1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Linutronix GmbH, Thomas Gleixner <tglx@kernel.org> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 #include <linux/percpu-rwsem.h> 59 #include <linux/unwind_deferred.h> 60 61 #include "internal.h" 62 63 #include <asm/irq_regs.h> 64 65 typedef int (*remote_function_f)(void *); 66 67 struct remote_function_call { 68 struct task_struct *p; 69 remote_function_f func; 70 void *info; 71 int ret; 72 }; 73 74 static void remote_function(void *data) 75 { 76 struct remote_function_call *tfc = data; 77 struct task_struct *p = tfc->p; 78 79 if (p) { 80 /* -EAGAIN */ 81 if (task_cpu(p) != smp_processor_id()) 82 return; 83 84 /* 85 * Now that we're on right CPU with IRQs disabled, we can test 86 * if we hit the right task without races. 87 */ 88 89 tfc->ret = -ESRCH; /* No such (running) process */ 90 if (p != current) 91 return; 92 } 93 94 tfc->ret = tfc->func(tfc->info); 95 } 96 97 /** 98 * task_function_call - call a function on the cpu on which a task runs 99 * @p: the task to evaluate 100 * @func: the function to be called 101 * @info: the function call argument 102 * 103 * Calls the function @func when the task is currently running. This might 104 * be on the current CPU, which just calls the function directly. This will 105 * retry due to any failures in smp_call_function_single(), such as if the 106 * task_cpu() goes offline concurrently. 107 * 108 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 109 */ 110 static int 111 task_function_call(struct task_struct *p, remote_function_f func, void *info) 112 { 113 struct remote_function_call data = { 114 .p = p, 115 .func = func, 116 .info = info, 117 .ret = -EAGAIN, 118 }; 119 int ret; 120 121 for (;;) { 122 ret = smp_call_function_single(task_cpu(p), remote_function, 123 &data, 1); 124 if (!ret) 125 ret = data.ret; 126 127 if (ret != -EAGAIN) 128 break; 129 130 cond_resched(); 131 } 132 133 return ret; 134 } 135 136 /** 137 * cpu_function_call - call a function on the cpu 138 * @cpu: target cpu to queue this function 139 * @func: the function to be called 140 * @info: the function call argument 141 * 142 * Calls the function @func on the remote cpu. 143 * 144 * returns: @func return value or -ENXIO when the cpu is offline 145 */ 146 static int cpu_function_call(int cpu, remote_function_f func, void *info) 147 { 148 struct remote_function_call data = { 149 .p = NULL, 150 .func = func, 151 .info = info, 152 .ret = -ENXIO, /* No such CPU */ 153 }; 154 155 smp_call_function_single(cpu, remote_function, &data, 1); 156 157 return data.ret; 158 } 159 160 enum event_type_t { 161 EVENT_FLEXIBLE = 0x01, 162 EVENT_PINNED = 0x02, 163 EVENT_TIME = 0x04, 164 EVENT_FROZEN = 0x08, 165 /* see ctx_resched() for details */ 166 EVENT_CPU = 0x10, 167 EVENT_CGROUP = 0x20, 168 169 /* compound helpers */ 170 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 171 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 172 }; 173 174 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 175 { 176 raw_spin_lock(&ctx->lock); 177 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 178 } 179 180 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 181 struct perf_event_context *ctx) 182 { 183 __perf_ctx_lock(&cpuctx->ctx); 184 if (ctx) 185 __perf_ctx_lock(ctx); 186 } 187 188 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 189 { 190 /* 191 * If ctx_sched_in() didn't again set any ALL flags, clean up 192 * after ctx_sched_out() by clearing is_active. 193 */ 194 if (ctx->is_active & EVENT_FROZEN) { 195 if (!(ctx->is_active & EVENT_ALL)) 196 ctx->is_active = 0; 197 else 198 ctx->is_active &= ~EVENT_FROZEN; 199 } 200 raw_spin_unlock(&ctx->lock); 201 } 202 203 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 204 struct perf_event_context *ctx) 205 { 206 if (ctx) 207 __perf_ctx_unlock(ctx); 208 __perf_ctx_unlock(&cpuctx->ctx); 209 } 210 211 typedef struct { 212 struct perf_cpu_context *cpuctx; 213 struct perf_event_context *ctx; 214 } class_perf_ctx_lock_t; 215 216 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T) 217 { perf_ctx_unlock(_T->cpuctx, _T->ctx); } 218 219 static inline class_perf_ctx_lock_t 220 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx, 221 struct perf_event_context *ctx) 222 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; } 223 224 #define TASK_TOMBSTONE ((void *)-1L) 225 226 static bool is_kernel_event(struct perf_event *event) 227 { 228 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 229 } 230 231 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 232 233 struct perf_event_context *perf_cpu_task_ctx(void) 234 { 235 lockdep_assert_irqs_disabled(); 236 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 237 } 238 239 /* 240 * On task ctx scheduling... 241 * 242 * When !ctx->nr_events a task context will not be scheduled. This means 243 * we can disable the scheduler hooks (for performance) without leaving 244 * pending task ctx state. 245 * 246 * This however results in two special cases: 247 * 248 * - removing the last event from a task ctx; this is relatively straight 249 * forward and is done in __perf_remove_from_context. 250 * 251 * - adding the first event to a task ctx; this is tricky because we cannot 252 * rely on ctx->is_active and therefore cannot use event_function_call(). 253 * See perf_install_in_context(). 254 * 255 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 256 */ 257 258 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 259 struct perf_event_context *, void *); 260 261 struct event_function_struct { 262 struct perf_event *event; 263 event_f func; 264 void *data; 265 }; 266 267 static int event_function(void *info) 268 { 269 struct event_function_struct *efs = info; 270 struct perf_event *event = efs->event; 271 struct perf_event_context *ctx = event->ctx; 272 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 273 struct perf_event_context *task_ctx = cpuctx->task_ctx; 274 int ret = 0; 275 276 lockdep_assert_irqs_disabled(); 277 278 perf_ctx_lock(cpuctx, task_ctx); 279 /* 280 * Since we do the IPI call without holding ctx->lock things can have 281 * changed, double check we hit the task we set out to hit. 282 */ 283 if (ctx->task) { 284 if (ctx->task != current) { 285 ret = -ESRCH; 286 goto unlock; 287 } 288 289 /* 290 * We only use event_function_call() on established contexts, 291 * and event_function() is only ever called when active (or 292 * rather, we'll have bailed in task_function_call() or the 293 * above ctx->task != current test), therefore we must have 294 * ctx->is_active here. 295 */ 296 WARN_ON_ONCE(!ctx->is_active); 297 /* 298 * And since we have ctx->is_active, cpuctx->task_ctx must 299 * match. 300 */ 301 WARN_ON_ONCE(task_ctx != ctx); 302 } else { 303 WARN_ON_ONCE(&cpuctx->ctx != ctx); 304 } 305 306 efs->func(event, cpuctx, ctx, efs->data); 307 unlock: 308 perf_ctx_unlock(cpuctx, task_ctx); 309 310 return ret; 311 } 312 313 static void event_function_call(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 317 struct perf_cpu_context *cpuctx; 318 struct event_function_struct efs = { 319 .event = event, 320 .func = func, 321 .data = data, 322 }; 323 324 if (!event->parent) { 325 /* 326 * If this is a !child event, we must hold ctx::mutex to 327 * stabilize the event->ctx relation. See 328 * perf_event_ctx_lock(). 329 */ 330 lockdep_assert_held(&ctx->mutex); 331 } 332 333 if (!task) { 334 cpu_function_call(event->cpu, event_function, &efs); 335 return; 336 } 337 338 if (task == TASK_TOMBSTONE) 339 return; 340 341 again: 342 if (!task_function_call(task, event_function, &efs)) 343 return; 344 345 local_irq_disable(); 346 cpuctx = this_cpu_ptr(&perf_cpu_context); 347 perf_ctx_lock(cpuctx, ctx); 348 /* 349 * Reload the task pointer, it might have been changed by 350 * a concurrent perf_event_context_sched_out(). 351 */ 352 task = ctx->task; 353 if (task == TASK_TOMBSTONE) 354 goto unlock; 355 if (ctx->is_active) { 356 perf_ctx_unlock(cpuctx, ctx); 357 local_irq_enable(); 358 goto again; 359 } 360 func(event, NULL, ctx, data); 361 unlock: 362 perf_ctx_unlock(cpuctx, ctx); 363 local_irq_enable(); 364 } 365 366 /* 367 * Similar to event_function_call() + event_function(), but hard assumes IRQs 368 * are already disabled and we're on the right CPU. 369 */ 370 static void event_function_local(struct perf_event *event, event_f func, void *data) 371 { 372 struct perf_event_context *ctx = event->ctx; 373 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 374 struct task_struct *task = READ_ONCE(ctx->task); 375 struct perf_event_context *task_ctx = NULL; 376 377 lockdep_assert_irqs_disabled(); 378 379 if (task) { 380 if (task == TASK_TOMBSTONE) 381 return; 382 383 task_ctx = ctx; 384 } 385 386 perf_ctx_lock(cpuctx, task_ctx); 387 388 task = ctx->task; 389 if (task == TASK_TOMBSTONE) 390 goto unlock; 391 392 if (task) { 393 /* 394 * We must be either inactive or active and the right task, 395 * otherwise we're screwed, since we cannot IPI to somewhere 396 * else. 397 */ 398 if (ctx->is_active) { 399 if (WARN_ON_ONCE(task != current)) 400 goto unlock; 401 402 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 403 goto unlock; 404 } 405 } else { 406 WARN_ON_ONCE(&cpuctx->ctx != ctx); 407 } 408 409 func(event, cpuctx, ctx, data); 410 unlock: 411 perf_ctx_unlock(cpuctx, task_ctx); 412 } 413 414 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 415 PERF_FLAG_FD_OUTPUT |\ 416 PERF_FLAG_PID_CGROUP |\ 417 PERF_FLAG_FD_CLOEXEC) 418 419 /* 420 * branch priv levels that need permission checks 421 */ 422 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 423 (PERF_SAMPLE_BRANCH_KERNEL |\ 424 PERF_SAMPLE_BRANCH_HV) 425 426 /* 427 * perf_sched_events : >0 events exist 428 */ 429 430 static void perf_sched_delayed(struct work_struct *work); 431 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 432 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 433 static DEFINE_MUTEX(perf_sched_mutex); 434 static atomic_t perf_sched_count; 435 436 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 437 438 static atomic_t nr_mmap_events __read_mostly; 439 static atomic_t nr_comm_events __read_mostly; 440 static atomic_t nr_namespaces_events __read_mostly; 441 static atomic_t nr_task_events __read_mostly; 442 static atomic_t nr_freq_events __read_mostly; 443 static atomic_t nr_switch_events __read_mostly; 444 static atomic_t nr_ksymbol_events __read_mostly; 445 static atomic_t nr_bpf_events __read_mostly; 446 static atomic_t nr_cgroup_events __read_mostly; 447 static atomic_t nr_text_poke_events __read_mostly; 448 static atomic_t nr_build_id_events __read_mostly; 449 450 static LIST_HEAD(pmus); 451 static DEFINE_MUTEX(pmus_lock); 452 static struct srcu_struct pmus_srcu; 453 static cpumask_var_t perf_online_mask; 454 static cpumask_var_t perf_online_core_mask; 455 static cpumask_var_t perf_online_die_mask; 456 static cpumask_var_t perf_online_cluster_mask; 457 static cpumask_var_t perf_online_pkg_mask; 458 static cpumask_var_t perf_online_sys_mask; 459 static struct kmem_cache *perf_event_cache; 460 461 /* 462 * perf event paranoia level: 463 * -1 - not paranoid at all 464 * 0 - disallow raw tracepoint access for unpriv 465 * 1 - disallow cpu events for unpriv 466 * 2 - disallow kernel profiling for unpriv 467 */ 468 int sysctl_perf_event_paranoid __read_mostly = 2; 469 470 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */ 471 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); 472 473 /* 474 * max perf event sample rate 475 */ 476 #define DEFAULT_MAX_SAMPLE_RATE 100000 477 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 478 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 479 480 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 481 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 482 483 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 484 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 485 486 static int perf_sample_allowed_ns __read_mostly = 487 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 488 489 static void update_perf_cpu_limits(void) 490 { 491 u64 tmp = perf_sample_period_ns; 492 493 tmp *= sysctl_perf_cpu_time_max_percent; 494 tmp = div_u64(tmp, 100); 495 if (!tmp) 496 tmp = 1; 497 498 WRITE_ONCE(perf_sample_allowed_ns, tmp); 499 } 500 501 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 502 503 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 504 void *buffer, size_t *lenp, loff_t *ppos) 505 { 506 int ret; 507 int perf_cpu = sysctl_perf_cpu_time_max_percent; 508 /* 509 * If throttling is disabled don't allow the write: 510 */ 511 if (write && (perf_cpu == 100 || perf_cpu == 0)) 512 return -EINVAL; 513 514 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 if (ret || !write) 516 return ret; 517 518 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 519 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 520 update_perf_cpu_limits(); 521 522 return 0; 523 } 524 525 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 526 void *buffer, size_t *lenp, loff_t *ppos) 527 { 528 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 529 530 if (ret || !write) 531 return ret; 532 533 if (sysctl_perf_cpu_time_max_percent == 100 || 534 sysctl_perf_cpu_time_max_percent == 0) { 535 printk(KERN_WARNING 536 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 537 WRITE_ONCE(perf_sample_allowed_ns, 0); 538 } else { 539 update_perf_cpu_limits(); 540 } 541 542 return 0; 543 } 544 545 static const struct ctl_table events_core_sysctl_table[] = { 546 /* 547 * User-space relies on this file as a feature check for 548 * perf_events being enabled. It's an ABI, do not remove! 549 */ 550 { 551 .procname = "perf_event_paranoid", 552 .data = &sysctl_perf_event_paranoid, 553 .maxlen = sizeof(sysctl_perf_event_paranoid), 554 .mode = 0644, 555 .proc_handler = proc_dointvec, 556 }, 557 { 558 .procname = "perf_event_mlock_kb", 559 .data = &sysctl_perf_event_mlock, 560 .maxlen = sizeof(sysctl_perf_event_mlock), 561 .mode = 0644, 562 .proc_handler = proc_dointvec, 563 }, 564 { 565 .procname = "perf_event_max_sample_rate", 566 .data = &sysctl_perf_event_sample_rate, 567 .maxlen = sizeof(sysctl_perf_event_sample_rate), 568 .mode = 0644, 569 .proc_handler = perf_event_max_sample_rate_handler, 570 .extra1 = SYSCTL_ONE, 571 }, 572 { 573 .procname = "perf_cpu_time_max_percent", 574 .data = &sysctl_perf_cpu_time_max_percent, 575 .maxlen = sizeof(sysctl_perf_cpu_time_max_percent), 576 .mode = 0644, 577 .proc_handler = perf_cpu_time_max_percent_handler, 578 .extra1 = SYSCTL_ZERO, 579 .extra2 = SYSCTL_ONE_HUNDRED, 580 }, 581 }; 582 583 static int __init init_events_core_sysctls(void) 584 { 585 register_sysctl_init("kernel", events_core_sysctl_table); 586 return 0; 587 } 588 core_initcall(init_events_core_sysctls); 589 590 591 /* 592 * perf samples are done in some very critical code paths (NMIs). 593 * If they take too much CPU time, the system can lock up and not 594 * get any real work done. This will drop the sample rate when 595 * we detect that events are taking too long. 596 */ 597 #define NR_ACCUMULATED_SAMPLES 128 598 static DEFINE_PER_CPU(u64, running_sample_length); 599 600 static u64 __report_avg; 601 static u64 __report_allowed; 602 603 static void perf_duration_warn(struct irq_work *w) 604 { 605 printk_ratelimited(KERN_INFO 606 "perf: interrupt took too long (%lld > %lld), lowering " 607 "kernel.perf_event_max_sample_rate to %d\n", 608 __report_avg, __report_allowed, 609 sysctl_perf_event_sample_rate); 610 } 611 612 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 613 614 void perf_sample_event_took(u64 sample_len_ns) 615 { 616 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 617 u64 running_len; 618 u64 avg_len; 619 u32 max; 620 621 if (max_len == 0) 622 return; 623 624 /* Decay the counter by 1 average sample. */ 625 running_len = __this_cpu_read(running_sample_length); 626 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 627 running_len += sample_len_ns; 628 __this_cpu_write(running_sample_length, running_len); 629 630 /* 631 * Note: this will be biased artificially low until we have 632 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 633 * from having to maintain a count. 634 */ 635 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 636 if (avg_len <= max_len) 637 return; 638 639 __report_avg = avg_len; 640 __report_allowed = max_len; 641 642 /* 643 * Compute a throttle threshold 25% below the current duration. 644 */ 645 avg_len += avg_len / 4; 646 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 647 if (avg_len < max) 648 max /= (u32)avg_len; 649 else 650 max = 1; 651 652 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 653 WRITE_ONCE(max_samples_per_tick, max); 654 655 sysctl_perf_event_sample_rate = max * HZ; 656 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 657 658 if (!irq_work_queue(&perf_duration_work)) { 659 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 660 "kernel.perf_event_max_sample_rate to %d\n", 661 __report_avg, __report_allowed, 662 sysctl_perf_event_sample_rate); 663 } 664 } 665 666 static atomic64_t perf_event_id; 667 668 static void update_context_time(struct perf_event_context *ctx); 669 static u64 perf_event_time(struct perf_event *event); 670 671 void __weak perf_event_print_debug(void) { } 672 673 static inline u64 perf_clock(void) 674 { 675 return local_clock(); 676 } 677 678 static inline u64 perf_event_clock(struct perf_event *event) 679 { 680 return event->clock(); 681 } 682 683 /* 684 * State based event timekeeping... 685 * 686 * The basic idea is to use event->state to determine which (if any) time 687 * fields to increment with the current delta. This means we only need to 688 * update timestamps when we change state or when they are explicitly requested 689 * (read). 690 * 691 * Event groups make things a little more complicated, but not terribly so. The 692 * rules for a group are that if the group leader is OFF the entire group is 693 * OFF, irrespective of what the group member states are. This results in 694 * __perf_effective_state(). 695 * 696 * A further ramification is that when a group leader flips between OFF and 697 * !OFF, we need to update all group member times. 698 * 699 * 700 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 701 * need to make sure the relevant context time is updated before we try and 702 * update our timestamps. 703 */ 704 705 static __always_inline enum perf_event_state 706 __perf_effective_state(struct perf_event *event) 707 { 708 struct perf_event *leader = event->group_leader; 709 710 if (leader->state <= PERF_EVENT_STATE_OFF) 711 return leader->state; 712 713 return event->state; 714 } 715 716 static __always_inline void 717 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 718 { 719 enum perf_event_state state = __perf_effective_state(event); 720 u64 delta = now - event->tstamp; 721 722 *enabled = event->total_time_enabled; 723 if (state >= PERF_EVENT_STATE_INACTIVE) 724 *enabled += delta; 725 726 *running = event->total_time_running; 727 if (state >= PERF_EVENT_STATE_ACTIVE) 728 *running += delta; 729 } 730 731 static void perf_event_update_time(struct perf_event *event) 732 { 733 u64 now = perf_event_time(event); 734 735 __perf_update_times(event, now, &event->total_time_enabled, 736 &event->total_time_running); 737 event->tstamp = now; 738 } 739 740 static void perf_event_update_sibling_time(struct perf_event *leader) 741 { 742 struct perf_event *sibling; 743 744 for_each_sibling_event(sibling, leader) 745 perf_event_update_time(sibling); 746 } 747 748 static void 749 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 750 { 751 if (event->state == state) 752 return; 753 754 perf_event_update_time(event); 755 /* 756 * If a group leader gets enabled/disabled all its siblings 757 * are affected too. 758 */ 759 if ((event->state < 0) ^ (state < 0)) 760 perf_event_update_sibling_time(event); 761 762 WRITE_ONCE(event->state, state); 763 } 764 765 /* 766 * UP store-release, load-acquire 767 */ 768 769 #define __store_release(ptr, val) \ 770 do { \ 771 barrier(); \ 772 WRITE_ONCE(*(ptr), (val)); \ 773 } while (0) 774 775 #define __load_acquire(ptr) \ 776 ({ \ 777 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 778 barrier(); \ 779 ___p; \ 780 }) 781 782 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 783 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 784 if (_cgroup && !_epc->nr_cgroups) \ 785 continue; \ 786 else if (_pmu && _epc->pmu != _pmu) \ 787 continue; \ 788 else 789 790 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 791 { 792 struct perf_event_pmu_context *pmu_ctx; 793 794 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 795 perf_pmu_disable(pmu_ctx->pmu); 796 } 797 798 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 799 { 800 struct perf_event_pmu_context *pmu_ctx; 801 802 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 803 perf_pmu_enable(pmu_ctx->pmu); 804 } 805 806 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 807 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 808 809 #ifdef CONFIG_CGROUP_PERF 810 811 static inline bool 812 perf_cgroup_match(struct perf_event *event) 813 { 814 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 815 816 /* @event doesn't care about cgroup */ 817 if (!event->cgrp) 818 return true; 819 820 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 821 if (!cpuctx->cgrp) 822 return false; 823 824 /* 825 * Cgroup scoping is recursive. An event enabled for a cgroup is 826 * also enabled for all its descendant cgroups. If @cpuctx's 827 * cgroup is a descendant of @event's (the test covers identity 828 * case), it's a match. 829 */ 830 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 831 event->cgrp->css.cgroup); 832 } 833 834 static inline void perf_detach_cgroup(struct perf_event *event) 835 { 836 css_put(&event->cgrp->css); 837 event->cgrp = NULL; 838 } 839 840 static inline int is_cgroup_event(struct perf_event *event) 841 { 842 return event->cgrp != NULL; 843 } 844 845 static inline u64 perf_cgroup_event_time(struct perf_event *event) 846 { 847 struct perf_cgroup_info *t; 848 849 t = per_cpu_ptr(event->cgrp->info, event->cpu); 850 return t->time; 851 } 852 853 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 854 { 855 struct perf_cgroup_info *t; 856 857 t = per_cpu_ptr(event->cgrp->info, event->cpu); 858 if (!__load_acquire(&t->active)) 859 return t->time; 860 now += READ_ONCE(t->timeoffset); 861 return now; 862 } 863 864 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 865 { 866 if (adv) 867 info->time += now - info->timestamp; 868 info->timestamp = now; 869 /* 870 * see update_context_time() 871 */ 872 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 873 } 874 875 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 876 { 877 struct perf_cgroup *cgrp = cpuctx->cgrp; 878 struct cgroup_subsys_state *css; 879 struct perf_cgroup_info *info; 880 881 if (cgrp) { 882 u64 now = perf_clock(); 883 884 for (css = &cgrp->css; css; css = css->parent) { 885 cgrp = container_of(css, struct perf_cgroup, css); 886 info = this_cpu_ptr(cgrp->info); 887 888 __update_cgrp_time(info, now, true); 889 if (final) 890 __store_release(&info->active, 0); 891 } 892 } 893 } 894 895 static inline void update_cgrp_time_from_event(struct perf_event *event) 896 { 897 struct perf_cgroup_info *info; 898 899 /* 900 * ensure we access cgroup data only when needed and 901 * when we know the cgroup is pinned (css_get) 902 */ 903 if (!is_cgroup_event(event)) 904 return; 905 906 info = this_cpu_ptr(event->cgrp->info); 907 /* 908 * Do not update time when cgroup is not active 909 */ 910 if (info->active) 911 __update_cgrp_time(info, perf_clock(), true); 912 } 913 914 static inline void 915 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 916 { 917 struct perf_event_context *ctx = &cpuctx->ctx; 918 struct perf_cgroup *cgrp = cpuctx->cgrp; 919 struct perf_cgroup_info *info; 920 struct cgroup_subsys_state *css; 921 922 /* 923 * ctx->lock held by caller 924 * ensure we do not access cgroup data 925 * unless we have the cgroup pinned (css_get) 926 */ 927 if (!cgrp) 928 return; 929 930 WARN_ON_ONCE(!ctx->nr_cgroups); 931 932 for (css = &cgrp->css; css; css = css->parent) { 933 cgrp = container_of(css, struct perf_cgroup, css); 934 info = this_cpu_ptr(cgrp->info); 935 __update_cgrp_time(info, ctx->timestamp, false); 936 __store_release(&info->active, 1); 937 } 938 } 939 940 /* 941 * reschedule events based on the cgroup constraint of task. 942 */ 943 static void perf_cgroup_switch(struct task_struct *task) 944 { 945 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 946 struct perf_cgroup *cgrp; 947 948 /* 949 * cpuctx->cgrp is set when the first cgroup event enabled, 950 * and is cleared when the last cgroup event disabled. 951 */ 952 if (READ_ONCE(cpuctx->cgrp) == NULL) 953 return; 954 955 cgrp = perf_cgroup_from_task(task, NULL); 956 if (READ_ONCE(cpuctx->cgrp) == cgrp) 957 return; 958 959 guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx); 960 /* 961 * Re-check, could've raced vs perf_remove_from_context(). 962 */ 963 if (READ_ONCE(cpuctx->cgrp) == NULL) 964 return; 965 966 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 967 968 perf_ctx_disable(&cpuctx->ctx, true); 969 970 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 971 /* 972 * must not be done before ctxswout due 973 * to update_cgrp_time_from_cpuctx() in 974 * ctx_sched_out() 975 */ 976 cpuctx->cgrp = cgrp; 977 /* 978 * set cgrp before ctxsw in to allow 979 * perf_cgroup_set_timestamp() in ctx_sched_in() 980 * to not have to pass task around 981 */ 982 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 983 984 perf_ctx_enable(&cpuctx->ctx, true); 985 } 986 987 static int perf_cgroup_ensure_storage(struct perf_event *event, 988 struct cgroup_subsys_state *css) 989 { 990 struct perf_cpu_context *cpuctx; 991 struct perf_event **storage; 992 int cpu, heap_size, ret = 0; 993 994 /* 995 * Allow storage to have sufficient space for an iterator for each 996 * possibly nested cgroup plus an iterator for events with no cgroup. 997 */ 998 for (heap_size = 1; css; css = css->parent) 999 heap_size++; 1000 1001 for_each_possible_cpu(cpu) { 1002 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 1003 if (heap_size <= cpuctx->heap_size) 1004 continue; 1005 1006 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 1007 GFP_KERNEL, cpu_to_node(cpu)); 1008 if (!storage) { 1009 ret = -ENOMEM; 1010 break; 1011 } 1012 1013 raw_spin_lock_irq(&cpuctx->ctx.lock); 1014 if (cpuctx->heap_size < heap_size) { 1015 swap(cpuctx->heap, storage); 1016 if (storage == cpuctx->heap_default) 1017 storage = NULL; 1018 cpuctx->heap_size = heap_size; 1019 } 1020 raw_spin_unlock_irq(&cpuctx->ctx.lock); 1021 1022 kfree(storage); 1023 } 1024 1025 return ret; 1026 } 1027 1028 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 1029 struct perf_event_attr *attr, 1030 struct perf_event *group_leader) 1031 { 1032 struct perf_cgroup *cgrp; 1033 struct cgroup_subsys_state *css; 1034 CLASS(fd, f)(fd); 1035 int ret = 0; 1036 1037 if (fd_empty(f)) 1038 return -EBADF; 1039 1040 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 1041 &perf_event_cgrp_subsys); 1042 if (IS_ERR(css)) 1043 return PTR_ERR(css); 1044 1045 ret = perf_cgroup_ensure_storage(event, css); 1046 if (ret) 1047 return ret; 1048 1049 cgrp = container_of(css, struct perf_cgroup, css); 1050 event->cgrp = cgrp; 1051 1052 /* 1053 * all events in a group must monitor 1054 * the same cgroup because a task belongs 1055 * to only one perf cgroup at a time 1056 */ 1057 if (group_leader && group_leader->cgrp != cgrp) { 1058 perf_detach_cgroup(event); 1059 ret = -EINVAL; 1060 } 1061 return ret; 1062 } 1063 1064 static inline void 1065 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 1069 if (!is_cgroup_event(event)) 1070 return; 1071 1072 event->pmu_ctx->nr_cgroups++; 1073 1074 /* 1075 * Because cgroup events are always per-cpu events, 1076 * @ctx == &cpuctx->ctx. 1077 */ 1078 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1079 1080 if (ctx->nr_cgroups++) 1081 return; 1082 1083 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1084 } 1085 1086 static inline void 1087 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1088 { 1089 struct perf_cpu_context *cpuctx; 1090 1091 if (!is_cgroup_event(event)) 1092 return; 1093 1094 event->pmu_ctx->nr_cgroups--; 1095 1096 /* 1097 * Because cgroup events are always per-cpu events, 1098 * @ctx == &cpuctx->ctx. 1099 */ 1100 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1101 1102 if (--ctx->nr_cgroups) 1103 return; 1104 1105 cpuctx->cgrp = NULL; 1106 } 1107 1108 #else /* !CONFIG_CGROUP_PERF */ 1109 1110 static inline bool 1111 perf_cgroup_match(struct perf_event *event) 1112 { 1113 return true; 1114 } 1115 1116 static inline void perf_detach_cgroup(struct perf_event *event) 1117 {} 1118 1119 static inline int is_cgroup_event(struct perf_event *event) 1120 { 1121 return 0; 1122 } 1123 1124 static inline void update_cgrp_time_from_event(struct perf_event *event) 1125 { 1126 } 1127 1128 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1129 bool final) 1130 { 1131 } 1132 1133 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1134 struct perf_event_attr *attr, 1135 struct perf_event *group_leader) 1136 { 1137 return -EINVAL; 1138 } 1139 1140 static inline void 1141 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1142 { 1143 } 1144 1145 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1146 { 1147 return 0; 1148 } 1149 1150 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1151 { 1152 return 0; 1153 } 1154 1155 static inline void 1156 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1157 { 1158 } 1159 1160 static inline void 1161 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1162 { 1163 } 1164 1165 static void perf_cgroup_switch(struct task_struct *task) 1166 { 1167 } 1168 #endif 1169 1170 /* 1171 * set default to be dependent on timer tick just 1172 * like original code 1173 */ 1174 #define PERF_CPU_HRTIMER (1000 / HZ) 1175 /* 1176 * function must be called with interrupts disabled 1177 */ 1178 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1179 { 1180 struct perf_cpu_pmu_context *cpc; 1181 bool rotations; 1182 1183 lockdep_assert_irqs_disabled(); 1184 1185 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1186 rotations = perf_rotate_context(cpc); 1187 1188 raw_spin_lock(&cpc->hrtimer_lock); 1189 if (rotations) 1190 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1191 else 1192 cpc->hrtimer_active = 0; 1193 raw_spin_unlock(&cpc->hrtimer_lock); 1194 1195 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1196 } 1197 1198 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1199 { 1200 struct hrtimer *timer = &cpc->hrtimer; 1201 struct pmu *pmu = cpc->epc.pmu; 1202 u64 interval; 1203 1204 /* 1205 * check default is sane, if not set then force to 1206 * default interval (1/tick) 1207 */ 1208 interval = pmu->hrtimer_interval_ms; 1209 if (interval < 1) 1210 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1211 1212 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1213 1214 raw_spin_lock_init(&cpc->hrtimer_lock); 1215 hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC, 1216 HRTIMER_MODE_ABS_PINNED_HARD); 1217 } 1218 1219 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1220 { 1221 struct hrtimer *timer = &cpc->hrtimer; 1222 unsigned long flags; 1223 1224 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1225 if (!cpc->hrtimer_active) { 1226 cpc->hrtimer_active = 1; 1227 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1228 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1229 } 1230 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1231 1232 return 0; 1233 } 1234 1235 static int perf_mux_hrtimer_restart_ipi(void *arg) 1236 { 1237 return perf_mux_hrtimer_restart(arg); 1238 } 1239 1240 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu) 1241 { 1242 return *this_cpu_ptr(pmu->cpu_pmu_context); 1243 } 1244 1245 void perf_pmu_disable(struct pmu *pmu) 1246 { 1247 int *count = &this_cpc(pmu)->pmu_disable_count; 1248 if (!(*count)++) 1249 pmu->pmu_disable(pmu); 1250 } 1251 1252 void perf_pmu_enable(struct pmu *pmu) 1253 { 1254 int *count = &this_cpc(pmu)->pmu_disable_count; 1255 if (!--(*count)) 1256 pmu->pmu_enable(pmu); 1257 } 1258 1259 static void perf_assert_pmu_disabled(struct pmu *pmu) 1260 { 1261 int *count = &this_cpc(pmu)->pmu_disable_count; 1262 WARN_ON_ONCE(*count == 0); 1263 } 1264 1265 static inline void perf_pmu_read(struct perf_event *event) 1266 { 1267 if (event->state == PERF_EVENT_STATE_ACTIVE) 1268 event->pmu->read(event); 1269 } 1270 1271 static void get_ctx(struct perf_event_context *ctx) 1272 { 1273 refcount_inc(&ctx->refcount); 1274 } 1275 1276 static void free_ctx(struct rcu_head *head) 1277 { 1278 struct perf_event_context *ctx; 1279 1280 ctx = container_of(head, struct perf_event_context, rcu_head); 1281 kfree(ctx); 1282 } 1283 1284 static void put_ctx(struct perf_event_context *ctx) 1285 { 1286 if (refcount_dec_and_test(&ctx->refcount)) { 1287 if (ctx->parent_ctx) 1288 put_ctx(ctx->parent_ctx); 1289 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1290 put_task_struct(ctx->task); 1291 call_rcu(&ctx->rcu_head, free_ctx); 1292 } else { 1293 smp_mb__after_atomic(); /* pairs with wait_var_event() */ 1294 if (ctx->task == TASK_TOMBSTONE) 1295 wake_up_var(&ctx->refcount); 1296 } 1297 } 1298 1299 /* 1300 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1301 * perf_pmu_migrate_context() we need some magic. 1302 * 1303 * Those places that change perf_event::ctx will hold both 1304 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1305 * 1306 * Lock ordering is by mutex address. There are two other sites where 1307 * perf_event_context::mutex nests and those are: 1308 * 1309 * - perf_event_exit_task_context() [ child , 0 ] 1310 * perf_event_exit_event() 1311 * put_event() [ parent, 1 ] 1312 * 1313 * - perf_event_init_context() [ parent, 0 ] 1314 * inherit_task_group() 1315 * inherit_group() 1316 * inherit_event() 1317 * perf_event_alloc() 1318 * perf_init_event() 1319 * perf_try_init_event() [ child , 1 ] 1320 * 1321 * While it appears there is an obvious deadlock here -- the parent and child 1322 * nesting levels are inverted between the two. This is in fact safe because 1323 * life-time rules separate them. That is an exiting task cannot fork, and a 1324 * spawning task cannot (yet) exit. 1325 * 1326 * But remember that these are parent<->child context relations, and 1327 * migration does not affect children, therefore these two orderings should not 1328 * interact. 1329 * 1330 * The change in perf_event::ctx does not affect children (as claimed above) 1331 * because the sys_perf_event_open() case will install a new event and break 1332 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1333 * concerned with cpuctx and that doesn't have children. 1334 * 1335 * The places that change perf_event::ctx will issue: 1336 * 1337 * perf_remove_from_context(); 1338 * synchronize_rcu(); 1339 * perf_install_in_context(); 1340 * 1341 * to affect the change. The remove_from_context() + synchronize_rcu() should 1342 * quiesce the event, after which we can install it in the new location. This 1343 * means that only external vectors (perf_fops, prctl) can perturb the event 1344 * while in transit. Therefore all such accessors should also acquire 1345 * perf_event_context::mutex to serialize against this. 1346 * 1347 * However; because event->ctx can change while we're waiting to acquire 1348 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1349 * function. 1350 * 1351 * Lock order: 1352 * exec_update_lock 1353 * task_struct::perf_event_mutex 1354 * perf_event_context::mutex 1355 * perf_event::child_mutex; 1356 * perf_event_context::lock 1357 * mmap_lock 1358 * perf_event::mmap_mutex 1359 * perf_buffer::aux_mutex 1360 * perf_addr_filters_head::lock 1361 * 1362 * cpu_hotplug_lock 1363 * pmus_lock 1364 * cpuctx->mutex / perf_event_context::mutex 1365 */ 1366 static struct perf_event_context * 1367 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1368 { 1369 struct perf_event_context *ctx; 1370 1371 again: 1372 rcu_read_lock(); 1373 ctx = READ_ONCE(event->ctx); 1374 if (!refcount_inc_not_zero(&ctx->refcount)) { 1375 rcu_read_unlock(); 1376 goto again; 1377 } 1378 rcu_read_unlock(); 1379 1380 mutex_lock_nested(&ctx->mutex, nesting); 1381 if (event->ctx != ctx) { 1382 mutex_unlock(&ctx->mutex); 1383 put_ctx(ctx); 1384 goto again; 1385 } 1386 1387 return ctx; 1388 } 1389 1390 static inline struct perf_event_context * 1391 perf_event_ctx_lock(struct perf_event *event) 1392 { 1393 return perf_event_ctx_lock_nested(event, 0); 1394 } 1395 1396 static void perf_event_ctx_unlock(struct perf_event *event, 1397 struct perf_event_context *ctx) 1398 { 1399 mutex_unlock(&ctx->mutex); 1400 put_ctx(ctx); 1401 } 1402 1403 /* 1404 * This must be done under the ctx->lock, such as to serialize against 1405 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1406 * calling scheduler related locks and ctx->lock nests inside those. 1407 */ 1408 static __must_check struct perf_event_context * 1409 unclone_ctx(struct perf_event_context *ctx) 1410 { 1411 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1412 1413 lockdep_assert_held(&ctx->lock); 1414 1415 if (parent_ctx) 1416 ctx->parent_ctx = NULL; 1417 ctx->generation++; 1418 1419 return parent_ctx; 1420 } 1421 1422 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1423 enum pid_type type) 1424 { 1425 u32 nr; 1426 /* 1427 * only top level events have the pid namespace they were created in 1428 */ 1429 if (event->parent) 1430 event = event->parent; 1431 1432 nr = __task_pid_nr_ns(p, type, event->ns); 1433 /* avoid -1 if it is idle thread or runs in another ns */ 1434 if (!nr && !pid_alive(p)) 1435 nr = -1; 1436 return nr; 1437 } 1438 1439 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1440 { 1441 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1442 } 1443 1444 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1445 { 1446 return perf_event_pid_type(event, p, PIDTYPE_PID); 1447 } 1448 1449 /* 1450 * If we inherit events we want to return the parent event id 1451 * to userspace. 1452 */ 1453 static u64 primary_event_id(struct perf_event *event) 1454 { 1455 u64 id = event->id; 1456 1457 if (event->parent) 1458 id = event->parent->id; 1459 1460 return id; 1461 } 1462 1463 /* 1464 * Get the perf_event_context for a task and lock it. 1465 * 1466 * This has to cope with the fact that until it is locked, 1467 * the context could get moved to another task. 1468 */ 1469 static struct perf_event_context * 1470 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1471 { 1472 struct perf_event_context *ctx; 1473 1474 retry: 1475 /* 1476 * One of the few rules of preemptible RCU is that one cannot do 1477 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1478 * part of the read side critical section was irqs-enabled -- see 1479 * rcu_read_unlock_special(). 1480 * 1481 * Since ctx->lock nests under rq->lock we must ensure the entire read 1482 * side critical section has interrupts disabled. 1483 */ 1484 local_irq_save(*flags); 1485 rcu_read_lock(); 1486 ctx = rcu_dereference(task->perf_event_ctxp); 1487 if (ctx) { 1488 /* 1489 * If this context is a clone of another, it might 1490 * get swapped for another underneath us by 1491 * perf_event_task_sched_out, though the 1492 * rcu_read_lock() protects us from any context 1493 * getting freed. Lock the context and check if it 1494 * got swapped before we could get the lock, and retry 1495 * if so. If we locked the right context, then it 1496 * can't get swapped on us any more. 1497 */ 1498 raw_spin_lock(&ctx->lock); 1499 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1500 raw_spin_unlock(&ctx->lock); 1501 rcu_read_unlock(); 1502 local_irq_restore(*flags); 1503 goto retry; 1504 } 1505 1506 if (ctx->task == TASK_TOMBSTONE || 1507 !refcount_inc_not_zero(&ctx->refcount)) { 1508 raw_spin_unlock(&ctx->lock); 1509 ctx = NULL; 1510 } else { 1511 WARN_ON_ONCE(ctx->task != task); 1512 } 1513 } 1514 rcu_read_unlock(); 1515 if (!ctx) 1516 local_irq_restore(*flags); 1517 return ctx; 1518 } 1519 1520 /* 1521 * Get the context for a task and increment its pin_count so it 1522 * can't get swapped to another task. This also increments its 1523 * reference count so that the context can't get freed. 1524 */ 1525 static struct perf_event_context * 1526 perf_pin_task_context(struct task_struct *task) 1527 { 1528 struct perf_event_context *ctx; 1529 unsigned long flags; 1530 1531 ctx = perf_lock_task_context(task, &flags); 1532 if (ctx) { 1533 ++ctx->pin_count; 1534 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1535 } 1536 return ctx; 1537 } 1538 1539 static void perf_unpin_context(struct perf_event_context *ctx) 1540 { 1541 unsigned long flags; 1542 1543 raw_spin_lock_irqsave(&ctx->lock, flags); 1544 --ctx->pin_count; 1545 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1546 } 1547 1548 /* 1549 * Update the record of the current time in a context. 1550 */ 1551 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1552 { 1553 u64 now = perf_clock(); 1554 1555 lockdep_assert_held(&ctx->lock); 1556 1557 if (adv) 1558 ctx->time += now - ctx->timestamp; 1559 ctx->timestamp = now; 1560 1561 /* 1562 * The above: time' = time + (now - timestamp), can be re-arranged 1563 * into: time` = now + (time - timestamp), which gives a single value 1564 * offset to compute future time without locks on. 1565 * 1566 * See perf_event_time_now(), which can be used from NMI context where 1567 * it's (obviously) not possible to acquire ctx->lock in order to read 1568 * both the above values in a consistent manner. 1569 */ 1570 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1571 } 1572 1573 static void update_context_time(struct perf_event_context *ctx) 1574 { 1575 __update_context_time(ctx, true); 1576 } 1577 1578 static u64 perf_event_time(struct perf_event *event) 1579 { 1580 struct perf_event_context *ctx = event->ctx; 1581 1582 if (unlikely(!ctx)) 1583 return 0; 1584 1585 if (is_cgroup_event(event)) 1586 return perf_cgroup_event_time(event); 1587 1588 return ctx->time; 1589 } 1590 1591 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1592 { 1593 struct perf_event_context *ctx = event->ctx; 1594 1595 if (unlikely(!ctx)) 1596 return 0; 1597 1598 if (is_cgroup_event(event)) 1599 return perf_cgroup_event_time_now(event, now); 1600 1601 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1602 return ctx->time; 1603 1604 now += READ_ONCE(ctx->timeoffset); 1605 return now; 1606 } 1607 1608 static enum event_type_t get_event_type(struct perf_event *event) 1609 { 1610 struct perf_event_context *ctx = event->ctx; 1611 enum event_type_t event_type; 1612 1613 lockdep_assert_held(&ctx->lock); 1614 1615 /* 1616 * It's 'group type', really, because if our group leader is 1617 * pinned, so are we. 1618 */ 1619 if (event->group_leader != event) 1620 event = event->group_leader; 1621 1622 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1623 if (!ctx->task) 1624 event_type |= EVENT_CPU; 1625 1626 return event_type; 1627 } 1628 1629 /* 1630 * Helper function to initialize event group nodes. 1631 */ 1632 static void init_event_group(struct perf_event *event) 1633 { 1634 RB_CLEAR_NODE(&event->group_node); 1635 event->group_index = 0; 1636 } 1637 1638 /* 1639 * Extract pinned or flexible groups from the context 1640 * based on event attrs bits. 1641 */ 1642 static struct perf_event_groups * 1643 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1644 { 1645 if (event->attr.pinned) 1646 return &ctx->pinned_groups; 1647 else 1648 return &ctx->flexible_groups; 1649 } 1650 1651 /* 1652 * Helper function to initializes perf_event_group trees. 1653 */ 1654 static void perf_event_groups_init(struct perf_event_groups *groups) 1655 { 1656 groups->tree = RB_ROOT; 1657 groups->index = 0; 1658 } 1659 1660 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1661 { 1662 struct cgroup *cgroup = NULL; 1663 1664 #ifdef CONFIG_CGROUP_PERF 1665 if (event->cgrp) 1666 cgroup = event->cgrp->css.cgroup; 1667 #endif 1668 1669 return cgroup; 1670 } 1671 1672 /* 1673 * Compare function for event groups; 1674 * 1675 * Implements complex key that first sorts by CPU and then by virtual index 1676 * which provides ordering when rotating groups for the same CPU. 1677 */ 1678 static __always_inline int 1679 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1680 const struct cgroup *left_cgroup, const u64 left_group_index, 1681 const struct perf_event *right) 1682 { 1683 if (left_cpu < right->cpu) 1684 return -1; 1685 if (left_cpu > right->cpu) 1686 return 1; 1687 1688 if (left_pmu) { 1689 if (left_pmu < right->pmu_ctx->pmu) 1690 return -1; 1691 if (left_pmu > right->pmu_ctx->pmu) 1692 return 1; 1693 } 1694 1695 #ifdef CONFIG_CGROUP_PERF 1696 { 1697 const struct cgroup *right_cgroup = event_cgroup(right); 1698 1699 if (left_cgroup != right_cgroup) { 1700 if (!left_cgroup) { 1701 /* 1702 * Left has no cgroup but right does, no 1703 * cgroups come first. 1704 */ 1705 return -1; 1706 } 1707 if (!right_cgroup) { 1708 /* 1709 * Right has no cgroup but left does, no 1710 * cgroups come first. 1711 */ 1712 return 1; 1713 } 1714 /* Two dissimilar cgroups, order by id. */ 1715 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1716 return -1; 1717 1718 return 1; 1719 } 1720 } 1721 #endif 1722 1723 if (left_group_index < right->group_index) 1724 return -1; 1725 if (left_group_index > right->group_index) 1726 return 1; 1727 1728 return 0; 1729 } 1730 1731 #define __node_2_pe(node) \ 1732 rb_entry((node), struct perf_event, group_node) 1733 1734 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1735 { 1736 struct perf_event *e = __node_2_pe(a); 1737 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1738 e->group_index, __node_2_pe(b)) < 0; 1739 } 1740 1741 struct __group_key { 1742 int cpu; 1743 struct pmu *pmu; 1744 struct cgroup *cgroup; 1745 }; 1746 1747 static inline int __group_cmp(const void *key, const struct rb_node *node) 1748 { 1749 const struct __group_key *a = key; 1750 const struct perf_event *b = __node_2_pe(node); 1751 1752 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1753 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1754 } 1755 1756 static inline int 1757 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1758 { 1759 const struct __group_key *a = key; 1760 const struct perf_event *b = __node_2_pe(node); 1761 1762 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1763 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1764 b->group_index, b); 1765 } 1766 1767 /* 1768 * Insert @event into @groups' tree; using 1769 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1770 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1771 */ 1772 static void 1773 perf_event_groups_insert(struct perf_event_groups *groups, 1774 struct perf_event *event) 1775 { 1776 event->group_index = ++groups->index; 1777 1778 rb_add(&event->group_node, &groups->tree, __group_less); 1779 } 1780 1781 /* 1782 * Helper function to insert event into the pinned or flexible groups. 1783 */ 1784 static void 1785 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1786 { 1787 struct perf_event_groups *groups; 1788 1789 groups = get_event_groups(event, ctx); 1790 perf_event_groups_insert(groups, event); 1791 } 1792 1793 /* 1794 * Delete a group from a tree. 1795 */ 1796 static void 1797 perf_event_groups_delete(struct perf_event_groups *groups, 1798 struct perf_event *event) 1799 { 1800 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1801 RB_EMPTY_ROOT(&groups->tree)); 1802 1803 rb_erase(&event->group_node, &groups->tree); 1804 init_event_group(event); 1805 } 1806 1807 /* 1808 * Helper function to delete event from its groups. 1809 */ 1810 static void 1811 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1812 { 1813 struct perf_event_groups *groups; 1814 1815 groups = get_event_groups(event, ctx); 1816 perf_event_groups_delete(groups, event); 1817 } 1818 1819 /* 1820 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1821 */ 1822 static struct perf_event * 1823 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1824 struct pmu *pmu, struct cgroup *cgrp) 1825 { 1826 struct __group_key key = { 1827 .cpu = cpu, 1828 .pmu = pmu, 1829 .cgroup = cgrp, 1830 }; 1831 struct rb_node *node; 1832 1833 node = rb_find_first(&key, &groups->tree, __group_cmp); 1834 if (node) 1835 return __node_2_pe(node); 1836 1837 return NULL; 1838 } 1839 1840 static struct perf_event * 1841 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1842 { 1843 struct __group_key key = { 1844 .cpu = event->cpu, 1845 .pmu = pmu, 1846 .cgroup = event_cgroup(event), 1847 }; 1848 struct rb_node *next; 1849 1850 next = rb_next_match(&key, &event->group_node, __group_cmp); 1851 if (next) 1852 return __node_2_pe(next); 1853 1854 return NULL; 1855 } 1856 1857 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1858 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1859 event; event = perf_event_groups_next(event, pmu)) 1860 1861 /* 1862 * Iterate through the whole groups tree. 1863 */ 1864 #define perf_event_groups_for_each(event, groups) \ 1865 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1866 typeof(*event), group_node); event; \ 1867 event = rb_entry_safe(rb_next(&event->group_node), \ 1868 typeof(*event), group_node)) 1869 1870 /* 1871 * Does the event attribute request inherit with PERF_SAMPLE_READ 1872 */ 1873 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1874 { 1875 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1876 } 1877 1878 /* 1879 * Add an event from the lists for its context. 1880 * Must be called with ctx->mutex and ctx->lock held. 1881 */ 1882 static void 1883 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1884 { 1885 lockdep_assert_held(&ctx->lock); 1886 1887 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1888 event->attach_state |= PERF_ATTACH_CONTEXT; 1889 1890 event->tstamp = perf_event_time(event); 1891 1892 /* 1893 * If we're a stand alone event or group leader, we go to the context 1894 * list, group events are kept attached to the group so that 1895 * perf_group_detach can, at all times, locate all siblings. 1896 */ 1897 if (event->group_leader == event) { 1898 event->group_caps = event->event_caps; 1899 add_event_to_groups(event, ctx); 1900 } 1901 1902 list_add_rcu(&event->event_entry, &ctx->event_list); 1903 ctx->nr_events++; 1904 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1905 ctx->nr_user++; 1906 if (event->attr.inherit_stat) 1907 ctx->nr_stat++; 1908 if (has_inherit_and_sample_read(&event->attr)) 1909 local_inc(&ctx->nr_no_switch_fast); 1910 1911 if (event->state > PERF_EVENT_STATE_OFF) 1912 perf_cgroup_event_enable(event, ctx); 1913 1914 ctx->generation++; 1915 event->pmu_ctx->nr_events++; 1916 } 1917 1918 /* 1919 * Initialize event state based on the perf_event_attr::disabled. 1920 */ 1921 static inline void perf_event__state_init(struct perf_event *event) 1922 { 1923 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1924 PERF_EVENT_STATE_INACTIVE; 1925 } 1926 1927 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1928 { 1929 int entry = sizeof(u64); /* value */ 1930 int size = 0; 1931 int nr = 1; 1932 1933 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1934 size += sizeof(u64); 1935 1936 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1937 size += sizeof(u64); 1938 1939 if (read_format & PERF_FORMAT_ID) 1940 entry += sizeof(u64); 1941 1942 if (read_format & PERF_FORMAT_LOST) 1943 entry += sizeof(u64); 1944 1945 if (read_format & PERF_FORMAT_GROUP) { 1946 nr += nr_siblings; 1947 size += sizeof(u64); 1948 } 1949 1950 /* 1951 * Since perf_event_validate_size() limits this to 16k and inhibits 1952 * adding more siblings, this will never overflow. 