table_ptr.
1628 	 */
1629 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1630 	if (ret) {
1631 		dev_err(dev, "Failed to process resources: %d\n", ret);
1632 		goto clean_up_resources;
1633 	}
1634 
1635 	/* Allocate carveout resources associated to rproc */
1636 	ret = rproc_alloc_registered_carveouts(rproc);
1637 	if (ret) {
1638 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1639 			ret);
1640 		goto clean_up_resources;
1641 	}
1642 
1643 	ret = __rproc_attach(rproc);
1644 	if (ret)
1645 		goto clean_up_resources;
1646 
1647 	return 0;
1648 
1649 clean_up_resources:
1650 	rproc_resource_cleanup(rproc);
1651 	/* release HW resources if needed */
1652 	rproc_unprepare_device(rproc);
1653 	kfree(rproc->clean_table);
1654 disable_iommu:
1655 	rproc_disable_iommu(rproc);
1656 	return ret;
1657 }
1658 
1659 /*
1660  * take a firmware and boot it up.
1661  *
1662  * Note: this function is called asynchronously upon registration of the
1663  * remote processor (so we must wait until it completes before we try
1664  * to unregister the device. one other option is just to use kref here,
1665  * that might be cleaner).
1666  */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1667 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1668 {
1669 	struct rproc *rproc = context;
1670 
1671 	rproc_boot(rproc);
1672 
1673 	release_firmware(fw);
1674 }
1675 
rproc_trigger_auto_boot(struct rproc * rproc)1676 static int rproc_trigger_auto_boot(struct rproc *rproc)
1677 {
1678 	int ret;
1679 
1680 	/*
1681 	 * Since the remote processor is in a detached state, it has already
1682 	 * been booted by another entity.  As such there is no point in waiting
1683 	 * for a firmware image to be loaded, we can simply initiate the process
1684 	 * of attaching to it immediately.
1685 	 */
1686 	if (rproc->state == RPROC_DETACHED)
1687 		return rproc_boot(rproc);
1688 
1689 	/*
1690 	 * We're initiating an asynchronous firmware loading, so we can
1691 	 * be built-in kernel code, without hanging the boot process.
1692 	 */
1693 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1694 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1695 				      rproc, rproc_auto_boot_callback);
1696 	if (ret < 0)
1697 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1698 
1699 	return ret;
1700 }
1701 
rproc_stop(struct rproc * rproc,bool crashed)1702 static int rproc_stop(struct rproc *rproc, bool crashed)
1703 {
1704 	struct device *dev = &rproc->dev;
1705 	int ret;
1706 
1707 	/* No need to continue if a stop() operation has not been provided */
1708 	if (!rproc->ops->stop)
1709 		return -EINVAL;
1710 
1711 	/* Stop any subdevices for the remote processor */
1712 	rproc_stop_subdevices(rproc, crashed);
1713 
1714 	/* the installed resource table is no longer accessible */
1715 	ret = rproc_reset_rsc_table_on_stop(rproc);
1716 	if (ret) {
1717 		dev_err(dev, "can't reset resource table: %d\n", ret);
1718 		return ret;
1719 	}
1720 
1721 
1722 	/* power off the remote processor */
1723 	ret = rproc->ops->stop(rproc);
1724 	if (ret) {
1725 		dev_err(dev, "can't stop rproc: %d\n", ret);
1726 		return ret;
1727 	}
1728 
1729 	rproc_unprepare_subdevices(rproc);
1730 
1731 	rproc->state = RPROC_OFFLINE;
1732 
1733 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1734 
1735 	return 0;
1736 }
1737 
1738 /*
1739  * __rproc_detach(): Does the opposite of __rproc_attach()
1740  */
__rproc_detach(struct rproc * rproc)1741 static int __rproc_detach(struct rproc *rproc)
1742 {
1743 	struct device *dev = &rproc->dev;
1744 	int ret;
1745 
1746 	/* No need to continue if a detach() operation has not been provided */
1747 	if (!rproc->ops->detach)
1748 		return -EINVAL;
1749 
1750 	/* Stop any subdevices for the remote processor */
1751 	rproc_stop_subdevices(rproc, false);
1752 
1753 	/* the installed resource table is no longer accessible */
1754 	ret = rproc_reset_rsc_table_on_detach(rproc);
1755 	if (ret) {
1756 		dev_err(dev, "can't reset resource table: %d\n", ret);
1757 		return ret;
1758 	}
1759 
