xref: /linux/drivers/block/rnbd/rnbd-clt.c (revision 7c746eb71fc3737340c32f44c31b111f74f5632c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Network Block Driver
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/hdreg.h>
16 #include <linux/scatterlist.h>
17 #include <linux/idr.h>
18 
19 #include "rnbd-clt.h"
20 
21 MODULE_DESCRIPTION("RDMA Network Block Device Client");
22 MODULE_LICENSE("GPL");
23 
24 static int rnbd_client_major;
25 static DEFINE_IDA(index_ida);
26 static DEFINE_MUTEX(sess_lock);
27 static LIST_HEAD(sess_list);
28 static struct workqueue_struct *rnbd_clt_wq;
29 
30 /*
31  * Maximum number of partitions an instance can have.
32  * 6 bits = 64 minors = 63 partitions (one minor is used for the device itself)
33  */
34 #define RNBD_PART_BITS		6
35 
36 static inline bool rnbd_clt_get_sess(struct rnbd_clt_session *sess)
37 {
38 	return refcount_inc_not_zero(&sess->refcount);
39 }
40 
41 static void free_sess(struct rnbd_clt_session *sess);
42 
43 static void rnbd_clt_put_sess(struct rnbd_clt_session *sess)
44 {
45 	might_sleep();
46 
47 	if (refcount_dec_and_test(&sess->refcount))
48 		free_sess(sess);
49 }
50 
51 static void rnbd_clt_put_dev(struct rnbd_clt_dev *dev)
52 {
53 	might_sleep();
54 
55 	if (!refcount_dec_and_test(&dev->refcount))
56 		return;
57 
58 	ida_free(&index_ida, dev->clt_device_id);
59 	kfree(dev->hw_queues);
60 	kfree(dev->pathname);
61 	rnbd_clt_put_sess(dev->sess);
62 	mutex_destroy(&dev->lock);
63 
64 	if (dev->kobj.state_initialized)
65 		kobject_put(&dev->kobj);
66 }
67 
68 static inline bool rnbd_clt_get_dev(struct rnbd_clt_dev *dev)
69 {
70 	return refcount_inc_not_zero(&dev->refcount);
71 }
72 
73 static void rnbd_clt_change_capacity(struct rnbd_clt_dev *dev,
74 				    sector_t new_nsectors)
75 {
76 	if (get_capacity(dev->gd) == new_nsectors)
77 		return;
78 
79 	/*
80 	 * If the size changed, we need to revalidate it
81 	 */
82 	rnbd_clt_info(dev, "Device size changed from %llu to %llu sectors\n",
83 		      get_capacity(dev->gd), new_nsectors);
84 	set_capacity_and_notify(dev->gd, new_nsectors);
85 }
86 
87 static int process_msg_open_rsp(struct rnbd_clt_dev *dev,
88 				struct rnbd_msg_open_rsp *rsp)
89 {
90 	struct kobject *gd_kobj;
91 	int err = 0;
92 
93 	mutex_lock(&dev->lock);
94 	if (dev->dev_state == DEV_STATE_UNMAPPED) {
95 		rnbd_clt_info(dev,
96 			       "Ignoring Open-Response message from server for  unmapped device\n");
97 		err = -ENOENT;
98 		goto out;
99 	}
100 	if (dev->dev_state == DEV_STATE_MAPPED_DISCONNECTED) {
101 		u64 nsectors = le64_to_cpu(rsp->nsectors);
102 
103 		rnbd_clt_change_capacity(dev, nsectors);
104 		gd_kobj = &disk_to_dev(dev->gd)->kobj;
105 		kobject_uevent(gd_kobj, KOBJ_ONLINE);
106 		rnbd_clt_info(dev, "Device online, device remapped successfully\n");
107 	}
108 	if (!rsp->logical_block_size) {
109 		err = -EINVAL;
110 		goto out;
111 	}
112 	dev->device_id = le32_to_cpu(rsp->device_id);
113 	dev->dev_state = DEV_STATE_MAPPED;
114 
115 out:
116 	mutex_unlock(&dev->lock);
117 
118 	return err;
119 }
120 
121 int rnbd_clt_resize_disk(struct rnbd_clt_dev *dev, sector_t newsize)
122 {
123 	int ret = 0;
124 
125 	mutex_lock(&dev->lock);
126 	if (dev->dev_state != DEV_STATE_MAPPED) {
127 		pr_err("Failed to set new size of the device, device is not opened\n");
128 		ret = -ENOENT;
129 		goto out;
130 	}
131 	rnbd_clt_change_capacity(dev, newsize);
132 
133 out:
134 	mutex_unlock(&dev->lock);
135 
136 	return ret;
137 }
138 
139 static inline void rnbd_clt_dev_requeue(struct rnbd_queue *q)
140 {
141 	if (WARN_ON(!q->hctx))
142 		return;
143 
144 	/* We can come here from interrupt, thus async=true */
145 	blk_mq_run_hw_queue(q->hctx, true);
146 }
147 
148 enum {
149 	RNBD_DELAY_IFBUSY = -1,
150 };
151 
152 /**
153  * rnbd_get_cpu_qlist() - finds a list with HW queues to be rerun
154  * @sess:	Session to find a queue for
155  * @cpu:	Cpu to start the search from
156  *
157  * Description:
158  *     Each CPU has a list of HW queues, which needs to be rerun.  If a list
159  *     is not empty - it is marked with a bit.  This function finds first
160  *     set bit in a bitmap and returns corresponding CPU list.
161  */
162 static struct rnbd_cpu_qlist *
163 rnbd_get_cpu_qlist(struct rnbd_clt_session *sess, int cpu)
164 {
165 	int bit;
166 
167 	/* Search from cpu to nr_cpu_ids */
168 	bit = find_next_bit(sess->cpu_queues_bm, nr_cpu_ids, cpu);
169 	if (bit < nr_cpu_ids) {
170 		return per_cpu_ptr(sess->cpu_queues, bit);
171 	} else if (cpu != 0) {
172 		/* Search from 0 to cpu */
173 		bit = find_first_bit(sess->cpu_queues_bm, cpu);
174 		if (bit < cpu)
175 			return per_cpu_ptr(sess->cpu_queues, bit);
176 	}
177 
178 	return NULL;
179 }
180 
181 static inline int nxt_cpu(int cpu)
182 {
183 	return (cpu + 1) % nr_cpu_ids;
184 }
185 
186 /**
187  * rnbd_rerun_if_needed() - rerun next queue marked as stopped
188  * @sess:	Session to rerun a queue on
189  *
190  * Description:
191  *     Each CPU has it's own list of HW queues, which should be rerun.
192  *     Function finds such list with HW queues, takes a list lock, picks up
193  *     the first HW queue out of the list and requeues it.
194  *
195  * Return:
196  *     True if the queue was requeued, false otherwise.
197  *
198  * Context:
199  *     Does not matter.
200  */
201 static bool rnbd_rerun_if_needed(struct rnbd_clt_session *sess)
202 {
203 	struct rnbd_queue *q = NULL;
204 	struct rnbd_cpu_qlist *cpu_q;
205 	unsigned long flags;
206 	int *cpup;
207 
208 	/*
209 	 * To keep fairness and not to let other queues starve we always
210 	 * try to wake up someone else in round-robin manner.  That of course
211 	 * increases latency but queues always have a chance to be executed.
212 	 */
213 	cpup = get_cpu_ptr(sess->cpu_rr);
214 	for (cpu_q = rnbd_get_cpu_qlist(sess, nxt_cpu(*cpup)); cpu_q;
215 	     cpu_q = rnbd_get_cpu_qlist(sess, nxt_cpu(cpu_q->cpu))) {
216 		if (!spin_trylock_irqsave(&cpu_q->requeue_lock, flags))
217 			continue;
218 		if (!test_bit(cpu_q->cpu, sess->cpu_queues_bm))
219 			goto unlock;
220 		q = list_first_entry_or_null(&cpu_q->requeue_list,
221 					     typeof(*q), requeue_list);
222 		if (WARN_ON(!q))
223 			goto clear_bit;
224 		list_del_init(&q->requeue_list);
225 		clear_bit_unlock(0, &q->in_list);
226 
227 		if (list_empty(&cpu_q->requeue_list)) {
228 			/* Clear bit if nothing is left */
229 clear_bit:
230 			clear_bit(cpu_q->cpu, sess->cpu_queues_bm);
231 		}
232 unlock:
233 		spin_unlock_irqrestore(&cpu_q->requeue_lock, flags);
234 
235 		if (q)
236 			break;
237 	}
238 
239 	/**
240 	 * Saves the CPU that is going to be requeued on the per-cpu var. Just
241 	 * incrementing it doesn't work because rnbd_get_cpu_qlist() will
242 	 * always return the first CPU with something on the queue list when the
243 	 * value stored on the var is greater than the last CPU with something
244 	 * on the list.
245 	 */
246 	if (cpu_q)
247 		*cpup = cpu_q->cpu;
248 	put_cpu_ptr(sess->cpu_rr);
249 
250 	if (q)
251 		rnbd_clt_dev_requeue(q);
252 
253 	return q;
254 }
255 
256 /**
257  * rnbd_rerun_all_if_idle() - rerun all queues left in the list if
258  *				 session is idling (there are no requests
259  *				 in-flight).