1953 */ 1954 return size + nr * entry; 1955 } 1956 1957 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1958 { 1959 struct perf_sample_data *data; 1960 u16 size = 0; 1961 1962 if (sample_type & PERF_SAMPLE_IP) 1963 size += sizeof(data->ip); 1964 1965 if (sample_type & PERF_SAMPLE_ADDR) 1966 size += sizeof(data->addr); 1967 1968 if (sample_type & PERF_SAMPLE_PERIOD) 1969 size += sizeof(data->period); 1970 1971 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1972 size += sizeof(data->weight.full); 1973 1974 if (sample_type & PERF_SAMPLE_READ) 1975 size += event->read_size; 1976 1977 if (sample_type & PERF_SAMPLE_DATA_SRC) 1978 size += sizeof(data->data_src.val); 1979 1980 if (sample_type & PERF_SAMPLE_TRANSACTION) 1981 size += sizeof(data->txn); 1982 1983 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1984 size += sizeof(data->phys_addr); 1985 1986 if (sample_type & PERF_SAMPLE_CGROUP) 1987 size += sizeof(data->cgroup); 1988 1989 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1990 size += sizeof(data->data_page_size); 1991 1992 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1993 size += sizeof(data->code_page_size); 1994 1995 event->header_size = size; 1996 } 1997 1998 /* 1999 * Called at perf_event creation and when events are attached/detached from a 2000 * group. 2001 */ 2002 static void perf_event__header_size(struct perf_event *event) 2003 { 2004 event->read_size = 2005 __perf_event_read_size(event->attr.read_format, 2006 event->group_leader->nr_siblings); 2007 __perf_event_header_size(event, event->attr.sample_type); 2008 } 2009 2010 static void perf_event__id_header_size(struct perf_event *event) 2011 { 2012 struct perf_sample_data *data; 2013 u64 sample_type = event->attr.sample_type; 2014 u16 size = 0; 2015 2016 if (sample_type & PERF_SAMPLE_TID) 2017 size += sizeof(data->tid_entry); 2018 2019 if (sample_type & PERF_SAMPLE_TIME) 2020 size += sizeof(data->time); 2021 2022 if (sample_type & PERF_SAMPLE_IDENTIFIER) 2023 size += sizeof(data->id); 2024 2025 if (sample_type & PERF_SAMPLE_ID) 2026 size += sizeof(data->id); 2027 2028 if (sample_type & PERF_SAMPLE_STREAM_ID) 2029 size += sizeof(data->stream_id); 2030 2031 if (sample_type & PERF_SAMPLE_CPU) 2032 size += sizeof(data->cpu_entry); 2033 2034 event->id_header_size = size; 2035 } 2036 2037 /* 2038 * Check that adding an event to the group does not result in anybody 2039 * overflowing the 64k event limit imposed by the output buffer. 2040 * 2041 * Specifically, check that the read_size for the event does not exceed 16k, 2042 * read_size being the one term that grows with groups size. Since read_size 2043 * depends on per-event read_format, also (re)check the existing events. 2044 * 2045 * This leaves 48k for the constant size fields and things like callchains, 2046 * branch stacks and register sets. 2047 */ 2048 static bool perf_event_validate_size(struct perf_event *event) 2049 { 2050 struct perf_event *sibling, *group_leader = event->group_leader; 2051 2052 if (__perf_event_read_size(event->attr.read_format, 2053 group_leader->nr_siblings + 1) > 16*1024) 2054 return false; 2055 2056 if (__perf_event_read_size(group_leader->attr.read_format, 2057 group_leader->nr_siblings + 1) > 16*1024) 2058 return false; 2059 2060 /* 2061 * When creating a new group leader, group_leader->ctx is initialized 2062 * after the size has been validated, but we cannot safely use 2063 * for_each_sibling_event() until group_leader->ctx is set. A new group 2064 * leader cannot have any siblings yet, so we can safely skip checking 2065 * the non-existent siblings. 2066 */ 2067 if (event == group_leader) 2068 return true; 2069 2070 for_each_sibling_event(sibling, group_leader) { 2071 if (__perf_event_read_size(sibling->attr.read_format, 2072 group_leader->nr_siblings + 1) > 16*1024) 2073 return false; 2074 } 2075 2076 return true; 2077 } 2078 2079 static void perf_group_attach(struct perf_event *event) 2080 { 2081 struct perf_event *group_leader = event->group_leader, *pos; 2082 2083 lockdep_assert_held(&event->ctx->lock); 2084 2085 /* 2086 * We can have double attach due to group movement (move_group) in 2087 * perf_event_open(). 2088 */ 2089 if (event->attach_state & PERF_ATTACH_GROUP) 2090 return; 2091 2092 event->attach_state |= PERF_ATTACH_GROUP; 2093 2094 if (group_leader == event) 2095 return; 2096 2097 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2098 2099 group_leader->group_caps &= event->event_caps; 2100 2101 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2102 group_leader->nr_siblings++; 2103 group_leader->group_generation++; 2104 2105 perf_event__header_size(group_leader); 2106 2107 for_each_sibling_event(pos, group_leader) 2108 perf_event__header_size(pos); 2109 } 2110 2111 /* 2112 * Remove an event from the lists for its context. 2113 * Must be called with ctx->mutex and ctx->lock held. 2114 */ 2115 static void 2116 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2117 { 2118 WARN_ON_ONCE(event->ctx != ctx); 2119 lockdep_assert_held(&ctx->lock); 2120 2121 /* 2122 * We can have double detach due to exit/hot-unplug + close. 2123 */ 2124 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2125 return; 2126 2127 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2128 2129 ctx->nr_events--; 2130 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2131 ctx->nr_user--; 2132 if (event->attr.inherit_stat) 2133 ctx->nr_stat--; 2134 if (has_inherit_and_sample_read(&event->attr)) 2135 local_dec(&ctx->nr_no_switch_fast); 2136 2137 list_del_rcu(&event->event_entry); 2138 2139 if (event->group_leader == event) 2140 del_event_from_groups(event, ctx); 2141 2142 ctx->generation++; 2143 event->pmu_ctx->nr_events--; 2144 } 2145 2146 static int 2147 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2148 { 2149 if (!has_aux(aux_event)) 2150 return 0; 2151 2152 if (!event->pmu->aux_output_match) 2153 return 0; 2154 2155 return event->pmu->aux_output_match(aux_event); 2156 } 2157 2158 static void put_event(struct perf_event *event); 2159 static void __event_disable(struct perf_event *event, 2160 struct perf_event_context *ctx, 2161 enum perf_event_state state); 2162 2163 static void perf_put_aux_event(struct perf_event *event) 2164 { 2165 struct perf_event_context *ctx = event->ctx; 2166 struct perf_event *iter; 2167 2168 /* 2169 * If event uses aux_event tear down the link 2170 */ 2171 if (event->aux_event) { 2172 iter = event->aux_event; 2173 event->aux_event = NULL; 2174 put_event(iter); 2175 return; 2176 } 2177 2178 /* 2179 * If the event is an aux_event, tear down all links to 2180 * it from other events. 2181 */ 2182 for_each_sibling_event(iter, event) { 2183 if (iter->aux_event != event) 2184 continue; 2185 2186 iter->aux_event = NULL; 2187 put_event(event); 2188 2189 /* 2190 * If it's ACTIVE, schedule it out and put it into ERROR 2191 * state so that we don't try to schedule it again. Note 2192 * that perf_event_enable() will clear the ERROR status. 2193 */ 2194 __event_disable(iter, ctx, PERF_EVENT_STATE_ERROR); 2195 } 2196 } 2197 2198 static bool perf_need_aux_event(struct perf_event *event) 2199 { 2200 return event->attr.aux_output || has_aux_action(event); 2201 } 2202 2203 static int perf_get_aux_event(struct perf_event *event, 2204 struct perf_event *group_leader) 2205 { 2206 /* 2207 * Our group leader must be an aux event if we want to be 2208 * an aux_output. This way, the aux event will precede its 2209 * aux_output events in the group, and therefore will always 2210 * schedule first. 2211 */ 2212 if (!group_leader) 2213 return 0; 2214 2215 /* 2216 * aux_output and aux_sample_size are mutually exclusive. 2217 */ 2218 if (event->attr.aux_output && event->attr.aux_sample_size) 2219 return 0; 2220 2221 if (event->attr.aux_output && 2222 !perf_aux_output_match(event, group_leader)) 2223 return 0; 2224 2225 if ((event->attr.aux_pause || event->attr.aux_resume) && 2226 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 2227 return 0; 2228 2229 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2230 return 0; 2231 2232 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2233 return 0; 2234 2235 /* 2236 * Link aux_outputs to their aux event; this is undone in 2237 * perf_group_detach() by perf_put_aux_event(). When the 2238 * group in torn down, the aux_output events loose their 2239 * link to the aux_event and can't schedule any more. 2240 */ 2241 event->aux_event = group_leader; 2242 2243 return 1; 2244 } 2245 2246 static inline struct list_head *get_event_list(struct perf_event *event) 2247 { 2248 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2249 &event->pmu_ctx->flexible_active; 2250 } 2251 2252 static void perf_group_detach(struct perf_event *event) 2253 { 2254 struct perf_event *leader = event->group_leader; 2255 struct perf_event *sibling, *tmp; 2256 struct perf_event_context *ctx = event->ctx; 2257 2258 lockdep_assert_held(&ctx->lock); 2259 2260 /* 2261 * We can have double detach due to exit/hot-unplug + close. 2262 */ 2263 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2264 return; 2265 2266 event->attach_state &= ~PERF_ATTACH_GROUP; 2267 2268 perf_put_aux_event(event); 2269 2270 /* 2271 * If this is a sibling, remove it from its group. 2272 */ 2273 if (leader != event) { 2274 list_del_init(&event->sibling_list); 2275 event->group_leader->nr_siblings--; 2276 event->group_leader->group_generation++; 2277 goto out; 2278 } 2279 2280 /* 2281 * If this was a group event with sibling events then 2282 * upgrade the siblings to singleton events by adding them 2283 * to whatever list we are on. 2284 */ 2285 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2286 2287 /* 2288 * Events that have PERF_EV_CAP_SIBLING require being part of 2289 * a group and cannot exist on their own, schedule them out 2290 * and move them into the ERROR state. Also see 2291 * _perf_event_enable(), it will not be able to recover this 2292 * ERROR state. 2293 */ 2294 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2295 __event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR); 2296 2297 sibling->group_leader = sibling; 2298 list_del_init(&sibling->sibling_list); 2299 2300 /* Inherit group flags from the previous leader */ 2301 sibling->group_caps = event->group_caps; 2302 2303 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2304 add_event_to_groups(sibling, event->ctx); 2305 2306 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2307 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2308 } 2309 2310 WARN_ON_ONCE(sibling->ctx != event->ctx); 2311 } 2312 2313 out: 2314 for_each_sibling_event(tmp, leader) 2315 perf_event__header_size(tmp); 2316 2317 perf_event__header_size(leader); 2318 } 2319 2320 static void perf_child_detach(struct perf_event *event) 2321 { 2322 struct perf_event *parent_event = event->parent; 2323 2324 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2325 return; 2326 2327 event->attach_state &= ~PERF_ATTACH_CHILD; 2328 2329 if (WARN_ON_ONCE(!parent_event)) 2330 return; 2331 2332 /* 2333 * Can't check this from an IPI, the holder is likey another CPU. 2334 * 2335 lockdep_assert_held(&parent_event->child_mutex); 2336 */ 2337 2338 list_del_init(&event->child_list); 2339 } 2340 2341 static bool is_orphaned_event(struct perf_event *event) 2342 { 2343 return event->state == PERF_EVENT_STATE_DEAD; 2344 } 2345 2346 static inline int 2347 event_filter_match(struct perf_event *event) 2348 { 2349 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2350 perf_cgroup_match(event); 2351 } 2352 2353 static inline bool is_event_in_freq_mode(struct perf_event *event) 2354 { 2355 return event->attr.freq && event->attr.sample_freq; 2356 } 2357 2358 static void 2359 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2360 { 2361 struct perf_event_pmu_context *epc = event->pmu_ctx; 2362 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2363 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2364 2365 // XXX cpc serialization, probably per-cpu IRQ disabled 2366 2367 WARN_ON_ONCE(event->ctx != ctx); 2368 lockdep_assert_held(&ctx->lock); 2369 2370 if (event->state != PERF_EVENT_STATE_ACTIVE) 2371 return; 2372 2373 /* 2374 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2375 * we can schedule events _OUT_ individually through things like 2376 * __perf_remove_from_context(). 2377 */ 2378 list_del_init(&event->active_list); 2379 2380 perf_pmu_disable(event->pmu); 2381 2382 event->pmu->del(event, 0); 2383 event->oncpu = -1; 2384 2385 if (event->pending_disable) { 2386 event->pending_disable = 0; 2387 perf_cgroup_event_disable(event, ctx); 2388 state = PERF_EVENT_STATE_OFF; 2389 } 2390 2391 perf_event_set_state(event, state); 2392 2393 if (!is_software_event(event)) 2394 cpc->active_oncpu--; 2395 if (is_event_in_freq_mode(event)) { 2396 ctx->nr_freq--; 2397 epc->nr_freq--; 2398 } 2399 if (event->attr.exclusive || !cpc->active_oncpu) 2400 cpc->exclusive = 0; 2401 2402 perf_pmu_enable(event->pmu); 2403 } 2404 2405 static void 2406 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2407 { 2408 struct perf_event *event; 2409 2410 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2411 return; 2412 2413 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2414 2415 event_sched_out(group_event, ctx); 2416 2417 /* 2418 * Schedule out siblings (if any): 2419 */ 2420 for_each_sibling_event(event, group_event) 2421 event_sched_out(event, ctx); 2422 } 2423 2424 static inline void 2425 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2426 { 2427 if (ctx->is_active & EVENT_TIME) { 2428 if (ctx->is_active & EVENT_FROZEN) 2429 return; 2430 update_context_time(ctx); 2431 update_cgrp_time_from_cpuctx(cpuctx, final); 2432 } 2433 } 2434 2435 static inline void 2436 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2437 { 2438 __ctx_time_update(cpuctx, ctx, false); 2439 } 2440 2441 /* 2442 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2443 */ 2444 static inline void 2445 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2446 { 2447 ctx_time_update(cpuctx, ctx); 2448 if (ctx->is_active & EVENT_TIME) 2449 ctx->is_active |= EVENT_FROZEN; 2450 } 2451 2452 static inline void 2453 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2454 { 2455 if (ctx->is_active & EVENT_TIME) { 2456 if (ctx->is_active & EVENT_FROZEN) 2457 return; 2458 update_context_time(ctx); 2459 update_cgrp_time_from_event(event); 2460 } 2461 } 2462 2463 #define DETACH_GROUP 0x01UL 2464 #define DETACH_CHILD 0x02UL 2465 #define DETACH_EXIT 0x04UL 2466 #define DETACH_REVOKE 0x08UL 2467 #define DETACH_DEAD 0x10UL 2468 2469 /* 2470 * Cross CPU call to remove a performance event 2471 * 2472 * We disable the event on the hardware level first. After that we 2473 * remove it from the context list. 2474 */ 2475 static void 2476 __perf_remove_from_context(struct perf_event *event, 2477 struct perf_cpu_context *cpuctx, 2478 struct perf_event_context *ctx, 2479 void *info) 2480 { 2481 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2482 enum perf_event_state state = PERF_EVENT_STATE_OFF; 2483 unsigned long flags = (unsigned long)info; 2484 2485 ctx_time_update(cpuctx, ctx); 2486 2487 /* 2488 * Ensure event_sched_out() switches to OFF, at the very least 2489 * this avoids raising perf_pending_task() at this time. 2490 */ 2491 if (flags & DETACH_EXIT) 2492 state = PERF_EVENT_STATE_EXIT; 2493 if (flags & DETACH_REVOKE) 2494 state = PERF_EVENT_STATE_REVOKED; 2495 if (flags & DETACH_DEAD) 2496 state = PERF_EVENT_STATE_DEAD; 2497 2498 event_sched_out(event, ctx); 2499 2500 if (event->state > PERF_EVENT_STATE_OFF) 2501 perf_cgroup_event_disable(event, ctx); 2502 2503 perf_event_set_state(event, min(event->state, state)); 2504 2505 if (flags & DETACH_GROUP) 2506 perf_group_detach(event); 2507 if (flags & DETACH_CHILD) 2508 perf_child_detach(event); 2509 list_del_event(event, ctx); 2510 2511 if (!pmu_ctx->nr_events) { 2512 pmu_ctx->rotate_necessary = 0; 2513 2514 if (ctx->task && ctx->is_active) { 2515 struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu); 2516 2517 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2518 cpc->task_epc = NULL; 2519 } 2520 } 2521 2522 if (!ctx->nr_events && ctx->is_active) { 2523 if (ctx == &cpuctx->ctx) 2524 update_cgrp_time_from_cpuctx(cpuctx, true); 2525 2526 ctx->is_active = 0; 2527 if (ctx->task) { 2528 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2529 cpuctx->task_ctx = NULL; 2530 } 2531 } 2532 } 2533 2534 /* 2535 * Remove the event from a task's (or a CPU's) list of events. 2536 * 2537 * If event->ctx is a cloned context, callers must make sure that 2538 * every task struct that event->ctx->task could possibly point to 2539 * remains valid. This is OK when called from perf_release since 2540 * that only calls us on the top-level context, which can't be a clone. 2541 * When called from perf_event_exit_task, it's OK because the 2542 * context has been detached from its task. 2543 */ 2544 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2545 { 2546 struct perf_event_context *ctx = event->ctx; 2547 2548 lockdep_assert_held(&ctx->mutex); 2549 2550 /* 2551 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2552 * to work in the face of TASK_TOMBSTONE, unlike every other 2553 * event_function_call() user. 2554 */ 2555 raw_spin_lock_irq(&ctx->lock); 2556 if (!ctx->is_active) { 2557 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2558 ctx, (void *)flags); 2559 raw_spin_unlock_irq(&ctx->lock); 2560 return; 2561 } 2562 raw_spin_unlock_irq(&ctx->lock); 2563 2564 event_function_call(event, __perf_remove_from_context, (void *)flags); 2565 } 2566 2567 static void __event_disable(struct perf_event *event, 2568 struct perf_event_context *ctx, 2569 enum perf_event_state state) 2570 { 2571 event_sched_out(event, ctx); 2572 perf_cgroup_event_disable(event, ctx); 2573 perf_event_set_state(event, state); 2574 } 2575 2576 /* 2577 * Cross CPU call to disable a performance event 2578 */ 2579 static void __perf_event_disable(struct perf_event *event, 2580 struct perf_cpu_context *cpuctx, 2581 struct perf_event_context *ctx, 2582 void *info) 2583 { 2584 if (event->state < PERF_EVENT_STATE_INACTIVE) 2585 return; 2586 2587 perf_pmu_disable(event->pmu_ctx->pmu); 2588 ctx_time_update_event(ctx, event); 2589 2590 /* 2591 * When disabling a group leader, the whole group becomes ineligible 2592 * to run, so schedule out the full group. 2593 */ 2594 if (event == event->group_leader) 2595 group_sched_out(event, ctx); 2596 2597 /* 2598 * But only mark the leader OFF; the siblings will remain 2599 * INACTIVE. 2600 */ 2601 __event_disable(event, ctx, PERF_EVENT_STATE_OFF); 2602 2603 perf_pmu_enable(event->pmu_ctx->pmu); 2604 } 2605 2606 /* 2607 * Disable an event. 2608 * 2609 * If event->ctx is a cloned context, callers must make sure that 2610 * every task struct that event->ctx->task could possibly point to 2611 * remains valid. This condition is satisfied when called through 2612 * perf_event_for_each_child or perf_event_for_each because they 2613 * hold the top-level event's child_mutex, so any descendant that 2614 * goes to exit will block in perf_event_exit_event(). 2615 * 2616 * When called from perf_pending_disable it's OK because event->ctx 2617 * is the current context on this CPU and preemption is disabled, 2618 * hence we can't get into perf_event_task_sched_out for this context. 2619 */ 2620 static void _perf_event_disable(struct perf_event *event) 2621 { 2622 struct perf_event_context *ctx = event->ctx; 2623 2624 raw_spin_lock_irq(&ctx->lock); 2625 if (event->state <= PERF_EVENT_STATE_OFF) { 2626 raw_spin_unlock_irq(&ctx->lock); 2627 return; 2628 } 2629 raw_spin_unlock_irq(&ctx->lock); 2630 2631 event_function_call(event, __perf_event_disable, NULL); 2632 } 2633 2634 void perf_event_disable_local(struct perf_event *event) 2635 { 2636 event_function_local(event, __perf_event_disable, NULL); 2637 } 2638 2639 /* 2640 * Strictly speaking kernel users cannot create groups and therefore this 2641 * interface does not need the perf_event_ctx_lock() magic. 2642 */ 2643 void perf_event_disable(struct perf_event *event) 2644 { 2645 struct perf_event_context *ctx; 2646 2647 ctx = perf_event_ctx_lock(event); 2648 _perf_event_disable(event); 2649 perf_event_ctx_unlock(event, ctx); 2650 } 2651 EXPORT_SYMBOL_GPL(perf_event_disable); 2652 2653 void perf_event_disable_inatomic(struct perf_event *event) 2654 { 2655 event->pending_disable = 1; 2656 irq_work_queue(&event->pending_disable_irq); 2657 } 2658 2659 #define MAX_INTERRUPTS (~0ULL) 2660 2661 static void perf_log_throttle(struct perf_event *event, int enable); 2662 static void perf_log_itrace_start(struct perf_event *event); 2663 2664 static void perf_event_unthrottle(struct perf_event *event, bool start) 2665 { 2666 if (event->state != PERF_EVENT_STATE_ACTIVE) 2667 return; 2668 2669 event->hw.interrupts = 0; 2670 if (start) 2671 event->pmu->start(event, 0); 2672 if (event == event->group_leader) 2673 perf_log_throttle(event, 1); 2674 } 2675 2676 static void perf_event_throttle(struct perf_event *event) 2677 { 2678 if (event->state != PERF_EVENT_STATE_ACTIVE) 2679 return; 2680 2681 event->hw.interrupts = MAX_INTERRUPTS; 2682 event->pmu->stop(event, 0); 2683 if (event == event->group_leader) 2684 perf_log_throttle(event, 0); 2685 } 2686 2687 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event) 2688 { 2689 struct perf_event *sibling, *leader = event->group_leader; 2690 2691 perf_event_unthrottle(leader, skip_start_event ? leader != event : true); 2692 for_each_sibling_event(sibling, leader) 2693 perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true); 2694 } 2695 2696 static void perf_event_throttle_group(struct perf_event *event) 2697 { 2698 struct perf_event *sibling, *leader = event->group_leader; 2699 2700 perf_event_throttle(leader); 2701 for_each_sibling_event(sibling, leader) 2702 perf_event_throttle(sibling); 2703 } 2704 2705 static int 2706 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2707 { 2708 struct perf_event_pmu_context *epc = event->pmu_ctx; 2709 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2710 int ret = 0; 2711 2712 WARN_ON_ONCE(event->ctx != ctx); 2713 2714 lockdep_assert_held(&ctx->lock); 2715 2716 if (event->state <= PERF_EVENT_STATE_OFF) 2717 return 0; 2718 2719 WRITE_ONCE(event->oncpu, smp_processor_id()); 2720 /* 2721 * Order event::oncpu write to happen before the ACTIVE state is 2722 * visible. This allows perf_event_{stop,read}() to observe the correct 2723 * ->oncpu if it sees ACTIVE. 2724 */ 2725 smp_wmb(); 2726 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2727 2728 /* 2729 * Unthrottle events, since we scheduled we might have missed several 2730 * ticks already, also for a heavily scheduling task there is little 2731 * guarantee it'll get a tick in a timely manner. 2732 */ 2733 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) 2734 perf_event_unthrottle(event, false); 2735 2736 perf_pmu_disable(event->pmu); 2737 2738 perf_log_itrace_start(event); 2739 2740 if (event->pmu->add(event, PERF_EF_START)) { 2741 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2742 event->oncpu = -1; 2743 ret = -EAGAIN; 2744 goto out; 2745 } 2746 2747 if (!is_software_event(event)) 2748 cpc->active_oncpu++; 2749 if (is_event_in_freq_mode(event)) { 2750 ctx->nr_freq++; 2751 epc->nr_freq++; 2752 } 2753 if (event->attr.exclusive) 2754 cpc->exclusive = 1; 2755 2756 out: 2757 perf_pmu_enable(event->pmu); 2758 2759 return ret; 2760 } 2761 2762 static int 2763 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2764 { 2765 struct perf_event *event, *partial_group = NULL; 2766 struct pmu *pmu = group_event->pmu_ctx->pmu; 2767 2768 if (group_event->state == PERF_EVENT_STATE_OFF) 2769 return 0; 2770 2771 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2772 2773 if (event_sched_in(group_event, ctx)) 2774 goto error; 2775 2776 /* 2777 * Schedule in siblings as one group (if any): 2778 */ 2779 for_each_sibling_event(event, group_event) { 2780 if (event_sched_in(event, ctx)) { 2781 partial_group = event; 2782 goto group_error; 2783 } 2784 } 2785 2786 if (!pmu->commit_txn(pmu)) 2787 return 0; 2788 2789 group_error: 2790 /* 2791 * Groups can be scheduled in as one unit only, so undo any 2792 * partial group before returning: 2793 * The events up to the failed event are scheduled out normally. 2794 */ 2795 for_each_sibling_event(event, group_event) { 2796 if (event == partial_group) 2797 break; 2798 2799 event_sched_out(event, ctx); 2800 } 2801 event_sched_out(group_event, ctx); 2802 2803 error: 2804 pmu->cancel_txn(pmu); 2805 return -EAGAIN; 2806 } 2807 2808 /* 2809 * Work out whether we can put this event group on the CPU now. 2810 */ 2811 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2812 { 2813 struct perf_event_pmu_context *epc = event->pmu_ctx; 2814 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2815 2816 /* 2817 * Groups consisting entirely of software events can always go on. 2818 */ 2819 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2820 return 1; 2821 /* 2822 * If an exclusive group is already on, no other hardware 2823 * events can go on. 2824 */ 2825 if (cpc->exclusive) 2826 return 0; 2827 /* 2828 * If this group is exclusive and there are already 2829 * events on the CPU, it can't go on. 2830 */ 2831 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2832 return 0; 2833 /* 2834 * Otherwise, try to add it if all previous groups were able 2835 * to go on. 2836 */ 2837 return can_add_hw; 2838 } 2839 2840 static void add_event_to_ctx(struct perf_event *event, 2841 struct perf_event_context *ctx) 2842 { 2843 list_add_event(event, ctx); 2844 perf_group_attach(event); 2845 } 2846 2847 static void task_ctx_sched_out(struct perf_event_context *ctx, 2848 struct pmu *pmu, 2849 enum event_type_t event_type) 2850 { 2851 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2852 2853 if (!cpuctx->task_ctx) 2854 return; 2855 2856 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2857 return; 2858 2859 ctx_sched_out(ctx, pmu, event_type); 2860 } 2861 2862 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2863 struct perf_event_context *ctx, 2864 struct pmu *pmu) 2865 { 2866 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2867 if (ctx) 2868 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2869 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2870 if (ctx) 2871 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2872 } 2873 2874 /* 2875 * We want to maintain the following priority of scheduling: 2876 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2877 * - task pinned (EVENT_PINNED) 2878 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2879 * - task flexible (EVENT_FLEXIBLE). 2880 * 2881 * In order to avoid unscheduling and scheduling back in everything every 2882 * time an event is added, only do it for the groups of equal priority and 2883 * below. 2884 * 2885 * This can be called after a batch operation on task events, in which case 2886 * event_type is a bit mask of the types of events involved. For CPU events, 2887 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2888 */ 2889 static void ctx_resched(struct perf_cpu_context *cpuctx, 2890 struct perf_event_context *task_ctx, 2891 struct pmu *pmu, enum event_type_t event_type) 2892 { 2893 bool cpu_event = !!(event_type & EVENT_CPU); 2894 struct perf_event_pmu_context *epc; 2895 2896 /* 2897 * If pinned groups are involved, flexible groups also need to be 2898 * scheduled out. 2899 */ 2900 if (event_type & EVENT_PINNED) 2901 event_type |= EVENT_FLEXIBLE; 2902 2903 event_type &= EVENT_ALL; 2904 2905 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2906 perf_pmu_disable(epc->pmu); 2907 2908 if (task_ctx) { 2909 for_each_epc(epc, task_ctx, pmu, false) 2910 perf_pmu_disable(epc->pmu); 2911 2912 task_ctx_sched_out(task_ctx, pmu, event_type); 2913 } 2914 2915 /* 2916 * Decide which cpu ctx groups to schedule out based on the types 2917 * of events that caused rescheduling: 2918 * - EVENT_CPU: schedule out corresponding groups; 2919 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2920 * - otherwise, do nothing more. 2921 */ 2922 if (cpu_event) 2923 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2924 else if (event_type & EVENT_PINNED) 2925 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2926 2927 perf_event_sched_in(cpuctx, task_ctx, pmu); 2928 2929 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2930 perf_pmu_enable(epc->pmu); 2931 2932 if (task_ctx) { 2933 for_each_epc(epc, task_ctx, pmu, false) 2934 perf_pmu_enable(epc->pmu); 2935 } 2936 } 2937 2938 void perf_pmu_resched(struct pmu *pmu) 2939 { 2940 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2941 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2942 2943 perf_ctx_lock(cpuctx, task_ctx); 2944 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2945 perf_ctx_unlock(cpuctx, task_ctx); 2946 } 2947 2948 /* 2949 * Cross CPU call to install and enable a performance event 2950 * 2951 * Very similar to remote_function() + event_function() but cannot assume that 2952 * things like ctx->is_active and cpuctx->task_ctx are set. 2953 */ 2954 static int __perf_install_in_context(void *info) 2955 { 2956 struct perf_event *event = info; 2957 struct perf_event_context *ctx = event->ctx; 2958 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2959 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2960 bool reprogram = true; 2961 int ret = 0; 2962 2963 raw_spin_lock(&cpuctx->ctx.lock); 2964 if (ctx->task) { 2965 raw_spin_lock(&ctx->lock); 2966 task_ctx = ctx; 2967 2968 reprogram = (ctx->task == current); 2969 2970 /* 2971 * If the task is running, it must be running on this CPU, 2972 * otherwise we cannot reprogram things. 2973 * 2974 * If its not running, we don't care, ctx->lock will 2975 * serialize against it becoming runnable. 2976 */ 2977 if (task_curr(ctx->task) && !reprogram) { 2978 ret = -ESRCH; 2979 goto unlock; 2980 } 2981 2982 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2983 } else if (task_ctx) { 2984 raw_spin_lock(&task_ctx->lock); 2985 } 2986 2987 #ifdef CONFIG_CGROUP_PERF 2988 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2989 /* 2990 * If the current cgroup doesn't match the event's 2991 * cgroup, we should not try to schedule it. 2992 */ 2993 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2994 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2995 event->cgrp->css.cgroup); 2996 } 2997 #endif 2998 2999 if (reprogram) { 3000 ctx_time_freeze(cpuctx, ctx); 3001 add_event_to_ctx(event, ctx); 3002 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 3003 get_event_type(event)); 3004 } else { 3005 add_event_to_ctx(event, ctx); 3006 } 3007 3008 unlock: 3009 perf_ctx_unlock(cpuctx, task_ctx); 3010 3011 return ret; 3012 } 3013 3014 static bool exclusive_event_installable(struct perf_event *event, 3015 struct perf_event_context *ctx); 3016 3017 /* 3018 * Attach a performance event to a context. 3019 * 3020 * Very similar to event_function_call, see comment there. 3021 */ 3022 static void 3023 perf_install_in_context(struct perf_event_context *ctx, 3024 struct perf_event *event, 3025 int cpu) 3026 { 3027 struct task_struct *task = READ_ONCE(ctx->task); 3028 3029 lockdep_assert_held(&ctx->mutex); 3030 3031 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 3032 3033 if (event->cpu != -1) 3034 WARN_ON_ONCE(event->cpu != cpu); 3035 3036 /* 3037 * Ensures that if we can observe event->ctx, both the event and ctx 3038 * will be 'complete'. See perf_iterate_sb_cpu(). 3039 */ 3040 smp_store_release(&event->ctx, ctx); 3041 3042 /* 3043 * perf_event_attr::disabled events will not run and can be initialized 3044 * without IPI. Except when this is the first event for the context, in 3045 * that case we need the magic of the IPI to set ctx->is_active. 3046 * 3047 * The IOC_ENABLE that is sure to follow the creation of a disabled 3048 * event will issue the IPI and reprogram the hardware. 3049 */ 3050 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 3051 ctx->nr_events && !is_cgroup_event(event)) { 3052 raw_spin_lock_irq(&ctx->lock); 3053 if (ctx->task == TASK_TOMBSTONE) { 3054 raw_spin_unlock_irq(&ctx->lock); 3055 return; 3056 } 3057 add_event_to_ctx(event, ctx); 3058 raw_spin_unlock_irq(&ctx->lock); 3059 return; 3060 } 3061 3062 if (!task) { 3063 cpu_function_call(cpu, __perf_install_in_context, event); 3064 return; 3065 } 3066 3067 /* 3068 * Should not happen, we validate the ctx is still alive before calling. 3069 */ 3070 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 3071 return; 3072 3073 /* 3074 * Installing events is tricky because we cannot rely on ctx->is_active 3075 * to be set in case this is the nr_events 0 -> 1 transition. 3076 * 3077 * Instead we use task_curr(), which tells us if the task is running. 3078 * However, since we use task_curr() outside of rq::lock, we can race 3079 * against the actual state. This means the result can be wrong. 3080 * 3081 * If we get a false positive, we retry, this is harmless. 3082 * 3083 * If we get a false negative, things are complicated. If we are after 3084 * perf_event_context_sched_in() ctx::lock will serialize us, and the 3085 * value must be correct. If we're before, it doesn't matter since 3086 * perf_event_context_sched_in() will program the counter. 3087 * 3088 * However, this hinges on the remote context switch having observed 3089 * our task->perf_event_ctxp[] store, such that it will in fact take 3090 * ctx::lock in perf_event_context_sched_in(). 3091 * 3092 * We do this by task_function_call(), if the IPI fails to hit the task 3093 * we know any future context switch of task must see the 3094 * perf_event_ctpx[] store. 3095 */ 3096 3097 /* 3098 * This smp_mb() orders the task->perf_event_ctxp[] store with the 3099 * task_cpu() load, such that if the IPI then does not find the task 3100 * running, a future context switch of that task must observe the 3101 * store. 3102 */ 3103 smp_mb(); 3104 again: 3105 if (!task_function_call(task, __perf_install_in_context, event)) 3106 return; 3107 3108 raw_spin_lock_irq(&ctx->lock); 3109 task = ctx->task; 3110 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 3111 /* 3112 * Cannot happen because we already checked above (which also 3113 * cannot happen), and we hold ctx->mutex, which serializes us 3114 * against perf_event_exit_task_context(). 3115 */ 3116 raw_spin_unlock_irq(&ctx->lock); 3117 return; 3118 } 3119 /* 3120 * If the task is not running, ctx->lock will avoid it becoming so, 3121 * thus we can safely install the event. 3122 */ 3123 if (task_curr(task)) { 3124 raw_spin_unlock_irq(&ctx->lock); 3125 goto again; 3126 } 3127 add_event_to_ctx(event, ctx); 3128 raw_spin_unlock_irq(&ctx->lock); 3129 } 3130 3131 /* 3132 * Cross CPU call to enable a performance event 3133 */ 3134 static void __perf_event_enable(struct perf_event *event, 3135 struct perf_cpu_context *cpuctx, 3136 struct perf_event_context *ctx, 3137 void *info) 3138 { 3139 struct perf_event *leader = event->group_leader; 3140 struct perf_event_context *task_ctx; 3141 3142 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3143 event->state <= PERF_EVENT_STATE_ERROR) 3144 return; 3145 3146 ctx_time_freeze(cpuctx, ctx); 3147 3148 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3149 perf_cgroup_event_enable(event, ctx); 3150 3151 if (!ctx->is_active) 3152 return; 3153 3154 if (!event_filter_match(event)) 3155 return; 3156 3157 /* 3158 * If the event is in a group and isn't the group leader, 3159 * then don't put it on unless the group is on. 3160 */ 3161 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3162 return; 3163 3164 task_ctx = cpuctx->task_ctx; 3165 if (ctx->task) 3166 WARN_ON_ONCE(task_ctx != ctx); 3167 3168 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3169 } 3170 3171 /* 3172 * Enable an event. 3173 * 3174 * If event->ctx is a cloned context, callers must make sure that 3175 * every task struct that event->ctx->task could possibly point to 3176 * remains valid. This condition is satisfied when called through 3177 * perf_event_for_each_child or perf_event_for_each as described 3178 * for perf_event_disable. 3179 */ 3180 static void _perf_event_enable(struct perf_event *event) 3181 { 3182 struct perf_event_context *ctx = event->ctx; 3183 3184 raw_spin_lock_irq(&ctx->lock); 3185 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3186 event->state < PERF_EVENT_STATE_ERROR) { 3187 out: 3188 raw_spin_unlock_irq(&ctx->lock); 3189 return; 3190 } 3191 3192 /* 3193 * If the event is in error state, clear that first. 3194 * 3195 * That way, if we see the event in error state below, we know that it 3196 * has gone back into error state, as distinct from the task having 3197 * been scheduled away before the cross-call arrived. 3198 */ 3199 if (event->state == PERF_EVENT_STATE_ERROR) { 3200 /* 3201 * Detached SIBLING events cannot leave ERROR state. 3202 */ 3203 if (event->event_caps & PERF_EV_CAP_SIBLING && 3204 event->group_leader == event) 3205 goto out; 3206 3207 event->state = PERF_EVENT_STATE_OFF; 3208 } 3209 raw_spin_unlock_irq(&ctx->lock); 3210 3211 event_function_call(event, __perf_event_enable, NULL); 3212 } 3213 3214 /* 3215 * See perf_event_disable(); 3216 */ 3217 void perf_event_enable(struct perf_event *event) 3218 { 3219 struct perf_event_context *ctx; 3220 3221 ctx = perf_event_ctx_lock(event); 3222 _perf_event_enable(event); 3223 perf_event_ctx_unlock(event, ctx); 3224 } 3225 EXPORT_SYMBOL_GPL(perf_event_enable); 3226 3227 struct stop_event_data { 3228 struct perf_event *event; 3229 unsigned int restart; 3230 }; 3231 3232 static int __perf_event_stop(void *info) 3233 { 3234 struct stop_event_data *sd = info; 3235 struct perf_event *event = sd->event; 3236 3237 /* if it's already INACTIVE, do nothing */ 3238 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3239 return 0; 3240 3241 /* matches smp_wmb() in event_sched_in() */ 3242 smp_rmb(); 3243 3244 /* 3245 * There is a window with interrupts enabled before we get here, 3246 * so we need to check again lest we try to stop another CPU's event. 3247 */ 3248 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3249 return -EAGAIN; 3250 3251 event->pmu->stop(event, PERF_EF_UPDATE); 3252 3253 /* 3254 * May race with the actual stop (through perf_pmu_output_stop()), 3255 * but it is only used for events with AUX ring buffer, and such 3256 * events will refuse to restart because of rb::aux_mmap_count==0, 3257 * see comments in perf_aux_output_begin(). 3258 * 3259 * Since this is happening on an event-local CPU, no trace is lost 3260 * while restarting. 3261 */ 3262 if (sd->restart) 3263 event->pmu->start(event, 0); 3264 3265 return 0; 3266 } 3267 3268 static int perf_event_stop(struct perf_event *event, int restart) 3269 { 3270 struct stop_event_data sd = { 3271 .event = event, 3272 .restart = restart, 3273 }; 3274 int ret = 0; 3275 3276 do { 3277 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3278 return 0; 3279 3280 /* matches smp_wmb() in event_sched_in() */ 3281 smp_rmb(); 3282 3283 /* 3284 * We only want to restart ACTIVE events, so if the event goes 3285 * inactive here (event->oncpu==-1), there's nothing more to do; 3286 * fall through with ret==-ENXIO. 3287 */ 3288 ret = cpu_function_call(READ_ONCE(event->oncpu), 3289 __perf_event_stop, &sd); 3290 } while (ret == -EAGAIN); 3291 3292 return ret; 3293 } 3294 3295 /* 3296 * In order to contain the amount of racy and tricky in the address filter 3297 * configuration management, it is a two part process: 3298 * 3299 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3300 * we update the addresses of corresponding vmas in 3301 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3302 * (p2) when an event is scheduled in (pmu::add), it calls 3303 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3304 * if the generation has changed since the previous call. 3305 * 3306 * If (p1) happens while the event is active, we restart it to force (p2). 3307 * 3308 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3309 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3310 * ioctl; 3311 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3312 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3313 * for reading; 3314 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3315 * of exec. 3316 */ 3317 void perf_event_addr_filters_sync(struct perf_event *event) 3318 { 3319 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3320 3321 if (!has_addr_filter(event)) 3322 return; 3323 3324 raw_spin_lock(&ifh->lock); 3325 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3326 event->pmu->addr_filters_sync(event); 3327 event->hw.addr_filters_gen = event->addr_filters_gen; 3328 } 3329 raw_spin_unlock(&ifh->lock); 3330 } 3331 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3332 3333 static int _perf_event_refresh(struct perf_event *event, int refresh) 3334 { 3335 /* 3336 * not supported on inherited events 3337 */ 3338 if (event->attr.inherit || !is_sampling_event(event)) 3339 return -EINVAL; 3340 3341 atomic_add(refresh, &event->event_limit); 3342 _perf_event_enable(event); 3343 3344 return 0; 3345 } 3346 3347 /* 3348 * See perf_event_disable() 3349 */ 3350 int perf_event_refresh(struct perf_event *event, int refresh) 3351 { 3352 struct perf_event_context *ctx; 3353 int ret; 3354 3355 ctx = perf_event_ctx_lock(event); 3356 ret = _perf_event_refresh(event, refresh); 3357 perf_event_ctx_unlock(event, ctx); 3358 3359 return ret; 3360 } 3361 EXPORT_SYMBOL_GPL(perf_event_refresh); 3362 3363 static int perf_event_modify_breakpoint(struct perf_event *bp, 3364 struct perf_event_attr *attr) 3365 { 3366 int err; 3367 3368 _perf_event_disable(bp); 3369 3370 err = modify_user_hw_breakpoint_check(bp, attr, true); 3371 3372 if (!bp->attr.disabled) 3373 _perf_event_enable(bp); 3374 3375 return err; 3376 } 3377 3378 /* 3379 * Copy event-type-independent attributes that may be modified. 3380 */ 3381 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3382 const struct perf_event_attr *from) 3383 { 3384 to->sig_data = from->sig_data; 3385 } 3386 3387 static int perf_event_modify_attr(struct perf_event *event, 3388 struct perf_event_attr *attr) 3389 { 3390 int (*func)(struct perf_event *, struct perf_event_attr *); 3391 struct perf_event *child; 3392 int err; 3393 3394 if (event->attr.type != attr->type) 3395 return -EINVAL; 3396 3397 switch (event->attr.type) { 3398 case PERF_TYPE_BREAKPOINT: 3399 func = perf_event_modify_breakpoint; 3400 break; 3401 default: 3402 /* Place holder for future additions. */ 3403 return -EOPNOTSUPP; 3404 } 3405 3406 WARN_ON_ONCE(event->ctx->parent_ctx); 3407 3408 mutex_lock(&event->child_mutex); 3409 /* 3410 * Event-type-independent attributes must be copied before event-type 3411 * modification, which will validate that final attributes match the 3412 * source attributes after all relevant attributes have been copied. 3413 */ 3414 perf_event_modify_copy_attr(&event->attr, attr); 3415 err = func(event, attr); 3416 if (err) 3417 goto out; 3418 list_for_each_entry(child, &event->child_list, child_list) { 3419 perf_event_modify_copy_attr(&child->attr, attr); 3420 err = func(child, attr); 3421 if (err) 3422 goto out; 3423 } 3424 out: 3425 mutex_unlock(&event->child_mutex); 3426 return err; 3427 } 3428 3429 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3430 enum event_type_t event_type) 3431 { 3432 struct perf_event_context *ctx = pmu_ctx->ctx; 3433 struct perf_event *event, *tmp; 3434 struct pmu *pmu = pmu_ctx->pmu; 3435 3436 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3437 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3438 3439 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3440 cpc->task_epc = NULL; 3441 } 3442 3443 if (!(event_type & EVENT_ALL)) 3444 return; 3445 3446 perf_pmu_disable(pmu); 3447 if (event_type & EVENT_PINNED) { 3448 list_for_each_entry_safe(event, tmp, 3449 &pmu_ctx->pinned_active, 3450 active_list) 3451 group_sched_out(event, ctx); 3452 } 3453 3454 if (event_type & EVENT_FLEXIBLE) { 3455 list_for_each_entry_safe(event, tmp, 3456 &pmu_ctx->flexible_active, 3457 active_list) 3458 group_sched_out(event, ctx); 3459 /* 3460 * Since we cleared EVENT_FLEXIBLE, also clear 3461 * rotate_necessary, is will be reset by 3462 * ctx_flexible_sched_in() when needed. 3463 */ 3464 pmu_ctx->rotate_necessary = 0; 3465 } 3466 perf_pmu_enable(pmu); 3467 } 3468 3469 /* 3470 * Be very careful with the @pmu argument since this will change ctx state. 3471 * The @pmu argument works for ctx_resched(), because that is symmetric in 3472 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3473 * 3474 * However, if you were to be asymmetrical, you could end up with messed up 3475 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3476 * be active. 3477 */ 3478 static void 3479 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3480 { 3481 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3482 struct perf_event_pmu_context *pmu_ctx; 3483 int is_active = ctx->is_active; 3484 bool cgroup = event_type & EVENT_CGROUP; 3485 3486 event_type &= ~EVENT_CGROUP; 3487 3488 lockdep_assert_held(&ctx->lock); 3489 3490 if (likely(!ctx->nr_events)) { 3491 /* 3492 * See __perf_remove_from_context(). 3493 */ 3494 WARN_ON_ONCE(ctx->is_active); 3495 if (ctx->task) 3496 WARN_ON_ONCE(cpuctx->task_ctx); 3497 return; 3498 } 3499 3500 /* 3501 * Always update time if it was set; not only when it changes. 3502 * Otherwise we can 'forget' to update time for any but the last 3503 * context we sched out. For example: 3504 * 3505 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3506 * ctx_sched_out(.event_type = EVENT_PINNED) 3507 * 3508 * would only update time for the pinned events. 3509 */ 3510 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3511 3512 /* 3513 * CPU-release for the below ->is_active store, 3514 * see __load_acquire() in perf_event_time_now() 3515 */ 3516 barrier(); 3517 ctx->is_active &= ~event_type; 3518 3519 if (!(ctx->is_active & EVENT_ALL)) { 3520 /* 3521 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3522 * does not observe a hole. perf_ctx_unlock() will clean up. 3523 */ 3524 if (ctx->is_active & EVENT_FROZEN) 3525 ctx->is_active &= EVENT_TIME_FROZEN; 3526 else 3527 ctx->is_active = 0; 3528 } 3529 3530 if (ctx->task) { 3531 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3532 if (!(ctx->is_active & EVENT_ALL)) 3533 cpuctx->task_ctx = NULL; 3534 } 3535 3536 is_active ^= ctx->is_active; /* changed bits */ 3537 3538 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3539 __pmu_ctx_sched_out(pmu_ctx, is_active); 3540 } 3541 3542 /* 3543 * Test whether two contexts are equivalent, i.e. whether they have both been 3544 * cloned from the same version of the same context. 3545 * 3546 * Equivalence is measured using a generation number in the context that is 3547 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3548 * and list_del_event(). 3549 */ 3550 static int context_equiv(struct perf_event_context *ctx1, 3551 struct perf_event_context *ctx2) 3552 { 3553 lockdep_assert_held(&ctx1->lock); 3554 lockdep_assert_held(&ctx2->lock); 3555 3556 /* Pinning disables the swap optimization */ 3557 if (ctx1->pin_count || ctx2->pin_count) 3558 return 0; 3559 3560 /* If ctx1 is the parent of ctx2 */ 3561 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3562 return 1; 3563 3564 /* If ctx2 is the parent of ctx1 */ 3565 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3566 return 1; 3567 3568 /* 3569 * If ctx1 and ctx2 have the same parent; we flatten the parent 3570 * hierarchy, see perf_event_init_context(). 3571 */ 3572 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3573 ctx1->parent_gen == ctx2->parent_gen) 3574 return 1; 3575 3576 /* Unmatched */ 3577 return 0; 3578 } 3579 3580 static void __perf_event_sync_stat(struct perf_event *event, 3581 struct perf_event *next_event) 3582 { 3583 u64 value; 3584 3585 if (!event->attr.inherit_stat) 3586 return; 3587 3588 /* 3589 * Update the event value, we cannot use perf_event_read() 3590 * because we're in the middle of a context switch and have IRQs 3591 * disabled, which upsets smp_call_function_single(), however 3592 * we know the event must be on the current CPU, therefore we 3593 * don't need to use it. 3594 */ 3595 perf_pmu_read(event); 3596 3597 perf_event_update_time(event); 3598 3599 /* 3600 * In order to keep per-task stats reliable we need to flip the event 3601 * values when we flip the contexts. 3602 */ 3603 value = local64_read(&next_event->count); 3604 value = local64_xchg(&event->count, value); 3605 local64_set(&next_event->count, value); 3606 3607 swap(event->total_time_enabled, next_event->total_time_enabled); 3608 swap(event->total_time_running, next_event->total_time_running); 3609 3610 /* 3611 * Since we swizzled the values, update the user visible data too. 3612 */ 3613 perf_event_update_userpage(event); 3614 perf_event_update_userpage(next_event); 3615 } 3616 3617 static void perf_event_sync_stat(struct perf_event_context *ctx, 3618 struct perf_event_context *next_ctx) 3619 { 3620 struct perf_event *event, *next_event; 3621 3622 if (!ctx->nr_stat) 3623 return; 3624 3625 update_context_time(ctx); 3626 3627 event = list_first_entry(&ctx->event_list, 3628 struct perf_event, event_entry); 3629 3630 next_event = list_first_entry(&next_ctx->event_list, 3631 struct perf_event, event_entry); 3632 3633 while (&event->event_entry != &ctx->event_list && 3634 &next_event->event_entry != &next_ctx->event_list) { 3635 3636 __perf_event_sync_stat(event, next_event); 3637 3638 event = list_next_entry(event, event_entry); 3639 next_event = list_next_entry(next_event, event_entry); 3640 } 3641 } 3642 3643 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, 3644 struct task_struct *task, bool sched_in) 3645 { 3646 struct perf_event_pmu_context *pmu_ctx; 3647 struct perf_cpu_pmu_context *cpc; 3648 3649 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3650 cpc = this_cpc(pmu_ctx->pmu); 3651 3652 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3653 pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in); 3654 } 3655 } 3656 3657 static void 3658 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3659 { 3660 struct perf_event_context *ctx = task->perf_event_ctxp; 3661 struct perf_event_context *next_ctx; 3662 struct perf_event_context *parent, *next_parent; 3663 int do_switch = 1; 3664 3665 if (likely(!ctx)) 3666 return; 3667 3668 rcu_read_lock(); 3669 next_ctx = rcu_dereference(next->perf_event_ctxp); 3670 if (!next_ctx) 3671 goto unlock; 3672 3673 parent = rcu_dereference(ctx->parent_ctx); 3674 next_parent = rcu_dereference(next_ctx->parent_ctx); 3675 3676 /* If neither context have a parent context; they cannot be clones. */ 3677 if (!parent && !next_parent) 3678 goto unlock; 3679 3680 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3681 /* 3682 * Looks like the two contexts are clones, so we might be 3683 * able to optimize the context switch. We lock both 3684 * contexts and check that they are clones under the 3685 * lock (including re-checking that neither has been 3686 * uncloned in the meantime). It doesn't matter which 3687 * order we take the locks because no other cpu could 3688 * be trying to lock both of these tasks. 3689 */ 3690 raw_spin_lock(&ctx->lock); 3691 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3692 if (context_equiv(ctx, next_ctx)) { 3693 3694 perf_ctx_disable(ctx, false); 3695 3696 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3697 if (local_read(&ctx->nr_no_switch_fast) || 3698 local_read(&next_ctx->nr_no_switch_fast)) { 3699 /* 3700 * Must not swap out ctx when there's pending 3701 * events that rely on the ctx->task relation. 3702 * 3703 * Likewise, when a context contains inherit + 3704 * SAMPLE_READ events they should be switched 3705 * out using the slow path so that they are 3706 * treated as if they were distinct contexts. 3707 */ 3708 raw_spin_unlock(&next_ctx->lock); 3709 rcu_read_unlock(); 3710 goto inside_switch; 3711 } 3712 3713 WRITE_ONCE(ctx->task, next); 3714 WRITE_ONCE(next_ctx->task, task); 3715 3716 perf_ctx_sched_task_cb(ctx, task, false); 3717 3718 perf_ctx_enable(ctx, false); 3719 3720 /* 3721 * RCU_INIT_POINTER here is safe because we've not 3722 * modified the ctx and the above modification of 3723 * ctx->task is immaterial since this value is 3724 * always verified under ctx->lock which we're now 3725 * holding. 3726 */ 3727 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3728 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3729 3730 do_switch = 0; 3731 3732 perf_event_sync_stat(ctx, next_ctx); 3733 } 3734 raw_spin_unlock(&next_ctx->lock); 3735 raw_spin_unlock(&ctx->lock); 3736 } 3737 unlock: 3738 rcu_read_unlock(); 3739 3740 if (do_switch) { 3741 raw_spin_lock(&ctx->lock); 3742 perf_ctx_disable(ctx, false); 3743 3744 inside_switch: 3745 perf_ctx_sched_task_cb(ctx, task, false); 3746 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3747 3748 perf_ctx_enable(ctx, false); 3749 raw_spin_unlock(&ctx->lock); 3750 } 3751 } 3752 3753 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3754 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3755 3756 void perf_sched_cb_dec(struct pmu *pmu) 3757 { 3758 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3759 3760 this_cpu_dec(perf_sched_cb_usages); 3761 barrier(); 3762 3763 if (!