1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h> /* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31
32 #include <asm/local64.h>
33 #include <asm/local.h>
34
35 #include "trace.h"
36
37 /*
38 * The "absolute" timestamp in the buffer is only 59 bits.
39 * If a clock has the 5 MSBs set, it needs to be saved and
40 * reinserted.
41 */
42 #define TS_MSB (0xf8ULL << 56)
43 #define ABS_TS_MASK (~TS_MSB)
44
45 static void update_pages_handler(struct work_struct *work);
46
47 #define RING_BUFFER_META_MAGIC 0xBADFEED
48
49 struct ring_buffer_meta {
50 int magic;
51 int struct_size;
52 unsigned long text_addr;
53 unsigned long data_addr;
54 unsigned long first_buffer;
55 unsigned long head_buffer;
56 unsigned long commit_buffer;
57 __u32 subbuf_size;
58 __u32 nr_subbufs;
59 int buffers[];
60 };
61
62 /*
63 * The ring buffer header is special. We must manually up keep it.
64 */
ring_buffer_print_entry_header(struct trace_seq * s)65 int ring_buffer_print_entry_header(struct trace_seq *s)
66 {
67 trace_seq_puts(s, "# compressed entry header\n");
68 trace_seq_puts(s, "\ttype_len : 5 bits\n");
69 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
70 trace_seq_puts(s, "\tarray : 32 bits\n");
71 trace_seq_putc(s, '\n');
72 trace_seq_printf(s, "\tpadding : type == %d\n",
73 RINGBUF_TYPE_PADDING);
74 trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 RINGBUF_TYPE_TIME_EXTEND);
76 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 RINGBUF_TYPE_TIME_STAMP);
78 trace_seq_printf(s, "\tdata max type_len == %d\n",
79 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80
81 return !trace_seq_has_overflowed(s);
82 }
83
84 /*
85 * The ring buffer is made up of a list of pages. A separate list of pages is
86 * allocated for each CPU. A writer may only write to a buffer that is
87 * associated with the CPU it is currently executing on. A reader may read
88 * from any per cpu buffer.
89 *
90 * The reader is special. For each per cpu buffer, the reader has its own
91 * reader page. When a reader has read the entire reader page, this reader
92 * page is swapped with another page in the ring buffer.
93 *
94 * Now, as long as the writer is off the reader page, the reader can do what
95 * ever it wants with that page. The writer will never write to that page
96 * again (as long as it is out of the ring buffer).
97 *
98 * Here's some silly ASCII art.
99 *
100 * +------+
101 * |reader| RING BUFFER
102 * |page |
103 * +------+ +---+ +---+ +---+
104 * | |-->| |-->| |
105 * +---+ +---+ +---+
106 * ^ |
107 * | |
108 * +---------------+
109 *
110 *
111 * +------+
112 * |reader| RING BUFFER
113 * |page |------------------v
114 * +------+ +---+ +---+ +---+
115 * | |-->| |-->| |
116 * +---+ +---+ +---+
117 * ^ |
118 * | |
119 * +---------------+
120 *
121 *
122 * +------+
123 * |reader| RING BUFFER
124 * |page |------------------v
125 * +------+ +---+ +---+ +---+
126 * ^ | |-->| |-->| |
127 * | +---+ +---+ +---+
128 * | |
129 * | |
130 * +------------------------------+
131 *
132 *
133 * +------+
134 * |buffer| RING BUFFER
135 * |page |------------------v
136 * +------+ +---+ +---+ +---+
137 * ^ | | | |-->| |
138 * | New +---+ +---+ +---+
139 * | Reader------^ |
140 * | page |
141 * +------------------------------+
142 *
143 *
144 * After we make this swap, the reader can hand this page off to the splice
145 * code and be done with it. It can even allocate a new page if it needs to
146 * and swap that into the ring buffer.
147 *
148 * We will be using cmpxchg soon to make all this lockless.
149 *
150 */
151
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF (1 << 20)
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158 #define RB_ALIGNMENT 4U
159 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
161
162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163 # define RB_FORCE_8BYTE_ALIGNMENT 0
164 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
165 #else
166 # define RB_FORCE_8BYTE_ALIGNMENT 1
167 # define RB_ARCH_ALIGNMENT 8U
168 #endif
169
170 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
171
172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174
175 enum {
176 RB_LEN_TIME_EXTEND = 8,
177 RB_LEN_TIME_STAMP = 8,
178 };
179
180 #define skip_time_extend(event) \
181 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182
183 #define extended_time(event) \
184 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185
rb_null_event(struct ring_buffer_event * event)186 static inline bool rb_null_event(struct ring_buffer_event *event)
187 {
188 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189 }
190
rb_event_set_padding(struct ring_buffer_event * event)191 static void rb_event_set_padding(struct ring_buffer_event *event)
192 {
193 /* padding has a NULL time_delta */
194 event->type_len = RINGBUF_TYPE_PADDING;
195 event->time_delta = 0;
196 }
197
198 static unsigned
rb_event_data_length(struct ring_buffer_event * event)199 rb_event_data_length(struct ring_buffer_event *event)
200 {
201 unsigned length;
202
203 if (event->type_len)
204 length = event->type_len * RB_ALIGNMENT;
205 else
206 length = event->array[0];
207 return length + RB_EVNT_HDR_SIZE;
208 }
209
210 /*
211 * Return the length of the given event. Will return
212 * the length of the time extend if the event is a
213 * time extend.
214 */
215 static inline unsigned
rb_event_length(struct ring_buffer_event * event)216 rb_event_length(struct ring_buffer_event *event)
217 {
218 switch (event->type_len) {
219 case RINGBUF_TYPE_PADDING:
220 if (rb_null_event(event))
221 /* undefined */
222 return -1;
223 return event->array[0] + RB_EVNT_HDR_SIZE;
224
225 case RINGBUF_TYPE_TIME_EXTEND:
226 return RB_LEN_TIME_EXTEND;
227
228 case RINGBUF_TYPE_TIME_STAMP:
229 return RB_LEN_TIME_STAMP;
230
231 case RINGBUF_TYPE_DATA:
232 return rb_event_data_length(event);
233 default:
234 WARN_ON_ONCE(1);
235 }
236 /* not hit */
237 return 0;
238 }
239
240 /*
241 * Return total length of time extend and data,
242 * or just the event length for all other events.
243 */
244 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)245 rb_event_ts_length(struct ring_buffer_event *event)
246 {
247 unsigned len = 0;
248
249 if (extended_time(event)) {
250 /* time extends include the data event after it */
251 len = RB_LEN_TIME_EXTEND;
252 event = skip_time_extend(event);
253 }
254 return len + rb_event_length(event);
255 }
256
257 /**
258 * ring_buffer_event_length - return the length of the event
259 * @event: the event to get the length of
260 *
261 * Returns the size of the data load of a data event.
262 * If the event is something other than a data event, it
263 * returns the size of the event itself. With the exception
264 * of a TIME EXTEND, where it still returns the size of the
265 * data load of the data event after it.
266 */
ring_buffer_event_length(struct ring_buffer_event * event)267 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268 {
269 unsigned length;
270
271 if (extended_time(event))
272 event = skip_time_extend(event);
273
274 length = rb_event_length(event);
275 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 return length;
277 length -= RB_EVNT_HDR_SIZE;
278 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279 length -= sizeof(event->array[0]);
280 return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283
284 /* inline for ring buffer fast paths */
285 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)286 rb_event_data(struct ring_buffer_event *event)
287 {
288 if (extended_time(event))
289 event = skip_time_extend(event);
290 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291 /* If length is in len field, then array[0] has the data */
292 if (event->type_len)
293 return (void *)&event->array[0];
294 /* Otherwise length is in array[0] and array[1] has the data */
295 return (void *)&event->array[1];
296 }
297
298 /**
299 * ring_buffer_event_data - return the data of the event
300 * @event: the event to get the data from
301 */
ring_buffer_event_data(struct ring_buffer_event * event)302 void *ring_buffer_event_data(struct ring_buffer_event *event)
303 {
304 return rb_event_data(event);
305 }
306 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307
308 #define for_each_buffer_cpu(buffer, cpu) \
309 for_each_cpu(cpu, buffer->cpumask)
310
311 #define for_each_online_buffer_cpu(buffer, cpu) \
312 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313
314 #define TS_SHIFT 27
315 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST (~TS_MASK)
317
rb_event_time_stamp(struct ring_buffer_event * event)318 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319 {
320 u64 ts;
321
322 ts = event->array[0];
323 ts <<= TS_SHIFT;
324 ts += event->time_delta;
325
326 return ts;
327 }
328
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS (1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED (1 << 30)
333
334 #define RB_MISSED_MASK (3 << 30)
335
336 struct buffer_data_page {
337 u64 time_stamp; /* page time stamp */
338 local_t commit; /* write committed index */
339 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
340 };
341
342 struct buffer_data_read_page {
343 unsigned order; /* order of the page */
344 struct buffer_data_page *data; /* actual data, stored in this page */
345 };
346
347 /*
348 * Note, the buffer_page list must be first. The buffer pages
349 * are allocated in cache lines, which means that each buffer
350 * page will be at the beginning of a cache line, and thus
351 * the least significant bits will be zero. We use this to
352 * add flags in the list struct pointers, to make the ring buffer
353 * lockless.
354 */
355 struct buffer_page {
356 struct list_head list; /* list of buffer pages */
357 local_t write; /* index for next write */
358 unsigned read; /* index for next read */
359 local_t entries; /* entries on this page */
360 unsigned long real_end; /* real end of data */
361 unsigned order; /* order of the page */
362 u32 id:30; /* ID for external mapping */
363 u32 range:1; /* Mapped via a range */
364 struct buffer_data_page *page; /* Actual data page */
365 };
366
367 /*
368 * The buffer page counters, write and entries, must be reset
369 * atomically when crossing page boundaries. To synchronize this
370 * update, two counters are inserted into the number. One is
371 * the actual counter for the write position or count on the page.
372 *
373 * The other is a counter of updaters. Before an update happens
374 * the update partition of the counter is incremented. This will
375 * allow the updater to update the counter atomically.
376 *
377 * The counter is 20 bits, and the state data is 12.
378 */
379 #define RB_WRITE_MASK 0xfffff
380 #define RB_WRITE_INTCNT (1 << 20)
381
rb_init_page(struct buffer_data_page * bpage)382 static void rb_init_page(struct buffer_data_page *bpage)
383 {
384 local_set(&bpage->commit, 0);
385 }
386
rb_page_commit(struct buffer_page * bpage)387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388 {
389 return local_read(&bpage->page->commit);
390 }
391
free_buffer_page(struct buffer_page * bpage)392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 /* Range pages are not to be freed */
395 if (!bpage->range)
396 free_pages((unsigned long)bpage->page, bpage->order);
397 kfree(bpage);
398 }
399
400 /*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
test_time_stamp(u64 delta)403 static inline bool test_time_stamp(u64 delta)
404 {
405 return !!(delta & TS_DELTA_TEST);
406 }
407
408 struct rb_irq_work {
409 struct irq_work work;
410 wait_queue_head_t waiters;
411 wait_queue_head_t full_waiters;
412 atomic_t seq;
413 bool waiters_pending;
414 bool full_waiters_pending;
415 bool wakeup_full;
416 };
417
418 /*
419 * Structure to hold event state and handle nested events.
420 */
421 struct rb_event_info {
422 u64 ts;
423 u64 delta;
424 u64 before;
425 u64 after;
426 unsigned long length;
427 struct buffer_page *tail_page;
428 int add_timestamp;
429 };
430
431 /*
432 * Used for the add_timestamp
433 * NONE
434 * EXTEND - wants a time extend
435 * ABSOLUTE - the buffer requests all events to have absolute time stamps
436 * FORCE - force a full time stamp.
437 */
438 enum {
439 RB_ADD_STAMP_NONE = 0,
440 RB_ADD_STAMP_EXTEND = BIT(1),
441 RB_ADD_STAMP_ABSOLUTE = BIT(2),
442 RB_ADD_STAMP_FORCE = BIT(3)
443 };
444 /*
445 * Used for which event context the event is in.
446 * TRANSITION = 0
447 * NMI = 1
448 * IRQ = 2
449 * SOFTIRQ = 3
450 * NORMAL = 4
451 *
452 * See trace_recursive_lock() comment below for more details.
453 */
454 enum {
455 RB_CTX_TRANSITION,
456 RB_CTX_NMI,
457 RB_CTX_IRQ,
458 RB_CTX_SOFTIRQ,
459 RB_CTX_NORMAL,
460 RB_CTX_MAX
461 };
462
463 struct rb_time_struct {
464 local64_t time;
465 };
466 typedef struct rb_time_struct rb_time_t;
467
468 #define MAX_NEST 5
469
470 /*
471 * head_page == tail_page && head == tail then buffer is empty.
472 */
473 struct ring_buffer_per_cpu {
474 int cpu;
475 atomic_t record_disabled;
476 atomic_t resize_disabled;
477 struct trace_buffer *buffer;
478 raw_spinlock_t reader_lock; /* serialize readers */
479 arch_spinlock_t lock;
480 struct lock_class_key lock_key;
481 struct buffer_data_page *free_page;
482 unsigned long nr_pages;
483 unsigned int current_context;
484 struct list_head *pages;
485 struct buffer_page *head_page; /* read from head */
486 struct buffer_page *tail_page; /* write to tail */
487 struct buffer_page *commit_page; /* committed pages */
488 struct buffer_page *reader_page;
489 unsigned long lost_events;
490 unsigned long last_overrun;
491 unsigned long nest;
492 local_t entries_bytes;
493 local_t entries;
494 local_t overrun;
495 local_t commit_overrun;
496 local_t dropped_events;
497 local_t committing;
498 local_t commits;
499 local_t pages_touched;
500 local_t pages_lost;
501 local_t pages_read;
502 long last_pages_touch;
503 size_t shortest_full;
504 unsigned long read;
505 unsigned long read_bytes;
506 rb_time_t write_stamp;
507 rb_time_t before_stamp;
508 u64 event_stamp[MAX_NEST];
509 u64 read_stamp;
510 /* pages removed since last reset */
511 unsigned long pages_removed;
512
513 unsigned int mapped;
514 unsigned int user_mapped; /* user space mapping */
515 struct mutex mapping_lock;
516 unsigned long *subbuf_ids; /* ID to subbuf VA */
517 struct trace_buffer_meta *meta_page;
518 struct ring_buffer_meta *ring_meta;
519
520 /* ring buffer pages to update, > 0 to add, < 0 to remove */
521 long nr_pages_to_update;
522 struct list_head new_pages; /* new pages to add */
523 struct work_struct update_pages_work;
524 struct completion update_done;
525
526 struct rb_irq_work irq_work;
527 };
528
529 struct trace_buffer {
530 unsigned flags;
531 int cpus;
532 atomic_t record_disabled;
533 atomic_t resizing;
534 cpumask_var_t cpumask;
535
536 struct lock_class_key *reader_lock_key;
537
538 struct mutex mutex;
539
540 struct ring_buffer_per_cpu **buffers;
541
542 struct hlist_node node;
543 u64 (*clock)(void);
544
545 struct rb_irq_work irq_work;
546 bool time_stamp_abs;
547
548 unsigned long range_addr_start;
549 unsigned long range_addr_end;
550
551 long last_text_delta;
552 long last_data_delta;
553
554 unsigned int subbuf_size;
555 unsigned int subbuf_order;
556 unsigned int max_data_size;
557 };
558
559 struct ring_buffer_iter {
560 struct ring_buffer_per_cpu *cpu_buffer;
561 unsigned long head;
562 unsigned long next_event;
563 struct buffer_page *head_page;
564 struct buffer_page *cache_reader_page;
565 unsigned long cache_read;
566 unsigned long cache_pages_removed;
567 u64 read_stamp;
568 u64 page_stamp;
569 struct ring_buffer_event *event;
570 size_t event_size;
571 int missed_events;
572 };
573
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)574 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
575 {
576 struct buffer_data_page field;
577
578 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
579 "offset:0;\tsize:%u;\tsigned:%u;\n",
580 (unsigned int)sizeof(field.time_stamp),
581 (unsigned int)is_signed_type(u64));
582
583 trace_seq_printf(s, "\tfield: local_t commit;\t"
584 "offset:%u;\tsize:%u;\tsigned:%u;\n",
585 (unsigned int)offsetof(typeof(field), commit),
586 (unsigned int)sizeof(field.commit),
587 (unsigned int)is_signed_type(long));
588
589 trace_seq_printf(s, "\tfield: int overwrite;\t"
590 "offset:%u;\tsize:%u;\tsigned:%u;\n",
591 (unsigned int)offsetof(typeof(field), commit),
592 1,
593 (unsigned int)is_signed_type(long));
594
595 trace_seq_printf(s, "\tfield: char data;\t"
596 "offset:%u;\tsize:%u;\tsigned:%u;\n",
597 (unsigned int)offsetof(typeof(field), data),
598 (unsigned int)buffer->subbuf_size,
599 (unsigned int)is_signed_type(char));
600
601 return !trace_seq_has_overflowed(s);
602 }
603
rb_time_read(rb_time_t * t,u64 * ret)604 static inline void rb_time_read(rb_time_t *t, u64 *ret)
605 {
606 *ret = local64_read(&t->time);
607 }
rb_time_set(rb_time_t * t,u64 val)608 static void rb_time_set(rb_time_t *t, u64 val)
609 {
610 local64_set(&t->time, val);
611 }
612
613 /*
614 * Enable this to make sure that the event passed to
615 * ring_buffer_event_time_stamp() is not committed and also
616 * is on the buffer that it passed in.
