1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25
clear_shadow_entries(struct address_space * mapping,unsigned long start,unsigned long max)26 static void clear_shadow_entries(struct address_space *mapping,
27 unsigned long start, unsigned long max)
28 {
29 XA_STATE(xas, &mapping->i_pages, start);
30 struct folio *folio;
31
32 /* Handled by shmem itself, or for DAX we do nothing. */
33 if (shmem_mapping(mapping) || dax_mapping(mapping))
34 return;
35
36 xas_set_update(&xas, workingset_update_node);
37
38 spin_lock(&mapping->host->i_lock);
39 xas_lock_irq(&xas);
40
41 /* Clear all shadow entries from start to max */
42 xas_for_each(&xas, folio, max) {
43 if (xa_is_value(folio))
44 xas_store(&xas, NULL);
45 }
46
47 xas_unlock_irq(&xas);
48 if (mapping_shrinkable(mapping))
49 inode_add_lru(mapping->host);
50 spin_unlock(&mapping->host->i_lock);
51 }
52
53 /*
54 * Unconditionally remove exceptional entries. Usually called from truncate
55 * path. Note that the folio_batch may be altered by this function by removing
56 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
57 * Please note that indices[] has entries in ascending order as guaranteed by
58 * either find_get_entries() or find_lock_entries().
59 */
truncate_folio_batch_exceptionals(struct address_space * mapping,struct folio_batch * fbatch,pgoff_t * indices)60 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
61 struct folio_batch *fbatch, pgoff_t *indices)
62 {
63 XA_STATE(xas, &mapping->i_pages, indices[0]);
64 int nr = folio_batch_count(fbatch);
65 struct folio *folio;
66 int i, j;
67
68 /* Handled by shmem itself */
69 if (shmem_mapping(mapping))
70 return;
71
72 for (j = 0; j < nr; j++)
73 if (xa_is_value(fbatch->folios[j]))
74 break;
75
76 if (j == nr)
77 return;
78
79 if (dax_mapping(mapping)) {
80 for (i = j; i < nr; i++) {
81 if (xa_is_value(fbatch->folios[i]))
82 dax_delete_mapping_entry(mapping, indices[i]);
83 }
84 goto out;
85 }
86
87 xas_set(&xas, indices[j]);
88 xas_set_update(&xas, workingset_update_node);
89
90 spin_lock(&mapping->host->i_lock);
91 xas_lock_irq(&xas);
92
93 xas_for_each(&xas, folio, indices[nr-1]) {
94 if (xa_is_value(folio))
95 xas_store(&xas, NULL);
96 }
97
98 xas_unlock_irq(&xas);
99 if (mapping_shrinkable(mapping))
100 inode_add_lru(mapping->host);
101 spin_unlock(&mapping->host->i_lock);
102 out:
103 folio_batch_remove_exceptionals(fbatch);
104 }
105
106 /**
107 * folio_invalidate - Invalidate part or all of a folio.
108 * @folio: The folio which is affected.
109 * @offset: start of the range to invalidate
110 * @length: length of the range to invalidate
111 *
112 * folio_invalidate() is called when all or part of the folio has become
113 * invalidated by a truncate operation.
114 *
115 * folio_invalidate() does not have to release all buffers, but it must
116 * ensure that no dirty buffer is left outside @offset and that no I/O
117 * is underway against any of the blocks which are outside the truncation
118 * point. Because the caller is about to free (and possibly reuse) those
119 * blocks on-disk.
120 */
folio_invalidate(struct folio * folio,size_t offset,size_t length)121 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
122 {
123 const struct address_space_operations *aops = folio->mapping->a_ops;
124
125 if (aops->invalidate_folio)
126 aops->invalidate_folio(folio, offset, length);
127 }
128 EXPORT_SYMBOL_GPL(folio_invalidate);
129
130 /*
131 * If truncate cannot remove the fs-private metadata from the page, the page
132 * becomes orphaned. It will be left on the LRU and may even be mapped into
133 * user pagetables if we're racing with filemap_fault().