--cpc->sched_cb_usage) 3764 list_del(&cpc->sched_cb_entry); 3765 } 3766 3767 3768 void perf_sched_cb_inc(struct pmu *pmu) 3769 { 3770 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3771 3772 if (!cpc->sched_cb_usage++) 3773 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3774 3775 barrier(); 3776 this_cpu_inc(perf_sched_cb_usages); 3777 } 3778 3779 /* 3780 * This function provides the context switch callback to the lower code 3781 * layer. It is invoked ONLY when the context switch callback is enabled. 3782 * 3783 * This callback is relevant even to per-cpu events; for example multi event 3784 * PEBS requires this to provide PID/TID information. This requires we flush 3785 * all queued PEBS records before we context switch to a new task. 3786 */ 3787 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, 3788 struct task_struct *task, bool sched_in) 3789 { 3790 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3791 struct pmu *pmu; 3792 3793 pmu = cpc->epc.pmu; 3794 3795 /* software PMUs will not have sched_task */ 3796 if (WARN_ON_ONCE(!pmu->sched_task)) 3797 return; 3798 3799 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3800 perf_pmu_disable(pmu); 3801 3802 pmu->sched_task(cpc->task_epc, task, sched_in); 3803 3804 perf_pmu_enable(pmu); 3805 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3806 } 3807 3808 static void perf_pmu_sched_task(struct task_struct *prev, 3809 struct task_struct *next, 3810 bool sched_in) 3811 { 3812 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3813 struct perf_cpu_pmu_context *cpc; 3814 3815 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3816 if (prev == next || cpuctx->task_ctx) 3817 return; 3818 3819 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3820 __perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in); 3821 } 3822 3823 static void perf_event_switch(struct task_struct *task, 3824 struct task_struct *next_prev, bool sched_in); 3825 3826 /* 3827 * Called from scheduler to remove the events of the current task, 3828 * with interrupts disabled. 3829 * 3830 * We stop each event and update the event value in event->count. 3831 * 3832 * This does not protect us against NMI, but disable() 3833 * sets the disabled bit in the control field of event _before_ 3834 * accessing the event control register. If a NMI hits, then it will 3835 * not restart the event. 3836 */ 3837 void __perf_event_task_sched_out(struct task_struct *task, 3838 struct task_struct *next) 3839 { 3840 if (__this_cpu_read(perf_sched_cb_usages)) 3841 perf_pmu_sched_task(task, next, false); 3842 3843 if (atomic_read(&nr_switch_events)) 3844 perf_event_switch(task, next, false); 3845 3846 perf_event_context_sched_out(task, next); 3847 3848 /* 3849 * if cgroup events exist on this CPU, then we need 3850 * to check if we have to switch out PMU state. 3851 * cgroup event are system-wide mode only 3852 */ 3853 perf_cgroup_switch(next); 3854 } 3855 3856 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3857 { 3858 const struct perf_event *le = *(const struct perf_event **)l; 3859 const struct perf_event *re = *(const struct perf_event **)r; 3860 3861 return le->group_index < re->group_index; 3862 } 3863 3864 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3865 3866 static const struct min_heap_callbacks perf_min_heap = { 3867 .less = perf_less_group_idx, 3868 .swp = NULL, 3869 }; 3870 3871 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3872 { 3873 struct perf_event **itrs = heap->data; 3874 3875 if (event) { 3876 itrs[heap->nr] = event; 3877 heap->nr++; 3878 } 3879 } 3880 3881 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3882 { 3883 struct perf_cpu_pmu_context *cpc; 3884 3885 if (!pmu_ctx->ctx->task) 3886 return; 3887 3888 cpc = this_cpc(pmu_ctx->pmu); 3889 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3890 cpc->task_epc = pmu_ctx; 3891 } 3892 3893 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3894 struct perf_event_groups *groups, int cpu, 3895 struct pmu *pmu, 3896 int (*func)(struct perf_event *, void *), 3897 void *data) 3898 { 3899 #ifdef CONFIG_CGROUP_PERF 3900 struct cgroup_subsys_state *css = NULL; 3901 #endif 3902 struct perf_cpu_context *cpuctx = NULL; 3903 /* Space for per CPU and/or any CPU event iterators. */ 3904 struct perf_event *itrs[2]; 3905 struct perf_event_min_heap event_heap; 3906 struct perf_event **evt; 3907 int ret; 3908 3909 if (pmu->filter && pmu->filter(pmu, cpu)) 3910 return 0; 3911 3912 if (!ctx->task) { 3913 cpuctx = this_cpu_ptr(&perf_cpu_context); 3914 event_heap = (struct perf_event_min_heap){ 3915 .data = cpuctx->heap, 3916 .nr = 0, 3917 .size = cpuctx->heap_size, 3918 }; 3919 3920 lockdep_assert_held(&cpuctx->ctx.lock); 3921 3922 #ifdef CONFIG_CGROUP_PERF 3923 if (cpuctx->cgrp) 3924 css = &cpuctx->cgrp->css; 3925 #endif 3926 } else { 3927 event_heap = (struct perf_event_min_heap){ 3928 .data = itrs, 3929 .nr = 0, 3930 .size = ARRAY_SIZE(itrs), 3931 }; 3932 /* Events not within a CPU context may be on any CPU. */ 3933 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3934 } 3935 evt = event_heap.data; 3936 3937 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3938 3939 #ifdef CONFIG_CGROUP_PERF 3940 for (; css; css = css->parent) 3941 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3942 #endif 3943 3944 if (event_heap.nr) { 3945 __link_epc((*evt)->pmu_ctx); 3946 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3947 } 3948 3949 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL); 3950 3951 while (event_heap.nr) { 3952 ret = func(*evt, data); 3953 if (ret) 3954 return ret; 3955 3956 *evt = perf_event_groups_next(*evt, pmu); 3957 if (*evt) 3958 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL); 3959 else 3960 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL); 3961 } 3962 3963 return 0; 3964 } 3965 3966 /* 3967 * Because the userpage is strictly per-event (there is no concept of context, 3968 * so there cannot be a context indirection), every userpage must be updated 3969 * when context time starts :-( 3970 * 3971 * IOW, we must not miss EVENT_TIME edges. 3972 */ 3973 static inline bool event_update_userpage(struct perf_event *event) 3974 { 3975 if (likely(!refcount_read(&event->mmap_count))) 3976 return false; 3977 3978 perf_event_update_time(event); 3979 perf_event_update_userpage(event); 3980 3981 return true; 3982 } 3983 3984 static inline void group_update_userpage(struct perf_event *group_event) 3985 { 3986 struct perf_event *event; 3987 3988 if (!event_update_userpage(group_event)) 3989 return; 3990 3991 for_each_sibling_event(event, group_event) 3992 event_update_userpage(event); 3993 } 3994 3995 static int merge_sched_in(struct perf_event *event, void *data) 3996 { 3997 struct perf_event_context *ctx = event->ctx; 3998 int *can_add_hw = data; 3999 4000 if (event->state <= PERF_EVENT_STATE_OFF) 4001 return 0; 4002 4003 if (!event_filter_match(event)) 4004 return 0; 4005 4006 if (group_can_go_on(event, *can_add_hw)) { 4007 if (!group_sched_in(event, ctx)) 4008 list_add_tail(&event->active_list, get_event_list(event)); 4009 } 4010 4011 if (event->state == PERF_EVENT_STATE_INACTIVE) { 4012 *can_add_hw = 0; 4013 if (event->attr.pinned) { 4014 perf_cgroup_event_disable(event, ctx); 4015 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 4016 4017 if (*perf_event_fasync(event)) 4018 event->pending_kill = POLL_ERR; 4019 4020 perf_event_wakeup(event); 4021 } else { 4022 struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu); 4023 4024 event->pmu_ctx->rotate_necessary = 1; 4025 perf_mux_hrtimer_restart(cpc); 4026 group_update_userpage(event); 4027 } 4028 } 4029 4030 return 0; 4031 } 4032 4033 static void pmu_groups_sched_in(struct perf_event_context *ctx, 4034 struct perf_event_groups *groups, 4035 struct pmu *pmu) 4036 { 4037 int can_add_hw = 1; 4038 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 4039 merge_sched_in, &can_add_hw); 4040 } 4041 4042 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 4043 enum event_type_t event_type) 4044 { 4045 struct perf_event_context *ctx = pmu_ctx->ctx; 4046 4047 if (event_type & EVENT_PINNED) 4048 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 4049 if (event_type & EVENT_FLEXIBLE) 4050 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 4051 } 4052 4053 static void 4054 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 4055 { 4056 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4057 struct perf_event_pmu_context *pmu_ctx; 4058 int is_active = ctx->is_active; 4059 bool cgroup = event_type & EVENT_CGROUP; 4060 4061 event_type &= ~EVENT_CGROUP; 4062 4063 lockdep_assert_held(&ctx->lock); 4064 4065 if (likely(!ctx->nr_events)) 4066 return; 4067 4068 if (!(is_active & EVENT_TIME)) { 4069 /* start ctx time */ 4070 __update_context_time(ctx, false); 4071 perf_cgroup_set_timestamp(cpuctx); 4072 /* 4073 * CPU-release for the below ->is_active store, 4074 * see __load_acquire() in perf_event_time_now() 4075 */ 4076 barrier(); 4077 } 4078 4079 ctx->is_active |= (event_type | EVENT_TIME); 4080 if (ctx->task) { 4081 if (!(is_active & EVENT_ALL)) 4082 cpuctx->task_ctx = ctx; 4083 else 4084 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 4085 } 4086 4087 is_active ^= ctx->is_active; /* changed bits */ 4088 4089 /* 4090 * First go through the list and put on any pinned groups 4091 * in order to give them the best chance of going on. 4092 */ 4093 if (is_active & EVENT_PINNED) { 4094 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4095 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4096 } 4097 4098 /* Then walk through the lower prio flexible groups */ 4099 if (is_active & EVENT_FLEXIBLE) { 4100 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4101 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4102 } 4103 } 4104 4105 static void perf_event_context_sched_in(struct task_struct *task) 4106 { 4107 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4108 struct perf_event_context *ctx; 4109 4110 rcu_read_lock(); 4111 ctx = rcu_dereference(task->perf_event_ctxp); 4112 if (!ctx) 4113 goto rcu_unlock; 4114 4115 if (cpuctx->task_ctx == ctx) { 4116 perf_ctx_lock(cpuctx, ctx); 4117 perf_ctx_disable(ctx, false); 4118 4119 perf_ctx_sched_task_cb(ctx, task, true); 4120 4121 perf_ctx_enable(ctx, false); 4122 perf_ctx_unlock(cpuctx, ctx); 4123 goto rcu_unlock; 4124 } 4125 4126 perf_ctx_lock(cpuctx, ctx); 4127 /* 4128 * We must check ctx->nr_events while holding ctx->lock, such 4129 * that we serialize against perf_install_in_context(). 4130 */ 4131 if (!ctx->nr_events) 4132 goto unlock; 4133 4134 perf_ctx_disable(ctx, false); 4135 /* 4136 * We want to keep the following priority order: 4137 * cpu pinned (that don't need to move), task pinned, 4138 * cpu flexible, task flexible. 4139 * 4140 * However, if task's ctx is not carrying any pinned 4141 * events, no need to flip the cpuctx's events around. 4142 */ 4143 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4144 perf_ctx_disable(&cpuctx->ctx, false); 4145 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4146 } 4147 4148 perf_event_sched_in(cpuctx, ctx, NULL); 4149 4150 perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true); 4151 4152 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4153 perf_ctx_enable(&cpuctx->ctx, false); 4154 4155 perf_ctx_enable(ctx, false); 4156 4157 unlock: 4158 perf_ctx_unlock(cpuctx, ctx); 4159 rcu_unlock: 4160 rcu_read_unlock(); 4161 } 4162 4163 /* 4164 * Called from scheduler to add the events of the current task 4165 * with interrupts disabled. 4166 * 4167 * We restore the event value and then enable it. 4168 * 4169 * This does not protect us against NMI, but enable() 4170 * sets the enabled bit in the control field of event _before_ 4171 * accessing the event control register. If a NMI hits, then it will 4172 * keep the event running. 4173 */ 4174 void __perf_event_task_sched_in(struct task_struct *prev, 4175 struct task_struct *task) 4176 { 4177 perf_event_context_sched_in(task); 4178 4179 if (atomic_read(&nr_switch_events)) 4180 perf_event_switch(task, prev, true); 4181 4182 if (__this_cpu_read(perf_sched_cb_usages)) 4183 perf_pmu_sched_task(prev, task, true); 4184 } 4185 4186 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4187 { 4188 u64 frequency = event->attr.sample_freq; 4189 u64 sec = NSEC_PER_SEC; 4190 u64 divisor, dividend; 4191 4192 int count_fls, nsec_fls, frequency_fls, sec_fls; 4193 4194 count_fls = fls64(count); 4195 nsec_fls = fls64(nsec); 4196 frequency_fls = fls64(frequency); 4197 sec_fls = 30; 4198 4199 /* 4200 * We got @count in @nsec, with a target of sample_freq HZ 4201 * the target period becomes: 4202 * 4203 * @count * 10^9 4204 * period = ------------------- 4205 * @nsec * sample_freq 4206 * 4207 */ 4208 4209 /* 4210 * Reduce accuracy by one bit such that @a and @b converge 4211 * to a similar magnitude. 4212 */ 4213 #define REDUCE_FLS(a, b) \ 4214 do { \ 4215 if (a##_fls > b##_fls) { \ 4216 a >>= 1; \ 4217 a##_fls--; \ 4218 } else { \ 4219 b >>= 1; \ 4220 b##_fls--; \ 4221 } \ 4222 } while (0) 4223 4224 /* 4225 * Reduce accuracy until either term fits in a u64, then proceed with 4226 * the other, so that finally we can do a u64/u64 division. 4227 */ 4228 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4229 REDUCE_FLS(nsec, frequency); 4230 REDUCE_FLS(sec, count); 4231 } 4232 4233 if (count_fls + sec_fls > 64) { 4234 divisor = nsec * frequency; 4235 4236 while (count_fls + sec_fls > 64) { 4237 REDUCE_FLS(count, sec); 4238 divisor >>= 1; 4239 } 4240 4241 dividend = count * sec; 4242 } else { 4243 dividend = count * sec; 4244 4245 while (nsec_fls + frequency_fls > 64) { 4246 REDUCE_FLS(nsec, frequency); 4247 dividend >>= 1; 4248 } 4249 4250 divisor = nsec * frequency; 4251 } 4252 4253 if (!divisor) 4254 return dividend; 4255 4256 return div64_u64(dividend, divisor); 4257 } 4258 4259 static DEFINE_PER_CPU(int, perf_throttled_count); 4260 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4261 4262 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4263 { 4264 struct hw_perf_event *hwc = &event->hw; 4265 s64 period, sample_period; 4266 s64 delta; 4267 4268 period = perf_calculate_period(event, nsec, count); 4269 4270 delta = (s64)(period - hwc->sample_period); 4271 if (delta >= 0) 4272 delta += 7; 4273 else 4274 delta -= 7; 4275 delta /= 8; /* low pass filter */ 4276 4277 sample_period = hwc->sample_period + delta; 4278 4279 if (!sample_period) 4280 sample_period = 1; 4281 4282 hwc->sample_period = sample_period; 4283 4284 if (local64_read(&hwc->period_left) > 8*sample_period) { 4285 if (disable) 4286 event->pmu->stop(event, PERF_EF_UPDATE); 4287 4288 local64_set(&hwc->period_left, 0); 4289 4290 if (disable) 4291 event->pmu->start(event, PERF_EF_RELOAD); 4292 } 4293 } 4294 4295 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4296 { 4297 struct perf_event *event; 4298 struct hw_perf_event *hwc; 4299 u64 now, period = TICK_NSEC; 4300 s64 delta; 4301 4302 list_for_each_entry(event, event_list, active_list) { 4303 if (event->state != PERF_EVENT_STATE_ACTIVE) 4304 continue; 4305 4306 // XXX use visit thingy to avoid the -1,cpu match 4307 if (!event_filter_match(event)) 4308 continue; 4309 4310 hwc = &event->hw; 4311 4312 if (hwc->interrupts == MAX_INTERRUPTS) 4313 perf_event_unthrottle_group(event, is_event_in_freq_mode(event)); 4314 4315 if (!is_event_in_freq_mode(event)) 4316 continue; 4317 4318 /* 4319 * stop the event and update event->count 4320 */ 4321 event->pmu->stop(event, PERF_EF_UPDATE); 4322 4323 now = local64_read(&event->count); 4324 delta = now - hwc->freq_count_stamp; 4325 hwc->freq_count_stamp = now; 4326 4327 /* 4328 * restart the event 4329 * reload only if value has changed 4330 * we have stopped the event so tell that 4331 * to perf_adjust_period() to avoid stopping it 4332 * twice. 4333 */ 4334 if (delta > 0) 4335 perf_adjust_period(event, period, delta, false); 4336 4337 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4338 } 4339 } 4340 4341 /* 4342 * combine freq adjustment with unthrottling to avoid two passes over the 4343 * events. At the same time, make sure, having freq events does not change 4344 * the rate of unthrottling as that would introduce bias. 4345 */ 4346 static void 4347 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4348 { 4349 struct perf_event_pmu_context *pmu_ctx; 4350 4351 /* 4352 * only need to iterate over all events iff: 4353 * - context have events in frequency mode (needs freq adjust) 4354 * - there are events to unthrottle on this cpu 4355 */ 4356 if (!(ctx->nr_freq || unthrottle)) 4357 return; 4358 4359 raw_spin_lock(&ctx->lock); 4360 4361 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4362 if (!(pmu_ctx->nr_freq || unthrottle)) 4363 continue; 4364 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4365 continue; 4366 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4367 continue; 4368 4369 perf_pmu_disable(pmu_ctx->pmu); 4370 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4371 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4372 perf_pmu_enable(pmu_ctx->pmu); 4373 } 4374 4375 raw_spin_unlock(&ctx->lock); 4376 } 4377 4378 /* 4379 * Move @event to the tail of the @ctx's elegible events. 4380 */ 4381 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4382 { 4383 /* 4384 * Rotate the first entry last of non-pinned groups. Rotation might be 4385 * disabled by the inheritance code. 4386 */ 4387 if (ctx->rotate_disable) 4388 return; 4389 4390 perf_event_groups_delete(&ctx->flexible_groups, event); 4391 perf_event_groups_insert(&ctx->flexible_groups, event); 4392 } 4393 4394 /* pick an event from the flexible_groups to rotate */ 4395 static inline struct perf_event * 4396 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4397 { 4398 struct perf_event *event; 4399 struct rb_node *node; 4400 struct rb_root *tree; 4401 struct __group_key key = { 4402 .pmu = pmu_ctx->pmu, 4403 }; 4404 4405 /* pick the first active flexible event */ 4406 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4407 struct perf_event, active_list); 4408 if (event) 4409 goto out; 4410 4411 /* if no active flexible event, pick the first event */ 4412 tree = &pmu_ctx->ctx->flexible_groups.tree; 4413 4414 if (!pmu_ctx->ctx->task) { 4415 key.cpu = smp_processor_id(); 4416 4417 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4418 if (node) 4419 event = __node_2_pe(node); 4420 goto out; 4421 } 4422 4423 key.cpu = -1; 4424 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4425 if (node) { 4426 event = __node_2_pe(node); 4427 goto out; 4428 } 4429 4430 key.cpu = smp_processor_id(); 4431 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4432 if (node) 4433 event = __node_2_pe(node); 4434 4435 out: 4436 /* 4437 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4438 * finds there are unschedulable events, it will set it again. 4439 */ 4440 pmu_ctx->rotate_necessary = 0; 4441 4442 return event; 4443 } 4444 4445 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4446 { 4447 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4448 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4449 struct perf_event *cpu_event = NULL, *task_event = NULL; 4450 int cpu_rotate, task_rotate; 4451 struct pmu *pmu; 4452 4453 /* 4454 * Since we run this from IRQ context, nobody can install new 4455 * events, thus the event count values are stable. 4456 */ 4457 4458 cpu_epc = &cpc->epc; 4459 pmu = cpu_epc->pmu; 4460 task_epc = cpc->task_epc; 4461 4462 cpu_rotate = cpu_epc->rotate_necessary; 4463 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4464 4465 if (!(cpu_rotate || task_rotate)) 4466 return false; 4467 4468 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4469 perf_pmu_disable(pmu); 4470 4471 if (task_rotate) 4472 task_event = ctx_event_to_rotate(task_epc); 4473 if (cpu_rotate) 4474 cpu_event = ctx_event_to_rotate(cpu_epc); 4475 4476 /* 4477 * As per the order given at ctx_resched() first 'pop' task flexible 4478 * and then, if needed CPU flexible. 4479 */ 4480 if (task_event || (task_epc && cpu_event)) { 4481 update_context_time(task_epc->ctx); 4482 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4483 } 4484 4485 if (cpu_event) { 4486 update_context_time(&cpuctx->ctx); 4487 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4488 rotate_ctx(&cpuctx->ctx, cpu_event); 4489 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4490 } 4491 4492 if (task_event) 4493 rotate_ctx(task_epc->ctx, task_event); 4494 4495 if (task_event || (task_epc && cpu_event)) 4496 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4497 4498 perf_pmu_enable(pmu); 4499 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4500 4501 return true; 4502 } 4503 4504 void perf_event_task_tick(void) 4505 { 4506 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4507 struct perf_event_context *ctx; 4508 int throttled; 4509 4510 lockdep_assert_irqs_disabled(); 4511 4512 __this_cpu_inc(perf_throttled_seq); 4513 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4514 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4515 4516 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4517 4518 rcu_read_lock(); 4519 ctx = rcu_dereference(current->perf_event_ctxp); 4520 if (ctx) 4521 perf_adjust_freq_unthr_context(ctx, !!throttled); 4522 rcu_read_unlock(); 4523 } 4524 4525 static int event_enable_on_exec(struct perf_event *event, 4526 struct perf_event_context *ctx) 4527 { 4528 if (!event->attr.enable_on_exec) 4529 return 0; 4530 4531 event->attr.enable_on_exec = 0; 4532 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4533 return 0; 4534 4535 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4536 4537 return 1; 4538 } 4539 4540 /* 4541 * Enable all of a task's events that have been marked enable-on-exec. 4542 * This expects task == current. 4543 */ 4544 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4545 { 4546 struct perf_event_context *clone_ctx = NULL; 4547 enum event_type_t event_type = 0; 4548 struct perf_cpu_context *cpuctx; 4549 struct perf_event *event; 4550 unsigned long flags; 4551 int enabled = 0; 4552 4553 local_irq_save(flags); 4554 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4555 goto out; 4556 4557 if (!ctx->nr_events) 4558 goto out; 4559 4560 cpuctx = this_cpu_ptr(&perf_cpu_context); 4561 perf_ctx_lock(cpuctx, ctx); 4562 ctx_time_freeze(cpuctx, ctx); 4563 4564 list_for_each_entry(event, &ctx->event_list, event_entry) { 4565 enabled |= event_enable_on_exec(event, ctx); 4566 event_type |= get_event_type(event); 4567 } 4568 4569 /* 4570 * Unclone and reschedule this context if we enabled any event. 4571 */ 4572 if (enabled) { 4573 clone_ctx = unclone_ctx(ctx); 4574 ctx_resched(cpuctx, ctx, NULL, event_type); 4575 } 4576 perf_ctx_unlock(cpuctx, ctx); 4577 4578 out: 4579 local_irq_restore(flags); 4580 4581 if (clone_ctx) 4582 put_ctx(clone_ctx); 4583 } 4584 4585 static void perf_remove_from_owner(struct perf_event *event); 4586 static void perf_event_exit_event(struct perf_event *event, 4587 struct perf_event_context *ctx, 4588 struct task_struct *task, 4589 bool revoke); 4590 4591 /* 4592 * Removes all events from the current task that have been marked 4593 * remove-on-exec, and feeds their values back to parent events. 4594 */ 4595 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4596 { 4597 struct perf_event_context *clone_ctx = NULL; 4598 struct perf_event *event, *next; 4599 unsigned long flags; 4600 bool modified = false; 4601 4602 mutex_lock(&ctx->mutex); 4603 4604 if (WARN_ON_ONCE(ctx->task != current)) 4605 goto unlock; 4606 4607 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4608 if (!event->attr.remove_on_exec) 4609 continue; 4610 4611 if (!is_kernel_event(event)) 4612 perf_remove_from_owner(event); 4613 4614 modified = true; 4615 4616 perf_event_exit_event(event, ctx, ctx->task, false); 4617 } 4618 4619 raw_spin_lock_irqsave(&ctx->lock, flags); 4620 if (modified) 4621 clone_ctx = unclone_ctx(ctx); 4622 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4623 4624 unlock: 4625 mutex_unlock(&ctx->mutex); 4626 4627 if (clone_ctx) 4628 put_ctx(clone_ctx); 4629 } 4630 4631 struct perf_read_data { 4632 struct perf_event *event; 4633 bool group; 4634 int ret; 4635 }; 4636 4637 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4638 4639 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4640 { 4641 int local_cpu = smp_processor_id(); 4642 u16 local_pkg, event_pkg; 4643 4644 if ((unsigned)event_cpu >= nr_cpu_ids) 4645 return event_cpu; 4646 4647 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4648 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4649 4650 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4651 return local_cpu; 4652 } 4653 4654 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4655 event_pkg = topology_physical_package_id(event_cpu); 4656 local_pkg = topology_physical_package_id(local_cpu); 4657 4658 if (event_pkg == local_pkg) 4659 return local_cpu; 4660 } 4661 4662 return event_cpu; 4663 } 4664 4665 /* 4666 * Cross CPU call to read the hardware event 4667 */ 4668 static void __perf_event_read(void *info) 4669 { 4670 struct perf_read_data *data = info; 4671 struct perf_event *sub, *event = data->event; 4672 struct perf_event_context *ctx = event->ctx; 4673 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4674 struct pmu *pmu = event->pmu; 4675 4676 /* 4677 * If this is a task context, we need to check whether it is 4678 * the current task context of this cpu. If not it has been 4679 * scheduled out before the smp call arrived. In that case 4680 * event->count would have been updated to a recent sample 4681 * when the event was scheduled out. 4682 */ 4683 if (ctx->task && cpuctx->task_ctx != ctx) 4684 return; 4685 4686 raw_spin_lock(&ctx->lock); 4687 ctx_time_update_event(ctx, event); 4688 4689 perf_event_update_time(event); 4690 if (data->group) 4691 perf_event_update_sibling_time(event); 4692 4693 if (event->state != PERF_EVENT_STATE_ACTIVE) 4694 goto unlock; 4695 4696 if (!data->group) { 4697 pmu->read(event); 4698 data->ret = 0; 4699 goto unlock; 4700 } 4701 4702 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4703 4704 pmu->read(event); 4705 4706 for_each_sibling_event(sub, event) 4707 perf_pmu_read(sub); 4708 4709 data->ret = pmu->commit_txn(pmu); 4710 4711 unlock: 4712 raw_spin_unlock(&ctx->lock); 4713 } 4714 4715 static inline u64 perf_event_count(struct perf_event *event, bool self) 4716 { 4717 if (self) 4718 return local64_read(&event->count); 4719 4720 return local64_read(&event->count) + atomic64_read(&event->child_count); 4721 } 4722 4723 static void calc_timer_values(struct perf_event *event, 4724 u64 *now, 4725 u64 *enabled, 4726 u64 *running) 4727 { 4728 u64 ctx_time; 4729 4730 *now = perf_clock(); 4731 ctx_time = perf_event_time_now(event, *now); 4732 __perf_update_times(event, ctx_time, enabled, running); 4733 } 4734 4735 /* 4736 * NMI-safe method to read a local event, that is an event that 4737 * is: 4738 * - either for the current task, or for this CPU 4739 * - does not have inherit set, for inherited task events 4740 * will not be local and we cannot read them atomically 4741 * - must not have a pmu::count method 4742 */ 4743 int perf_event_read_local(struct perf_event *event, u64 *value, 4744 u64 *enabled, u64 *running) 4745 { 4746 unsigned long flags; 4747 int event_oncpu; 4748 int event_cpu; 4749 int ret = 0; 4750 4751 /* 4752 * Disabling interrupts avoids all counter scheduling (context 4753 * switches, timer based rotation and IPIs). 4754 */ 4755 local_irq_save(flags); 4756 4757 /* 4758 * It must not be an event with inherit set, we cannot read 4759 * all child counters from atomic context. 4760 */ 4761 if (event->attr.inherit) { 4762 ret = -EOPNOTSUPP; 4763 goto out; 4764 } 4765 4766 /* If this is a per-task event, it must be for current */ 4767 if ((event->attach_state & PERF_ATTACH_TASK) && 4768 event->hw.target != current) { 4769 ret = -EINVAL; 4770 goto out; 4771 } 4772 4773 /* 4774 * Get the event CPU numbers, and adjust them to local if the event is 4775 * a per-package event that can be read locally 4776 */ 4777 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4778 event_cpu = __perf_event_read_cpu(event, event->cpu); 4779 4780 /* If this is a per-CPU event, it must be for this CPU */ 4781 if (!(event->attach_state & PERF_ATTACH_TASK) && 4782 event_cpu != smp_processor_id()) { 4783 ret = -EINVAL; 4784 goto out; 4785 } 4786 4787 /* If this is a pinned event it must be running on this CPU */ 4788 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4789 ret = -EBUSY; 4790 goto out; 4791 } 4792 4793 /* 4794 * If the event is currently on this CPU, its either a per-task event, 4795 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4796 * oncpu == -1). 4797 */ 4798 if (event_oncpu == smp_processor_id()) 4799 event->pmu->read(event); 4800 4801 *value = local64_read(&event->count); 4802 if (enabled || running) { 4803 u64 __enabled, __running, __now; 4804 4805 calc_timer_values(event, &__now, &__enabled, &__running); 4806 if (enabled) 4807 *enabled = __enabled; 4808 if (running) 4809 *running = __running; 4810 } 4811 out: 4812 local_irq_restore(flags); 4813 4814 return ret; 4815 } 4816 4817 static int perf_event_read(struct perf_event *event, bool group) 4818 { 4819 enum perf_event_state state = READ_ONCE(event->state); 4820 int event_cpu, ret = 0; 4821 4822 /* 4823 * If event is enabled and currently active on a CPU, update the 4824 * value in the event structure: 4825 */ 4826 again: 4827 if (state == PERF_EVENT_STATE_ACTIVE) { 4828 struct perf_read_data data; 4829 4830 /* 4831 * Orders the ->state and ->oncpu loads such that if we see 4832 * ACTIVE we must also see the right ->oncpu. 4833 * 4834 * Matches the smp_wmb() from event_sched_in(). 4835 */ 4836 smp_rmb(); 4837 4838 event_cpu = READ_ONCE(event->oncpu); 4839 if ((unsigned)event_cpu >= nr_cpu_ids) 4840 return 0; 4841 4842 data = (struct perf_read_data){ 4843 .event = event, 4844 .group = group, 4845 .ret = 0, 4846 }; 4847 4848 preempt_disable(); 4849 event_cpu = __perf_event_read_cpu(event, event_cpu); 4850 4851 /* 4852 * Purposely ignore the smp_call_function_single() return 4853 * value. 4854 * 4855 * If event_cpu isn't a valid CPU it means the event got 4856 * scheduled out and that will have updated the event count. 4857 * 4858 * Therefore, either way, we'll have an up-to-date event count 4859 * after this. 4860 */ 4861 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4862 preempt_enable(); 4863 ret = data.ret; 4864 4865 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4866 struct perf_event_context *ctx = event->ctx; 4867 unsigned long flags; 4868 4869 raw_spin_lock_irqsave(&ctx->lock, flags); 4870 state = event->state; 4871 if (state != PERF_EVENT_STATE_INACTIVE) { 4872 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4873 goto again; 4874 } 4875 4876 /* 4877 * May read while context is not active (e.g., thread is 4878 * blocked), in that case we cannot update context time 4879 */ 4880 ctx_time_update_event(ctx, event); 4881 4882 perf_event_update_time(event); 4883 if (group) 4884 perf_event_update_sibling_time(event); 4885 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4886 } 4887 4888 return ret; 4889 } 4890 4891 /* 4892 * Initialize the perf_event context in a task_struct: 4893 */ 4894 static void __perf_event_init_context(struct perf_event_context *ctx) 4895 { 4896 raw_spin_lock_init(&ctx->lock); 4897 mutex_init(&ctx->mutex); 4898 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4899 perf_event_groups_init(&ctx->pinned_groups); 4900 perf_event_groups_init(&ctx->flexible_groups); 4901 INIT_LIST_HEAD(&ctx->event_list); 4902 refcount_set(&ctx->refcount, 1); 4903 } 4904 4905 static void 4906 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4907 { 4908 epc->pmu = pmu; 4909 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4910 INIT_LIST_HEAD(&epc->pinned_active); 4911 INIT_LIST_HEAD(&epc->flexible_active); 4912 atomic_set(&epc->refcount, 1); 4913 } 4914 4915 static struct perf_event_context * 4916 alloc_perf_context(struct task_struct *task) 4917 { 4918 struct perf_event_context *ctx; 4919 4920 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4921 if (!ctx) 4922 return NULL; 4923 4924 __perf_event_init_context(ctx); 4925 if (task) 4926 ctx->task = get_task_struct(task); 4927 4928 return ctx; 4929 } 4930 4931 static struct task_struct * 4932 find_lively_task_by_vpid(pid_t vpid) 4933 { 4934 struct task_struct *task; 4935 4936 rcu_read_lock(); 4937 if (!vpid) 4938 task = current; 4939 else 4940 task = find_task_by_vpid(vpid); 4941 if (task) 4942 get_task_struct(task); 4943 rcu_read_unlock(); 4944 4945 if (!task) 4946 return ERR_PTR(-ESRCH); 4947 4948 return task; 4949 } 4950 4951 /* 4952 * Returns a matching context with refcount and pincount. 4953 */ 4954 static struct perf_event_context * 4955 find_get_context(struct task_struct *task, struct perf_event *event) 4956 { 4957 struct perf_event_context *ctx, *clone_ctx = NULL; 4958 struct perf_cpu_context *cpuctx; 4959 unsigned long flags; 4960 int err; 4961 4962 if (!task) { 4963 /* Must be root to operate on a CPU event: */ 4964 err = perf_allow_cpu(); 4965 if (err) 4966 return ERR_PTR(err); 4967 4968 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4969 ctx = &cpuctx->ctx; 4970 get_ctx(ctx); 4971 raw_spin_lock_irqsave(&ctx->lock, flags); 4972 ++ctx->pin_count; 4973 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4974 4975 return ctx; 4976 } 4977 4978 err = -EINVAL; 4979 retry: 4980 ctx = perf_lock_task_context(task, &flags); 4981 if (ctx) { 4982 clone_ctx = unclone_ctx(ctx); 4983 ++ctx->pin_count; 4984 4985 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4986 4987 if (clone_ctx) 4988 put_ctx(clone_ctx); 4989 } else { 4990 ctx = alloc_perf_context(task); 4991 err = -ENOMEM; 4992 if (!ctx) 4993 goto errout; 4994 4995 err = 0; 4996 mutex_lock(&task->perf_event_mutex); 4997 /* 4998 * If it has already passed perf_event_exit_task(). 4999 * we must see PF_EXITING, it takes this mutex too. 5000 */ 5001 if (task->flags & PF_EXITING) 5002 err = -ESRCH; 5003 else if (task->perf_event_ctxp) 5004 err = -EAGAIN; 5005 else { 5006 get_ctx(ctx); 5007 ++ctx->pin_count; 5008 rcu_assign_pointer(task->perf_event_ctxp, ctx); 5009 } 5010 mutex_unlock(&task->perf_event_mutex); 5011 5012 if (unlikely(err)) { 5013 put_ctx(ctx); 5014 5015 if (err == -EAGAIN) 5016 goto retry; 5017 goto errout; 5018 } 5019 } 5020 5021 return ctx; 5022 5023 errout: 5024 return ERR_PTR(err); 5025 } 5026 5027 static struct perf_event_pmu_context * 5028 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 5029 struct perf_event *event) 5030 { 5031 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc; 5032 5033 if (!ctx->task) { 5034 /* 5035 * perf_pmu_migrate_context() / __perf_pmu_install_event() 5036 * relies on the fact that find_get_pmu_context() cannot fail 5037 * for CPU contexts. 5038 */ 5039 struct perf_cpu_pmu_context *cpc; 5040 5041 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 5042 epc = &cpc->epc; 5043 raw_spin_lock_irq(&ctx->lock); 5044 if (!epc->ctx) { 5045 /* 5046 * One extra reference for the pmu; see perf_pmu_free(). 5047 */ 5048 atomic_set(&epc->refcount, 2); 5049 epc->embedded = 1; 5050 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5051 epc->ctx = ctx; 5052 } else { 5053 WARN_ON_ONCE(epc->ctx != ctx); 5054 atomic_inc(&epc->refcount); 5055 } 5056 raw_spin_unlock_irq(&ctx->lock); 5057 return epc; 5058 } 5059 5060 new = kzalloc(sizeof(*epc), GFP_KERNEL); 5061 if (!new) 5062 return ERR_PTR(-ENOMEM); 5063 5064 __perf_init_event_pmu_context(new, pmu); 5065 5066 /* 5067 * XXX 5068 * 5069 * lockdep_assert_held(&ctx->mutex); 5070 * 5071 * can't because perf_event_init_task() doesn't actually hold the 5072 * child_ctx->mutex. 5073 */ 5074 5075 raw_spin_lock_irq(&ctx->lock); 5076 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5077 if (epc->pmu == pmu) { 5078 WARN_ON_ONCE(epc->ctx != ctx); 5079 atomic_inc(&epc->refcount); 5080 goto found_epc; 5081 } 5082 /* Make sure the pmu_ctx_list is sorted by PMU type: */ 5083 if (!pos && epc->pmu->type > pmu->type) 5084 pos = epc; 5085 } 5086 5087 epc = new; 5088 new = NULL; 5089 5090 if (!pos) 5091 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5092 else 5093 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev); 5094 5095 epc->ctx = ctx; 5096 5097 found_epc: 5098 raw_spin_unlock_irq(&ctx->lock); 5099 kfree(new); 5100 5101 return epc; 5102 } 5103 5104 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5105 { 5106 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5107 } 5108 5109 static void free_cpc_rcu(struct rcu_head *head) 5110 { 5111 struct perf_cpu_pmu_context *cpc = 5112 container_of(head, typeof(*cpc), epc.rcu_head); 5113 5114 kfree(cpc); 5115 } 5116 5117 static void free_epc_rcu(struct rcu_head *head) 5118 { 5119 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5120 5121 kfree(epc); 5122 } 5123 5124 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5125 { 5126 struct perf_event_context *ctx = epc->ctx; 5127 unsigned long flags; 5128 5129 /* 5130 * XXX 5131 * 5132 * lockdep_assert_held(&ctx->mutex); 5133 * 5134 * can't because of the call-site in _free_event()/put_event() 5135 * which isn't always called under ctx->mutex. 5136 */ 5137 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5138 return; 5139 5140 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5141 5142 list_del_init(&epc->pmu_ctx_entry); 5143 epc->ctx = NULL; 5144 5145 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5146 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5147 5148 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5149 5150 if (epc->embedded) { 5151 call_rcu(&epc->rcu_head, free_cpc_rcu); 5152 return; 5153 } 5154 5155 call_rcu(&epc->rcu_head, free_epc_rcu); 5156 } 5157 5158 static void perf_event_free_filter(struct perf_event *event); 5159 5160 static void free_event_rcu(struct rcu_head *head) 5161 { 5162 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5163 5164 if (event->ns) 5165 put_pid_ns(event->ns); 5166 perf_event_free_filter(event); 5167 kmem_cache_free(perf_event_cache, event); 5168 } 5169 5170 static void ring_buffer_attach(struct perf_event *event, 5171 struct perf_buffer *rb); 5172 5173 static void detach_sb_event(struct perf_event *event) 5174 { 5175 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5176 5177 raw_spin_lock(&pel->lock); 5178 list_del_rcu(&event->sb_list); 5179 raw_spin_unlock(&pel->lock); 5180 } 5181 5182 static bool is_sb_event(struct perf_event *event) 5183 { 5184 struct perf_event_attr *attr = &event->attr; 5185 5186 if (event->parent) 5187 return false; 5188 5189 if (event->attach_state & PERF_ATTACH_TASK) 5190 return false; 5191 5192 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5193 attr->comm || attr->comm_exec || 5194 attr->task || attr->ksymbol || 5195 attr->context_switch || attr->text_poke || 5196 attr->bpf_event) 5197 return true; 5198 5199 return false; 5200 } 5201 5202 static void unaccount_pmu_sb_event(struct perf_event *event) 5203 { 5204 if (is_sb_event(event)) 5205 detach_sb_event(event); 5206 } 5207 5208 #ifdef CONFIG_NO_HZ_FULL 5209 static DEFINE_SPINLOCK(nr_freq_lock); 5210 #endif 5211 5212 static void unaccount_freq_event_nohz(void) 5213 { 5214 #ifdef CONFIG_NO_HZ_FULL 5215 spin_lock(&nr_freq_lock); 5216 if (atomic_dec_and_test(&nr_freq_events)) 5217 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5218 spin_unlock(&nr_freq_lock); 5219 #endif 5220 } 5221 5222 static void unaccount_freq_event(void) 5223 { 5224 if (tick_nohz_full_enabled()) 5225 unaccount_freq_event_nohz(); 5226 else 5227 atomic_dec(&nr_freq_events); 5228 } 5229 5230 5231 static struct perf_ctx_data * 5232 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global) 5233 { 5234 struct perf_ctx_data *cd; 5235 5236 cd = kzalloc(sizeof(*cd), GFP_KERNEL); 5237 if (!cd) 5238 return NULL; 5239 5240 cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL); 5241 if (!cd->data) { 5242 kfree(cd); 5243 return NULL; 5244 } 5245 5246 cd->global = global; 5247 cd->ctx_cache = ctx_cache; 5248 refcount_set(&cd->refcount, 1); 5249 5250 return cd; 5251 } 5252 5253 static void free_perf_ctx_data(struct perf_ctx_data *cd) 5254 { 5255 kmem_cache_free(cd->ctx_cache, cd->data); 5256 kfree(cd); 5257 } 5258 5259 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head) 5260 { 5261 struct perf_ctx_data *cd; 5262 5263 cd = container_of(rcu_head, struct perf_ctx_data, rcu_head); 5264 free_perf_ctx_data(cd); 5265 } 5266 5267 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd) 5268 { 5269 call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu); 5270 } 5271 5272 static int 5273 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache, 5274 bool global) 5275 { 5276 struct perf_ctx_data *cd, *old = NULL; 5277 5278 cd = alloc_perf_ctx_data(ctx_cache, global); 5279 if (!cd) 5280 return -ENOMEM; 5281 5282 for (;;) { 5283 if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) { 5284 if (old) 5285 perf_free_ctx_data_rcu(old); 5286 return 0; 5287 } 5288 5289 if (!old) { 5290 /* 5291 * After seeing a dead @old, we raced with 5292 * removal and lost, try again to install @cd. 5293 */ 5294 continue; 5295 } 5296 5297 if (refcount_inc_not_zero(&old->refcount)) { 5298 free_perf_ctx_data(cd); /* unused */ 5299 return 0; 5300 } 5301 5302 /* 5303 * @old is a dead object, refcount==0 is stable, try and 5304 * replace it with @cd. 5305 */ 5306 } 5307 return 0; 5308 } 5309 5310 static void __detach_global_ctx_data(void); 5311 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem); 5312 static refcount_t global_ctx_data_ref; 5313 5314 static int 5315 attach_global_ctx_data(struct kmem_cache *ctx_cache) 5316 { 5317 struct task_struct *g, *p; 5318 struct perf_ctx_data *cd; 5319 int ret; 5320 5321 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5322 return 0; 5323 5324 guard(percpu_write)(&global_ctx_data_rwsem); 5325 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5326 return 0; 5327 again: 5328 /* Allocate everything */ 5329 scoped_guard (rcu) { 5330 for_each_process_thread(g, p) { 5331 cd = rcu_dereference(p->perf_ctx_data); 5332 if (cd && !cd->global) { 5333 cd->global = 1; 5334 if (!refcount_inc_not_zero(&cd->refcount)) 5335 cd = NULL; 5336 } 5337 if (!cd) { 5338 get_task_struct(p); 5339 goto alloc; 5340 } 5341 } 5342 } 5343 5344 refcount_set(&global_ctx_data_ref, 1); 5345 5346 return 0; 5347 alloc: 5348 ret = attach_task_ctx_data(p, ctx_cache, true); 5349 put_task_struct(p); 5350 if (ret) { 5351 __detach_global_ctx_data(); 5352 return ret; 5353 } 5354 goto again; 5355 } 5356 5357 static int 5358 attach_perf_ctx_data(struct perf_event *event) 5359 { 5360 struct task_struct *task = event->hw.target; 5361 struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache; 5362 int ret; 5363 5364 if (!ctx_cache) 5365 return -ENOMEM; 5366 5367 if (task) 5368 return attach_task_ctx_data(task, ctx_cache, false); 5369 5370 ret = attach_global_ctx_data(ctx_cache); 5371 if (ret) 5372 return ret; 5373 5374 event->attach_state |= PERF_ATTACH_GLOBAL_DATA; 5375 return 0; 5376 } 5377 5378 static void 5379 detach_task_ctx_data(struct task_struct *p) 5380 { 5381 struct perf_ctx_data *cd; 5382 5383 scoped_guard (rcu) { 5384 cd = rcu_dereference(p->perf_ctx_data); 5385 if (!cd || !refcount_dec_and_test(&cd->refcount)) 5386 return; 5387 } 5388 5389 /* 5390 * The old ctx_data may be lost because of the race. 5391 * Nothing is required to do for the case. 5392 * See attach_task_ctx_data(). 5393 */ 5394 if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL)) 5395 perf_free_ctx_data_rcu(cd); 5396 } 5397 5398 static void __detach_global_ctx_data(void) 5399 { 5400 struct task_struct *g, *p; 5401 struct perf_ctx_data *cd; 5402 5403 again: 5404 scoped_guard (rcu) { 5405 for_each_process_thread(g, p) { 5406 cd = rcu_dereference(p->perf_ctx_data); 5407 if (!cd || !cd->global) 5408 continue; 5409 cd->global = 0; 5410 get_task_struct(p); 5411 goto detach; 5412 } 5413 } 5414 return; 5415 detach: 5416 detach_task_ctx_data(p); 5417 put_task_struct(p); 5418 goto again; 5419 } 5420 5421 static void detach_global_ctx_data(void) 5422 { 5423 if (refcount_dec_not_one(&global_ctx_data_ref)) 5424 return; 5425 5426 guard(percpu_write)(&global_ctx_data_rwsem); 5427 if (!refcount_dec_and_test(&global_ctx_data_ref)) 5428 return; 5429 5430 /* remove everything */ 5431 __detach_global_ctx_data(); 5432 } 5433 5434 static void detach_perf_ctx_data(struct perf_event *event) 5435 { 5436 struct task_struct *task = event->hw.target; 5437 5438 event->attach_state &= ~PERF_ATTACH_TASK_DATA; 5439 5440 if (task) 5441 return detach_task_ctx_data(task); 5442 5443 if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) { 5444 detach_global_ctx_data(); 5445 event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA; 5446 } 5447 } 5448 5449 static void unaccount_event(struct perf_event *event) 5450 { 5451 bool dec = false; 5452 5453 if (event->parent) 5454 return; 5455 5456 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5457 dec = true; 5458 if (event->attr.mmap || event->attr.mmap_data) 5459 atomic_dec(&nr_mmap_events); 5460 if (event->attr.build_id) 5461 atomic_dec(&nr_build_id_events); 5462 if (event->attr.comm) 5463 atomic_dec(&nr_comm_events); 5464 if (event->attr.namespaces) 5465 atomic_dec(&nr_namespaces_events); 5466 if (event->attr.cgroup) 5467 atomic_dec(&nr_cgroup_events); 5468 if (event->attr.task) 5469 atomic_dec(&nr_task_events); 5470 if (event->attr.freq) 5471 unaccount_freq_event(); 5472 if (event->attr.context_switch) { 5473 dec = true; 5474 atomic_dec(&nr_switch_events); 5475 } 5476 if (is_cgroup_event(event)) 5477 dec = true; 5478 if (has_branch_stack(event)) 5479 dec = true; 5480 if (event->attr.ksymbol) 5481 atomic_dec(&nr_ksymbol_events); 5482 if (event->attr.bpf_event) 5483 atomic_dec(&nr_bpf_events); 5484 if (event->attr.text_poke) 5485 atomic_dec(&nr_text_poke_events); 5486 5487 if (dec) { 5488 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5489 schedule_delayed_work(&perf_sched_work, HZ); 5490 } 5491 5492 unaccount_pmu_sb_event(event); 5493 } 5494 5495 static void perf_sched_delayed(struct work_struct *work) 5496 { 5497 mutex_lock(&perf_sched_mutex); 5498 if (atomic_dec_and_test(&perf_sched_count)) 5499 static_branch_disable(&perf_sched_events); 5500 mutex_unlock(&perf_sched_mutex); 5501 } 5502 5503 /* 5504 * The following implement mutual exclusion of events on "exclusive" pmus 5505 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5506 * at a time, so we disallow creating events that might conflict, namely: 5507 * 5508 * 1) cpu-wide events in the presence of per-task events, 5509 * 2) per-task events in the presence of cpu-wide events, 5510 * 3) two matching events on the same perf_event_context. 5511 * 5512 * The former two cases are handled in the allocation path (perf_event_alloc(), 5513 * _free_event()), the latter -- before the first perf_install_in_context(). 5514 */ 5515 static int exclusive_event_init(struct perf_event *event) 5516 { 5517 struct pmu *pmu = event->pmu; 5518 5519 if (!is_exclusive_pmu(pmu)) 5520 return 0; 5521 5522 /* 5523 * Prevent co-existence of per-task and cpu-wide events on the 5524 * same exclusive pmu. 5525 * 5526 * Negative pmu::exclusive_cnt means there are cpu-wide 5527 * events on this "exclusive" pmu, positive means there are 5528 * per-task events. 5529 * 5530 * Since this is called in perf_event_alloc() path, event::ctx 5531 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5532 * to mean "per-task event", because unlike other attach states it 5533 * never gets cleared. 5534 */ 5535 if (event->attach_state & PERF_ATTACH_TASK) { 5536 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5537 return -EBUSY; 5538 } else { 5539 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5540 return -EBUSY; 5541 } 5542 5543 event->attach_state |= PERF_ATTACH_EXCLUSIVE; 5544 5545 return 0; 5546 } 5547 5548 static void exclusive_event_destroy(struct perf_event *event) 5549 { 5550 struct pmu *pmu = event->pmu; 5551 5552 /* see comment in exclusive_event_init() */ 5553 if (event->attach_state & PERF_ATTACH_TASK) 5554 atomic_dec(&pmu->exclusive_cnt); 5555 else 5556 atomic_inc(&pmu->exclusive_cnt); 5557 5558 event->attach_state &= ~PERF_ATTACH_EXCLUSIVE; 5559 } 5560 5561 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5562 { 5563 if ((e1->pmu == e2->pmu) && 5564 (e1->cpu == e2->cpu || 5565 e1->cpu == -1 || 5566 e2->cpu == -1)) 5567 return true; 5568 return false; 5569 } 5570 5571 static bool exclusive_event_installable(struct perf_event *event, 5572 struct perf_event_context *ctx) 5573 { 5574 struct perf_event *iter_event; 5575 struct pmu *pmu = event->pmu; 5576 5577 lockdep_assert_held(&ctx->mutex); 5578 5579 if (!is_exclusive_pmu(pmu)) 5580 return true; 5581 5582 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5583 if (exclusive_event_match(iter_event, event)) 5584 return false; 5585 } 5586 5587 return true; 5588 } 5589 5590 static void perf_free_addr_filters(struct perf_event *event); 5591 5592 /* vs perf_event_alloc() error */ 5593 static void __free_event(struct perf_event *event) 5594 { 5595 struct pmu *pmu = event->pmu; 5596 5597 if (event->attach_state & PERF_ATTACH_CALLCHAIN) 5598 put_callchain_buffers(); 5599 5600 kfree(event->addr_filter_ranges); 5601 5602 if (event->attach_state & PERF_ATTACH_EXCLUSIVE) 5603 exclusive_event_destroy(event); 5604 5605 if (is_cgroup_event(event)) 5606 perf_detach_cgroup(event); 5607 5608 if (event->attach_state & PERF_ATTACH_TASK_DATA) 5609 detach_perf_ctx_data(event); 5610 5611 if (event->destroy) 5612 event->destroy(event); 5613 5614 /* 5615 * Must be after ->destroy(), due to uprobe_perf_close() using 5616 * hw.target. 5617 */ 5618 if (event->hw.target) 5619 put_task_struct(event->hw.target); 5620 5621 if (event->pmu_ctx) { 5622 /* 5623 * put_pmu_ctx() needs an event->ctx reference, because of 5624 * epc->ctx. 5625 */ 5626 WARN_ON_ONCE(!pmu); 5627 WARN_ON_ONCE(!event->ctx); 5628 WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx); 5629 put_pmu_ctx(event->pmu_ctx); 5630 } 5631 5632 /* 5633 * perf_event_free_task() relies on put_ctx() being 'last', in 5634 * particular all task references must be cleaned up. 5635 */ 5636 if (event->ctx) 5637 put_ctx(event->ctx); 5638 5639 if (pmu) { 5640 module_put(pmu->module); 5641 scoped_guard (spinlock, &pmu->events_lock) { 5642 list_del(&event->pmu_list); 5643 wake_up_var(pmu); 5644 } 5645 } 5646 5647 call_rcu(&event->rcu_head, free_event_rcu); 5648 } 5649 5650 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T)) 5651 5652 /* vs perf_event_alloc() success */ 5653 static void _free_event(struct perf_event *event) 5654 { 5655 irq_work_sync(&event->pending_irq); 5656 irq_work_sync(&event->pending_disable_irq); 5657 5658 unaccount_event(event); 5659 5660 security_perf_event_free(event); 5661 5662 if (event->rb) { 5663 /* 5664 * Can happen when we close an event with re-directed output. 5665 * 5666 * Since we have a 0 refcount, perf_mmap_close() will skip 5667 * over us; possibly making our ring_buffer_put() the last. 5668 */ 5669 mutex_lock(&event->mmap_mutex); 5670 ring_buffer_attach(event, NULL); 5671 mutex_unlock(&event->mmap_mutex); 5672 } 5673 5674 perf_event_free_bpf_prog(event); 5675 perf_free_addr_filters(event); 5676 5677 __free_event(event); 5678 } 5679 5680 /* 5681 * Used to free events which have a known refcount of 1, such as in error paths 5682 * of inherited events. 5683 */ 5684 static void free_event(struct perf_event *event) 5685 { 5686 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5687 "unexpected event refcount: %ld; ptr=%p\n", 5688 atomic_long_read(&event->refcount), event)) { 5689 /* leak to avoid use-after-free */ 5690 return; 5691 } 5692 5693 _free_event(event); 5694 } 5695 5696 /* 5697 * Remove user event from the owner task. 5698 */ 5699 static void perf_remove_from_owner(struct perf_event *event) 5700 { 5701 struct task_struct *owner; 5702 5703 rcu_read_lock(); 5704 /* 5705 * Matches the smp_store_release() in perf_event_exit_task(). If we 5706 * observe !owner it means the list deletion is complete and we can 5707 * indeed free this event, otherwise we need to serialize on 5708 * owner->perf_event_mutex. 