xref: /linux/drivers/edac/skx_base.c (revision 03f76ddff5b04a808ae16c06418460151e2fdd4b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * EDAC driver for Intel(R) Xeon(R) Skylake processors
4  * Copyright (c) 2016, Intel Corporation.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/processor.h>
9 #include <asm/cpu_device_id.h>
10 #include <asm/intel-family.h>
11 #include <asm/mce.h>
12 
13 #include "edac_module.h"
14 #include "skx_common.h"
15 
16 #define EDAC_MOD_STR    "skx_edac"
17 
18 /*
19  * Debug macros
20  */
21 #define skx_printk(level, fmt, arg...)			\
22 	edac_printk(level, "skx", fmt, ##arg)
23 
24 #define skx_mc_printk(mci, level, fmt, arg...)		\
25 	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
26 
27 static struct list_head *skx_edac_list;
28 
29 static u64 skx_tolm, skx_tohm;
30 static int skx_num_sockets;
31 static unsigned int nvdimm_count;
32 
33 #define	MASK26	0x3FFFFFF		/* Mask for 2^26 */
34 #define MASK29	0x1FFFFFFF		/* Mask for 2^29 */
35 
36 static struct res_config skx_cfg = {
37 	.type			= SKX,
38 	.decs_did		= 0x2016,
39 	.busno_cfg_offset	= 0xcc,
40 	.ddr_imc_num		= 2,
41 	.ddr_chan_num		= 3,
42 	.ddr_dimm_num		= 2,
43 };
44 
get_skx_dev(struct pci_bus * bus,u8 idx)45 static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
46 {
47 	struct skx_dev *d;
48 
49 	list_for_each_entry(d, skx_edac_list, list) {
50 		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
51 			return d;
52 	}
53 
54 	return NULL;
55 }
56 
57 enum munittype {
58 	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD,
59 	ERRCHAN0, ERRCHAN1, ERRCHAN2,
60 };
61 
62 struct munit {
63 	u16	did;
64 	u16	devfn[2];
65 	u8	busidx;
66 	u8	per_socket;
67 	enum munittype mtype;
68 };
69 
70 /*
71  * List of PCI device ids that we need together with some device
72  * number and function numbers to tell which memory controller the
73  * device belongs to.
74  */
75 static const struct munit skx_all_munits[] = {
76 	{ 0x2054, { }, 1, 1, SAD_ALL },
77 	{ 0x2055, { }, 1, 1, UTIL_ALL },
78 	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
79 	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
80 	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
81 	{ 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0 },
82 	{ 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1 },
83 	{ 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2 },
84 	{ 0x208e, { }, 1, 0, SAD },
85 	{ }
86 };
87 
get_all_munits(const struct munit * m)88 static int get_all_munits(const struct munit *m)
89 {
90 	struct pci_dev *pdev, *prev;
91 	struct skx_dev *d;
92 	u32 reg;
93 	int i = 0, ndev = 0;
94 
95 	prev = NULL;
96 	for (;;) {
97 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
98 		if (!pdev)
99 			break;
100 		ndev++;
101 		if (m->per_socket == skx_cfg.ddr_imc_num) {
102 			for (i = 0; i < skx_cfg.ddr_imc_num; i++)
103 				if (m->devfn[i] == pdev->devfn)
104 					break;
105 			if (i == skx_cfg.ddr_imc_num)
106 				goto fail;
107 		}
108 		d = get_skx_dev(pdev->bus, m->busidx);
109 		if (!d)
110 			goto fail;
111 
112 		/* Be sure that the device is enabled */
113 		if (unlikely(pci_enable_device(pdev) < 0)) {
114 			skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
115 				   PCI_VENDOR_ID_INTEL, m->did);
116 			goto fail;
117 		}
118 
119 		switch (m->mtype) {
120 		case CHAN0:
121 		case CHAN1:
122 		case CHAN2:
123 			pci_dev_get(pdev);
124 			d->imc[i].chan[m->mtype].cdev = pdev;
125 			break;
126 		case ERRCHAN0:
127 		case ERRCHAN1:
128 		case ERRCHAN2:
129 			pci_dev_get(pdev);
130 			d->imc[i].chan[m->mtype - ERRCHAN0].edev = pdev;
131 			break;
132 		case SAD_ALL:
133 			pci_dev_get(pdev);
134 			d->sad_all = pdev;
135 			break;
136 		case UTIL_ALL:
137 			pci_dev_get(pdev);
138 			d->util_all = pdev;
139 			break;
140 		case SAD:
141 			/*
142 			 * one of these devices per core, including cores
143 			 * that don't exist on this SKU. Ignore any that
144 			 * read a route table of zero, make sure all the
145 			 * non-zero values match.