134 *
135 * We need to bail out if page->mapping is no longer equal to the original
136 * mapping. This happens a) when the VM reclaimed the page while we waited on
137 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
138 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
139 */
truncate_cleanup_folio(struct folio * folio)140 static void truncate_cleanup_folio(struct folio *folio)
141 {
142 if (folio_mapped(folio))
143 unmap_mapping_folio(folio);
144
145 if (folio_needs_release(folio))
146 folio_invalidate(folio, 0, folio_size(folio));
147
148 /*
149 * Some filesystems seem to re-dirty the page even after
150 * the VM has canceled the dirty bit (eg ext3 journaling).
151 * Hence dirty accounting check is placed after invalidation.
152 */
153 folio_cancel_dirty(folio);
154 }
155
truncate_inode_folio(struct address_space * mapping,struct folio * folio)156 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
157 {
158 if (folio->mapping != mapping)
159 return -EIO;
160
161 truncate_cleanup_folio(folio);
162 filemap_remove_folio(folio);
163 return 0;
164 }
165
166 /*
167 * Handle partial folios. The folio may be entirely within the
168 * range if a split has raced with us. If not, we zero the part of the
169 * folio that's within the [start, end] range, and then split the folio if
170 * it's large. split_page_range() will discard pages which now lie beyond
171 * i_size, and we rely on the caller to discard pages which lie within a
172 * newly created hole.
173 *
174 * Returns false if splitting failed so the caller can avoid
175 * discarding the entire folio which is stubbornly unsplit.
176 */
truncate_inode_partial_folio(struct folio * folio,loff_t start,loff_t end)177 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
178 {
179 loff_t pos = folio_pos(folio);
180 unsigned int offset, length;
181
182 if (pos < start)
183 offset = start - pos;
184 else
185 offset = 0;
186 length = folio_size(folio);
187 if (pos + length <= (u64)end)
188 length = length - offset;
189 else
190 length = end + 1 - pos - offset;
191
192 folio_wait_writeback(folio);
193 if (length == folio_size(folio)) {
194 truncate_inode_folio(folio->mapping, folio);
195 return true;
196 }
197
198 /*
199 * We may be zeroing pages we're about to discard, but it avoids
200 * doing a complex calculation here, and then doing the zeroing
201 * anyway if the page split fails.
202 */
203 if (!mapping_inaccessible(folio->mapping))
204 folio_zero_range(folio, offset, length);
205
206 if (folio_needs_release(folio))
207 folio_invalidate(folio, offset, length);
208 if (!folio_test_large(folio))
209 return true;
210 if (split_folio(folio) == 0)
211 return true;
212 if (folio_test_dirty(folio))
213 return false;
214 truncate_inode_folio(folio->mapping, folio);
215 return true;
216 }
217
218 /*
219 * Used to get rid of pages on hardware memory corruption.
220 */
generic_error_remove_folio(struct address_space * mapping,struct folio * folio)221 int generic_error_remove_folio(struct address_space *mapping,
222 struct folio *folio)
223 {
224 if (!mapping)
225 return -EINVAL;
226 /*
227 * Only punch for normal data pages for now.
228 * Handling other types like directories would need more auditing.
229 */
230 if (!S_ISREG(mapping->host->i_mode))
231 return -EIO;
232 return truncate_inode_folio(mapping, folio);
233 }
234 EXPORT_SYMBOL(generic_error_remove_folio);
235
236 /**
237 * mapping_evict_folio() - Remove an unused folio from the page-cache.
238 * @mapping: The mapping this folio belongs to.
239 * @folio: The folio to remove.
240 *
241 * Safely remove one folio from the page cache.
242 * It only drops clean, unused folios.
243 *
244 * Context: Folio must be locked.
245 * Return: The number of pages successfully removed.
246 */
mapping_evict_folio(struct address_space * mapping,struct folio * folio)247 long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
248 {
249 /* The page may have been truncated before it was locked */
250 if (!mapping)
251 return 0;
252 if (folio_test_dirty(folio) || folio_test_writeback(folio))
253 return 0;
254 /* The refcount will be elevated if any page in the folio is mapped */
255 if (folio_ref_count(folio) >
256 folio_nr_pages(folio) + folio_has_private(folio) + 1)
257 return 0;
258 if (!filemap_release_folio(folio, 0))
259 return 0;
260
261 return remove_mapping(mapping, folio);
262 }
263
264 /**
265 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
266 * @mapping: mapping to truncate
267 * @lstart: offset from which to truncate
268 * @lend: offset to which to truncate (inclusive)
269 *
270 * Truncate the page cache, removing the pages that are between
271 * specified offsets (and zeroing out partial pages
272 * if lstart or lend + 1 is not page aligned).