5709 */ 5710 owner = READ_ONCE(event->owner); 5711 if (owner) { 5712 /* 5713 * Since delayed_put_task_struct() also drops the last 5714 * task reference we can safely take a new reference 5715 * while holding the rcu_read_lock(). 5716 */ 5717 get_task_struct(owner); 5718 } 5719 rcu_read_unlock(); 5720 5721 if (owner) { 5722 /* 5723 * If we're here through perf_event_exit_task() we're already 5724 * holding ctx->mutex which would be an inversion wrt. the 5725 * normal lock order. 5726 * 5727 * However we can safely take this lock because its the child 5728 * ctx->mutex. 5729 */ 5730 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5731 5732 /* 5733 * We have to re-check the event->owner field, if it is cleared 5734 * we raced with perf_event_exit_task(), acquiring the mutex 5735 * ensured they're done, and we can proceed with freeing the 5736 * event. 5737 */ 5738 if (event->owner) { 5739 list_del_init(&event->owner_entry); 5740 smp_store_release(&event->owner, NULL); 5741 } 5742 mutex_unlock(&owner->perf_event_mutex); 5743 put_task_struct(owner); 5744 } 5745 } 5746 5747 static void put_event(struct perf_event *event) 5748 { 5749 struct perf_event *parent; 5750 5751 if (!atomic_long_dec_and_test(&event->refcount)) 5752 return; 5753 5754 parent = event->parent; 5755 _free_event(event); 5756 5757 /* Matches the refcount bump in inherit_event() */ 5758 if (parent) 5759 put_event(parent); 5760 } 5761 5762 /* 5763 * Kill an event dead; while event:refcount will preserve the event 5764 * object, it will not preserve its functionality. Once the last 'user' 5765 * gives up the object, we'll destroy the thing. 5766 */ 5767 int perf_event_release_kernel(struct perf_event *event) 5768 { 5769 struct perf_event_context *ctx = event->ctx; 5770 struct perf_event *child, *tmp; 5771 5772 /* 5773 * If we got here through err_alloc: free_event(event); we will not 5774 * have attached to a context yet. 5775 */ 5776 if (!ctx) { 5777 WARN_ON_ONCE(event->attach_state & 5778 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5779 goto no_ctx; 5780 } 5781 5782 if (!is_kernel_event(event)) 5783 perf_remove_from_owner(event); 5784 5785 ctx = perf_event_ctx_lock(event); 5786 WARN_ON_ONCE(ctx->parent_ctx); 5787 5788 /* 5789 * Mark this event as STATE_DEAD, there is no external reference to it 5790 * anymore. 5791 * 5792 * Anybody acquiring event->child_mutex after the below loop _must_ 5793 * also see this, most importantly inherit_event() which will avoid 5794 * placing more children on the list. 5795 * 5796 * Thus this guarantees that we will in fact observe and kill _ALL_ 5797 * child events. 5798 */ 5799 if (event->state > PERF_EVENT_STATE_REVOKED) { 5800 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5801 } else { 5802 event->state = PERF_EVENT_STATE_DEAD; 5803 } 5804 5805 perf_event_ctx_unlock(event, ctx); 5806 5807 again: 5808 mutex_lock(&event->child_mutex); 5809 list_for_each_entry(child, &event->child_list, child_list) { 5810 /* 5811 * Cannot change, child events are not migrated, see the 5812 * comment with perf_event_ctx_lock_nested(). 5813 */ 5814 ctx = READ_ONCE(child->ctx); 5815 /* 5816 * Since child_mutex nests inside ctx::mutex, we must jump 5817 * through hoops. We start by grabbing a reference on the ctx. 5818 * 5819 * Since the event cannot get freed while we hold the 5820 * child_mutex, the context must also exist and have a !0 5821 * reference count. 5822 */ 5823 get_ctx(ctx); 5824 5825 /* 5826 * Now that we have a ctx ref, we can drop child_mutex, and 5827 * acquire ctx::mutex without fear of it going away. Then we 5828 * can re-acquire child_mutex. 5829 */ 5830 mutex_unlock(&event->child_mutex); 5831 mutex_lock(&ctx->mutex); 5832 mutex_lock(&event->child_mutex); 5833 5834 /* 5835 * Now that we hold ctx::mutex and child_mutex, revalidate our 5836 * state, if child is still the first entry, it didn't get freed 5837 * and we can continue doing so. 5838 */ 5839 tmp = list_first_entry_or_null(&event->child_list, 5840 struct perf_event, child_list); 5841 if (tmp == child) { 5842 perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD); 5843 } else { 5844 child = NULL; 5845 } 5846 5847 mutex_unlock(&event->child_mutex); 5848 mutex_unlock(&ctx->mutex); 5849 5850 if (child) { 5851 /* Last reference unless ->pending_task work is pending */ 5852 put_event(child); 5853 } 5854 put_ctx(ctx); 5855 5856 goto again; 5857 } 5858 mutex_unlock(&event->child_mutex); 5859 5860 no_ctx: 5861 /* 5862 * Last reference unless ->pending_task work is pending on this event 5863 * or any of its children. 5864 */ 5865 put_event(event); 5866 return 0; 5867 } 5868 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5869 5870 /* 5871 * Called when the last reference to the file is gone. 5872 */ 5873 static int perf_release(struct inode *inode, struct file *file) 5874 { 5875 perf_event_release_kernel(file->private_data); 5876 return 0; 5877 } 5878 5879 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5880 { 5881 struct perf_event *child; 5882 u64 total = 0; 5883 5884 *enabled = 0; 5885 *running = 0; 5886 5887 mutex_lock(&event->child_mutex); 5888 5889 (void)perf_event_read(event, false); 5890 total += perf_event_count(event, false); 5891 5892 *enabled += event->total_time_enabled + 5893 atomic64_read(&event->child_total_time_enabled); 5894 *running += event->total_time_running + 5895 atomic64_read(&event->child_total_time_running); 5896 5897 list_for_each_entry(child, &event->child_list, child_list) { 5898 (void)perf_event_read(child, false); 5899 total += perf_event_count(child, false); 5900 *enabled += child->total_time_enabled; 5901 *running += child->total_time_running; 5902 } 5903 mutex_unlock(&event->child_mutex); 5904 5905 return total; 5906 } 5907 5908 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5909 { 5910 struct perf_event_context *ctx; 5911 u64 count; 5912 5913 ctx = perf_event_ctx_lock(event); 5914 count = __perf_event_read_value(event, enabled, running); 5915 perf_event_ctx_unlock(event, ctx); 5916 5917 return count; 5918 } 5919 EXPORT_SYMBOL_GPL(perf_event_read_value); 5920 5921 static int __perf_read_group_add(struct perf_event *leader, 5922 u64 read_format, u64 *values) 5923 { 5924 struct perf_event_context *ctx = leader->ctx; 5925 struct perf_event *sub, *parent; 5926 unsigned long flags; 5927 int n = 1; /* skip @nr */ 5928 int ret; 5929 5930 ret = perf_event_read(leader, true); 5931 if (ret) 5932 return ret; 5933 5934 raw_spin_lock_irqsave(&ctx->lock, flags); 5935 /* 5936 * Verify the grouping between the parent and child (inherited) 5937 * events is still in tact. 5938 * 5939 * Specifically: 5940 * - leader->ctx->lock pins leader->sibling_list 5941 * - parent->child_mutex pins parent->child_list 5942 * - parent->ctx->mutex pins parent->sibling_list 5943 * 5944 * Because parent->ctx != leader->ctx (and child_list nests inside 5945 * ctx->mutex), group destruction is not atomic between children, also 5946 * see perf_event_release_kernel(). Additionally, parent can grow the 5947 * group. 5948 * 5949 * Therefore it is possible to have parent and child groups in a 5950 * different configuration and summing over such a beast makes no sense 5951 * what so ever. 5952 * 5953 * Reject this. 5954 */ 5955 parent = leader->parent; 5956 if (parent && 5957 (parent->group_generation != leader->group_generation || 5958 parent->nr_siblings != leader->nr_siblings)) { 5959 ret = -ECHILD; 5960 goto unlock; 5961 } 5962 5963 /* 5964 * Since we co-schedule groups, {enabled,running} times of siblings 5965 * will be identical to those of the leader, so we only publish one 5966 * set. 5967 */ 5968 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5969 values[n++] += leader->total_time_enabled + 5970 atomic64_read(&leader->child_total_time_enabled); 5971 } 5972 5973 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5974 values[n++] += leader->total_time_running + 5975 atomic64_read(&leader->child_total_time_running); 5976 } 5977 5978 /* 5979 * Write {count,id} tuples for every sibling. 5980 */ 5981 values[n++] += perf_event_count(leader, false); 5982 if (read_format & PERF_FORMAT_ID) 5983 values[n++] = primary_event_id(leader); 5984 if (read_format & PERF_FORMAT_LOST) 5985 values[n++] = atomic64_read(&leader->lost_samples); 5986 5987 for_each_sibling_event(sub, leader) { 5988 values[n++] += perf_event_count(sub, false); 5989 if (read_format & PERF_FORMAT_ID) 5990 values[n++] = primary_event_id(sub); 5991 if (read_format & PERF_FORMAT_LOST) 5992 values[n++] = atomic64_read(&sub->lost_samples); 5993 } 5994 5995 unlock: 5996 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5997 return ret; 5998 } 5999 6000 static int perf_read_group(struct perf_event *event, 6001 u64 read_format, char __user *buf) 6002 { 6003 struct perf_event *leader = event->group_leader, *child; 6004 struct perf_event_context *ctx = leader->ctx; 6005 int ret; 6006 u64 *values; 6007 6008 lockdep_assert_held(&ctx->mutex); 6009 6010 values = kzalloc(event->read_size, GFP_KERNEL); 6011 if (!values) 6012 return -ENOMEM; 6013 6014 values[0] = 1 + leader->nr_siblings; 6015 6016 mutex_lock(&leader->child_mutex); 6017 6018 ret = __perf_read_group_add(leader, read_format, values); 6019 if (ret) 6020 goto unlock; 6021 6022 list_for_each_entry(child, &leader->child_list, child_list) { 6023 ret = __perf_read_group_add(child, read_format, values); 6024 if (ret) 6025 goto unlock; 6026 } 6027 6028 mutex_unlock(&leader->child_mutex); 6029 6030 ret = event->read_size; 6031 if (copy_to_user(buf, values, event->read_size)) 6032 ret = -EFAULT; 6033 goto out; 6034 6035 unlock: 6036 mutex_unlock(&leader->child_mutex); 6037 out: 6038 kfree(values); 6039 return ret; 6040 } 6041 6042 static int perf_read_one(struct perf_event *event, 6043 u64 read_format, char __user *buf) 6044 { 6045 u64 enabled, running; 6046 u64 values[5]; 6047 int n = 0; 6048 6049 values[n++] = __perf_event_read_value(event, &enabled, &running); 6050 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6051 values[n++] = enabled; 6052 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6053 values[n++] = running; 6054 if (read_format & PERF_FORMAT_ID) 6055 values[n++] = primary_event_id(event); 6056 if (read_format & PERF_FORMAT_LOST) 6057 values[n++] = atomic64_read(&event->lost_samples); 6058 6059 if (copy_to_user(buf, values, n * sizeof(u64))) 6060 return -EFAULT; 6061 6062 return n * sizeof(u64); 6063 } 6064 6065 static bool is_event_hup(struct perf_event *event) 6066 { 6067 bool no_children; 6068 6069 if (event->state > PERF_EVENT_STATE_EXIT) 6070 return false; 6071 6072 mutex_lock(&event->child_mutex); 6073 no_children = list_empty(&event->child_list); 6074 mutex_unlock(&event->child_mutex); 6075 return no_children; 6076 } 6077 6078 /* 6079 * Read the performance event - simple non blocking version for now 6080 */ 6081 static ssize_t 6082 __perf_read(struct perf_event *event, char __user *buf, size_t count) 6083 { 6084 u64 read_format = event->attr.read_format; 6085 int ret; 6086 6087 /* 6088 * Return end-of-file for a read on an event that is in 6089 * error state (i.e. because it was pinned but it couldn't be 6090 * scheduled on to the CPU at some point). 6091 */ 6092 if (event->state == PERF_EVENT_STATE_ERROR) 6093 return 0; 6094 6095 if (count < event->read_size) 6096 return -ENOSPC; 6097 6098 WARN_ON_ONCE(event->ctx->parent_ctx); 6099 if (read_format & PERF_FORMAT_GROUP) 6100 ret = perf_read_group(event, read_format, buf); 6101 else 6102 ret = perf_read_one(event, read_format, buf); 6103 6104 return ret; 6105 } 6106 6107 static ssize_t 6108 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 6109 { 6110 struct perf_event *event = file->private_data; 6111 struct perf_event_context *ctx; 6112 int ret; 6113 6114 ret = security_perf_event_read(event); 6115 if (ret) 6116 return ret; 6117 6118 ctx = perf_event_ctx_lock(event); 6119 ret = __perf_read(event, buf, count); 6120 perf_event_ctx_unlock(event, ctx); 6121 6122 return ret; 6123 } 6124 6125 static __poll_t perf_poll(struct file *file, poll_table *wait) 6126 { 6127 struct perf_event *event = file->private_data; 6128 struct perf_buffer *rb; 6129 __poll_t events = EPOLLHUP; 6130 6131 if (event->state <= PERF_EVENT_STATE_REVOKED) 6132 return EPOLLERR; 6133 6134 poll_wait(file, &event->waitq, wait); 6135 6136 if (event->state <= PERF_EVENT_STATE_REVOKED) 6137 return EPOLLERR; 6138 6139 if (is_event_hup(event)) 6140 return events; 6141 6142 if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR && 6143 event->attr.pinned)) 6144 return EPOLLERR; 6145 6146 /* 6147 * Pin the event->rb by taking event->mmap_mutex; otherwise 6148 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 6149 */ 6150 mutex_lock(&event->mmap_mutex); 6151 rb = event->rb; 6152 if (rb) 6153 events = atomic_xchg(&rb->poll, 0); 6154 mutex_unlock(&event->mmap_mutex); 6155 return events; 6156 } 6157 6158 static void _perf_event_reset(struct perf_event *event) 6159 { 6160 (void)perf_event_read(event, false); 6161 local64_set(&event->count, 0); 6162 perf_event_update_userpage(event); 6163 } 6164 6165 /* Assume it's not an event with inherit set. */ 6166 u64 perf_event_pause(struct perf_event *event, bool reset) 6167 { 6168 struct perf_event_context *ctx; 6169 u64 count; 6170 6171 ctx = perf_event_ctx_lock(event); 6172 WARN_ON_ONCE(event->attr.inherit); 6173 _perf_event_disable(event); 6174 count = local64_read(&event->count); 6175 if (reset) 6176 local64_set(&event->count, 0); 6177 perf_event_ctx_unlock(event, ctx); 6178 6179 return count; 6180 } 6181 EXPORT_SYMBOL_GPL(perf_event_pause); 6182 6183 /* 6184 * Holding the top-level event's child_mutex means that any 6185 * descendant process that has inherited this event will block 6186 * in perf_event_exit_event() if it goes to exit, thus satisfying the 6187 * task existence requirements of perf_event_enable/disable. 6188 */ 6189 static void perf_event_for_each_child(struct perf_event *event, 6190 void (*func)(struct perf_event *)) 6191 { 6192 struct perf_event *child; 6193 6194 WARN_ON_ONCE(event->ctx->parent_ctx); 6195 6196 mutex_lock(&event->child_mutex); 6197 func(event); 6198 list_for_each_entry(child, &event->child_list, child_list) 6199 func(child); 6200 mutex_unlock(&event->child_mutex); 6201 } 6202 6203 static void perf_event_for_each(struct perf_event *event, 6204 void (*func)(struct perf_event *)) 6205 { 6206 struct perf_event_context *ctx = event->ctx; 6207 struct perf_event *sibling; 6208 6209 lockdep_assert_held(&ctx->mutex); 6210 6211 event = event->group_leader; 6212 6213 perf_event_for_each_child(event, func); 6214 for_each_sibling_event(sibling, event) 6215 perf_event_for_each_child(sibling, func); 6216 } 6217 6218 static void __perf_event_period(struct perf_event *event, 6219 struct perf_cpu_context *cpuctx, 6220 struct perf_event_context *ctx, 6221 void *info) 6222 { 6223 u64 value = *((u64 *)info); 6224 bool active; 6225 6226 if (event->attr.freq) { 6227 event->attr.sample_freq = value; 6228 } else { 6229 event->attr.sample_period = value; 6230 event->hw.sample_period = value; 6231 } 6232 6233 active = (event->state == PERF_EVENT_STATE_ACTIVE); 6234 if (active) { 6235 perf_pmu_disable(event->pmu); 6236 event->pmu->stop(event, PERF_EF_UPDATE); 6237 } 6238 6239 local64_set(&event->hw.period_left, 0); 6240 6241 if (active) { 6242 event->pmu->start(event, PERF_EF_RELOAD); 6243 /* 6244 * Once the period is force-reset, the event starts immediately. 6245 * But the event/group could be throttled. Unthrottle the 6246 * event/group now to avoid the next tick trying to unthrottle 6247 * while we already re-started the event/group. 6248 */ 6249 if (event->hw.interrupts == MAX_INTERRUPTS) 6250 perf_event_unthrottle_group(event, true); 6251 perf_pmu_enable(event->pmu); 6252 } 6253 } 6254 6255 static int perf_event_check_period(struct perf_event *event, u64 value) 6256 { 6257 return event->pmu->check_period(event, value); 6258 } 6259 6260 static int _perf_event_period(struct perf_event *event, u64 value) 6261 { 6262 if (!is_sampling_event(event)) 6263 return -EINVAL; 6264 6265 if (!value) 6266 return -EINVAL; 6267 6268 if (event->attr.freq) { 6269 if (value > sysctl_perf_event_sample_rate) 6270 return -EINVAL; 6271 } else { 6272 if (perf_event_check_period(event, value)) 6273 return -EINVAL; 6274 if (value & (1ULL << 63)) 6275 return -EINVAL; 6276 } 6277 6278 event_function_call(event, __perf_event_period, &value); 6279 6280 return 0; 6281 } 6282 6283 int perf_event_period(struct perf_event *event, u64 value) 6284 { 6285 struct perf_event_context *ctx; 6286 int ret; 6287 6288 ctx = perf_event_ctx_lock(event); 6289 ret = _perf_event_period(event, value); 6290 perf_event_ctx_unlock(event, ctx); 6291 6292 return ret; 6293 } 6294 EXPORT_SYMBOL_GPL(perf_event_period); 6295 6296 static const struct file_operations perf_fops; 6297 6298 static inline bool is_perf_file(struct fd f) 6299 { 6300 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; 6301 } 6302 6303 static int perf_event_set_output(struct perf_event *event, 6304 struct perf_event *output_event); 6305 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6306 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6307 struct perf_event_attr *attr); 6308 static int __perf_event_set_bpf_prog(struct perf_event *event, 6309 struct bpf_prog *prog, 6310 u64 bpf_cookie); 6311 6312 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6313 { 6314 void (*func)(struct perf_event *); 6315 u32 flags = arg; 6316 6317 if (event->state <= PERF_EVENT_STATE_REVOKED) 6318 return -ENODEV; 6319 6320 switch (cmd) { 6321 case PERF_EVENT_IOC_ENABLE: 6322 func = _perf_event_enable; 6323 break; 6324 case PERF_EVENT_IOC_DISABLE: 6325 func = _perf_event_disable; 6326 break; 6327 case PERF_EVENT_IOC_RESET: 6328 func = _perf_event_reset; 6329 break; 6330 6331 case PERF_EVENT_IOC_REFRESH: 6332 return _perf_event_refresh(event, arg); 6333 6334 case PERF_EVENT_IOC_PERIOD: 6335 { 6336 u64 value; 6337 6338 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6339 return -EFAULT; 6340 6341 return _perf_event_period(event, value); 6342 } 6343 case PERF_EVENT_IOC_ID: 6344 { 6345 u64 id = primary_event_id(event); 6346 6347 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6348 return -EFAULT; 6349 return 0; 6350 } 6351 6352 case PERF_EVENT_IOC_SET_OUTPUT: 6353 { 6354 CLASS(fd, output)(arg); // arg == -1 => empty 6355 struct perf_event *output_event = NULL; 6356 if (arg != -1) { 6357 if (!is_perf_file(output)) 6358 return -EBADF; 6359 output_event = fd_file(output)->private_data; 6360 } 6361 return perf_event_set_output(event, output_event); 6362 } 6363 6364 case PERF_EVENT_IOC_SET_FILTER: 6365 return perf_event_set_filter(event, (void __user *)arg); 6366 6367 case PERF_EVENT_IOC_SET_BPF: 6368 { 6369 struct bpf_prog *prog; 6370 int err; 6371 6372 prog = bpf_prog_get(arg); 6373 if (IS_ERR(prog)) 6374 return PTR_ERR(prog); 6375 6376 err = __perf_event_set_bpf_prog(event, prog, 0); 6377 if (err) { 6378 bpf_prog_put(prog); 6379 return err; 6380 } 6381 6382 return 0; 6383 } 6384 6385 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6386 struct perf_buffer *rb; 6387 6388 rcu_read_lock(); 6389 rb = rcu_dereference(event->rb); 6390 if (!rb || !rb->nr_pages) { 6391 rcu_read_unlock(); 6392 return -EINVAL; 6393 } 6394 rb_toggle_paused(rb, !!arg); 6395 rcu_read_unlock(); 6396 return 0; 6397 } 6398 6399 case PERF_EVENT_IOC_QUERY_BPF: 6400 return perf_event_query_prog_array(event, (void __user *)arg); 6401 6402 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6403 struct perf_event_attr new_attr; 6404 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6405 &new_attr); 6406 6407 if (err) 6408 return err; 6409 6410 return perf_event_modify_attr(event, &new_attr); 6411 } 6412 default: 6413 return -ENOTTY; 6414 } 6415 6416 if (flags & PERF_IOC_FLAG_GROUP) 6417 perf_event_for_each(event, func); 6418 else 6419 perf_event_for_each_child(event, func); 6420 6421 return 0; 6422 } 6423 6424 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6425 { 6426 struct perf_event *event = file->private_data; 6427 struct perf_event_context *ctx; 6428 long ret; 6429 6430 /* Treat ioctl like writes as it is likely a mutating operation. */ 6431 ret = security_perf_event_write(event); 6432 if (ret) 6433 return ret; 6434 6435 ctx = perf_event_ctx_lock(event); 6436 ret = _perf_ioctl(event, cmd, arg); 6437 perf_event_ctx_unlock(event, ctx); 6438 6439 return ret; 6440 } 6441 6442 #ifdef CONFIG_COMPAT 6443 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6444 unsigned long arg) 6445 { 6446 switch (_IOC_NR(cmd)) { 6447 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6448 case _IOC_NR(PERF_EVENT_IOC_ID): 6449 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6450 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6451 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6452 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6453 cmd &= ~IOCSIZE_MASK; 6454 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6455 } 6456 break; 6457 } 6458 return perf_ioctl(file, cmd, arg); 6459 } 6460 #else 6461 # define perf_compat_ioctl NULL 6462 #endif 6463 6464 int perf_event_task_enable(void) 6465 { 6466 struct perf_event_context *ctx; 6467 struct perf_event *event; 6468 6469 mutex_lock(¤t->perf_event_mutex); 6470 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6471 ctx = perf_event_ctx_lock(event); 6472 perf_event_for_each_child(event, _perf_event_enable); 6473 perf_event_ctx_unlock(event, ctx); 6474 } 6475 mutex_unlock(¤t->perf_event_mutex); 6476 6477 return 0; 6478 } 6479 6480 int perf_event_task_disable(void) 6481 { 6482 struct perf_event_context *ctx; 6483 struct perf_event *event; 6484 6485 mutex_lock(¤t->perf_event_mutex); 6486 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6487 ctx = perf_event_ctx_lock(event); 6488 perf_event_for_each_child(event, _perf_event_disable); 6489 perf_event_ctx_unlock(event, ctx); 6490 } 6491 mutex_unlock(¤t->perf_event_mutex); 6492 6493 return 0; 6494 } 6495 6496 static int perf_event_index(struct perf_event *event) 6497 { 6498 if (event->hw.state & PERF_HES_STOPPED) 6499 return 0; 6500 6501 if (event->state != PERF_EVENT_STATE_ACTIVE) 6502 return 0; 6503 6504 return event->pmu->event_idx(event); 6505 } 6506 6507 static void perf_event_init_userpage(struct perf_event *event) 6508 { 6509 struct perf_event_mmap_page *userpg; 6510 struct perf_buffer *rb; 6511 6512 rcu_read_lock(); 6513 rb = rcu_dereference(event->rb); 6514 if (!rb) 6515 goto unlock; 6516 6517 userpg = rb->user_page; 6518 6519 /* Allow new userspace to detect that bit 0 is deprecated */ 6520 userpg->cap_bit0_is_deprecated = 1; 6521 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6522 userpg->data_offset = PAGE_SIZE; 6523 userpg->data_size = perf_data_size(rb); 6524 6525 unlock: 6526 rcu_read_unlock(); 6527 } 6528 6529 void __weak arch_perf_update_userpage( 6530 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6531 { 6532 } 6533 6534 /* 6535 * Callers need to ensure there can be no nesting of this function, otherwise 6536 * the seqlock logic goes bad. We can not serialize this because the arch 6537 * code calls this from NMI context. 6538 */ 6539 void perf_event_update_userpage(struct perf_event *event) 6540 { 6541 struct perf_event_mmap_page *userpg; 6542 struct perf_buffer *rb; 6543 u64 enabled, running, now; 6544 6545 rcu_read_lock(); 6546 rb = rcu_dereference(event->rb); 6547 if (!rb) 6548 goto unlock; 6549 6550 /* 6551 * compute total_time_enabled, total_time_running 6552 * based on snapshot values taken when the event 6553 * was last scheduled in. 6554 * 6555 * we cannot simply called update_context_time() 6556 * because of locking issue as we can be called in 6557 * NMI context 6558 */ 6559 calc_timer_values(event, &now, &enabled, &running); 6560 6561 userpg = rb->user_page; 6562 /* 6563 * Disable preemption to guarantee consistent time stamps are stored to 6564 * the user page. 6565 */ 6566 preempt_disable(); 6567 ++userpg->lock; 6568 barrier(); 6569 userpg->index = perf_event_index(event); 6570 userpg->offset = perf_event_count(event, false); 6571 if (userpg->index) 6572 userpg->offset -= local64_read(&event->hw.prev_count); 6573 6574 userpg->time_enabled = enabled + 6575 atomic64_read(&event->child_total_time_enabled); 6576 6577 userpg->time_running = running + 6578 atomic64_read(&event->child_total_time_running); 6579 6580 arch_perf_update_userpage(event, userpg, now); 6581 6582 barrier(); 6583 ++userpg->lock; 6584 preempt_enable(); 6585 unlock: 6586 rcu_read_unlock(); 6587 } 6588 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6589 6590 static void ring_buffer_attach(struct perf_event *event, 6591 struct perf_buffer *rb) 6592 { 6593 struct perf_buffer *old_rb = NULL; 6594 unsigned long flags; 6595 6596 WARN_ON_ONCE(event->parent); 6597 6598 if (event->rb) { 6599 /* 6600 * Should be impossible, we set this when removing 6601 * event->rb_entry and wait/clear when adding event->rb_entry. 6602 */ 6603 WARN_ON_ONCE(event->rcu_pending); 6604 6605 old_rb = event->rb; 6606 spin_lock_irqsave(&old_rb->event_lock, flags); 6607 list_del_rcu(&event->rb_entry); 6608 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6609 6610 event->rcu_batches = get_state_synchronize_rcu(); 6611 event->rcu_pending = 1; 6612 } 6613 6614 if (rb) { 6615 if (event->rcu_pending) { 6616 cond_synchronize_rcu(event->rcu_batches); 6617 event->rcu_pending = 0; 6618 } 6619 6620 spin_lock_irqsave(&rb->event_lock, flags); 6621 list_add_rcu(&event->rb_entry, &rb->event_list); 6622 spin_unlock_irqrestore(&rb->event_lock, flags); 6623 } 6624 6625 /* 6626 * Avoid racing with perf_mmap_close(AUX): stop the event 6627 * before swizzling the event::rb pointer; if it's getting 6628 * unmapped, its aux_mmap_count will be 0 and it won't 6629 * restart. See the comment in __perf_pmu_output_stop(). 6630 * 6631 * Data will inevitably be lost when set_output is done in 6632 * mid-air, but then again, whoever does it like this is 6633 * not in for the data anyway. 6634 */ 6635 if (has_aux(event)) 6636 perf_event_stop(event, 0); 6637 6638 rcu_assign_pointer(event->rb, rb); 6639 6640 if (old_rb) { 6641 ring_buffer_put(old_rb); 6642 /* 6643 * Since we detached before setting the new rb, so that we 6644 * could attach the new rb, we could have missed a wakeup. 6645 * Provide it now. 6646 */ 6647 wake_up_all(&event->waitq); 6648 } 6649 } 6650 6651 static void ring_buffer_wakeup(struct perf_event *event) 6652 { 6653 struct perf_buffer *rb; 6654 6655 if (event->parent) 6656 event = event->parent; 6657 6658 rcu_read_lock(); 6659 rb = rcu_dereference(event->rb); 6660 if (rb) { 6661 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6662 wake_up_all(&event->waitq); 6663 } 6664 rcu_read_unlock(); 6665 } 6666 6667 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6668 { 6669 struct perf_buffer *rb; 6670 6671 if (event->parent) 6672 event = event->parent; 6673 6674 rcu_read_lock(); 6675 rb = rcu_dereference(event->rb); 6676 if (rb) { 6677 if (!refcount_inc_not_zero(&rb->refcount)) 6678 rb = NULL; 6679 } 6680 rcu_read_unlock(); 6681 6682 return rb; 6683 } 6684 6685 void ring_buffer_put(struct perf_buffer *rb) 6686 { 6687 if (!refcount_dec_and_test(&rb->refcount)) 6688 return; 6689 6690 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6691 6692 call_rcu(&rb->rcu_head, rb_free_rcu); 6693 } 6694 6695 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm); 6696 6697 #define get_mapped(event, func) \ 6698 ({ struct pmu *pmu; \ 6699 mapped_f f = NULL; \ 6700 guard(rcu)(); \ 6701 pmu = READ_ONCE(event->pmu); \ 6702 if (pmu) \ 6703 f = pmu->func; \ 6704 f; \ 6705 }) 6706 6707 static void perf_mmap_open(struct vm_area_struct *vma) 6708 { 6709 struct perf_event *event = vma->vm_file->private_data; 6710 mapped_f mapped = get_mapped(event, event_mapped); 6711 6712 refcount_inc(&event->mmap_count); 6713 refcount_inc(&event->rb->mmap_count); 6714 6715 if (vma->vm_pgoff) 6716 refcount_inc(&event->rb->aux_mmap_count); 6717 6718 if (mapped) 6719 mapped(event, vma->vm_mm); 6720 } 6721 6722 static void perf_pmu_output_stop(struct perf_event *event); 6723 6724 /* 6725 * A buffer can be mmap()ed multiple times; either directly through the same 6726 * event, or through other events by use of perf_event_set_output(). 6727 * 6728 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6729 * the buffer here, where we still have a VM context. This means we need 6730 * to detach all events redirecting to us. 6731 */ 6732 static void perf_mmap_close(struct vm_area_struct *vma) 6733 { 6734 struct perf_event *event = vma->vm_file->private_data; 6735 mapped_f unmapped = get_mapped(event, event_unmapped); 6736 struct perf_buffer *rb = ring_buffer_get(event); 6737 struct user_struct *mmap_user = rb->mmap_user; 6738 int mmap_locked = rb->mmap_locked; 6739 unsigned long size = perf_data_size(rb); 6740 bool detach_rest = false; 6741 6742 /* FIXIES vs perf_pmu_unregister() */ 6743 if (unmapped) 6744 unmapped(event, vma->vm_mm); 6745 6746 /* 6747 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6748 * to avoid complications. 6749 */ 6750 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6751 refcount_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6752 /* 6753 * Stop all AUX events that are writing to this buffer, 6754 * so that we can free its AUX pages and corresponding PMU 6755 * data. Note that after rb::aux_mmap_count dropped to zero, 6756 * they won't start any more (see perf_aux_output_begin()). 6757 */ 6758 perf_pmu_output_stop(event); 6759 6760 /* now it's safe to free the pages */ 6761 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6762 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6763 6764 /* this has to be the last one */ 6765 rb_free_aux(rb); 6766 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6767 6768 mutex_unlock(&rb->aux_mutex); 6769 } 6770 6771 if (refcount_dec_and_test(&rb->mmap_count)) 6772 detach_rest = true; 6773 6774 if (!refcount_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6775 goto out_put; 6776 6777 ring_buffer_attach(event, NULL); 6778 mutex_unlock(&event->mmap_mutex); 6779 6780 /* If there's still other mmap()s of this buffer, we're done. */ 6781 if (!detach_rest) 6782 goto out_put; 6783 6784 /* 6785 * No other mmap()s, detach from all other events that might redirect 6786 * into the now unreachable buffer. Somewhat complicated by the 6787 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6788 */ 6789 again: 6790 rcu_read_lock(); 6791 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6792 if (!atomic_long_inc_not_zero(&event->refcount)) { 6793 /* 6794 * This event is en-route to free_event() which will 6795 * detach it and remove it from the list. 6796 */ 6797 continue; 6798 } 6799 rcu_read_unlock(); 6800 6801 mutex_lock(&event->mmap_mutex); 6802 /* 6803 * Check we didn't race with perf_event_set_output() which can 6804 * swizzle the rb from under us while we were waiting to 6805 * acquire mmap_mutex. 6806 * 6807 * If we find a different rb; ignore this event, a next 6808 * iteration will no longer find it on the list. We have to 6809 * still restart the iteration to make sure we're not now 6810 * iterating the wrong list. 6811 */ 6812 if (event->rb == rb) 6813 ring_buffer_attach(event, NULL); 6814 6815 mutex_unlock(&event->mmap_mutex); 6816 put_event(event); 6817 6818 /* 6819 * Restart the iteration; either we're on the wrong list or 6820 * destroyed its integrity by doing a deletion. 6821 */ 6822 goto again; 6823 } 6824 rcu_read_unlock(); 6825 6826 /* 6827 * It could be there's still a few 0-ref events on the list; they'll 6828 * get cleaned up by free_event() -- they'll also still have their 6829 * ref on the rb and will free it whenever they are done with it. 6830 * 6831 * Aside from that, this buffer is 'fully' detached and unmapped, 6832 * undo the VM accounting. 6833 */ 6834 6835 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6836 &mmap_user->locked_vm); 6837 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6838 free_uid(mmap_user); 6839 6840 out_put: 6841 ring_buffer_put(rb); /* could be last */ 6842 } 6843 6844 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf) 6845 { 6846 /* The first page is the user control page, others are read-only. */ 6847 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS; 6848 } 6849 6850 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr) 6851 { 6852 /* 6853 * Forbid splitting perf mappings to prevent refcount leaks due to 6854 * the resulting non-matching offsets and sizes. See open()/close(). 6855 */ 6856 return -EINVAL; 6857 } 6858 6859 static const struct vm_operations_struct perf_mmap_vmops = { 6860 .open = perf_mmap_open, 6861 .close = perf_mmap_close, /* non mergeable */ 6862 .pfn_mkwrite = perf_mmap_pfn_mkwrite, 6863 .may_split = perf_mmap_may_split, 6864 }; 6865 6866 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma) 6867 { 6868 unsigned long nr_pages = vma_pages(vma); 6869 int err = 0; 6870 unsigned long pagenum; 6871 6872 /* 6873 * We map this as a VM_PFNMAP VMA. 6874 * 6875 * This is not ideal as this is designed broadly for mappings of PFNs 6876 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which 6877 * !pfn_valid(pfn). 6878 * 6879 * We are mapping kernel-allocated memory (memory we manage ourselves) 6880 * which would more ideally be mapped using vm_insert_page() or a 6881 * similar mechanism, that is as a VM_MIXEDMAP mapping. 6882 * 6883 * However this won't work here, because: 6884 * 6885 * 1. It uses vma->vm_page_prot, but this field has not been completely 6886 * setup at the point of the f_op->mmp() hook, so we are unable to 6887 * indicate that this should be mapped CoW in order that the 6888 * mkwrite() hook can be invoked to make the first page R/W and the 6889 * rest R/O as desired. 6890 * 6891 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in 6892 * vm_normal_page() returning a struct page * pointer, which means 6893 * vm_ops->page_mkwrite() will be invoked rather than 6894 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping 6895 * to work around retry logic in the fault handler, however this 6896 * field is no longer allowed to be used within struct page. 6897 * 6898 * 3. Having a struct page * made available in the fault logic also 6899 * means that the page gets put on the rmap and becomes 6900 * inappropriately accessible and subject to map and ref counting. 6901 * 6902 * Ideally we would have a mechanism that could explicitly express our 6903 * desires, but this is not currently the case, so we instead use 6904 * VM_PFNMAP. 6905 * 6906 * We manage the lifetime of these mappings with internal refcounts (see 6907 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of 6908 * this mapping is maintained correctly. 6909 */ 6910 for (pagenum = 0; pagenum < nr_pages; pagenum++) { 6911 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum; 6912 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum); 6913 6914 if (page == NULL) { 6915 err = -EINVAL; 6916 break; 6917 } 6918 6919 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */ 6920 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE, 6921 vm_get_page_prot(vma->vm_flags & ~VM_SHARED)); 6922 if (err) 6923 break; 6924 } 6925 6926 #ifdef CONFIG_MMU 6927 /* Clear any partial mappings on error. */ 6928 if (err) 6929 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL); 6930 #endif 6931 6932 return err; 6933 } 6934 6935 static bool perf_mmap_calc_limits(struct vm_area_struct *vma, long *user_extra, long *extra) 6936 { 6937 unsigned long user_locked, user_lock_limit, locked, lock_limit; 6938 struct user_struct *user = current_user(); 6939 6940 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6941 /* Increase the limit linearly with more CPUs */ 6942 user_lock_limit *= num_online_cpus(); 6943 6944 user_locked = atomic_long_read(&user->locked_vm); 6945 6946 /* 6947 * sysctl_perf_event_mlock may have changed, so that 6948 * user->locked_vm > user_lock_limit 6949 */ 6950 if (user_locked > user_lock_limit) 6951 user_locked = user_lock_limit; 6952 user_locked += *user_extra; 6953 6954 if (user_locked > user_lock_limit) { 6955 /* 6956 * charge locked_vm until it hits user_lock_limit; 6957 * charge the rest from pinned_vm 6958 */ 6959 *extra = user_locked - user_lock_limit; 6960 *user_extra -= *extra; 6961 } 6962 6963 lock_limit = rlimit(RLIMIT_MEMLOCK); 6964 lock_limit >>= PAGE_SHIFT; 6965 locked = atomic64_read(&vma->vm_mm->pinned_vm) + *extra; 6966 6967 return locked <= lock_limit || !perf_is_paranoid() || capable(CAP_IPC_LOCK); 6968 } 6969 6970 static void perf_mmap_account(struct vm_area_struct *vma, long user_extra, long extra) 6971 { 6972 struct user_struct *user = current_user(); 6973 6974 atomic_long_add(user_extra, &user->locked_vm); 6975 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6976 } 6977 6978 static int perf_mmap_rb(struct vm_area_struct *vma, struct perf_event *event, 6979 unsigned long nr_pages) 6980 { 6981 long extra = 0, user_extra = nr_pages; 6982 struct perf_buffer *rb; 6983 int rb_flags = 0; 6984 6985 nr_pages -= 1; 6986 6987 /* 6988 * If we have rb pages ensure they're a power-of-two number, so we 6989 * can do bitmasks instead of modulo. 6990 */ 6991 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6992 return -EINVAL; 6993 6994 WARN_ON_ONCE(event->ctx->parent_ctx); 6995 6996 if (event->rb) { 6997 if (data_page_nr(event->rb) != nr_pages) 6998 return -EINVAL; 6999 7000 /* 7001 * If this event doesn't have mmap_count, we're attempting to 7002 * create an alias of another event's mmap(); this would mean 7003 * both events will end up scribbling the same user_page; 7004 * which makes no sense. 7005 */ 7006 if (!refcount_read(&event->mmap_count)) 7007 return -EBUSY; 7008 7009 if (refcount_inc_not_zero(&event->rb->mmap_count)) { 7010 /* 7011 * Success -- managed to mmap() the same buffer 7012 * multiple times. 7013 */ 7014 perf_mmap_account(vma, user_extra, extra); 7015 refcount_inc(&event->mmap_count); 7016 return 0; 7017 } 7018 7019 /* 7020 * Raced against perf_mmap_close()'s 7021 * refcount_dec_and_mutex_lock() remove the 7022 * event and continue as if !event->rb 7023 */ 7024 ring_buffer_attach(event, NULL); 7025 } 7026 7027 if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) 7028 return -EPERM; 7029 7030 if (vma->vm_flags & VM_WRITE) 7031 rb_flags |= RING_BUFFER_WRITABLE; 7032 7033 rb = rb_alloc(nr_pages, 7034 event->attr.watermark ? event->attr.wakeup_watermark : 0, 7035 event->cpu, rb_flags); 7036 7037 if (!rb) 7038 return -ENOMEM; 7039 7040 refcount_set(&rb->mmap_count, 1); 7041 rb->mmap_user = get_current_user(); 7042 rb->mmap_locked = extra; 7043 7044 ring_buffer_attach(event, rb); 7045 7046 perf_event_update_time(event); 7047 perf_event_init_userpage(event); 7048 perf_event_update_userpage(event); 7049 7050 perf_mmap_account(vma, user_extra, extra); 7051 refcount_set(&event->mmap_count, 1); 7052 7053 return 0; 7054 } 7055 7056 static int perf_mmap_aux(struct vm_area_struct *vma, struct perf_event *event, 7057 unsigned long nr_pages) 7058 { 7059 long extra = 0, user_extra = nr_pages; 7060 u64 aux_offset, aux_size; 7061 struct perf_buffer *rb; 7062 int ret, rb_flags = 0; 7063 7064 rb = event->rb; 7065 if (!rb) 7066 return -EINVAL; 7067 7068 guard(mutex)(&rb->aux_mutex); 7069 7070 /* 7071 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 7072 * mapped, all subsequent mappings should have the same size 7073 * and offset. Must be above the normal perf buffer. 7074 */ 7075 aux_offset = READ_ONCE(rb->user_page->aux_offset); 7076 aux_size = READ_ONCE(rb->user_page->aux_size); 7077 7078 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 7079 return -EINVAL; 7080 7081 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 7082 return -EINVAL; 7083 7084 /* already mapped with a different offset */ 7085 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 7086 return -EINVAL; 7087 7088 if (aux_size != nr_pages * PAGE_SIZE) 7089 return -EINVAL; 7090 7091 /* already mapped with a different size */ 7092 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 7093 return -EINVAL; 7094 7095 if (!is_power_of_2(nr_pages)) 7096 return -EINVAL; 7097 7098 if (!refcount_inc_not_zero(&rb->mmap_count)) 7099 return -EINVAL; 7100 7101 if (rb_has_aux(rb)) { 7102 refcount_inc(&rb->aux_mmap_count); 7103 7104 } else { 7105 if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) { 7106 refcount_dec(&rb->mmap_count); 7107 return -EPERM; 7108 } 7109 7110 WARN_ON(!rb && event->rb); 7111 7112 if (vma->vm_flags & VM_WRITE) 7113 rb_flags |= RING_BUFFER_WRITABLE; 7114 7115 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 7116 event->attr.aux_watermark, rb_flags); 7117 if (ret) { 7118 refcount_dec(&rb->mmap_count); 7119 return ret; 7120 } 7121 7122 refcount_set(&rb->aux_mmap_count, 1); 7123 rb->aux_mmap_locked = extra; 7124 } 7125 7126 perf_mmap_account(vma, user_extra, extra); 7127 refcount_inc(&event->mmap_count); 7128 7129 return 0; 7130 } 7131 7132 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 7133 { 7134 struct perf_event *event = file->private_data; 7135 unsigned long vma_size, nr_pages; 7136 mapped_f mapped; 7137 int ret; 7138 7139 /* 7140 * Don't allow mmap() of inherited per-task counters. This would 7141 * create a performance issue due to all children writing to the 7142 * same rb. 7143 */ 7144 if (event->cpu == -1 && event->attr.inherit) 7145 return -EINVAL; 7146 7147 if (!(vma->vm_flags & VM_SHARED)) 7148 return -EINVAL; 7149 7150 ret = security_perf_event_read(event); 7151 if (ret) 7152 return ret; 7153 7154 vma_size = vma->vm_end - vma->vm_start; 7155 nr_pages = vma_size / PAGE_SIZE; 7156 7157 if (nr_pages > INT_MAX) 7158 return -ENOMEM; 7159 7160 if (vma_size != PAGE_SIZE * nr_pages) 7161 return -EINVAL; 7162 7163 scoped_guard (mutex, &event->mmap_mutex) { 7164 /* 7165 * This relies on __pmu_detach_event() taking mmap_mutex after marking 7166 * the event REVOKED. Either we observe the state, or __pmu_detach_event() 7167 * will detach the rb created here. 7168 */ 7169 if (event->state <= PERF_EVENT_STATE_REVOKED) 7170 return -ENODEV; 7171 7172 if (vma->vm_pgoff == 0) 7173 ret = perf_mmap_rb(vma, event, nr_pages); 7174 else 7175 ret = perf_mmap_aux(vma, event, nr_pages); 7176 if (ret) 7177 return ret; 7178 } 7179 7180 /* 7181 * Since pinned accounting is per vm we cannot allow fork() to copy our 7182 * vma. 7183 */ 7184 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 7185 vma->vm_ops = &perf_mmap_vmops; 7186 7187 mapped = get_mapped(event, event_mapped); 7188 if (mapped) 7189 mapped(event, vma->vm_mm); 7190 7191 /* 7192 * Try to map it into the page table. On fail, invoke 7193 * perf_mmap_close() to undo the above, as the callsite expects 7194 * full cleanup in this case and therefore does not invoke 7195 * vmops::close(). 7196 */ 7197 ret = map_range(event->rb, vma); 7198 if (ret) 7199 perf_mmap_close(vma); 7200 7201 return ret; 7202 } 7203 7204 static int perf_fasync(int fd, struct file *filp, int on) 7205 { 7206 struct inode *inode = file_inode(filp); 7207 struct perf_event *event = filp->private_data; 7208 int retval; 7209 7210 if (event->state <= PERF_EVENT_STATE_REVOKED) 7211 return -ENODEV; 7212 7213 inode_lock(inode); 7214 retval = fasync_helper(fd, filp, on, &event->fasync); 7215 inode_unlock(inode); 7216 7217 if (retval < 0) 7218 return retval; 7219 7220 return 0; 7221 } 7222 7223 static const struct file_operations perf_fops = { 7224 .release = perf_release, 7225 .read = perf_read, 7226 .poll = perf_poll, 7227 .unlocked_ioctl = perf_ioctl, 7228 .compat_ioctl = perf_compat_ioctl, 7229 .mmap = perf_mmap, 7230 .fasync = perf_fasync, 7231 }; 7232 7233 /* 7234 * Perf event wakeup 7235 * 7236 * If there's data, ensure we set the poll() state and publish everything 7237 * to user-space before waking everybody up. 7238 */ 7239 7240 void perf_event_wakeup(struct perf_event *event) 7241 { 7242 ring_buffer_wakeup(event); 7243 7244 if (event->pending_kill) { 7245 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 7246 event->pending_kill = 0; 7247 } 7248 } 7249 7250 static void perf_sigtrap(struct perf_event *event) 7251 { 7252 /* 7253 * Both perf_pending_task() and perf_pending_irq() can race with the 7254 * task exiting. 7255 */ 7256 if (current->flags & PF_EXITING) 7257 return; 7258 7259 /* 7260 * We'd expect this to only occur if the irq_work is delayed and either 7261 * ctx->task or current has changed in the meantime. This can be the 7262 * case on architectures that do not implement arch_irq_work_raise(). 7263 */ 7264 if (WARN_ON_ONCE(event->ctx->task != current)) 7265 return; 7266 7267 send_sig_perf((void __user *)event->pending_addr, 7268 event->orig_type, event->attr.sig_data); 7269 } 7270 7271 /* 7272 * Deliver the pending work in-event-context or follow the context. 7273 */ 7274 static void __perf_pending_disable(struct perf_event *event) 7275 { 7276 int cpu = READ_ONCE(event->oncpu); 7277 7278 /* 7279 * If the event isn't running; we done. event_sched_out() will have 7280 * taken care of things. 7281 */ 7282 if (cpu < 0) 7283 return; 7284 7285 /* 7286 * Yay, we hit home and are in the context of the event. 7287 */ 7288 if (cpu == smp_processor_id()) { 7289 if (event->pending_disable) { 7290 event->pending_disable = 0; 7291 perf_event_disable_local(event); 7292 } 7293 return; 7294 } 7295 7296 /* 7297 * CPU-A CPU-B 7298 * 7299 * perf_event_disable_inatomic() 7300 * @pending_disable = 1; 7301 * irq_work_queue(); 7302 * 7303 * sched-out 7304 * @pending_disable = 0; 7305 * 7306 * sched-in 7307 * perf_event_disable_inatomic() 7308 * @pending_disable = 1; 7309 * irq_work_queue(); // FAILS 7310 * 7311 * irq_work_run() 7312 * perf_pending_disable() 7313 * 7314 * But the event runs on CPU-B and wants disabling there. 7315 */ 7316 irq_work_queue_on(&event->pending_disable_irq, cpu); 7317 } 7318 7319 static void perf_pending_disable(struct irq_work *entry) 7320 { 7321 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 7322 int rctx; 7323 7324 /* 7325 * If we 'fail' here, that's OK, it means recursion is already disabled 7326 * and we won't recurse 'further'. 7327 */ 7328 rctx = perf_swevent_get_recursion_context(); 7329 __perf_pending_disable(event); 7330 if (rctx >= 0) 7331 perf_swevent_put_recursion_context(rctx); 7332 } 7333 7334 static void perf_pending_irq(struct irq_work *entry) 7335 { 7336 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 7337 int rctx; 7338 7339 /* 7340 * If we 'fail' here, that's OK, it means recursion is already disabled 7341 * and we won't recurse 'further'. 7342 */ 7343 rctx = perf_swevent_get_recursion_context(); 7344 7345 /* 7346 * The wakeup isn't bound to the context of the event -- it can happen 7347 * irrespective of where the event is. 7348 */ 7349 if (event->pending_wakeup) { 7350 event->pending_wakeup = 0; 7351 perf_event_wakeup(event); 7352 } 7353 7354 if (rctx >= 0) 7355 perf_swevent_put_recursion_context(rctx); 7356 } 7357 7358 static void perf_pending_task(struct callback_head *head) 7359 { 7360 struct perf_event *event = container_of(head, struct perf_event, pending_task); 7361 int rctx; 7362 7363 /* 7364 * If we 'fail' here, that's OK, it means recursion is already disabled 7365 * and we won't recurse 'further'. 7366 */ 7367 rctx = perf_swevent_get_recursion_context(); 7368 7369 if (event->pending_work) { 7370 event->pending_work = 0; 7371 perf_sigtrap(event); 7372 local_dec(&event->ctx->nr_no_switch_fast); 7373 } 7374 put_event(event); 7375 7376 if (rctx >= 0) 7377 perf_swevent_put_recursion_context(rctx); 7378 } 7379 7380 #ifdef CONFIG_GUEST_PERF_EVENTS 7381 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 7382 7383 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 7384 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 7385 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 7386 7387 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7388 { 7389 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 7390 return; 7391 7392 rcu_assign_pointer(perf_guest_cbs, cbs); 7393 static_call_update(__perf_guest_state, cbs->state); 7394 static_call_update(__perf_guest_get_ip, cbs->get_ip); 7395 7396 /* Implementing ->handle_intel_pt_intr is optional. */ 7397 if (cbs->handle_intel_pt_intr) 7398 static_call_update(__perf_guest_handle_intel_pt_intr, 7399 cbs->handle_intel_pt_intr); 7400 } 7401 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 7402 7403 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7404 { 7405 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 7406 return; 7407 7408 rcu_assign_pointer(perf_guest_cbs, NULL); 7409 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 7410 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 7411 static_call_update(__perf_guest_handle_intel_pt_intr, 7412 (void *)&__static_call_return0); 7413 synchronize_rcu(); 7414 } 7415 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7416 #endif 7417 7418 static bool should_sample_guest(struct perf_event *event) 7419 { 7420 return !event->attr.exclude_guest && perf_guest_state(); 7421 } 7422 7423 unsigned long perf_misc_flags(struct perf_event *event, 7424 struct pt_regs *regs) 7425 { 7426 if (should_sample_guest(event)) 7427 return perf_arch_guest_misc_flags(regs); 7428 7429 return perf_arch_misc_flags(regs); 7430 } 7431 7432 unsigned long perf_instruction_pointer(struct perf_event *event, 7433 struct pt_regs *regs) 7434 { 7435 if (should_sample_guest(event)) 7436 return perf_guest_get_ip(); 7437 7438 return perf_arch_instruction_pointer(regs); 7439 } 7440 7441 static void 7442 perf_output_sample_regs(struct perf_output_handle *handle, 7443 struct pt_regs *regs, u64 mask) 7444 { 7445 int bit; 7446 DECLARE_BITMAP(_mask, 64); 7447 7448 bitmap_from_u64(_mask, mask); 7449 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7450 u64 val; 7451 7452 val = perf_reg_value(regs, bit); 7453 perf_output_put(handle, val); 7454 } 7455 } 7456 7457 static void perf_sample_regs_user(struct perf_regs *regs_user, 7458 struct pt_regs *regs) 7459 { 7460 if (user_mode(regs)) { 7461 regs_user->abi = perf_reg_abi(current); 7462 regs_user->regs = regs; 7463 } else if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) { 7464 perf_get_regs_user(regs_user, regs); 7465 } else { 7466 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7467 regs_user->regs = NULL; 7468 } 7469 } 7470 7471 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7472 struct pt_regs *regs) 7473 { 7474 regs_intr->regs = regs; 7475 regs_intr->abi = perf_reg_abi(current); 7476 } 7477 7478 7479 /* 7480 * Get remaining task size from user stack pointer. 7481 * 7482 * It'd be better to take stack vma map and limit this more 7483 * precisely, but there's no way to get it safely under interrupt, 7484 * so using TASK_SIZE as limit. 