146 			 */
147 			pci_read_config_dword(pdev, 0xB4, &reg);
148 			if (reg != 0) {
149 				if (d->mcroute == 0) {
150 					d->mcroute = reg;
151 				} else if (d->mcroute != reg) {
152 					skx_printk(KERN_ERR, "mcroute mismatch\n");
153 					goto fail;
154 				}
155 			}
156 			ndev--;
157 			break;
158 		}
159 
160 		prev = pdev;
161 	}
162 
163 	return ndev;
164 fail:
165 	pci_dev_put(pdev);
166 	return -ENODEV;
167 }
168 
169 static const struct x86_cpu_id skx_cpuids[] = {
170 	X86_MATCH_VFM(INTEL_SKYLAKE_X, &skx_cfg),
171 	{ }
172 };
173 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
174 
skx_check_ecc(u32 mcmtr)175 static bool skx_check_ecc(u32 mcmtr)
176 {
177 	return !!GET_BITFIELD(mcmtr, 2, 2);
178 }
179 
skx_get_dimm_config(struct mem_ctl_info * mci,struct res_config * cfg)180 static int skx_get_dimm_config(struct mem_ctl_info *mci, struct res_config *cfg)
181 {
182 	struct skx_pvt *pvt = mci->pvt_info;
183 	u32 mtr, mcmtr, amap, mcddrtcfg;
184 	struct skx_imc *imc = pvt->imc;
185 	struct dimm_info *dimm;
186 	int i, j;
187 	int ndimms;
188 
189 	/* Only the mcmtr on the first channel is effective */
190 	pci_read_config_dword(imc->chan[0].cdev, 0x87c, &mcmtr);
191 
192 	for (i = 0; i < cfg->ddr_chan_num; i++) {
193 		ndimms = 0;
194 		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
195 		pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
196 		for (j = 0; j < cfg->ddr_dimm_num; j++) {
197 			dimm = edac_get_dimm(mci, i, j, 0);
198 			pci_read_config_dword(imc->chan[i].cdev,
199 					      0x80 + 4 * j, &mtr);
200 			if (IS_DIMM_PRESENT(mtr)) {
201 				ndimms += skx_get_dimm_info(mtr, mcmtr, amap, dimm, imc, i, j, cfg);
202 			} else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
203 				ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
204 							      EDAC_MOD_STR);
205 				nvdimm_count++;
206 			}
207 		}
208 		if (ndimms && !skx_check_ecc(mcmtr)) {
209 			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
210 			return -ENODEV;
211 		}
212 	}
213 
214 	return 0;
215 }
216 
217 #define	SKX_MAX_SAD 24
218 
219 #define SKX_GET_SAD(d, i, reg)	\
220 	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
221 #define SKX_GET_ILV(d, i, reg)	\
222 	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
223 
224 #define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31)
225 #define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27)
226 #define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
227 #define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6)
228 #define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4)
229 #define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2)
230 #define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0)
231 
232 #define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0)
233 #define SKX_ILV_TARGET(tgt)	((tgt) & 7)
234 
skx_show_retry_rd_err_log(struct decoded_addr * res,char * msg,int len,bool scrub_err)235 static void skx_show_retry_rd_err_log(struct decoded_addr *res,
236 				      char *msg, int len,
237 				      bool scrub_err)
238 {
239 	u32 log0, log1, log2, log3, log4;
240 	u32 corr0, corr1, corr2, corr3;
241 	struct pci_dev *edev;
242 	int n;
243 
244 	edev = res->dev->imc[res->imc].chan[res->channel].edev;
245 
246 	pci_read_config_dword(edev, 0x154, &log0);
247 	pci_read_config_dword(edev, 0x148, &log1);
248 	pci_read_config_dword(edev, 0x150, &log2);
249 	pci_read_config_dword(edev, 0x15c, &log3);
250 	pci_read_config_dword(edev, 0x114, &log4);
251 
252 	n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]",
253 		     log0, log1, log2, log3, log4);
254 
255 	pci_read_config_dword(edev, 0x104, &corr0);
256 	pci_read_config_dword(edev, 0x108, &corr1);
257 	pci_read_config_dword(edev, 0x10c, &corr2);
258 	pci_read_config_dword(edev, 0x110, &corr3);
259 
260 	if (len - n > 0)
261 		snprintf(msg + n, len - n,
262 			 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
263 			 corr0 & 0xffff, corr0 >> 16,
264 			 corr1 & 0xffff, corr1 >> 16,
265 			 corr2 & 0xffff, corr2 >> 16,
266 			 corr3 & 0xffff, corr3 >> 16);
267 }
268 
skx_sad_decode(struct decoded_addr * res)269 static bool skx_sad_decode(struct decoded_addr *res)
270 {
271 	struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
272 	u64 addr = res->addr;
273 	int i, idx, tgt, lchan, shift;
274 	u32 sad, ilv;
275 	u64 limit, prev_limit;
276 	int remote = 0;
277 
278 	/* Simple sanity check for I/O space or out of range */
279 	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
280 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
281 		return false;
282 	}
283 
284 restart:
285 	prev_limit = 0;
286 	for (i = 0; i < SKX_MAX_SAD; i++) {
287 		SKX_GET_SAD(d, i, sad);
288 		limit = SKX_SAD_LIMIT(sad);
289 		if (SKX_SAD_ENABLE(sad)) {
290 			if (addr >= prev_limit && addr <= limit)
291 				goto sad_found;
292 		}
293 		prev_limit = limit + 1;