617 */
618 //#define RB_VERIFY_EVENT
619 #ifdef RB_VERIFY_EVENT
620 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)621 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
622 void *event)
623 {
624 struct buffer_page *page = cpu_buffer->commit_page;
625 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
626 struct list_head *next;
627 long commit, write;
628 unsigned long addr = (unsigned long)event;
629 bool done = false;
630 int stop = 0;
631
632 /* Make sure the event exists and is not committed yet */
633 do {
634 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
635 done = true;
636 commit = local_read(&page->page->commit);
637 write = local_read(&page->write);
638 if (addr >= (unsigned long)&page->page->data[commit] &&
639 addr < (unsigned long)&page->page->data[write])
640 return;
641
642 next = rb_list_head(page->list.next);
643 page = list_entry(next, struct buffer_page, list);
644 } while (!done);
645 WARN_ON_ONCE(1);
646 }
647 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)648 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
649 void *event)
650 {
651 }
652 #endif
653
654 /*
655 * The absolute time stamp drops the 5 MSBs and some clocks may
656 * require them. The rb_fix_abs_ts() will take a previous full
657 * time stamp, and add the 5 MSB of that time stamp on to the
658 * saved absolute time stamp. Then they are compared in case of
659 * the unlikely event that the latest time stamp incremented
660 * the 5 MSB.
661 */
rb_fix_abs_ts(u64 abs,u64 save_ts)662 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
663 {
664 if (save_ts & TS_MSB) {
665 abs |= save_ts & TS_MSB;
666 /* Check for overflow */
667 if (unlikely(abs < save_ts))
668 abs += 1ULL << 59;
669 }
670 return abs;
671 }
672
673 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
674
675 /**
676 * ring_buffer_event_time_stamp - return the event's current time stamp
677 * @buffer: The buffer that the event is on
678 * @event: the event to get the time stamp of
679 *
680 * Note, this must be called after @event is reserved, and before it is
681 * committed to the ring buffer. And must be called from the same
682 * context where the event was reserved (normal, softirq, irq, etc).
683 *
684 * Returns the time stamp associated with the current event.
685 * If the event has an extended time stamp, then that is used as
686 * the time stamp to return.
687 * In the highly unlikely case that the event was nested more than
688 * the max nesting, then the write_stamp of the buffer is returned,
689 * otherwise current time is returned, but that really neither of
690 * the last two cases should ever happen.
691 */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)692 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
693 struct ring_buffer_event *event)
694 {
695 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
696 unsigned int nest;
697 u64 ts;
698
699 /* If the event includes an absolute time, then just use that */
700 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
701 ts = rb_event_time_stamp(event);
702 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
703 }
704
705 nest = local_read(&cpu_buffer->committing);
706 verify_event(cpu_buffer, event);
707 if (WARN_ON_ONCE(!nest))
708 goto fail;
709
710 /* Read the current saved nesting level time stamp */
711 if (likely(--nest < MAX_NEST))
712 return cpu_buffer->event_stamp[nest];
713
714 /* Shouldn't happen, warn if it does */
715 WARN_ONCE(1, "nest (%d) greater than max", nest);
716
717 fail:
718 rb_time_read(&cpu_buffer->write_stamp, &ts);
719
720 return ts;
721 }
722
723 /**
724 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
725 * @buffer: The ring_buffer to get the number of pages from
726 * @cpu: The cpu of the ring_buffer to get the number of pages from
727 *
728 * Returns the number of pages that have content in the ring buffer.
729 */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)730 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
731 {
732 size_t read;
733 size_t lost;
734 size_t cnt;
735
736 read = local_read(&buffer->buffers[cpu]->pages_read);
737 lost = local_read(&buffer->buffers[cpu]->pages_lost);
738 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
739
740 if (WARN_ON_ONCE(cnt < lost))
741 return 0;
742
743 cnt -= lost;
744
745 /* The reader can read an empty page, but not more than that */
746 if (cnt < read) {
747 WARN_ON_ONCE(read > cnt + 1);
748 return 0;
749 }
750
751 return cnt - read;
752 }
753
full_hit(struct trace_buffer * buffer,int cpu,int full)754 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
755 {
756 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
757 size_t nr_pages;
758 size_t dirty;
759
760 nr_pages = cpu_buffer->nr_pages;
761 if (!nr_pages || !full)
762 return true;
763
764 /*
765 * Add one as dirty will never equal nr_pages, as the sub-buffer
766 * that the writer is on is not counted as dirty.
767 * This is needed if "buffer_percent" is set to 100.
768 */
769 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
770
771 return (dirty * 100) >= (full * nr_pages);
772 }
773
774 /*
775 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
776 *
777 * Schedules a delayed work to wake up any task that is blocked on the
778 * ring buffer waiters queue.
779 */
rb_wake_up_waiters(struct irq_work * work)780 static void rb_wake_up_waiters(struct irq_work *work)
781 {
782 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
783
784 /* For waiters waiting for the first wake up */
785 (void)atomic_fetch_inc_release(&rbwork->seq);
786
787 wake_up_all(&rbwork->waiters);
788 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
789 /* Only cpu_buffer sets the above flags */
790 struct ring_buffer_per_cpu *cpu_buffer =
791 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
792
793 /* Called from interrupt context */
794 raw_spin_lock(&cpu_buffer->reader_lock);
795 rbwork->wakeup_full = false;
796 rbwork->full_waiters_pending = false;
797
798 /* Waking up all waiters, they will reset the shortest full */
799 cpu_buffer->shortest_full = 0;
800 raw_spin_unlock(&cpu_buffer->reader_lock);
801
802 wake_up_all(&rbwork->full_waiters);
803 }
804 }
805
806 /**
807 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
808 * @buffer: The ring buffer to wake waiters on
809 * @cpu: The CPU buffer to wake waiters on
810 *
811 * In the case of a file that represents a ring buffer is closing,
812 * it is prudent to wake up any waiters that are on this.
813 */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)814 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
815 {
816 struct ring_buffer_per_cpu *cpu_buffer;
817 struct rb_irq_work *rbwork;
818
819 if (!buffer)
820 return;
821
822 if (cpu == RING_BUFFER_ALL_CPUS) {
823
824 /* Wake up individual ones too. One level recursion */
825 for_each_buffer_cpu(buffer, cpu)
826 ring_buffer_wake_waiters(buffer, cpu);
827
828 rbwork = &buffer->irq_work;
829 } else {
830 if (WARN_ON_ONCE(!buffer->buffers))
831 return;
832 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
833 return;
834
835 cpu_buffer = buffer->buffers[cpu];
836 /* The CPU buffer may not have been initialized yet */
837 if (!cpu_buffer)
838 return;
839 rbwork = &cpu_buffer->irq_work;
840 }
841
842 /* This can be called in any context */
843 irq_work_queue(&rbwork->work);
844 }
845
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)846 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
847 {
848 struct ring_buffer_per_cpu *cpu_buffer;
849 bool ret = false;
850
851 /* Reads of all CPUs always waits for any data */
852 if (cpu == RING_BUFFER_ALL_CPUS)
853 return !ring_buffer_empty(buffer);
854
855 cpu_buffer = buffer->buffers[cpu];
856
857 if (!ring_buffer_empty_cpu(buffer, cpu)) {
858 unsigned long flags;
859 bool pagebusy;
860
861 if (!full)
862 return true;
863
864 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
865 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
866 ret = !pagebusy && full_hit(buffer, cpu, full);
867
868 if (!ret && (!cpu_buffer->shortest_full ||
869 cpu_buffer->shortest_full > full)) {
870 cpu_buffer->shortest_full = full;
871 }
872 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
873 }
874 return ret;
875 }
876
877 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)878 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
879 int cpu, int full, ring_buffer_cond_fn cond, void *data)
880 {
881 if (rb_watermark_hit(buffer, cpu, full))
882 return true;
883
884 if (cond(data))
885 return true;
886
887 /*
888 * The events can happen in critical sections where
889 * checking a work queue can cause deadlocks.
890 * After adding a task to the queue, this flag is set
891 * only to notify events to try to wake up the queue
892 * using irq_work.
893 *
894 * We don't clear it even if the buffer is no longer
895 * empty. The flag only causes the next event to run
896 * irq_work to do the work queue wake up. The worse
897 * that can happen if we race with !trace_empty() is that
898 * an event will cause an irq_work to try to wake up
899 * an empty queue.
900 *
901 * There's no reason to protect this flag either, as
902 * the work queue and irq_work logic will do the necessary
903 * synchronization for the wake ups. The only thing
904 * that is necessary is that the wake up happens after
905 * a task has been queued. It's OK for spurious wake ups.
906 */
907 if (full)
908 rbwork->full_waiters_pending = true;
909 else
910 rbwork->waiters_pending = true;
911
912 return false;
913 }
914
915 struct rb_wait_data {
916 struct rb_irq_work *irq_work;
917 int seq;
918 };
919
920 /*
921 * The default wait condition for ring_buffer_wait() is to just to exit the
922 * wait loop the first time it is woken up.
923 */
rb_wait_once(void * data)924 static bool rb_wait_once(void *data)
925 {
926 struct rb_wait_data *rdata = data;
927 struct rb_irq_work *rbwork = rdata->irq_work;
928
929 return atomic_read_acquire(&rbwork->seq) != rdata->seq;
930 }
931
932 /**
933 * ring_buffer_wait - wait for input to the ring buffer
934 * @buffer: buffer to wait on
935 * @cpu: the cpu buffer to wait on
936 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
937 * @cond: condition function to break out of wait (NULL to run once)
938 * @data: the data to pass to @cond.
939 *
940 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
941 * as data is added to any of the @buffer's cpu buffers. Otherwise
942 * it will wait for data to be added to a specific cpu buffer.
943 */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)944 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
945 ring_buffer_cond_fn cond, void *data)
946 {
947 struct ring_buffer_per_cpu *cpu_buffer;
948 struct wait_queue_head *waitq;
949 struct rb_irq_work *rbwork;
950 struct rb_wait_data rdata;
951 int ret = 0;
952
953 /*
954 * Depending on what the caller is waiting for, either any
955 * data in any cpu buffer, or a specific buffer, put the
956 * caller on the appropriate wait queue.
957 */
958 if (cpu == RING_BUFFER_ALL_CPUS) {
959 rbwork = &buffer->irq_work;
960 /* Full only makes sense on per cpu reads */
961 full = 0;
962 } else {
963 if (!cpumask_test_cpu(cpu, buffer->cpumask))
964 return -ENODEV;
965 cpu_buffer = buffer->buffers[cpu];
966 rbwork = &cpu_buffer->irq_work;
967 }
968
969 if (full)
970 waitq = &rbwork->full_waiters;
971 else
972 waitq = &rbwork->waiters;
973
974 /* Set up to exit loop as soon as it is woken */
975 if (!cond) {
976 cond = rb_wait_once;
977 rdata.irq_work = rbwork;
978 rdata.seq = atomic_read_acquire(&rbwork->seq);
979 data = &rdata;
980 }
981
982 ret = wait_event_interruptible((*waitq),
983 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
984
985 return ret;
986 }
987
988 /**
989 * ring_buffer_poll_wait - poll on buffer input
990 * @buffer: buffer to wait on
991 * @cpu: the cpu buffer to wait on
992 * @filp: the file descriptor
993 * @poll_table: The poll descriptor
994 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
995 *
996 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
997 * as data is added to any of the @buffer's cpu buffers. Otherwise
998 * it will wait for data to be added to a specific cpu buffer.
999 *
1000 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1001 * zero otherwise.
1002 */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1003 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1004 struct file *filp, poll_table *poll_table, int full)
1005 {
1006 struct ring_buffer_per_cpu *cpu_buffer;
1007 struct rb_irq_work *rbwork;
1008
1009 if (cpu == RING_BUFFER_ALL_CPUS) {
1010 rbwork = &buffer->irq_work;
1011 full = 0;
1012 } else {
1013 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1014 return EPOLLERR;
1015
1016 cpu_buffer = buffer->buffers[cpu];
1017 rbwork = &cpu_buffer->irq_work;
1018 }
1019
1020 if (full) {
1021 poll_wait(filp, &rbwork->full_waiters, poll_table);
1022
1023 if (rb_watermark_hit(buffer, cpu, full))
1024 return EPOLLIN | EPOLLRDNORM;
1025 /*
1026 * Only allow full_waiters_pending update to be seen after
1027 * the shortest_full is set (in rb_watermark_hit). If the
1028 * writer sees the full_waiters_pending flag set, it will
1029 * compare the amount in the ring buffer to shortest_full.
1030 * If the amount in the ring buffer is greater than the
1031 * shortest_full percent, it will call the irq_work handler
1032 * to wake up this list. The irq_handler will reset shortest_full
1033 * back to zero. That's done under the reader_lock, but
1034 * the below smp_mb() makes sure that the update to
1035 * full_waiters_pending doesn't leak up into the above.