7485 */ 7486 static u64 perf_ustack_task_size(struct pt_regs *regs) 7487 { 7488 unsigned long addr = perf_user_stack_pointer(regs); 7489 7490 if (!addr || addr >= TASK_SIZE) 7491 return 0; 7492 7493 return TASK_SIZE - addr; 7494 } 7495 7496 static u16 7497 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7498 struct pt_regs *regs) 7499 { 7500 u64 task_size; 7501 7502 /* No regs, no stack pointer, no dump. */ 7503 if (!regs) 7504 return 0; 7505 7506 /* No mm, no stack, no dump. */ 7507 if (!current->mm) 7508 return 0; 7509 7510 /* 7511 * Check if we fit in with the requested stack size into the: 7512 * - TASK_SIZE 7513 * If we don't, we limit the size to the TASK_SIZE. 7514 * 7515 * - remaining sample size 7516 * If we don't, we customize the stack size to 7517 * fit in to the remaining sample size. 7518 */ 7519 7520 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7521 stack_size = min(stack_size, (u16) task_size); 7522 7523 /* Current header size plus static size and dynamic size. */ 7524 header_size += 2 * sizeof(u64); 7525 7526 /* Do we fit in with the current stack dump size? */ 7527 if ((u16) (header_size + stack_size) < header_size) { 7528 /* 7529 * If we overflow the maximum size for the sample, 7530 * we customize the stack dump size to fit in. 7531 */ 7532 stack_size = USHRT_MAX - header_size - sizeof(u64); 7533 stack_size = round_up(stack_size, sizeof(u64)); 7534 } 7535 7536 return stack_size; 7537 } 7538 7539 static void 7540 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7541 struct pt_regs *regs) 7542 { 7543 /* Case of a kernel thread, nothing to dump */ 7544 if (!regs) { 7545 u64 size = 0; 7546 perf_output_put(handle, size); 7547 } else { 7548 unsigned long sp; 7549 unsigned int rem; 7550 u64 dyn_size; 7551 7552 /* 7553 * We dump: 7554 * static size 7555 * - the size requested by user or the best one we can fit 7556 * in to the sample max size 7557 * data 7558 * - user stack dump data 7559 * dynamic size 7560 * - the actual dumped size 7561 */ 7562 7563 /* Static size. */ 7564 perf_output_put(handle, dump_size); 7565 7566 /* Data. */ 7567 sp = perf_user_stack_pointer(regs); 7568 rem = __output_copy_user(handle, (void *) sp, dump_size); 7569 dyn_size = dump_size - rem; 7570 7571 perf_output_skip(handle, rem); 7572 7573 /* Dynamic size. */ 7574 perf_output_put(handle, dyn_size); 7575 } 7576 } 7577 7578 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7579 struct perf_sample_data *data, 7580 size_t size) 7581 { 7582 struct perf_event *sampler = event->aux_event; 7583 struct perf_buffer *rb; 7584 7585 data->aux_size = 0; 7586 7587 if (!sampler) 7588 goto out; 7589 7590 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7591 goto out; 7592 7593 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7594 goto out; 7595 7596 rb = ring_buffer_get(sampler); 7597 if (!rb) 7598 goto out; 7599 7600 /* 7601 * If this is an NMI hit inside sampling code, don't take 7602 * the sample. See also perf_aux_sample_output(). 7603 */ 7604 if (READ_ONCE(rb->aux_in_sampling)) { 7605 data->aux_size = 0; 7606 } else { 7607 size = min_t(size_t, size, perf_aux_size(rb)); 7608 data->aux_size = ALIGN(size, sizeof(u64)); 7609 } 7610 ring_buffer_put(rb); 7611 7612 out: 7613 return data->aux_size; 7614 } 7615 7616 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7617 struct perf_event *event, 7618 struct perf_output_handle *handle, 7619 unsigned long size) 7620 { 7621 unsigned long flags; 7622 long ret; 7623 7624 /* 7625 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7626 * paths. If we start calling them in NMI context, they may race with 7627 * the IRQ ones, that is, for example, re-starting an event that's just 7628 * been stopped, which is why we're using a separate callback that 7629 * doesn't change the event state. 7630 * 7631 * IRQs need to be disabled to prevent IPIs from racing with us. 7632 */ 7633 local_irq_save(flags); 7634 /* 7635 * Guard against NMI hits inside the critical section; 7636 * see also perf_prepare_sample_aux(). 7637 */ 7638 WRITE_ONCE(rb->aux_in_sampling, 1); 7639 barrier(); 7640 7641 ret = event->pmu->snapshot_aux(event, handle, size); 7642 7643 barrier(); 7644 WRITE_ONCE(rb->aux_in_sampling, 0); 7645 local_irq_restore(flags); 7646 7647 return ret; 7648 } 7649 7650 static void perf_aux_sample_output(struct perf_event *event, 7651 struct perf_output_handle *handle, 7652 struct perf_sample_data *data) 7653 { 7654 struct perf_event *sampler = event->aux_event; 7655 struct perf_buffer *rb; 7656 unsigned long pad; 7657 long size; 7658 7659 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7660 return; 7661 7662 rb = ring_buffer_get(sampler); 7663 if (!rb) 7664 return; 7665 7666 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7667 7668 /* 7669 * An error here means that perf_output_copy() failed (returned a 7670 * non-zero surplus that it didn't copy), which in its current 7671 * enlightened implementation is not possible. If that changes, we'd 7672 * like to know. 7673 */ 7674 if (WARN_ON_ONCE(size < 0)) 7675 goto out_put; 7676 7677 /* 7678 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7679 * perf_prepare_sample_aux(), so should not be more than that. 7680 */ 7681 pad = data->aux_size - size; 7682 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7683 pad = 8; 7684 7685 if (pad) { 7686 u64 zero = 0; 7687 perf_output_copy(handle, &zero, pad); 7688 } 7689 7690 out_put: 7691 ring_buffer_put(rb); 7692 } 7693 7694 /* 7695 * A set of common sample data types saved even for non-sample records 7696 * when event->attr.sample_id_all is set. 7697 */ 7698 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7699 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7700 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7701 7702 static void __perf_event_header__init_id(struct perf_sample_data *data, 7703 struct perf_event *event, 7704 u64 sample_type) 7705 { 7706 data->type = event->attr.sample_type; 7707 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7708 7709 if (sample_type & PERF_SAMPLE_TID) { 7710 /* namespace issues */ 7711 data->tid_entry.pid = perf_event_pid(event, current); 7712 data->tid_entry.tid = perf_event_tid(event, current); 7713 } 7714 7715 if (sample_type & PERF_SAMPLE_TIME) 7716 data->time = perf_event_clock(event); 7717 7718 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7719 data->id = primary_event_id(event); 7720 7721 if (sample_type & PERF_SAMPLE_STREAM_ID) 7722 data->stream_id = event->id; 7723 7724 if (sample_type & PERF_SAMPLE_CPU) { 7725 data->cpu_entry.cpu = raw_smp_processor_id(); 7726 data->cpu_entry.reserved = 0; 7727 } 7728 } 7729 7730 void perf_event_header__init_id(struct perf_event_header *header, 7731 struct perf_sample_data *data, 7732 struct perf_event *event) 7733 { 7734 if (event->attr.sample_id_all) { 7735 header->size += event->id_header_size; 7736 __perf_event_header__init_id(data, event, event->attr.sample_type); 7737 } 7738 } 7739 7740 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7741 struct perf_sample_data *data) 7742 { 7743 u64 sample_type = data->type; 7744 7745 if (sample_type & PERF_SAMPLE_TID) 7746 perf_output_put(handle, data->tid_entry); 7747 7748 if (sample_type & PERF_SAMPLE_TIME) 7749 perf_output_put(handle, data->time); 7750 7751 if (sample_type & PERF_SAMPLE_ID) 7752 perf_output_put(handle, data->id); 7753 7754 if (sample_type & PERF_SAMPLE_STREAM_ID) 7755 perf_output_put(handle, data->stream_id); 7756 7757 if (sample_type & PERF_SAMPLE_CPU) 7758 perf_output_put(handle, data->cpu_entry); 7759 7760 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7761 perf_output_put(handle, data->id); 7762 } 7763 7764 void perf_event__output_id_sample(struct perf_event *event, 7765 struct perf_output_handle *handle, 7766 struct perf_sample_data *sample) 7767 { 7768 if (event->attr.sample_id_all) 7769 __perf_event__output_id_sample(handle, sample); 7770 } 7771 7772 static void perf_output_read_one(struct perf_output_handle *handle, 7773 struct perf_event *event, 7774 u64 enabled, u64 running) 7775 { 7776 u64 read_format = event->attr.read_format; 7777 u64 values[5]; 7778 int n = 0; 7779 7780 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7781 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7782 values[n++] = enabled + 7783 atomic64_read(&event->child_total_time_enabled); 7784 } 7785 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7786 values[n++] = running + 7787 atomic64_read(&event->child_total_time_running); 7788 } 7789 if (read_format & PERF_FORMAT_ID) 7790 values[n++] = primary_event_id(event); 7791 if (read_format & PERF_FORMAT_LOST) 7792 values[n++] = atomic64_read(&event->lost_samples); 7793 7794 __output_copy(handle, values, n * sizeof(u64)); 7795 } 7796 7797 static void perf_output_read_group(struct perf_output_handle *handle, 7798 struct perf_event *event, 7799 u64 enabled, u64 running) 7800 { 7801 struct perf_event *leader = event->group_leader, *sub; 7802 u64 read_format = event->attr.read_format; 7803 unsigned long flags; 7804 u64 values[6]; 7805 int n = 0; 7806 bool self = has_inherit_and_sample_read(&event->attr); 7807 7808 /* 7809 * Disabling interrupts avoids all counter scheduling 7810 * (context switches, timer based rotation and IPIs). 7811 */ 7812 local_irq_save(flags); 7813 7814 values[n++] = 1 + leader->nr_siblings; 7815 7816 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7817 values[n++] = enabled; 7818 7819 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7820 values[n++] = running; 7821 7822 if ((leader != event) && !handle->skip_read) 7823 perf_pmu_read(leader); 7824 7825 values[n++] = perf_event_count(leader, self); 7826 if (read_format & PERF_FORMAT_ID) 7827 values[n++] = primary_event_id(leader); 7828 if (read_format & PERF_FORMAT_LOST) 7829 values[n++] = atomic64_read(&leader->lost_samples); 7830 7831 __output_copy(handle, values, n * sizeof(u64)); 7832 7833 for_each_sibling_event(sub, leader) { 7834 n = 0; 7835 7836 if ((sub != event) && !handle->skip_read) 7837 perf_pmu_read(sub); 7838 7839 values[n++] = perf_event_count(sub, self); 7840 if (read_format & PERF_FORMAT_ID) 7841 values[n++] = primary_event_id(sub); 7842 if (read_format & PERF_FORMAT_LOST) 7843 values[n++] = atomic64_read(&sub->lost_samples); 7844 7845 __output_copy(handle, values, n * sizeof(u64)); 7846 } 7847 7848 local_irq_restore(flags); 7849 } 7850 7851 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7852 PERF_FORMAT_TOTAL_TIME_RUNNING) 7853 7854 /* 7855 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7856 * 7857 * The problem is that its both hard and excessively expensive to iterate the 7858 * child list, not to mention that its impossible to IPI the children running 7859 * on another CPU, from interrupt/NMI context. 7860 * 7861 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7862 * counts rather than attempting to accumulate some value across all children on 7863 * all cores. 7864 */ 7865 static void perf_output_read(struct perf_output_handle *handle, 7866 struct perf_event *event) 7867 { 7868 u64 enabled = 0, running = 0, now; 7869 u64 read_format = event->attr.read_format; 7870 7871 /* 7872 * compute total_time_enabled, total_time_running 7873 * based on snapshot values taken when the event 7874 * was last scheduled in. 7875 * 7876 * we cannot simply called update_context_time() 7877 * because of locking issue as we are called in 7878 * NMI context 7879 */ 7880 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7881 calc_timer_values(event, &now, &enabled, &running); 7882 7883 if (event->attr.read_format & PERF_FORMAT_GROUP) 7884 perf_output_read_group(handle, event, enabled, running); 7885 else 7886 perf_output_read_one(handle, event, enabled, running); 7887 } 7888 7889 void perf_output_sample(struct perf_output_handle *handle, 7890 struct perf_event_header *header, 7891 struct perf_sample_data *data, 7892 struct perf_event *event) 7893 { 7894 u64 sample_type = data->type; 7895 7896 if (data->sample_flags & PERF_SAMPLE_READ) 7897 handle->skip_read = 1; 7898 7899 perf_output_put(handle, *header); 7900 7901 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7902 perf_output_put(handle, data->id); 7903 7904 if (sample_type & PERF_SAMPLE_IP) 7905 perf_output_put(handle, data->ip); 7906 7907 if (sample_type & PERF_SAMPLE_TID) 7908 perf_output_put(handle, data->tid_entry); 7909 7910 if (sample_type & PERF_SAMPLE_TIME) 7911 perf_output_put(handle, data->time); 7912 7913 if (sample_type & PERF_SAMPLE_ADDR) 7914 perf_output_put(handle, data->addr); 7915 7916 if (sample_type & PERF_SAMPLE_ID) 7917 perf_output_put(handle, data->id); 7918 7919 if (sample_type & PERF_SAMPLE_STREAM_ID) 7920 perf_output_put(handle, data->stream_id); 7921 7922 if (sample_type & PERF_SAMPLE_CPU) 7923 perf_output_put(handle, data->cpu_entry); 7924 7925 if (sample_type & PERF_SAMPLE_PERIOD) 7926 perf_output_put(handle, data->period); 7927 7928 if (sample_type & PERF_SAMPLE_READ) 7929 perf_output_read(handle, event); 7930 7931 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7932 int size = 1; 7933 7934 size += data->callchain->nr; 7935 size *= sizeof(u64); 7936 __output_copy(handle, data->callchain, size); 7937 } 7938 7939 if (sample_type & PERF_SAMPLE_RAW) { 7940 struct perf_raw_record *raw = data->raw; 7941 7942 if (raw) { 7943 struct perf_raw_frag *frag = &raw->frag; 7944 7945 perf_output_put(handle, raw->size); 7946 do { 7947 if (frag->copy) { 7948 __output_custom(handle, frag->copy, 7949 frag->data, frag->size); 7950 } else { 7951 __output_copy(handle, frag->data, 7952 frag->size); 7953 } 7954 if (perf_raw_frag_last(frag)) 7955 break; 7956 frag = frag->next; 7957 } while (1); 7958 if (frag->pad) 7959 __output_skip(handle, NULL, frag->pad); 7960 } else { 7961 struct { 7962 u32 size; 7963 u32 data; 7964 } raw = { 7965 .size = sizeof(u32), 7966 .data = 0, 7967 }; 7968 perf_output_put(handle, raw); 7969 } 7970 } 7971 7972 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7973 if (data->br_stack) { 7974 size_t size; 7975 7976 size = data->br_stack->nr 7977 * sizeof(struct perf_branch_entry); 7978 7979 perf_output_put(handle, data->br_stack->nr); 7980 if (branch_sample_hw_index(event)) 7981 perf_output_put(handle, data->br_stack->hw_idx); 7982 perf_output_copy(handle, data->br_stack->entries, size); 7983 /* 7984 * Add the extension space which is appended 7985 * right after the struct perf_branch_stack. 7986 */ 7987 if (data->br_stack_cntr) { 7988 size = data->br_stack->nr * sizeof(u64); 7989 perf_output_copy(handle, data->br_stack_cntr, size); 7990 } 7991 } else { 7992 /* 7993 * we always store at least the value of nr 7994 */ 7995 u64 nr = 0; 7996 perf_output_put(handle, nr); 7997 } 7998 } 7999 8000 if (sample_type & PERF_SAMPLE_REGS_USER) { 8001 u64 abi = data->regs_user.abi; 8002 8003 /* 8004 * If there are no regs to dump, notice it through 8005 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 8006 */ 8007 perf_output_put(handle, abi); 8008 8009 if (abi) { 8010 u64 mask = event->attr.sample_regs_user; 8011 perf_output_sample_regs(handle, 8012 data->regs_user.regs, 8013 mask); 8014 } 8015 } 8016 8017 if (sample_type & PERF_SAMPLE_STACK_USER) { 8018 perf_output_sample_ustack(handle, 8019 data->stack_user_size, 8020 data->regs_user.regs); 8021 } 8022 8023 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 8024 perf_output_put(handle, data->weight.full); 8025 8026 if (sample_type & PERF_SAMPLE_DATA_SRC) 8027 perf_output_put(handle, data->data_src.val); 8028 8029 if (sample_type & PERF_SAMPLE_TRANSACTION) 8030 perf_output_put(handle, data->txn); 8031 8032 if (sample_type & PERF_SAMPLE_REGS_INTR) { 8033 u64 abi = data->regs_intr.abi; 8034 /* 8035 * If there are no regs to dump, notice it through 8036 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 8037 */ 8038 perf_output_put(handle, abi); 8039 8040 if (abi) { 8041 u64 mask = event->attr.sample_regs_intr; 8042 8043 perf_output_sample_regs(handle, 8044 data->regs_intr.regs, 8045 mask); 8046 } 8047 } 8048 8049 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 8050 perf_output_put(handle, data->phys_addr); 8051 8052 if (sample_type & PERF_SAMPLE_CGROUP) 8053 perf_output_put(handle, data->cgroup); 8054 8055 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 8056 perf_output_put(handle, data->data_page_size); 8057 8058 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 8059 perf_output_put(handle, data->code_page_size); 8060 8061 if (sample_type & PERF_SAMPLE_AUX) { 8062 perf_output_put(handle, data->aux_size); 8063 8064 if (data->aux_size) 8065 perf_aux_sample_output(event, handle, data); 8066 } 8067 8068 if (!event->attr.watermark) { 8069 int wakeup_events = event->attr.wakeup_events; 8070 8071 if (wakeup_events) { 8072 struct perf_buffer *rb = handle->rb; 8073 int events = local_inc_return(&rb->events); 8074 8075 if (events >= wakeup_events) { 8076 local_sub(wakeup_events, &rb->events); 8077 local_inc(&rb->wakeup); 8078 } 8079 } 8080 } 8081 } 8082 8083 static u64 perf_virt_to_phys(u64 virt) 8084 { 8085 u64 phys_addr = 0; 8086 8087 if (!virt) 8088 return 0; 8089 8090 if (virt >= TASK_SIZE) { 8091 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 8092 if (virt_addr_valid((void *)(uintptr_t)virt) && 8093 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 8094 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 8095 } else { 8096 /* 8097 * Walking the pages tables for user address. 8098 * Interrupts are disabled, so it prevents any tear down 8099 * of the page tables. 8100 * Try IRQ-safe get_user_page_fast_only first. 8101 * If failed, leave phys_addr as 0. 8102 */ 8103 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) { 8104 struct page *p; 8105 8106 pagefault_disable(); 8107 if (get_user_page_fast_only(virt, 0, &p)) { 8108 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 8109 put_page(p); 8110 } 8111 pagefault_enable(); 8112 } 8113 } 8114 8115 return phys_addr; 8116 } 8117 8118 /* 8119 * Return the pagetable size of a given virtual address. 8120 */ 8121 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 8122 { 8123 u64 size = 0; 8124 8125 #ifdef CONFIG_HAVE_GUP_FAST 8126 pgd_t *pgdp, pgd; 8127 p4d_t *p4dp, p4d; 8128 pud_t *pudp, pud; 8129 pmd_t *pmdp, pmd; 8130 pte_t *ptep, pte; 8131 8132 pgdp = pgd_offset(mm, addr); 8133 pgd = READ_ONCE(*pgdp); 8134 if (pgd_none(pgd)) 8135 return 0; 8136 8137 if (pgd_leaf(pgd)) 8138 return pgd_leaf_size(pgd); 8139 8140 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 8141 p4d = READ_ONCE(*p4dp); 8142 if (!p4d_present(p4d)) 8143 return 0; 8144 8145 if (p4d_leaf(p4d)) 8146 return p4d_leaf_size(p4d); 8147 8148 pudp = pud_offset_lockless(p4dp, p4d, addr); 8149 pud = READ_ONCE(*pudp); 8150 if (!pud_present(pud)) 8151 return 0; 8152 8153 if (pud_leaf(pud)) 8154 return pud_leaf_size(pud); 8155 8156 pmdp = pmd_offset_lockless(pudp, pud, addr); 8157 again: 8158 pmd = pmdp_get_lockless(pmdp); 8159 if (!pmd_present(pmd)) 8160 return 0; 8161 8162 if (pmd_leaf(pmd)) 8163 return pmd_leaf_size(pmd); 8164 8165 ptep = pte_offset_map(&pmd, addr); 8166 if (!ptep) 8167 goto again; 8168 8169 pte = ptep_get_lockless(ptep); 8170 if (pte_present(pte)) 8171 size = __pte_leaf_size(pmd, pte); 8172 pte_unmap(ptep); 8173 #endif /* CONFIG_HAVE_GUP_FAST */ 8174 8175 return size; 8176 } 8177 8178 static u64 perf_get_page_size(unsigned long addr) 8179 { 8180 struct mm_struct *mm; 8181 unsigned long flags; 8182 u64 size; 8183 8184 if (!addr) 8185 return 0; 8186 8187 /* 8188 * Software page-table walkers must disable IRQs, 8189 * which prevents any tear down of the page tables. 8190 */ 8191 local_irq_save(flags); 8192 8193 mm = current->mm; 8194 if (!mm) { 8195 /* 8196 * For kernel threads and the like, use init_mm so that 8197 * we can find kernel memory. 8198 */ 8199 mm = &init_mm; 8200 } 8201 8202 size = perf_get_pgtable_size(mm, addr); 8203 8204 local_irq_restore(flags); 8205 8206 return size; 8207 } 8208 8209 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 8210 8211 static struct unwind_work perf_unwind_work; 8212 8213 struct perf_callchain_entry * 8214 perf_callchain(struct perf_event *event, struct pt_regs *regs) 8215 { 8216 bool kernel = !event->attr.exclude_callchain_kernel; 8217 bool user = !event->attr.exclude_callchain_user && 8218 !(current->flags & (PF_KTHREAD | PF_USER_WORKER)); 8219 /* Disallow cross-task user callchains. */ 8220 bool crosstask = event->ctx->task && event->ctx->task != current; 8221 bool defer_user = IS_ENABLED(CONFIG_UNWIND_USER) && user && 8222 event->attr.defer_callchain; 8223 const u32 max_stack = event->attr.sample_max_stack; 8224 struct perf_callchain_entry *callchain; 8225 u64 defer_cookie; 8226 8227 if (!current->mm) 8228 user = false; 8229 8230 if (!kernel && !user) 8231 return &__empty_callchain; 8232 8233 if (!(user && defer_user && !crosstask && 8234 unwind_deferred_request(&perf_unwind_work, &defer_cookie) >= 0)) 8235 defer_cookie = 0; 8236 8237 callchain = get_perf_callchain(regs, kernel, user, max_stack, 8238 crosstask, true, defer_cookie); 8239 8240 return callchain ?: &__empty_callchain; 8241 } 8242 8243 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 8244 { 8245 return d * !!(flags & s); 8246 } 8247 8248 void perf_prepare_sample(struct perf_sample_data *data, 8249 struct perf_event *event, 8250 struct pt_regs *regs) 8251 { 8252 u64 sample_type = event->attr.sample_type; 8253 u64 filtered_sample_type; 8254 8255 /* 8256 * Add the sample flags that are dependent to others. And clear the 8257 * sample flags that have already been done by the PMU driver. 8258 */ 8259 filtered_sample_type = sample_type; 8260 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 8261 PERF_SAMPLE_IP); 8262 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 8263 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 8264 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 8265 PERF_SAMPLE_REGS_USER); 8266 filtered_sample_type &= ~data->sample_flags; 8267 8268 if (filtered_sample_type == 0) { 8269 /* Make sure it has the correct data->type for output */ 8270 data->type = event->attr.sample_type; 8271 return; 8272 } 8273 8274 __perf_event_header__init_id(data, event, filtered_sample_type); 8275 8276 if (filtered_sample_type & PERF_SAMPLE_IP) { 8277 data->ip = perf_instruction_pointer(event, regs); 8278 data->sample_flags |= PERF_SAMPLE_IP; 8279 } 8280 8281 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 8282 perf_sample_save_callchain(data, event, regs); 8283 8284 if (filtered_sample_type & PERF_SAMPLE_RAW) { 8285 data->raw = NULL; 8286 data->dyn_size += sizeof(u64); 8287 data->sample_flags |= PERF_SAMPLE_RAW; 8288 } 8289 8290 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 8291 data->br_stack = NULL; 8292 data->dyn_size += sizeof(u64); 8293 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 8294 } 8295 8296 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 8297 perf_sample_regs_user(&data->regs_user, regs); 8298 8299 /* 8300 * It cannot use the filtered_sample_type here as REGS_USER can be set 8301 * by STACK_USER (using __cond_set() above) and we don't want to update 8302 * the dyn_size if it's not requested by users. 8303 */ 8304 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 8305 /* regs dump ABI info */ 8306 int size = sizeof(u64); 8307 8308 if (data->regs_user.regs) { 8309 u64 mask = event->attr.sample_regs_user; 8310 size += hweight64(mask) * sizeof(u64); 8311 } 8312 8313 data->dyn_size += size; 8314 data->sample_flags |= PERF_SAMPLE_REGS_USER; 8315 } 8316 8317 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 8318 /* 8319 * Either we need PERF_SAMPLE_STACK_USER bit to be always 8320 * processed as the last one or have additional check added 8321 * in case new sample type is added, because we could eat 8322 * up the rest of the sample size. 8323 */ 8324 u16 stack_size = event->attr.sample_stack_user; 8325 u16 header_size = perf_sample_data_size(data, event); 8326 u16 size = sizeof(u64); 8327 8328 stack_size = perf_sample_ustack_size(stack_size, header_size, 8329 data->regs_user.regs); 8330 8331 /* 8332 * If there is something to dump, add space for the dump 8333 * itself and for the field that tells the dynamic size, 8334 * which is how many have been actually dumped. 8335 */ 8336 if (stack_size) 8337 size += sizeof(u64) + stack_size; 8338 8339 data->stack_user_size = stack_size; 8340 data->dyn_size += size; 8341 data->sample_flags |= PERF_SAMPLE_STACK_USER; 8342 } 8343 8344 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 8345 data->weight.full = 0; 8346 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 8347 } 8348 8349 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 8350 data->data_src.val = PERF_MEM_NA; 8351 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 8352 } 8353 8354 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 8355 data->txn = 0; 8356 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 8357 } 8358 8359 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 8360 data->addr = 0; 8361 data->sample_flags |= PERF_SAMPLE_ADDR; 8362 } 8363 8364 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 8365 /* regs dump ABI info */ 8366 int size = sizeof(u64); 8367 8368 perf_sample_regs_intr(&data->regs_intr, regs); 8369 8370 if (data->regs_intr.regs) { 8371 u64 mask = event->attr.sample_regs_intr; 8372 8373 size += hweight64(mask) * sizeof(u64); 8374 } 8375 8376 data->dyn_size += size; 8377 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 8378 } 8379 8380 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 8381 data->phys_addr = perf_virt_to_phys(data->addr); 8382 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 8383 } 8384 8385 #ifdef CONFIG_CGROUP_PERF 8386 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 8387 struct cgroup *cgrp; 8388 8389 /* protected by RCU */ 8390 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 8391 data->cgroup = cgroup_id(cgrp); 8392 data->sample_flags |= PERF_SAMPLE_CGROUP; 8393 } 8394 #endif 8395 8396 /* 8397 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 8398 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 8399 * but the value will not dump to the userspace. 8400 */ 8401 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 8402 data->data_page_size = perf_get_page_size(data->addr); 8403 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 8404 } 8405 8406 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 8407 data->code_page_size = perf_get_page_size(data->ip); 8408 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 8409 } 8410 8411 if (filtered_sample_type & PERF_SAMPLE_AUX) { 8412 u64 size; 8413 u16 header_size = perf_sample_data_size(data, event); 8414 8415 header_size += sizeof(u64); /* size */ 8416 8417 /* 8418 * Given the 16bit nature of header::size, an AUX sample can 8419 * easily overflow it, what with all the preceding sample bits. 8420 * Make sure this doesn't happen by using up to U16_MAX bytes 8421 * per sample in total (rounded down to 8 byte boundary). 8422 */ 8423 size = min_t(size_t, U16_MAX - header_size, 8424 event->attr.aux_sample_size); 8425 size = rounddown(size, 8); 8426 size = perf_prepare_sample_aux(event, data, size); 8427 8428 WARN_ON_ONCE(size + header_size > U16_MAX); 8429 data->dyn_size += size + sizeof(u64); /* size above */ 8430 data->sample_flags |= PERF_SAMPLE_AUX; 8431 } 8432 } 8433 8434 void perf_prepare_header(struct perf_event_header *header, 8435 struct perf_sample_data *data, 8436 struct perf_event *event, 8437 struct pt_regs *regs) 8438 { 8439 header->type = PERF_RECORD_SAMPLE; 8440 header->size = perf_sample_data_size(data, event); 8441 header->misc = perf_misc_flags(event, regs); 8442 8443 /* 8444 * If you're adding more sample types here, you likely need to do 8445 * something about the overflowing header::size, like repurpose the 8446 * lowest 3 bits of size, which should be always zero at the moment. 8447 * This raises a more important question, do we really need 512k sized 8448 * samples and why, so good argumentation is in order for whatever you 8449 * do here next. 8450 */ 8451 WARN_ON_ONCE(header->size & 7); 8452 } 8453 8454 static void __perf_event_aux_pause(struct perf_event *event, bool pause) 8455 { 8456 if (pause) { 8457 if (!event->hw.aux_paused) { 8458 event->hw.aux_paused = 1; 8459 event->pmu->stop(event, PERF_EF_PAUSE); 8460 } 8461 } else { 8462 if (event->hw.aux_paused) { 8463 event->hw.aux_paused = 0; 8464 event->pmu->start(event, PERF_EF_RESUME); 8465 } 8466 } 8467 } 8468 8469 static void perf_event_aux_pause(struct perf_event *event, bool pause) 8470 { 8471 struct perf_buffer *rb; 8472 8473 if (WARN_ON_ONCE(!event)) 8474 return; 8475 8476 rb = ring_buffer_get(event); 8477 if (!rb) 8478 return; 8479 8480 scoped_guard (irqsave) { 8481 /* 8482 * Guard against self-recursion here. Another event could trip 8483 * this same from NMI context. 8484 */ 8485 if (READ_ONCE(rb->aux_in_pause_resume)) 8486 break; 8487 8488 WRITE_ONCE(rb->aux_in_pause_resume, 1); 8489 barrier(); 8490 __perf_event_aux_pause(event, pause); 8491 barrier(); 8492 WRITE_ONCE(rb->aux_in_pause_resume, 0); 8493 } 8494 ring_buffer_put(rb); 8495 } 8496 8497 static __always_inline int 8498 __perf_event_output(struct perf_event *event, 8499 struct perf_sample_data *data, 8500 struct pt_regs *regs, 8501 int (*output_begin)(struct perf_output_handle *, 8502 struct perf_sample_data *, 8503 struct perf_event *, 8504 unsigned int)) 8505 { 8506 struct perf_output_handle handle; 8507 struct perf_event_header header; 8508 int err; 8509 8510 /* protect the callchain buffers */ 8511 rcu_read_lock(); 8512 8513 perf_prepare_sample(data, event, regs); 8514 perf_prepare_header(&header, data, event, regs); 8515 8516 err = output_begin(&handle, data, event, header.size); 8517 if (err) 8518 goto exit; 8519 8520 perf_output_sample(&handle, &header, data, event); 8521 8522 perf_output_end(&handle); 8523 8524 exit: 8525 rcu_read_unlock(); 8526 return err; 8527 } 8528 8529 void 8530 perf_event_output_forward(struct perf_event *event, 8531 struct perf_sample_data *data, 8532 struct pt_regs *regs) 8533 { 8534 __perf_event_output(event, data, regs, perf_output_begin_forward); 8535 } 8536 8537 void 8538 perf_event_output_backward(struct perf_event *event, 8539 struct perf_sample_data *data, 8540 struct pt_regs *regs) 8541 { 8542 __perf_event_output(event, data, regs, perf_output_begin_backward); 8543 } 8544 8545 int 8546 perf_event_output(struct perf_event *event, 8547 struct perf_sample_data *data, 8548 struct pt_regs *regs) 8549 { 8550 return __perf_event_output(event, data, regs, perf_output_begin); 8551 } 8552 8553 /* 8554 * read event_id 8555 */ 8556 8557 struct perf_read_event { 8558 struct perf_event_header header; 8559 8560 u32 pid; 8561 u32 tid; 8562 }; 8563 8564 static void 8565 perf_event_read_event(struct perf_event *event, 8566 struct task_struct *task) 8567 { 8568 struct perf_output_handle handle; 8569 struct perf_sample_data sample; 8570 struct perf_read_event read_event = { 8571 .header = { 8572 .type = PERF_RECORD_READ, 8573 .misc = 0, 8574 .size = sizeof(read_event) + event->read_size, 8575 }, 8576 .pid = perf_event_pid(event, task), 8577 .tid = perf_event_tid(event, task), 8578 }; 8579 int ret; 8580 8581 perf_event_header__init_id(&read_event.header, &sample, event); 8582 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8583 if (ret) 8584 return; 8585 8586 perf_output_put(&handle, read_event); 8587 perf_output_read(&handle, event); 8588 perf_event__output_id_sample(event, &handle, &sample); 8589 8590 perf_output_end(&handle); 8591 } 8592 8593 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8594 8595 static void 8596 perf_iterate_ctx(struct perf_event_context *ctx, 8597 perf_iterate_f output, 8598 void *data, bool all) 8599 { 8600 struct perf_event *event; 8601 8602 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8603 if (!all) { 8604 if (event->state < PERF_EVENT_STATE_INACTIVE) 8605 continue; 8606 if (!event_filter_match(event)) 8607 continue; 8608 } 8609 8610 output(event, data); 8611 } 8612 } 8613 8614 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8615 { 8616 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8617 struct perf_event *event; 8618 8619 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8620 /* 8621 * Skip events that are not fully formed yet; ensure that 8622 * if we observe event->ctx, both event and ctx will be 8623 * complete enough. See perf_install_in_context(). 8624 */ 8625 if (!smp_load_acquire(&event->ctx)) 8626 continue; 8627 8628 if (event->state < PERF_EVENT_STATE_INACTIVE) 8629 continue; 8630 if (!event_filter_match(event)) 8631 continue; 8632 output(event, data); 8633 } 8634 } 8635 8636 /* 8637 * Iterate all events that need to receive side-band events. 8638 * 8639 * For new callers; ensure that account_pmu_sb_event() includes 8640 * your event, otherwise it might not get delivered. 8641 */ 8642 static void 8643 perf_iterate_sb(perf_iterate_f output, void *data, 8644 struct perf_event_context *task_ctx) 8645 { 8646 struct perf_event_context *ctx; 8647 8648 rcu_read_lock(); 8649 preempt_disable(); 8650 8651 /* 8652 * If we have task_ctx != NULL we only notify the task context itself. 8653 * The task_ctx is set only for EXIT events before releasing task 8654 * context. 8655 */ 8656 if (task_ctx) { 8657 perf_iterate_ctx(task_ctx, output, data, false); 8658 goto done; 8659 } 8660 8661 perf_iterate_sb_cpu(output, data); 8662 8663 ctx = rcu_dereference(current->perf_event_ctxp); 8664 if (ctx) 8665 perf_iterate_ctx(ctx, output, data, false); 8666 done: 8667 preempt_enable(); 8668 rcu_read_unlock(); 8669 } 8670 8671 /* 8672 * Clear all file-based filters at exec, they'll have to be 8673 * re-instated when/if these objects are mmapped again. 8674 */ 8675 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8676 { 8677 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8678 struct perf_addr_filter *filter; 8679 unsigned int restart = 0, count = 0; 8680 unsigned long flags; 8681 8682 if (!has_addr_filter(event)) 8683 return; 8684 8685 raw_spin_lock_irqsave(&ifh->lock, flags); 8686 list_for_each_entry(filter, &ifh->list, entry) { 8687 if (filter->path.dentry) { 8688 event->addr_filter_ranges[count].start = 0; 8689 event->addr_filter_ranges[count].size = 0; 8690 restart++; 8691 } 8692 8693 count++; 8694 } 8695 8696 if (restart) 8697 event->addr_filters_gen++; 8698 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8699 8700 if (restart) 8701 perf_event_stop(event, 1); 8702 } 8703 8704 void perf_event_exec(void) 8705 { 8706 struct perf_event_context *ctx; 8707 8708 ctx = perf_pin_task_context(current); 8709 if (!ctx) 8710 return; 8711 8712 perf_event_enable_on_exec(ctx); 8713 perf_event_remove_on_exec(ctx); 8714 scoped_guard(rcu) 8715 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8716 8717 perf_unpin_context(ctx); 8718 put_ctx(ctx); 8719 } 8720 8721 struct remote_output { 8722 struct perf_buffer *rb; 8723 int err; 8724 }; 8725 8726 static void __perf_event_output_stop(struct perf_event *event, void *data) 8727 { 8728 struct perf_event *parent = event->parent; 8729 struct remote_output *ro = data; 8730 struct perf_buffer *rb = ro->rb; 8731 struct stop_event_data sd = { 8732 .event = event, 8733 }; 8734 8735 if (!has_aux(event)) 8736 return; 8737 8738 if (!parent) 8739 parent = event; 8740 8741 /* 8742 * In case of inheritance, it will be the parent that links to the 8743 * ring-buffer, but it will be the child that's actually using it. 8744 * 8745 * We are using event::rb to determine if the event should be stopped, 8746 * however this may race with ring_buffer_attach() (through set_output), 8747 * which will make us skip the event that actually needs to be stopped. 8748 * So ring_buffer_attach() has to stop an aux event before re-assigning 8749 * its rb pointer. 8750 */ 8751 if (rcu_dereference(parent->rb) == rb) 8752 ro->err = __perf_event_stop(&sd); 8753 } 8754 8755 static int __perf_pmu_output_stop(void *info) 8756 { 8757 struct perf_event *event = info; 8758 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8759 struct remote_output ro = { 8760 .rb = event->rb, 8761 }; 8762 8763 rcu_read_lock(); 8764 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8765 if (cpuctx->task_ctx) 8766 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8767 &ro, false); 8768 rcu_read_unlock(); 8769 8770 return ro.err; 8771 } 8772 8773 static void perf_pmu_output_stop(struct perf_event *event) 8774 { 8775 struct perf_event *iter; 8776 int err, cpu; 8777 8778 restart: 8779 rcu_read_lock(); 8780 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8781 /* 8782 * For per-CPU events, we need to make sure that neither they 8783 * nor their children are running; for cpu==-1 events it's 8784 * sufficient to stop the event itself if it's active, since 8785 * it can't have children. 8786 */ 8787 cpu = iter->cpu; 8788 if (cpu == -1) 8789 cpu = READ_ONCE(iter->oncpu); 8790 8791 if (cpu == -1) 8792 continue; 8793 8794 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8795 if (err == -EAGAIN) { 8796 rcu_read_unlock(); 8797 goto restart; 8798 } 8799 } 8800 rcu_read_unlock(); 8801 } 8802 8803 /* 8804 * task tracking -- fork/exit 8805 * 8806 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8807 */ 8808 8809 struct perf_task_event { 8810 struct task_struct *task; 8811 struct perf_event_context *task_ctx; 8812 8813 struct { 8814 struct perf_event_header header; 8815 8816 u32 pid; 8817 u32 ppid; 8818 u32 tid; 8819 u32 ptid; 8820 u64 time; 8821 } event_id; 8822 }; 8823 8824 static int perf_event_task_match(struct perf_event *event) 8825 { 8826 return event->attr.comm || event->attr.mmap || 8827 event->attr.mmap2 || event->attr.mmap_data || 8828 event->attr.task; 8829 } 8830 8831 static void perf_event_task_output(struct perf_event *event, 8832 void *data) 8833 { 8834 struct perf_task_event *task_event = data; 8835 struct perf_output_handle handle; 8836 struct perf_sample_data sample; 8837 struct task_struct *task = task_event->task; 8838 int ret, size = task_event->event_id.header.size; 8839 8840 if (!perf_event_task_match(event)) 8841 return; 8842 8843 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8844 8845 ret = perf_output_begin(&handle, &sample, event, 8846 task_event->event_id.header.size); 8847 if (ret) 8848 goto out; 8849 8850 task_event->event_id.pid = perf_event_pid(event, task); 8851 task_event->event_id.tid = perf_event_tid(event, task); 8852 8853 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8854 task_event->event_id.ppid = perf_event_pid(event, 8855 task->real_parent); 8856 task_event->event_id.ptid = perf_event_pid(event, 8857 task->real_parent); 8858 } else { /* PERF_RECORD_FORK */ 8859 task_event->event_id.ppid = perf_event_pid(event, current); 8860 task_event->event_id.ptid = perf_event_tid(event, current); 8861 } 8862 8863 task_event->event_id.time = perf_event_clock(event); 8864 8865 perf_output_put(&handle, task_event->event_id); 8866 8867 perf_event__output_id_sample(event, &handle, &sample); 8868 8869 perf_output_end(&handle); 8870 out: 8871 task_event->event_id.header.size = size; 8872 } 8873 8874 static void perf_event_task(struct task_struct *task, 8875 struct perf_event_context *task_ctx, 8876 int new) 8877 { 8878 struct perf_task_event task_event; 8879 8880 if (!atomic_read(&nr_comm_events) && 8881 !atomic_read(&nr_mmap_events) && 8882 !atomic_read(&nr_task_events)) 8883 return; 8884 8885 task_event = (struct perf_task_event){ 8886 .task = task, 8887 .task_ctx = task_ctx, 8888 .event_id = { 8889 .header = { 8890 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8891 .misc = 0, 8892 .size = sizeof(task_event.event_id), 8893 }, 8894 /* .pid */ 8895 /* .ppid */ 8896 /* .tid */ 8897 /* .ptid */ 8898 /* .time */ 8899 }, 8900 }; 8901 8902 perf_iterate_sb(perf_event_task_output, 8903 &task_event, 8904 task_ctx); 8905 } 8906 8907 /* 8908 * Allocate data for a new task when profiling system-wide 8909 * events which require PMU specific data 8910 */ 8911 static void 8912 perf_event_alloc_task_data(struct task_struct *child, 8913 struct task_struct *parent) 8914 { 8915 struct kmem_cache *ctx_cache = NULL; 8916 struct perf_ctx_data *cd; 8917 8918 if (!refcount_read(&global_ctx_data_ref)) 8919 return; 8920 8921 scoped_guard (rcu) { 8922 cd = rcu_dereference(parent->perf_ctx_data); 8923 if (cd) 8924 ctx_cache = cd->ctx_cache; 8925 } 8926 8927 if (!ctx_cache) 8928 return; 8929 8930 guard(percpu_read)(&global_ctx_data_rwsem); 8931 scoped_guard (rcu) { 8932 cd = rcu_dereference(child->perf_ctx_data); 8933 if (!cd) { 8934 /* 8935 * A system-wide event may be unaccount, 8936 * when attaching the perf_ctx_data. 8937 */ 8938 if (!refcount_read(&global_ctx_data_ref)) 8939 return; 8940 goto attach; 8941 } 8942 8943 if (!cd->global) { 8944 cd->global = 1; 8945 refcount_inc(&cd->refcount); 8946 } 8947 } 8948 8949 return; 8950 attach: 8951 attach_task_ctx_data(child, ctx_cache, true); 8952 } 8953 8954 void perf_event_fork(struct task_struct *task) 8955 { 8956 perf_event_task(task, NULL, 1); 8957 perf_event_namespaces(task); 8958 perf_event_alloc_task_data(task, current); 8959 } 8960 8961 /* 8962 * comm tracking 8963 */ 8964 8965 struct perf_comm_event { 8966 struct task_struct *task; 8967 char *comm; 8968 int comm_size; 8969 8970 struct { 8971 struct perf_event_header header; 8972 8973 u32 pid; 8974 u32 tid; 8975 } event_id; 8976 }; 8977 8978 static int perf_event_comm_match(struct perf_event *event) 8979 { 8980 return event->attr.comm; 8981 } 8982 8983 static void perf_event_comm_output(struct perf_event *event, 8984 void *data) 8985 { 8986 struct perf_comm_event *comm_event = data; 8987 struct perf_output_handle handle; 8988 struct perf_sample_data sample; 8989 int size = comm_event->event_id.header.size; 8990 int ret; 8991 8992 if (!perf_event_comm_match(event)) 8993 return; 8994 8995 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8996 ret = perf_output_begin(&handle, &sample, event, 8997 comm_event->event_id.header.size); 8998 8999 if (ret) 9000 goto out; 9001 9002 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 9003 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 9004 9005 perf_output_put(&handle, comm_event->event_id); 9006 __output_copy(&handle, comm_event->comm, 9007 comm_event->comm_size); 9008 9009 perf_event__output_id_sample(event, &handle, &sample); 9010 9011 perf_output_end(&handle); 9012 out: 9013 comm_event->event_id.header.size = size; 9014 } 9015 9016 static void perf_event_comm_event(struct perf_comm_event *comm_event) 9017 { 9018 char comm[TASK_COMM_LEN]; 9019 unsigned int size; 9020 9021 memset(comm, 0, sizeof(comm)); 9022 strscpy(comm, comm_event->task->comm); 9023 size = ALIGN(strlen(comm)+1, sizeof(u64)); 9024 9025 comm_event->comm = comm; 9026 comm_event->comm_size = size; 9027 9028 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 9029 9030 perf_iterate_sb(perf_event_comm_output, 9031 comm_event, 9032 NULL); 9033 } 9034 9035 void perf_event_comm(struct task_struct *task, bool exec) 9036 { 9037 struct perf_comm_event comm_event; 9038 9039 if (!atomic_read(&nr_comm_events)) 9040 return; 9041 9042 comm_event = (struct perf_comm_event){ 9043 .task = task, 9044 /* .comm */ 9045 /* .comm_size */ 9046 .event_id = { 9047 .header = { 9048 .type = PERF_RECORD_COMM, 9049 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 9050 /* .size */ 9051 }, 9052 /* .pid */ 9053 /* .tid */ 9054 }, 9055 }; 9056 9057 perf_event_comm_event(&comm_event); 9058 } 9059 9060 /* 9061 * namespaces tracking 9062 */ 9063 9064 struct perf_namespaces_event { 9065 struct task_struct *task; 9066 9067 struct { 9068 struct perf_event_header header; 9069 9070 u32 pid; 9071 u32 tid; 9072 u64 nr_namespaces; 9073 struct perf_ns_link_info link_info[NR_NAMESPACES]; 9074 } event_id; 9075 }; 9076 9077 static int perf_event_namespaces_match(struct perf_event *event) 9078 { 9079 return event->attr.namespaces; 9080 } 9081 9082 static void perf_event_namespaces_output(struct perf_event *event, 9083 void *data) 9084 { 9085 struct perf_namespaces_event *namespaces_event = data; 9086 struct perf_output_handle handle; 9087 struct perf_sample_data sample; 9088 u16 header_size = namespaces_event->event_id.header.size; 9089 int ret; 9090 9091 if (!perf_event_namespaces_match(event)) 9092 return; 9093 9094 perf_event_header__init_id(&namespaces_event->event_id.header, 9095 &sample, event); 9096 ret = perf_output_begin(&handle, &sample, event, 9097 namespaces_event->event_id.header.size); 9098 if (ret) 9099 goto out; 9100 9101 namespaces_event->event_id.pid = perf_event_pid(event, 9102 namespaces_event->task); 9103 namespaces_event->event_id.tid = perf_event_tid(event, 9104 namespaces_event->task); 9105 9106 perf_output_put(&handle, namespaces_event->event_id); 9107 9108 perf_event__output_id_sample(event, &handle, &sample); 9109 9110 perf_output_end(&handle); 9111 out: 9112 namespaces_event->event_id.header.size = header_size; 9113 } 9114 9115 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 9116 struct task_struct *task, 9117 const struct proc_ns_operations *ns_ops) 9118 { 9119 struct path ns_path; 9120 struct inode *ns_inode; 9121 int error; 9122 9123 error = ns_get_path(&ns_path, task, ns_ops); 9124 if (!error) { 9125 ns_inode = ns_path.dentry->d_inode; 9126 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 9127 ns_link_info->ino = ns_inode->i_ino; 9128 path_put(&ns_path); 9129 } 9130 } 9131 9132 void perf_event_namespaces(struct task_struct *task) 9133 { 9134 struct perf_namespaces_event namespaces_event; 9135 struct perf_ns_link_info *ns_link_info; 9136 9137 if (!atomic_read(&nr_namespaces_events)) 9138 return; 9139 9140 namespaces_event = (struct perf_namespaces_event){ 9141 .task = task, 9142 .event_id = { 9143 .header = { 9144 .type = PERF_RECORD_NAMESPACES, 9145 .misc = 0, 9146 .size = sizeof(namespaces_event.event_id), 9147 }, 9148 /* .pid */ 9149 /* .tid */ 9150 .nr_namespaces = NR_NAMESPACES, 9151 /* .link_info[NR_NAMESPACES] */ 9152 }, 9153 }; 9154 9155 ns_link_info = namespaces_event.event_id.link_info; 9156 9157 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 9158 task, &mntns_operations); 9159 9160 #ifdef CONFIG_USER_NS 9161 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 9162 task, &userns_operations); 9163 #endif 9164 #ifdef CONFIG_NET_NS 9165 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 9166 task, &netns_operations); 9167 #endif 9168 #ifdef CONFIG_UTS_NS 9169 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 9170 task, &utsns_operations); 9171 #endif 9172 #ifdef CONFIG_IPC_NS 9173 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 9174 task, &ipcns_operations); 9175 #endif 9176 #ifdef CONFIG_PID_NS 9177 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 9178 task, &pidns_operations); 9179 #endif 9180 #ifdef CONFIG_CGROUPS 9181 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 9182 task, &cgroupns_operations); 9183 #endif 9184 9185 perf_iterate_sb(perf_event_namespaces_output, 9186 &namespaces_event, 9187 NULL); 9188 } 9189 9190 /* 9191 * cgroup tracking 9192 */ 9193 #ifdef CONFIG_CGROUP_PERF 9194 9195 struct perf_cgroup_event { 9196 char *path; 9197 int path_size; 9198 struct { 9199 struct perf_event_header header; 9200 u64 id; 9201 char path[]; 9202 } event_id; 9203 }; 9204 9205 static int perf_event_cgroup_match(struct perf_event *event) 9206 { 9207 return event->attr.cgroup; 9208 } 9209 9210 static void perf_event_cgroup_output(struct perf_event *event, void *data) 9211 { 9212 struct perf_cgroup_event *cgroup_event = data; 9213 struct perf_output_handle handle; 9214 struct perf_sample_data sample; 9215 u16 header_size = cgroup_event->event_id.header.size; 9216 int ret; 9217 9218 if (!perf_event_cgroup_match(event)) 9219 return; 9220 9221 perf_event_header__init_id(&cgroup_event->event_id.header, 9222 &sample, event); 9223 ret = perf_output_begin(&handle, &sample, event, 9224 cgroup_event->event_id.header.size); 9225 if (ret) 9226 goto out; 9227 9228 perf_output_put(&handle, cgroup_event->event_id); 9229 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 9230 9231 perf_event__output_id_sample(event, &handle, &sample); 9232 9233 perf_output_end(&handle); 9234 out: 9235 cgroup_event->event_id.header.size = header_size; 9236 } 9237 9238 static void perf_event_cgroup(struct cgroup *cgrp) 9239 { 9240 struct perf_cgroup_event cgroup_event; 9241 char path_enomem[16] = "//enomem"; 9242 char *pathname; 9243 size_t size; 9244 9245 if (!atomic_read(&nr_cgroup_events)) 9246 return; 9247 9248 cgroup_event = (struct perf_cgroup_event){ 9249 .event_id = { 9250 .header = { 9251 .type = PERF_RECORD_CGROUP, 9252 .misc = 0, 9253 .size = sizeof(cgroup_event.event_id), 9254 }, 9255 .id = cgroup_id(cgrp), 9256 }, 9257 }; 9258 9259 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 9260 if (pathname == NULL) { 9261 cgroup_event.path = path_enomem; 9262 } else { 9263 /* just to be sure to have enough space for alignment */ 9264 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 9265 cgroup_event.path = pathname; 9266 } 9267 9268 /* 9269 * Since our buffer works in 8 byte units we need to align our string 9270 * size to a multiple of 8. However, we must guarantee the tail end is 9271 * zero'd out to avoid leaking random bits to userspace. 9272 */ 9273 size = strlen(cgroup_event.path) + 1; 9274 while (!IS_ALIGNED(size, sizeof(u64))) 9275 cgroup_event.path[size++] = '\0'; 9276 9277 cgroup_event.event_id.header.size += size; 9278 cgroup_event.path_size = size; 9279 9280 perf_iterate_sb(perf_event_cgroup_output, 9281 &cgroup_event, 9282 NULL); 9283 9284 kfree(pathname); 9285 } 9286 9287 #endif 9288 9289 /* 9290 * mmap tracking 9291 */ 9292 9293 struct perf_mmap_event { 9294 struct vm_area_struct *vma; 9295 9296 const char *file_name; 9297 int file_size; 9298 int maj, min; 9299 u64 ino; 9300 u64 ino_generation; 9301 u32 prot, flags; 9302 u8 build_id[BUILD_ID_SIZE_MAX]; 9303 u32 build_id_size; 9304 9305 struct { 9306 struct perf_event_header header; 9307 9308 u32 pid; 9309 u32 tid; 9310 u64 start; 9311 u64 len; 9312 u64 pgoff; 9313 } event_id; 9314 }; 9315 9316 static int perf_event_mmap_match(struct perf_event *event, 9317 void *data) 9318 { 9319 struct perf_mmap_event *mmap_event = data; 9320 struct vm_area_struct *vma = mmap_event->vma; 9321 int executable = vma->vm_flags & VM_EXEC; 9322 9323 return (!executable && event->attr.mmap_data) || 9324 (executable && (event->attr.mmap || event->attr.mmap2)); 9325 } 9326 9327 static void perf_event_mmap_output(struct perf_event *event, 9328 void *data) 9329 { 9330 struct perf_mmap_event *mmap_event = data; 9331 struct perf_output_handle handle; 9332 struct perf_sample_data sample; 9333 int size = mmap_event->event_id.header.size; 9334 u32 type = mmap_event->event_id.header.type; 9335 bool use_build_id; 9336 int ret; 9337 9338 if (!perf_event_mmap_match(event, data)) 9339 return; 9340 9341 if (event->attr.mmap2) { 9342 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 9343 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 9344 mmap_event->event_id.header.size += sizeof(mmap_event->min); 9345 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 9346 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 9347 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 9348 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 9349 } 9350 9351 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 9352 ret = perf_output_begin(&handle, &sample, event, 9353 mmap_event->event_id.header.size); 9354 if (ret) 9355 goto out; 9356 9357 mmap_event->event_id.pid = perf_event_pid(event, current); 9358 mmap_event->event_id.tid = perf_event_tid(event, current); 9359 9360 use_build_id = event->attr.build_id && mmap_event->build_id_size; 9361 9362 if (event->attr.mmap2 && use_build_id) 9363 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 9364 9365 perf_output_put(&handle, mmap_event->event_id); 9366 9367 if (event->attr.mmap2) { 9368 if (use_build_id) { 9369 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 9370 9371 __output_copy(&handle, size, 4); 9372 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 9373 } else { 9374 perf_output_put(&handle, mmap_event->maj); 9375 perf_output_put(&handle, mmap_event->min); 9376 perf_output_put(&handle, mmap_event->ino); 9377 perf_output_put(&handle, mmap_event->ino_generation); 9378 } 9379 perf_output_put(&handle, mmap_event->prot); 9380 perf_output_put(&handle, mmap_event->flags); 9381 } 9382 9383 __output_copy(&handle, mmap_event->file_name, 9384 mmap_event->file_size); 9385 9386 perf_event__output_id_sample(event, &handle, &sample); 9387 9388 perf_output_end(&handle); 9389 out: 9390 mmap_event->event_id.header.size = size; 9391 mmap_event->event_id.header.type = type; 9392 } 9393 9394 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 9395 { 9396 struct vm_area_struct *vma = mmap_event->vma; 9397 struct file *file = vma->vm_file; 9398 int maj = 0, min = 0; 9399 u64 ino = 0, gen = 0; 9400 u32 prot = 0, flags = 0; 9401 unsigned int size; 9402 char tmp[16]; 9403 char *buf = NULL; 9404 char *name = NULL; 9405 9406 if (vma->vm_flags & VM_READ) 9407 prot |= PROT_READ; 9408 if (vma->vm_flags & VM_WRITE) 9409 prot |= PROT_WRITE; 9410 if (vma->vm_flags & VM_EXEC) 9411 prot |= PROT_EXEC; 9412 9413 if (vma->vm_flags & VM_MAYSHARE) 9414 flags = MAP_SHARED; 9415 else 9416 flags = MAP_PRIVATE; 9417 9418 if (vma->vm_flags & VM_LOCKED) 9419 flags |= MAP_LOCKED; 9420 if (is_vm_hugetlb_page(vma)) 9421 flags |= MAP_HUGETLB; 9422 9423 if (file) { 9424 const struct inode *inode; 9425 dev_t dev; 9426 9427 buf = kmalloc(PATH_MAX, GFP_KERNEL); 9428 if (!buf) { 9429 name = "//enomem"; 9430 goto cpy_name; 9431 } 9432 /* 9433 * d_path() works from the end of the rb backwards, so we 9434 * need to add enough zero bytes after the string to handle 9435 * the 64bit alignment we do later. 