1760 	/* Tell the remote processor the core isn't available anymore */
1761 	ret = rproc->ops->detach(rproc);
1762 	if (ret) {
1763 		dev_err(dev, "can't detach from rproc: %d\n", ret);
1764 		return ret;
1765 	}
1766 
1767 	rproc_unprepare_subdevices(rproc);
1768 
1769 	rproc->state = RPROC_DETACHED;
1770 
1771 	dev_info(dev, "detached remote processor %s\n", rproc->name);
1772 
1773 	return 0;
1774 }
1775 
rproc_attach_recovery(struct rproc * rproc)1776 static int rproc_attach_recovery(struct rproc *rproc)
1777 {
1778 	int ret;
1779 
1780 	ret = __rproc_detach(rproc);
1781 	if (ret)
1782 		return ret;
1783 
1784 	return __rproc_attach(rproc);
1785 }
1786 
rproc_boot_recovery(struct rproc * rproc)1787 static int rproc_boot_recovery(struct rproc *rproc)
1788 {
1789 	const struct firmware *firmware_p;
1790 	struct device *dev = &rproc->dev;
1791 	int ret;
1792 
1793 	ret = rproc_stop(rproc, true);
1794 	if (ret)
1795 		return ret;
1796 
1797 	/* generate coredump */
1798 	rproc->ops->coredump(rproc);
1799 
1800 	/* load firmware */
1801 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1802 	if (ret < 0) {
1803 		dev_err(dev, "request_firmware failed: %d\n", ret);
1804 		return ret;
1805 	}
1806 
1807 	/* boot the remote processor up again */
1808 	ret = rproc_start(rproc, firmware_p);
1809 
1810 	release_firmware(firmware_p);
1811 
1812 	return ret;
1813 }
1814 
1815 /**
1816  * rproc_trigger_recovery() - recover a remoteproc
1817  * @rproc: the remote processor
1818  *
1819  * The recovery is done by resetting all the virtio devices, that way all the
1820  * rpmsg drivers will be reseted along with the remote processor making the
1821  * remoteproc functional again.
1822  *
1823  * This function can sleep, so it cannot be called from atomic context.
1824  *
1825  * Return: 0 on success or a negative value upon failure
1826  */
rproc_trigger_recovery(struct rproc * rproc)1827 int rproc_trigger_recovery(struct rproc *rproc)
1828 {
1829 	struct device *dev = &rproc->dev;
1830 	int ret;
1831 
1832 	ret = mutex_lock_interruptible(&rproc->lock);
1833 	if (ret)
1834 		return ret;
1835 
1836 	/* State could have changed before we got the mutex */
1837 	if (rproc->state != RPROC_CRASHED)
1838 		goto unlock_mutex;
1839 
1840 	dev_err(dev, "recovering %s\n", rproc->name);
1841 
1842 	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1843 		ret = rproc_attach_recovery(rproc);
1844 	else
1845 		ret = rproc_boot_recovery(rproc);
1846 
1847 unlock_mutex:
1848 	mutex_unlock(&rproc->lock);
1849 	return ret;
1850 }
1851 
1852 /**
1853  * rproc_crash_handler_work() - handle a crash
1854  * @work: work treating the crash
1855  *
1856  * This function needs to handle everything related to a crash, like cpu
1857  * registers and stack dump, information to help to debug the fatal error, etc.
1858  */
rproc_crash_handler_work(struct work_struct * work)1859 static void rproc_crash_handler_work(struct work_struct *work)
1860 {
1861 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1862 	struct device *dev = &rproc->dev;
1863 
1864 	dev_dbg(dev, "enter %s\n", __func__);
1865 
1866 	mutex_lock(&rproc->lock);
1867 
1868 	if (rproc->state == RPROC_CRASHED) {
1869 		/* handle only the first crash detected */
1870 		mutex_unlock(&rproc->lock);
1871 		return;
1872 	}
1873 
1874 	if (rproc->state == RPROC_OFFLINE) {
1875 		/* Don't recover if the remote processor was stopped */
1876 		mutex_unlock(&rproc->lock);
1877 		goto out;
1878 	}
1879 
1880 	rproc->state = RPROC_CRASHED;
1881 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1882 		rproc->name);
1883 
1884 	mutex_unlock(&rproc->lock);
1885 
1886 	if (!rproc->recovery_disabled)
1887 		rproc_trigger_recovery(rproc);
1888 
1889 out:
1890 	pm_relax(rproc->dev.parent);
1891 }
1892 
1893 /**
1894  * rproc_boot() - boot a remote processor
1895  * @rproc: handle of a remote processor
1896  *
1897  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1898  *
1899  * If the remote processor is already powered on, this function immediately
1900  * returns (successfully).