1036 */
1037 smp_mb();
1038 rbwork->full_waiters_pending = true;
1039 return 0;
1040 }
1041
1042 poll_wait(filp, &rbwork->waiters, poll_table);
1043 rbwork->waiters_pending = true;
1044
1045 /*
1046 * There's a tight race between setting the waiters_pending and
1047 * checking if the ring buffer is empty. Once the waiters_pending bit
1048 * is set, the next event will wake the task up, but we can get stuck
1049 * if there's only a single event in.
1050 *
1051 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1052 * but adding a memory barrier to all events will cause too much of a
1053 * performance hit in the fast path. We only need a memory barrier when
1054 * the buffer goes from empty to having content. But as this race is
1055 * extremely small, and it's not a problem if another event comes in, we
1056 * will fix it later.
1057 */
1058 smp_mb();
1059
1060 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1061 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1062 return EPOLLIN | EPOLLRDNORM;
1063 return 0;
1064 }
1065
1066 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1067 #define RB_WARN_ON(b, cond) \
1068 ({ \
1069 int _____ret = unlikely(cond); \
1070 if (_____ret) { \
1071 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1072 struct ring_buffer_per_cpu *__b = \
1073 (void *)b; \
1074 atomic_inc(&__b->buffer->record_disabled); \
1075 } else \
1076 atomic_inc(&b->record_disabled); \
1077 WARN_ON(1); \
1078 } \
1079 _____ret; \
1080 })
1081
1082 /* Up this if you want to test the TIME_EXTENTS and normalization */
1083 #define DEBUG_SHIFT 0
1084
rb_time_stamp(struct trace_buffer * buffer)1085 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1086 {
1087 u64 ts;
1088
1089 /* Skip retpolines :-( */
1090 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1091 ts = trace_clock_local();
1092 else
1093 ts = buffer->clock();
1094
1095 /* shift to debug/test normalization and TIME_EXTENTS */
1096 return ts << DEBUG_SHIFT;
1097 }
1098
ring_buffer_time_stamp(struct trace_buffer * buffer)1099 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1100 {
1101 u64 time;
1102
1103 preempt_disable_notrace();
1104 time = rb_time_stamp(buffer);
1105 preempt_enable_notrace();
1106
1107 return time;
1108 }
1109 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1110
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1111 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1112 int cpu, u64 *ts)
1113 {
1114 /* Just stupid testing the normalize function and deltas */
1115 *ts >>= DEBUG_SHIFT;
1116 }
1117 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1118
1119 /*
1120 * Making the ring buffer lockless makes things tricky.
1121 * Although writes only happen on the CPU that they are on,
1122 * and they only need to worry about interrupts. Reads can
1123 * happen on any CPU.
1124 *
1125 * The reader page is always off the ring buffer, but when the
1126 * reader finishes with a page, it needs to swap its page with
1127 * a new one from the buffer. The reader needs to take from
1128 * the head (writes go to the tail). But if a writer is in overwrite
1129 * mode and wraps, it must push the head page forward.
1130 *
1131 * Here lies the problem.
1132 *
1133 * The reader must be careful to replace only the head page, and
1134 * not another one. As described at the top of the file in the
1135 * ASCII art, the reader sets its old page to point to the next
1136 * page after head. It then sets the page after head to point to
1137 * the old reader page. But if the writer moves the head page
1138 * during this operation, the reader could end up with the tail.
1139 *
1140 * We use cmpxchg to help prevent this race. We also do something
1141 * special with the page before head. We set the LSB to 1.
1142 *
1143 * When the writer must push the page forward, it will clear the
1144 * bit that points to the head page, move the head, and then set
1145 * the bit that points to the new head page.
1146 *
1147 * We also don't want an interrupt coming in and moving the head
1148 * page on another writer. Thus we use the second LSB to catch
1149 * that too. Thus:
1150 *
1151 * head->list->prev->next bit 1 bit 0
1152 * ------- -------
1153 * Normal page 0 0
1154 * Points to head page 0 1
1155 * New head page 1 0
1156 *
1157 * Note we can not trust the prev pointer of the head page, because:
1158 *
1159 * +----+ +-----+ +-----+
1160 * | |------>| T |---X--->| N |
1161 * | |<------| | | |
1162 * +----+ +-----+ +-----+
1163 * ^ ^ |
1164 * | +-----+ | |
1165 * +----------| R |----------+ |
1166 * | |<-----------+
1167 * +-----+
1168 *
1169 * Key: ---X--> HEAD flag set in pointer
1170 * T Tail page
1171 * R Reader page
1172 * N Next page
1173 *
1174 * (see __rb_reserve_next() to see where this happens)
1175 *
1176 * What the above shows is that the reader just swapped out
1177 * the reader page with a page in the buffer, but before it
1178 * could make the new header point back to the new page added
1179 * it was preempted by a writer. The writer moved forward onto
1180 * the new page added by the reader and is about to move forward
1181 * again.
1182 *
1183 * You can see, it is legitimate for the previous pointer of
1184 * the head (or any page) not to point back to itself. But only
1185 * temporarily.
1186 */
1187
1188 #define RB_PAGE_NORMAL 0UL
1189 #define RB_PAGE_HEAD 1UL
1190 #define RB_PAGE_UPDATE 2UL
1191
1192
1193 #define RB_FLAG_MASK 3UL
1194
1195 /* PAGE_MOVED is not part of the mask */
1196 #define RB_PAGE_MOVED 4UL
1197
1198 /*
1199 * rb_list_head - remove any bit
1200 */
rb_list_head(struct list_head * list)1201 static struct list_head *rb_list_head(struct list_head *list)
1202 {
1203 unsigned long val = (unsigned long)list;
1204
1205 return (struct list_head *)(val & ~RB_FLAG_MASK);
1206 }
1207
1208 /*
1209 * rb_is_head_page - test if the given page is the head page
1210 *
1211 * Because the reader may move the head_page pointer, we can
1212 * not trust what the head page is (it may be pointing to
1213 * the reader page). But if the next page is a header page,
1214 * its flags will be non zero.
1215 */
1216 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1217 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1218 {
1219 unsigned long val;
1220
1221 val = (unsigned long)list->next;
1222
1223 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1224 return RB_PAGE_MOVED;
1225
1226 return val & RB_FLAG_MASK;
1227 }
1228
1229 /*
1230 * rb_is_reader_page
1231 *
1232 * The unique thing about the reader page, is that, if the
1233 * writer is ever on it, the previous pointer never points
1234 * back to the reader page.
1235 */
rb_is_reader_page(struct buffer_page * page)1236 static bool rb_is_reader_page(struct buffer_page *page)
1237 {
1238 struct list_head *list = page->list.prev;
1239
1240 return rb_list_head(list->next) != &page->list;
1241 }
1242
1243 /*
1244 * rb_set_list_to_head - set a list_head to be pointing to head.
1245 */
rb_set_list_to_head(struct list_head * list)1246 static void rb_set_list_to_head(struct list_head *list)
1247 {
1248 unsigned long *ptr;
1249
1250 ptr = (unsigned long *)&list->next;
1251 *ptr |= RB_PAGE_HEAD;
1252 *ptr &= ~RB_PAGE_UPDATE;
1253 }
1254
1255 /*
1256 * rb_head_page_activate - sets up head page
1257 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1258 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1259 {
1260 struct buffer_page *head;
1261
1262 head = cpu_buffer->head_page;
1263 if (!head)
1264 return;
1265
1266 /*
1267 * Set the previous list pointer to have the HEAD flag.
1268 */
1269 rb_set_list_to_head(head->list.prev);
1270
1271 if (cpu_buffer->ring_meta) {
1272 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1273 meta->head_buffer = (unsigned long)head->page;
1274 }
1275 }
1276
rb_list_head_clear(struct list_head * list)1277 static void rb_list_head_clear(struct list_head *list)
1278 {
1279 unsigned long *ptr = (unsigned long *)&list->next;
1280
1281 *ptr &= ~RB_FLAG_MASK;
1282 }
1283
1284 /*
1285 * rb_head_page_deactivate - clears head page ptr (for free list)
1286 */
1287 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1288 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1289 {
1290 struct list_head *hd;
1291
1292 /* Go through the whole list and clear any pointers found. */
1293 rb_list_head_clear(cpu_buffer->pages);
1294
1295 list_for_each(hd, cpu_buffer->pages)
1296 rb_list_head_clear(hd);
1297 }
1298
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1299 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1300 struct buffer_page *head,
1301 struct buffer_page *prev,
1302 int old_flag, int new_flag)
1303 {
1304 struct list_head *list;
1305 unsigned long val = (unsigned long)&head->list;
1306 unsigned long ret;
1307
1308 list = &prev->list;
1309
1310 val &= ~RB_FLAG_MASK;
1311
1312 ret = cmpxchg((unsigned long *)&list->next,
1313 val | old_flag, val | new_flag);
1314
1315 /* check if the reader took the page */
1316 if ((ret & ~RB_FLAG_MASK) != val)
1317 return RB_PAGE_MOVED;
1318
1319 return ret & RB_FLAG_MASK;
1320 }
1321
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1322 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1323 struct buffer_page *head,
1324 struct buffer_page *prev,
1325 int old_flag)
1326 {
1327 return rb_head_page_set(cpu_buffer, head, prev,
1328 old_flag, RB_PAGE_UPDATE);
1329 }
1330
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1331 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1332 struct buffer_page *head,
1333 struct buffer_page *prev,
1334 int old_flag)
1335 {
1336 return rb_head_page_set(cpu_buffer, head, prev,
1337 old_flag, RB_PAGE_HEAD);
1338 }
1339
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1340 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1341 struct buffer_page *head,
1342 struct buffer_page *prev,
1343 int old_flag)
1344 {
1345 return rb_head_page_set(cpu_buffer, head, prev,
1346 old_flag, RB_PAGE_NORMAL);
1347 }
1348
rb_inc_page(struct buffer_page ** bpage)1349 static inline void rb_inc_page(struct buffer_page **bpage)
1350 {
1351 struct list_head *p = rb_list_head((*bpage)->list.next);
1352
1353 *bpage = list_entry(p, struct buffer_page, list);
1354 }
1355
1356 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1357 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1358 {
1359 struct buffer_page *head;
1360 struct buffer_page *page;
1361 struct list_head *list;
1362 int i;
1363
1364 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1365 return NULL;
1366
1367 /* sanity check */
1368 list = cpu_buffer->pages;
1369 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1370 return NULL;
1371
1372 page = head = cpu_buffer->head_page;
1373 /*
1374 * It is possible that the writer moves the header behind
1375 * where we started, and we miss in one loop.
1376 * A second loop should grab the header, but we'll do
1377 * three loops just because I'm paranoid.
1378 */
1379 for (i = 0; i < 3; i++) {
1380 do {
1381 if (rb_is_head_page(page, page->list.prev)) {
1382 cpu_buffer->head_page = page;
1383 return page;
1384 }
1385 rb_inc_page(&page);
1386 } while (page != head);
1387 }
1388
1389 RB_WARN_ON(cpu_buffer, 1);
1390
1391 return NULL;
1392 }
1393
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1394 static bool rb_head_page_replace(struct buffer_page *old,
1395 struct buffer_page *new)
1396 {
1397 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1398 unsigned long val;
1399
1400 val = *ptr & ~RB_FLAG_MASK;
1401 val |= RB_PAGE_HEAD;
1402
1403 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1404 }
1405
1406 /*
1407 * rb_tail_page_update - move the tail page forward
1408 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1409 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1410 struct buffer_page *tail_page,
1411 struct buffer_page *next_page)
1412 {
1413 unsigned long old_entries;
1414 unsigned long old_write;
1415
1416 /*
1417 * The tail page now needs to be moved forward.
1418 *
1419 * We need to reset the tail page, but without messing
1420 * with possible erasing of data brought in by interrupts
1421 * that have moved the tail page and are currently on it.
1422 *
1423 * We add a counter to the write field to denote this.
1424 */
1425 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1426 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1427
1428 /*
1429 * Just make sure we have seen our old_write and synchronize
1430 * with any interrupts that come in.
1431 */
1432 barrier();
1433
1434 /*
1435 * If the tail page is still the same as what we think
1436 * it is, then it is up to us to update the tail
1437 * pointer.
1438 */
1439 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1440 /* Zero the write counter */
1441 unsigned long val = old_write & ~RB_WRITE_MASK;
1442 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1443
1444 /*
1445 * This will only succeed if an interrupt did
1446 * not come in and change it. In which case, we
1447 * do not want to modify it.
1448 *
1449 * We add (void) to let the compiler know that we do not care
1450 * about the return value of these functions. We use the
1451 * cmpxchg to only update if an interrupt did not already
1452 * do it for us. If the cmpxchg fails, we don't care.
1453 */
1454 (void)local_cmpxchg(&next_page->write, old_write, val);
1455 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1456
1457 /*
1458 * No need to worry about races with clearing out the commit.
1459 * it only can increment when a commit takes place. But that
1460 * only happens in the outer most nested commit.
1461 */
1462 local_set(&next_page->page->commit, 0);
1463
1464 /* Either we update tail_page or an interrupt does */
1465 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1466 local_inc(&cpu_buffer->pages_touched);
1467 }
1468 }
1469
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1470 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1471 struct buffer_page *bpage)
1472 {
1473 unsigned long val = (unsigned long)bpage;
1474
1475 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1476 }
1477
1478 /**
1479 * rb_check_pages - integrity check of buffer pages
1480 * @cpu_buffer: CPU buffer with pages to test
1481 *
1482 * As a safety measure we check to make sure the data pages have not
1483 * been corrupted.
1484 *
1485 * Callers of this function need to guarantee that the list of pages doesn't get
1486 * modified during the check. In particular, if it's possible that the function
1487 * is invoked with concurrent readers which can swap in a new reader page then
1488 * the caller should take cpu_buffer->reader_lock.
1489 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1490 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1491 {
1492 struct list_head *head = rb_list_head(cpu_buffer->pages);
1493 struct list_head *tmp;
1494
1495 if (RB_WARN_ON(cpu_buffer,
1496 rb_list_head(rb_list_head(head->next)->prev) != head))
1497 return;
1498
1499 if (RB_WARN_ON(cpu_buffer,
1500 rb_list_head(rb_list_head(head->prev)->next) != head))
1501 return;
1502
1503 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1504 if (RB_WARN_ON(cpu_buffer,
1505 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1506 return;
1507
1508 if (RB_WARN_ON(cpu_buffer,
1509 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1510 return;
1511 }
1512 }
1513
1514 /*
1515 * Take an address, add the meta data size as well as the array of
1516 * array subbuffer indexes, then align it to a subbuffer size.
1517 *
1518 * This is used to help find the next per cpu subbuffer within a mapped range.
1519 */
1520 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1521 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1522 {
1523 addr += sizeof(struct ring_buffer_meta) +
1524 sizeof(int) * nr_subbufs;
1525 return ALIGN(addr, subbuf_size);
1526 }
1527
1528 /*
1529 * Return the ring_buffer_meta for a given @cpu.