9436 */ 9437 name = d_path(file_user_path(file), buf, PATH_MAX - sizeof(u64)); 9438 if (IS_ERR(name)) { 9439 name = "//toolong"; 9440 goto cpy_name; 9441 } 9442 inode = file_user_inode(vma->vm_file); 9443 dev = inode->i_sb->s_dev; 9444 ino = inode->i_ino; 9445 gen = inode->i_generation; 9446 maj = MAJOR(dev); 9447 min = MINOR(dev); 9448 9449 goto got_name; 9450 } else { 9451 if (vma->vm_ops && vma->vm_ops->name) 9452 name = (char *) vma->vm_ops->name(vma); 9453 if (!name) 9454 name = (char *)arch_vma_name(vma); 9455 if (!name) { 9456 if (vma_is_initial_heap(vma)) 9457 name = "[heap]"; 9458 else if (vma_is_initial_stack(vma)) 9459 name = "[stack]"; 9460 else 9461 name = "//anon"; 9462 } 9463 } 9464 9465 cpy_name: 9466 strscpy(tmp, name); 9467 name = tmp; 9468 got_name: 9469 /* 9470 * Since our buffer works in 8 byte units we need to align our string 9471 * size to a multiple of 8. However, we must guarantee the tail end is 9472 * zero'd out to avoid leaking random bits to userspace. 9473 */ 9474 size = strlen(name)+1; 9475 while (!IS_ALIGNED(size, sizeof(u64))) 9476 name[size++] = '\0'; 9477 9478 mmap_event->file_name = name; 9479 mmap_event->file_size = size; 9480 mmap_event->maj = maj; 9481 mmap_event->min = min; 9482 mmap_event->ino = ino; 9483 mmap_event->ino_generation = gen; 9484 mmap_event->prot = prot; 9485 mmap_event->flags = flags; 9486 9487 if (!(vma->vm_flags & VM_EXEC)) 9488 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 9489 9490 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 9491 9492 if (atomic_read(&nr_build_id_events)) 9493 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 9494 9495 perf_iterate_sb(perf_event_mmap_output, 9496 mmap_event, 9497 NULL); 9498 9499 kfree(buf); 9500 } 9501 9502 /* 9503 * Check whether inode and address range match filter criteria. 9504 */ 9505 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 9506 struct file *file, unsigned long offset, 9507 unsigned long size) 9508 { 9509 /* d_inode(NULL) won't be equal to any mapped user-space file */ 9510 if (!filter->path.dentry) 9511 return false; 9512 9513 if (d_inode(filter->path.dentry) != file_user_inode(file)) 9514 return false; 9515 9516 if (filter->offset > offset + size) 9517 return false; 9518 9519 if (filter->offset + filter->size < offset) 9520 return false; 9521 9522 return true; 9523 } 9524 9525 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 9526 struct vm_area_struct *vma, 9527 struct perf_addr_filter_range *fr) 9528 { 9529 unsigned long vma_size = vma->vm_end - vma->vm_start; 9530 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9531 struct file *file = vma->vm_file; 9532 9533 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9534 return false; 9535 9536 if (filter->offset < off) { 9537 fr->start = vma->vm_start; 9538 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9539 } else { 9540 fr->start = vma->vm_start + filter->offset - off; 9541 fr->size = min(vma->vm_end - fr->start, filter->size); 9542 } 9543 9544 return true; 9545 } 9546 9547 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9548 { 9549 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9550 struct vm_area_struct *vma = data; 9551 struct perf_addr_filter *filter; 9552 unsigned int restart = 0, count = 0; 9553 unsigned long flags; 9554 9555 if (!has_addr_filter(event)) 9556 return; 9557 9558 if (!vma->vm_file) 9559 return; 9560 9561 raw_spin_lock_irqsave(&ifh->lock, flags); 9562 list_for_each_entry(filter, &ifh->list, entry) { 9563 if (perf_addr_filter_vma_adjust(filter, vma, 9564 &event->addr_filter_ranges[count])) 9565 restart++; 9566 9567 count++; 9568 } 9569 9570 if (restart) 9571 event->addr_filters_gen++; 9572 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9573 9574 if (restart) 9575 perf_event_stop(event, 1); 9576 } 9577 9578 /* 9579 * Adjust all task's events' filters to the new vma 9580 */ 9581 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9582 { 9583 struct perf_event_context *ctx; 9584 9585 /* 9586 * Data tracing isn't supported yet and as such there is no need 9587 * to keep track of anything that isn't related to executable code: 9588 */ 9589 if (!(vma->vm_flags & VM_EXEC)) 9590 return; 9591 9592 rcu_read_lock(); 9593 ctx = rcu_dereference(current->perf_event_ctxp); 9594 if (ctx) 9595 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9596 rcu_read_unlock(); 9597 } 9598 9599 void perf_event_mmap(struct vm_area_struct *vma) 9600 { 9601 struct perf_mmap_event mmap_event; 9602 9603 if (!atomic_read(&nr_mmap_events)) 9604 return; 9605 9606 mmap_event = (struct perf_mmap_event){ 9607 .vma = vma, 9608 /* .file_name */ 9609 /* .file_size */ 9610 .event_id = { 9611 .header = { 9612 .type = PERF_RECORD_MMAP, 9613 .misc = PERF_RECORD_MISC_USER, 9614 /* .size */ 9615 }, 9616 /* .pid */ 9617 /* .tid */ 9618 .start = vma->vm_start, 9619 .len = vma->vm_end - vma->vm_start, 9620 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9621 }, 9622 /* .maj (attr_mmap2 only) */ 9623 /* .min (attr_mmap2 only) */ 9624 /* .ino (attr_mmap2 only) */ 9625 /* .ino_generation (attr_mmap2 only) */ 9626 /* .prot (attr_mmap2 only) */ 9627 /* .flags (attr_mmap2 only) */ 9628 }; 9629 9630 perf_addr_filters_adjust(vma); 9631 perf_event_mmap_event(&mmap_event); 9632 } 9633 9634 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9635 unsigned long size, u64 flags) 9636 { 9637 struct perf_output_handle handle; 9638 struct perf_sample_data sample; 9639 struct perf_aux_event { 9640 struct perf_event_header header; 9641 u64 offset; 9642 u64 size; 9643 u64 flags; 9644 } rec = { 9645 .header = { 9646 .type = PERF_RECORD_AUX, 9647 .misc = 0, 9648 .size = sizeof(rec), 9649 }, 9650 .offset = head, 9651 .size = size, 9652 .flags = flags, 9653 }; 9654 int ret; 9655 9656 perf_event_header__init_id(&rec.header, &sample, event); 9657 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9658 9659 if (ret) 9660 return; 9661 9662 perf_output_put(&handle, rec); 9663 perf_event__output_id_sample(event, &handle, &sample); 9664 9665 perf_output_end(&handle); 9666 } 9667 9668 /* 9669 * Lost/dropped samples logging 9670 */ 9671 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9672 { 9673 struct perf_output_handle handle; 9674 struct perf_sample_data sample; 9675 int ret; 9676 9677 struct { 9678 struct perf_event_header header; 9679 u64 lost; 9680 } lost_samples_event = { 9681 .header = { 9682 .type = PERF_RECORD_LOST_SAMPLES, 9683 .misc = 0, 9684 .size = sizeof(lost_samples_event), 9685 }, 9686 .lost = lost, 9687 }; 9688 9689 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9690 9691 ret = perf_output_begin(&handle, &sample, event, 9692 lost_samples_event.header.size); 9693 if (ret) 9694 return; 9695 9696 perf_output_put(&handle, lost_samples_event); 9697 perf_event__output_id_sample(event, &handle, &sample); 9698 perf_output_end(&handle); 9699 } 9700 9701 /* 9702 * context_switch tracking 9703 */ 9704 9705 struct perf_switch_event { 9706 struct task_struct *task; 9707 struct task_struct *next_prev; 9708 9709 struct { 9710 struct perf_event_header header; 9711 u32 next_prev_pid; 9712 u32 next_prev_tid; 9713 } event_id; 9714 }; 9715 9716 static int perf_event_switch_match(struct perf_event *event) 9717 { 9718 return event->attr.context_switch; 9719 } 9720 9721 static void perf_event_switch_output(struct perf_event *event, void *data) 9722 { 9723 struct perf_switch_event *se = data; 9724 struct perf_output_handle handle; 9725 struct perf_sample_data sample; 9726 int ret; 9727 9728 if (!perf_event_switch_match(event)) 9729 return; 9730 9731 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9732 if (event->ctx->task) { 9733 se->event_id.header.type = PERF_RECORD_SWITCH; 9734 se->event_id.header.size = sizeof(se->event_id.header); 9735 } else { 9736 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9737 se->event_id.header.size = sizeof(se->event_id); 9738 se->event_id.next_prev_pid = 9739 perf_event_pid(event, se->next_prev); 9740 se->event_id.next_prev_tid = 9741 perf_event_tid(event, se->next_prev); 9742 } 9743 9744 perf_event_header__init_id(&se->event_id.header, &sample, event); 9745 9746 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9747 if (ret) 9748 return; 9749 9750 if (event->ctx->task) 9751 perf_output_put(&handle, se->event_id.header); 9752 else 9753 perf_output_put(&handle, se->event_id); 9754 9755 perf_event__output_id_sample(event, &handle, &sample); 9756 9757 perf_output_end(&handle); 9758 } 9759 9760 static void perf_event_switch(struct task_struct *task, 9761 struct task_struct *next_prev, bool sched_in) 9762 { 9763 struct perf_switch_event switch_event; 9764 9765 /* N.B. caller checks nr_switch_events != 0 */ 9766 9767 switch_event = (struct perf_switch_event){ 9768 .task = task, 9769 .next_prev = next_prev, 9770 .event_id = { 9771 .header = { 9772 /* .type */ 9773 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9774 /* .size */ 9775 }, 9776 /* .next_prev_pid */ 9777 /* .next_prev_tid */ 9778 }, 9779 }; 9780 9781 if (!sched_in && task_is_runnable(task)) { 9782 switch_event.event_id.header.misc |= 9783 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9784 } 9785 9786 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9787 } 9788 9789 /* 9790 * IRQ throttle logging 9791 */ 9792 9793 static void perf_log_throttle(struct perf_event *event, int enable) 9794 { 9795 struct perf_output_handle handle; 9796 struct perf_sample_data sample; 9797 int ret; 9798 9799 struct { 9800 struct perf_event_header header; 9801 u64 time; 9802 u64 id; 9803 u64 stream_id; 9804 } throttle_event = { 9805 .header = { 9806 .type = PERF_RECORD_THROTTLE, 9807 .misc = 0, 9808 .size = sizeof(throttle_event), 9809 }, 9810 .time = perf_event_clock(event), 9811 .id = primary_event_id(event), 9812 .stream_id = event->id, 9813 }; 9814 9815 if (enable) 9816 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9817 9818 perf_event_header__init_id(&throttle_event.header, &sample, event); 9819 9820 ret = perf_output_begin(&handle, &sample, event, 9821 throttle_event.header.size); 9822 if (ret) 9823 return; 9824 9825 perf_output_put(&handle, throttle_event); 9826 perf_event__output_id_sample(event, &handle, &sample); 9827 perf_output_end(&handle); 9828 } 9829 9830 /* 9831 * ksymbol register/unregister tracking 9832 */ 9833 9834 struct perf_ksymbol_event { 9835 const char *name; 9836 int name_len; 9837 struct { 9838 struct perf_event_header header; 9839 u64 addr; 9840 u32 len; 9841 u16 ksym_type; 9842 u16 flags; 9843 } event_id; 9844 }; 9845 9846 static int perf_event_ksymbol_match(struct perf_event *event) 9847 { 9848 return event->attr.ksymbol; 9849 } 9850 9851 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9852 { 9853 struct perf_ksymbol_event *ksymbol_event = data; 9854 struct perf_output_handle handle; 9855 struct perf_sample_data sample; 9856 int ret; 9857 9858 if (!perf_event_ksymbol_match(event)) 9859 return; 9860 9861 perf_event_header__init_id(&ksymbol_event->event_id.header, 9862 &sample, event); 9863 ret = perf_output_begin(&handle, &sample, event, 9864 ksymbol_event->event_id.header.size); 9865 if (ret) 9866 return; 9867 9868 perf_output_put(&handle, ksymbol_event->event_id); 9869 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9870 perf_event__output_id_sample(event, &handle, &sample); 9871 9872 perf_output_end(&handle); 9873 } 9874 9875 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9876 const char *sym) 9877 { 9878 struct perf_ksymbol_event ksymbol_event; 9879 char name[KSYM_NAME_LEN]; 9880 u16 flags = 0; 9881 int name_len; 9882 9883 if (!atomic_read(&nr_ksymbol_events)) 9884 return; 9885 9886 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9887 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9888 goto err; 9889 9890 strscpy(name, sym); 9891 name_len = strlen(name) + 1; 9892 while (!IS_ALIGNED(name_len, sizeof(u64))) 9893 name[name_len++] = '\0'; 9894 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9895 9896 if (unregister) 9897 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9898 9899 ksymbol_event = (struct perf_ksymbol_event){ 9900 .name = name, 9901 .name_len = name_len, 9902 .event_id = { 9903 .header = { 9904 .type = PERF_RECORD_KSYMBOL, 9905 .size = sizeof(ksymbol_event.event_id) + 9906 name_len, 9907 }, 9908 .addr = addr, 9909 .len = len, 9910 .ksym_type = ksym_type, 9911 .flags = flags, 9912 }, 9913 }; 9914 9915 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9916 return; 9917 err: 9918 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9919 } 9920 9921 /* 9922 * bpf program load/unload tracking 9923 */ 9924 9925 struct perf_bpf_event { 9926 struct bpf_prog *prog; 9927 struct { 9928 struct perf_event_header header; 9929 u16 type; 9930 u16 flags; 9931 u32 id; 9932 u8 tag[BPF_TAG_SIZE]; 9933 } event_id; 9934 }; 9935 9936 static int perf_event_bpf_match(struct perf_event *event) 9937 { 9938 return event->attr.bpf_event; 9939 } 9940 9941 static void perf_event_bpf_output(struct perf_event *event, void *data) 9942 { 9943 struct perf_bpf_event *bpf_event = data; 9944 struct perf_output_handle handle; 9945 struct perf_sample_data sample; 9946 int ret; 9947 9948 if (!perf_event_bpf_match(event)) 9949 return; 9950 9951 perf_event_header__init_id(&bpf_event->event_id.header, 9952 &sample, event); 9953 ret = perf_output_begin(&handle, &sample, event, 9954 bpf_event->event_id.header.size); 9955 if (ret) 9956 return; 9957 9958 perf_output_put(&handle, bpf_event->event_id); 9959 perf_event__output_id_sample(event, &handle, &sample); 9960 9961 perf_output_end(&handle); 9962 } 9963 9964 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9965 enum perf_bpf_event_type type) 9966 { 9967 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9968 int i; 9969 9970 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9971 (u64)(unsigned long)prog->bpf_func, 9972 prog->jited_len, unregister, 9973 prog->aux->ksym.name); 9974 9975 for (i = 1; i < prog->aux->func_cnt; i++) { 9976 struct bpf_prog *subprog = prog->aux->func[i]; 9977 9978 perf_event_ksymbol( 9979 PERF_RECORD_KSYMBOL_TYPE_BPF, 9980 (u64)(unsigned long)subprog->bpf_func, 9981 subprog->jited_len, unregister, 9982 subprog->aux->ksym.name); 9983 } 9984 } 9985 9986 void perf_event_bpf_event(struct bpf_prog *prog, 9987 enum perf_bpf_event_type type, 9988 u16 flags) 9989 { 9990 struct perf_bpf_event bpf_event; 9991 9992 switch (type) { 9993 case PERF_BPF_EVENT_PROG_LOAD: 9994 case PERF_BPF_EVENT_PROG_UNLOAD: 9995 if (atomic_read(&nr_ksymbol_events)) 9996 perf_event_bpf_emit_ksymbols(prog, type); 9997 break; 9998 default: 9999 return; 10000 } 10001 10002 if (!atomic_read(&nr_bpf_events)) 10003 return; 10004 10005 bpf_event = (struct perf_bpf_event){ 10006 .prog = prog, 10007 .event_id = { 10008 .header = { 10009 .type = PERF_RECORD_BPF_EVENT, 10010 .size = sizeof(bpf_event.event_id), 10011 }, 10012 .type = type, 10013 .flags = flags, 10014 .id = prog->aux->id, 10015 }, 10016 }; 10017 10018 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 10019 10020 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 10021 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 10022 } 10023 10024 struct perf_callchain_deferred_event { 10025 struct unwind_stacktrace *trace; 10026 struct { 10027 struct perf_event_header header; 10028 u64 cookie; 10029 u64 nr; 10030 u64 ips[]; 10031 } event; 10032 }; 10033 10034 static void perf_callchain_deferred_output(struct perf_event *event, void *data) 10035 { 10036 struct perf_callchain_deferred_event *deferred_event = data; 10037 struct perf_output_handle handle; 10038 struct perf_sample_data sample; 10039 int ret, size = deferred_event->event.header.size; 10040 10041 if (!event->attr.defer_output) 10042 return; 10043 10044 /* XXX do we really need sample_id_all for this ??? */ 10045 perf_event_header__init_id(&deferred_event->event.header, &sample, event); 10046 10047 ret = perf_output_begin(&handle, &sample, event, 10048 deferred_event->event.header.size); 10049 if (ret) 10050 goto out; 10051 10052 perf_output_put(&handle, deferred_event->event); 10053 for (int i = 0; i < deferred_event->trace->nr; i++) { 10054 u64 entry = deferred_event->trace->entries[i]; 10055 perf_output_put(&handle, entry); 10056 } 10057 perf_event__output_id_sample(event, &handle, &sample); 10058 10059 perf_output_end(&handle); 10060 out: 10061 deferred_event->event.header.size = size; 10062 } 10063 10064 static void perf_unwind_deferred_callback(struct unwind_work *work, 10065 struct unwind_stacktrace *trace, u64 cookie) 10066 { 10067 struct perf_callchain_deferred_event deferred_event = { 10068 .trace = trace, 10069 .event = { 10070 .header = { 10071 .type = PERF_RECORD_CALLCHAIN_DEFERRED, 10072 .misc = PERF_RECORD_MISC_USER, 10073 .size = sizeof(deferred_event.event) + 10074 (trace->nr * sizeof(u64)), 10075 }, 10076 .cookie = cookie, 10077 .nr = trace->nr, 10078 }, 10079 }; 10080 10081 perf_iterate_sb(perf_callchain_deferred_output, &deferred_event, NULL); 10082 } 10083 10084 struct perf_text_poke_event { 10085 const void *old_bytes; 10086 const void *new_bytes; 10087 size_t pad; 10088 u16 old_len; 10089 u16 new_len; 10090 10091 struct { 10092 struct perf_event_header header; 10093 10094 u64 addr; 10095 } event_id; 10096 }; 10097 10098 static int perf_event_text_poke_match(struct perf_event *event) 10099 { 10100 return event->attr.text_poke; 10101 } 10102 10103 static void perf_event_text_poke_output(struct perf_event *event, void *data) 10104 { 10105 struct perf_text_poke_event *text_poke_event = data; 10106 struct perf_output_handle handle; 10107 struct perf_sample_data sample; 10108 u64 padding = 0; 10109 int ret; 10110 10111 if (!perf_event_text_poke_match(event)) 10112 return; 10113 10114 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 10115 10116 ret = perf_output_begin(&handle, &sample, event, 10117 text_poke_event->event_id.header.size); 10118 if (ret) 10119 return; 10120 10121 perf_output_put(&handle, text_poke_event->event_id); 10122 perf_output_put(&handle, text_poke_event->old_len); 10123 perf_output_put(&handle, text_poke_event->new_len); 10124 10125 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 10126 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 10127 10128 if (text_poke_event->pad) 10129 __output_copy(&handle, &padding, text_poke_event->pad); 10130 10131 perf_event__output_id_sample(event, &handle, &sample); 10132 10133 perf_output_end(&handle); 10134 } 10135 10136 void perf_event_text_poke(const void *addr, const void *old_bytes, 10137 size_t old_len, const void *new_bytes, size_t new_len) 10138 { 10139 struct perf_text_poke_event text_poke_event; 10140 size_t tot, pad; 10141 10142 if (!atomic_read(&nr_text_poke_events)) 10143 return; 10144 10145 tot = sizeof(text_poke_event.old_len) + old_len; 10146 tot += sizeof(text_poke_event.new_len) + new_len; 10147 pad = ALIGN(tot, sizeof(u64)) - tot; 10148 10149 text_poke_event = (struct perf_text_poke_event){ 10150 .old_bytes = old_bytes, 10151 .new_bytes = new_bytes, 10152 .pad = pad, 10153 .old_len = old_len, 10154 .new_len = new_len, 10155 .event_id = { 10156 .header = { 10157 .type = PERF_RECORD_TEXT_POKE, 10158 .misc = PERF_RECORD_MISC_KERNEL, 10159 .size = sizeof(text_poke_event.event_id) + tot + pad, 10160 }, 10161 .addr = (unsigned long)addr, 10162 }, 10163 }; 10164 10165 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 10166 } 10167 10168 void perf_event_itrace_started(struct perf_event *event) 10169 { 10170 WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE); 10171 } 10172 10173 static void perf_log_itrace_start(struct perf_event *event) 10174 { 10175 struct perf_output_handle handle; 10176 struct perf_sample_data sample; 10177 struct perf_aux_event { 10178 struct perf_event_header header; 10179 u32 pid; 10180 u32 tid; 10181 } rec; 10182 int ret; 10183 10184 if (event->parent) 10185 event = event->parent; 10186 10187 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 10188 event->attach_state & PERF_ATTACH_ITRACE) 10189 return; 10190 10191 rec.header.type = PERF_RECORD_ITRACE_START; 10192 rec.header.misc = 0; 10193 rec.header.size = sizeof(rec); 10194 rec.pid = perf_event_pid(event, current); 10195 rec.tid = perf_event_tid(event, current); 10196 10197 perf_event_header__init_id(&rec.header, &sample, event); 10198 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10199 10200 if (ret) 10201 return; 10202 10203 perf_output_put(&handle, rec); 10204 perf_event__output_id_sample(event, &handle, &sample); 10205 10206 perf_output_end(&handle); 10207 } 10208 10209 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 10210 { 10211 struct perf_output_handle handle; 10212 struct perf_sample_data sample; 10213 struct perf_aux_event { 10214 struct perf_event_header header; 10215 u64 hw_id; 10216 } rec; 10217 int ret; 10218 10219 if (event->parent) 10220 event = event->parent; 10221 10222 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 10223 rec.header.misc = 0; 10224 rec.header.size = sizeof(rec); 10225 rec.hw_id = hw_id; 10226 10227 perf_event_header__init_id(&rec.header, &sample, event); 10228 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10229 10230 if (ret) 10231 return; 10232 10233 perf_output_put(&handle, rec); 10234 perf_event__output_id_sample(event, &handle, &sample); 10235 10236 perf_output_end(&handle); 10237 } 10238 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 10239 10240 static int 10241 __perf_event_account_interrupt(struct perf_event *event, int throttle) 10242 { 10243 struct hw_perf_event *hwc = &event->hw; 10244 int ret = 0; 10245 u64 seq; 10246 10247 seq = __this_cpu_read(perf_throttled_seq); 10248 if (seq != hwc->interrupts_seq) { 10249 hwc->interrupts_seq = seq; 10250 hwc->interrupts = 1; 10251 } else { 10252 hwc->interrupts++; 10253 } 10254 10255 if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) { 10256 __this_cpu_inc(perf_throttled_count); 10257 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 10258 perf_event_throttle_group(event); 10259 ret = 1; 10260 } 10261 10262 if (event->attr.freq) { 10263 u64 now = perf_clock(); 10264 s64 delta = now - hwc->freq_time_stamp; 10265 10266 hwc->freq_time_stamp = now; 10267 10268 if (delta > 0 && delta < 2*TICK_NSEC) 10269 perf_adjust_period(event, delta, hwc->last_period, true); 10270 } 10271 10272 return ret; 10273 } 10274 10275 int perf_event_account_interrupt(struct perf_event *event) 10276 { 10277 return __perf_event_account_interrupt(event, 1); 10278 } 10279 10280 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 10281 { 10282 /* 10283 * Due to interrupt latency (AKA "skid"), we may enter the 10284 * kernel before taking an overflow, even if the PMU is only 10285 * counting user events. 10286 */ 10287 if (event->attr.exclude_kernel && !user_mode(regs)) 10288 return false; 10289 10290 return true; 10291 } 10292 10293 #ifdef CONFIG_BPF_SYSCALL 10294 static int bpf_overflow_handler(struct perf_event *event, 10295 struct perf_sample_data *data, 10296 struct pt_regs *regs) 10297 { 10298 struct bpf_perf_event_data_kern ctx = { 10299 .data = data, 10300 .event = event, 10301 }; 10302 struct bpf_prog *prog; 10303 int ret = 0; 10304 10305 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10306 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10307 goto out; 10308 rcu_read_lock(); 10309 prog = READ_ONCE(event->prog); 10310 if (prog) { 10311 perf_prepare_sample(data, event, regs); 10312 ret = bpf_prog_run(prog, &ctx); 10313 } 10314 rcu_read_unlock(); 10315 out: 10316 __this_cpu_dec(bpf_prog_active); 10317 10318 return ret; 10319 } 10320 10321 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10322 struct bpf_prog *prog, 10323 u64 bpf_cookie) 10324 { 10325 if (event->overflow_handler_context) 10326 /* hw breakpoint or kernel counter */ 10327 return -EINVAL; 10328 10329 if (event->prog) 10330 return -EEXIST; 10331 10332 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10333 return -EINVAL; 10334 10335 if (event->attr.precise_ip && 10336 prog->call_get_stack && 10337 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10338 event->attr.exclude_callchain_kernel || 10339 event->attr.exclude_callchain_user)) { 10340 /* 10341 * On perf_event with precise_ip, calling bpf_get_stack() 10342 * may trigger unwinder warnings and occasional crashes. 10343 * bpf_get_[stack|stackid] works around this issue by using 10344 * callchain attached to perf_sample_data. If the 10345 * perf_event does not full (kernel and user) callchain 10346 * attached to perf_sample_data, do not allow attaching BPF 10347 * program that calls bpf_get_[stack|stackid]. 10348 */ 10349 return -EPROTO; 10350 } 10351 10352 event->prog = prog; 10353 event->bpf_cookie = bpf_cookie; 10354 return 0; 10355 } 10356 10357 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10358 { 10359 struct bpf_prog *prog = event->prog; 10360 10361 if (!prog) 10362 return; 10363 10364 event->prog = NULL; 10365 bpf_prog_put(prog); 10366 } 10367 #else 10368 static inline int bpf_overflow_handler(struct perf_event *event, 10369 struct perf_sample_data *data, 10370 struct pt_regs *regs) 10371 { 10372 return 1; 10373 } 10374 10375 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10376 struct bpf_prog *prog, 10377 u64 bpf_cookie) 10378 { 10379 return -EOPNOTSUPP; 10380 } 10381 10382 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10383 { 10384 } 10385 #endif 10386 10387 /* 10388 * Generic event overflow handling, sampling. 10389 */ 10390 10391 static int __perf_event_overflow(struct perf_event *event, 10392 int throttle, struct perf_sample_data *data, 10393 struct pt_regs *regs) 10394 { 10395 int events = atomic_read(&event->event_limit); 10396 int ret = 0; 10397 10398 /* 10399 * Non-sampling counters might still use the PMI to fold short 10400 * hardware counters, ignore those. 10401 */ 10402 if (unlikely(!is_sampling_event(event))) 10403 return 0; 10404 10405 ret = __perf_event_account_interrupt(event, throttle); 10406 10407 if (event->attr.aux_pause) 10408 perf_event_aux_pause(event->aux_event, true); 10409 10410 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 10411 !bpf_overflow_handler(event, data, regs)) 10412 goto out; 10413 10414 /* 10415 * XXX event_limit might not quite work as expected on inherited 10416 * events 10417 */ 10418 10419 event->pending_kill = POLL_IN; 10420 if (events && atomic_dec_and_test(&event->event_limit)) { 10421 ret = 1; 10422 event->pending_kill = POLL_HUP; 10423 perf_event_disable_inatomic(event); 10424 event->pmu->stop(event, 0); 10425 } 10426 10427 if (event->attr.sigtrap) { 10428 /* 10429 * The desired behaviour of sigtrap vs invalid samples is a bit 10430 * tricky; on the one hand, one should not loose the SIGTRAP if 10431 * it is the first event, on the other hand, we should also not 10432 * trigger the WARN or override the data address. 10433 */ 10434 bool valid_sample = sample_is_allowed(event, regs); 10435 unsigned int pending_id = 1; 10436 enum task_work_notify_mode notify_mode; 10437 10438 if (regs) 10439 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 10440 10441 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 10442 10443 if (!event->pending_work && 10444 !task_work_add(current, &event->pending_task, notify_mode)) { 10445 event->pending_work = pending_id; 10446 local_inc(&event->ctx->nr_no_switch_fast); 10447 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 10448 10449 event->pending_addr = 0; 10450 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 10451 event->pending_addr = data->addr; 10452 10453 } else if (event->attr.exclude_kernel && valid_sample) { 10454 /* 10455 * Should not be able to return to user space without 10456 * consuming pending_work; with exceptions: 10457 * 10458 * 1. Where !exclude_kernel, events can overflow again 10459 * in the kernel without returning to user space. 10460 * 10461 * 2. Events that can overflow again before the IRQ- 10462 * work without user space progress (e.g. hrtimer). 10463 * To approximate progress (with false negatives), 10464 * check 32-bit hash of the current IP. 10465 */ 10466 WARN_ON_ONCE(event->pending_work != pending_id); 10467 } 10468 } 10469 10470 READ_ONCE(event->overflow_handler)(event, data, regs); 10471 10472 if (*perf_event_fasync(event) && event->pending_kill) { 10473 event->pending_wakeup = 1; 10474 irq_work_queue(&event->pending_irq); 10475 } 10476 out: 10477 if (event->attr.aux_resume) 10478 perf_event_aux_pause(event->aux_event, false); 10479 10480 return ret; 10481 } 10482 10483 int perf_event_overflow(struct perf_event *event, 10484 struct perf_sample_data *data, 10485 struct pt_regs *regs) 10486 { 10487 return __perf_event_overflow(event, 1, data, regs); 10488 } 10489 10490 /* 10491 * Generic software event infrastructure 10492 */ 10493 10494 struct swevent_htable { 10495 struct swevent_hlist *swevent_hlist; 10496 struct mutex hlist_mutex; 10497 int hlist_refcount; 10498 }; 10499 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 10500 10501 /* 10502 * We directly increment event->count and keep a second value in 10503 * event->hw.period_left to count intervals. This period event 10504 * is kept in the range [-sample_period, 0] so that we can use the 10505 * sign as trigger. 10506 */ 10507 10508 u64 perf_swevent_set_period(struct perf_event *event) 10509 { 10510 struct hw_perf_event *hwc = &event->hw; 10511 u64 period = hwc->last_period; 10512 u64 nr, offset; 10513 s64 old, val; 10514 10515 hwc->last_period = hwc->sample_period; 10516 10517 old = local64_read(&hwc->period_left); 10518 do { 10519 val = old; 10520 if (val < 0) 10521 return 0; 10522 10523 nr = div64_u64(period + val, period); 10524 offset = nr * period; 10525 val -= offset; 10526 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 10527 10528 return nr; 10529 } 10530 10531 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 10532 struct perf_sample_data *data, 10533 struct pt_regs *regs) 10534 { 10535 struct hw_perf_event *hwc = &event->hw; 10536 int throttle = 0; 10537 10538 if (!overflow) 10539 overflow = perf_swevent_set_period(event); 10540 10541 if (hwc->interrupts == MAX_INTERRUPTS) 10542 return; 10543 10544 for (; overflow; overflow--) { 10545 if (__perf_event_overflow(event, throttle, 10546 data, regs)) { 10547 /* 10548 * We inhibit the overflow from happening when 10549 * hwc->interrupts == MAX_INTERRUPTS. 10550 */ 10551 break; 10552 } 10553 throttle = 1; 10554 } 10555 } 10556 10557 static void perf_swevent_event(struct perf_event *event, u64 nr, 10558 struct perf_sample_data *data, 10559 struct pt_regs *regs) 10560 { 10561 struct hw_perf_event *hwc = &event->hw; 10562 10563 local64_add(nr, &event->count); 10564 10565 if (!regs) 10566 return; 10567 10568 if (!is_sampling_event(event)) 10569 return; 10570 10571 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 10572 data->period = nr; 10573 return perf_swevent_overflow(event, 1, data, regs); 10574 } else 10575 data->period = event->hw.last_period; 10576 10577 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 10578 return perf_swevent_overflow(event, 1, data, regs); 10579 10580 if (local64_add_negative(nr, &hwc->period_left)) 10581 return; 10582 10583 perf_swevent_overflow(event, 0, data, regs); 10584 } 10585 10586 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) 10587 { 10588 if (event->hw.state & PERF_HES_STOPPED) 10589 return 1; 10590 10591 if (regs) { 10592 if (event->attr.exclude_user && user_mode(regs)) 10593 return 1; 10594 10595 if (event->attr.exclude_kernel && !user_mode(regs)) 10596 return 1; 10597 } 10598 10599 return 0; 10600 } 10601 10602 static int perf_swevent_match(struct perf_event *event, 10603 enum perf_type_id type, 10604 u32 event_id, 10605 struct perf_sample_data *data, 10606 struct pt_regs *regs) 10607 { 10608 if (event->attr.type != type) 10609 return 0; 10610 10611 if (event->attr.config != event_id) 10612 return 0; 10613 10614 if (perf_exclude_event(event, regs)) 10615 return 0; 10616 10617 return 1; 10618 } 10619 10620 static inline u64 swevent_hash(u64 type, u32 event_id) 10621 { 10622 u64 val = event_id | (type << 32); 10623 10624 return hash_64(val, SWEVENT_HLIST_BITS); 10625 } 10626 10627 static inline struct hlist_head * 10628 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10629 { 10630 u64 hash = swevent_hash(type, event_id); 10631 10632 return &hlist->heads[hash]; 10633 } 10634 10635 /* For the read side: events when they trigger */ 10636 static inline struct hlist_head * 10637 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10638 { 10639 struct swevent_hlist *hlist; 10640 10641 hlist = rcu_dereference(swhash->swevent_hlist); 10642 if (!hlist) 10643 return NULL; 10644 10645 return __find_swevent_head(hlist, type, event_id); 10646 } 10647 10648 /* For the event head insertion and removal in the hlist */ 10649 static inline struct hlist_head * 10650 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10651 { 10652 struct swevent_hlist *hlist; 10653 u32 event_id = event->attr.config; 10654 u64 type = event->attr.type; 10655 10656 /* 10657 * Event scheduling is always serialized against hlist allocation 10658 * and release. Which makes the protected version suitable here. 10659 * The context lock guarantees that. 10660 */ 10661 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10662 lockdep_is_held(&event->ctx->lock)); 10663 if (!hlist) 10664 return NULL; 10665 10666 return __find_swevent_head(hlist, type, event_id); 10667 } 10668 10669 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10670 u64 nr, 10671 struct perf_sample_data *data, 10672 struct pt_regs *regs) 10673 { 10674 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10675 struct perf_event *event; 10676 struct hlist_head *head; 10677 10678 rcu_read_lock(); 10679 head = find_swevent_head_rcu(swhash, type, event_id); 10680 if (!head) 10681 goto end; 10682 10683 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10684 if (perf_swevent_match(event, type, event_id, data, regs)) 10685 perf_swevent_event(event, nr, data, regs); 10686 } 10687 end: 10688 rcu_read_unlock(); 10689 } 10690 10691 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10692 10693 int perf_swevent_get_recursion_context(void) 10694 { 10695 return get_recursion_context(current->perf_recursion); 10696 } 10697 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10698 10699 void perf_swevent_put_recursion_context(int rctx) 10700 { 10701 put_recursion_context(current->perf_recursion, rctx); 10702 } 10703 10704 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10705 { 10706 struct perf_sample_data data; 10707 10708 if (WARN_ON_ONCE(!regs)) 10709 return; 10710 10711 perf_sample_data_init(&data, addr, 0); 10712 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10713 } 10714 10715 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10716 { 10717 int rctx; 10718 10719 preempt_disable_notrace(); 10720 rctx = perf_swevent_get_recursion_context(); 10721 if (unlikely(rctx < 0)) 10722 goto fail; 10723 10724 ___perf_sw_event(event_id, nr, regs, addr); 10725 10726 perf_swevent_put_recursion_context(rctx); 10727 fail: 10728 preempt_enable_notrace(); 10729 } 10730 10731 static void perf_swevent_read(struct perf_event *event) 10732 { 10733 } 10734 10735 static int perf_swevent_add(struct perf_event *event, int flags) 10736 { 10737 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10738 struct hw_perf_event *hwc = &event->hw; 10739 struct hlist_head *head; 10740 10741 if (is_sampling_event(event)) { 10742 hwc->last_period = hwc->sample_period; 10743 perf_swevent_set_period(event); 10744 } 10745 10746 hwc->state = !(flags & PERF_EF_START); 10747 10748 head = find_swevent_head(swhash, event); 10749 if (WARN_ON_ONCE(!head)) 10750 return -EINVAL; 10751 10752 hlist_add_head_rcu(&event->hlist_entry, head); 10753 perf_event_update_userpage(event); 10754 10755 return 0; 10756 } 10757 10758 static void perf_swevent_del(struct perf_event *event, int flags) 10759 { 10760 hlist_del_rcu(&event->hlist_entry); 10761 } 10762 10763 static void perf_swevent_start(struct perf_event *event, int flags) 10764 { 10765 event->hw.state = 0; 10766 } 10767 10768 static void perf_swevent_stop(struct perf_event *event, int flags) 10769 { 10770 event->hw.state = PERF_HES_STOPPED; 10771 } 10772 10773 /* Deref the hlist from the update side */ 10774 static inline struct swevent_hlist * 10775 swevent_hlist_deref(struct swevent_htable *swhash) 10776 { 10777 return rcu_dereference_protected(swhash->swevent_hlist, 10778 lockdep_is_held(&swhash->hlist_mutex)); 10779 } 10780 10781 static void swevent_hlist_release(struct swevent_htable *swhash) 10782 { 10783 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10784 10785 if (!hlist) 10786 return; 10787 10788 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10789 kfree_rcu(hlist, rcu_head); 10790 } 10791 10792 static void swevent_hlist_put_cpu(int cpu) 10793 { 10794 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10795 10796 mutex_lock(&swhash->hlist_mutex); 10797 10798 if (!--swhash->hlist_refcount) 10799 swevent_hlist_release(swhash); 10800 10801 mutex_unlock(&swhash->hlist_mutex); 10802 } 10803 10804 static void swevent_hlist_put(void) 10805 { 10806 int cpu; 10807 10808 for_each_possible_cpu(cpu) 10809 swevent_hlist_put_cpu(cpu); 10810 } 10811 10812 static int swevent_hlist_get_cpu(int cpu) 10813 { 10814 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10815 int err = 0; 10816 10817 mutex_lock(&swhash->hlist_mutex); 10818 if (!swevent_hlist_deref(swhash) && 10819 cpumask_test_cpu(cpu, perf_online_mask)) { 10820 struct swevent_hlist *hlist; 10821 10822 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10823 if (!hlist) { 10824 err = -ENOMEM; 10825 goto exit; 10826 } 10827 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10828 } 10829 swhash->hlist_refcount++; 10830 exit: 10831 mutex_unlock(&swhash->hlist_mutex); 10832 10833 return err; 10834 } 10835 10836 static int swevent_hlist_get(void) 10837 { 10838 int err, cpu, failed_cpu; 10839 10840 mutex_lock(&pmus_lock); 10841 for_each_possible_cpu(cpu) { 10842 err = swevent_hlist_get_cpu(cpu); 10843 if (err) { 10844 failed_cpu = cpu; 10845 goto fail; 10846 } 10847 } 10848 mutex_unlock(&pmus_lock); 10849 return 0; 10850 fail: 10851 for_each_possible_cpu(cpu) { 10852 if (cpu == failed_cpu) 10853 break; 10854 swevent_hlist_put_cpu(cpu); 10855 } 10856 mutex_unlock(&pmus_lock); 10857 return err; 10858 } 10859 10860 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10861 10862 static void sw_perf_event_destroy(struct perf_event *event) 10863 { 10864 u64 event_id = event->attr.config; 10865 10866 WARN_ON(event->parent); 10867 10868 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10869 swevent_hlist_put(); 10870 } 10871 10872 static struct pmu perf_cpu_clock; /* fwd declaration */ 10873 static struct pmu perf_task_clock; 10874 10875 static int perf_swevent_init(struct perf_event *event) 10876 { 10877 u64 event_id = event->attr.config; 10878 10879 if (event->attr.type != PERF_TYPE_SOFTWARE) 10880 return -ENOENT; 10881 10882 /* 10883 * no branch sampling for software events 10884 */ 10885 if (has_branch_stack(event)) 10886 return -EOPNOTSUPP; 10887 10888 switch (event_id) { 10889 case PERF_COUNT_SW_CPU_CLOCK: 10890 event->attr.type = perf_cpu_clock.type; 10891 return -ENOENT; 10892 case PERF_COUNT_SW_TASK_CLOCK: 10893 event->attr.type = perf_task_clock.type; 10894 return -ENOENT; 10895 10896 default: 10897 break; 10898 } 10899 10900 if (event_id >= PERF_COUNT_SW_MAX) 10901 return -ENOENT; 10902 10903 if (!event->parent) { 10904 int err; 10905 10906 err = swevent_hlist_get(); 10907 if (err) 10908 return err; 10909 10910 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10911 event->destroy = sw_perf_event_destroy; 10912 } 10913 10914 return 0; 10915 } 10916 10917 static struct pmu perf_swevent = { 10918 .task_ctx_nr = perf_sw_context, 10919 10920 .capabilities = PERF_PMU_CAP_NO_NMI, 10921 10922 .event_init = perf_swevent_init, 10923 .add = perf_swevent_add, 10924 .del = perf_swevent_del, 10925 .start = perf_swevent_start, 10926 .stop = perf_swevent_stop, 10927 .read = perf_swevent_read, 10928 }; 10929 10930 #ifdef CONFIG_EVENT_TRACING 10931 10932 static void tp_perf_event_destroy(struct perf_event *event) 10933 { 10934 perf_trace_destroy(event); 10935 } 10936 10937 static int perf_tp_event_init(struct perf_event *event) 10938 { 10939 int err; 10940 10941 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10942 return -ENOENT; 10943 10944 /* 10945 * no branch sampling for tracepoint events 10946 */ 10947 if (has_branch_stack(event)) 10948 return -EOPNOTSUPP; 10949 10950 err = perf_trace_init(event); 10951 if (err) 10952 return err; 10953 10954 event->destroy = tp_perf_event_destroy; 10955 10956 return 0; 10957 } 10958 10959 static struct pmu perf_tracepoint = { 10960 .task_ctx_nr = perf_sw_context, 10961 10962 .event_init = perf_tp_event_init, 10963 .add = perf_trace_add, 10964 .del = perf_trace_del, 10965 .start = perf_swevent_start, 10966 .stop = perf_swevent_stop, 10967 .read = perf_swevent_read, 10968 }; 10969 10970 static int perf_tp_filter_match(struct perf_event *event, 10971 struct perf_raw_record *raw) 10972 { 10973 void *record = raw->frag.data; 10974 10975 /* only top level events have filters set */ 10976 if (event->parent) 10977 event = event->parent; 10978 10979 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10980 return 1; 10981 return 0; 10982 } 10983 10984 static int perf_tp_event_match(struct perf_event *event, 10985 struct perf_raw_record *raw, 10986 struct pt_regs *regs) 10987 { 10988 if (event->hw.state & PERF_HES_STOPPED) 10989 return 0; 10990 /* 10991 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10992 */ 10993 if (event->attr.exclude_kernel && !user_mode(regs)) 10994 return 0; 10995 10996 if (!perf_tp_filter_match(event, raw)) 10997 return 0; 10998 10999 return 1; 11000 } 11001 11002 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 11003 struct trace_event_call *call, u64 count, 11004 struct pt_regs *regs, struct hlist_head *head, 11005 struct task_struct *task) 11006 { 11007 if (bpf_prog_array_valid(call)) { 11008 *(struct pt_regs **)raw_data = regs; 11009 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 11010 perf_swevent_put_recursion_context(rctx); 11011 return; 11012 } 11013 } 11014 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 11015 rctx, task); 11016 } 11017 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 11018 11019 static void __perf_tp_event_target_task(u64 count, void *record, 11020 struct pt_regs *regs, 11021 struct perf_sample_data *data, 11022 struct perf_raw_record *raw, 11023 struct perf_event *event) 11024 { 11025 struct trace_entry *entry = record; 11026 11027 if (event->attr.config != entry->type) 11028 return; 11029 /* Cannot deliver synchronous signal to other task. */ 11030 if (event->attr.sigtrap) 11031 return; 11032 if (perf_tp_event_match(event, raw, regs)) { 11033 perf_sample_data_init(data, 0, 0); 11034 perf_sample_save_raw_data(data, event, raw); 11035 perf_swevent_event(event, count, data, regs); 11036 } 11037 } 11038 11039 static void perf_tp_event_target_task(u64 count, void *record, 11040 struct pt_regs *regs, 11041 struct perf_sample_data *data, 11042 struct perf_raw_record *raw, 11043 struct perf_event_context *ctx) 11044 { 11045 unsigned int cpu = smp_processor_id(); 11046 struct pmu *pmu = &perf_tracepoint; 11047 struct perf_event *event, *sibling; 11048 11049 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 11050 __perf_tp_event_target_task(count, record, regs, data, raw, event); 11051 for_each_sibling_event(sibling, event) 11052 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 11053 } 11054 11055 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 11056 __perf_tp_event_target_task(count, record, regs, data, raw, event); 11057 for_each_sibling_event(sibling, event) 11058 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 11059 } 11060 } 11061 11062 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 11063 struct pt_regs *regs, struct hlist_head *head, int rctx, 11064 struct task_struct *task) 11065 { 11066 struct perf_sample_data data; 11067 struct perf_event *event; 11068 11069 struct perf_raw_record raw = { 11070 .frag = { 11071 .size = entry_size, 11072 .data = record, 11073 }, 11074 }; 11075 11076 perf_trace_buf_update(record, event_type); 11077 11078 hlist_for_each_entry_rcu(event, head, hlist_entry) { 11079 if (perf_tp_event_match(event, &raw, regs)) { 11080 /* 11081 * Here use the same on-stack perf_sample_data, 11082 * some members in data are event-specific and 11083 * need to be re-computed for different sweveents. 11084 * Re-initialize data->sample_flags safely to avoid 11085 * the problem that next event skips preparing data 11086 * because data->sample_flags is set. 11087 */ 11088 perf_sample_data_init(&data, 0, 0); 11089 perf_sample_save_raw_data(&data, event, &raw); 11090 perf_swevent_event(event, count, &data, regs); 11091 } 11092 } 11093 11094 /* 11095 * If we got specified a target task, also iterate its context and 11096 * deliver this event there too. 11097 */ 11098 if (task && task != current) { 11099 struct perf_event_context *ctx; 11100 11101 rcu_read_lock(); 11102 ctx = rcu_dereference(task->perf_event_ctxp); 11103 if (!ctx) 11104 goto unlock; 11105 11106 raw_spin_lock(&ctx->lock); 11107 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx); 11108 raw_spin_unlock(&ctx->lock); 11109 unlock: 11110 rcu_read_unlock(); 11111 } 11112 11113 perf_swevent_put_recursion_context(rctx); 11114 } 11115 EXPORT_SYMBOL_GPL(perf_tp_event); 11116 11117 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 11118 /* 11119 * Flags in config, used by dynamic PMU kprobe and uprobe 11120 * The flags should match following PMU_FORMAT_ATTR(). 11121 * 11122 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 11123 * if not set, create kprobe/uprobe 11124 * 11125 * The following values specify a reference counter (or semaphore in the 11126 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 11127 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 11128 * 11129 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 11130 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 11131 */ 11132 enum perf_probe_config { 11133 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 11134 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 11135 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 11136 }; 11137 11138 PMU_FORMAT_ATTR(retprobe, "config:0"); 11139 #endif 11140 11141 #ifdef CONFIG_KPROBE_EVENTS 11142 static struct attribute *kprobe_attrs[] = { 11143 &format_attr_retprobe.attr, 11144 NULL, 11145 }; 11146 11147 static struct attribute_group kprobe_format_group = { 11148 .name = "format", 11149 .attrs = kprobe_attrs, 11150 }; 11151 11152 static const struct attribute_group *kprobe_attr_groups[] = { 11153 &kprobe_format_group, 11154 NULL, 11155 }; 11156 11157 static int perf_kprobe_event_init(struct perf_event *event); 11158 static struct pmu perf_kprobe = { 11159 .task_ctx_nr = perf_sw_context, 11160 .event_init = perf_kprobe_event_init, 11161 .add = perf_trace_add, 11162 .del = perf_trace_del, 11163 .start = perf_swevent_start, 11164 .stop = perf_swevent_stop, 11165 .read = perf_swevent_read, 11166 .attr_groups = kprobe_attr_groups, 11167 }; 11168 11169 static int perf_kprobe_event_init(struct perf_event *event) 11170 { 11171 int err; 11172 bool is_retprobe; 11173 11174 if (event->attr.type != perf_kprobe.type) 11175 return -ENOENT; 11176 11177 if (!perfmon_capable()) 11178 return -EACCES; 11179 11180 /* 11181 * no branch sampling for probe events 11182 */ 11183 if (has_branch_stack(event)) 11184 return -EOPNOTSUPP; 11185 11186 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11187 err = perf_kprobe_init(event, is_retprobe); 11188 if (err) 11189 return err; 11190 11191 event->destroy = perf_kprobe_destroy; 11192 11193 return 0; 11194 } 11195 #endif /* CONFIG_KPROBE_EVENTS */ 11196 11197 #ifdef CONFIG_UPROBE_EVENTS 11198 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 11199 11200 static struct attribute *uprobe_attrs[] = { 11201 &format_attr_retprobe.attr, 11202 &format_attr_ref_ctr_offset.attr, 11203 NULL, 11204 }; 11205 11206 static struct attribute_group uprobe_format_group = { 11207 .name = "format", 11208 .attrs = uprobe_attrs, 11209 }; 11210 11211 static const struct attribute_group *uprobe_attr_groups[] = { 11212 &uprobe_format_group, 11213 NULL, 11214 }; 11215 11216 static int perf_uprobe_event_init(struct perf_event *event); 11217 static struct pmu perf_uprobe = { 11218 .task_ctx_nr = perf_sw_context, 11219 .event_init = perf_uprobe_event_init, 11220 .add = perf_trace_add, 11221 .del = perf_trace_del, 11222 .start = perf_swevent_start, 11223 .stop = perf_swevent_stop, 11224 .read = perf_swevent_read, 11225 .attr_groups = uprobe_attr_groups, 11226 }; 11227 11228 static int perf_uprobe_event_init(struct perf_event *event) 11229 { 11230 int err; 11231 unsigned long ref_ctr_offset; 11232 bool is_retprobe; 11233 11234 if (event->attr.type != perf_uprobe.type) 11235 return -ENOENT; 11236 11237 if (!capable(CAP_SYS_ADMIN)) 11238 return -EACCES; 11239 11240 /* 11241 * no branch sampling for probe events 11242 */ 11243 if (has_branch_stack(event)) 11244 return -EOPNOTSUPP; 11245 11246 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11247 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11248 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 11249 if (err) 11250 return err; 11251 11252 event->destroy = perf_uprobe_destroy; 11253 11254 return 0; 11255 } 11256 #endif /* CONFIG_UPROBE_EVENTS */ 11257 11258 static inline void perf_tp_register(void) 11259 { 11260 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 11261 #ifdef CONFIG_KPROBE_EVENTS 11262 perf_pmu_register(&perf_kprobe, "kprobe", -1); 11263 #endif 11264 #ifdef CONFIG_UPROBE_EVENTS 11265 perf_pmu_register(&perf_uprobe, "uprobe", -1); 11266 #endif 11267 } 11268 11269 static void perf_event_free_filter(struct perf_event *event) 11270 { 11271 ftrace_profile_free_filter(event); 11272 } 11273 11274 /* 11275 * returns true if the event is a tracepoint, or a kprobe/upprobe created 11276 * with perf_event_open() 11277 */ 11278 static inline bool perf_event_is_tracing(struct perf_event *event) 11279 { 11280 if (event->pmu == &perf_tracepoint) 11281 return true; 11282 #ifdef CONFIG_KPROBE_EVENTS 11283 if (event->pmu == &perf_kprobe) 11284 return true; 11285 #endif 11286 #ifdef CONFIG_UPROBE_EVENTS 11287 if (event->pmu == &perf_uprobe) 11288 return true; 11289 #endif 11290 return false; 11291 } 11292 11293 static int __perf_event_set_bpf_prog(struct perf_event *event, 11294 struct bpf_prog *prog, 11295 u64 bpf_cookie) 11296 { 11297 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 11298 11299 if (event->state <= PERF_EVENT_STATE_REVOKED) 11300 return -ENODEV; 11301 11302 if (!perf_event_is_tracing(event)) 11303 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 11304 11305 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 11306 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 11307 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 11308 is_syscall_tp = is_syscall_trace_event(event->tp_event); 11309 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 11310 /* bpf programs can only be attached to u/kprobe or tracepoint */ 11311 return -EINVAL; 11312 11313 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 11314 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 11315 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 11316 return -EINVAL; 11317 11318 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 11319 /* only uprobe programs are allowed to be sleepable */ 11320 return -EINVAL; 11321 11322 /* Kprobe override only works for kprobes, not uprobes. */ 11323 if (prog->kprobe_override && !is_kprobe) 11324 return -EINVAL; 11325 11326 /* Writing to context allowed only for uprobes. */ 11327 if (prog->aux->kprobe_write_ctx && !is_uprobe) 11328 return -EINVAL; 11329 11330 if (is_tracepoint || is_syscall_tp) { 11331 int off = trace_event_get_offsets(event->tp_event); 11332 11333 if (prog->aux->max_ctx_offset > off) 11334 return -EACCES; 11335 } 11336 11337 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 11338 } 11339 11340 int perf_event_set_bpf_prog(struct perf_event *event, 11341 struct bpf_prog *prog, 11342 u64 bpf_cookie) 11343 { 11344 struct perf_event_context *ctx; 11345 int ret; 11346 11347 ctx = perf_event_ctx_lock(event); 11348 ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie); 11349 perf_event_ctx_unlock(event, ctx); 11350 11351 return ret; 11352 } 11353 11354 void perf_event_free_bpf_prog(struct perf_event *event) 11355 { 11356 if (!event->prog) 11357 return; 11358 11359 if (!perf_event_is_tracing(event)) { 11360 perf_event_free_bpf_handler(event); 11361 return; 11362 } 11363 perf_event_detach_bpf_prog(event); 11364 } 11365 11366 #else 11367 11368 static inline void perf_tp_register(void) 11369 { 11370 } 11371 11372 static void perf_event_free_filter(struct perf_event *event) 11373 { 11374 } 11375 11376 static int __perf_event_set_bpf_prog(struct perf_event *event, 11377 struct bpf_prog *prog, 11378 u64 bpf_cookie) 11379 { 11380 return -ENOENT; 11381 } 11382 11383 int perf_event_set_bpf_prog(struct perf_event *event, 11384 struct bpf_prog *prog, 11385 u64 bpf_cookie) 11386 { 11387 return -ENOENT; 11388 } 11389 11390 void perf_event_free_bpf_prog(struct perf_event *event) 11391 { 11392 } 11393 #endif /* CONFIG_EVENT_TRACING */ 11394 11395 #ifdef CONFIG_HAVE_HW_BREAKPOINT 11396 void perf_bp_event(struct perf_event *bp, void *data) 11397 { 11398 struct perf_sample_data sample; 11399 struct pt_regs *regs = data; 11400 11401 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 11402 11403 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 11404 perf_swevent_event(bp, 1, &sample, regs); 11405 } 11406 #endif 11407 11408 /* 11409 * Allocate a new address filter 11410 */ 11411 static struct perf_addr_filter * 11412 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 11413 { 11414 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 11415 struct perf_addr_filter *filter; 11416 11417 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 11418 if (!filter) 11419 return NULL; 11420 11421 INIT_LIST_HEAD(&filter->entry); 11422 list_add_tail(&filter->entry, filters); 11423 11424 return filter; 11425 } 11426 11427 static void free_filters_list(struct list_head *filters) 11428 { 11429 struct perf_addr_filter *filter, *iter; 11430 11431 list_for_each_entry_safe(filter, iter, filters, entry) { 11432 path_put(&filter->path); 11433 list_del(&filter->entry); 11434 kfree(filter); 11435 } 11436 } 11437 11438 /* 11439 * Free existing address filters and optionally install new ones 11440 */ 11441 static void perf_addr_filters_splice(struct perf_event *event, 11442 struct list_head *head) 11443 { 11444 unsigned long flags; 11445 LIST_HEAD(list); 11446 11447 if (!has_addr_filter(event)) 11448 return; 11449 11450 /* don't bother with children, they don't have their own filters */ 11451 if (event->parent) 11452 return; 11453 11454 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 11455 11456 list_splice_init(&event->addr_filters.list, &list); 11457 if (head) 11458 list_splice(head, &event->addr_filters.list); 11459 11460 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 11461 11462 free_filters_list(&list); 11463 } 11464 11465 static void perf_free_addr_filters(struct perf_event *event) 11466 { 11467 /* 11468 * Used during free paths, there is no concurrency. 