260  * @sess:	Session to rerun the queues on
261  *
262  * Description:
263  *     This function tries to rerun all stopped queues if there are no
264  *     requests in-flight anymore.  This function tries to solve an obvious
265  *     problem, when number of tags < than number of queues (hctx), which
266  *     are stopped and put to sleep.  If last permit, which has been just put,
267  *     does not wake up all left queues (hctxs), IO requests hang forever.
268  *
269  *     That can happen when all number of permits, say N, have been exhausted
270  *     from one CPU, and we have many block devices per session, say M.
271  *     Each block device has it's own queue (hctx) for each CPU, so eventually
272  *     we can put that number of queues (hctxs) to sleep: M x nr_cpu_ids.
273  *     If number of permits N < M x nr_cpu_ids finally we will get an IO hang.
274  *
275  *     To avoid this hang last caller of rnbd_put_permit() (last caller is the
276  *     one who observes sess->busy == 0) must wake up all remaining queues.
277  *
278  * Context:
279  *     Does not matter.
280  */
281 static void rnbd_rerun_all_if_idle(struct rnbd_clt_session *sess)
282 {
283 	bool requeued;
284 
285 	do {
286 		requeued = rnbd_rerun_if_needed(sess);
287 	} while (atomic_read(&sess->busy) == 0 && requeued);
288 }
289 
290 static struct rtrs_permit *rnbd_get_permit(struct rnbd_clt_session *sess,
291 					     enum rtrs_clt_con_type con_type,
292 					     enum wait_type wait)
293 {
294 	struct rtrs_permit *permit;
295 
296 	permit = rtrs_clt_get_permit(sess->rtrs, con_type, wait);
297 	if (permit)
298 		/* We have a subtle rare case here, when all permits can be
299 		 * consumed before busy counter increased.  This is safe,
300 		 * because loser will get NULL as a permit, observe 0 busy
301 		 * counter and immediately restart the queue himself.
302 		 */
303 		atomic_inc(&sess->busy);
304 
305 	return permit;
306 }
307 
308 static void rnbd_put_permit(struct rnbd_clt_session *sess,
309 			     struct rtrs_permit *permit)
310 {
311 	rtrs_clt_put_permit(sess->rtrs, permit);
312 	atomic_dec(&sess->busy);
313 	/* Paired with rnbd_clt_dev_add_to_requeue().  Decrement first
314 	 * and then check queue bits.
315 	 */
316 	smp_mb__after_atomic();
317 	rnbd_rerun_all_if_idle(sess);
318 }
319 
320 static struct rnbd_iu *rnbd_get_iu(struct rnbd_clt_session *sess,
321 				     enum rtrs_clt_con_type con_type,
322 				     enum wait_type wait)
323 {
324 	struct rnbd_iu *iu;
325 	struct rtrs_permit *permit;
326 
327 	iu = kzalloc(sizeof(*iu), GFP_KERNEL);
328 	if (!iu)
329 		return NULL;
330 
331 	permit = rnbd_get_permit(sess, con_type, wait);
332 	if (!permit) {
333 		kfree(iu);
334 		return NULL;
335 	}
336 
337 	iu->permit = permit;
338 	/*
339 	 * 1st reference is dropped after finishing sending a "user" message,
340 	 * 2nd reference is dropped after confirmation with the response is
341 	 * returned.
342 	 * 1st and 2nd can happen in any order, so the rnbd_iu should be
343 	 * released (rtrs_permit returned to rtrs) only after both
344 	 * are finished.
345 	 */
346 	atomic_set(&iu->refcount, 2);
347 	init_waitqueue_head(&iu->comp.wait);
348 	iu->comp.errno = INT_MAX;
349 
350 	if (sg_alloc_table(&iu->sgt, 1, GFP_KERNEL)) {
351 		rnbd_put_permit(sess, permit);
352 		kfree(iu);
353 		return NULL;
354 	}
355 
356 	return iu;
357 }
358 
359 static void rnbd_put_iu(struct rnbd_clt_session *sess, struct rnbd_iu *iu)
360 {
361 	if (atomic_dec_and_test(&iu->refcount)) {
362 		sg_free_table(&iu->sgt);
363 		rnbd_put_permit(sess, iu->permit);
364 		kfree(iu);
365 	}
366 }
367 
368 static void rnbd_softirq_done_fn(struct request *rq)
369 {
370 	struct rnbd_clt_dev *dev	= rq->q->disk->private_data;
371 	struct rnbd_clt_session *sess	= dev->sess;
372 	struct rnbd_iu *iu;
373 
374 	iu = blk_mq_rq_to_pdu(rq);
375 	sg_free_table_chained(&iu->sgt, RNBD_INLINE_SG_CNT);
376 	rnbd_put_permit(sess, iu->permit);
377 	blk_mq_end_request(rq, errno_to_blk_status(iu->errno));
378 }
379 
380 static void msg_io_conf(void *priv, int errno)
381 {
382 	struct rnbd_iu *iu = priv;
383 	struct rnbd_clt_dev *dev = iu->dev;
384 	struct request *rq = iu->rq;
385 	int rw = rq_data_dir(rq);
386 
387 	iu->errno = errno;
388 
389 	blk_mq_complete_request(rq);
390 
391 	if (errno)
392 		rnbd_clt_info_rl(dev, "%s I/O failed with err: %d\n",
393 				 rw == READ ? "read" : "write", errno);
394 }
395 
396 static void wake_up_iu_comp(struct rnbd_iu *iu, int errno)
397 {
398 	iu->comp.errno = errno;
399 	wake_up(&iu->comp.wait);
400 }
401 
402 static void msg_conf(void *priv, int errno)
403 {
404 	struct rnbd_iu *iu = priv;
405 
406 	iu->errno = errno;
407 	schedule_work(&iu->work);
408 }
409 
410 static int send_usr_msg(struct rtrs_clt_sess *rtrs, int dir,
411 			struct rnbd_iu *iu, struct kvec *vec,
412 			size_t len, struct scatterlist *sg, unsigned int sg_len,
413 			void (*conf)(struct work_struct *work),
414 			int *errno, int wait)
415 {
416 	int err;
417 	struct rtrs_clt_req_ops req_ops;
418 
419 	INIT_WORK(&iu->work, conf);
420 	req_ops = (struct rtrs_clt_req_ops) {
421 		.priv = iu,
422 		.conf_fn = msg_conf,
423 	};
424 	err = rtrs_clt_request(dir, &req_ops, rtrs, iu->permit,
425 				vec, 1, len, sg, sg_len);
426 	if (!err && wait) {
427 		wait_event(iu->comp.wait, iu->comp.errno != INT_MAX);
428 		*errno = iu->comp.errno;
429 	} else {
430 		*errno = 0;
431 	}
432 
433 	return err;
434 }
435 
436 static void msg_close_conf(struct work_struct *work)
437 {
438 	struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work);
439 	struct rnbd_clt_dev *dev = iu->dev;
440 
441 	wake_up_iu_comp(iu, iu->errno);
442 	rnbd_put_iu(dev->sess, iu);
443 	rnbd_clt_put_dev(dev);
444 }
445 
446 static int send_msg_close(struct rnbd_clt_dev *dev, u32 device_id,
447 			  enum wait_type wait)
448 {
449 	struct rnbd_clt_session *sess = dev->sess;
450 	struct rnbd_msg_close msg;
451 	struct rnbd_iu *iu;
452 	struct kvec vec = {
453 		.iov_base = &msg,
454 		.iov_len  = sizeof(msg)
455 	};
456 	int err, errno;
457 
458 	iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT);
459 	if (!iu)
460 		return -ENOMEM;
461 
462 	iu->buf = NULL;
463 	iu->dev = dev;
464 
465 	msg.hdr.type	= cpu_to_le16(RNBD_MSG_CLOSE);
466 	msg.device_id	= cpu_to_le32(device_id);
467 
468 	WARN_ON(!rnbd_clt_get_dev(dev));
469 	err = send_usr_msg(sess->rtrs, WRITE, iu, &vec, 0, NULL, 0,
470 			   msg_close_conf, &errno, wait);
471 	if (err) {
472 		rnbd_clt_put_dev(dev);
473 		rnbd_put_iu(sess, iu);
474 	} else {
475 		err = errno;
476 	}
477 
478 	rnbd_put_iu(sess, iu);
479 	return err;
480 }
481 
482 static void msg_open_conf(struct work_struct *work)
483 {
484 	struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work);
485 	struct rnbd_msg_open_rsp *rsp = iu->buf;
486 	struct rnbd_clt_dev *dev = iu->dev;
487 	int errno = iu->errno;
488 	bool from_map = false;
489 
490 	/* INIT state is only triggered from rnbd_clt_map_device */
491 	if (dev->dev_state == DEV_STATE_INIT)
492 		from_map = true;
493 
494 	if (errno) {
495 		rnbd_clt_err(dev,
496 			      "Opening failed, server responded: %d\n",
497 			      errno);
498 	} else {
499 		errno = process_msg_open_rsp(dev, rsp);
500 		if (errno) {
501 			u32 device_id = le32_to_cpu(rsp->device_id);
502 			/*
503 			 * If server thinks its fine, but we fail to process
504 			 * then be nice and send a close to server.