1530 */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1531 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1532 {
1533 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1534 unsigned long ptr = buffer->range_addr_start;
1535 struct ring_buffer_meta *meta;
1536 int nr_subbufs;
1537
1538 if (!ptr)
1539 return NULL;
1540
1541 /* When nr_pages passed in is zero, the first meta has already been initialized */
1542 if (!nr_pages) {
1543 meta = (struct ring_buffer_meta *)ptr;
1544 nr_subbufs = meta->nr_subbufs;
1545 } else {
1546 meta = NULL;
1547 /* Include the reader page */
1548 nr_subbufs = nr_pages + 1;
1549 }
1550
1551 /*
1552 * The first chunk may not be subbuffer aligned, where as
1553 * the rest of the chunks are.
1554 */
1555 if (cpu) {
1556 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1557 ptr += subbuf_size * nr_subbufs;
1558
1559 /* We can use multiplication to find chunks greater than 1 */
1560 if (cpu > 1) {
1561 unsigned long size;
1562 unsigned long p;
1563
1564 /* Save the beginning of this CPU chunk */
1565 p = ptr;
1566 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1567 ptr += subbuf_size * nr_subbufs;
1568
1569 /* Now all chunks after this are the same size */
1570 size = ptr - p;
1571 ptr += size * (cpu - 2);
1572 }
1573 }
1574 return (void *)ptr;
1575 }
1576
1577 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_meta * meta)1578 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1579 {
1580 int subbuf_size = meta->subbuf_size;
1581 unsigned long ptr;
1582
1583 ptr = (unsigned long)meta;
1584 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1585
1586 return (void *)ptr;
1587 }
1588
1589 /*
1590 * Return a specific sub-buffer for a given @cpu defined by @idx.
1591 */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1592 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1593 {
1594 struct ring_buffer_meta *meta;
1595 unsigned long ptr;
1596 int subbuf_size;
1597
1598 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1599 if (!meta)
1600 return NULL;
1601
1602 if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1603 return NULL;
1604
1605 subbuf_size = meta->subbuf_size;
1606
1607 /* Map this buffer to the order that's in meta->buffers[] */
1608 idx = meta->buffers[idx];
1609
1610 ptr = (unsigned long)rb_subbufs_from_meta(meta);
1611
1612 ptr += subbuf_size * idx;
1613 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1614 return NULL;
1615
1616 return (void *)ptr;
1617 }
1618
1619 /*
1620 * See if the existing memory contains valid ring buffer data.
1621 * As the previous kernel must be the same as this kernel, all
1622 * the calculations (size of buffers and number of buffers)
1623 * must be the same.
1624 */
rb_meta_valid(struct ring_buffer_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages)1625 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1626 struct trace_buffer *buffer, int nr_pages)
1627 {
1628 int subbuf_size = PAGE_SIZE;
1629 struct buffer_data_page *subbuf;
1630 unsigned long buffers_start;
1631 unsigned long buffers_end;
1632 int i;
1633
1634 /* Check the meta magic and meta struct size */
1635 if (meta->magic != RING_BUFFER_META_MAGIC ||
1636 meta->struct_size != sizeof(*meta)) {
1637 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1638 return false;
1639 }
1640
1641 /* The subbuffer's size and number of subbuffers must match */
1642 if (meta->subbuf_size != subbuf_size ||
1643 meta->nr_subbufs != nr_pages + 1) {
1644 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1645 return false;
1646 }
1647
1648 buffers_start = meta->first_buffer;
1649 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1650
1651 /* Is the head and commit buffers within the range of buffers? */
1652 if (meta->head_buffer < buffers_start ||
1653 meta->head_buffer >= buffers_end) {
1654 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1655 return false;
1656 }
1657
1658 if (meta->commit_buffer < buffers_start ||
1659 meta->commit_buffer >= buffers_end) {
1660 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1661 return false;
1662 }
1663
1664 subbuf = rb_subbufs_from_meta(meta);
1665
1666 /* Is the meta buffers and the subbufs themselves have correct data? */
1667 for (i = 0; i < meta->nr_subbufs; i++) {
1668 if (meta->buffers[i] < 0 ||
1669 meta->buffers[i] >= meta->nr_subbufs) {
1670 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1671 return false;
1672 }
1673
1674 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1675 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1676 return false;
1677 }
1678
1679 subbuf = (void *)subbuf + subbuf_size;
1680 }
1681
1682 return true;
1683 }
1684
1685 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1686
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1687 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1688 unsigned long long *timestamp, u64 *delta_ptr)
1689 {
1690 struct ring_buffer_event *event;
1691 u64 ts, delta;
1692 int events = 0;
1693 int e;
1694
1695 *delta_ptr = 0;
1696 *timestamp = 0;
1697
1698 ts = dpage->time_stamp;
1699
1700 for (e = 0; e < tail; e += rb_event_length(event)) {
1701
1702 event = (struct ring_buffer_event *)(dpage->data + e);
1703
1704 switch (event->type_len) {
1705
1706 case RINGBUF_TYPE_TIME_EXTEND:
1707 delta = rb_event_time_stamp(event);
1708 ts += delta;
1709 break;
1710
1711 case RINGBUF_TYPE_TIME_STAMP:
1712 delta = rb_event_time_stamp(event);
1713 delta = rb_fix_abs_ts(delta, ts);
1714 if (delta < ts) {
1715 *delta_ptr = delta;
1716 *timestamp = ts;
1717 return -1;
1718 }
1719 ts = delta;
1720 break;
1721
1722 case RINGBUF_TYPE_PADDING:
1723 if (event->time_delta == 1)
1724 break;
1725 fallthrough;
1726 case RINGBUF_TYPE_DATA:
1727 events++;
1728 ts += event->time_delta;
1729 break;
1730
1731 default:
1732 return -1;
1733 }
1734 }
1735 *timestamp = ts;
1736 return events;
1737 }
1738
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1739 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1740 {
1741 unsigned long long ts;
1742 u64 delta;
1743 int tail;
1744
1745 tail = local_read(&dpage->commit);
1746 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1747 }
1748
1749 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1750 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1751 {
1752 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1753 struct buffer_page *head_page;
1754 unsigned long entry_bytes = 0;
1755 unsigned long entries = 0;
1756 int ret;
1757 int i;
1758
1759 if (!meta || !meta->head_buffer)
1760 return;
1761
1762 /* Do the reader page first */
1763 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1764 if (ret < 0) {
1765 pr_info("Ring buffer reader page is invalid\n");
1766 goto invalid;
1767 }
1768 entries += ret;
1769 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1770 local_set(&cpu_buffer->reader_page->entries, ret);
1771
1772 head_page = cpu_buffer->head_page;
1773
1774 /* If both the head and commit are on the reader_page then we are done. */
1775 if (head_page == cpu_buffer->reader_page &&
1776 head_page == cpu_buffer->commit_page)
1777 goto done;
1778
1779 /* Iterate until finding the commit page */
1780 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1781
1782 /* Reader page has already been done */
1783 if (head_page == cpu_buffer->reader_page)
1784 continue;
1785
1786 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1787 if (ret < 0) {
1788 pr_info("Ring buffer meta [%d] invalid buffer page\n",
1789 cpu_buffer->cpu);
1790 goto invalid;
1791 }
1792 entries += ret;
1793 entry_bytes += local_read(&head_page->page->commit);
1794 local_set(&cpu_buffer->head_page->entries, ret);
1795
1796 if (head_page == cpu_buffer->commit_page)
1797 break;
1798 }
1799
1800 if (head_page != cpu_buffer->commit_page) {
1801 pr_info("Ring buffer meta [%d] commit page not found\n",
1802 cpu_buffer->cpu);
1803 goto invalid;
1804 }
1805 done:
1806 local_set(&cpu_buffer->entries, entries);
1807 local_set(&cpu_buffer->entries_bytes, entry_bytes);
1808
1809 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1810 return;
1811
1812 invalid:
1813 /* The content of the buffers are invalid, reset the meta data */
1814 meta->head_buffer = 0;
1815 meta->commit_buffer = 0;
1816
1817 /* Reset the reader page */
1818 local_set(&cpu_buffer->reader_page->entries, 0);
1819 local_set(&cpu_buffer->reader_page->page->commit, 0);
1820
1821 /* Reset all the subbuffers */
1822 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1823 local_set(&head_page->entries, 0);
1824 local_set(&head_page->page->commit, 0);
1825 }
1826 }
1827
1828 /* Used to calculate data delta */
1829 static char rb_data_ptr[] = "";
1830
1831 #define THIS_TEXT_PTR ((unsigned long)rb_meta_init_text_addr)
1832 #define THIS_DATA_PTR ((unsigned long)rb_data_ptr)
1833
rb_meta_init_text_addr(struct ring_buffer_meta * meta)1834 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1835 {
1836 meta->text_addr = THIS_TEXT_PTR;
1837 meta->data_addr = THIS_DATA_PTR;
1838 }
1839
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages)1840 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1841 {
1842 struct ring_buffer_meta *meta;
1843 unsigned long delta;
1844 void *subbuf;
1845 int cpu;
1846 int i;
1847
1848 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1849 void *next_meta;
1850
1851 meta = rb_range_meta(buffer, nr_pages, cpu);
1852
1853 if (rb_meta_valid(meta, cpu, buffer, nr_pages)) {
1854 /* Make the mappings match the current address */
1855 subbuf = rb_subbufs_from_meta(meta);
1856 delta = (unsigned long)subbuf - meta->first_buffer;
1857 meta->first_buffer += delta;
1858 meta->head_buffer += delta;
1859 meta->commit_buffer += delta;
1860 buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1861 buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1862 continue;
1863 }
1864
1865 if (cpu < nr_cpu_ids - 1)
1866 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1867 else
1868 next_meta = (void *)buffer->range_addr_end;
1869
1870 memset(meta, 0, next_meta - (void *)meta);
1871
1872 meta->magic = RING_BUFFER_META_MAGIC;
1873 meta->struct_size = sizeof(*meta);
1874
1875 meta->nr_subbufs = nr_pages + 1;
1876 meta->subbuf_size = PAGE_SIZE;
1877
1878 subbuf = rb_subbufs_from_meta(meta);
1879
1880 meta->first_buffer = (unsigned long)subbuf;
1881 rb_meta_init_text_addr(meta);
1882
1883 /*
1884 * The buffers[] array holds the order of the sub-buffers
1885 * that are after the meta data. The sub-buffers may
1886 * be swapped out when read and inserted into a different
1887 * location of the ring buffer. Although their addresses
1888 * remain the same, the buffers[] array contains the
1889 * index into the sub-buffers holding their actual order.
1890 */
1891 for (i = 0; i < meta->nr_subbufs; i++) {
1892 meta->buffers[i] = i;
1893 rb_init_page(subbuf);
1894 subbuf += meta->subbuf_size;
1895 }
1896 }
1897 }
1898
rbm_start(struct seq_file * m,loff_t * pos)1899 static void *rbm_start(struct seq_file *m, loff_t *pos)
1900 {
1901 struct ring_buffer_per_cpu *cpu_buffer = m->private;
1902 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1903 unsigned long val;
1904
1905 if (!meta)
1906 return NULL;
1907
1908 if (*pos > meta->nr_subbufs)
1909 return NULL;
1910
1911 val = *pos;
1912 val++;
1913
1914 return (void *)val;
1915 }
1916
rbm_next(struct seq_file * m,void * v,loff_t * pos)1917 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1918 {
1919 (*pos)++;
1920
1921 return rbm_start(m, pos);
1922 }
1923
rbm_show(struct seq_file * m,void * v)1924 static int rbm_show(struct seq_file *m, void *v)
1925 {
1926 struct ring_buffer_per_cpu *cpu_buffer = m->private;
1927 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1928 unsigned long val = (unsigned long)v;
1929
1930 if (val == 1) {
1931 seq_printf(m, "head_buffer: %d\n",
1932 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
1933 seq_printf(m, "commit_buffer: %d\n",
1934 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
1935 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size);
1936 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs);
1937 return 0;
1938 }
1939
1940 val -= 2;
1941 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]);
1942
1943 return 0;
1944 }
1945
rbm_stop(struct seq_file * m,void * p)1946 static void rbm_stop(struct seq_file *m, void *p)
1947 {
1948 }
1949
1950 static const struct seq_operations rb_meta_seq_ops = {
1951 .start = rbm_start,
1952 .next = rbm_next,
1953 .show = rbm_show,
1954 .stop = rbm_stop,
1955 };
1956
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)1957 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
1958 {
1959 struct seq_file *m;
1960 int ret;
1961
1962 ret = seq_open(file, &rb_meta_seq_ops);
1963 if (ret)
1964 return ret;
1965
1966 m = file->private_data;
1967 m->private = buffer->buffers[cpu];
1968
1969 return 0;
1970 }
1971
1972 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1973 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
1974 struct buffer_page *bpage)
1975 {
1976 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1977
1978 if (meta->head_buffer == (unsigned long)bpage->page)
1979 cpu_buffer->head_page = bpage;
1980
1981 if (meta->commit_buffer == (unsigned long)bpage->page) {
1982 cpu_buffer->commit_page = bpage;
1983 cpu_buffer->tail_page = bpage;
1984 }
1985 }
1986
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)1987 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1988 long nr_pages, struct list_head *pages)
1989 {
1990 struct trace_buffer *buffer = cpu_buffer->buffer;
1991 struct ring_buffer_meta *meta = NULL;
1992 struct buffer_page *bpage, *tmp;
1993 bool user_thread = current->mm != NULL;
1994 gfp_t mflags;
1995 long i;
1996
1997 /*
1998 * Check if the available memory is there first.
1999 * Note, si_mem_available() only gives us a rough estimate of available
2000 * memory. It may not be accurate. But we don't care, we just want
2001 * to prevent doing any allocation when it is obvious that it is
2002 * not going to succeed.
2003 */
2004 i = si_mem_available();
2005 if (i < nr_pages)
2006 return -ENOMEM;
2007
2008 /*
2009 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2010 * gracefully without invoking oom-killer and the system is not
2011 * destabilized.
2012 */
2013 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2014
2015 /*
2016 * If a user thread allocates too much, and si_mem_available()
2017 * reports there's enough memory, even though there is not.
2018 * Make sure the OOM killer kills this thread. This can happen
2019 * even with RETRY_MAYFAIL because another task may be doing
2020 * an allocation after this task has taken all memory.
2021 * This is the task the OOM killer needs to take out during this
2022 * loop, even if it was triggered by an allocation somewhere else.
2023 */
2024 if (user_thread)
2025 set_current_oom_origin();
2026
2027 if (buffer->range_addr_start)
2028 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2029
2030 for (i = 0; i < nr_pages; i++) {
2031 struct page *page;
2032
2033 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2034 mflags, cpu_to_node(cpu_buffer->cpu));
2035 if (!bpage)
2036 goto free_pages;
2037
2038 rb_check_bpage(cpu_buffer, bpage);
2039
2040 /*
2041 * Append the pages as for mapped buffers we want to keep
2042 * the order
2043 */
2044 list_add_tail(&bpage->list, pages);
2045
2046 if (meta) {
2047 /* A range was given. Use that for the buffer page */
2048 bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2049 if (!bpage->page)
2050 goto free_pages;
2051 /* If this is valid from a previous boot */
2052 if (meta->head_buffer)
2053 rb_meta_buffer_update(cpu_buffer, bpage);
2054 bpage->range = 1;
2055 bpage->id = i + 1;
2056 } else {
2057 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2058 mflags | __GFP_COMP | __GFP_ZERO,
2059 cpu_buffer->buffer->subbuf_order);
2060 if (!page)
2061 goto free_pages;
2062 bpage->page = page_address(page);
2063 rb_init_page(bpage->page);
2064 }
2065 bpage->order = cpu_buffer->buffer->subbuf_order;
2066
2067 if (user_thread && fatal_signal_pending(current))
2068 goto free_pages;
2069 }
2070 if (user_thread)
2071 clear_current_oom_origin();
2072
2073 return 0;
2074
2075 free_pages:
2076 list_for_each_entry_safe(bpage, tmp, pages, list) {
2077 list_del_init(&bpage->list);
2078 free_buffer_page(bpage);
2079 }
2080 if (user_thread)
2081 clear_current_oom_origin();
2082
2083 return -ENOMEM;
2084 }
2085
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2086 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2087 unsigned long nr_pages)
2088 {
2089 LIST_HEAD(pages);
2090
2091 WARN_ON(!nr_pages);
2092
2093 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2094 return -ENOMEM;
2095
2096 /*
2097 * The ring buffer page list is a circular list that does not
2098 * start and end with a list head. All page list items point to
2099 * other pages.