273 *
274 * Truncate takes two passes - the first pass is nonblocking. It will not
275 * block on page locks and it will not block on writeback. The second pass
276 * will wait. This is to prevent as much IO as possible in the affected region.
277 * The first pass will remove most pages, so the search cost of the second pass
278 * is low.
279 *
280 * We pass down the cache-hot hint to the page freeing code. Even if the
281 * mapping is large, it is probably the case that the final pages are the most
282 * recently touched, and freeing happens in ascending file offset order.
283 *
284 * Note that since ->invalidate_folio() accepts range to invalidate
285 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
286 * page aligned properly.
287 */
truncate_inode_pages_range(struct address_space * mapping,loff_t lstart,loff_t lend)288 void truncate_inode_pages_range(struct address_space *mapping,
289 loff_t lstart, loff_t lend)
290 {
291 pgoff_t start; /* inclusive */
292 pgoff_t end; /* exclusive */
293 struct folio_batch fbatch;
294 pgoff_t indices[PAGEVEC_SIZE];
295 pgoff_t index;
296 int i;
297 struct folio *folio;
298 bool same_folio;
299
300 if (mapping_empty(mapping))
301 return;
302
303 /*
304 * 'start' and 'end' always covers the range of pages to be fully
305 * truncated. Partial pages are covered with 'partial_start' at the
306 * start of the range and 'partial_end' at the end of the range.
307 * Note that 'end' is exclusive while 'lend' is inclusive.
308 */
309 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
310 if (lend == -1)
311 /*
312 * lend == -1 indicates end-of-file so we have to set 'end'
313 * to the highest possible pgoff_t and since the type is
314 * unsigned we're using -1.
315 */
316 end = -1;
317 else
318 end = (lend + 1) >> PAGE_SHIFT;
319
320 folio_batch_init(&fbatch);
321 index = start;
322 while (index < end && find_lock_entries(mapping, &index, end - 1,
323 &fbatch, indices)) {
324 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
325 for (i = 0; i < folio_batch_count(&fbatch); i++)
326 truncate_cleanup_folio(fbatch.folios[i]);
327 delete_from_page_cache_batch(mapping, &fbatch);
328 for (i = 0; i < folio_batch_count(&fbatch); i++)
329 folio_unlock(fbatch.folios[i]);
330 folio_batch_release(&fbatch);
331 cond_resched();
332 }
333
334 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
335 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
336 if (!IS_ERR(folio)) {
337 same_folio = lend < folio_pos(folio) + folio_size(folio);
338 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
339 start = folio_next_index(folio);
340 if (same_folio)
341 end = folio->index;
342 }
343 folio_unlock(folio);
344 folio_put(folio);
345 folio = NULL;
346 }
347
348 if (!same_folio) {
349 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
350 FGP_LOCK, 0);
351 if (!IS_ERR(folio)) {
352 if (!truncate_inode_partial_folio(folio, lstart, lend))
353 end = folio->index;
354 folio_unlock(folio);
355 folio_put(folio);
356 }
357 }
358
359 index = start;
360 while (index < end) {
361 cond_resched();
362 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
363 indices)) {
364 /* If all gone from start onwards, we're done */
365 if (index == start)
366 break;
367 /* Otherwise restart to make sure all gone */
368 index = start;
369 continue;
370 }
371
372 for (i = 0; i < folio_batch_count(&fbatch); i++) {
373 struct folio *folio = fbatch.folios[i];
374
375 /* We rely upon deletion not changing page->index */
376
377 if (xa_is_value(folio))
378 continue;
379
380 folio_lock(folio);
381 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
382 folio_wait_writeback(folio);
383 truncate_inode_folio(mapping, folio);
384 folio_unlock(folio);
385 }
386 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
387 folio_batch_release(&fbatch);
388 }
389 }
390 EXPORT_SYMBOL(truncate_inode_pages_range);
391
392 /**
393 * truncate_inode_pages - truncate *all* the pages from an offset
394 * @mapping: mapping to truncate
395 * @lstart: offset from which to truncate
396 *
397 * Called under (and serialised by) inode->i_rwsem and
398 * mapping->invalidate_lock.