505 			 */
506 			send_msg_close(dev, device_id, RTRS_PERMIT_NOWAIT);
507 		}
508 	}
509 	/* We free rsp in rnbd_clt_map_device for map scenario */
510 	if (!from_map)
511 		kfree(rsp);
512 	wake_up_iu_comp(iu, errno);
513 	rnbd_put_iu(dev->sess, iu);
514 	rnbd_clt_put_dev(dev);
515 }
516 
517 static void msg_sess_info_conf(struct work_struct *work)
518 {
519 	struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work);
520 	struct rnbd_msg_sess_info_rsp *rsp = iu->buf;
521 	struct rnbd_clt_session *sess = iu->sess;
522 
523 	if (!iu->errno)
524 		sess->ver = min_t(u8, rsp->ver, RNBD_PROTO_VER_MAJOR);
525 
526 	kfree(rsp);
527 	wake_up_iu_comp(iu, iu->errno);
528 	rnbd_put_iu(sess, iu);
529 	rnbd_clt_put_sess(sess);
530 }
531 
532 static int send_msg_open(struct rnbd_clt_dev *dev, enum wait_type wait)
533 {
534 	struct rnbd_clt_session *sess = dev->sess;
535 	struct rnbd_msg_open_rsp *rsp;
536 	struct rnbd_msg_open msg;
537 	struct rnbd_iu *iu;
538 	struct kvec vec = {
539 		.iov_base = &msg,
540 		.iov_len  = sizeof(msg)
541 	};
542 	int err, errno;
543 
544 	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
545 	if (!rsp)
546 		return -ENOMEM;
547 
548 	iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT);
549 	if (!iu) {
550 		kfree(rsp);
551 		return -ENOMEM;
552 	}
553 
554 	iu->buf = rsp;
555 	iu->dev = dev;
556 
557 	sg_init_one(iu->sgt.sgl, rsp, sizeof(*rsp));
558 
559 	msg.hdr.type	= cpu_to_le16(RNBD_MSG_OPEN);
560 	msg.access_mode	= dev->access_mode;
561 	strscpy(msg.dev_name, dev->pathname, sizeof(msg.dev_name));
562 
563 	WARN_ON(!rnbd_clt_get_dev(dev));
564 	err = send_usr_msg(sess->rtrs, READ, iu,
565 			   &vec, sizeof(*rsp), iu->sgt.sgl, 1,
566 			   msg_open_conf, &errno, wait);
567 	if (err) {
568 		rnbd_clt_put_dev(dev);
569 		rnbd_put_iu(sess, iu);
570 		kfree(rsp);
571 	} else {
572 		err = errno;
573 	}
574 
575 	rnbd_put_iu(sess, iu);
576 	return err;
577 }
578 
579 static int send_msg_sess_info(struct rnbd_clt_session *sess, enum wait_type wait)
580 {
581 	struct rnbd_msg_sess_info_rsp *rsp;
582 	struct rnbd_msg_sess_info msg;
583 	struct rnbd_iu *iu;
584 	struct kvec vec = {
585 		.iov_base = &msg,
586 		.iov_len  = sizeof(msg)
587 	};
588 	int err, errno;
589 
590 	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
591 	if (!rsp)
592 		return -ENOMEM;
593 
594 	iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT);
595 	if (!iu) {
596 		kfree(rsp);
597 		return -ENOMEM;
598 	}
599 
600 	iu->buf = rsp;
601 	iu->sess = sess;
602 	sg_init_one(iu->sgt.sgl, rsp, sizeof(*rsp));
603 
604 	msg.hdr.type = cpu_to_le16(RNBD_MSG_SESS_INFO);
605 	msg.ver      = RNBD_PROTO_VER_MAJOR;
606 
607 	if (!rnbd_clt_get_sess(sess)) {
608 		/*
609 		 * That can happen only in one case, when RTRS has restablished
610 		 * the connection and link_ev() is called, but session is almost
611 		 * dead, last reference on session is put and caller is waiting
612 		 * for RTRS to close everything.
613 		 */
614 		err = -ENODEV;
615 		goto put_iu;
616 	}
617 	err = send_usr_msg(sess->rtrs, READ, iu,
618 			   &vec, sizeof(*rsp), iu->sgt.sgl, 1,
619 			   msg_sess_info_conf, &errno, wait);
620 	if (err) {
621 		rnbd_clt_put_sess(sess);
622 put_iu:
623 		rnbd_put_iu(sess, iu);
624 		kfree(rsp);
625 	} else {
626 		err = errno;
627 	}
628 	rnbd_put_iu(sess, iu);
629 	return err;
630 }
631 
632 static void set_dev_states_to_disconnected(struct rnbd_clt_session *sess)
633 {
634 	struct rnbd_clt_dev *dev;
635 	struct kobject *gd_kobj;
636 
637 	mutex_lock(&sess->lock);
638 	list_for_each_entry(dev, &sess->devs_list, list) {
639 		rnbd_clt_err(dev, "Device disconnected.\n");
640 
641 		mutex_lock(&dev->lock);
642 		if (dev->dev_state == DEV_STATE_MAPPED) {
643 			dev->dev_state = DEV_STATE_MAPPED_DISCONNECTED;
644 			gd_kobj = &disk_to_dev(dev->gd)->kobj;
645 			kobject_uevent(gd_kobj, KOBJ_OFFLINE);
646 		}
647 		mutex_unlock(&dev->lock);
648 	}
649 	mutex_unlock(&sess->lock);
650 }
651 
652 static void remap_devs(struct rnbd_clt_session *sess)
653 {
654 	struct rnbd_clt_dev *dev;
655 	struct rtrs_attrs attrs;
656 	int err;
657 
658 	/*
659 	 * Careful here: we are called from RTRS link event directly,
660 	 * thus we can't send any RTRS request and wait for response
661 	 * or RTRS will not be able to complete request with failure
662 	 * if something goes wrong (failing of outstanding requests
663 	 * happens exactly from the context where we are blocking now).
664 	 *
665 	 * So to avoid deadlocks each usr message sent from here must
666 	 * be asynchronous.
667 	 */
668 
669 	err = send_msg_sess_info(sess, RTRS_PERMIT_NOWAIT);
670 	if (err) {
671 		pr_err("send_msg_sess_info(\"%s\"): %d\n", sess->sessname, err);
672 		return;
673 	}
674 
675 	err = rtrs_clt_query(sess->rtrs, &attrs);
676 	if (err) {
677 		pr_err("rtrs_clt_query(\"%s\"): %d\n", sess->sessname, err);
678 		return;
679 	}
680 	mutex_lock(&sess->lock);
681 	sess->max_io_size = attrs.max_io_size;
682 
683 	list_for_each_entry(dev, &sess->devs_list, list) {
684 		bool skip;
685 
686 		mutex_lock(&dev->lock);
687 		skip = (dev->dev_state == DEV_STATE_INIT);
688 		mutex_unlock(&dev->lock);
689 		if (skip)
690 			/*
691 			 * When device is establishing connection for the first
692 			 * time - do not remap, it will be closed soon.