11469 */ 11470 if (list_empty(&event->addr_filters.list)) 11471 return; 11472 11473 perf_addr_filters_splice(event, NULL); 11474 } 11475 11476 /* 11477 * Scan through mm's vmas and see if one of them matches the 11478 * @filter; if so, adjust filter's address range. 11479 * Called with mm::mmap_lock down for reading. 11480 */ 11481 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 11482 struct mm_struct *mm, 11483 struct perf_addr_filter_range *fr) 11484 { 11485 struct vm_area_struct *vma; 11486 VMA_ITERATOR(vmi, mm, 0); 11487 11488 for_each_vma(vmi, vma) { 11489 if (!vma->vm_file) 11490 continue; 11491 11492 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 11493 return; 11494 } 11495 } 11496 11497 /* 11498 * Update event's address range filters based on the 11499 * task's existing mappings, if any. 11500 */ 11501 static void perf_event_addr_filters_apply(struct perf_event *event) 11502 { 11503 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11504 struct task_struct *task = READ_ONCE(event->ctx->task); 11505 struct perf_addr_filter *filter; 11506 struct mm_struct *mm = NULL; 11507 unsigned int count = 0; 11508 unsigned long flags; 11509 11510 /* 11511 * We may observe TASK_TOMBSTONE, which means that the event tear-down 11512 * will stop on the parent's child_mutex that our caller is also holding 11513 */ 11514 if (task == TASK_TOMBSTONE) 11515 return; 11516 11517 if (ifh->nr_file_filters) { 11518 mm = get_task_mm(task); 11519 if (!mm) 11520 goto restart; 11521 11522 mmap_read_lock(mm); 11523 } 11524 11525 raw_spin_lock_irqsave(&ifh->lock, flags); 11526 list_for_each_entry(filter, &ifh->list, entry) { 11527 if (filter->path.dentry) { 11528 /* 11529 * Adjust base offset if the filter is associated to a 11530 * binary that needs to be mapped: 11531 */ 11532 event->addr_filter_ranges[count].start = 0; 11533 event->addr_filter_ranges[count].size = 0; 11534 11535 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 11536 } else { 11537 event->addr_filter_ranges[count].start = filter->offset; 11538 event->addr_filter_ranges[count].size = filter->size; 11539 } 11540 11541 count++; 11542 } 11543 11544 event->addr_filters_gen++; 11545 raw_spin_unlock_irqrestore(&ifh->lock, flags); 11546 11547 if (ifh->nr_file_filters) { 11548 mmap_read_unlock(mm); 11549 11550 mmput(mm); 11551 } 11552 11553 restart: 11554 perf_event_stop(event, 1); 11555 } 11556 11557 /* 11558 * Address range filtering: limiting the data to certain 11559 * instruction address ranges. Filters are ioctl()ed to us from 11560 * userspace as ascii strings. 11561 * 11562 * Filter string format: 11563 * 11564 * ACTION RANGE_SPEC 11565 * where ACTION is one of the 11566 * * "filter": limit the trace to this region 11567 * * "start": start tracing from this address 11568 * * "stop": stop tracing at this address/region; 11569 * RANGE_SPEC is 11570 * * for kernel addresses: <start address>[/<size>] 11571 * * for object files: <start address>[/<size>]@</path/to/object/file> 11572 * 11573 * if <size> is not specified or is zero, the range is treated as a single 11574 * address; not valid for ACTION=="filter". 11575 */ 11576 enum { 11577 IF_ACT_NONE = -1, 11578 IF_ACT_FILTER, 11579 IF_ACT_START, 11580 IF_ACT_STOP, 11581 IF_SRC_FILE, 11582 IF_SRC_KERNEL, 11583 IF_SRC_FILEADDR, 11584 IF_SRC_KERNELADDR, 11585 }; 11586 11587 enum { 11588 IF_STATE_ACTION = 0, 11589 IF_STATE_SOURCE, 11590 IF_STATE_END, 11591 }; 11592 11593 static const match_table_t if_tokens = { 11594 { IF_ACT_FILTER, "filter" }, 11595 { IF_ACT_START, "start" }, 11596 { IF_ACT_STOP, "stop" }, 11597 { IF_SRC_FILE, "%u/%u@%s" }, 11598 { IF_SRC_KERNEL, "%u/%u" }, 11599 { IF_SRC_FILEADDR, "%u@%s" }, 11600 { IF_SRC_KERNELADDR, "%u" }, 11601 { IF_ACT_NONE, NULL }, 11602 }; 11603 11604 /* 11605 * Address filter string parser 11606 */ 11607 static int 11608 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 11609 struct list_head *filters) 11610 { 11611 struct perf_addr_filter *filter = NULL; 11612 char *start, *orig, *filename = NULL; 11613 substring_t args[MAX_OPT_ARGS]; 11614 int state = IF_STATE_ACTION, token; 11615 unsigned int kernel = 0; 11616 int ret = -EINVAL; 11617 11618 orig = fstr = kstrdup(fstr, GFP_KERNEL); 11619 if (!fstr) 11620 return -ENOMEM; 11621 11622 while ((start = strsep(&fstr, " ,\n")) != NULL) { 11623 static const enum perf_addr_filter_action_t actions[] = { 11624 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 11625 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 11626 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 11627 }; 11628 ret = -EINVAL; 11629 11630 if (!*start) 11631 continue; 11632 11633 /* filter definition begins */ 11634 if (state == IF_STATE_ACTION) { 11635 filter = perf_addr_filter_new(event, filters); 11636 if (!filter) 11637 goto fail; 11638 } 11639 11640 token = match_token(start, if_tokens, args); 11641 switch (token) { 11642 case IF_ACT_FILTER: 11643 case IF_ACT_START: 11644 case IF_ACT_STOP: 11645 if (state != IF_STATE_ACTION) 11646 goto fail; 11647 11648 filter->action = actions[token]; 11649 state = IF_STATE_SOURCE; 11650 break; 11651 11652 case IF_SRC_KERNELADDR: 11653 case IF_SRC_KERNEL: 11654 kernel = 1; 11655 fallthrough; 11656 11657 case IF_SRC_FILEADDR: 11658 case IF_SRC_FILE: 11659 if (state != IF_STATE_SOURCE) 11660 goto fail; 11661 11662 *args[0].to = 0; 11663 ret = kstrtoul(args[0].from, 0, &filter->offset); 11664 if (ret) 11665 goto fail; 11666 11667 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11668 *args[1].to = 0; 11669 ret = kstrtoul(args[1].from, 0, &filter->size); 11670 if (ret) 11671 goto fail; 11672 } 11673 11674 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11675 int fpos = token == IF_SRC_FILE ? 2 : 1; 11676 11677 kfree(filename); 11678 filename = match_strdup(&args[fpos]); 11679 if (!filename) { 11680 ret = -ENOMEM; 11681 goto fail; 11682 } 11683 } 11684 11685 state = IF_STATE_END; 11686 break; 11687 11688 default: 11689 goto fail; 11690 } 11691 11692 /* 11693 * Filter definition is fully parsed, validate and install it. 11694 * Make sure that it doesn't contradict itself or the event's 11695 * attribute. 11696 */ 11697 if (state == IF_STATE_END) { 11698 ret = -EINVAL; 11699 11700 /* 11701 * ACTION "filter" must have a non-zero length region 11702 * specified. 11703 */ 11704 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11705 !filter->size) 11706 goto fail; 11707 11708 if (!kernel) { 11709 if (!filename) 11710 goto fail; 11711 11712 /* 11713 * For now, we only support file-based filters 11714 * in per-task events; doing so for CPU-wide 11715 * events requires additional context switching 11716 * trickery, since same object code will be 11717 * mapped at different virtual addresses in 11718 * different processes. 11719 */ 11720 ret = -EOPNOTSUPP; 11721 if (!event->ctx->task) 11722 goto fail; 11723 11724 /* look up the path and grab its inode */ 11725 ret = kern_path(filename, LOOKUP_FOLLOW, 11726 &filter->path); 11727 if (ret) 11728 goto fail; 11729 11730 ret = -EINVAL; 11731 if (!filter->path.dentry || 11732 !S_ISREG(d_inode(filter->path.dentry) 11733 ->i_mode)) 11734 goto fail; 11735 11736 event->addr_filters.nr_file_filters++; 11737 } 11738 11739 /* ready to consume more filters */ 11740 kfree(filename); 11741 filename = NULL; 11742 state = IF_STATE_ACTION; 11743 filter = NULL; 11744 kernel = 0; 11745 } 11746 } 11747 11748 if (state != IF_STATE_ACTION) 11749 goto fail; 11750 11751 kfree(filename); 11752 kfree(orig); 11753 11754 return 0; 11755 11756 fail: 11757 kfree(filename); 11758 free_filters_list(filters); 11759 kfree(orig); 11760 11761 return ret; 11762 } 11763 11764 static int 11765 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11766 { 11767 LIST_HEAD(filters); 11768 int ret; 11769 11770 /* 11771 * Since this is called in perf_ioctl() path, we're already holding 11772 * ctx::mutex. 11773 */ 11774 lockdep_assert_held(&event->ctx->mutex); 11775 11776 if (WARN_ON_ONCE(event->parent)) 11777 return -EINVAL; 11778 11779 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11780 if (ret) 11781 goto fail_clear_files; 11782 11783 ret = event->pmu->addr_filters_validate(&filters); 11784 if (ret) 11785 goto fail_free_filters; 11786 11787 /* remove existing filters, if any */ 11788 perf_addr_filters_splice(event, &filters); 11789 11790 /* install new filters */ 11791 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11792 11793 return ret; 11794 11795 fail_free_filters: 11796 free_filters_list(&filters); 11797 11798 fail_clear_files: 11799 event->addr_filters.nr_file_filters = 0; 11800 11801 return ret; 11802 } 11803 11804 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11805 { 11806 int ret = -EINVAL; 11807 char *filter_str; 11808 11809 filter_str = strndup_user(arg, PAGE_SIZE); 11810 if (IS_ERR(filter_str)) 11811 return PTR_ERR(filter_str); 11812 11813 #ifdef CONFIG_EVENT_TRACING 11814 if (perf_event_is_tracing(event)) { 11815 struct perf_event_context *ctx = event->ctx; 11816 11817 /* 11818 * Beware, here be dragons!! 11819 * 11820 * the tracepoint muck will deadlock against ctx->mutex, but 11821 * the tracepoint stuff does not actually need it. So 11822 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11823 * already have a reference on ctx. 11824 * 11825 * This can result in event getting moved to a different ctx, 11826 * but that does not affect the tracepoint state. 11827 */ 11828 mutex_unlock(&ctx->mutex); 11829 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11830 mutex_lock(&ctx->mutex); 11831 } else 11832 #endif 11833 if (has_addr_filter(event)) 11834 ret = perf_event_set_addr_filter(event, filter_str); 11835 11836 kfree(filter_str); 11837 return ret; 11838 } 11839 11840 /* 11841 * hrtimer based swevent callback 11842 */ 11843 11844 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11845 { 11846 enum hrtimer_restart ret = HRTIMER_RESTART; 11847 struct perf_sample_data data; 11848 struct pt_regs *regs; 11849 struct perf_event *event; 11850 u64 period; 11851 11852 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11853 11854 if (event->state != PERF_EVENT_STATE_ACTIVE || 11855 event->hw.state & PERF_HES_STOPPED) 11856 return HRTIMER_NORESTART; 11857 11858 event->pmu->read(event); 11859 11860 perf_sample_data_init(&data, 0, event->hw.last_period); 11861 regs = get_irq_regs(); 11862 11863 if (regs && !perf_exclude_event(event, regs)) { 11864 if (!(event->attr.exclude_idle && is_idle_task(current))) 11865 if (__perf_event_overflow(event, 1, &data, regs)) 11866 ret = HRTIMER_NORESTART; 11867 } 11868 11869 period = max_t(u64, 10000, event->hw.sample_period); 11870 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11871 11872 return ret; 11873 } 11874 11875 static void perf_swevent_start_hrtimer(struct perf_event *event) 11876 { 11877 struct hw_perf_event *hwc = &event->hw; 11878 s64 period; 11879 11880 if (!is_sampling_event(event)) 11881 return; 11882 11883 period = local64_read(&hwc->period_left); 11884 if (period) { 11885 if (period < 0) 11886 period = 10000; 11887 11888 local64_set(&hwc->period_left, 0); 11889 } else { 11890 period = max_t(u64, 10000, hwc->sample_period); 11891 } 11892 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11893 HRTIMER_MODE_REL_PINNED_HARD); 11894 } 11895 11896 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11897 { 11898 struct hw_perf_event *hwc = &event->hw; 11899 11900 /* 11901 * Careful: this function can be triggered in the hrtimer handler, 11902 * for cpu-clock events, so hrtimer_cancel() would cause a 11903 * deadlock. 11904 * 11905 * So use hrtimer_try_to_cancel() to try to stop the hrtimer, 11906 * and the cpu-clock handler also sets the PERF_HES_STOPPED flag, 11907 * which guarantees that perf_swevent_hrtimer() will stop the 11908 * hrtimer once it sees the PERF_HES_STOPPED flag. 11909 */ 11910 if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) { 11911 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11912 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11913 11914 hrtimer_try_to_cancel(&hwc->hrtimer); 11915 } 11916 } 11917 11918 static void perf_swevent_destroy_hrtimer(struct perf_event *event) 11919 { 11920 hrtimer_cancel(&event->hw.hrtimer); 11921 } 11922 11923 static void perf_swevent_init_hrtimer(struct perf_event *event) 11924 { 11925 struct hw_perf_event *hwc = &event->hw; 11926 11927 if (!is_sampling_event(event)) 11928 return; 11929 11930 hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11931 event->destroy = perf_swevent_destroy_hrtimer; 11932 11933 /* 11934 * Since hrtimers have a fixed rate, we can do a static freq->period 11935 * mapping and avoid the whole period adjust feedback stuff. 11936 */ 11937 if (event->attr.freq) { 11938 long freq = event->attr.sample_freq; 11939 11940 event->attr.sample_period = NSEC_PER_SEC / freq; 11941 hwc->sample_period = event->attr.sample_period; 11942 local64_set(&hwc->period_left, hwc->sample_period); 11943 hwc->last_period = hwc->sample_period; 11944 event->attr.freq = 0; 11945 } 11946 } 11947 11948 /* 11949 * Software event: cpu wall time clock 11950 */ 11951 11952 static void cpu_clock_event_update(struct perf_event *event) 11953 { 11954 s64 prev; 11955 u64 now; 11956 11957 now = local_clock(); 11958 prev = local64_xchg(&event->hw.prev_count, now); 11959 local64_add(now - prev, &event->count); 11960 } 11961 11962 static void cpu_clock_event_start(struct perf_event *event, int flags) 11963 { 11964 event->hw.state = 0; 11965 local64_set(&event->hw.prev_count, local_clock()); 11966 perf_swevent_start_hrtimer(event); 11967 } 11968 11969 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11970 { 11971 event->hw.state = PERF_HES_STOPPED; 11972 perf_swevent_cancel_hrtimer(event); 11973 if (flags & PERF_EF_UPDATE) 11974 cpu_clock_event_update(event); 11975 } 11976 11977 static int cpu_clock_event_add(struct perf_event *event, int flags) 11978 { 11979 if (flags & PERF_EF_START) 11980 cpu_clock_event_start(event, flags); 11981 perf_event_update_userpage(event); 11982 11983 return 0; 11984 } 11985 11986 static void cpu_clock_event_del(struct perf_event *event, int flags) 11987 { 11988 cpu_clock_event_stop(event, PERF_EF_UPDATE); 11989 } 11990 11991 static void cpu_clock_event_read(struct perf_event *event) 11992 { 11993 cpu_clock_event_update(event); 11994 } 11995 11996 static int cpu_clock_event_init(struct perf_event *event) 11997 { 11998 if (event->attr.type != perf_cpu_clock.type) 11999 return -ENOENT; 12000 12001 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 12002 return -ENOENT; 12003 12004 /* 12005 * no branch sampling for software events 12006 */ 12007 if (has_branch_stack(event)) 12008 return -EOPNOTSUPP; 12009 12010 perf_swevent_init_hrtimer(event); 12011 12012 return 0; 12013 } 12014 12015 static struct pmu perf_cpu_clock = { 12016 .task_ctx_nr = perf_sw_context, 12017 12018 .capabilities = PERF_PMU_CAP_NO_NMI, 12019 .dev = PMU_NULL_DEV, 12020 12021 .event_init = cpu_clock_event_init, 12022 .add = cpu_clock_event_add, 12023 .del = cpu_clock_event_del, 12024 .start = cpu_clock_event_start, 12025 .stop = cpu_clock_event_stop, 12026 .read = cpu_clock_event_read, 12027 }; 12028 12029 /* 12030 * Software event: task time clock 12031 */ 12032 12033 static void task_clock_event_update(struct perf_event *event, u64 now) 12034 { 12035 u64 prev; 12036 s64 delta; 12037 12038 prev = local64_xchg(&event->hw.prev_count, now); 12039 delta = now - prev; 12040 local64_add(delta, &event->count); 12041 } 12042 12043 static void task_clock_event_start(struct perf_event *event, int flags) 12044 { 12045 event->hw.state = 0; 12046 local64_set(&event->hw.prev_count, event->ctx->time); 12047 perf_swevent_start_hrtimer(event); 12048 } 12049 12050 static void task_clock_event_stop(struct perf_event *event, int flags) 12051 { 12052 event->hw.state = PERF_HES_STOPPED; 12053 perf_swevent_cancel_hrtimer(event); 12054 if (flags & PERF_EF_UPDATE) 12055 task_clock_event_update(event, event->ctx->time); 12056 } 12057 12058 static int task_clock_event_add(struct perf_event *event, int flags) 12059 { 12060 if (flags & PERF_EF_START) 12061 task_clock_event_start(event, flags); 12062 perf_event_update_userpage(event); 12063 12064 return 0; 12065 } 12066 12067 static void task_clock_event_del(struct perf_event *event, int flags) 12068 { 12069 task_clock_event_stop(event, PERF_EF_UPDATE); 12070 } 12071 12072 static void task_clock_event_read(struct perf_event *event) 12073 { 12074 u64 now = perf_clock(); 12075 u64 delta = now - event->ctx->timestamp; 12076 u64 time = event->ctx->time + delta; 12077 12078 task_clock_event_update(event, time); 12079 } 12080 12081 static int task_clock_event_init(struct perf_event *event) 12082 { 12083 if (event->attr.type != perf_task_clock.type) 12084 return -ENOENT; 12085 12086 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 12087 return -ENOENT; 12088 12089 /* 12090 * no branch sampling for software events 12091 */ 12092 if (has_branch_stack(event)) 12093 return -EOPNOTSUPP; 12094 12095 perf_swevent_init_hrtimer(event); 12096 12097 return 0; 12098 } 12099 12100 static struct pmu perf_task_clock = { 12101 .task_ctx_nr = perf_sw_context, 12102 12103 .capabilities = PERF_PMU_CAP_NO_NMI, 12104 .dev = PMU_NULL_DEV, 12105 12106 .event_init = task_clock_event_init, 12107 .add = task_clock_event_add, 12108 .del = task_clock_event_del, 12109 .start = task_clock_event_start, 12110 .stop = task_clock_event_stop, 12111 .read = task_clock_event_read, 12112 }; 12113 12114 static void perf_pmu_nop_void(struct pmu *pmu) 12115 { 12116 } 12117 12118 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 12119 { 12120 } 12121 12122 static int perf_pmu_nop_int(struct pmu *pmu) 12123 { 12124 return 0; 12125 } 12126 12127 static int perf_event_nop_int(struct perf_event *event, u64 value) 12128 { 12129 return 0; 12130 } 12131 12132 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 12133 12134 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 12135 { 12136 __this_cpu_write(nop_txn_flags, flags); 12137 12138 if (flags & ~PERF_PMU_TXN_ADD) 12139 return; 12140 12141 perf_pmu_disable(pmu); 12142 } 12143 12144 static int perf_pmu_commit_txn(struct pmu *pmu) 12145 { 12146 unsigned int flags = __this_cpu_read(nop_txn_flags); 12147 12148 __this_cpu_write(nop_txn_flags, 0); 12149 12150 if (flags & ~PERF_PMU_TXN_ADD) 12151 return 0; 12152 12153 perf_pmu_enable(pmu); 12154 return 0; 12155 } 12156 12157 static void perf_pmu_cancel_txn(struct pmu *pmu) 12158 { 12159 unsigned int flags = __this_cpu_read(nop_txn_flags); 12160 12161 __this_cpu_write(nop_txn_flags, 0); 12162 12163 if (flags & ~PERF_PMU_TXN_ADD) 12164 return; 12165 12166 perf_pmu_enable(pmu); 12167 } 12168 12169 static int perf_event_idx_default(struct perf_event *event) 12170 { 12171 return 0; 12172 } 12173 12174 /* 12175 * Let userspace know that this PMU supports address range filtering: 12176 */ 12177 static ssize_t nr_addr_filters_show(struct device *dev, 12178 struct device_attribute *attr, 12179 char *page) 12180 { 12181 struct pmu *pmu = dev_get_drvdata(dev); 12182 12183 return sysfs_emit(page, "%d\n", pmu->nr_addr_filters); 12184 } 12185 DEVICE_ATTR_RO(nr_addr_filters); 12186 12187 static struct idr pmu_idr; 12188 12189 static ssize_t 12190 type_show(struct device *dev, struct device_attribute *attr, char *page) 12191 { 12192 struct pmu *pmu = dev_get_drvdata(dev); 12193 12194 return sysfs_emit(page, "%d\n", pmu->type); 12195 } 12196 static DEVICE_ATTR_RO(type); 12197 12198 static ssize_t 12199 perf_event_mux_interval_ms_show(struct device *dev, 12200 struct device_attribute *attr, 12201 char *page) 12202 { 12203 struct pmu *pmu = dev_get_drvdata(dev); 12204 12205 return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms); 12206 } 12207 12208 static DEFINE_MUTEX(mux_interval_mutex); 12209 12210 static ssize_t 12211 perf_event_mux_interval_ms_store(struct device *dev, 12212 struct device_attribute *attr, 12213 const char *buf, size_t count) 12214 { 12215 struct pmu *pmu = dev_get_drvdata(dev); 12216 int timer, cpu, ret; 12217 12218 ret = kstrtoint(buf, 0, &timer); 12219 if (ret) 12220 return ret; 12221 12222 if (timer < 1) 12223 return -EINVAL; 12224 12225 /* same value, noting to do */ 12226 if (timer == pmu->hrtimer_interval_ms) 12227 return count; 12228 12229 mutex_lock(&mux_interval_mutex); 12230 pmu->hrtimer_interval_ms = timer; 12231 12232 /* update all cpuctx for this PMU */ 12233 cpus_read_lock(); 12234 for_each_online_cpu(cpu) { 12235 struct perf_cpu_pmu_context *cpc; 12236 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12237 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 12238 12239 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 12240 } 12241 cpus_read_unlock(); 12242 mutex_unlock(&mux_interval_mutex); 12243 12244 return count; 12245 } 12246 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 12247 12248 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 12249 { 12250 switch (scope) { 12251 case PERF_PMU_SCOPE_CORE: 12252 return topology_sibling_cpumask(cpu); 12253 case PERF_PMU_SCOPE_DIE: 12254 return topology_die_cpumask(cpu); 12255 case PERF_PMU_SCOPE_CLUSTER: 12256 return topology_cluster_cpumask(cpu); 12257 case PERF_PMU_SCOPE_PKG: 12258 return topology_core_cpumask(cpu); 12259 case PERF_PMU_SCOPE_SYS_WIDE: 12260 return cpu_online_mask; 12261 } 12262 12263 return NULL; 12264 } 12265 12266 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 12267 { 12268 switch (scope) { 12269 case PERF_PMU_SCOPE_CORE: 12270 return perf_online_core_mask; 12271 case PERF_PMU_SCOPE_DIE: 12272 return perf_online_die_mask; 12273 case PERF_PMU_SCOPE_CLUSTER: 12274 return perf_online_cluster_mask; 12275 case PERF_PMU_SCOPE_PKG: 12276 return perf_online_pkg_mask; 12277 case PERF_PMU_SCOPE_SYS_WIDE: 12278 return perf_online_sys_mask; 12279 } 12280 12281 return NULL; 12282 } 12283 12284 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 12285 char *buf) 12286 { 12287 struct pmu *pmu = dev_get_drvdata(dev); 12288 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 12289 12290 if (mask) 12291 return cpumap_print_to_pagebuf(true, buf, mask); 12292 return 0; 12293 } 12294 12295 static DEVICE_ATTR_RO(cpumask); 12296 12297 static struct attribute *pmu_dev_attrs[] = { 12298 &dev_attr_type.attr, 12299 &dev_attr_perf_event_mux_interval_ms.attr, 12300 &dev_attr_nr_addr_filters.attr, 12301 &dev_attr_cpumask.attr, 12302 NULL, 12303 }; 12304 12305 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 12306 { 12307 struct device *dev = kobj_to_dev(kobj); 12308 struct pmu *pmu = dev_get_drvdata(dev); 12309 12310 if (n == 2 && !pmu->nr_addr_filters) 12311 return 0; 12312 12313 /* cpumask */ 12314 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 12315 return 0; 12316 12317 return a->mode; 12318 } 12319 12320 static struct attribute_group pmu_dev_attr_group = { 12321 .is_visible = pmu_dev_is_visible, 12322 .attrs = pmu_dev_attrs, 12323 }; 12324 12325 static const struct attribute_group *pmu_dev_groups[] = { 12326 &pmu_dev_attr_group, 12327 NULL, 12328 }; 12329 12330 static int pmu_bus_running; 12331 static const struct bus_type pmu_bus = { 12332 .name = "event_source", 12333 .dev_groups = pmu_dev_groups, 12334 }; 12335 12336 static void pmu_dev_release(struct device *dev) 12337 { 12338 kfree(dev); 12339 } 12340 12341 static int pmu_dev_alloc(struct pmu *pmu) 12342 { 12343 int ret = -ENOMEM; 12344 12345 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 12346 if (!pmu->dev) 12347 goto out; 12348 12349 pmu->dev->groups = pmu->attr_groups; 12350 device_initialize(pmu->dev); 12351 12352 dev_set_drvdata(pmu->dev, pmu); 12353 pmu->dev->bus = &pmu_bus; 12354 pmu->dev->parent = pmu->parent; 12355 pmu->dev->release = pmu_dev_release; 12356 12357 ret = dev_set_name(pmu->dev, "%s", pmu->name); 12358 if (ret) 12359 goto free_dev; 12360 12361 ret = device_add(pmu->dev); 12362 if (ret) 12363 goto free_dev; 12364 12365 if (pmu->attr_update) { 12366 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 12367 if (ret) 12368 goto del_dev; 12369 } 12370 12371 out: 12372 return ret; 12373 12374 del_dev: 12375 device_del(pmu->dev); 12376 12377 free_dev: 12378 put_device(pmu->dev); 12379 pmu->dev = NULL; 12380 goto out; 12381 } 12382 12383 static struct lock_class_key cpuctx_mutex; 12384 static struct lock_class_key cpuctx_lock; 12385 12386 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new) 12387 { 12388 void *tmp, *val = idr_find(idr, id); 12389 12390 if (val != old) 12391 return false; 12392 12393 tmp = idr_replace(idr, new, id); 12394 if (IS_ERR(tmp)) 12395 return false; 12396 12397 WARN_ON_ONCE(tmp != val); 12398 return true; 12399 } 12400 12401 static void perf_pmu_free(struct pmu *pmu) 12402 { 12403 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 12404 if (pmu->nr_addr_filters) 12405 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 12406 device_del(pmu->dev); 12407 put_device(pmu->dev); 12408 } 12409 12410 if (pmu->cpu_pmu_context) { 12411 int cpu; 12412 12413 for_each_possible_cpu(cpu) { 12414 struct perf_cpu_pmu_context *cpc; 12415 12416 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12417 if (!cpc) 12418 continue; 12419 if (cpc->epc.embedded) { 12420 /* refcount managed */ 12421 put_pmu_ctx(&cpc->epc); 12422 continue; 12423 } 12424 kfree(cpc); 12425 } 12426 free_percpu(pmu->cpu_pmu_context); 12427 } 12428 } 12429 12430 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T)) 12431 12432 int perf_pmu_register(struct pmu *_pmu, const char *name, int type) 12433 { 12434 int cpu, max = PERF_TYPE_MAX; 12435 12436 struct pmu *pmu __free(pmu_unregister) = _pmu; 12437 guard(mutex)(&pmus_lock); 12438 12439 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) 12440 return -EINVAL; 12441 12442 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, 12443 "Can not register a pmu with an invalid scope.\n")) 12444 return -EINVAL; 12445 12446 pmu->name = name; 12447 12448 if (type >= 0) 12449 max = type; 12450 12451 CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL); 12452 if (pmu_type.id < 0) 12453 return pmu_type.id; 12454 12455 WARN_ON(type >= 0 && pmu_type.id != type); 12456 12457 pmu->type = pmu_type.id; 12458 atomic_set(&pmu->exclusive_cnt, 0); 12459 12460 if (pmu_bus_running && !pmu->dev) { 12461 int ret = pmu_dev_alloc(pmu); 12462 if (ret) 12463 return ret; 12464 } 12465 12466 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *); 12467 if (!pmu->cpu_pmu_context) 12468 return -ENOMEM; 12469 12470 for_each_possible_cpu(cpu) { 12471 struct perf_cpu_pmu_context *cpc = 12472 kmalloc_node(sizeof(struct perf_cpu_pmu_context), 12473 GFP_KERNEL | __GFP_ZERO, 12474 cpu_to_node(cpu)); 12475 12476 if (!cpc) 12477 return -ENOMEM; 12478 12479 *per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc; 12480 __perf_init_event_pmu_context(&cpc->epc, pmu); 12481 __perf_mux_hrtimer_init(cpc, cpu); 12482 } 12483 12484 if (!pmu->start_txn) { 12485 if (pmu->pmu_enable) { 12486 /* 12487 * If we have pmu_enable/pmu_disable calls, install 12488 * transaction stubs that use that to try and batch 12489 * hardware accesses. 12490 */ 12491 pmu->start_txn = perf_pmu_start_txn; 12492 pmu->commit_txn = perf_pmu_commit_txn; 12493 pmu->cancel_txn = perf_pmu_cancel_txn; 12494 } else { 12495 pmu->start_txn = perf_pmu_nop_txn; 12496 pmu->commit_txn = perf_pmu_nop_int; 12497 pmu->cancel_txn = perf_pmu_nop_void; 12498 } 12499 } 12500 12501 if (!pmu->pmu_enable) { 12502 pmu->pmu_enable = perf_pmu_nop_void; 12503 pmu->pmu_disable = perf_pmu_nop_void; 12504 } 12505 12506 if (!pmu->check_period) 12507 pmu->check_period = perf_event_nop_int; 12508 12509 if (!pmu->event_idx) 12510 pmu->event_idx = perf_event_idx_default; 12511 12512 INIT_LIST_HEAD(&pmu->events); 12513 spin_lock_init(&pmu->events_lock); 12514 12515 /* 12516 * Now that the PMU is complete, make it visible to perf_try_init_event(). 12517 */ 12518 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu)) 12519 return -EINVAL; 12520 list_add_rcu(&pmu->entry, &pmus); 12521 12522 take_idr_id(pmu_type); 12523 _pmu = no_free_ptr(pmu); // let it rip 12524 return 0; 12525 } 12526 EXPORT_SYMBOL_GPL(perf_pmu_register); 12527 12528 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event, 12529 struct perf_event_context *ctx) 12530 { 12531 /* 12532 * De-schedule the event and mark it REVOKED. 12533 */ 12534 perf_event_exit_event(event, ctx, ctx->task, true); 12535 12536 /* 12537 * All _free_event() bits that rely on event->pmu: 12538 * 12539 * Notably, perf_mmap() relies on the ordering here. 12540 */ 12541 scoped_guard (mutex, &event->mmap_mutex) { 12542 WARN_ON_ONCE(pmu->event_unmapped); 12543 /* 12544 * Mostly an empty lock sequence, such that perf_mmap(), which 12545 * relies on mmap_mutex, is sure to observe the state change. 12546 */ 12547 } 12548 12549 perf_event_free_bpf_prog(event); 12550 perf_free_addr_filters(event); 12551 12552 if (event->destroy) { 12553 event->destroy(event); 12554 event->destroy = NULL; 12555 } 12556 12557 if (event->pmu_ctx) { 12558 put_pmu_ctx(event->pmu_ctx); 12559 event->pmu_ctx = NULL; 12560 } 12561 12562 exclusive_event_destroy(event); 12563 module_put(pmu->module); 12564 12565 event->pmu = NULL; /* force fault instead of UAF */ 12566 } 12567 12568 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event) 12569 { 12570 struct perf_event_context *ctx; 12571 12572 ctx = perf_event_ctx_lock(event); 12573 __pmu_detach_event(pmu, event, ctx); 12574 perf_event_ctx_unlock(event, ctx); 12575 12576 scoped_guard (spinlock, &pmu->events_lock) 12577 list_del(&event->pmu_list); 12578 } 12579 12580 static struct perf_event *pmu_get_event(struct pmu *pmu) 12581 { 12582 struct perf_event *event; 12583 12584 guard(spinlock)(&pmu->events_lock); 12585 list_for_each_entry(event, &pmu->events, pmu_list) { 12586 if (atomic_long_inc_not_zero(&event->refcount)) 12587 return event; 12588 } 12589 12590 return NULL; 12591 } 12592 12593 static bool pmu_empty(struct pmu *pmu) 12594 { 12595 guard(spinlock)(&pmu->events_lock); 12596 return list_empty(&pmu->events); 12597 } 12598 12599 static void pmu_detach_events(struct pmu *pmu) 12600 { 12601 struct perf_event *event; 12602 12603 for (;;) { 12604 event = pmu_get_event(pmu); 12605 if (!event) 12606 break; 12607 12608 pmu_detach_event(pmu, event); 12609 put_event(event); 12610 } 12611 12612 /* 12613 * wait for pending _free_event()s 12614 */ 12615 wait_var_event(pmu, pmu_empty(pmu)); 12616 } 12617 12618 int perf_pmu_unregister(struct pmu *pmu) 12619 { 12620 scoped_guard (mutex, &pmus_lock) { 12621 if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL)) 12622 return -EINVAL; 12623 12624 list_del_rcu(&pmu->entry); 12625 } 12626 12627 /* 12628 * We dereference the pmu list under both SRCU and regular RCU, so 12629 * synchronize against both of those. 12630 * 12631 * Notably, the entirety of event creation, from perf_init_event() 12632 * (which will now fail, because of the above) until 12633 * perf_install_in_context() should be under SRCU such that 12634 * this synchronizes against event creation. This avoids trying to 12635 * detach events that are not fully formed. 12636 */ 12637 synchronize_srcu(&pmus_srcu); 12638 synchronize_rcu(); 12639 12640 if (pmu->event_unmapped && !pmu_empty(pmu)) { 12641 /* 12642 * Can't force remove events when pmu::event_unmapped() 12643 * is used in perf_mmap_close(). 12644 */ 12645 guard(mutex)(&pmus_lock); 12646 idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu); 12647 list_add_rcu(&pmu->entry, &pmus); 12648 return -EBUSY; 12649 } 12650 12651 scoped_guard (mutex, &pmus_lock) 12652 idr_remove(&pmu_idr, pmu->type); 12653 12654 /* 12655 * PMU is removed from the pmus list, so no new events will 12656 * be created, now take care of the existing ones. 12657 */ 12658 pmu_detach_events(pmu); 12659 12660 /* 12661 * PMU is unused, make it go away. 12662 */ 12663 perf_pmu_free(pmu); 12664 return 0; 12665 } 12666 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 12667 12668 static inline bool has_extended_regs(struct perf_event *event) 12669 { 12670 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 12671 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 12672 } 12673 12674 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 12675 { 12676 struct perf_event_context *ctx = NULL; 12677 int ret; 12678 12679 if (!try_module_get(pmu->module)) 12680 return -ENODEV; 12681 12682 /* 12683 * A number of pmu->event_init() methods iterate the sibling_list to, 12684 * for example, validate if the group fits on the PMU. Therefore, 12685 * if this is a sibling event, acquire the ctx->mutex to protect 12686 * the sibling_list. 12687 */ 12688 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 12689 /* 12690 * This ctx->mutex can nest when we're called through 12691 * inheritance. See the perf_event_ctx_lock_nested() comment. 12692 */ 12693 ctx = perf_event_ctx_lock_nested(event->group_leader, 12694 SINGLE_DEPTH_NESTING); 12695 BUG_ON(!ctx); 12696 } 12697 12698 event->pmu = pmu; 12699 ret = pmu->event_init(event); 12700 12701 if (ctx) 12702 perf_event_ctx_unlock(event->group_leader, ctx); 12703 12704 if (ret) 12705 goto err_pmu; 12706 12707 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 12708 has_extended_regs(event)) { 12709 ret = -EOPNOTSUPP; 12710 goto err_destroy; 12711 } 12712 12713 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 12714 event_has_any_exclude_flag(event)) { 12715 ret = -EINVAL; 12716 goto err_destroy; 12717 } 12718 12719 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 12720 const struct cpumask *cpumask; 12721 struct cpumask *pmu_cpumask; 12722 int cpu; 12723 12724 cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 12725 pmu_cpumask = perf_scope_cpumask(pmu->scope); 12726 12727 ret = -ENODEV; 12728 if (!pmu_cpumask || !cpumask) 12729 goto err_destroy; 12730 12731 cpu = cpumask_any_and(pmu_cpumask, cpumask); 12732 if (cpu >= nr_cpu_ids) 12733 goto err_destroy; 12734 12735 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 12736 } 12737 12738 return 0; 12739 12740 err_destroy: 12741 if (event->destroy) { 12742 event->destroy(event); 12743 event->destroy = NULL; 12744 } 12745 12746 err_pmu: 12747 event->pmu = NULL; 12748 module_put(pmu->module); 12749 return ret; 12750 } 12751 12752 static struct pmu *perf_init_event(struct perf_event *event) 12753 { 12754 bool extended_type = false; 12755 struct pmu *pmu; 12756 int type, ret; 12757 12758 guard(srcu)(&pmus_srcu); /* pmu idr/list access */ 12759 12760 /* 12761 * Save original type before calling pmu->event_init() since certain 12762 * pmus overwrites event->attr.type to forward event to another pmu. 12763 */ 12764 event->orig_type = event->attr.type; 12765 12766 /* Try parent's PMU first: */ 12767 if (event->parent && event->parent->pmu) { 12768 pmu = event->parent->pmu; 12769 ret = perf_try_init_event(pmu, event); 12770 if (!ret) 12771 return pmu; 12772 } 12773 12774 /* 12775 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 12776 * are often aliases for PERF_TYPE_RAW. 12777 */ 12778 type = event->attr.type; 12779 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 12780 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 12781 if (!type) { 12782 type = PERF_TYPE_RAW; 12783 } else { 12784 extended_type = true; 12785 event->attr.config &= PERF_HW_EVENT_MASK; 12786 } 12787 } 12788 12789 again: 12790 scoped_guard (rcu) 12791 pmu = idr_find(&pmu_idr, type); 12792 if (pmu) { 12793 if (event->attr.type != type && type != PERF_TYPE_RAW && 12794 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 12795 return ERR_PTR(-ENOENT); 12796 12797 ret = perf_try_init_event(pmu, event); 12798 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 12799 type = event->attr.type; 12800 goto again; 12801 } 12802 12803 if (ret) 12804 return ERR_PTR(ret); 12805 12806 return pmu; 12807 } 12808 12809 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 12810 ret = perf_try_init_event(pmu, event); 12811 if (!ret) 12812 return pmu; 12813 12814 if (ret != -ENOENT) 12815 return ERR_PTR(ret); 12816 } 12817 12818 return ERR_PTR(-ENOENT); 12819 } 12820 12821 static void attach_sb_event(struct perf_event *event) 12822 { 12823 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 12824 12825 raw_spin_lock(&pel->lock); 12826 list_add_rcu(&event->sb_list, &pel->list); 12827 raw_spin_unlock(&pel->lock); 12828 } 12829 12830 /* 12831 * We keep a list of all !task (and therefore per-cpu) events 12832 * that need to receive side-band records. 12833 * 12834 * This avoids having to scan all the various PMU per-cpu contexts 12835 * looking for them. 12836 */ 12837 static void account_pmu_sb_event(struct perf_event *event) 12838 { 12839 if (is_sb_event(event)) 12840 attach_sb_event(event); 12841 } 12842 12843 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12844 static void account_freq_event_nohz(void) 12845 { 12846 #ifdef CONFIG_NO_HZ_FULL 12847 /* Lock so we don't race with concurrent unaccount */ 12848 spin_lock(&nr_freq_lock); 12849 if (atomic_inc_return(&nr_freq_events) == 1) 12850 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12851 spin_unlock(&nr_freq_lock); 12852 #endif 12853 } 12854 12855 static void account_freq_event(void) 12856 { 12857 if (tick_nohz_full_enabled()) 12858 account_freq_event_nohz(); 12859 else 12860 atomic_inc(&nr_freq_events); 12861 } 12862 12863 12864 static void account_event(struct perf_event *event) 12865 { 12866 bool inc = false; 12867 12868 if (event->parent) 12869 return; 12870 12871 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12872 inc = true; 12873 if (event->attr.mmap || event->attr.mmap_data) 12874 atomic_inc(&nr_mmap_events); 12875 if (event->attr.build_id) 12876 atomic_inc(&nr_build_id_events); 12877 if (event->attr.comm) 12878 atomic_inc(&nr_comm_events); 12879 if (event->attr.namespaces) 12880 atomic_inc(&nr_namespaces_events); 12881 if (event->attr.cgroup) 12882 atomic_inc(&nr_cgroup_events); 12883 if (event->attr.task) 12884 atomic_inc(&nr_task_events); 12885 if (event->attr.freq) 12886 account_freq_event(); 12887 if (event->attr.context_switch) { 12888 atomic_inc(&nr_switch_events); 12889 inc = true; 12890 } 12891 if (has_branch_stack(event)) 12892 inc = true; 12893 if (is_cgroup_event(event)) 12894 inc = true; 12895 if (event->attr.ksymbol) 12896 atomic_inc(&nr_ksymbol_events); 12897 if (event->attr.bpf_event) 12898 atomic_inc(&nr_bpf_events); 12899 if (event->attr.text_poke) 12900 atomic_inc(&nr_text_poke_events); 12901 12902 if (inc) { 12903 /* 12904 * We need the mutex here because static_branch_enable() 12905 * must complete *before* the perf_sched_count increment 12906 * becomes visible. 12907 */ 12908 if (atomic_inc_not_zero(&perf_sched_count)) 12909 goto enabled; 12910 12911 mutex_lock(&perf_sched_mutex); 12912 if (!atomic_read(&perf_sched_count)) { 12913 static_branch_enable(&perf_sched_events); 12914 /* 12915 * Guarantee that all CPUs observe they key change and 12916 * call the perf scheduling hooks before proceeding to 12917 * install events that need them. 12918 */ 12919 synchronize_rcu(); 12920 } 12921 /* 12922 * Now that we have waited for the sync_sched(), allow further 12923 * increments to by-pass the mutex. 12924 */ 12925 atomic_inc(&perf_sched_count); 12926 mutex_unlock(&perf_sched_mutex); 12927 } 12928 enabled: 12929 12930 account_pmu_sb_event(event); 12931 } 12932 12933 /* 12934 * Allocate and initialize an event structure 12935 */ 12936 static struct perf_event * 12937 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12938 struct task_struct *task, 12939 struct perf_event *group_leader, 12940 struct perf_event *parent_event, 12941 perf_overflow_handler_t overflow_handler, 12942 void *context, int cgroup_fd) 12943 { 12944 struct pmu *pmu; 12945 struct hw_perf_event *hwc; 12946 long err = -EINVAL; 12947 int node; 12948 12949 if ((unsigned)cpu >= nr_cpu_ids) { 12950 if (!task || cpu != -1) 12951 return ERR_PTR(-EINVAL); 12952 } 12953 if (attr->sigtrap && !task) { 12954 /* Requires a task: avoid signalling random tasks. */ 12955 return ERR_PTR(-EINVAL); 12956 } 12957 12958 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12959 struct perf_event *event __free(__free_event) = 12960 kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node); 12961 if (!event) 12962 return ERR_PTR(-ENOMEM); 12963 12964 /* 12965 * Single events are their own group leaders, with an 12966 * empty sibling list: 12967 */ 12968 if (!group_leader) 12969 group_leader = event; 12970 12971 mutex_init(&event->child_mutex); 12972 INIT_LIST_HEAD(&event->child_list); 12973 12974 INIT_LIST_HEAD(&event->event_entry); 12975 INIT_LIST_HEAD(&event->sibling_list); 12976 INIT_LIST_HEAD(&event->active_list); 12977 init_event_group(event); 12978 INIT_LIST_HEAD(&event->rb_entry); 12979 INIT_LIST_HEAD(&event->active_entry); 12980 INIT_LIST_HEAD(&event->addr_filters.list); 12981 INIT_HLIST_NODE(&event->hlist_entry); 12982 INIT_LIST_HEAD(&event->pmu_list); 12983 12984 12985 init_waitqueue_head(&event->waitq); 12986 init_irq_work(&event->pending_irq, perf_pending_irq); 12987 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12988 init_task_work(&event->pending_task, perf_pending_task); 12989 12990 mutex_init(&event->mmap_mutex); 12991 raw_spin_lock_init(&event->addr_filters.lock); 12992 12993 atomic_long_set(&event->refcount, 1); 12994 event->cpu = cpu; 12995 event->attr = *attr; 12996 event->group_leader = group_leader; 12997 event->pmu = NULL; 12998 event->oncpu = -1; 12999 13000 event->parent = parent_event; 13001 13002 event->ns = get_pid_ns(task_active_pid_ns(current)); 13003 event->id = atomic64_inc_return(&perf_event_id); 13004 13005 event->state = PERF_EVENT_STATE_INACTIVE; 13006 13007 if (parent_event) 13008 event->event_caps = parent_event->event_caps; 13009 13010 if (task) { 13011 event->attach_state = PERF_ATTACH_TASK; 13012 /* 13013 * XXX pmu::event_init needs to know what task to account to 13014 * and we cannot use the ctx information because we need the 13015 * pmu before we get a ctx. 13016 */ 13017 event->hw.target = get_task_struct(task); 13018 } 13019 13020 event->clock = &local_clock; 13021 if (parent_event) 13022 event->clock = parent_event->clock; 13023 13024 if (!overflow_handler && parent_event) { 13025 overflow_handler = parent_event->overflow_handler; 13026 context = parent_event->overflow_handler_context; 13027 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 13028 if (parent_event->prog) { 13029 struct bpf_prog *prog = parent_event->prog; 13030 13031 bpf_prog_inc(prog); 13032 event->prog = prog; 13033 } 13034 #endif 13035 } 13036 13037 if (overflow_handler) { 13038 event->overflow_handler = overflow_handler; 13039 event->overflow_handler_context = context; 13040 } else if (is_write_backward(event)){ 13041 event->overflow_handler = perf_event_output_backward; 13042 event->overflow_handler_context = NULL; 13043 } else { 13044 event->overflow_handler = perf_event_output_forward; 13045 event->overflow_handler_context = NULL; 13046 } 13047 13048 perf_event__state_init(event); 13049 13050 pmu = NULL; 13051 13052 hwc = &event->hw; 13053 hwc->sample_period = attr->sample_period; 13054 if (is_event_in_freq_mode(event)) 13055 hwc->sample_period = 1; 13056 hwc->last_period = hwc->sample_period; 13057 13058 local64_set(&hwc->period_left, hwc->sample_period); 13059 13060 /* 13061 * We do not support PERF_SAMPLE_READ on inherited events unless 13062 * PERF_SAMPLE_TID is also selected, which allows inherited events to 13063 * collect per-thread samples. 13064 * See perf_output_read(). 13065 */ 13066 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 13067 return ERR_PTR(-EINVAL); 13068 13069 if (!has_branch_stack(event)) 13070 event->attr.branch_sample_type = 0; 13071 13072 pmu = perf_init_event(event); 13073 if (IS_ERR(pmu)) 13074 return (void*)pmu; 13075 13076 /* 13077 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config(). 13078 * The attach should be right after the perf_init_event(). 13079 * Otherwise, the __free_event() would mistakenly detach the non-exist 13080 * perf_ctx_data because of the other errors between them. 13081 */ 13082 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 13083 err = attach_perf_ctx_data(event); 13084 if (err) 13085 return ERR_PTR(err); 13086 } 13087 13088 /* 13089 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 13090 * events (they don't make sense as the cgroup will be different 13091 * on other CPUs in the uncore mask). 13092 */ 13093 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) 13094 return ERR_PTR(-EINVAL); 13095 13096 if (event->attr.aux_output && 13097 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) || 13098 event->attr.aux_pause || event->attr.aux_resume)) 13099 return ERR_PTR(-EOPNOTSUPP); 13100 13101 if (event->attr.aux_pause && event->attr.aux_resume) 13102 return ERR_PTR(-EINVAL); 13103 13104 if (event->attr.aux_start_paused) { 13105 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 13106 return ERR_PTR(-EOPNOTSUPP); 13107 event->hw.aux_paused = 1; 13108 } 13109 13110 if (cgroup_fd != -1) { 13111 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 13112 if (err) 13113 return ERR_PTR(err); 13114 } 13115 13116 err = exclusive_event_init(event); 13117 if (err) 13118 return ERR_PTR(err); 13119 13120 if (has_addr_filter(event)) { 13121 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 13122 sizeof(struct perf_addr_filter_range), 13123 GFP_KERNEL); 13124 if (!event->addr_filter_ranges) 13125 return ERR_PTR(-ENOMEM); 13126 13127 /* 13128 * Clone the parent's vma offsets: they are valid until exec() 13129 * even if the mm is not shared with the parent. 13130 */ 13131 if (event->parent) { 13132 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 13133 13134 raw_spin_lock_irq(&ifh->lock); 13135 memcpy(event->addr_filter_ranges, 13136 event->parent->addr_filter_ranges, 13137 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 13138 raw_spin_unlock_irq(&ifh->lock); 13139 } 13140 13141 /* force hw sync on the address filters */ 13142 event->addr_filters_gen = 1; 13143 } 13144 13145 if (!event->parent) { 13146 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 13147 err = get_callchain_buffers(attr->sample_max_stack); 13148 if (err) 13149 return ERR_PTR(err); 13150 event->attach_state |= PERF_ATTACH_CALLCHAIN; 13151 } 13152 } 13153 13154 err = security_perf_event_alloc(event); 13155 if (err) 13156 return ERR_PTR(err); 13157 13158 /* symmetric to unaccount_event() in _free_event() */ 13159 account_event(event); 13160 13161 /* 13162 * Event creation should be under SRCU, see perf_pmu_unregister(). 13163 */ 13164 lockdep_assert_held(&pmus_srcu); 13165 scoped_guard (spinlock, &pmu->events_lock) 13166 list_add(&event->pmu_list, &pmu->events); 13167 13168 return_ptr(event); 13169 } 13170 13171 static int perf_copy_attr(struct perf_event_attr __user *uattr, 13172 struct perf_event_attr *attr) 13173 { 13174 u32 size; 13175 int ret; 13176 13177 /* Zero the full structure, so that a short copy will be nice. */ 13178 memset(attr, 0, sizeof(*attr)); 13179 13180 ret = get_user(size, &uattr->size); 13181 if (ret) 13182 return ret; 13183 13184 /* ABI compatibility quirk: */ 13185 if (!size) 13186 size = PERF_ATTR_SIZE_VER0; 13187 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 13188 goto err_size; 13189 13190 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 13191 if (ret) { 13192 if (ret == -E2BIG) 13193 goto err_size; 13194 return ret; 13195 } 13196 13197 attr->size = size; 13198 13199 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 13200 return -EINVAL; 13201 13202 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 13203 return -EINVAL; 13204 13205 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 13206 return -EINVAL; 13207 13208 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 13209 u64 mask = attr->branch_sample_type; 13210 13211 /* only using defined bits */ 13212 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 13213 return -EINVAL; 13214 13215 /* at least one branch bit must be set */ 13216 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 13217 return -EINVAL; 13218 13219 /* propagate priv level, when not set for branch */ 13220 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 13221 13222 /* exclude_kernel checked on syscall entry */ 13223 if (!attr->exclude_kernel) 13224 mask |= PERF_SAMPLE_BRANCH_KERNEL; 13225 13226 if (!attr->exclude_user) 13227 mask |= PERF_SAMPLE_BRANCH_USER; 13228 13229 if (!attr->exclude_hv) 13230 mask |= PERF_SAMPLE_BRANCH_HV; 13231 /* 13232 * adjust user setting (for HW filter setup) 13233 */ 13234 attr->branch_sample_type = mask; 13235 } 13236 /* privileged levels capture (kernel, hv): check permissions */ 13237 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 13238 ret = perf_allow_kernel(); 13239 if (ret) 13240 return ret; 13241 } 13242 } 13243 13244 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 13245 ret = perf_reg_validate(attr->sample_regs_user); 13246 if (ret) 13247 return ret; 13248 } 13249 13250 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 13251 if (!arch_perf_have_user_stack_dump()) 13252 return -ENOSYS; 13253 13254 /* 13255 * We have __u32 type for the size, but so far 13256 * we can only use __u16 as maximum due to the 13257 * __u16 sample size limit. 