399 *
400 * Note: When this function returns, there can be a page in the process of
401 * deletion (inside __filemap_remove_folio()) in the specified range. Thus
402 * mapping->nrpages can be non-zero when this function returns even after
403 * truncation of the whole mapping.
404 */
truncate_inode_pages(struct address_space * mapping,loff_t lstart)405 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
406 {
407 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
408 }
409 EXPORT_SYMBOL(truncate_inode_pages);
410
411 /**
412 * truncate_inode_pages_final - truncate *all* pages before inode dies
413 * @mapping: mapping to truncate
414 *
415 * Called under (and serialized by) inode->i_rwsem.
416 *
417 * Filesystems have to use this in the .evict_inode path to inform the
418 * VM that this is the final truncate and the inode is going away.
419 */
truncate_inode_pages_final(struct address_space * mapping)420 void truncate_inode_pages_final(struct address_space *mapping)
421 {
422 /*
423 * Page reclaim can not participate in regular inode lifetime
424 * management (can't call iput()) and thus can race with the
425 * inode teardown. Tell it when the address space is exiting,
426 * so that it does not install eviction information after the
427 * final truncate has begun.
428 */
429 mapping_set_exiting(mapping);
430
431 if (!mapping_empty(mapping)) {
432 /*
433 * As truncation uses a lockless tree lookup, cycle
434 * the tree lock to make sure any ongoing tree
435 * modification that does not see AS_EXITING is
436 * completed before starting the final truncate.
437 */
438 xa_lock_irq(&mapping->i_pages);
439 xa_unlock_irq(&mapping->i_pages);
440 }
441
442 truncate_inode_pages(mapping, 0);
443 }
444 EXPORT_SYMBOL(truncate_inode_pages_final);
445
446 /**
447 * mapping_try_invalidate - Invalidate all the evictable folios of one inode
448 * @mapping: the address_space which holds the folios to invalidate
449 * @start: the offset 'from' which to invalidate
450 * @end: the offset 'to' which to invalidate (inclusive)
451 * @nr_failed: How many folio invalidations failed
452 *
453 * This function is similar to invalidate_mapping_pages(), except that it
454 * returns the number of folios which could not be evicted in @nr_failed.
455 */
mapping_try_invalidate(struct address_space * mapping,pgoff_t start,pgoff_t end,unsigned long * nr_failed)456 unsigned long mapping_try_invalidate(struct address_space *mapping,
457 pgoff_t start, pgoff_t end, unsigned long *nr_failed)
458 {
459 pgoff_t indices[PAGEVEC_SIZE];
460 struct folio_batch fbatch;
461 pgoff_t index = start;
462 unsigned long ret;
463 unsigned long count = 0;
464 int i;
465
466 folio_batch_init(&fbatch);
467 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
468 bool xa_has_values = false;
469 int nr = folio_batch_count(&fbatch);
470
471 for (i = 0; i < nr; i++) {
472 struct folio *folio = fbatch.folios[i];
473
474 /* We rely upon deletion not changing folio->index */
475
476 if (xa_is_value(folio)) {
477 xa_has_values = true;
478 count++;
479 continue;
480 }
481
482 ret = mapping_evict_folio(mapping, folio);
483 folio_unlock(folio);
484 /*
485 * Invalidation is a hint that the folio is no longer
486 * of interest and try to speed up its reclaim.
487 */
488 if (!ret) {
489 deactivate_file_folio(folio);
490 /* Likely in the lru cache of a remote CPU */
491 if (nr_failed)
492 (*nr_failed)++;
493 }
494 count += ret;
495 }
496
497 if (xa_has_values)
498 clear_shadow_entries(mapping, indices[0], indices[nr-1]);
499
500 folio_batch_remove_exceptionals(&fbatch);
501 folio_batch_release(&fbatch);
502 cond_resched();
503 }
504 return count;
505 }
506
507 /**
508 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
509 * @mapping: the address_space which holds the cache to invalidate
510 * @start: the offset 'from' which to invalidate
511 * @end: the offset 'to' which to invalidate (inclusive)
512 *
513 * This function removes pages that are clean, unmapped and unlocked,
514 * as well as shadow entries. It will not block on IO activity.