693 			 */
694 			continue;
695 
696 		rnbd_clt_info(dev, "session reconnected, remapping device\n");
697 		err = send_msg_open(dev, RTRS_PERMIT_NOWAIT);
698 		if (err) {
699 			rnbd_clt_err(dev, "send_msg_open(): %d\n", err);
700 			break;
701 		}
702 	}
703 	mutex_unlock(&sess->lock);
704 }
705 
706 static void rnbd_clt_link_ev(void *priv, enum rtrs_clt_link_ev ev)
707 {
708 	struct rnbd_clt_session *sess = priv;
709 
710 	switch (ev) {
711 	case RTRS_CLT_LINK_EV_DISCONNECTED:
712 		set_dev_states_to_disconnected(sess);
713 		break;
714 	case RTRS_CLT_LINK_EV_RECONNECTED:
715 		remap_devs(sess);
716 		break;
717 	default:
718 		pr_err("Unknown session event received (%d), session: %s\n",
719 		       ev, sess->sessname);
720 	}
721 }
722 
723 static void rnbd_init_cpu_qlists(struct rnbd_cpu_qlist __percpu *cpu_queues)
724 {
725 	unsigned int cpu;
726 	struct rnbd_cpu_qlist *cpu_q;
727 
728 	for_each_possible_cpu(cpu) {
729 		cpu_q = per_cpu_ptr(cpu_queues, cpu);
730 
731 		cpu_q->cpu = cpu;
732 		INIT_LIST_HEAD(&cpu_q->requeue_list);
733 		spin_lock_init(&cpu_q->requeue_lock);
734 	}
735 }
736 
737 static void destroy_mq_tags(struct rnbd_clt_session *sess)
738 {
739 	if (sess->tag_set.tags)
740 		blk_mq_free_tag_set(&sess->tag_set);
741 }
742 
743 static inline void wake_up_rtrs_waiters(struct rnbd_clt_session *sess)
744 {
745 	sess->rtrs_ready = true;
746 	wake_up_all(&sess->rtrs_waitq);
747 }
748 
749 static void close_rtrs(struct rnbd_clt_session *sess)
750 {
751 	might_sleep();
752 
753 	if (!IS_ERR_OR_NULL(sess->rtrs)) {
754 		rtrs_clt_close(sess->rtrs);
755 		sess->rtrs = NULL;
756 		wake_up_rtrs_waiters(sess);
757 	}
758 }
759 
760 static void free_sess(struct rnbd_clt_session *sess)
761 {
762 	WARN_ON(!list_empty(&sess->devs_list));
763 
764 	might_sleep();
765 
766 	close_rtrs(sess);
767 	destroy_mq_tags(sess);
768 	if (!list_empty(&sess->list)) {
769 		mutex_lock(&sess_lock);
770 		list_del(&sess->list);
771 		mutex_unlock(&sess_lock);
772 	}
773 	free_percpu(sess->cpu_queues);
774 	free_percpu(sess->cpu_rr);
775 	mutex_destroy(&sess->lock);
776 	kfree(sess);
777 }
778 
779 static struct rnbd_clt_session *alloc_sess(const char *sessname)
780 {
781 	struct rnbd_clt_session *sess;
782 	int err, cpu;
783 
784 	sess = kzalloc_node(sizeof(*sess), GFP_KERNEL, NUMA_NO_NODE);
785 	if (!sess)
786 		return ERR_PTR(-ENOMEM);
787 	strscpy(sess->sessname, sessname, sizeof(sess->sessname));
788 	atomic_set(&sess->busy, 0);
789 	mutex_init(&sess->lock);
790 	INIT_LIST_HEAD(&sess->devs_list);
791 	INIT_LIST_HEAD(&sess->list);
792 	bitmap_zero(sess->cpu_queues_bm, num_possible_cpus());
793 	init_waitqueue_head(&sess->rtrs_waitq);
794 	refcount_set(&sess->refcount, 1);
795 
796 	sess->cpu_queues = alloc_percpu(struct rnbd_cpu_qlist);
797 	if (!sess->cpu_queues) {
798 		err = -ENOMEM;
799 		goto err;
800 	}
801 	rnbd_init_cpu_qlists(sess->cpu_queues);
802 
803 	/*
804 	 * That is simple percpu variable which stores cpu indices, which are
805 	 * incremented on each access.  We need that for the sake of fairness
806 	 * to wake up queues in a round-robin manner.
807 	 */
808 	sess->cpu_rr = alloc_percpu(int);
809 	if (!sess->cpu_rr) {
810 		err = -ENOMEM;
811 		goto err;
812 	}
813 	for_each_possible_cpu(cpu)
814 		* per_cpu_ptr(sess->cpu_rr, cpu) = cpu;
815 
816 	return sess;
817 
818 err:
819 	free_sess(sess);
820 
821 	return ERR_PTR(err);
822 }
823 
824 static int wait_for_rtrs_connection(struct rnbd_clt_session *sess)
825 {
826 	wait_event(sess->rtrs_waitq, sess->rtrs_ready);
827 	if (IS_ERR_OR_NULL(sess->rtrs))
828 		return -ECONNRESET;
829 
830 	return 0;
831 }
832 
833 static void wait_for_rtrs_disconnection(struct rnbd_clt_session *sess)
834 	__releases(&sess_lock)
835 	__acquires(&sess_lock)
836 {
837 	DEFINE_WAIT(wait);
838 
839 	prepare_to_wait(&sess->rtrs_waitq, &wait, TASK_UNINTERRUPTIBLE);
840 	if (IS_ERR_OR_NULL(sess->rtrs)) {
841 		finish_wait(&sess->rtrs_waitq, &wait);
842 		return;
843 	}
844 	mutex_unlock(&sess_lock);
845 	/* loop in caller, see __find_and_get_sess().
846 	 * You can't leave mutex locked and call schedule(), you will catch a
847 	 * deadlock with a caller of free_sess(), which has just put the last
848 	 * reference and is about to take the sess_lock in order to delete
849 	 * the session from the list.
850 	 */
851 	schedule();
852 	mutex_lock(&sess_lock);
853 }
854 
855 static struct rnbd_clt_session *__find_and_get_sess(const char *sessname)
856 	__releases(&sess_lock)
857 	__acquires(&sess_lock)
858 {
859 	struct rnbd_clt_session *sess, *sn;
860 	int err;
861 
862 again:
863 	list_for_each_entry_safe(sess, sn, &sess_list, list) {
864 		if (strcmp(sessname, sess->sessname))
865 			continue;
866 
867 		if (sess->rtrs_ready && IS_ERR_OR_NULL(sess->rtrs))
868 			/*
869 			 * No RTRS connection, session is dying.
870 			 */
871 			continue;
872 
873 		if (rnbd_clt_get_sess(sess)) {
874 			/*
875 			 * Alive session is found, wait for RTRS connection.
876 			 */
877 			mutex_unlock(&sess_lock);
878 			err = wait_for_rtrs_connection(sess);
879 			if (err)
880 				rnbd_clt_put_sess(sess);
881 			mutex_lock(&sess_lock);
882 
883 			if (err)
884 				/* Session is dying, repeat the loop */
885 				goto again;
886 
887 			return sess;
888 		}
889 		/*
890 		 * Ref is 0, session is dying, wait for RTRS disconnect
891 		 * in order to avoid session names clashes.
892 		 */
893 		wait_for_rtrs_disconnection(sess);
894 		/*
895 		 * RTRS is disconnected and soon session will be freed,
896 		 * so repeat a loop.
897 		 */
898 		goto again;
899 	}
900 
901 	return NULL;
902 }
903 
904 /* caller is responsible for initializing 'first' to false */
905 static struct
906 rnbd_clt_session *find_or_create_sess(const char *sessname, bool *first)
907 {
908 	struct rnbd_clt_session *sess = NULL;
909 
910 	mutex_lock(&sess_lock);
911 	sess = __find_and_get_sess(sessname);
912 	if (!sess) {
913 		sess = alloc_sess(sessname);
914 		if (IS_ERR(sess)) {
915 			mutex_unlock(&sess_lock);
916 			return sess;
917 		}
918 		list_add(&sess->list, &sess_list);
919 		*first = true;
920 	}
921 	mutex_unlock(&sess_lock);
922 
923 	return sess;
924 }
925 
926 static int rnbd_client_open(struct gendisk *disk, blk_mode_t mode)
927 {
928 	struct rnbd_clt_dev *dev = disk->private_data;
929 
930 	if (get_disk_ro(dev->gd) && (mode & BLK_OPEN_WRITE))
931 		return -EPERM;
932 
933 	if (dev->dev_state == DEV_STATE_UNMAPPED ||
934 	    !rnbd_clt_get_dev(dev))
935 		return -EIO;
936 
937 	return 0;
938 }
939 
940 static void rnbd_client_release(struct gendisk *gen)
941 {
942 	struct rnbd_clt_dev *dev = gen->private_data;
943 
944 	rnbd_clt_put_dev(dev);
945 }
946 
947 static int rnbd_client_getgeo(struct gendisk *disk,
948 			      struct hd_geometry *geo)
949 {
950 	u64 size;
951 	struct rnbd_clt_dev *dev = disk->private_data;
952 	struct queue_limits *limit = &dev->queue->limits;
953 
954 	size = dev->size * (limit->logical_block_size / SECTOR_SIZE);
955 	geo->cylinders	= size >> 6;	/* size/64 */
956 	geo->heads	= 4;
957 	geo->sectors	= 16;
958 	geo->start	= 0;
959 
960 	return 0;
961 }
962 
963 static const struct block_device_operations rnbd_client_ops = {
964 	.owner		= THIS_MODULE,
965 	.open		= rnbd_client_open,
966 	.release	= rnbd_client_release,
967 	.getgeo		= rnbd_client_getgeo
968 };
969 
970 /* The amount of data that belongs to an I/O and the amount of data that
971  * should be read or written to the disk (bi_size) can differ.
972  *
973  * E.g. When WRITE_SAME is used, only a small amount of data is
974  * transferred that is then written repeatedly over a lot of sectors.
975  *
976  * Get the size of data to be transferred via RTRS by summing up the size
977  * of the scather-gather list entries.
978  */
979 static size_t rnbd_clt_get_sg_size(struct scatterlist *sglist, u32 len)
980 {
981 	struct scatterlist *sg;
982 	size_t tsize = 0;
983 	int i;
984 
985 	for_each_sg(sglist, sg, len, i)
986 		tsize += sg->length;
987 	return tsize;
988 }
989 
990 static int rnbd_client_xfer_request(struct rnbd_clt_dev *dev,
991 				     struct request *rq,
992 				     struct rnbd_iu *iu)
993 {
994 	struct rtrs_clt_sess *rtrs = dev->sess->rtrs;
995 	struct rtrs_permit *permit = iu->permit;
996 	struct rnbd_msg_io msg;
997 	struct rtrs_clt_req_ops req_ops;
998 	unsigned int sg_cnt = 0;
999 	struct kvec vec;
1000 	size_t size;
1001 	int err;
1002 
1003 	iu->rq		= rq;
1004 	iu->dev		= dev;
1005 	msg.sector	= cpu_to_le64(blk_rq_pos(rq));
1006 	msg.bi_size	= cpu_to_le32(blk_rq_bytes(rq));
1007 	msg.rw		= cpu_to_le32(rq_to_rnbd_flags(rq));
1008 	msg.prio	= cpu_to_le16(req_get_ioprio(rq));
1009 
1010 	/*
1011 	 * We only support discards/WRITE_ZEROES with single segment for now.