2100 */
2101 cpu_buffer->pages = pages.next;
2102 list_del(&pages);
2103
2104 cpu_buffer->nr_pages = nr_pages;
2105
2106 rb_check_pages(cpu_buffer);
2107
2108 return 0;
2109 }
2110
2111 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2112 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2113 {
2114 struct ring_buffer_per_cpu *cpu_buffer;
2115 struct ring_buffer_meta *meta;
2116 struct buffer_page *bpage;
2117 struct page *page;
2118 int ret;
2119
2120 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2121 GFP_KERNEL, cpu_to_node(cpu));
2122 if (!cpu_buffer)
2123 return NULL;
2124
2125 cpu_buffer->cpu = cpu;
2126 cpu_buffer->buffer = buffer;
2127 raw_spin_lock_init(&cpu_buffer->reader_lock);
2128 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2129 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2130 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2131 init_completion(&cpu_buffer->update_done);
2132 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2133 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2134 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2135 mutex_init(&cpu_buffer->mapping_lock);
2136
2137 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2138 GFP_KERNEL, cpu_to_node(cpu));
2139 if (!bpage)
2140 goto fail_free_buffer;
2141
2142 rb_check_bpage(cpu_buffer, bpage);
2143
2144 cpu_buffer->reader_page = bpage;
2145
2146 if (buffer->range_addr_start) {
2147 /*
2148 * Range mapped buffers have the same restrictions as memory
2149 * mapped ones do.
2150 */
2151 cpu_buffer->mapped = 1;
2152 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2153 bpage->page = rb_range_buffer(cpu_buffer, 0);
2154 if (!bpage->page)
2155 goto fail_free_reader;
2156 if (cpu_buffer->ring_meta->head_buffer)
2157 rb_meta_buffer_update(cpu_buffer, bpage);
2158 bpage->range = 1;
2159 } else {
2160 page = alloc_pages_node(cpu_to_node(cpu),
2161 GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2162 cpu_buffer->buffer->subbuf_order);
2163 if (!page)
2164 goto fail_free_reader;
2165 bpage->page = page_address(page);
2166 rb_init_page(bpage->page);
2167 }
2168
2169 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2170 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2171
2172 ret = rb_allocate_pages(cpu_buffer, nr_pages);
2173 if (ret < 0)
2174 goto fail_free_reader;
2175
2176 rb_meta_validate_events(cpu_buffer);
2177
2178 /* If the boot meta was valid then this has already been updated */
2179 meta = cpu_buffer->ring_meta;
2180 if (!meta || !meta->head_buffer ||
2181 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2182 if (meta && meta->head_buffer &&
2183 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2184 pr_warn("Ring buffer meta buffers not all mapped\n");
2185 if (!cpu_buffer->head_page)
2186 pr_warn(" Missing head_page\n");
2187 if (!cpu_buffer->commit_page)
2188 pr_warn(" Missing commit_page\n");
2189 if (!cpu_buffer->tail_page)
2190 pr_warn(" Missing tail_page\n");
2191 }
2192
2193 cpu_buffer->head_page
2194 = list_entry(cpu_buffer->pages, struct buffer_page, list);
2195 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2196
2197 rb_head_page_activate(cpu_buffer);
2198
2199 if (cpu_buffer->ring_meta)
2200 meta->commit_buffer = meta->head_buffer;
2201 } else {
2202 /* The valid meta buffer still needs to activate the head page */
2203 rb_head_page_activate(cpu_buffer);
2204 }
2205
2206 return cpu_buffer;
2207
2208 fail_free_reader:
2209 free_buffer_page(cpu_buffer->reader_page);
2210
2211 fail_free_buffer:
2212 kfree(cpu_buffer);
2213 return NULL;
2214 }
2215
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2216 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2217 {
2218 struct list_head *head = cpu_buffer->pages;
2219 struct buffer_page *bpage, *tmp;
2220
2221 irq_work_sync(&cpu_buffer->irq_work.work);
2222
2223 free_buffer_page(cpu_buffer->reader_page);
2224
2225 if (head) {
2226 rb_head_page_deactivate(cpu_buffer);
2227
2228 list_for_each_entry_safe(bpage, tmp, head, list) {
2229 list_del_init(&bpage->list);
2230 free_buffer_page(bpage);
2231 }
2232 bpage = list_entry(head, struct buffer_page, list);
2233 free_buffer_page(bpage);
2234 }
2235
2236 free_page((unsigned long)cpu_buffer->free_page);
2237
2238 kfree(cpu_buffer);
2239 }
2240
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,struct lock_class_key * key)2241 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2242 int order, unsigned long start,
2243 unsigned long end,
2244 struct lock_class_key *key)
2245 {
2246 struct trace_buffer *buffer;
2247 long nr_pages;
2248 int subbuf_size;
2249 int bsize;
2250 int cpu;
2251 int ret;
2252
2253 /* keep it in its own cache line */
2254 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2255 GFP_KERNEL);
2256 if (!buffer)
2257 return NULL;
2258
2259 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2260 goto fail_free_buffer;
2261
2262 buffer->subbuf_order = order;
2263 subbuf_size = (PAGE_SIZE << order);
2264 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2265
2266 /* Max payload is buffer page size - header (8bytes) */
2267 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2268
2269 buffer->flags = flags;
2270 buffer->clock = trace_clock_local;
2271 buffer->reader_lock_key = key;
2272
2273 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2274 init_waitqueue_head(&buffer->irq_work.waiters);
2275
2276 buffer->cpus = nr_cpu_ids;
2277
2278 bsize = sizeof(void *) * nr_cpu_ids;
2279 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2280 GFP_KERNEL);
2281 if (!buffer->buffers)
2282 goto fail_free_cpumask;
2283
2284 /* If start/end are specified, then that overrides size */
2285 if (start && end) {
2286 unsigned long ptr;
2287 int n;
2288
2289 size = end - start;
2290 size = size / nr_cpu_ids;
2291
2292 /*
2293 * The number of sub-buffers (nr_pages) is determined by the
2294 * total size allocated minus the meta data size.
2295 * Then that is divided by the number of per CPU buffers
2296 * needed, plus account for the integer array index that
2297 * will be appended to the meta data.
2298 */
2299 nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2300 (subbuf_size + sizeof(int));
2301 /* Need at least two pages plus the reader page */
2302 if (nr_pages < 3)
2303 goto fail_free_buffers;
2304
2305 again:
2306 /* Make sure that the size fits aligned */
2307 for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2308 ptr += sizeof(struct ring_buffer_meta) +
2309 sizeof(int) * nr_pages;
2310 ptr = ALIGN(ptr, subbuf_size);
2311 ptr += subbuf_size * nr_pages;
2312 }
2313 if (ptr > end) {
2314 if (nr_pages <= 3)
2315 goto fail_free_buffers;
2316 nr_pages--;
2317 goto again;
2318 }
2319
2320 /* nr_pages should not count the reader page */
2321 nr_pages--;
2322 buffer->range_addr_start = start;
2323 buffer->range_addr_end = end;
2324
2325 rb_range_meta_init(buffer, nr_pages);
2326 } else {
2327
2328 /* need at least two pages */
2329 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2330 if (nr_pages < 2)
2331 nr_pages = 2;
2332 }
2333
2334 cpu = raw_smp_processor_id();
2335 cpumask_set_cpu(cpu, buffer->cpumask);
2336 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2337 if (!buffer->buffers[cpu])
2338 goto fail_free_buffers;
2339
2340 /* If already mapped, do not hook to CPU hotplug */
2341 if (!start) {
2342 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2343 if (ret < 0)
2344 goto fail_free_buffers;
2345 }
2346
2347 mutex_init(&buffer->mutex);
2348
2349 return buffer;
2350
2351 fail_free_buffers:
2352 for_each_buffer_cpu(buffer, cpu) {
2353 if (buffer->buffers[cpu])
2354 rb_free_cpu_buffer(buffer->buffers[cpu]);
2355 }
2356 kfree(buffer->buffers);
2357
2358 fail_free_cpumask:
2359 free_cpumask_var(buffer->cpumask);
2360
2361 fail_free_buffer:
2362 kfree(buffer);
2363 return NULL;
2364 }
2365
2366 /**
2367 * __ring_buffer_alloc - allocate a new ring_buffer
2368 * @size: the size in bytes per cpu that is needed.
2369 * @flags: attributes to set for the ring buffer.
2370 * @key: ring buffer reader_lock_key.
2371 *
2372 * Currently the only flag that is available is the RB_FL_OVERWRITE
2373 * flag. This flag means that the buffer will overwrite old data
2374 * when the buffer wraps. If this flag is not set, the buffer will
2375 * drop data when the tail hits the head.
2376 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2377 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2378 struct lock_class_key *key)
2379 {
2380 /* Default buffer page size - one system page */
2381 return alloc_buffer(size, flags, 0, 0, 0,key);
2382
2383 }
2384 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2385
2386 /**
2387 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2388 * @size: the size in bytes per cpu that is needed.
2389 * @flags: attributes to set for the ring buffer.
2390 * @start: start of allocated range
2391 * @range_size: size of allocated range
2392 * @order: sub-buffer order
2393 * @key: ring buffer reader_lock_key.
2394 *
2395 * Currently the only flag that is available is the RB_FL_OVERWRITE
2396 * flag. This flag means that the buffer will overwrite old data
2397 * when the buffer wraps. If this flag is not set, the buffer will
2398 * drop data when the tail hits the head.
2399 */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,struct lock_class_key * key)2400 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2401 int order, unsigned long start,
2402 unsigned long range_size,
2403 struct lock_class_key *key)
2404 {
2405 return alloc_buffer(size, flags, order, start, start + range_size, key);
2406 }
2407
2408 /**
2409 * ring_buffer_last_boot_delta - return the delta offset from last boot
2410 * @buffer: The buffer to return the delta from
2411 * @text: Return text delta
2412 * @data: Return data delta
2413 *
2414 * Returns: The true if the delta is non zero
2415 */
ring_buffer_last_boot_delta(struct trace_buffer * buffer,long * text,long * data)2416 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2417 long *data)
2418 {
2419 if (!buffer)
2420 return false;
2421
2422 if (!buffer->last_text_delta)
2423 return false;
2424
2425 *text = buffer->last_text_delta;
2426 *data = buffer->last_data_delta;
2427
2428 return true;
2429 }
2430
2431 /**
2432 * ring_buffer_free - free a ring buffer.
2433 * @buffer: the buffer to free.
2434 */
2435 void
ring_buffer_free(struct trace_buffer * buffer)2436 ring_buffer_free(struct trace_buffer *buffer)
2437 {
2438 int cpu;
2439
2440 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2441
2442 irq_work_sync(&buffer->irq_work.work);
2443
2444 for_each_buffer_cpu(buffer, cpu)
2445 rb_free_cpu_buffer(buffer->buffers[cpu]);
2446
2447 kfree(buffer->buffers);
2448 free_cpumask_var(buffer->cpumask);
2449
2450 kfree(buffer);
2451 }
2452 EXPORT_SYMBOL_GPL(ring_buffer_free);
2453
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2454 void ring_buffer_set_clock(struct trace_buffer *buffer,
2455 u64 (*clock)(void))
2456 {
2457 buffer->clock = clock;
2458 }
2459
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2460 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2461 {
2462 buffer->time_stamp_abs = abs;
2463 }
2464
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2465 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2466 {
2467 return buffer->time_stamp_abs;
2468 }
2469
rb_page_entries(struct buffer_page * bpage)2470 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2471 {
2472 return local_read(&bpage->entries) & RB_WRITE_MASK;
2473 }
2474
rb_page_write(struct buffer_page * bpage)2475 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2476 {
2477 return local_read(&bpage->write) & RB_WRITE_MASK;
2478 }
2479
2480 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2481 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2482 {
2483 struct list_head *tail_page, *to_remove, *next_page;
2484 struct buffer_page *to_remove_page, *tmp_iter_page;
2485 struct buffer_page *last_page, *first_page;
2486 unsigned long nr_removed;
2487 unsigned long head_bit;
2488 int page_entries;
2489
2490 head_bit = 0;
2491
2492 raw_spin_lock_irq(&cpu_buffer->reader_lock);
2493 atomic_inc(&cpu_buffer->record_disabled);
2494 /*
2495 * We don't race with the readers since we have acquired the reader
2496 * lock. We also don't race with writers after disabling recording.
2497 * This makes it easy to figure out the first and the last page to be
2498 * removed from the list. We unlink all the pages in between including
2499 * the first and last pages. This is done in a busy loop so that we
2500 * lose the least number of traces.
2501 * The pages are freed after we restart recording and unlock readers.
2502 */
2503 tail_page = &cpu_buffer->tail_page->list;
2504
2505 /*
2506 * tail page might be on reader page, we remove the next page
2507 * from the ring buffer
2508 */
2509 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2510 tail_page = rb_list_head(tail_page->next);
2511 to_remove = tail_page;
2512
2513 /* start of pages to remove */
2514 first_page = list_entry(rb_list_head(to_remove->next),
2515 struct buffer_page, list);
2516
2517 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2518 to_remove = rb_list_head(to_remove)->next;
2519 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2520 }
2521 /* Read iterators need to reset themselves when some pages removed */
2522 cpu_buffer->pages_removed += nr_removed;
2523
2524 next_page = rb_list_head(to_remove)->next;
2525
2526 /*
2527 * Now we remove all pages between tail_page and next_page.
2528 * Make sure that we have head_bit value preserved for the
2529 * next page
2530 */
2531 tail_page->next = (struct list_head *)((unsigned long)next_page |
2532 head_bit);
2533 next_page = rb_list_head(next_page);
2534 next_page->prev = tail_page;
2535
2536 /* make sure pages points to a valid page in the ring buffer */
2537 cpu_buffer->pages = next_page;
2538
2539 /* update head page */
2540 if (head_bit)
2541 cpu_buffer->head_page = list_entry(next_page,
2542 struct buffer_page, list);
2543
2544 /* pages are removed, resume tracing and then free the pages */
2545 atomic_dec(&cpu_buffer->record_disabled);
2546 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2547
2548 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2549
2550 /* last buffer page to remove */
2551 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2552 list);
2553 tmp_iter_page = first_page;
2554
2555 do {
2556 cond_resched();
2557
2558 to_remove_page = tmp_iter_page;
2559 rb_inc_page(&tmp_iter_page);
2560
2561 /* update the counters */
2562 page_entries = rb_page_entries(to_remove_page);
2563 if (page_entries) {
2564 /*
2565 * If something was added to this page, it was full
2566 * since it is not the tail page. So we deduct the
2567 * bytes consumed in ring buffer from here.