294 	}
295 	edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
296 	return false;
297 
298 sad_found:
299 	SKX_GET_ILV(d, i, ilv);
300 
301 	switch (SKX_SAD_INTERLEAVE(sad)) {
302 	case 0:
303 		idx = GET_BITFIELD(addr, 6, 8);
304 		break;
305 	case 1:
306 		idx = GET_BITFIELD(addr, 8, 10);
307 		break;
308 	case 2:
309 		idx = GET_BITFIELD(addr, 12, 14);
310 		break;
311 	case 3:
312 		idx = GET_BITFIELD(addr, 30, 32);
313 		break;
314 	}
315 
316 	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
317 
318 	/* If point to another node, find it and start over */
319 	if (SKX_ILV_REMOTE(tgt)) {
320 		if (remote) {
321 			edac_dbg(0, "Double remote!\n");
322 			return false;
323 		}
324 		remote = 1;
325 		list_for_each_entry(d, skx_edac_list, list) {
326 			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
327 				goto restart;
328 		}
329 		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
330 		return false;
331 	}
332 
333 	if (SKX_SAD_MOD3(sad) == 0) {
334 		lchan = SKX_ILV_TARGET(tgt);
335 	} else {
336 		switch (SKX_SAD_MOD3MODE(sad)) {
337 		case 0:
338 			shift = 6;
339 			break;
340 		case 1:
341 			shift = 8;
342 			break;
343 		case 2:
344 			shift = 12;
345 			break;
346 		default:
347 			edac_dbg(0, "illegal mod3mode\n");
348 			return false;
349 		}
350 		switch (SKX_SAD_MOD3ASMOD2(sad)) {
351 		case 0:
352 			lchan = (addr >> shift) % 3;
353 			break;
354 		case 1:
355 			lchan = (addr >> shift) % 2;
356 			break;
357 		case 2:
358 			lchan = (addr >> shift) % 2;
359 			lchan = (lchan << 1) | !lchan;
360 			break;
361 		case 3:
362 			lchan = ((addr >> shift) % 2) << 1;
363 			break;
364 		}
365 		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
366 	}
367 
368 	res->dev = d;
369 	res->socket = d->imc[0].src_id;
370 	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
371 	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
372 
373 	edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
374 		 res->addr, res->socket, res->imc, res->channel);
375 	return true;
376 }
377 
378 #define	SKX_MAX_TAD 8
379 
380 #define SKX_GET_TADBASE(d, mc, i, reg)			\
381 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
382 #define SKX_GET_TADWAYNESS(d, mc, i, reg)		\
383 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
384 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\
385 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
386 
387 #define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26)
388 #define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5)
389 #define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7)
390 #define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
391 #define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26)
392 #define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11))
393 #define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1)
394 
395 /* which bit used for both socket and channel interleave */
396 static int skx_granularity[] = { 6, 8, 12, 30 };
397 
skx_do_interleave(u64 addr,int shift,int ways,u64 lowbits)398 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
399 {
400 	addr >>= shift;
401 	addr /= ways;
402 	addr <<= shift;
403 
404 	return addr | (lowbits & ((1ull << shift) - 1));
405 }
406 
skx_tad_decode(struct decoded_addr * res)407 static bool skx_tad_decode(struct decoded_addr *res)
408 {
409 	int i;
410 	u32 base, wayness, chnilvoffset;
411 	int skt_interleave_bit, chn_interleave_bit;
412 	u64 channel_addr;
413 
414 	for (i = 0; i < SKX_MAX_TAD; i++) {
415 		SKX_GET_TADBASE(res->dev, res->imc, i, base);
416 		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
417 		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
418 			goto tad_found;
419 	}
420 	edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
421 	return false;
422 
423 tad_found:
424 	res->sktways = SKX_TAD_SKTWAYS(wayness);
425 	res->chanways = SKX_TAD_CHNWAYS(wayness);
426 	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
427 	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
428 
429 	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
430 	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
431 
432 	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
433 		/* Must handle channel first, then socket */
434 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
435 						 res->chanways, channel_addr);
436 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
437 						 res->sktways, channel_addr);
438 	} else {
439 		/* Handle socket then channel. Preserve low bits from original address */
440 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
441 						 res->sktways, res->addr);
442 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
443 						 res->chanways, res->addr);
444 	}
445 
446 	res->chan_addr = channel_addr;
447 
448 	edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