515 *
516 * If you want to remove all the pages of one inode, regardless of
517 * their use and writeback state, use truncate_inode_pages().
518 *
519 * Return: The number of indices that had their contents invalidated
520 */
invalidate_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t end)521 unsigned long invalidate_mapping_pages(struct address_space *mapping,
522 pgoff_t start, pgoff_t end)
523 {
524 return mapping_try_invalidate(mapping, start, end, NULL);
525 }
526 EXPORT_SYMBOL(invalidate_mapping_pages);
527
folio_launder(struct address_space * mapping,struct folio * folio)528 static int folio_launder(struct address_space *mapping, struct folio *folio)
529 {
530 if (!folio_test_dirty(folio))
531 return 0;
532 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
533 return 0;
534 return mapping->a_ops->launder_folio(folio);
535 }
536
537 /*
538 * This is like mapping_evict_folio(), except it ignores the folio's
539 * refcount. We do this because invalidate_inode_pages2() needs stronger
540 * invalidation guarantees, and cannot afford to leave folios behind because
541 * shrink_folio_list() has a temp ref on them, or because they're transiently
542 * sitting in the folio_add_lru() caches.
543 */
folio_unmap_invalidate(struct address_space * mapping,struct folio * folio,gfp_t gfp)544 int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
545 gfp_t gfp)
546 {
547 int ret;
548
549 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
550
551 if (folio_mapped(folio))
552 unmap_mapping_folio(folio);
553 BUG_ON(folio_mapped(folio));
554
555 ret = folio_launder(mapping, folio);
556 if (ret)
557 return ret;
558 if (folio->mapping != mapping)
559 return -EBUSY;
560 if (!filemap_release_folio(folio, gfp))
561 return -EBUSY;
562
563 spin_lock(&mapping->host->i_lock);
564 xa_lock_irq(&mapping->i_pages);
565 if (folio_test_dirty(folio))
566 goto failed;
567
568 BUG_ON(folio_has_private(folio));
569 __filemap_remove_folio(folio, NULL);
570 xa_unlock_irq(&mapping->i_pages);
571 if (mapping_shrinkable(mapping))
572 inode_add_lru(mapping->host);
573 spin_unlock(&mapping->host->i_lock);
574
575 filemap_free_folio(mapping, folio);
576 return 1;
577 failed:
578 xa_unlock_irq(&mapping->i_pages);
579 spin_unlock(&mapping->host->i_lock);
580 return -EBUSY;
581 }
582
583 /**
584 * invalidate_inode_pages2_range - remove range of pages from an address_space
585 * @mapping: the address_space
586 * @start: the page offset 'from' which to invalidate
587 * @end: the page offset 'to' which to invalidate (inclusive)
588 *
589 * Any pages which are found to be mapped into pagetables are unmapped prior to
590 * invalidation.
591 *
592 * Return: -EBUSY if any pages could not be invalidated.
593 */
invalidate_inode_pages2_range(struct address_space * mapping,pgoff_t start,pgoff_t end)594 int invalidate_inode_pages2_range(struct address_space *mapping,
595 pgoff_t start, pgoff_t end)
596 {
597 pgoff_t indices[PAGEVEC_SIZE];
598 struct folio_batch fbatch;
599 pgoff_t index;
600 int i;
601 int ret = 0;
602 int ret2 = 0;
603 int did_range_unmap = 0;
604
605 if (mapping_empty(mapping))
606 return 0;
607
608 folio_batch_init(&fbatch);
609 index = start;
610 while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
611 bool xa_has_values = false;
612 int nr = folio_batch_count(&fbatch);
613
614 for (i = 0; i < nr; i++) {
615 struct folio *folio = fbatch.folios[i];
616
617 /* We rely upon deletion not changing folio->index */
618
619 if (xa_is_value(folio)) {
620 xa_has_values = true;
621 if (dax_mapping(mapping) &&
622 !dax_invalidate_mapping_entry_sync(mapping, indices[i]))
623 ret = -EBUSY;
624 continue;
625 }
626
627 if (!did_range_unmap && folio_mapped(folio)) {
628 /*
629 * If folio is mapped, before taking its lock,
630 * zap the rest of the file in one hit.