2568 * Increment overrun to account for the lost events.
2569 */
2570 local_add(page_entries, &cpu_buffer->overrun);
2571 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2572 local_inc(&cpu_buffer->pages_lost);
2573 }
2574
2575 /*
2576 * We have already removed references to this list item, just
2577 * free up the buffer_page and its page
2578 */
2579 free_buffer_page(to_remove_page);
2580 nr_removed--;
2581
2582 } while (to_remove_page != last_page);
2583
2584 RB_WARN_ON(cpu_buffer, nr_removed);
2585
2586 return nr_removed == 0;
2587 }
2588
2589 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2590 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2591 {
2592 struct list_head *pages = &cpu_buffer->new_pages;
2593 unsigned long flags;
2594 bool success;
2595 int retries;
2596
2597 /* Can be called at early boot up, where interrupts must not been enabled */
2598 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2599 /*
2600 * We are holding the reader lock, so the reader page won't be swapped
2601 * in the ring buffer. Now we are racing with the writer trying to
2602 * move head page and the tail page.
2603 * We are going to adapt the reader page update process where:
2604 * 1. We first splice the start and end of list of new pages between
2605 * the head page and its previous page.
2606 * 2. We cmpxchg the prev_page->next to point from head page to the
2607 * start of new pages list.
2608 * 3. Finally, we update the head->prev to the end of new list.
2609 *
2610 * We will try this process 10 times, to make sure that we don't keep
2611 * spinning.
2612 */
2613 retries = 10;
2614 success = false;
2615 while (retries--) {
2616 struct list_head *head_page, *prev_page;
2617 struct list_head *last_page, *first_page;
2618 struct list_head *head_page_with_bit;
2619 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2620
2621 if (!hpage)
2622 break;
2623 head_page = &hpage->list;
2624 prev_page = head_page->prev;
2625
2626 first_page = pages->next;
2627 last_page = pages->prev;
2628
2629 head_page_with_bit = (struct list_head *)
2630 ((unsigned long)head_page | RB_PAGE_HEAD);
2631
2632 last_page->next = head_page_with_bit;
2633 first_page->prev = prev_page;
2634
2635 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2636 if (try_cmpxchg(&prev_page->next,
2637 &head_page_with_bit, first_page)) {
2638 /*
2639 * yay, we replaced the page pointer to our new list,
2640 * now, we just have to update to head page's prev
2641 * pointer to point to end of list
2642 */
2643 head_page->prev = last_page;
2644 success = true;
2645 break;
2646 }
2647 }
2648
2649 if (success)
2650 INIT_LIST_HEAD(pages);
2651 /*
2652 * If we weren't successful in adding in new pages, warn and stop
2653 * tracing
2654 */
2655 RB_WARN_ON(cpu_buffer, !success);
2656 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2657
2658 /* free pages if they weren't inserted */
2659 if (!success) {
2660 struct buffer_page *bpage, *tmp;
2661 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2662 list) {
2663 list_del_init(&bpage->list);
2664 free_buffer_page(bpage);
2665 }
2666 }
2667 return success;
2668 }
2669
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2670 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2671 {
2672 bool success;
2673
2674 if (cpu_buffer->nr_pages_to_update > 0)
2675 success = rb_insert_pages(cpu_buffer);
2676 else
2677 success = rb_remove_pages(cpu_buffer,
2678 -cpu_buffer->nr_pages_to_update);
2679
2680 if (success)
2681 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2682 }
2683
update_pages_handler(struct work_struct * work)2684 static void update_pages_handler(struct work_struct *work)
2685 {
2686 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2687 struct ring_buffer_per_cpu, update_pages_work);
2688 rb_update_pages(cpu_buffer);
2689 complete(&cpu_buffer->update_done);
2690 }
2691
2692 /**
2693 * ring_buffer_resize - resize the ring buffer
2694 * @buffer: the buffer to resize.
2695 * @size: the new size.
2696 * @cpu_id: the cpu buffer to resize
2697 *
2698 * Minimum size is 2 * buffer->subbuf_size.
2699 *
2700 * Returns 0 on success and < 0 on failure.
2701 */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2702 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2703 int cpu_id)
2704 {
2705 struct ring_buffer_per_cpu *cpu_buffer;
2706 unsigned long nr_pages;
2707 int cpu, err;
2708
2709 /*
2710 * Always succeed at resizing a non-existent buffer:
2711 */
2712 if (!buffer)
2713 return 0;
2714
2715 /* Make sure the requested buffer exists */
2716 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2717 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2718 return 0;
2719
2720 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2721
2722 /* we need a minimum of two pages */
2723 if (nr_pages < 2)
2724 nr_pages = 2;
2725
2726 /* prevent another thread from changing buffer sizes */
2727 mutex_lock(&buffer->mutex);
2728 atomic_inc(&buffer->resizing);
2729
2730 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2731 /*
2732 * Don't succeed if resizing is disabled, as a reader might be
2733 * manipulating the ring buffer and is expecting a sane state while
2734 * this is true.
2735 */
2736 for_each_buffer_cpu(buffer, cpu) {
2737 cpu_buffer = buffer->buffers[cpu];
2738 if (atomic_read(&cpu_buffer->resize_disabled)) {
2739 err = -EBUSY;
2740 goto out_err_unlock;
2741 }
2742 }
2743
2744 /* calculate the pages to update */
2745 for_each_buffer_cpu(buffer, cpu) {
2746 cpu_buffer = buffer->buffers[cpu];
2747
2748 cpu_buffer->nr_pages_to_update = nr_pages -
2749 cpu_buffer->nr_pages;
2750 /*
2751 * nothing more to do for removing pages or no update
2752 */
2753 if (cpu_buffer->nr_pages_to_update <= 0)
2754 continue;
2755 /*
2756 * to add pages, make sure all new pages can be
2757 * allocated without receiving ENOMEM
2758 */
2759 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2760 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2761 &cpu_buffer->new_pages)) {
2762 /* not enough memory for new pages */
2763 err = -ENOMEM;
2764 goto out_err;
2765 }
2766
2767 cond_resched();
2768 }
2769
2770 cpus_read_lock();
2771 /*
2772 * Fire off all the required work handlers
2773 * We can't schedule on offline CPUs, but it's not necessary
2774 * since we can change their buffer sizes without any race.
2775 */
2776 for_each_buffer_cpu(buffer, cpu) {
2777 cpu_buffer = buffer->buffers[cpu];
2778 if (!cpu_buffer->nr_pages_to_update)
2779 continue;
2780
2781 /* Can't run something on an offline CPU. */
2782 if (!cpu_online(cpu)) {
2783 rb_update_pages(cpu_buffer);
2784 cpu_buffer->nr_pages_to_update = 0;
2785 } else {
2786 /* Run directly if possible. */
2787 migrate_disable();
2788 if (cpu != smp_processor_id()) {
2789 migrate_enable();
2790 schedule_work_on(cpu,
2791 &cpu_buffer->update_pages_work);
2792 } else {
2793 update_pages_handler(&cpu_buffer->update_pages_work);
2794 migrate_enable();
2795 }
2796 }
2797 }
2798
2799 /* wait for all the updates to complete */
2800 for_each_buffer_cpu(buffer, cpu) {
2801 cpu_buffer = buffer->buffers[cpu];
2802 if (!cpu_buffer->nr_pages_to_update)
2803 continue;
2804
2805 if (cpu_online(cpu))
2806 wait_for_completion(&cpu_buffer->update_done);
2807 cpu_buffer->nr_pages_to_update = 0;
2808 }
2809
2810 cpus_read_unlock();
2811 } else {
2812 cpu_buffer = buffer->buffers[cpu_id];
2813
2814 if (nr_pages == cpu_buffer->nr_pages)
2815 goto out;
2816
2817 /*
2818 * Don't succeed if resizing is disabled, as a reader might be
2819 * manipulating the ring buffer and is expecting a sane state while
2820 * this is true.
2821 */
2822 if (atomic_read(&cpu_buffer->resize_disabled)) {
2823 err = -EBUSY;
2824 goto out_err_unlock;
2825 }
2826
2827 cpu_buffer->nr_pages_to_update = nr_pages -
2828 cpu_buffer->nr_pages;
2829
2830 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2831 if (cpu_buffer->nr_pages_to_update > 0 &&
2832 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2833 &cpu_buffer->new_pages)) {
2834 err = -ENOMEM;
2835 goto out_err;
2836 }
2837
2838 cpus_read_lock();
2839
2840 /* Can't run something on an offline CPU. */
2841 if (!cpu_online(cpu_id))
2842 rb_update_pages(cpu_buffer);
2843 else {
2844 /* Run directly if possible. */
2845 migrate_disable();
2846 if (cpu_id == smp_processor_id()) {
2847 rb_update_pages(cpu_buffer);
2848 migrate_enable();
2849 } else {
2850 migrate_enable();
2851 schedule_work_on(cpu_id,
2852 &cpu_buffer->update_pages_work);
2853 wait_for_completion(&cpu_buffer->update_done);
2854 }
2855 }
2856
2857 cpu_buffer->nr_pages_to_update = 0;
2858 cpus_read_unlock();
2859 }
2860
2861 out:
2862 /*
2863 * The ring buffer resize can happen with the ring buffer
2864 * enabled, so that the update disturbs the tracing as little
2865 * as possible. But if the buffer is disabled, we do not need
2866 * to worry about that, and we can take the time to verify
2867 * that the buffer is not corrupt.
2868 */
2869 if (atomic_read(&buffer->record_disabled)) {
2870 atomic_inc(&buffer->record_disabled);
2871 /*
2872 * Even though the buffer was disabled, we must make sure
2873 * that it is truly disabled before calling rb_check_pages.
2874 * There could have been a race between checking
2875 * record_disable and incrementing it.
2876 */
2877 synchronize_rcu();
2878 for_each_buffer_cpu(buffer, cpu) {
2879 unsigned long flags;
2880
2881 cpu_buffer = buffer->buffers[cpu];
2882 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2883 rb_check_pages(cpu_buffer);
2884 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2885 }
2886 atomic_dec(&buffer->record_disabled);
2887 }
2888
2889 atomic_dec(&buffer->resizing);
2890 mutex_unlock(&buffer->mutex);
2891 return 0;
2892
2893 out_err:
2894 for_each_buffer_cpu(buffer, cpu) {
2895 struct buffer_page *bpage, *tmp;
2896
2897 cpu_buffer = buffer->buffers[cpu];
2898 cpu_buffer->nr_pages_to_update = 0;
2899
2900 if (list_empty(&cpu_buffer->new_pages))
2901 continue;
2902
2903 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2904 list) {
2905 list_del_init(&bpage->list);
2906 free_buffer_page(bpage);
2907 }
2908 }
2909 out_err_unlock:
2910 atomic_dec(&buffer->resizing);
2911 mutex_unlock(&buffer->mutex);
2912 return err;
2913 }
2914 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2915
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2916 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2917 {
2918 mutex_lock(&buffer->mutex);
2919 if (val)
2920 buffer->flags |= RB_FL_OVERWRITE;
2921 else
2922 buffer->flags &= ~RB_FL_OVERWRITE;
2923 mutex_unlock(&buffer->mutex);
2924 }
2925 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2926
__rb_page_index(struct buffer_page * bpage,unsigned index)2927 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2928 {
2929 return bpage->page->data + index;
2930 }
2931
2932 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)2933 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2934 {
2935 return __rb_page_index(cpu_buffer->reader_page,
2936 cpu_buffer->reader_page->read);
2937 }
2938
2939 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)2940 rb_iter_head_event(struct ring_buffer_iter *iter)
2941 {
2942 struct ring_buffer_event *event;
2943 struct buffer_page *iter_head_page = iter->head_page;
2944 unsigned long commit;
2945 unsigned length;
2946
2947 if (iter->head != iter->next_event)
2948 return iter->event;
2949
2950 /*
2951 * When the writer goes across pages, it issues a cmpxchg which
2952 * is a mb(), which will synchronize with the rmb here.
2953 * (see rb_tail_page_update() and __rb_reserve_next())
2954 */
2955 commit = rb_page_commit(iter_head_page);
2956 smp_rmb();
2957
2958 /* An event needs to be at least 8 bytes in size */
2959 if (iter->head > commit - 8)
2960 goto reset;
2961
2962 event = __rb_page_index(iter_head_page, iter->head);
2963 length = rb_event_length(event);
2964
2965 /*
2966 * READ_ONCE() doesn't work on functions and we don't want the
2967 * compiler doing any crazy optimizations with length.
2968 */
2969 barrier();
2970
2971 if ((iter->head + length) > commit || length > iter->event_size)
2972 /* Writer corrupted the read? */
2973 goto reset;
2974
2975 memcpy(iter->event, event, length);
2976 /*
2977 * If the page stamp is still the same after this rmb() then the
2978 * event was safely copied without the writer entering the page.
2979 */
2980 smp_rmb();
2981
2982 /* Make sure the page didn't change since we read this */
2983 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2984 commit > rb_page_commit(iter_head_page))
2985 goto reset;
2986
2987 iter->next_event = iter->head + length;
2988 return iter->event;
2989 reset:
2990 /* Reset to the beginning */
2991 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2992 iter->head = 0;
2993 iter->next_event = 0;
2994 iter->missed_events = 1;
2995 return NULL;
2996 }
2997
2998 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)2999 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3000 {
3001 return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3002 }
3003
3004 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3005 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3006 {
3007 return rb_page_commit(cpu_buffer->commit_page);
3008 }
3009
3010 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3011 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3012 {
3013 unsigned long addr = (unsigned long)event;
3014
3015 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3016
3017 return addr - BUF_PAGE_HDR_SIZE;
3018 }
3019
rb_inc_iter(struct ring_buffer_iter * iter)3020 static void rb_inc_iter(struct ring_buffer_iter *iter)
3021 {
3022 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3023
3024 /*
3025 * The iterator could be on the reader page (it starts there).
3026 * But the head could have moved, since the reader was
3027 * found. Check for this case and assign the iterator
3028 * to the head page instead of next.
3029 */
3030 if (iter->head_page == cpu_buffer->reader_page)
3031 iter->head_page = rb_set_head_page(cpu_buffer);
3032 else
3033 rb_inc_page(&iter->head_page);
3034
3035 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3036 iter->head = 0;
3037 iter->next_event = 0;
3038 }
3039
3040 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_meta * meta,void * subbuf)3041 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3042 {
3043 void *subbuf_array;
3044
3045 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3046 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3047 return (subbuf - subbuf_array) / meta->subbuf_size;
3048 }
3049
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3050 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3051 struct buffer_page *next_page)
3052 {
3053 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3054 unsigned long old_head = (unsigned long)next_page->page;
3055 unsigned long new_head;
3056
3057 rb_inc_page(&next_page);
3058 new_head = (unsigned long)next_page->page;
3059
3060 /*
3061 * Only move it forward once, if something else came in and
3062 * moved it forward, then we don't want to touch it.