1901  *
1902  * Return: 0 on success, and an appropriate error value otherwise
1903  */
rproc_boot(struct rproc * rproc)1904 int rproc_boot(struct rproc *rproc)
1905 {
1906 	const struct firmware *firmware_p;
1907 	struct device *dev;
1908 	int ret;
1909 
1910 	if (!rproc) {
1911 		pr_err("invalid rproc handle\n");
1912 		return -EINVAL;
1913 	}
1914 
1915 	dev = &rproc->dev;
1916 
1917 	ret = mutex_lock_interruptible(&rproc->lock);
1918 	if (ret) {
1919 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1920 		return ret;
1921 	}
1922 
1923 	if (rproc->state == RPROC_DELETED) {
1924 		ret = -ENODEV;
1925 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1926 		goto unlock_mutex;
1927 	}
1928 
1929 	/* skip the boot or attach process if rproc is already powered up */
1930 	if (atomic_inc_return(&rproc->power) > 1) {
1931 		ret = 0;
1932 		goto unlock_mutex;
1933 	}
1934 
1935 	if (rproc->state == RPROC_DETACHED) {
1936 		dev_info(dev, "attaching to %s\n", rproc->name);
1937 
1938 		ret = rproc_attach(rproc);
1939 	} else {
1940 		dev_info(dev, "powering up %s\n", rproc->name);
1941 
1942 		/* load firmware */
1943 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1944 		if (ret < 0) {
1945 			dev_err(dev, "request_firmware failed: %d\n", ret);
1946 			goto downref_rproc;
1947 		}
1948 
1949 		ret = rproc_fw_boot(rproc, firmware_p);
1950 
1951 		release_firmware(firmware_p);
1952 	}
1953 
1954 downref_rproc:
1955 	if (ret)
1956 		atomic_dec(&rproc->power);
1957 unlock_mutex:
1958 	mutex_unlock(&rproc->lock);
1959 	return ret;
1960 }
1961 EXPORT_SYMBOL(rproc_boot);
1962 
1963 /**
1964  * rproc_shutdown() - power off the remote processor
1965  * @rproc: the remote processor
1966  *
1967  * Power off a remote processor (previously booted with rproc_boot()).
1968  *
1969  * In case @rproc is still being used by an additional user(s), then
1970  * this function will just decrement the power refcount and exit,
1971  * without really powering off the device.
1972  *
1973  * Every call to rproc_boot() must (eventually) be accompanied by a call
1974  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1975  *
1976  * Notes:
1977  * - we're not decrementing the rproc's refcount, only the power refcount.
1978  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1979  *   returns, and users can still use it with a subsequent rproc_boot(), if
1980  *   needed.
1981  *
1982  * Return: 0 on success, and an appropriate error value otherwise
1983  */
rproc_shutdown(struct rproc * rproc)1984 int rproc_shutdown(struct rproc *rproc)
1985 {
1986 	struct device *dev = &rproc->dev;
1987 	int ret;
1988 
1989 	ret = mutex_lock_interruptible(&rproc->lock);
1990 	if (ret) {
1991 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1992 		return ret;
1993 	}
1994 
1995 	if (rproc->state != RPROC_RUNNING &&
1996 	    rproc->state != RPROC_ATTACHED) {
1997 		ret = -EINVAL;
1998 		goto out;
1999 	}
2000 
2001 	/* if the remote proc is still needed, bail out */
2002 	if (!atomic_dec_and_test(&rproc->power))
2003 		goto out;
2004 
2005 	ret = rproc_stop(rproc, false);
2006 	if (ret) {
2007 		atomic_inc(&rproc->power);
2008 		goto out;
2009 	}
2010 
2011 	/* clean up all acquired resources */
2012 	rproc_resource_cleanup(rproc);
2013 
2014 	/* release HW resources if needed */
2015 	rproc_unprepare_device(rproc);
2016 
2017 	rproc_disable_iommu(rproc);
2018 
2019 	/* Free the copy of the resource table */
2020 	kfree(rproc->cached_table);
2021 	rproc->cached_table = NULL;
2022 	rproc->table_ptr = NULL;
2023 out:
2024 	mutex_unlock(&rproc->lock);
2025 	return ret;
2026 }
2027 EXPORT_SYMBOL(rproc_shutdown);
2028 
2029 /**
2030  * rproc_detach() - Detach the remote processor from the
2031  * remoteproc core
2032  *
2033  * @rproc: the remote processor
2034  *
2035  * Detach a remote processor (previously attached to with rproc_attach()).
2036  *
2037  * In case @rproc is still being used by an additional user(s), then
2038  * this function will just decrement the power refcount and exit,
2039  * without disconnecting the device.
2040  *
2041  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2042  * processor know that services provided by the application processor are
2043  * no longer available.  From there it should be possible to remove the
2044  * platform driver and even power cycle the application processor (if the HW
2045  * supports it) without needing to switch off the remote processor.