13258 */ 13259 if (attr->sample_stack_user >= USHRT_MAX) 13260 return -EINVAL; 13261 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 13262 return -EINVAL; 13263 } 13264 13265 if (!attr->sample_max_stack) 13266 attr->sample_max_stack = sysctl_perf_event_max_stack; 13267 13268 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 13269 ret = perf_reg_validate(attr->sample_regs_intr); 13270 13271 #ifndef CONFIG_CGROUP_PERF 13272 if (attr->sample_type & PERF_SAMPLE_CGROUP) 13273 return -EINVAL; 13274 #endif 13275 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 13276 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 13277 return -EINVAL; 13278 13279 if (!attr->inherit && attr->inherit_thread) 13280 return -EINVAL; 13281 13282 if (attr->remove_on_exec && attr->enable_on_exec) 13283 return -EINVAL; 13284 13285 if (attr->sigtrap && !attr->remove_on_exec) 13286 return -EINVAL; 13287 13288 out: 13289 return ret; 13290 13291 err_size: 13292 put_user(sizeof(*attr), &uattr->size); 13293 ret = -E2BIG; 13294 goto out; 13295 } 13296 13297 static void mutex_lock_double(struct mutex *a, struct mutex *b) 13298 { 13299 if (b < a) 13300 swap(a, b); 13301 13302 mutex_lock(a); 13303 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 13304 } 13305 13306 static int 13307 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 13308 { 13309 struct perf_buffer *rb = NULL; 13310 int ret = -EINVAL; 13311 13312 if (!output_event) { 13313 mutex_lock(&event->mmap_mutex); 13314 goto set; 13315 } 13316 13317 /* don't allow circular references */ 13318 if (event == output_event) 13319 goto out; 13320 13321 /* 13322 * Don't allow cross-cpu buffers 13323 */ 13324 if (output_event->cpu != event->cpu) 13325 goto out; 13326 13327 /* 13328 * If its not a per-cpu rb, it must be the same task. 13329 */ 13330 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 13331 goto out; 13332 13333 /* 13334 * Mixing clocks in the same buffer is trouble you don't need. 13335 */ 13336 if (output_event->clock != event->clock) 13337 goto out; 13338 13339 /* 13340 * Either writing ring buffer from beginning or from end. 13341 * Mixing is not allowed. 13342 */ 13343 if (is_write_backward(output_event) != is_write_backward(event)) 13344 goto out; 13345 13346 /* 13347 * If both events generate aux data, they must be on the same PMU 13348 */ 13349 if (has_aux(event) && has_aux(output_event) && 13350 event->pmu != output_event->pmu) 13351 goto out; 13352 13353 /* 13354 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 13355 * output_event is already on rb->event_list, and the list iteration 13356 * restarts after every removal, it is guaranteed this new event is 13357 * observed *OR* if output_event is already removed, it's guaranteed we 13358 * observe !rb->mmap_count. 13359 */ 13360 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 13361 set: 13362 /* Can't redirect output if we've got an active mmap() */ 13363 if (refcount_read(&event->mmap_count)) 13364 goto unlock; 13365 13366 if (output_event) { 13367 if (output_event->state <= PERF_EVENT_STATE_REVOKED) 13368 goto unlock; 13369 13370 /* get the rb we want to redirect to */ 13371 rb = ring_buffer_get(output_event); 13372 if (!rb) 13373 goto unlock; 13374 13375 /* did we race against perf_mmap_close() */ 13376 if (!refcount_read(&rb->mmap_count)) { 13377 ring_buffer_put(rb); 13378 goto unlock; 13379 } 13380 } 13381 13382 ring_buffer_attach(event, rb); 13383 13384 ret = 0; 13385 unlock: 13386 mutex_unlock(&event->mmap_mutex); 13387 if (output_event) 13388 mutex_unlock(&output_event->mmap_mutex); 13389 13390 out: 13391 return ret; 13392 } 13393 13394 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 13395 { 13396 bool nmi_safe = false; 13397 13398 switch (clk_id) { 13399 case CLOCK_MONOTONIC: 13400 event->clock = &ktime_get_mono_fast_ns; 13401 nmi_safe = true; 13402 break; 13403 13404 case CLOCK_MONOTONIC_RAW: 13405 event->clock = &ktime_get_raw_fast_ns; 13406 nmi_safe = true; 13407 break; 13408 13409 case CLOCK_REALTIME: 13410 event->clock = &ktime_get_real_ns; 13411 break; 13412 13413 case CLOCK_BOOTTIME: 13414 event->clock = &ktime_get_boottime_ns; 13415 break; 13416 13417 case CLOCK_TAI: 13418 event->clock = &ktime_get_clocktai_ns; 13419 break; 13420 13421 default: 13422 return -EINVAL; 13423 } 13424 13425 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 13426 return -EINVAL; 13427 13428 return 0; 13429 } 13430 13431 static bool 13432 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 13433 { 13434 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 13435 bool is_capable = perfmon_capable(); 13436 13437 if (attr->sigtrap) { 13438 /* 13439 * perf_event_attr::sigtrap sends signals to the other task. 13440 * Require the current task to also have CAP_KILL. 13441 */ 13442 rcu_read_lock(); 13443 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 13444 rcu_read_unlock(); 13445 13446 /* 13447 * If the required capabilities aren't available, checks for 13448 * ptrace permissions: upgrade to ATTACH, since sending signals 13449 * can effectively change the target task. 13450 */ 13451 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 13452 } 13453 13454 /* 13455 * Preserve ptrace permission check for backwards compatibility. The 13456 * ptrace check also includes checks that the current task and other 13457 * task have matching uids, and is therefore not done here explicitly. 13458 */ 13459 return is_capable || ptrace_may_access(task, ptrace_mode); 13460 } 13461 13462 /** 13463 * sys_perf_event_open - open a performance event, associate it to a task/cpu 13464 * 13465 * @attr_uptr: event_id type attributes for monitoring/sampling 13466 * @pid: target pid 13467 * @cpu: target cpu 13468 * @group_fd: group leader event fd 13469 * @flags: perf event open flags 13470 */ 13471 SYSCALL_DEFINE5(perf_event_open, 13472 struct perf_event_attr __user *, attr_uptr, 13473 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 13474 { 13475 struct perf_event *group_leader = NULL, *output_event = NULL; 13476 struct perf_event_pmu_context *pmu_ctx; 13477 struct perf_event *event, *sibling; 13478 struct perf_event_attr attr; 13479 struct perf_event_context *ctx; 13480 struct file *event_file = NULL; 13481 struct task_struct *task = NULL; 13482 struct pmu *pmu; 13483 int event_fd; 13484 int move_group = 0; 13485 int err; 13486 int f_flags = O_RDWR; 13487 int cgroup_fd = -1; 13488 13489 /* for future expandability... */ 13490 if (flags & ~PERF_FLAG_ALL) 13491 return -EINVAL; 13492 13493 err = perf_copy_attr(attr_uptr, &attr); 13494 if (err) 13495 return err; 13496 13497 /* Do we allow access to perf_event_open(2) ? */ 13498 err = security_perf_event_open(PERF_SECURITY_OPEN); 13499 if (err) 13500 return err; 13501 13502 if (!attr.exclude_kernel) { 13503 err = perf_allow_kernel(); 13504 if (err) 13505 return err; 13506 } 13507 13508 if (attr.namespaces) { 13509 if (!perfmon_capable()) 13510 return -EACCES; 13511 } 13512 13513 if (attr.freq) { 13514 if (attr.sample_freq > sysctl_perf_event_sample_rate) 13515 return -EINVAL; 13516 } else { 13517 if (attr.sample_period & (1ULL << 63)) 13518 return -EINVAL; 13519 } 13520 13521 /* Only privileged users can get physical addresses */ 13522 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 13523 err = perf_allow_kernel(); 13524 if (err) 13525 return err; 13526 } 13527 13528 /* REGS_INTR can leak data, lockdown must prevent this */ 13529 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 13530 err = security_locked_down(LOCKDOWN_PERF); 13531 if (err) 13532 return err; 13533 } 13534 13535 /* 13536 * In cgroup mode, the pid argument is used to pass the fd 13537 * opened to the cgroup directory in cgroupfs. The cpu argument 13538 * designates the cpu on which to monitor threads from that 13539 * cgroup. 13540 */ 13541 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 13542 return -EINVAL; 13543 13544 if (flags & PERF_FLAG_FD_CLOEXEC) 13545 f_flags |= O_CLOEXEC; 13546 13547 event_fd = get_unused_fd_flags(f_flags); 13548 if (event_fd < 0) 13549 return event_fd; 13550 13551 /* 13552 * Event creation should be under SRCU, see perf_pmu_unregister(). 13553 */ 13554 guard(srcu)(&pmus_srcu); 13555 13556 CLASS(fd, group)(group_fd); // group_fd == -1 => empty 13557 if (group_fd != -1) { 13558 if (!is_perf_file(group)) { 13559 err = -EBADF; 13560 goto err_fd; 13561 } 13562 group_leader = fd_file(group)->private_data; 13563 if (group_leader->state <= PERF_EVENT_STATE_REVOKED) { 13564 err = -ENODEV; 13565 goto err_fd; 13566 } 13567 if (flags & PERF_FLAG_FD_OUTPUT) 13568 output_event = group_leader; 13569 if (flags & PERF_FLAG_FD_NO_GROUP) 13570 group_leader = NULL; 13571 } 13572 13573 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 13574 task = find_lively_task_by_vpid(pid); 13575 if (IS_ERR(task)) { 13576 err = PTR_ERR(task); 13577 goto err_fd; 13578 } 13579 } 13580 13581 if (task && group_leader && 13582 group_leader->attr.inherit != attr.inherit) { 13583 err = -EINVAL; 13584 goto err_task; 13585 } 13586 13587 if (flags & PERF_FLAG_PID_CGROUP) 13588 cgroup_fd = pid; 13589 13590 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 13591 NULL, NULL, cgroup_fd); 13592 if (IS_ERR(event)) { 13593 err = PTR_ERR(event); 13594 goto err_task; 13595 } 13596 13597 if (is_sampling_event(event)) { 13598 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 13599 err = -EOPNOTSUPP; 13600 goto err_alloc; 13601 } 13602 } 13603 13604 /* 13605 * Special case software events and allow them to be part of 13606 * any hardware group. 13607 */ 13608 pmu = event->pmu; 13609 13610 if (attr.use_clockid) { 13611 err = perf_event_set_clock(event, attr.clockid); 13612 if (err) 13613 goto err_alloc; 13614 } 13615 13616 if (pmu->task_ctx_nr == perf_sw_context) 13617 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13618 13619 if (task) { 13620 err = down_read_interruptible(&task->signal->exec_update_lock); 13621 if (err) 13622 goto err_alloc; 13623 13624 /* 13625 * We must hold exec_update_lock across this and any potential 13626 * perf_install_in_context() call for this new event to 13627 * serialize against exec() altering our credentials (and the 13628 * perf_event_exit_task() that could imply). 13629 */ 13630 err = -EACCES; 13631 if (!perf_check_permission(&attr, task)) 13632 goto err_cred; 13633 } 13634 13635 /* 13636 * Get the target context (task or percpu): 13637 */ 13638 ctx = find_get_context(task, event); 13639 if (IS_ERR(ctx)) { 13640 err = PTR_ERR(ctx); 13641 goto err_cred; 13642 } 13643 13644 mutex_lock(&ctx->mutex); 13645 13646 if (ctx->task == TASK_TOMBSTONE) { 13647 err = -ESRCH; 13648 goto err_locked; 13649 } 13650 13651 if (!task) { 13652 /* 13653 * Check if the @cpu we're creating an event for is online. 13654 * 13655 * We use the perf_cpu_context::ctx::mutex to serialize against 13656 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13657 */ 13658 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 13659 13660 if (!cpuctx->online) { 13661 err = -ENODEV; 13662 goto err_locked; 13663 } 13664 } 13665 13666 if (group_leader) { 13667 err = -EINVAL; 13668 13669 /* 13670 * Do not allow a recursive hierarchy (this new sibling 13671 * becoming part of another group-sibling): 13672 */ 13673 if (group_leader->group_leader != group_leader) 13674 goto err_locked; 13675 13676 /* All events in a group should have the same clock */ 13677 if (group_leader->clock != event->clock) 13678 goto err_locked; 13679 13680 /* 13681 * Make sure we're both events for the same CPU; 13682 * grouping events for different CPUs is broken; since 13683 * you can never concurrently schedule them anyhow. 13684 */ 13685 if (group_leader->cpu != event->cpu) 13686 goto err_locked; 13687 13688 /* 13689 * Make sure we're both on the same context; either task or cpu. 13690 */ 13691 if (group_leader->ctx != ctx) 13692 goto err_locked; 13693 13694 /* 13695 * Only a group leader can be exclusive or pinned 13696 */ 13697 if (attr.exclusive || attr.pinned) 13698 goto err_locked; 13699 13700 if (is_software_event(event) && 13701 !in_software_context(group_leader)) { 13702 /* 13703 * If the event is a sw event, but the group_leader 13704 * is on hw context. 13705 * 13706 * Allow the addition of software events to hw 13707 * groups, this is safe because software events 13708 * never fail to schedule. 13709 * 13710 * Note the comment that goes with struct 13711 * perf_event_pmu_context. 13712 */ 13713 pmu = group_leader->pmu_ctx->pmu; 13714 } else if (!is_software_event(event)) { 13715 if (is_software_event(group_leader) && 13716 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 13717 /* 13718 * In case the group is a pure software group, and we 13719 * try to add a hardware event, move the whole group to 13720 * the hardware context. 13721 */ 13722 move_group = 1; 13723 } 13724 13725 /* Don't allow group of multiple hw events from different pmus */ 13726 if (!in_software_context(group_leader) && 13727 group_leader->pmu_ctx->pmu != pmu) 13728 goto err_locked; 13729 } 13730 } 13731 13732 /* 13733 * Now that we're certain of the pmu; find the pmu_ctx. 13734 */ 13735 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13736 if (IS_ERR(pmu_ctx)) { 13737 err = PTR_ERR(pmu_ctx); 13738 goto err_locked; 13739 } 13740 event->pmu_ctx = pmu_ctx; 13741 13742 if (output_event) { 13743 err = perf_event_set_output(event, output_event); 13744 if (err) 13745 goto err_context; 13746 } 13747 13748 if (!perf_event_validate_size(event)) { 13749 err = -E2BIG; 13750 goto err_context; 13751 } 13752 13753 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 13754 err = -EINVAL; 13755 goto err_context; 13756 } 13757 13758 /* 13759 * Must be under the same ctx::mutex as perf_install_in_context(), 13760 * because we need to serialize with concurrent event creation. 13761 */ 13762 if (!exclusive_event_installable(event, ctx)) { 13763 err = -EBUSY; 13764 goto err_context; 13765 } 13766 13767 WARN_ON_ONCE(ctx->parent_ctx); 13768 13769 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 13770 if (IS_ERR(event_file)) { 13771 err = PTR_ERR(event_file); 13772 event_file = NULL; 13773 goto err_context; 13774 } 13775 13776 /* 13777 * This is the point on no return; we cannot fail hereafter. This is 13778 * where we start modifying current state. 13779 */ 13780 13781 if (move_group) { 13782 perf_remove_from_context(group_leader, 0); 13783 put_pmu_ctx(group_leader->pmu_ctx); 13784 13785 for_each_sibling_event(sibling, group_leader) { 13786 perf_remove_from_context(sibling, 0); 13787 put_pmu_ctx(sibling->pmu_ctx); 13788 } 13789 13790 /* 13791 * Install the group siblings before the group leader. 13792 * 13793 * Because a group leader will try and install the entire group 13794 * (through the sibling list, which is still in-tact), we can 13795 * end up with siblings installed in the wrong context. 13796 * 13797 * By installing siblings first we NO-OP because they're not 13798 * reachable through the group lists. 13799 */ 13800 for_each_sibling_event(sibling, group_leader) { 13801 sibling->pmu_ctx = pmu_ctx; 13802 get_pmu_ctx(pmu_ctx); 13803 perf_event__state_init(sibling); 13804 perf_install_in_context(ctx, sibling, sibling->cpu); 13805 } 13806 13807 /* 13808 * Removing from the context ends up with disabled 13809 * event. What we want here is event in the initial 13810 * startup state, ready to be add into new context. 13811 */ 13812 group_leader->pmu_ctx = pmu_ctx; 13813 get_pmu_ctx(pmu_ctx); 13814 perf_event__state_init(group_leader); 13815 perf_install_in_context(ctx, group_leader, group_leader->cpu); 13816 } 13817 13818 /* 13819 * Precalculate sample_data sizes; do while holding ctx::mutex such 13820 * that we're serialized against further additions and before 13821 * perf_install_in_context() which is the point the event is active and 13822 * can use these values. 13823 */ 13824 perf_event__header_size(event); 13825 perf_event__id_header_size(event); 13826 13827 event->owner = current; 13828 13829 perf_install_in_context(ctx, event, event->cpu); 13830 perf_unpin_context(ctx); 13831 13832 mutex_unlock(&ctx->mutex); 13833 13834 if (task) { 13835 up_read(&task->signal->exec_update_lock); 13836 put_task_struct(task); 13837 } 13838 13839 mutex_lock(¤t->perf_event_mutex); 13840 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 13841 mutex_unlock(¤t->perf_event_mutex); 13842 13843 /* 13844 * File reference in group guarantees that group_leader has been 13845 * kept alive until we place the new event on the sibling_list. 13846 * This ensures destruction of the group leader will find 13847 * the pointer to itself in perf_group_detach(). 13848 */ 13849 fd_install(event_fd, event_file); 13850 return event_fd; 13851 13852 err_context: 13853 put_pmu_ctx(event->pmu_ctx); 13854 event->pmu_ctx = NULL; /* _free_event() */ 13855 err_locked: 13856 mutex_unlock(&ctx->mutex); 13857 perf_unpin_context(ctx); 13858 put_ctx(ctx); 13859 err_cred: 13860 if (task) 13861 up_read(&task->signal->exec_update_lock); 13862 err_alloc: 13863 put_event(event); 13864 err_task: 13865 if (task) 13866 put_task_struct(task); 13867 err_fd: 13868 put_unused_fd(event_fd); 13869 return err; 13870 } 13871 13872 /** 13873 * perf_event_create_kernel_counter 13874 * 13875 * @attr: attributes of the counter to create 13876 * @cpu: cpu in which the counter is bound 13877 * @task: task to profile (NULL for percpu) 13878 * @overflow_handler: callback to trigger when we hit the event 13879 * @context: context data could be used in overflow_handler callback 13880 */ 13881 struct perf_event * 13882 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13883 struct task_struct *task, 13884 perf_overflow_handler_t overflow_handler, 13885 void *context) 13886 { 13887 struct perf_event_pmu_context *pmu_ctx; 13888 struct perf_event_context *ctx; 13889 struct perf_event *event; 13890 struct pmu *pmu; 13891 int err; 13892 13893 /* 13894 * Grouping is not supported for kernel events, neither is 'AUX', 13895 * make sure the caller's intentions are adjusted. 13896 */ 13897 if (attr->aux_output || attr->aux_action) 13898 return ERR_PTR(-EINVAL); 13899 13900 /* 13901 * Event creation should be under SRCU, see perf_pmu_unregister(). 13902 */ 13903 guard(srcu)(&pmus_srcu); 13904 13905 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13906 overflow_handler, context, -1); 13907 if (IS_ERR(event)) { 13908 err = PTR_ERR(event); 13909 goto err; 13910 } 13911 13912 /* Mark owner so we could distinguish it from user events. */ 13913 event->owner = TASK_TOMBSTONE; 13914 pmu = event->pmu; 13915 13916 if (pmu->task_ctx_nr == perf_sw_context) 13917 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13918 13919 /* 13920 * Get the target context (task or percpu): 13921 */ 13922 ctx = find_get_context(task, event); 13923 if (IS_ERR(ctx)) { 13924 err = PTR_ERR(ctx); 13925 goto err_alloc; 13926 } 13927 13928 WARN_ON_ONCE(ctx->parent_ctx); 13929 mutex_lock(&ctx->mutex); 13930 if (ctx->task == TASK_TOMBSTONE) { 13931 err = -ESRCH; 13932 goto err_unlock; 13933 } 13934 13935 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13936 if (IS_ERR(pmu_ctx)) { 13937 err = PTR_ERR(pmu_ctx); 13938 goto err_unlock; 13939 } 13940 event->pmu_ctx = pmu_ctx; 13941 13942 if (!task) { 13943 /* 13944 * Check if the @cpu we're creating an event for is online. 13945 * 13946 * We use the perf_cpu_context::ctx::mutex to serialize against 13947 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13948 */ 13949 struct perf_cpu_context *cpuctx = 13950 container_of(ctx, struct perf_cpu_context, ctx); 13951 if (!cpuctx->online) { 13952 err = -ENODEV; 13953 goto err_pmu_ctx; 13954 } 13955 } 13956 13957 if (!exclusive_event_installable(event, ctx)) { 13958 err = -EBUSY; 13959 goto err_pmu_ctx; 13960 } 13961 13962 perf_install_in_context(ctx, event, event->cpu); 13963 perf_unpin_context(ctx); 13964 mutex_unlock(&ctx->mutex); 13965 13966 return event; 13967 13968 err_pmu_ctx: 13969 put_pmu_ctx(pmu_ctx); 13970 event->pmu_ctx = NULL; /* _free_event() */ 13971 err_unlock: 13972 mutex_unlock(&ctx->mutex); 13973 perf_unpin_context(ctx); 13974 put_ctx(ctx); 13975 err_alloc: 13976 put_event(event); 13977 err: 13978 return ERR_PTR(err); 13979 } 13980 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13981 13982 static void __perf_pmu_remove(struct perf_event_context *ctx, 13983 int cpu, struct pmu *pmu, 13984 struct perf_event_groups *groups, 13985 struct list_head *events) 13986 { 13987 struct perf_event *event, *sibling; 13988 13989 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13990 perf_remove_from_context(event, 0); 13991 put_pmu_ctx(event->pmu_ctx); 13992 list_add(&event->migrate_entry, events); 13993 13994 for_each_sibling_event(sibling, event) { 13995 perf_remove_from_context(sibling, 0); 13996 put_pmu_ctx(sibling->pmu_ctx); 13997 list_add(&sibling->migrate_entry, events); 13998 } 13999 } 14000 } 14001 14002 static void __perf_pmu_install_event(struct pmu *pmu, 14003 struct perf_event_context *ctx, 14004 int cpu, struct perf_event *event) 14005 { 14006 struct perf_event_pmu_context *epc; 14007 struct perf_event_context *old_ctx = event->ctx; 14008 14009 get_ctx(ctx); /* normally find_get_context() */ 14010 14011 event->cpu = cpu; 14012 epc = find_get_pmu_context(pmu, ctx, event); 14013 event->pmu_ctx = epc; 14014 14015 if (event->state >= PERF_EVENT_STATE_OFF) 14016 event->state = PERF_EVENT_STATE_INACTIVE; 14017 perf_install_in_context(ctx, event, cpu); 14018 14019 /* 14020 * Now that event->ctx is updated and visible, put the old ctx. 14021 */ 14022 put_ctx(old_ctx); 14023 } 14024 14025 static void __perf_pmu_install(struct perf_event_context *ctx, 14026 int cpu, struct pmu *pmu, struct list_head *events) 14027 { 14028 struct perf_event *event, *tmp; 14029 14030 /* 14031 * Re-instate events in 2 passes. 14032 * 14033 * Skip over group leaders and only install siblings on this first 14034 * pass, siblings will not get enabled without a leader, however a 14035 * leader will enable its siblings, even if those are still on the old 14036 * context. 14037 */ 14038 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 14039 if (event->group_leader == event) 14040 continue; 14041 14042 list_del(&event->migrate_entry); 14043 __perf_pmu_install_event(pmu, ctx, cpu, event); 14044 } 14045 14046 /* 14047 * Once all the siblings are setup properly, install the group leaders 14048 * to make it go. 14049 */ 14050 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 14051 list_del(&event->migrate_entry); 14052 __perf_pmu_install_event(pmu, ctx, cpu, event); 14053 } 14054 } 14055 14056 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 14057 { 14058 struct perf_event_context *src_ctx, *dst_ctx; 14059 LIST_HEAD(events); 14060 14061 /* 14062 * Since per-cpu context is persistent, no need to grab an extra 14063 * reference. 14064 */ 14065 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 14066 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 14067 14068 /* 14069 * See perf_event_ctx_lock() for comments on the details 14070 * of swizzling perf_event::ctx. 14071 */ 14072 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 14073 14074 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 14075 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 14076 14077 if (!list_empty(&events)) { 14078 /* 14079 * Wait for the events to quiesce before re-instating them. 14080 */ 14081 synchronize_rcu(); 14082 14083 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 14084 } 14085 14086 mutex_unlock(&dst_ctx->mutex); 14087 mutex_unlock(&src_ctx->mutex); 14088 } 14089 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 14090 14091 static void sync_child_event(struct perf_event *child_event, 14092 struct task_struct *task) 14093 { 14094 struct perf_event *parent_event = child_event->parent; 14095 u64 child_val; 14096 14097 if (child_event->attr.inherit_stat) { 14098 if (task && task != TASK_TOMBSTONE) 14099 perf_event_read_event(child_event, task); 14100 } 14101 14102 child_val = perf_event_count(child_event, false); 14103 14104 /* 14105 * Add back the child's count to the parent's count: 14106 */ 14107 atomic64_add(child_val, &parent_event->child_count); 14108 atomic64_add(child_event->total_time_enabled, 14109 &parent_event->child_total_time_enabled); 14110 atomic64_add(child_event->total_time_running, 14111 &parent_event->child_total_time_running); 14112 } 14113 14114 static void 14115 perf_event_exit_event(struct perf_event *event, 14116 struct perf_event_context *ctx, 14117 struct task_struct *task, 14118 bool revoke) 14119 { 14120 struct perf_event *parent_event = event->parent; 14121 unsigned long detach_flags = DETACH_EXIT; 14122 unsigned int attach_state; 14123 14124 if (parent_event) { 14125 /* 14126 * Do not destroy the 'original' grouping; because of the 14127 * context switch optimization the original events could've 14128 * ended up in a random child task. 14129 * 14130 * If we were to destroy the original group, all group related 14131 * operations would cease to function properly after this 14132 * random child dies. 14133 * 14134 * Do destroy all inherited groups, we don't care about those 14135 * and being thorough is better. 14136 */ 14137 detach_flags |= DETACH_GROUP | DETACH_CHILD; 14138 mutex_lock(&parent_event->child_mutex); 14139 /* PERF_ATTACH_ITRACE might be set concurrently */ 14140 attach_state = READ_ONCE(event->attach_state); 14141 14142 if (attach_state & PERF_ATTACH_CHILD) 14143 sync_child_event(event, task); 14144 } 14145 14146 if (revoke) 14147 detach_flags |= DETACH_GROUP | DETACH_REVOKE; 14148 14149 perf_remove_from_context(event, detach_flags); 14150 /* 14151 * Child events can be freed. 14152 */ 14153 if (parent_event) { 14154 mutex_unlock(&parent_event->child_mutex); 14155 14156 /* 14157 * Match the refcount initialization. Make sure it doesn't happen 14158 * twice if pmu_detach_event() calls it on an already exited task. 14159 */ 14160 if (attach_state & PERF_ATTACH_CHILD) { 14161 /* 14162 * Kick perf_poll() for is_event_hup(); 14163 */ 14164 perf_event_wakeup(parent_event); 14165 /* 14166 * pmu_detach_event() will have an extra refcount. 14167 * perf_pending_task() might have one too. 14168 */ 14169 put_event(event); 14170 } 14171 14172 return; 14173 } 14174 14175 /* 14176 * Parent events are governed by their filedesc, retain them. 14177 */ 14178 perf_event_wakeup(event); 14179 } 14180 14181 static void perf_event_exit_task_context(struct task_struct *task, bool exit) 14182 { 14183 struct perf_event_context *ctx, *clone_ctx = NULL; 14184 struct perf_event *child_event, *next; 14185 14186 ctx = perf_pin_task_context(task); 14187 if (!ctx) 14188 return; 14189 14190 /* 14191 * In order to reduce the amount of tricky in ctx tear-down, we hold 14192 * ctx::mutex over the entire thing. This serializes against almost 14193 * everything that wants to access the ctx. 14194 * 14195 * The exception is sys_perf_event_open() / 14196 * perf_event_create_kernel_count() which does find_get_context() 14197 * without ctx::mutex (it cannot because of the move_group double mutex 14198 * lock thing). See the comments in perf_install_in_context(). 14199 */ 14200 mutex_lock(&ctx->mutex); 14201 14202 /* 14203 * In a single ctx::lock section, de-schedule the events and detach the 14204 * context from the task such that we cannot ever get it scheduled back 14205 * in. 14206 */ 14207 raw_spin_lock_irq(&ctx->lock); 14208 if (exit) 14209 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 14210 14211 /* 14212 * Now that the context is inactive, destroy the task <-> ctx relation 14213 * and mark the context dead. 14214 */ 14215 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 14216 put_ctx(ctx); /* cannot be last */ 14217 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 14218 put_task_struct(task); /* cannot be last */ 14219 14220 clone_ctx = unclone_ctx(ctx); 14221 raw_spin_unlock_irq(&ctx->lock); 14222 14223 if (clone_ctx) 14224 put_ctx(clone_ctx); 14225 14226 /* 14227 * Report the task dead after unscheduling the events so that we 14228 * won't get any samples after PERF_RECORD_EXIT. We can however still 14229 * get a few PERF_RECORD_READ events. 14230 */ 14231 if (exit) 14232 perf_event_task(task, ctx, 0); 14233 14234 list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry) 14235 perf_event_exit_event(child_event, ctx, exit ? task : NULL, false); 14236 14237 mutex_unlock(&ctx->mutex); 14238 14239 if (!exit) { 14240 /* 14241 * perf_event_release_kernel() could still have a reference on 14242 * this context. In that case we must wait for these events to 14243 * have been freed (in particular all their references to this 14244 * task must've been dropped). 14245 * 14246 * Without this copy_process() will unconditionally free this 14247 * task (irrespective of its reference count) and 14248 * _free_event()'s put_task_struct(event->hw.target) will be a 14249 * use-after-free. 14250 * 14251 * Wait for all events to drop their context reference. 14252 */ 14253 wait_var_event(&ctx->refcount, 14254 refcount_read(&ctx->refcount) == 1); 14255 } 14256 put_ctx(ctx); 14257 } 14258 14259 /* 14260 * When a task exits, feed back event values to parent events. 14261 * 14262 * Can be called with exec_update_lock held when called from 14263 * setup_new_exec(). 14264 */ 14265 void perf_event_exit_task(struct task_struct *task) 14266 { 14267 struct perf_event *event, *tmp; 14268 14269 WARN_ON_ONCE(task != current); 14270 14271 mutex_lock(&task->perf_event_mutex); 14272 list_for_each_entry_safe(event, tmp, &task->perf_event_list, 14273 owner_entry) { 14274 list_del_init(&event->owner_entry); 14275 14276 /* 14277 * Ensure the list deletion is visible before we clear 14278 * the owner, closes a race against perf_release() where 14279 * we need to serialize on the owner->perf_event_mutex. 14280 */ 14281 smp_store_release(&event->owner, NULL); 14282 } 14283 mutex_unlock(&task->perf_event_mutex); 14284 14285 perf_event_exit_task_context(task, true); 14286 14287 /* 14288 * The perf_event_exit_task_context calls perf_event_task 14289 * with task's task_ctx, which generates EXIT events for 14290 * task contexts and sets task->perf_event_ctxp[] to NULL. 14291 * At this point we need to send EXIT events to cpu contexts. 14292 */ 14293 perf_event_task(task, NULL, 0); 14294 14295 /* 14296 * Detach the perf_ctx_data for the system-wide event. 14297 */ 14298 guard(percpu_read)(&global_ctx_data_rwsem); 14299 detach_task_ctx_data(task); 14300 } 14301 14302 /* 14303 * Free a context as created by inheritance by perf_event_init_task() below, 14304 * used by fork() in case of fail. 14305 * 14306 * Even though the task has never lived, the context and events have been 14307 * exposed through the child_list, so we must take care tearing it all down. 14308 */ 14309 void perf_event_free_task(struct task_struct *task) 14310 { 14311 perf_event_exit_task_context(task, false); 14312 } 14313 14314 void perf_event_delayed_put(struct task_struct *task) 14315 { 14316 WARN_ON_ONCE(task->perf_event_ctxp); 14317 } 14318 14319 struct file *perf_event_get(unsigned int fd) 14320 { 14321 struct file *file = fget(fd); 14322 if (!file) 14323 return ERR_PTR(-EBADF); 14324 14325 if (file->f_op != &perf_fops) { 14326 fput(file); 14327 return ERR_PTR(-EBADF); 14328 } 14329 14330 return file; 14331 } 14332 14333 const struct perf_event *perf_get_event(struct file *file) 14334 { 14335 if (file->f_op != &perf_fops) 14336 return ERR_PTR(-EINVAL); 14337 14338 return file->private_data; 14339 } 14340 14341 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 14342 { 14343 if (!event) 14344 return ERR_PTR(-EINVAL); 14345 14346 return &event->attr; 14347 } 14348 14349 int perf_allow_kernel(void) 14350 { 14351 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 14352 return -EACCES; 14353 14354 return security_perf_event_open(PERF_SECURITY_KERNEL); 14355 } 14356 EXPORT_SYMBOL_GPL(perf_allow_kernel); 14357 14358 /* 14359 * Inherit an event from parent task to child task. 14360 * 14361 * Returns: 14362 * - valid pointer on success 14363 * - NULL for orphaned events 14364 * - IS_ERR() on error 14365 */ 14366 static struct perf_event * 14367 inherit_event(struct perf_event *parent_event, 14368 struct task_struct *parent, 14369 struct perf_event_context *parent_ctx, 14370 struct task_struct *child, 14371 struct perf_event *group_leader, 14372 struct perf_event_context *child_ctx) 14373 { 14374 enum perf_event_state parent_state = parent_event->state; 14375 struct perf_event_pmu_context *pmu_ctx; 14376 struct perf_event *child_event; 14377 unsigned long flags; 14378 14379 /* 14380 * Instead of creating recursive hierarchies of events, 14381 * we link inherited events back to the original parent, 14382 * which has a filp for sure, which we use as the reference 14383 * count: 14384 */ 14385 if (parent_event->parent) 14386 parent_event = parent_event->parent; 14387 14388 if (parent_event->state <= PERF_EVENT_STATE_REVOKED) 14389 return NULL; 14390 14391 /* 14392 * Event creation should be under SRCU, see perf_pmu_unregister(). 14393 */ 14394 guard(srcu)(&pmus_srcu); 14395 14396 child_event = perf_event_alloc(&parent_event->attr, 14397 parent_event->cpu, 14398 child, 14399 group_leader, parent_event, 14400 NULL, NULL, -1); 14401 if (IS_ERR(child_event)) 14402 return child_event; 14403 14404 get_ctx(child_ctx); 14405 child_event->ctx = child_ctx; 14406 14407 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 14408 if (IS_ERR(pmu_ctx)) { 14409 free_event(child_event); 14410 return ERR_CAST(pmu_ctx); 14411 } 14412 child_event->pmu_ctx = pmu_ctx; 14413 14414 /* 14415 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 14416 * must be under the same lock in order to serialize against 14417 * perf_event_release_kernel(), such that either we must observe 14418 * is_orphaned_event() or they will observe us on the child_list. 14419 */ 14420 mutex_lock(&parent_event->child_mutex); 14421 if (is_orphaned_event(parent_event) || 14422 !atomic_long_inc_not_zero(&parent_event->refcount)) { 14423 mutex_unlock(&parent_event->child_mutex); 14424 free_event(child_event); 14425 return NULL; 14426 } 14427 14428 /* 14429 * Make the child state follow the state of the parent event, 14430 * not its attr.disabled bit. We hold the parent's mutex, 14431 * so we won't race with perf_event_{en, dis}able_family. 14432 */ 14433 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 14434 child_event->state = PERF_EVENT_STATE_INACTIVE; 14435 else 14436 child_event->state = PERF_EVENT_STATE_OFF; 14437 14438 if (parent_event->attr.freq) { 14439 u64 sample_period = parent_event->hw.sample_period; 14440 struct hw_perf_event *hwc = &child_event->hw; 14441 14442 hwc->sample_period = sample_period; 14443 hwc->last_period = sample_period; 14444 14445 local64_set(&hwc->period_left, sample_period); 14446 } 14447 14448 child_event->overflow_handler = parent_event->overflow_handler; 14449 child_event->overflow_handler_context 14450 = parent_event->overflow_handler_context; 14451 14452 /* 14453 * Precalculate sample_data sizes 14454 */ 14455 perf_event__header_size(child_event); 14456 perf_event__id_header_size(child_event); 14457 14458 /* 14459 * Link it up in the child's context: 14460 */ 14461 raw_spin_lock_irqsave(&child_ctx->lock, flags); 14462 add_event_to_ctx(child_event, child_ctx); 14463 child_event->attach_state |= PERF_ATTACH_CHILD; 14464 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 14465 14466 /* 14467 * Link this into the parent event's child list 14468 */ 14469 list_add_tail(&child_event->child_list, &parent_event->child_list); 14470 mutex_unlock(&parent_event->child_mutex); 14471 14472 return child_event; 14473 } 14474 14475 /* 14476 * Inherits an event group. 14477 * 14478 * This will quietly suppress orphaned events; !inherit_event() is not an error. 14479 * This matches with perf_event_release_kernel() removing all child events. 14480 * 14481 * Returns: 14482 * - 0 on success 14483 * - <0 on error 14484 */ 14485 static int inherit_group(struct perf_event *parent_event, 14486 struct task_struct *parent, 14487 struct perf_event_context *parent_ctx, 14488 struct task_struct *child, 14489 struct perf_event_context *child_ctx) 14490 { 14491 struct perf_event *leader; 14492 struct perf_event *sub; 14493 struct perf_event *child_ctr; 14494 14495 leader = inherit_event(parent_event, parent, parent_ctx, 14496 child, NULL, child_ctx); 14497 if (IS_ERR(leader)) 14498 return PTR_ERR(leader); 14499 /* 14500 * @leader can be NULL here because of is_orphaned_event(). In this 14501 * case inherit_event() will create individual events, similar to what 14502 * perf_group_detach() would do anyway. 14503 */ 14504 for_each_sibling_event(sub, parent_event) { 14505 child_ctr = inherit_event(sub, parent, parent_ctx, 14506 child, leader, child_ctx); 14507 if (IS_ERR(child_ctr)) 14508 return PTR_ERR(child_ctr); 14509 14510 if (sub->aux_event == parent_event && child_ctr && 14511 !perf_get_aux_event(child_ctr, leader)) 14512 return -EINVAL; 14513 } 14514 if (leader) 14515 leader->group_generation = parent_event->group_generation; 14516 return 0; 14517 } 14518 14519 /* 14520 * Creates the child task context and tries to inherit the event-group. 14521 * 14522 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 14523 * inherited_all set when we 'fail' to inherit an orphaned event; this is 14524 * consistent with perf_event_release_kernel() removing all child events. 14525 * 14526 * Returns: 14527 * - 0 on success 14528 * - <0 on error 14529 */ 14530 static int 14531 inherit_task_group(struct perf_event *event, struct task_struct *parent, 14532 struct perf_event_context *parent_ctx, 14533 struct task_struct *child, 14534 u64 clone_flags, int *inherited_all) 14535 { 14536 struct perf_event_context *child_ctx; 14537 int ret; 14538 14539 if (!event->attr.inherit || 14540 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 14541 /* Do not inherit if sigtrap and signal handlers were cleared. */ 14542 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 14543 *inherited_all = 0; 14544 return 0; 14545 } 14546 14547 child_ctx = child->perf_event_ctxp; 14548 if (!child_ctx) { 14549 /* 14550 * This is executed from the parent task context, so 14551 * inherit events that have been marked for cloning. 14552 * First allocate and initialize a context for the 14553 * child. 14554 */ 14555 child_ctx = alloc_perf_context(child); 14556 if (!child_ctx) 14557 return -ENOMEM; 14558 14559 child->perf_event_ctxp = child_ctx; 14560 } 14561 14562 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 14563 if (ret) 14564 *inherited_all = 0; 14565 14566 return ret; 14567 } 14568 14569 /* 14570 * Initialize the perf_event context in task_struct 14571 */ 14572 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 14573 { 14574 struct perf_event_context *child_ctx, *parent_ctx; 14575 struct perf_event_context *cloned_ctx; 14576 struct perf_event *event; 14577 struct task_struct *parent = current; 14578 int inherited_all = 1; 14579 unsigned long flags; 14580 int ret = 0; 14581 14582 if (likely(!parent->perf_event_ctxp)) 14583 return 0; 14584 14585 /* 14586 * If the parent's context is a clone, pin it so it won't get 14587 * swapped under us. 14588 */ 14589 parent_ctx = perf_pin_task_context(parent); 14590 if (!parent_ctx) 14591 return 0; 14592 14593 /* 14594 * No need to check if parent_ctx != NULL here; since we saw 14595 * it non-NULL earlier, the only reason for it to become NULL 14596 * is if we exit, and since we're currently in the middle of 14597 * a fork we can't be exiting at the same time. 14598 */ 14599 14600 /* 14601 * Lock the parent list. No need to lock the child - not PID 14602 * hashed yet and not running, so nobody can access it. 14603 */ 14604 mutex_lock(&parent_ctx->mutex); 14605 14606 /* 14607 * We dont have to disable NMIs - we are only looking at 14608 * the list, not manipulating it: 14609 */ 14610 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 14611 ret = inherit_task_group(event, parent, parent_ctx, 14612 child, clone_flags, &inherited_all); 14613 if (ret) 14614 goto out_unlock; 14615 } 14616 14617 /* 14618 * We can't hold ctx->lock when iterating the ->flexible_group list due 14619 * to allocations, but we need to prevent rotation because 14620 * rotate_ctx() will change the list from interrupt context. 14621 */ 14622 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14623 parent_ctx->rotate_disable = 1; 14624 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14625 14626 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 14627 ret = inherit_task_group(event, parent, parent_ctx, 14628 child, clone_flags, &inherited_all); 14629 if (ret) 14630 goto out_unlock; 14631 } 14632 14633 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14634 parent_ctx->rotate_disable = 0; 14635 14636 child_ctx = child->perf_event_ctxp; 14637 14638 if (child_ctx && inherited_all) { 14639 /* 14640 * Mark the child context as a clone of the parent 14641 * context, or of whatever the parent is a clone of. 14642 * 14643 * Note that if the parent is a clone, the holding of 14644 * parent_ctx->lock avoids it from being uncloned. 14645 */ 14646 cloned_ctx = parent_ctx->parent_ctx; 14647 if (cloned_ctx) { 14648 child_ctx->parent_ctx = cloned_ctx; 14649 child_ctx->parent_gen = parent_ctx->parent_gen; 14650 } else { 14651 child_ctx->parent_ctx = parent_ctx; 14652 child_ctx->parent_gen = parent_ctx->generation; 14653 } 14654 get_ctx(child_ctx->parent_ctx); 14655 } 14656 14657 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14658 out_unlock: 14659 mutex_unlock(&parent_ctx->mutex); 14660 14661 perf_unpin_context(parent_ctx); 14662 put_ctx(parent_ctx); 14663 14664 return ret; 14665 } 14666 14667 /* 14668 * Initialize the perf_event context in task_struct 14669 */ 14670 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 14671 { 14672 int ret; 14673 14674 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 14675 child->perf_event_ctxp = NULL; 14676 mutex_init(&child->perf_event_mutex); 14677 INIT_LIST_HEAD(&child->perf_event_list); 14678 child->perf_ctx_data = NULL; 14679 14680 ret = perf_event_init_context(child, clone_flags); 14681 if (ret) { 14682 perf_event_free_task(child); 14683 return ret; 14684 } 14685 14686 return 0; 14687 } 14688 14689 static void __init perf_event_init_all_cpus(void) 14690 { 14691 struct swevent_htable *swhash; 14692 struct perf_cpu_context *cpuctx; 14693 int cpu; 14694 14695 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 14696 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 14697 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 14698 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 14699 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 14700 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 14701 14702 14703 for_each_possible_cpu(cpu) { 14704 swhash = &per_cpu(swevent_htable, cpu); 14705 mutex_init(&swhash->hlist_mutex); 14706 14707 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 14708 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 14709 14710 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 14711 14712 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14713 __perf_event_init_context(&cpuctx->ctx); 14714 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 14715 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 14716 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 14717 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 14718 cpuctx->heap = cpuctx->heap_default; 14719 } 14720 } 14721 14722 static void perf_swevent_init_cpu(unsigned int cpu) 14723 { 14724 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 14725 14726 mutex_lock(&swhash->hlist_mutex); 14727 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 14728 struct swevent_hlist *hlist; 14729 14730 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 14731 WARN_ON(!hlist); 14732 rcu_assign_pointer(swhash->swevent_hlist, hlist); 14733 } 14734 mutex_unlock(&swhash->hlist_mutex); 14735 } 14736 14737 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 14738 static void __perf_event_exit_context(void *__info) 14739 { 14740 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 14741 struct perf_event_context *ctx = __info; 14742 struct perf_event *event; 14743 14744 raw_spin_lock(&ctx->lock); 14745 ctx_sched_out(ctx, NULL, EVENT_TIME); 14746 list_for_each_entry(event, &ctx->event_list, event_entry) 14747 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 14748 raw_spin_unlock(&ctx->lock); 14749 } 14750 14751 static void perf_event_clear_cpumask(unsigned int cpu) 14752 { 14753 int target[PERF_PMU_MAX_SCOPE]; 14754 unsigned int scope; 14755 struct pmu *pmu; 14756 14757 cpumask_clear_cpu(cpu, perf_online_mask); 14758 14759 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14760 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14761 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 14762 14763 target[scope] = -1; 14764 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14765 continue; 14766 14767 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 14768 continue; 14769 target[scope] = cpumask_any_but(cpumask, cpu); 14770 if (target[scope] < nr_cpu_ids) 14771 cpumask_set_cpu(target[scope], pmu_cpumask); 14772 } 14773 14774 /* migrate */ 14775 list_for_each_entry(pmu, &pmus, entry) { 14776 if (pmu->scope == PERF_PMU_SCOPE_NONE || 14777 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 14778 continue; 14779 14780 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 14781 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 14782 } 14783 } 14784 14785 static void perf_event_exit_cpu_context(int cpu) 14786 { 14787 struct perf_cpu_context *cpuctx; 14788 struct perf_event_context *ctx; 14789 14790 // XXX simplify cpuctx->online 14791 mutex_lock(&pmus_lock); 14792 /* 14793 * Clear the cpumasks, and migrate to other CPUs if possible. 14794 * Must be invoked before the __perf_event_exit_context. 14795 */ 14796 perf_event_clear_cpumask(cpu); 14797 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14798 ctx = &cpuctx->ctx; 14799 14800 mutex_lock(&ctx->mutex); 14801 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 14802 cpuctx->online = 0; 14803 mutex_unlock(&ctx->mutex); 14804 mutex_unlock(&pmus_lock); 14805 } 14806 #else 14807 14808 static void perf_event_exit_cpu_context(int cpu) { } 14809 14810 #endif 14811 14812 static void perf_event_setup_cpumask(unsigned int cpu) 14813 { 14814 struct cpumask *pmu_cpumask; 14815 unsigned int scope; 14816 14817 /* 14818 * Early boot stage, the cpumask hasn't been set yet. 14819 * The perf_online_<domain>_masks includes the first CPU of each domain. 14820 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 14821 */ 14822 if (cpumask_empty(perf_online_mask)) { 14823 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14824 pmu_cpumask = perf_scope_cpumask(scope); 14825 if (WARN_ON_ONCE(!pmu_cpumask)) 14826 continue; 14827 cpumask_set_cpu(cpu, pmu_cpumask); 14828 } 14829 goto end; 14830 } 14831 14832 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14833 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14834 14835 pmu_cpumask = perf_scope_cpumask(scope); 14836 14837 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14838 continue; 14839 14840 if (!cpumask_empty(cpumask) && 14841 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14842 cpumask_set_cpu(cpu, pmu_cpumask); 14843 } 14844 end: 14845 cpumask_set_cpu(cpu, perf_online_mask); 14846 } 14847 14848 int perf_event_init_cpu(unsigned int cpu) 14849 { 14850 struct perf_cpu_context *cpuctx; 14851 struct perf_event_context *ctx; 14852 14853 perf_swevent_init_cpu(cpu); 14854 14855 mutex_lock(&pmus_lock); 14856 perf_event_setup_cpumask(cpu); 14857 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14858 ctx = &cpuctx->ctx; 14859 14860 mutex_lock(&ctx->mutex); 14861 cpuctx->online = 1; 14862 mutex_unlock(&ctx->mutex); 14863 mutex_unlock(&pmus_lock); 14864 14865 return 0; 14866 } 14867 14868 int perf_event_exit_cpu(unsigned int cpu) 14869 { 14870 perf_event_exit_cpu_context(cpu); 14871 return 0; 14872 } 14873 14874 static int 14875 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14876 { 14877 int cpu; 14878 14879 for_each_online_cpu(cpu) 14880 perf_event_exit_cpu(cpu); 14881 14882 return NOTIFY_OK; 14883 } 14884 14885 /* 14886 * Run the perf reboot notifier at the very last possible moment so that 14887 * the generic watchdog code runs as long as possible. 14888 */ 14889 static struct notifier_block perf_reboot_notifier = { 14890 .notifier_call = perf_reboot, 14891 .priority = INT_MIN, 14892 }; 14893 14894 void __init perf_event_init(void) 14895 { 14896 int ret; 14897 14898 idr_init(&pmu_idr); 14899 14900 unwind_deferred_init(&perf_unwind_work, 14901 perf_unwind_deferred_callback); 14902 14903 perf_event_init_all_cpus(); 14904 init_srcu_struct(&pmus_srcu); 14905 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14906 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14907 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14908 perf_tp_register(); 14909 perf_event_init_cpu(smp_processor_id()); 14910 register_reboot_notifier(&perf_reboot_notifier); 14911 14912 ret = init_hw_breakpoint(); 14913 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14914 14915 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14916 14917 /* 14918 * Build time assertion that we keep the data_head at the intended 14919 * location. IOW, validation we got the __reserved[] size right. 14920 */ 14921 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14922 != 1024); 14923 } 14924 14925 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14926 char *page) 14927 { 14928 struct perf_pmu_events_attr *pmu_attr = 14929 container_of(attr, struct perf_pmu_events_attr, attr); 14930 14931 if (pmu_attr->event_str) 14932 return sprintf(page, "%s\n", pmu_attr->event_str); 14933 14934 return 0; 14935 } 14936 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14937 14938 static int __init perf_event_sysfs_init(void) 14939 { 14940 struct pmu *pmu; 14941 int ret; 14942 14943 mutex_lock(&pmus_lock); 14944 14945 ret = bus_register(&pmu_bus); 14946 if (ret) 14947 goto unlock; 14948 14949 list_for_each_entry(pmu, &pmus, entry) { 14950 if (pmu->dev) 14951 continue; 14952 14953 ret = pmu_dev_alloc(pmu); 14954 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14955 } 14956 pmu_bus_running = 1; 14957 ret = 0; 14958 14959 unlock: 14960 mutex_unlock(&pmus_lock); 14961 14962 return ret; 14963 } 14964 device_initcall(perf_event_sysfs_init); 14965 14966 #ifdef CONFIG_CGROUP_PERF 14967 static struct cgroup_subsys_state * 14968 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14969 { 14970 struct perf_cgroup *jc; 14971 14972 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14973 if (!jc) 14974 return ERR_PTR(-ENOMEM); 14975 14976 jc->info = alloc_percpu(struct perf_cgroup_info); 14977 if (!jc->info) { 14978 kfree(jc); 14979 return ERR_PTR(-ENOMEM); 14980 } 14981 14982 return &jc->css; 14983 } 14984 14985 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14986 { 14987 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14988 14989 free_percpu(jc->info); 14990 kfree(jc); 14991 } 14992 14993 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14994 { 14995 perf_event_cgroup(css->cgroup); 14996 return 0; 14997 } 14998 14999 static int __perf_cgroup_move(void *info) 15000 { 15001 struct task_struct *task = info; 15002 15003 preempt_disable(); 15004 perf_cgroup_switch(task); 15005 preempt_enable(); 15006 15007 return 0; 15008 } 15009 15010 static void perf_cgroup_attach(struct cgroup_taskset *tset) 15011 { 15012 struct task_struct *task; 15013 struct cgroup_subsys_state *css; 15014 15015 cgroup_taskset_for_each(task, css, tset) 15016 task_function_call(task, __perf_cgroup_move, task); 15017 } 15018 15019 struct cgroup_subsys perf_event_cgrp_subsys = { 15020 .css_alloc = perf_cgroup_css_alloc, 15021 .css_free = perf_cgroup_css_free, 15022 .css_online = perf_cgroup_css_online, 15023 .attach = perf_cgroup_attach, 15024 /* 15025 * Implicitly enable on dfl hierarchy so that perf events can 15026 * always be filtered by cgroup2 path as long as perf_event 15027 * controller is not mounted on a legacy hierarchy. 15028 */ 15029 .implicit_on_dfl = true, 15030 .threaded = true, 15031 }; 15032 #endif /* CONFIG_CGROUP_PERF */ 15033 15034 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 15035