3063 */
3064 (void)cmpxchg(&meta->head_buffer, old_head, new_head);
3065 }
3066
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3067 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3068 struct buffer_page *reader)
3069 {
3070 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3071 void *old_reader = cpu_buffer->reader_page->page;
3072 void *new_reader = reader->page;
3073 int id;
3074
3075 id = reader->id;
3076 cpu_buffer->reader_page->id = id;
3077 reader->id = 0;
3078
3079 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3080 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3081
3082 /* The head pointer is the one after the reader */
3083 rb_update_meta_head(cpu_buffer, reader);
3084 }
3085
3086 /*
3087 * rb_handle_head_page - writer hit the head page
3088 *
3089 * Returns: +1 to retry page
3090 * 0 to continue
3091 * -1 on error
3092 */
3093 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3094 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3095 struct buffer_page *tail_page,
3096 struct buffer_page *next_page)
3097 {
3098 struct buffer_page *new_head;
3099 int entries;
3100 int type;
3101 int ret;
3102
3103 entries = rb_page_entries(next_page);
3104
3105 /*
3106 * The hard part is here. We need to move the head
3107 * forward, and protect against both readers on
3108 * other CPUs and writers coming in via interrupts.
3109 */
3110 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3111 RB_PAGE_HEAD);
3112
3113 /*
3114 * type can be one of four:
3115 * NORMAL - an interrupt already moved it for us
3116 * HEAD - we are the first to get here.
3117 * UPDATE - we are the interrupt interrupting
3118 * a current move.
3119 * MOVED - a reader on another CPU moved the next
3120 * pointer to its reader page. Give up
3121 * and try again.
3122 */
3123
3124 switch (type) {
3125 case RB_PAGE_HEAD:
3126 /*
3127 * We changed the head to UPDATE, thus
3128 * it is our responsibility to update
3129 * the counters.
3130 */
3131 local_add(entries, &cpu_buffer->overrun);
3132 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3133 local_inc(&cpu_buffer->pages_lost);
3134
3135 if (cpu_buffer->ring_meta)
3136 rb_update_meta_head(cpu_buffer, next_page);
3137 /*
3138 * The entries will be zeroed out when we move the
3139 * tail page.
3140 */
3141
3142 /* still more to do */
3143 break;
3144
3145 case RB_PAGE_UPDATE:
3146 /*
3147 * This is an interrupt that interrupt the
3148 * previous update. Still more to do.
3149 */
3150 break;
3151 case RB_PAGE_NORMAL:
3152 /*
3153 * An interrupt came in before the update
3154 * and processed this for us.
3155 * Nothing left to do.
3156 */
3157 return 1;
3158 case RB_PAGE_MOVED:
3159 /*
3160 * The reader is on another CPU and just did
3161 * a swap with our next_page.
3162 * Try again.
3163 */
3164 return 1;
3165 default:
3166 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3167 return -1;
3168 }
3169
3170 /*
3171 * Now that we are here, the old head pointer is
3172 * set to UPDATE. This will keep the reader from
3173 * swapping the head page with the reader page.
3174 * The reader (on another CPU) will spin till
3175 * we are finished.
3176 *
3177 * We just need to protect against interrupts
3178 * doing the job. We will set the next pointer
3179 * to HEAD. After that, we set the old pointer
3180 * to NORMAL, but only if it was HEAD before.
3181 * otherwise we are an interrupt, and only
3182 * want the outer most commit to reset it.
3183 */
3184 new_head = next_page;
3185 rb_inc_page(&new_head);
3186
3187 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3188 RB_PAGE_NORMAL);
3189
3190 /*
3191 * Valid returns are:
3192 * HEAD - an interrupt came in and already set it.
3193 * NORMAL - One of two things:
3194 * 1) We really set it.
3195 * 2) A bunch of interrupts came in and moved
3196 * the page forward again.
3197 */
3198 switch (ret) {
3199 case RB_PAGE_HEAD:
3200 case RB_PAGE_NORMAL:
3201 /* OK */
3202 break;
3203 default:
3204 RB_WARN_ON(cpu_buffer, 1);
3205 return -1;
3206 }
3207
3208 /*
3209 * It is possible that an interrupt came in,
3210 * set the head up, then more interrupts came in
3211 * and moved it again. When we get back here,
3212 * the page would have been set to NORMAL but we
3213 * just set it back to HEAD.
3214 *
3215 * How do you detect this? Well, if that happened
3216 * the tail page would have moved.
3217 */
3218 if (ret == RB_PAGE_NORMAL) {
3219 struct buffer_page *buffer_tail_page;
3220
3221 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3222 /*
3223 * If the tail had moved passed next, then we need
3224 * to reset the pointer.
3225 */
3226 if (buffer_tail_page != tail_page &&
3227 buffer_tail_page != next_page)
3228 rb_head_page_set_normal(cpu_buffer, new_head,
3229 next_page,
3230 RB_PAGE_HEAD);
3231 }
3232
3233 /*
3234 * If this was the outer most commit (the one that
3235 * changed the original pointer from HEAD to UPDATE),
3236 * then it is up to us to reset it to NORMAL.
3237 */
3238 if (type == RB_PAGE_HEAD) {
3239 ret = rb_head_page_set_normal(cpu_buffer, next_page,
3240 tail_page,
3241 RB_PAGE_UPDATE);
3242 if (RB_WARN_ON(cpu_buffer,
3243 ret != RB_PAGE_UPDATE))
3244 return -1;
3245 }
3246
3247 return 0;
3248 }
3249
3250 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3251 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3252 unsigned long tail, struct rb_event_info *info)
3253 {
3254 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3255 struct buffer_page *tail_page = info->tail_page;
3256 struct ring_buffer_event *event;
3257 unsigned long length = info->length;
3258
3259 /*
3260 * Only the event that crossed the page boundary
3261 * must fill the old tail_page with padding.
3262 */
3263 if (tail >= bsize) {
3264 /*
3265 * If the page was filled, then we still need
3266 * to update the real_end. Reset it to zero
3267 * and the reader will ignore it.
3268 */
3269 if (tail == bsize)
3270 tail_page->real_end = 0;
3271
3272 local_sub(length, &tail_page->write);
3273 return;
3274 }
3275
3276 event = __rb_page_index(tail_page, tail);
3277
3278 /*
3279 * Save the original length to the meta data.
3280 * This will be used by the reader to add lost event
3281 * counter.
3282 */
3283 tail_page->real_end = tail;
3284
3285 /*
3286 * If this event is bigger than the minimum size, then
3287 * we need to be careful that we don't subtract the
3288 * write counter enough to allow another writer to slip
3289 * in on this page.
3290 * We put in a discarded commit instead, to make sure
3291 * that this space is not used again, and this space will
3292 * not be accounted into 'entries_bytes'.
3293 *
3294 * If we are less than the minimum size, we don't need to
3295 * worry about it.
3296 */
3297 if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3298 /* No room for any events */
3299
3300 /* Mark the rest of the page with padding */
3301 rb_event_set_padding(event);
3302
3303 /* Make sure the padding is visible before the write update */
3304 smp_wmb();
3305
3306 /* Set the write back to the previous setting */
3307 local_sub(length, &tail_page->write);
3308 return;
3309 }
3310
3311 /* Put in a discarded event */
3312 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3313 event->type_len = RINGBUF_TYPE_PADDING;
3314 /* time delta must be non zero */
3315 event->time_delta = 1;
3316
3317 /* account for padding bytes */
3318 local_add(bsize - tail, &cpu_buffer->entries_bytes);
3319
3320 /* Make sure the padding is visible before the tail_page->write update */
3321 smp_wmb();
3322
3323 /* Set write to end of buffer */
3324 length = (tail + length) - bsize;
3325 local_sub(length, &tail_page->write);
3326 }
3327
3328 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3329
3330 /*
3331 * This is the slow path, force gcc not to inline it.
3332 */
3333 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3334 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3335 unsigned long tail, struct rb_event_info *info)
3336 {
3337 struct buffer_page *tail_page = info->tail_page;
3338 struct buffer_page *commit_page = cpu_buffer->commit_page;
3339 struct trace_buffer *buffer = cpu_buffer->buffer;
3340 struct buffer_page *next_page;
3341 int ret;
3342
3343 next_page = tail_page;
3344
3345 rb_inc_page(&next_page);
3346
3347 /*
3348 * If for some reason, we had an interrupt storm that made
3349 * it all the way around the buffer, bail, and warn
3350 * about it.
3351 */
3352 if (unlikely(next_page == commit_page)) {
3353 local_inc(&cpu_buffer->commit_overrun);
3354 goto out_reset;
3355 }
3356
3357 /*
3358 * This is where the fun begins!
3359 *
3360 * We are fighting against races between a reader that
3361 * could be on another CPU trying to swap its reader
3362 * page with the buffer head.
3363 *
3364 * We are also fighting against interrupts coming in and
3365 * moving the head or tail on us as well.
3366 *
3367 * If the next page is the head page then we have filled
3368 * the buffer, unless the commit page is still on the
3369 * reader page.
3370 */
3371 if (rb_is_head_page(next_page, &tail_page->list)) {
3372
3373 /*
3374 * If the commit is not on the reader page, then
3375 * move the header page.
3376 */
3377 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3378 /*
3379 * If we are not in overwrite mode,
3380 * this is easy, just stop here.
3381 */
3382 if (!(buffer->flags & RB_FL_OVERWRITE)) {
3383 local_inc(&cpu_buffer->dropped_events);
3384 goto out_reset;
3385 }
3386
3387 ret = rb_handle_head_page(cpu_buffer,
3388 tail_page,
3389 next_page);
3390 if (ret < 0)
3391 goto out_reset;
3392 if (ret)
3393 goto out_again;
3394 } else {
3395 /*
3396 * We need to be careful here too. The
3397 * commit page could still be on the reader
3398 * page. We could have a small buffer, and
3399 * have filled up the buffer with events
3400 * from interrupts and such, and wrapped.
3401 *
3402 * Note, if the tail page is also on the
3403 * reader_page, we let it move out.
3404 */
3405 if (unlikely((cpu_buffer->commit_page !=
3406 cpu_buffer->tail_page) &&
3407 (cpu_buffer->commit_page ==
3408 cpu_buffer->reader_page))) {
3409 local_inc(&cpu_buffer->commit_overrun);
3410 goto out_reset;
3411 }
3412 }
3413 }
3414
3415 rb_tail_page_update(cpu_buffer, tail_page, next_page);
3416
3417 out_again:
3418
3419 rb_reset_tail(cpu_buffer, tail, info);
3420
3421 /* Commit what we have for now. */
3422 rb_end_commit(cpu_buffer);
3423 /* rb_end_commit() decs committing */
3424 local_inc(&cpu_buffer->committing);
3425
3426 /* fail and let the caller try again */
3427 return ERR_PTR(-EAGAIN);
3428
3429 out_reset:
3430 /* reset write */
3431 rb_reset_tail(cpu_buffer, tail, info);
3432
3433 return NULL;
3434 }
3435
3436 /* Slow path */
3437 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3438 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3439 struct ring_buffer_event *event, u64 delta, bool abs)
3440 {
3441 if (abs)
3442 event->type_len = RINGBUF_TYPE_TIME_STAMP;
3443 else
3444 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3445
3446 /* Not the first event on the page, or not delta? */
3447 if (abs || rb_event_index(cpu_buffer, event)) {
3448 event->time_delta = delta & TS_MASK;
3449 event->array[0] = delta >> TS_SHIFT;
3450 } else {
3451 /* nope, just zero it */
3452 event->time_delta = 0;
3453 event->array[0] = 0;
3454 }
3455
3456 return skip_time_extend(event);
3457 }
3458
3459 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3460 static inline bool sched_clock_stable(void)
3461 {
3462 return true;
3463 }
3464 #endif
3465
3466 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3467 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3468 struct rb_event_info *info)
3469 {
3470 u64 write_stamp;
3471
3472 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3473 (unsigned long long)info->delta,
3474 (unsigned long long)info->ts,
3475 (unsigned long long)info->before,
3476 (unsigned long long)info->after,
3477 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3478 sched_clock_stable() ? "" :
3479 "If you just came from a suspend/resume,\n"
3480 "please switch to the trace global clock:\n"
3481 " echo global > /sys/kernel/tracing/trace_clock\n"
3482 "or add trace_clock=global to the kernel command line\n");
3483 }
3484
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3485 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3486 struct ring_buffer_event **event,
3487 struct rb_event_info *info,
3488 u64 *delta,
3489 unsigned int *length)
3490 {
3491 bool abs = info->add_timestamp &
3492 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3493
3494 if (unlikely(info->delta > (1ULL << 59))) {
3495 /*
3496 * Some timers can use more than 59 bits, and when a timestamp
3497 * is added to the buffer, it will lose those bits.
3498 */
3499 if (abs && (info->ts & TS_MSB)) {
3500 info->delta &= ABS_TS_MASK;
3501
3502 /* did the clock go backwards */
3503 } else if (info->before == info->after && info->before > info->ts) {
3504 /* not interrupted */
3505 static int once;
3506
3507 /*
3508 * This is possible with a recalibrating of the TSC.
3509 * Do not produce a call stack, but just report it.
3510 */
3511 if (!once) {
3512 once++;
3513 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3514 info->before, info->ts);
3515 }
3516 } else
3517 rb_check_timestamp(cpu_buffer, info);
3518 if (!abs)
3519 info->delta = 0;
3520 }
3521 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3522 *length -= RB_LEN_TIME_EXTEND;
3523 *delta = 0;
3524 }
3525
3526 /**
3527 * rb_update_event - update event type and data
3528 * @cpu_buffer: The per cpu buffer of the @event
3529 * @event: the event to update
3530 * @info: The info to update the @event with (contains length and delta)
3531 *
3532 * Update the type and data fields of the @event. The length
3533 * is the actual size that is written to the ring buffer,
3534 * and with this, we can determine what to place into the
3535 * data field.
3536 */
3537 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3538 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3539 struct ring_buffer_event *event,
3540 struct rb_event_info *info)
3541 {
3542 unsigned length = info->length;
3543 u64 delta = info->delta;
3544 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3545
3546 if (!WARN_ON_ONCE(nest >= MAX_NEST))
3547 cpu_buffer->event_stamp[nest] = info->ts;
3548
3549 /*
3550 * If we need to add a timestamp, then we
3551 * add it to the start of the reserved space.
3552 */
3553 if (unlikely(info->add_timestamp))
3554 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3555
3556 event->time_delta = delta;
3557 length -= RB_EVNT_HDR_SIZE;
3558 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3559 event->type_len = 0;
3560 event->array[0] = length;
3561 } else
3562 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3563 }
3564
rb_calculate_event_length(unsigned length)3565 static unsigned rb_calculate_event_length(unsigned length)
3566 {
3567 struct ring_buffer_event event; /* Used only for sizeof array */
3568
3569 /* zero length can cause confusions */
3570 if (!length)
3571 length++;
3572
3573 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3574 length += sizeof(event.array[0]);
3575
3576 length += RB_EVNT_HDR_SIZE;
3577 length = ALIGN(length, RB_ARCH_ALIGNMENT);
3578
3579 /*
3580 * In case the time delta is larger than the 27 bits for it
3581 * in the header, we need to add a timestamp. If another
3582 * event comes in when trying to discard this one to increase
3583 * the length, then the timestamp will be added in the allocated
3584 * space of this event. If length is bigger than the size needed
3585 * for the TIME_EXTEND, then padding has to be used. The events
3586 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3587 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3588 * As length is a multiple of 4, we only need to worry if it
3589 * is 12 (RB_LEN_TIME_EXTEND + 4).