631 */
632 unmap_mapping_pages(mapping, indices[i],
633 (1 + end - indices[i]), false);
634 did_range_unmap = 1;
635 }
636
637 folio_lock(folio);
638 if (unlikely(folio->mapping != mapping)) {
639 folio_unlock(folio);
640 continue;
641 }
642 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
643 folio_wait_writeback(folio);
644 ret2 = folio_unmap_invalidate(mapping, folio, GFP_KERNEL);
645 if (ret2 < 0)
646 ret = ret2;
647 folio_unlock(folio);
648 }
649
650 if (xa_has_values)
651 clear_shadow_entries(mapping, indices[0], indices[nr-1]);
652
653 folio_batch_remove_exceptionals(&fbatch);
654 folio_batch_release(&fbatch);
655 cond_resched();
656 }
657 /*
658 * For DAX we invalidate page tables after invalidating page cache. We
659 * could invalidate page tables while invalidating each entry however
660 * that would be expensive. And doing range unmapping before doesn't
661 * work as we have no cheap way to find whether page cache entry didn't
662 * get remapped later.
663 */
664 if (dax_mapping(mapping)) {
665 unmap_mapping_pages(mapping, start, end - start + 1, false);
666 }
667 return ret;
668 }
669 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
670
671 /**
672 * invalidate_inode_pages2 - remove all pages from an address_space
673 * @mapping: the address_space
674 *
675 * Any pages which are found to be mapped into pagetables are unmapped prior to
676 * invalidation.
677 *
678 * Return: -EBUSY if any pages could not be invalidated.
679 */
invalidate_inode_pages2(struct address_space * mapping)680 int invalidate_inode_pages2(struct address_space *mapping)
681 {
682 return invalidate_inode_pages2_range(mapping, 0, -1);
683 }
684 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
685
686 /**
687 * truncate_pagecache - unmap and remove pagecache that has been truncated
688 * @inode: inode
689 * @newsize: new file size
690 *
691 * inode's new i_size must already be written before truncate_pagecache
692 * is called.
693 *
694 * This function should typically be called before the filesystem
695 * releases resources associated with the freed range (eg. deallocates
696 * blocks). This way, pagecache will always stay logically coherent
697 * with on-disk format, and the filesystem would not have to deal with
698 * situations such as writepage being called for a page that has already
699 * had its underlying blocks deallocated.
700 */
truncate_pagecache(struct inode * inode,loff_t newsize)701 void truncate_pagecache(struct inode *inode, loff_t newsize)
702 {
703 struct address_space *mapping = inode->i_mapping;
704 loff_t holebegin = round_up(newsize, PAGE_SIZE);
705
706 /*
707 * unmap_mapping_range is called twice, first simply for
708 * efficiency so that truncate_inode_pages does fewer
709 * single-page unmaps. However after this first call, and
710 * before truncate_inode_pages finishes, it is possible for
711 * private pages to be COWed, which remain after
712 * truncate_inode_pages finishes, hence the second
713 * unmap_mapping_range call must be made for correctness.
714 */
715 unmap_mapping_range(mapping, holebegin, 0, 1);
716 truncate_inode_pages(mapping, newsize);
717 unmap_mapping_range(mapping, holebegin, 0, 1);
718 }
719 EXPORT_SYMBOL(truncate_pagecache);
720
721 /**
722 * truncate_setsize - update inode and pagecache for a new file size
723 * @inode: inode
724 * @newsize: new file size
725 *
726 * truncate_setsize updates i_size and performs pagecache truncation (if
727 * necessary) to @newsize. It will be typically be called from the filesystem's
728 * setattr function when ATTR_SIZE is passed in.
729 *
730 * Must be called with a lock serializing truncates and writes (generally
731 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
732 * specific block truncation has been performed.