1012 	 * See queue limits.
1013 	 */
1014 	if ((req_op(rq) != REQ_OP_DISCARD) && (req_op(rq) != REQ_OP_WRITE_ZEROES))
1015 		sg_cnt = blk_rq_map_sg(rq, iu->sgt.sgl);
1016 
1017 	if (sg_cnt == 0)
1018 		sg_mark_end(&iu->sgt.sgl[0]);
1019 
1020 	msg.hdr.type	= cpu_to_le16(RNBD_MSG_IO);
1021 	msg.device_id	= cpu_to_le32(dev->device_id);
1022 
1023 	vec = (struct kvec) {
1024 		.iov_base = &msg,
1025 		.iov_len  = sizeof(msg)
1026 	};
1027 	size = rnbd_clt_get_sg_size(iu->sgt.sgl, sg_cnt);
1028 	req_ops = (struct rtrs_clt_req_ops) {
1029 		.priv = iu,
1030 		.conf_fn = msg_io_conf,
1031 	};
1032 	err = rtrs_clt_request(rq_data_dir(rq), &req_ops, rtrs, permit,
1033 			       &vec, 1, size, iu->sgt.sgl, sg_cnt);
1034 	if (err) {
1035 		rnbd_clt_err_rl(dev, "RTRS failed to transfer IO, err: %d\n",
1036 				 err);
1037 		return err;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 /**
1044  * rnbd_clt_dev_add_to_requeue() - add device to requeue if session is busy
1045  * @dev:	Device to be checked
1046  * @q:		Queue to be added to the requeue list if required
1047  *
1048  * Description:
1049  *     If session is busy, that means someone will requeue us when resources
1050  *     are freed.  If session is not doing anything - device is not added to
1051  *     the list and @false is returned.
1052  */
1053 static bool rnbd_clt_dev_add_to_requeue(struct rnbd_clt_dev *dev,
1054 						struct rnbd_queue *q)
1055 {
1056 	struct rnbd_clt_session *sess = dev->sess;
1057 	struct rnbd_cpu_qlist *cpu_q;
1058 	unsigned long flags;
1059 	bool added = true;
1060 	bool need_set;
1061 
1062 	cpu_q = get_cpu_ptr(sess->cpu_queues);
1063 	spin_lock_irqsave(&cpu_q->requeue_lock, flags);
1064 
1065 	if (!test_and_set_bit_lock(0, &q->in_list)) {
1066 		if (WARN_ON(!list_empty(&q->requeue_list)))
1067 			goto unlock;
1068 
1069 		need_set = !test_bit(cpu_q->cpu, sess->cpu_queues_bm);
1070 		if (need_set) {
1071 			set_bit(cpu_q->cpu, sess->cpu_queues_bm);
1072 			/* Paired with rnbd_put_permit(). Set a bit first
1073 			 * and then observe the busy counter.
1074 			 */
1075 			smp_mb__before_atomic();
1076 		}
1077 		if (atomic_read(&sess->busy)) {
1078 			list_add_tail(&q->requeue_list, &cpu_q->requeue_list);
1079 		} else {
1080 			/* Very unlikely, but possible: busy counter was
1081 			 * observed as zero.  Drop all bits and return
1082 			 * false to restart the queue by ourselves.
1083 			 */
1084 			if (need_set)
1085 				clear_bit(cpu_q->cpu, sess->cpu_queues_bm);
1086 			clear_bit_unlock(0, &q->in_list);
1087 			added = false;
1088 		}
1089 	}
1090 unlock:
1091 	spin_unlock_irqrestore(&cpu_q->requeue_lock, flags);
1092 	put_cpu_ptr(sess->cpu_queues);
1093 
1094 	return added;
1095 }
1096 
1097 static void rnbd_clt_dev_kick_mq_queue(struct rnbd_clt_dev *dev,
1098 					struct blk_mq_hw_ctx *hctx,
1099 					int delay)
1100 {
1101 	struct rnbd_queue *q = hctx->driver_data;
1102 
1103 	if (delay != RNBD_DELAY_IFBUSY)
1104 		blk_mq_delay_run_hw_queue(hctx, delay);
1105 	else if (!rnbd_clt_dev_add_to_requeue(dev, q))
1106 		/*
1107 		 * If session is not busy we have to restart
1108 		 * the queue ourselves.
1109 		 */
1110 		blk_mq_delay_run_hw_queue(hctx, 10/*ms*/);
1111 }
1112 
1113 static blk_status_t rnbd_queue_rq(struct blk_mq_hw_ctx *hctx,
1114 				   const struct blk_mq_queue_data *bd)
1115 {
1116 	struct request *rq = bd->rq;
1117 	struct rnbd_clt_dev *dev = rq->q->disk->private_data;
1118 	struct rnbd_iu *iu = blk_mq_rq_to_pdu(rq);
1119 	int err;
1120 	blk_status_t ret = BLK_STS_IOERR;
1121 
1122 	if (dev->dev_state != DEV_STATE_MAPPED)
1123 		return BLK_STS_IOERR;
1124 
1125 	iu->permit = rnbd_get_permit(dev->sess, RTRS_IO_CON,
1126 				      RTRS_PERMIT_NOWAIT);
1127 	if (!iu->permit) {
1128 		rnbd_clt_dev_kick_mq_queue(dev, hctx, RNBD_DELAY_IFBUSY);
1129 		return BLK_STS_RESOURCE;
1130 	}
1131 
1132 	iu->sgt.sgl = iu->first_sgl;
1133 	err = sg_alloc_table_chained(&iu->sgt,
1134 				     /* Even-if the request has no segment,
1135 				      * sglist must have one entry at least.
1136 				      */
1137 				     blk_rq_nr_phys_segments(rq) ? : 1,
1138 				     iu->sgt.sgl,
1139 				     RNBD_INLINE_SG_CNT);
1140 	if (err) {
1141 		rnbd_clt_err_rl(dev, "sg_alloc_table_chained ret=%d\n", err);
1142 		rnbd_clt_dev_kick_mq_queue(dev, hctx, 10/*ms*/);
1143 		rnbd_put_permit(dev->sess, iu->permit);
1144 		return BLK_STS_RESOURCE;
1145 	}
1146 
1147 	blk_mq_start_request(rq);
1148 	err = rnbd_client_xfer_request(dev, rq, iu);
1149 	if (err == 0)
1150 		return BLK_STS_OK;
1151 	if (err == -EAGAIN || err == -ENOMEM) {
1152 		rnbd_clt_dev_kick_mq_queue(dev, hctx, 10/*ms*/);
1153 		ret = BLK_STS_RESOURCE;
1154 	}
1155 	sg_free_table_chained(&iu->sgt, RNBD_INLINE_SG_CNT);
1156 	rnbd_put_permit(dev->sess, iu->permit);
1157 	return ret;
1158 }
1159 
1160 static int rnbd_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1161 {
1162 	struct rnbd_queue *q = hctx->driver_data;
1163 	struct rnbd_clt_dev *dev = q->dev;
1164 
1165 	return rtrs_clt_rdma_cq_direct(dev->sess->rtrs, hctx->queue_num);
1166 }
1167 
1168 static void rnbd_rdma_map_queues(struct blk_mq_tag_set *set)
1169 {
1170 	struct rnbd_clt_session *sess = set->driver_data;
1171 
1172 	/* shared read/write queues */
1173 	set->map[HCTX_TYPE_DEFAULT].nr_queues = num_online_cpus();
1174 	set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1175 	set->map[HCTX_TYPE_READ].nr_queues = num_online_cpus();
1176 	set->map[HCTX_TYPE_READ].queue_offset = 0;
1177 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1178 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
1179 
1180 	if (sess->nr_poll_queues) {
1181 		/* dedicated queue for poll */
1182 		set->map[HCTX_TYPE_POLL].nr_queues = sess->nr_poll_queues;
1183 		set->map[HCTX_TYPE_POLL].queue_offset = set->map[HCTX_TYPE_READ].queue_offset +
1184 			set->map[HCTX_TYPE_READ].nr_queues;
1185 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1186 		pr_info("[session=%s] mapped %d/%d/%d default/read/poll queues.\n",
1187 			sess->sessname,
1188 			set->map[HCTX_TYPE_DEFAULT].nr_queues,
1189 			set->map[HCTX_TYPE_READ].nr_queues,
1190 			set->map[HCTX_TYPE_POLL].nr_queues);
1191 	} else {
1192 		pr_info("[session=%s] mapped %d/%d default/read queues.\n",
1193 			sess->sessname,
1194 			set->map[HCTX_TYPE_DEFAULT].nr_queues,
1195 			set->map[HCTX_TYPE_READ].nr_queues);
1196 	}
1197 }
1198 
1199 static struct blk_mq_ops rnbd_mq_ops = {
1200 	.queue_rq	= rnbd_queue_rq,
1201 	.complete	= rnbd_softirq_done_fn,
1202 	.map_queues     = rnbd_rdma_map_queues,
1203 	.poll           = rnbd_rdma_poll,
1204 };
1205 
1206 static int setup_mq_tags(struct rnbd_clt_session *sess)
1207 {
1208 	struct blk_mq_tag_set *tag_set = &sess->tag_set;
1209 
1210 	memset(tag_set, 0, sizeof(*tag_set));
1211 	tag_set->ops		= &rnbd_mq_ops;
1212 	tag_set->queue_depth	= sess->queue_depth;
1213 	tag_set->numa_node		= NUMA_NO_NODE;
1214 	tag_set->flags		= BLK_MQ_F_TAG_QUEUE_SHARED;
1215 	tag_set->cmd_size	= sizeof(struct rnbd_iu) + RNBD_RDMA_SGL_SIZE;
1216 
1217 	/* for HCTX_TYPE_DEFAULT, HCTX_TYPE_READ, HCTX_TYPE_POLL */
1218 	tag_set->nr_maps        = sess->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1219 	/*
1220 	 * HCTX_TYPE_DEFAULT and HCTX_TYPE_READ share one set of queues
1221 	 * others are for HCTX_TYPE_POLL
1222 	 */
1223 	tag_set->nr_hw_queues	= num_online_cpus() + sess->nr_poll_queues;
1224 	tag_set->driver_data    = sess;
1225 
1226 	return blk_mq_alloc_tag_set(tag_set);
1227 }
1228 
1229 static struct rnbd_clt_session *
1230 find_and_get_or_create_sess(const char *sessname,
1231 			    const struct rtrs_addr *paths,
1232 			    size_t path_cnt, u16 port_nr, u32 nr_poll_queues)
1233 {
1234 	struct rnbd_clt_session *sess;
1235 	struct rtrs_attrs attrs;
1236 	int err;
1237 	bool first = false;
1238 	struct rtrs_clt_ops rtrs_ops;
1239 
1240 	sess = find_or_create_sess(sessname, &first);
1241 	if (sess == ERR_PTR(-ENOMEM)) {
1242 		return ERR_PTR(-ENOMEM);
1243 	} else if ((nr_poll_queues && !first) ||  (!nr_poll_queues && sess->nr_poll_queues)) {
1244 		/*
1245 		 * A device MUST have its own session to use the polling-mode.