2046  *
2047  * Return: 0 on success, and an appropriate error value otherwise
2048  */
rproc_detach(struct rproc * rproc)2049 int rproc_detach(struct rproc *rproc)
2050 {
2051 	struct device *dev = &rproc->dev;
2052 	int ret;
2053 
2054 	ret = mutex_lock_interruptible(&rproc->lock);
2055 	if (ret) {
2056 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2057 		return ret;
2058 	}
2059 
2060 	if (rproc->state != RPROC_ATTACHED) {
2061 		ret = -EINVAL;
2062 		goto out;
2063 	}
2064 
2065 	/* if the remote proc is still needed, bail out */
2066 	if (!atomic_dec_and_test(&rproc->power)) {
2067 		ret = 0;
2068 		goto out;
2069 	}
2070 
2071 	ret = __rproc_detach(rproc);
2072 	if (ret) {
2073 		atomic_inc(&rproc->power);
2074 		goto out;
2075 	}
2076 
2077 	/* clean up all acquired resources */
2078 	rproc_resource_cleanup(rproc);
2079 
2080 	/* release HW resources if needed */
2081 	rproc_unprepare_device(rproc);
2082 
2083 	rproc_disable_iommu(rproc);
2084 
2085 	/* Free the copy of the resource table */
2086 	kfree(rproc->cached_table);
2087 	rproc->cached_table = NULL;
2088 	rproc->table_ptr = NULL;
2089 out:
2090 	mutex_unlock(&rproc->lock);
2091 	return ret;
2092 }
2093 EXPORT_SYMBOL(rproc_detach);
2094 
2095 /**
2096  * rproc_get_by_phandle() - find a remote processor by phandle
2097  * @phandle: phandle to the rproc
2098  *
2099  * Finds an rproc handle using the remote processor's phandle, and then
2100  * return a handle to the rproc.
2101  *
2102  * This function increments the remote processor's refcount, so always
2103  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2104  *
2105  * Return: rproc handle on success, and NULL on failure
2106  */
2107 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2108 struct rproc *rproc_get_by_phandle(phandle phandle)
2109 {
2110 	struct rproc *rproc = NULL, *r;
2111 	struct device_driver *driver;
2112 	struct device_node *np;
2113 
2114 	np = of_find_node_by_phandle(phandle);
2115 	if (!np)
2116 		return NULL;
2117 
2118 	rcu_read_lock();
2119 	list_for_each_entry_rcu(r, &rproc_list, node) {
2120 		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2121 			/* prevent underlying implementation from being removed */
2122 
2123 			/*
2124 			 * If the remoteproc's parent has a driver, the
2125 			 * remoteproc is not part of a cluster and we can use
2126 			 * that driver.
2127 			 */
2128 			driver = r->dev.parent->driver;
2129 
2130 			/*
2131 			 * If the remoteproc's parent does not have a driver,
2132 			 * look for the driver associated with the cluster.
2133 			 */
2134 			if (!driver) {
2135 				if (r->dev.parent->parent)
2136 					driver = r->dev.parent->parent->driver;
2137 				if (!driver)
2138 					break;
2139 			}
2140 
2141 			if (!try_module_get(driver->owner)) {
2142 				dev_err(&r->dev, "can't get owner\n");
2143 				break;
2144 			}
2145 
2146 			rproc = r;
2147 			get_device(&rproc->dev);
2148 			break;
2149 		}
2150 	}
2151 	rcu_read_unlock();
2152 
2153 	of_node_put(np);
2154 
2155 	return rproc;
2156 }
2157 #else
rproc_get_by_phandle(phandle phandle)2158 struct rproc *rproc_get_by_phandle(phandle phandle)
2159 {
2160 	return NULL;
2161 }
2162 #endif
2163 EXPORT_SYMBOL(rproc_get_by_phandle);
2164 
2165 /**
2166  * rproc_set_firmware() - assign a new firmware
2167  * @rproc: rproc handle to which the new firmware is being assigned
2168  * @fw_name: new firmware name to be assigned
2169  *
2170  * This function allows remoteproc drivers or clients to configure a custom
2171  * firmware name that is different from the default name used during remoteproc
2172  * registration. The function does not trigger a remote processor boot,
2173  * only sets the firmware name used for a subsequent boot. This function
2174  * should also be called only when the remote processor is offline.
2175  *
2176  * This allows either the userspace to configure a different name through
2177  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2178  * a specific firmware when it is controlling the boot and shutdown of the
2179  * remote processor.