733 */
truncate_setsize(struct inode * inode,loff_t newsize)734 void truncate_setsize(struct inode *inode, loff_t newsize)
735 {
736 loff_t oldsize = inode->i_size;
737
738 i_size_write(inode, newsize);
739 if (newsize > oldsize)
740 pagecache_isize_extended(inode, oldsize, newsize);
741 truncate_pagecache(inode, newsize);
742 }
743 EXPORT_SYMBOL(truncate_setsize);
744
745 /**
746 * pagecache_isize_extended - update pagecache after extension of i_size
747 * @inode: inode for which i_size was extended
748 * @from: original inode size
749 * @to: new inode size
750 *
751 * Handle extension of inode size either caused by extending truncate or
752 * by write starting after current i_size. We mark the page straddling
753 * current i_size RO so that page_mkwrite() is called on the first
754 * write access to the page. The filesystem will update its per-block
755 * information before user writes to the page via mmap after the i_size
756 * has been changed.
757 *
758 * The function must be called after i_size is updated so that page fault
759 * coming after we unlock the folio will already see the new i_size.
760 * The function must be called while we still hold i_rwsem - this not only
761 * makes sure i_size is stable but also that userspace cannot observe new
762 * i_size value before we are prepared to store mmap writes at new inode size.
763 */
pagecache_isize_extended(struct inode * inode,loff_t from,loff_t to)764 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
765 {
766 int bsize = i_blocksize(inode);
767 loff_t rounded_from;
768 struct folio *folio;
769
770 WARN_ON(to > inode->i_size);
771
772 if (from >= to || bsize >= PAGE_SIZE)
773 return;
774 /* Page straddling @from will not have any hole block created? */
775 rounded_from = round_up(from, bsize);
776 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
777 return;
778
779 folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE);
780 /* Folio not cached? Nothing to do */
781 if (IS_ERR(folio))
782 return;
783 /*
784 * See folio_clear_dirty_for_io() for details why folio_mark_dirty()
785 * is needed.
786 */
787 if (folio_mkclean(folio))
788 folio_mark_dirty(folio);
789
790 /*
791 * The post-eof range of the folio must be zeroed before it is exposed
792 * to the file. Writeback normally does this, but since i_size has been
793 * increased we handle it here.
794 */
795 if (folio_test_dirty(folio)) {
796 unsigned int offset, end;
797
798 offset = from - folio_pos(folio);
799 end = min_t(unsigned int, to - folio_pos(folio),
800 folio_size(folio));
801 folio_zero_segment(folio, offset, end);
802 }
803
804 folio_unlock(folio);
805 folio_put(folio);
806 }
807 EXPORT_SYMBOL(pagecache_isize_extended);
808
809 /**
810 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
811 * @inode: inode
812 * @lstart: offset of beginning of hole
813 * @lend: offset of last byte of hole
814 *
815 * This function should typically be called before the filesystem
816 * releases resources associated with the freed range (eg. deallocates
817 * blocks). This way, pagecache will always stay logically coherent
818 * with on-disk format, and the filesystem would not have to deal with
819 * situations such as writepage being called for a page that has already
820 * had its underlying blocks deallocated.
821 */
truncate_pagecache_range(struct inode * inode,loff_t lstart,loff_t lend)822 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
823 {
824 struct address_space *mapping = inode->i_mapping;
825 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
826 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
827 /*
828 * This rounding is currently just for example: unmap_mapping_range
829 * expands its hole outwards, whereas we want it to contract the hole
830 * inwards. However, existing callers of truncate_pagecache_range are
831 * doing their own page rounding first. Note that unmap_mapping_range
832 * allows holelen 0 for all, and we allow lend -1 for end of file.
833 */
834
835 /*
836 * Unlike in truncate_pagecache, unmap_mapping_range is called only
837 * once (before truncating pagecache), and without "even_cows" flag:
838 * hole-punching should not remove private COWed pages from the hole.
839 */
840 if ((u64)unmap_end > (u64)unmap_start)
841 unmap_mapping_range(mapping, unmap_start,
842 1 + unmap_end - unmap_start, 0);
843 truncate_inode_pages_range(mapping, lstart, lend);
844 }
845 EXPORT_SYMBOL(truncate_pagecache_range);
846