1246 		 * It must fail to map new device with the same session.
1247 		 */
1248 		err = -EINVAL;
1249 		goto put_sess;
1250 	}
1251 
1252 	if (!first)
1253 		return sess;
1254 
1255 	if (!path_cnt) {
1256 		pr_err("Session %s not found, and path parameter not given", sessname);
1257 		err = -ENXIO;
1258 		goto put_sess;
1259 	}
1260 
1261 	rtrs_ops = (struct rtrs_clt_ops) {
1262 		.priv = sess,
1263 		.link_ev = rnbd_clt_link_ev,
1264 	};
1265 	/*
1266 	 * Nothing was found, establish rtrs connection and proceed further.
1267 	 */
1268 	sess->rtrs = rtrs_clt_open(&rtrs_ops, sessname,
1269 				   paths, path_cnt, port_nr,
1270 				   0, /* Do not use pdu of rtrs */
1271 				   RECONNECT_DELAY,
1272 				   MAX_RECONNECTS, nr_poll_queues);
1273 	if (IS_ERR(sess->rtrs)) {
1274 		err = PTR_ERR(sess->rtrs);
1275 		goto wake_up_and_put;
1276 	}
1277 
1278 	err = rtrs_clt_query(sess->rtrs, &attrs);
1279 	if (err)
1280 		goto close_rtrs;
1281 
1282 	sess->max_io_size = attrs.max_io_size;
1283 	sess->queue_depth = attrs.queue_depth;
1284 	sess->nr_poll_queues = nr_poll_queues;
1285 	sess->max_segments = attrs.max_segments;
1286 
1287 	err = setup_mq_tags(sess);
1288 	if (err)
1289 		goto close_rtrs;
1290 
1291 	err = send_msg_sess_info(sess, RTRS_PERMIT_WAIT);
1292 	if (err)
1293 		goto close_rtrs;
1294 
1295 	wake_up_rtrs_waiters(sess);
1296 
1297 	return sess;
1298 
1299 close_rtrs:
1300 	close_rtrs(sess);
1301 put_sess:
1302 	rnbd_clt_put_sess(sess);
1303 
1304 	return ERR_PTR(err);
1305 
1306 wake_up_and_put:
1307 	wake_up_rtrs_waiters(sess);
1308 	goto put_sess;
1309 }
1310 
1311 static inline void rnbd_init_hw_queue(struct rnbd_clt_dev *dev,
1312 				       struct rnbd_queue *q,
1313 				       struct blk_mq_hw_ctx *hctx)
1314 {
1315 	INIT_LIST_HEAD(&q->requeue_list);
1316 	q->dev  = dev;
1317 	q->hctx = hctx;
1318 }
1319 
1320 static void rnbd_init_mq_hw_queues(struct rnbd_clt_dev *dev)
1321 {
1322 	unsigned long i;
1323 	struct blk_mq_hw_ctx *hctx;
1324 	struct rnbd_queue *q;
1325 
1326 	queue_for_each_hw_ctx(dev->queue, hctx, i) {
1327 		q = &dev->hw_queues[i];
1328 		rnbd_init_hw_queue(dev, q, hctx);
1329 		hctx->driver_data = q;
1330 	}
1331 }
1332 
1333 static int rnbd_clt_setup_gen_disk(struct rnbd_clt_dev *dev,
1334 				   struct rnbd_msg_open_rsp *rsp, int idx)
1335 {
1336 	int err;
1337 
1338 	dev->gd->major		= rnbd_client_major;
1339 	dev->gd->first_minor	= idx << RNBD_PART_BITS;
1340 	dev->gd->minors		= 1 << RNBD_PART_BITS;
1341 	dev->gd->fops		= &rnbd_client_ops;
1342 	dev->gd->queue		= dev->queue;
1343 	dev->gd->private_data	= dev;
1344 	snprintf(dev->gd->disk_name, sizeof(dev->gd->disk_name), "rnbd%d",
1345 		 idx);
1346 	pr_debug("disk_name=%s, capacity=%llu\n",
1347 		 dev->gd->disk_name,
1348 		 le64_to_cpu(rsp->nsectors) *
1349 		 (le16_to_cpu(rsp->logical_block_size) / SECTOR_SIZE));
1350 
1351 	set_capacity(dev->gd, le64_to_cpu(rsp->nsectors));
1352 
1353 	if (dev->access_mode == RNBD_ACCESS_RO)
1354 		set_disk_ro(dev->gd, true);
1355 
1356 	err = add_disk(dev->gd);
1357 	if (err)
1358 		put_disk(dev->gd);
1359 
1360 	return err;
1361 }
1362 
1363 static int rnbd_client_setup_device(struct rnbd_clt_dev *dev,
1364 				    struct rnbd_msg_open_rsp *rsp)
1365 {
1366 	struct queue_limits lim = {
1367 		.logical_block_size	= le16_to_cpu(rsp->logical_block_size),
1368 		.physical_block_size	= le16_to_cpu(rsp->physical_block_size),
1369 		.io_opt			= dev->sess->max_io_size,
1370 		.max_hw_sectors		= dev->sess->max_io_size / SECTOR_SIZE,
1371 		.max_hw_discard_sectors	= le32_to_cpu(rsp->max_discard_sectors),
1372 		.discard_granularity	= le32_to_cpu(rsp->discard_granularity),
1373 		.discard_alignment	= le32_to_cpu(rsp->discard_alignment),
1374 		.max_segments		= dev->sess->max_segments,
1375 		.virt_boundary_mask	= SZ_4K - 1,
1376 		.max_write_zeroes_sectors =
1377 			le32_to_cpu(rsp->max_write_zeroes_sectors),
1378 	};
1379 	int idx = dev->clt_device_id;
1380 
1381 	dev->size = le64_to_cpu(rsp->nsectors) *
1382 			le16_to_cpu(rsp->logical_block_size);
1383 
1384 	if (rsp->secure_discard) {
1385 		lim.max_secure_erase_sectors =
1386 			le32_to_cpu(rsp->max_discard_sectors);
1387 	}
1388 
1389 	if (rsp->cache_policy & RNBD_WRITEBACK) {
1390 		lim.features |= BLK_FEAT_WRITE_CACHE;
1391 		if (rsp->cache_policy & RNBD_FUA)
1392 			lim.features |= BLK_FEAT_FUA;
1393 	}
1394 
1395 	dev->gd = blk_mq_alloc_disk(&dev->sess->tag_set, &lim, dev);
1396 	if (IS_ERR(dev->gd))
1397 		return PTR_ERR(dev->gd);
1398 	dev->queue = dev->gd->queue;
1399 	rnbd_init_mq_hw_queues(dev);
1400 
1401 	return rnbd_clt_setup_gen_disk(dev, rsp, idx);
1402 }
1403 
1404 static struct rnbd_clt_dev *init_dev(struct rnbd_clt_session *sess,
1405 				      enum rnbd_access_mode access_mode,
1406 				      const char *pathname,
1407 				      u32 nr_poll_queues)
1408 {
1409 	struct rnbd_clt_dev *dev;
1410 	int ret;
1411 
1412 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, NUMA_NO_NODE);
1413 	if (!dev)
1414 		return ERR_PTR(-ENOMEM);
1415 
1416 	/*
1417 	 * nr_cpu_ids: the number of softirq queues
1418 	 * nr_poll_queues: the number of polling queues
1419 	 */
1420 	dev->hw_queues = kcalloc(nr_cpu_ids + nr_poll_queues,
1421 				 sizeof(*dev->hw_queues),
1422 				 GFP_KERNEL);
1423 	if (!dev->hw_queues) {
1424 		ret = -ENOMEM;
1425 		goto out_alloc;
1426 	}
1427 
1428 	dev->clt_device_id = ida_alloc_max(&index_ida,
1429 					   (1 << (MINORBITS - RNBD_PART_BITS)) - 1,
1430 					   GFP_KERNEL);
1431 	if (dev->clt_device_id < 0) {
1432 		ret = dev->clt_device_id;
1433 		pr_err("Failed to initialize device '%s' from session %s, allocating idr failed, err: %d\n",
1434 		       pathname, sess->sessname, ret);
1435 		goto out_queues;
1436 	}
1437 
1438 	dev->pathname = kstrdup(pathname, GFP_KERNEL);
1439 	if (!dev->pathname) {
1440 		ret = -ENOMEM;
1441 		goto out_ida;
1442 	}
1443 
1444 	dev->sess		= sess;
1445 	dev->access_mode	= access_mode;
1446 	dev->nr_poll_queues	= nr_poll_queues;
1447 	mutex_init(&dev->lock);
1448 	refcount_set(&dev->refcount, 1);
1449 	dev->dev_state = DEV_STATE_INIT;
1450 
1451 	/*
1452 	 * Here we called from sysfs entry, thus clt-sysfs is
1453 	 * responsible that session will not disappear.