2180  *
2181  * Return: 0 on success or a negative value upon failure
2182  */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2183 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2184 {
2185 	struct device *dev;
2186 	int ret, len;
2187 	char *p;
2188 
2189 	if (!rproc || !fw_name)
2190 		return -EINVAL;
2191 
2192 	dev = rproc->dev.parent;
2193 
2194 	ret = mutex_lock_interruptible(&rproc->lock);
2195 	if (ret) {
2196 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2197 		return -EINVAL;
2198 	}
2199 
2200 	if (rproc->state != RPROC_OFFLINE) {
2201 		dev_err(dev, "can't change firmware while running\n");
2202 		ret = -EBUSY;
2203 		goto out;
2204 	}
2205 
2206 	len = strcspn(fw_name, "\n");
2207 	if (!len) {
2208 		dev_err(dev, "can't provide empty string for firmware name\n");
2209 		ret = -EINVAL;
2210 		goto out;
2211 	}
2212 
2213 	p = kstrndup(fw_name, len, GFP_KERNEL);
2214 	if (!p) {
2215 		ret = -ENOMEM;
2216 		goto out;
2217 	}
2218 
2219 	kfree_const(rproc->firmware);
2220 	rproc->firmware = p;
2221 
2222 out:
2223 	mutex_unlock(&rproc->lock);
2224 	return ret;
2225 }
2226 EXPORT_SYMBOL(rproc_set_firmware);
2227 
rproc_validate(struct rproc * rproc)2228 static int rproc_validate(struct rproc *rproc)
2229 {
2230 	switch (rproc->state) {
2231 	case RPROC_OFFLINE:
2232 		/*
2233 		 * An offline processor without a start()
2234 		 * function makes no sense.
2235 		 */
2236 		if (!rproc->ops->start)
2237 			return -EINVAL;
2238 		break;
2239 	case RPROC_DETACHED:
2240 		/*
2241 		 * A remote processor in a detached state without an
2242 		 * attach() function makes not sense.
2243 		 */
2244 		if (!rproc->ops->attach)
2245 			return -EINVAL;
2246 		/*
2247 		 * When attaching to a remote processor the device memory
2248 		 * is already available and as such there is no need to have a
2249 		 * cached table.
2250 		 */
2251 		if (rproc->cached_table)
2252 			return -EINVAL;
2253 		break;
2254 	default:
2255 		/*
2256 		 * When adding a remote processor, the state of the device
2257 		 * can be offline or detached, nothing else.
2258 		 */
2259 		return -EINVAL;
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 /**
2266  * rproc_add() - register a remote processor
2267  * @rproc: the remote processor handle to register
2268  *
2269  * Registers @rproc with the remoteproc framework, after it has been
2270  * allocated with rproc_alloc().
2271  *
2272  * This is called by the platform-specific rproc implementation, whenever
2273  * a new remote processor device is probed.
2274  *
2275  * Note: this function initiates an asynchronous firmware loading
2276  * context, which will look for virtio devices supported by the rproc's
2277  * firmware.
2278  *
2279  * If found, those virtio devices will be created and added, so as a result
2280  * of registering this remote processor, additional virtio drivers might be
2281  * probed.
2282  *
2283  * Return: 0 on success and an appropriate error code otherwise
2284  */
rproc_add(struct rproc * rproc)2285 int rproc_add(struct rproc *rproc)
2286 {
2287 	struct device *dev = &rproc->dev;
2288 	int ret;
2289 
2290 	ret = rproc_validate(rproc);
2291 	if (ret < 0)
2292 		return ret;
2293 
2294 	/* add char device for this remoteproc */
2295 	ret = rproc_char_device_add(rproc);
2296 	if (ret < 0)
2297 		return ret;
2298 
2299 	ret = device_add(dev);
2300 	if (ret < 0) {
2301 		put_device(dev);
2302 		goto rproc_remove_cdev;
2303 	}
2304 
2305 	dev_info(dev, "%s is available\n", rproc->name);
2306 
2307 	/* create debugfs entries */
2308 	rproc_create_debug_dir(rproc);
2309 
2310 	/* if rproc is marked always-on, request it to boot */
2311 	if (rproc->auto_boot) {
2312 		ret = rproc_trigger_auto_boot(rproc);
2313 		if (ret < 0)
2314 			goto rproc_remove_dev;
2315 	}
2316 
2317 	/* expose to rproc_get_by_phandle users */
2318 	mutex_lock(&rproc_list_mutex);
2319 	list_add_rcu(&rproc->node, &rproc_list);
2320 	mutex_unlock(&rproc_list_mutex);
2321 
2322 	return 0;
2323 
2324 rproc_remove_dev:
2325 	rproc_delete_debug_dir(rproc);
2326 	device_del(dev);
2327 rproc_remove_cdev:
2328 	rproc_char_device_remove(rproc);
2329 	return ret;
2330 }
2331 EXPORT_SYMBOL(rproc_add);
2332 
devm_rproc_remove(void * rproc)2333 static void devm_rproc_remove(void *rproc)
2334 {
2335 	rproc_del(rproc);
2336 }
2337 
2338 /**
2339  * devm_rproc_add() - resource managed rproc_add()
2340  * @dev: the underlying device
2341  * @rproc: the remote processor handle to register
2342  *
2343  * This function performs like rproc_add() but the registered rproc device will
2344  * automatically be removed on driver detach.