449 		 res->addr, res->chan_addr, res->sktways, res->chanways);
450 	return true;
451 }
452 
453 #define SKX_MAX_RIR 4
454 
455 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\
456 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
457 			      0x108 + 4 * (i), &(reg))
458 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\
459 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
460 			      0x120 + 16 * (idx) + 4 * (i), &(reg))
461 
462 #define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
463 #define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
464 #define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
465 #define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
466 #define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
467 
skx_rir_decode(struct decoded_addr * res)468 static bool skx_rir_decode(struct decoded_addr *res)
469 {
470 	int i, idx, chan_rank;
471 	int shift;
472 	u32 rirway, rirlv;
473 	u64 rank_addr, prev_limit = 0, limit;
474 
475 	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
476 		shift = 6;
477 	else
478 		shift = 13;
479 
480 	for (i = 0; i < SKX_MAX_RIR; i++) {
481 		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
482 		limit = SKX_RIR_LIMIT(rirway);
483 		if (SKX_RIR_VALID(rirway)) {
484 			if (prev_limit <= res->chan_addr &&
485 			    res->chan_addr <= limit)
486 				goto rir_found;
487 		}
488 		prev_limit = limit;
489 	}
490 	edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
491 	return false;
492 
493 rir_found:
494 	rank_addr = res->chan_addr >> shift;
495 	rank_addr /= SKX_RIR_WAYS(rirway);
496 	rank_addr <<= shift;
497 	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
498 
499 	res->rank_address = rank_addr;
500 	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
501 
502 	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
503 	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
504 	chan_rank = SKX_RIR_CHAN_RANK(rirlv);
505 	res->channel_rank = chan_rank;
506 	res->dimm = chan_rank / 4;
507 	res->rank = chan_rank % 4;
508 
509 	edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
510 		 res->addr, res->dimm, res->rank,
511 		 res->channel_rank, res->rank_address);
512 	return true;
513 }
514 
515 static u8 skx_close_row[] = {
516 	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33, 34
517 };
518 
519 static u8 skx_close_column[] = {
520 	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
521 };
522 
523 static u8 skx_open_row[] = {
524 	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34
525 };
526 
527 static u8 skx_open_column[] = {
528 	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
529 };
530 
531 static u8 skx_open_fine_column[] = {
532 	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
533 };
534 
skx_bits(u64 addr,int nbits,u8 * bits)535 static int skx_bits(u64 addr, int nbits, u8 *bits)
536 {
537 	int i, res = 0;
538 
539 	for (i = 0; i < nbits; i++)
540 		res |= ((addr >> bits[i]) & 1) << i;
541 	return res;
542 }
543 
skx_bank_bits(u64 addr,int b0,int b1,int do_xor,int x0,int x1)544 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
545 {
546 	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
547 
548 	if (do_xor)
549 		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
550 
551 	return ret;
552 }
553 
skx_mad_decode(struct decoded_addr * r)554 static bool skx_mad_decode(struct decoded_addr *r)
555 {
556 	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
557 	int bg0 = dimm->fine_grain_bank ? 6 : 13;
558 
559 	if (dimm->close_pg) {
560 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
561 		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
562 		r->column |= 0x400; /* C10 is autoprecharge, always set */
563 		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
564 		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
565 	} else {
566 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
567 		if (dimm->fine_grain_bank)
568 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
569 		else
570 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
571 		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
572 		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
573 	}
574 	r->row &= (1u << dimm->rowbits) - 1;
575 
576 	edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
577 		 r->addr, r->row, r->column, r->bank_address,
578 		 r->bank_group);
579 	return true;
580 }
581 
skx_decode(struct decoded_addr * res)582 static bool skx_decode(struct decoded_addr *res)
583 {
584 	return skx_sad_decode(res) && skx_tad_decode(res) &&
585 		skx_rir_decode(res) && skx_mad_decode(res);
586 }
587 
588 static struct notifier_block skx_mce_dec = {
589 	.notifier_call	= skx_mce_check_error,
590 	.priority	= MCE_PRIO_EDAC,
591 };
592 
593 /*
594  * skx_init:
595  *	make sure we are running on the correct cpu model
596  *	search for all the devices we need
597  *	check which DIMMs are present.