1454 	 */
1455 	WARN_ON(!rnbd_clt_get_sess(sess));
1456 
1457 	return dev;
1458 
1459 out_ida:
1460 	ida_free(&index_ida, dev->clt_device_id);
1461 out_queues:
1462 	kfree(dev->hw_queues);
1463 out_alloc:
1464 	kfree(dev);
1465 	return ERR_PTR(ret);
1466 }
1467 
1468 static bool __exists_dev(const char *pathname, const char *sessname)
1469 {
1470 	struct rnbd_clt_session *sess;
1471 	struct rnbd_clt_dev *dev;
1472 	bool found = false;
1473 
1474 	list_for_each_entry(sess, &sess_list, list) {
1475 		if (sessname && strncmp(sess->sessname, sessname,
1476 					sizeof(sess->sessname)))
1477 			continue;
1478 		mutex_lock(&sess->lock);
1479 		list_for_each_entry(dev, &sess->devs_list, list) {
1480 			if (strlen(dev->pathname) == strlen(pathname) &&
1481 			    !strcmp(dev->pathname, pathname)) {
1482 				found = true;
1483 				break;
1484 			}
1485 		}
1486 		mutex_unlock(&sess->lock);
1487 		if (found)
1488 			break;
1489 	}
1490 
1491 	return found;
1492 }
1493 
1494 static bool exists_devpath(const char *pathname, const char *sessname)
1495 {
1496 	bool found;
1497 
1498 	mutex_lock(&sess_lock);
1499 	found = __exists_dev(pathname, sessname);
1500 	mutex_unlock(&sess_lock);
1501 
1502 	return found;
1503 }
1504 
1505 static bool insert_dev_if_not_exists_devpath(struct rnbd_clt_dev *dev)
1506 {
1507 	bool found;
1508 	struct rnbd_clt_session *sess = dev->sess;
1509 
1510 	mutex_lock(&sess_lock);
1511 	found = __exists_dev(dev->pathname, sess->sessname);
1512 	if (!found) {
1513 		mutex_lock(&sess->lock);
1514 		list_add_tail(&dev->list, &sess->devs_list);
1515 		mutex_unlock(&sess->lock);
1516 	}
1517 	mutex_unlock(&sess_lock);
1518 
1519 	return found;
1520 }
1521 
1522 static void rnbd_delete_dev(struct rnbd_clt_dev *dev)
1523 {
1524 	struct rnbd_clt_session *sess = dev->sess;
1525 
1526 	mutex_lock(&sess->lock);
1527 	list_del(&dev->list);
1528 	mutex_unlock(&sess->lock);
1529 }
1530 
1531 struct rnbd_clt_dev *rnbd_clt_map_device(const char *sessname,
1532 					   struct rtrs_addr *paths,
1533 					   size_t path_cnt, u16 port_nr,
1534 					   const char *pathname,
1535 					   enum rnbd_access_mode access_mode,
1536 					   u32 nr_poll_queues)
1537 {
1538 	struct rnbd_clt_session *sess;
1539 	struct rnbd_clt_dev *dev;
1540 	int ret, errno;
1541 	struct rnbd_msg_open_rsp *rsp;
1542 	struct rnbd_msg_open msg;
1543 	struct rnbd_iu *iu;
1544 	struct kvec vec = {
1545 		.iov_base = &msg,
1546 		.iov_len  = sizeof(msg)
1547 	};
1548 
1549 	if (exists_devpath(pathname, sessname))
1550 		return ERR_PTR(-EEXIST);
1551 
1552 	sess = find_and_get_or_create_sess(sessname, paths, path_cnt, port_nr, nr_poll_queues);
1553 	if (IS_ERR(sess))
1554 		return ERR_CAST(sess);
1555 
1556 	dev = init_dev(sess, access_mode, pathname, nr_poll_queues);
1557 	if (IS_ERR(dev)) {
1558 		pr_err("map_device: failed to map device '%s' from session %s, can't initialize device, err: %pe\n",
1559 		       pathname, sess->sessname, dev);
1560 		ret = PTR_ERR(dev);
1561 		goto put_sess;
1562 	}
1563 	if (insert_dev_if_not_exists_devpath(dev)) {
1564 		ret = -EEXIST;
1565 		goto put_dev;
1566 	}
1567 
1568 	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
1569 	if (!rsp) {
1570 		ret = -ENOMEM;
1571 		goto del_dev;
1572 	}
1573 
1574 	iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT);
1575 	if (!iu) {
1576 		ret = -ENOMEM;
1577 		kfree(rsp);
1578 		goto del_dev;
1579 	}
1580 	iu->buf = rsp;
1581 	iu->dev = dev;
1582 	sg_init_one(iu->sgt.sgl, rsp, sizeof(*rsp));
1583 
1584 	msg.hdr.type    = cpu_to_le16(RNBD_MSG_OPEN);
1585 	msg.access_mode = dev->access_mode;
1586 	strscpy(msg.dev_name, dev->pathname, sizeof(msg.dev_name));
1587 
1588 	WARN_ON(!rnbd_clt_get_dev(dev));
1589 	ret = send_usr_msg(sess->rtrs, READ, iu,
1590 			   &vec, sizeof(*rsp), iu->sgt.sgl, 1,
1591 			   msg_open_conf, &errno, RTRS_PERMIT_WAIT);
1592 	if (ret) {
1593 		rnbd_clt_put_dev(dev);
1594 		rnbd_put_iu(sess, iu);
1595 	} else {
1596 		ret = errno;
1597 	}
1598 	if (ret) {
1599 		rnbd_clt_err(dev,
1600 			      "map_device: failed, can't open remote device, err: %d\n",
1601 			      ret);
1602 		goto put_iu;
1603 	}
1604 	mutex_lock(&dev->lock);
1605 	pr_debug("Opened remote device: session=%s, path='%s'\n",
1606 		 sess->sessname, pathname);
1607 	ret = rnbd_client_setup_device(dev, rsp);
1608 	if (ret) {
1609 		rnbd_clt_err(dev,
1610 			      "map_device: Failed to configure device, err: %d\n",
1611 			      ret);
1612 		mutex_unlock(&dev->lock);
1613 		goto send_close;
1614 	}
1615 
1616 	rnbd_clt_info(dev,
1617 		       "map_device: Device mapped as %s (nsectors: %llu, logical_block_size: %d, physical_block_size: %d, max_write_zeroes_sectors: %d, max_discard_sectors: %d, discard_granularity: %d, discard_alignment: %d, secure_discard: %d, max_segments: %d, max_hw_sectors: %d, wc: %d, fua: %d)\n",
1618 		       dev->gd->disk_name, le64_to_cpu(rsp->nsectors),
1619 		       le16_to_cpu(rsp->logical_block_size),
1620 		       le16_to_cpu(rsp->physical_block_size),
1621 		       le32_to_cpu(rsp->max_write_zeroes_sectors),
1622 		       le32_to_cpu(rsp->max_discard_sectors),
1623 		       le32_to_cpu(rsp->discard_granularity),
1624 		       le32_to_cpu(rsp->discard_alignment),
1625 		       le16_to_cpu(rsp->secure_discard),
1626 		       sess->max_segments, sess->max_io_size / SECTOR_SIZE,
1627 		       !!(rsp->cache_policy & RNBD_WRITEBACK),
1628 		       !!(rsp->cache_policy & RNBD_FUA));
1629 
1630 	mutex_unlock(&dev->lock);
1631 	kfree(rsp);
1632 	rnbd_put_iu(sess, iu);
1633 	rnbd_clt_put_sess(sess);
1634 
1635 	return dev;
1636 
1637 send_close:
1638 	send_msg_close(dev, dev->device_id, RTRS_PERMIT_WAIT);
1639 put_iu:
1640 	kfree(rsp);
1641 	rnbd_put_iu(sess, iu);
1642 del_dev:
1643 	rnbd_delete_dev(dev);
1644 put_dev:
1645 	rnbd_clt_put_dev(dev);
1646 put_sess:
1647 	rnbd_clt_put_sess(sess);
1648 
1649 	return ERR_PTR(ret);
1650 }
1651 