2345  *
2346  * Return: 0 on success, negative errno on failure
2347  */
devm_rproc_add(struct device * dev,struct rproc * rproc)2348 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2349 {
2350 	int err;
2351 
2352 	err = rproc_add(rproc);
2353 	if (err)
2354 		return err;
2355 
2356 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2357 }
2358 EXPORT_SYMBOL(devm_rproc_add);
2359 
2360 /**
2361  * rproc_type_release() - release a remote processor instance
2362  * @dev: the rproc's device
2363  *
2364  * This function should _never_ be called directly.
2365  *
2366  * It will be called by the driver core when no one holds a valid pointer
2367  * to @dev anymore.
2368  */
rproc_type_release(struct device * dev)2369 static void rproc_type_release(struct device *dev)
2370 {
2371 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2372 
2373 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2374 
2375 	idr_destroy(&rproc->notifyids);
2376 
2377 	if (rproc->index >= 0)
2378 		ida_free(&rproc_dev_index, rproc->index);
2379 
2380 	kfree_const(rproc->firmware);
2381 	kfree_const(rproc->name);
2382 	kfree(rproc->ops);
2383 	kfree(rproc);
2384 }
2385 
2386 static const struct device_type rproc_type = {
2387 	.name		= "remoteproc",
2388 	.release	= rproc_type_release,
2389 };
2390 
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2391 static int rproc_alloc_firmware(struct rproc *rproc,
2392 				const char *name, const char *firmware)
2393 {
2394 	const char *p;
2395 
2396 	/*
2397 	 * Allocate a firmware name if the caller gave us one to work
2398 	 * with.  Otherwise construct a new one using a default pattern.
2399 	 */
2400 	if (firmware)
2401 		p = kstrdup_const(firmware, GFP_KERNEL);
2402 	else
2403 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2404 
2405 	if (!p)
2406 		return -ENOMEM;
2407 
2408 	rproc->firmware = p;
2409 
2410 	return 0;
2411 }
2412 
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2413 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2414 {
2415 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2416 	if (!rproc->ops)
2417 		return -ENOMEM;
2418 
2419 	/* Default to rproc_coredump if no coredump function is specified */
2420 	if (!rproc->ops->coredump)
2421 		rproc->ops->coredump = rproc_coredump;
2422 
2423 	if (rproc->ops->load)
2424 		return 0;
2425 
2426 	/* Default to ELF loader if no load function is specified */
2427 	rproc->ops->load = rproc_elf_load_segments;
2428 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2429 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2430 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2431 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2432 
2433 	return 0;
2434 }
2435 
2436 /**
2437  * rproc_alloc() - allocate a remote processor handle
2438  * @dev: the underlying device
2439  * @name: name of this remote processor
2440  * @ops: platform-specific handlers (mainly start/stop)
2441  * @firmware: name of firmware file to load, can be NULL
2442  * @len: length of private data needed by the rproc driver (in bytes)
2443  *
2444  * Allocates a new remote processor handle, but does not register
2445  * it yet. if @firmware is NULL, a default name is used.
2446  *
2447  * This function should be used by rproc implementations during initialization
2448  * of the remote processor.
2449  *
2450  * After creating an rproc handle using this function, and when ready,
2451  * implementations should then call rproc_add() to complete
2452  * the registration of the remote processor.
2453  *
2454  * Note: _never_ directly deallocate @rproc, even if it was not registered
2455  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2456  *
2457  * Return: new rproc pointer on success, and NULL on failure
2458  */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2459 struct rproc *rproc_alloc(struct device *dev, const char *name,
2460 			  const struct rproc_ops *ops,
2461 			  const char *firmware, int len)
2462 {
2463 	struct rproc *rproc;
2464 
2465 	if (!dev || !name || !ops)
2466 		return NULL;
2467 
2468 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2469 	if (!rproc)
2470 		return NULL;
2471 
2472 	rproc->priv = &rproc[1];
2473 	rproc->auto_boot = true;
2474 	rproc->elf_class = ELFCLASSNONE;
2475 	rproc->elf_machine = EM_NONE;
2476 
2477 	device_initialize(&rproc->dev);
2478 	rproc->dev.parent = dev;
2479 	rproc->dev.type = &rproc_type;
2480 	rproc->dev.class = &rproc_class;
2481 	rproc->dev.driver_data = rproc;
2482 	idr_init(&rproc->notifyids);
2483 
2484 	/* Assign a unique device index and name */
2485 	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2486 	if (rproc->index < 0) {
2487 		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2488 		goto put_device;
2489 	}
2490 
2491 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2492 	if (!rproc->name)
2493 		goto put_device;
2494 
2495 	if (rproc_alloc_firmware(rproc, name, firmware))
2496 		goto put_device;
2497 
2498 	if (rproc_alloc_ops(rproc, ops))
2499 		goto put_device;
2500 
2501 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2502 
2503 	atomic_set(&rproc->power, 0);
2504 
2505 	mutex_init(&rproc->lock);
2506 
2507 	INIT_LIST_HEAD(&rproc->carveouts);
2508 	INIT_LIST_HEAD(&rproc->mappings);
2509 	INIT_LIST_HEAD(&rproc->traces);
2510 	INIT_LIST_HEAD(&rproc->rvdevs);
2511 	INIT_LIST_HEAD(&rproc->subdevs);
2512 	INIT_LIST_HEAD(&rproc->dump_segments);
2513 
2514 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2515 
2516 	rproc->state = RPROC_OFFLINE;
2517 
2518 	return rproc;
2519 
2520 put_device:
2521 	put_device(&rproc->dev);
2522 	return NULL;
2523 }
2524 EXPORT_SYMBOL(rproc_alloc);
2525 
2526 /**
2527  * rproc_free() - unroll rproc_alloc()
2528  * @rproc: the remote processor handle
2529  *
2530  * This function decrements the rproc dev refcount.