598  */
skx_init(void)599 static int __init skx_init(void)
600 {
601 	const struct x86_cpu_id *id;
602 	struct res_config *cfg;
603 	const struct munit *m;
604 	const char *owner;
605 	int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
606 	u8 mc = 0, src_id;
607 	struct skx_dev *d;
608 
609 	edac_dbg(2, "\n");
610 
611 	if (ghes_get_devices())
612 		return -EBUSY;
613 
614 	owner = edac_get_owner();
615 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
616 		return -EBUSY;
617 
618 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
619 		return -ENODEV;
620 
621 	id = x86_match_cpu(skx_cpuids);
622 	if (!id)
623 		return -ENODEV;
624 
625 	cfg = (struct res_config *)id->driver_data;
626 	skx_set_res_cfg(cfg);
627 
628 	rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
629 	if (rc)
630 		return rc;
631 
632 	rc = skx_get_all_bus_mappings(cfg, &skx_edac_list);
633 	if (rc < 0)
634 		goto fail;
635 	if (rc == 0) {
636 		edac_dbg(2, "No memory controllers found\n");
637 		return -ENODEV;
638 	}
639 	skx_num_sockets = rc;
640 
641 	for (m = skx_all_munits; m->did; m++) {
642 		rc = get_all_munits(m);
643 		if (rc < 0)
644 			goto fail;
645 		if (rc != m->per_socket * skx_num_sockets) {
646 			edac_dbg(2, "Expected %d, got %d of 0x%x\n",
647 				 m->per_socket * skx_num_sockets, rc, m->did);
648 			rc = -ENODEV;
649 			goto fail;
650 		}
651 	}
652 
653 	list_for_each_entry(d, skx_edac_list, list) {
654 		rc = skx_get_src_id(d, 0xf0, &src_id);
655 		if (rc < 0)
656 			goto fail;
657 
658 		edac_dbg(2, "src_id = %d\n", src_id);
659 		for (i = 0; i < cfg->ddr_imc_num; i++) {
660 			d->imc[i].mc = mc++;
661 			d->imc[i].lmc = i;
662 			d->imc[i].src_id = src_id;
663 			d->imc[i].num_channels = cfg->ddr_chan_num;
664 			d->imc[i].num_dimms    = cfg->ddr_dimm_num;
665 
666 			rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
667 					      "Skylake Socket", EDAC_MOD_STR,
668 					      skx_get_dimm_config, cfg);
669 			if (rc < 0)
670 				goto fail;
671 		}
672 	}
673 
674 	skx_set_decode(skx_decode, skx_show_retry_rd_err_log);
675 
676 	if (nvdimm_count && skx_adxl_get() != -ENODEV) {
677 		skx_set_decode(NULL, skx_show_retry_rd_err_log);
678 	} else {
679 		if (nvdimm_count)
680 			skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
681 		skx_set_decode(skx_decode, skx_show_retry_rd_err_log);
682 	}
683 
684 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
685 	opstate_init();
686 
687 	skx_setup_debug("skx_test");
688 
689 	mce_register_decode_chain(&skx_mce_dec);
690 
691 	return 0;
692 fail:
693 	skx_remove();
694 	return rc;
695 }
696 
skx_exit(void)697 static void __exit skx_exit(void)
698 {
699 	edac_dbg(2, "\n");
700 	mce_unregister_decode_chain(&skx_mce_dec);
701 	skx_teardown_debug();
702 	if (nvdimm_count)
703 		skx_adxl_put();
704 	skx_remove();
705 }
706 
707 module_init(skx_init);
708 module_exit(skx_exit);
709 
710 module_param(edac_op_state, int, 0444);
711 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
712 
713 MODULE_LICENSE("GPL v2");
714 MODULE_AUTHOR("Tony Luck");
715 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
716