1652 static void rnbd_destroy_gen_disk(struct rnbd_clt_dev *dev)
1653 {
1654 	del_gendisk(dev->gd);
1655 	put_disk(dev->gd);
1656 }
1657 
1658 static void rnbd_destroy_sysfs(struct rnbd_clt_dev *dev,
1659 			  const struct attribute *sysfs_self)
1660 {
1661 	rnbd_clt_remove_dev_symlink(dev);
1662 	if (dev->kobj.state_initialized) {
1663 		if (sysfs_self)
1664 			/* To avoid deadlock firstly remove itself */
1665 			sysfs_remove_file_self(&dev->kobj, sysfs_self);
1666 		kobject_del(&dev->kobj);
1667 	}
1668 }
1669 
1670 int rnbd_clt_unmap_device(struct rnbd_clt_dev *dev, bool force,
1671 			   const struct attribute *sysfs_self)
1672 {
1673 	struct rnbd_clt_session *sess = dev->sess;
1674 	int refcount, ret = 0;
1675 	bool was_mapped;
1676 
1677 	mutex_lock(&dev->lock);
1678 	if (dev->dev_state == DEV_STATE_UNMAPPED) {
1679 		rnbd_clt_info(dev, "Device is already being unmapped\n");
1680 		ret = -EALREADY;
1681 		goto err;
1682 	}
1683 	refcount = refcount_read(&dev->refcount);
1684 	if (!force && refcount > 1) {
1685 		rnbd_clt_err(dev,
1686 			      "Closing device failed, device is in use, (%d device users)\n",
1687 			      refcount - 1);
1688 		ret = -EBUSY;
1689 		goto err;
1690 	}
1691 	was_mapped = (dev->dev_state == DEV_STATE_MAPPED);
1692 	dev->dev_state = DEV_STATE_UNMAPPED;
1693 	mutex_unlock(&dev->lock);
1694 
1695 	rnbd_delete_dev(dev);
1696 	rnbd_destroy_sysfs(dev, sysfs_self);
1697 	rnbd_destroy_gen_disk(dev);
1698 	if (was_mapped && sess->rtrs)
1699 		send_msg_close(dev, dev->device_id, RTRS_PERMIT_WAIT);
1700 
1701 	rnbd_clt_info(dev, "Device is unmapped\n");
1702 
1703 	/* Likely last reference put */
1704 	rnbd_clt_put_dev(dev);
1705 
1706 	/*
1707 	 * Here device and session can be vanished!
1708 	 */
1709 
1710 	return 0;
1711 err:
1712 	mutex_unlock(&dev->lock);
1713 
1714 	return ret;
1715 }
1716 
1717 int rnbd_clt_remap_device(struct rnbd_clt_dev *dev)
1718 {
1719 	int err;
1720 
1721 	mutex_lock(&dev->lock);
1722 	if (dev->dev_state == DEV_STATE_MAPPED_DISCONNECTED)
1723 		err = 0;
1724 	else if (dev->dev_state == DEV_STATE_UNMAPPED)
1725 		err = -ENODEV;
1726 	else if (dev->dev_state == DEV_STATE_MAPPED)
1727 		err = -EALREADY;
1728 	else
1729 		err = -EBUSY;
1730 	mutex_unlock(&dev->lock);
1731 	if (!err) {
1732 		rnbd_clt_info(dev, "Remapping device.\n");
1733 		err = send_msg_open(dev, RTRS_PERMIT_WAIT);
1734 		if (err)
1735 			rnbd_clt_err(dev, "remap_device: %d\n", err);
1736 	}
1737 
1738 	return err;
1739 }
1740 
1741 static void unmap_device_work(struct work_struct *work)
1742 {
1743 	struct rnbd_clt_dev *dev;
1744 
1745 	dev = container_of(work, typeof(*dev), unmap_on_rmmod_work);
1746 	rnbd_clt_unmap_device(dev, true, NULL);
1747 }
1748 
1749 static void rnbd_destroy_sessions(void)
1750 {
1751 	struct rnbd_clt_session *sess, *sn;
1752 	struct rnbd_clt_dev *dev, *tn;
1753 
1754 	/* Firstly forbid access through sysfs interface */
1755 	rnbd_clt_destroy_sysfs_files();
1756 
1757 	/*
1758 	 * Here at this point there is no any concurrent access to sessions
1759 	 * list and devices list:
1760 	 *   1. New session or device can't be created - session sysfs files
1761 	 *      are removed.
1762 	 *   2. Device or session can't be removed - module reference is taken
1763 	 *      into account in unmap device sysfs callback.
1764 	 *   3. No IO requests inflight - each file open of block_dev increases
1765 	 *      module reference in get_disk().
1766 	 *
1767 	 * But still there can be user requests inflights, which are sent by
1768 	 * asynchronous send_msg_*() functions, thus before unmapping devices
1769 	 * RTRS session must be explicitly closed.
1770 	 */
1771 
1772 	list_for_each_entry_safe(sess, sn, &sess_list, list) {
1773 		if (!rnbd_clt_get_sess(sess))
1774 			continue;
1775 		close_rtrs(sess);
1776 		list_for_each_entry_safe(dev, tn, &sess->devs_list, list) {
1777 			/*
1778 			 * Here unmap happens in parallel for only one reason:
1779 			 * del_gendisk() takes around half a second, so
1780 			 * on huge amount of devices the whole module unload
1781 			 * procedure takes minutes.
1782 			 */
1783 			INIT_WORK(&dev->unmap_on_rmmod_work, unmap_device_work);
1784 			queue_work(rnbd_clt_wq, &dev->unmap_on_rmmod_work);
1785 		}
1786 		rnbd_clt_put_sess(sess);
1787 	}
1788 	/* Wait for all scheduled unmap works */
1789 	flush_workqueue(rnbd_clt_wq);
1790 	WARN_ON(!list_empty(&sess_list));
1791 }
1792 
1793 static int __init rnbd_client_init(void)
1794 {
1795 	int err = 0;
1796 
1797 	BUILD_BUG_ON(sizeof(struct rnbd_msg_hdr) != 4);
1798 	BUILD_BUG_ON(sizeof(struct rnbd_msg_sess_info) != 36);
1799 	BUILD_BUG_ON(sizeof(struct rnbd_msg_sess_info_rsp) != 36);
1800 	BUILD_BUG_ON(sizeof(struct rnbd_msg_open) != 264);
1801 	BUILD_BUG_ON(sizeof(struct rnbd_msg_close) != 8);
1802 	BUILD_BUG_ON(sizeof(struct rnbd_msg_open_rsp) != 56);
1803 	rnbd_client_major = register_blkdev(rnbd_client_major, "rnbd");
1804 	if (rnbd_client_major <= 0) {
1805 		pr_err("Failed to load module, block device registration failed\n");
1806 		return -EBUSY;
1807 	}
1808 
1809 	err = rnbd_clt_create_sysfs_files();
1810 	if (err) {
1811 		pr_err("Failed to load module, creating sysfs device files failed, err: %d\n",
1812 		       err);
1813 		unregister_blkdev(rnbd_client_major, "rnbd");
1814 		return err;
1815 	}
1816 	rnbd_clt_wq = alloc_workqueue("rnbd_clt_wq", WQ_PERCPU, 0);
1817 	if (!rnbd_clt_wq) {
1818 		pr_err("Failed to load module, alloc_workqueue failed.\n");
1819 		rnbd_clt_destroy_sysfs_files();
1820 		unregister_blkdev(rnbd_client_major, "rnbd");
1821 		err = -ENOMEM;
1822 	}
1823 
1824 	return err;
1825 }
1826 
1827 static void __exit rnbd_client_exit(void)
1828 {
1829 	rnbd_destroy_sessions();
1830 	unregister_blkdev(rnbd_client_major, "rnbd");
1831 	ida_destroy(&index_ida);
1832 	destroy_workqueue(rnbd_clt_wq);
1833 }
1834 
1835 module_init(rnbd_client_init);
1836 module_exit(rnbd_client_exit);
1837