2531  *
2532  * If no one holds any reference to rproc anymore, then its refcount would
2533  * now drop to zero, and it would be freed.
2534  */
rproc_free(struct rproc * rproc)2535 void rproc_free(struct rproc *rproc)
2536 {
2537 	put_device(&rproc->dev);
2538 }
2539 EXPORT_SYMBOL(rproc_free);
2540 
2541 /**
2542  * rproc_put() - release rproc reference
2543  * @rproc: the remote processor handle
2544  *
2545  * This function decrements the rproc dev refcount.
2546  *
2547  * If no one holds any reference to rproc anymore, then its refcount would
2548  * now drop to zero, and it would be freed.
2549  */
rproc_put(struct rproc * rproc)2550 void rproc_put(struct rproc *rproc)
2551 {
2552 	if (rproc->dev.parent->driver)
2553 		module_put(rproc->dev.parent->driver->owner);
2554 	else
2555 		module_put(rproc->dev.parent->parent->driver->owner);
2556 
2557 	put_device(&rproc->dev);
2558 }
2559 EXPORT_SYMBOL(rproc_put);
2560 
2561 /**
2562  * rproc_del() - unregister a remote processor
2563  * @rproc: rproc handle to unregister
2564  *
2565  * This function should be called when the platform specific rproc
2566  * implementation decides to remove the rproc device. it should
2567  * _only_ be called if a previous invocation of rproc_add()
2568  * has completed successfully.
2569  *
2570  * After rproc_del() returns, @rproc isn't freed yet, because
2571  * of the outstanding reference created by rproc_alloc. To decrement that
2572  * one last refcount, one still needs to call rproc_free().
2573  *
2574  * Return: 0 on success and -EINVAL if @rproc isn't valid
2575  */
rproc_del(struct rproc * rproc)2576 int rproc_del(struct rproc *rproc)
2577 {
2578 	if (!rproc)
2579 		return -EINVAL;
2580 
2581 	/* TODO: make sure this works with rproc->power > 1 */
2582 	rproc_shutdown(rproc);
2583 
2584 	mutex_lock(&rproc->lock);
2585 	rproc->state = RPROC_DELETED;
2586 	mutex_unlock(&rproc->lock);
2587 
2588 	rproc_delete_debug_dir(rproc);
2589 
2590 	/* the rproc is downref'ed as soon as it's removed from the klist */
2591 	mutex_lock(&rproc_list_mutex);
2592 	list_del_rcu(&rproc->node);
2593 	mutex_unlock(&rproc_list_mutex);
2594 
2595 	/* Ensure that no readers of rproc_list are still active */
2596 	synchronize_rcu();
2597 
2598 	device_del(&rproc->dev);
2599 	rproc_char_device_remove(rproc);
2600 
2601 	return 0;
2602 }
2603 EXPORT_SYMBOL(rproc_del);
2604 
devm_rproc_free(struct device * dev,void * res)2605 static void devm_rproc_free(struct device *dev, void *res)
2606 {
2607 	rproc_free(*(struct rproc **)res);
2608 }
2609 
2610 /**
2611  * devm_rproc_alloc() - resource managed rproc_alloc()
2612  * @dev: the underlying device
2613  * @name: name of this remote processor
2614  * @ops: platform-specific handlers (mainly start/stop)
2615  * @firmware: name of firmware file to load, can be NULL
2616  * @len: length of private data needed by the rproc driver (in bytes)
2617  *
2618  * This function performs like rproc_alloc() but the acquired rproc device will
2619  * automatically be released on driver detach.
2620  *
2621  * Return: new rproc instance, or NULL on failure
2622  */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2623 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2624 			       const struct rproc_ops *ops,
2625 			       const char *firmware, int len)
2626 {
2627 	struct rproc **ptr, *rproc;
2628 
2629 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2630 	if (!ptr)
2631 		return NULL;
2632 
2633 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2634 	if (rproc) {
2635 		*ptr = rproc;
2636 		devres_add(dev, ptr);
2637 	} else {
2638 		devres_free(ptr);
2639 	}
2640 
2641 	return rproc;
2642 }
2643 EXPORT_SYMBOL(devm_rproc_alloc);
2644 
2645 /**
2646  * rproc_add_subdev() - add a subdevice to a remoteproc
2647  * @rproc: rproc handle to add the subdevice to
2648  * @subdev: subdev handle to register
2649  *
2650  * Caller is responsible for populating optional subdevice function pointers.
2651  */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2652 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2653 {
2654 	list_add_tail(&subdev->node, &rproc->subdevs);
2655 }
2656 EXPORT_SYMBOL(rproc_add_subdev);
2657 
2658 /**
2659  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2660  * @rproc: rproc handle to remove the subdevice from
2661  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2662  */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2663 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2664 {
2665 	list_del(&subdev->node);
2666 }
2667 EXPORT_SYMBOL(rproc_remove_subdev);
2668 
2669 /**
2670  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2671  * @dev:	child device to find ancestor of
2672  *
2673  * Return: the ancestor rproc instance, or NULL if not found
2674  */
rproc_get_by_child(struct device * dev)2675 struct rproc *rproc_get_by_child(struct device *dev)
2676 {
2677 	for (dev = dev->parent; dev; dev = dev->parent) {
2678 		if (dev->type == &rproc_type)
2679 			return dev->driver_data;
2680 	}
2681 
2682 	return NULL;
2683 }
2684 EXPORT_SYMBOL(rproc_get_by_child);
2685 
2686 /**
2687  * rproc_report_crash() - rproc crash reporter function
2688  * @rproc: remote processor
2689  * @type: crash type
2690  *
2691  * This function must be called every time a crash is detected by the low-level
2692  * drivers implementing a specific remoteproc. This should not be called from a
2693  * non-remoteproc driver.
2694  *
2695  * This function can be called from atomic/interrupt context.
2696  */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2697 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2698 {
2699 	if (!rproc) {
2700 		pr_err("NULL rproc pointer\n");
2701 		return;
2702 	}
2703 
2704 	/* Prevent suspend while the remoteproc is being recovered */
2705 	pm_stay_awake(rproc->dev.parent);
2706 
2707 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2708 		rproc->name, rproc_crash_to_string(type));
2709 
2710 	queue_work(rproc_recovery_wq, &rproc->crash_handler);
2711 }
2712 EXPORT_SYMBOL(rproc_report_crash);
2713 
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2714 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2715 			       void *ptr)
2716 {
2717 	unsigned int longest = 0;
2718 	struct rproc *rproc;
2719 	unsigned int d;
2720 
2721 	rcu_read_lock();
2722 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2723 		if (!rproc->ops->panic)
2724 			continue;
2725 
2726 		if (rproc->state != RPROC_RUNNING &&
2727 		    rproc->state != RPROC_ATTACHED)
2728 			continue;
2729 
2730 		d = rproc->ops->panic(rproc);
2731 		longest = max(longest, d);
2732 	}
2733 	rcu_read_unlock();
2734 
2735 	/*
2736 	 * Delay for the longest requested duration before returning. This can
2737 	 * be used by the remoteproc drivers to give the remote processor time
2738 	 * to perform any requested operations (such as flush caches), when
2739 	 * it's not possible to signal the Linux side due to the panic.
2740 	 */
2741 	mdelay(longest);
2742 
2743 	return NOTIFY_DONE;
2744 }
2745 
rproc_init_panic(void)2746 static void __init rproc_init_panic(void)
2747 {
2748 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2749 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2750 }
2751 
rproc_exit_panic(void)2752 static void __exit rproc_exit_panic(void)
2753 {
2754 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2755 }
2756 
remoteproc_init(void)2757 static int __init remoteproc_init(void)
2758 {
2759 	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2760 						WQ_UNBOUND | WQ_FREEZABLE, 0);
2761 	if (!rproc_recovery_wq) {
2762 		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2763 		return -ENOMEM;
2764 	}
2765 
2766 	rproc_init_sysfs();
2767 	rproc_init_debugfs();
2768 	rproc_init_cdev();
2769 	rproc_init_panic();
2770 
2771 	return 0;
2772 }
2773 subsys_initcall(remoteproc_init);
2774 
remoteproc_exit(void)2775 static void __exit remoteproc_exit(void)
2776 {
2777 	ida_destroy(&rproc_dev_index);
2778 
2779 	if (!rproc_recovery_wq)
2780 		return;
2781 
2782 	rproc_exit_panic();
2783 	rproc_exit_debugfs();
2784 	rproc_exit_sysfs();
2785 	destroy_workqueue(rproc_recovery_wq);
2786 }
2787 module_exit(remoteproc_exit);
2788 
2789 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2790