3590 */
3591 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3592 length += RB_ALIGNMENT;
3593
3594 return length;
3595 }
3596
3597 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3598 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3599 struct ring_buffer_event *event)
3600 {
3601 unsigned long new_index, old_index;
3602 struct buffer_page *bpage;
3603 unsigned long addr;
3604
3605 new_index = rb_event_index(cpu_buffer, event);
3606 old_index = new_index + rb_event_ts_length(event);
3607 addr = (unsigned long)event;
3608 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3609
3610 bpage = READ_ONCE(cpu_buffer->tail_page);
3611
3612 /*
3613 * Make sure the tail_page is still the same and
3614 * the next write location is the end of this event
3615 */
3616 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3617 unsigned long write_mask =
3618 local_read(&bpage->write) & ~RB_WRITE_MASK;
3619 unsigned long event_length = rb_event_length(event);
3620
3621 /*
3622 * For the before_stamp to be different than the write_stamp
3623 * to make sure that the next event adds an absolute
3624 * value and does not rely on the saved write stamp, which
3625 * is now going to be bogus.
3626 *
3627 * By setting the before_stamp to zero, the next event
3628 * is not going to use the write_stamp and will instead
3629 * create an absolute timestamp. This means there's no
3630 * reason to update the wirte_stamp!
3631 */
3632 rb_time_set(&cpu_buffer->before_stamp, 0);
3633
3634 /*
3635 * If an event were to come in now, it would see that the
3636 * write_stamp and the before_stamp are different, and assume
3637 * that this event just added itself before updating
3638 * the write stamp. The interrupting event will fix the
3639 * write stamp for us, and use an absolute timestamp.
3640 */
3641
3642 /*
3643 * This is on the tail page. It is possible that
3644 * a write could come in and move the tail page
3645 * and write to the next page. That is fine
3646 * because we just shorten what is on this page.
3647 */
3648 old_index += write_mask;
3649 new_index += write_mask;
3650
3651 /* caution: old_index gets updated on cmpxchg failure */
3652 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3653 /* update counters */
3654 local_sub(event_length, &cpu_buffer->entries_bytes);
3655 return true;
3656 }
3657 }
3658
3659 /* could not discard */
3660 return false;
3661 }
3662
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3663 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3664 {
3665 local_inc(&cpu_buffer->committing);
3666 local_inc(&cpu_buffer->commits);
3667 }
3668
3669 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3670 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3671 {
3672 unsigned long max_count;
3673
3674 /*
3675 * We only race with interrupts and NMIs on this CPU.
3676 * If we own the commit event, then we can commit
3677 * all others that interrupted us, since the interruptions
3678 * are in stack format (they finish before they come
3679 * back to us). This allows us to do a simple loop to
3680 * assign the commit to the tail.
3681 */
3682 again:
3683 max_count = cpu_buffer->nr_pages * 100;
3684
3685 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3686 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3687 return;
3688 if (RB_WARN_ON(cpu_buffer,
3689 rb_is_reader_page(cpu_buffer->tail_page)))
3690 return;
3691 /*
3692 * No need for a memory barrier here, as the update
3693 * of the tail_page did it for this page.
3694 */
3695 local_set(&cpu_buffer->commit_page->page->commit,
3696 rb_page_write(cpu_buffer->commit_page));
3697 rb_inc_page(&cpu_buffer->commit_page);
3698 if (cpu_buffer->ring_meta) {
3699 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3700 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3701 }
3702 /* add barrier to keep gcc from optimizing too much */
3703 barrier();
3704 }
3705 while (rb_commit_index(cpu_buffer) !=
3706 rb_page_write(cpu_buffer->commit_page)) {
3707
3708 /* Make sure the readers see the content of what is committed. */
3709 smp_wmb();
3710 local_set(&cpu_buffer->commit_page->page->commit,
3711 rb_page_write(cpu_buffer->commit_page));
3712 RB_WARN_ON(cpu_buffer,
3713 local_read(&cpu_buffer->commit_page->page->commit) &
3714 ~RB_WRITE_MASK);
3715 barrier();
3716 }
3717
3718 /* again, keep gcc from optimizing */
3719 barrier();
3720
3721 /*
3722 * If an interrupt came in just after the first while loop
3723 * and pushed the tail page forward, we will be left with
3724 * a dangling commit that will never go forward.
3725 */
3726 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3727 goto again;
3728 }
3729
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3730 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3731 {
3732 unsigned long commits;
3733
3734 if (RB_WARN_ON(cpu_buffer,
3735 !local_read(&cpu_buffer->committing)))
3736 return;
3737
3738 again:
3739 commits = local_read(&cpu_buffer->commits);
3740 /* synchronize with interrupts */
3741 barrier();
3742 if (local_read(&cpu_buffer->committing) == 1)
3743 rb_set_commit_to_write(cpu_buffer);
3744
3745 local_dec(&cpu_buffer->committing);
3746
3747 /* synchronize with interrupts */
3748 barrier();
3749
3750 /*
3751 * Need to account for interrupts coming in between the
3752 * updating of the commit page and the clearing of the
3753 * committing counter.
3754 */
3755 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3756 !local_read(&cpu_buffer->committing)) {
3757 local_inc(&cpu_buffer->committing);
3758 goto again;
3759 }
3760 }
3761
rb_event_discard(struct ring_buffer_event * event)3762 static inline void rb_event_discard(struct ring_buffer_event *event)
3763 {
3764 if (extended_time(event))
3765 event = skip_time_extend(event);
3766
3767 /* array[0] holds the actual length for the discarded event */
3768 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3769 event->type_len = RINGBUF_TYPE_PADDING;
3770 /* time delta must be non zero */
3771 if (!event->time_delta)
3772 event->time_delta = 1;
3773 }
3774
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3775 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3776 {
3777 local_inc(&cpu_buffer->entries);
3778 rb_end_commit(cpu_buffer);
3779 }
3780
3781 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3782 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3783 {
3784 if (buffer->irq_work.waiters_pending) {
3785 buffer->irq_work.waiters_pending = false;
3786 /* irq_work_queue() supplies it's own memory barriers */
3787 irq_work_queue(&buffer->irq_work.work);
3788 }
3789
3790 if (cpu_buffer->irq_work.waiters_pending) {
3791 cpu_buffer->irq_work.waiters_pending = false;
3792 /* irq_work_queue() supplies it's own memory barriers */
3793 irq_work_queue(&cpu_buffer->irq_work.work);
3794 }
3795
3796 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3797 return;
3798
3799 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3800 return;
3801
3802 if (!cpu_buffer->irq_work.full_waiters_pending)
3803 return;
3804
3805 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3806
3807 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3808 return;
3809
3810 cpu_buffer->irq_work.wakeup_full = true;
3811 cpu_buffer->irq_work.full_waiters_pending = false;
3812 /* irq_work_queue() supplies it's own memory barriers */
3813 irq_work_queue(&cpu_buffer->irq_work.work);
3814 }
3815
3816 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3817 # define do_ring_buffer_record_recursion() \
3818 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3819 #else
3820 # define do_ring_buffer_record_recursion() do { } while (0)
3821 #endif
3822
3823 /*
3824 * The lock and unlock are done within a preempt disable section.
3825 * The current_context per_cpu variable can only be modified
3826 * by the current task between lock and unlock. But it can
3827 * be modified more than once via an interrupt. To pass this
3828 * information from the lock to the unlock without having to
3829 * access the 'in_interrupt()' functions again (which do show
3830 * a bit of overhead in something as critical as function tracing,
3831 * we use a bitmask trick.
3832 *
3833 * bit 1 = NMI context
3834 * bit 2 = IRQ context
3835 * bit 3 = SoftIRQ context
3836 * bit 4 = normal context.
3837 *
3838 * This works because this is the order of contexts that can
3839 * preempt other contexts. A SoftIRQ never preempts an IRQ
3840 * context.
3841 *
3842 * When the context is determined, the corresponding bit is
3843 * checked and set (if it was set, then a recursion of that context
3844 * happened).
3845 *
3846 * On unlock, we need to clear this bit. To do so, just subtract
3847 * 1 from the current_context and AND it to itself.
3848 *
3849 * (binary)
3850 * 101 - 1 = 100
3851 * 101 & 100 = 100 (clearing bit zero)
3852 *
3853 * 1010 - 1 = 1001
3854 * 1010 & 1001 = 1000 (clearing bit 1)
3855 *
3856 * The least significant bit can be cleared this way, and it
3857 * just so happens that it is the same bit corresponding to
3858 * the current context.
3859 *
3860 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3861 * is set when a recursion is detected at the current context, and if
3862 * the TRANSITION bit is already set, it will fail the recursion.
3863 * This is needed because there's a lag between the changing of
3864 * interrupt context and updating the preempt count. In this case,
3865 * a false positive will be found. To handle this, one extra recursion
3866 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3867 * bit is already set, then it is considered a recursion and the function
3868 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3869 *
3870 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3871 * to be cleared. Even if it wasn't the context that set it. That is,
3872 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3873 * is called before preempt_count() is updated, since the check will
3874 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3875 * NMI then comes in, it will set the NMI bit, but when the NMI code
3876 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3877 * and leave the NMI bit set. But this is fine, because the interrupt
3878 * code that set the TRANSITION bit will then clear the NMI bit when it
3879 * calls trace_recursive_unlock(). If another NMI comes in, it will
3880 * set the TRANSITION bit and continue.
3881 *
3882 * Note: The TRANSITION bit only handles a single transition between context.
3883 */
3884
3885 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3886 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3887 {
3888 unsigned int val = cpu_buffer->current_context;
3889 int bit = interrupt_context_level();
3890
3891 bit = RB_CTX_NORMAL - bit;
3892
3893 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3894 /*
3895 * It is possible that this was called by transitioning
3896 * between interrupt context, and preempt_count() has not
3897 * been updated yet. In this case, use the TRANSITION bit.
3898 */
3899 bit = RB_CTX_TRANSITION;
3900 if (val & (1 << (bit + cpu_buffer->nest))) {
3901 do_ring_buffer_record_recursion();
3902 return true;
3903 }
3904 }
3905
3906 val |= (1 << (bit + cpu_buffer->nest));
3907 cpu_buffer->current_context = val;
3908
3909 return false;
3910 }
3911
3912 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3913 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3914 {
3915 cpu_buffer->current_context &=
3916 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3917 }
3918
3919 /* The recursive locking above uses 5 bits */
3920 #define NESTED_BITS 5
3921
3922 /**
3923 * ring_buffer_nest_start - Allow to trace while nested
3924 * @buffer: The ring buffer to modify
3925 *
3926 * The ring buffer has a safety mechanism to prevent recursion.
3927 * But there may be a case where a trace needs to be done while
3928 * tracing something else. In this case, calling this function
3929 * will allow this function to nest within a currently active
3930 * ring_buffer_lock_reserve().
3931 *
3932 * Call this function before calling another ring_buffer_lock_reserve() and
3933 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3934 */
ring_buffer_nest_start(struct trace_buffer * buffer)3935 void ring_buffer_nest_start(struct trace_buffer *buffer)
3936 {
3937 struct ring_buffer_per_cpu *cpu_buffer;
3938 int cpu;
3939
3940 /* Enabled by ring_buffer_nest_end() */
3941 preempt_disable_notrace();
3942 cpu = raw_smp_processor_id();
3943 cpu_buffer = buffer->buffers[cpu];
3944 /* This is the shift value for the above recursive locking */
3945 cpu_buffer->nest += NESTED_BITS;
3946 }
3947
3948 /**
3949 * ring_buffer_nest_end - Allow to trace while nested
3950 * @buffer: The ring buffer to modify
3951 *
3952 * Must be called after ring_buffer_nest_start() and after the
3953 * ring_buffer_unlock_commit().
3954 */
ring_buffer_nest_end(struct trace_buffer * buffer)3955 void ring_buffer_nest_end(struct trace_buffer *buffer)
3956 {
3957 struct ring_buffer_per_cpu *cpu_buffer;
3958 int cpu;
3959
3960 /* disabled by ring_buffer_nest_start() */
3961 cpu = raw_smp_processor_id();
3962 cpu_buffer = buffer->buffers[cpu];
3963 /* This is the shift value for the above recursive locking */
3964 cpu_buffer->nest -= NESTED_BITS;
3965 preempt_enable_notrace();
3966 }
3967
3968 /**
3969 * ring_buffer_unlock_commit - commit a reserved
3970 * @buffer: The buffer to commit to
3971 *
3972 * This commits the data to the ring buffer, and releases any locks held.
3973 *
3974 * Must be paired with ring_buffer_lock_reserve.
3975 */
ring_buffer_unlock_commit(struct trace_buffer * buffer)3976 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3977 {
3978 struct ring_buffer_per_cpu *cpu_buffer;
3979 int cpu = raw_smp_processor_id();
3980
3981 cpu_buffer = buffer->buffers[cpu];
3982
3983 rb_commit(cpu_buffer);
3984
3985 rb_wakeups(buffer, cpu_buffer);
3986
3987 trace_recursive_unlock(cpu_buffer);
3988
3989 preempt_enable_notrace();
3990
3991 return 0;
3992 }
3993 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3994
3995 /* Special value to validate all deltas on a page. */
3996 #define CHECK_FULL_PAGE 1L
3997
3998 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3999
show_irq_str(int bits)4000 static const char *show_irq_str(int bits)
4001 {
4002 const char *type[] = {
4003 ".", // 0
4004 "s", // 1
4005 "h", // 2
4006 "Hs", // 3
4007 "n", // 4
4008 "Ns", // 5
4009 "Nh", // 6
4010 "NHs", // 7
4011 };
4012
4013 return type[bits];
4014 }
4015
4016 /* Assume this is an trace event */
show_flags(struct ring_buffer_event * event)4017 static const char *show_flags(struct ring_buffer_event *event)
4018 {
4019 struct trace_entry *entry;
4020 int bits = 0;
4021
4022 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4023 return "X";
4024
4025 entry = ring_buffer_event_data(event);
4026
4027 if (entry->flags & TRACE_FLAG_SOFTIRQ)
4028 bits |= 1;
4029
4030 if (entry->flags & TRACE_FLAG_HARDIRQ)
4031 bits |= 2;
4032
4033 if (entry->flags & TRACE_FLAG_NMI)
4034 bits |= 4;
4035
4036 return show_irq_str(bits);
4037 }
4038
show_irq(struct ring_buffer_event * event)4039 static const char *show_irq(struct ring_buffer_event *event)
4040 {
4041 struct trace_entry *entry;
4042
4043 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4044 return "";
4045
4046 entry = ring_buffer_event_data(event);
4047 if (entry->flags & TRACE_FLAG_IRQS_OFF)
4048 return "d";
4049 return "";
4050 }
4051
show_interrupt_level(void)4052 static const char *show_interrupt_level(void)
4053 {
4054 unsigned long pc = preempt_count();
4055 unsigned char level = 0;
4056
4057 if (pc & SOFTIRQ_OFFSET)
4058 level |= 1;
4059
4060 if (pc & HARDIRQ_MASK)
4061 level |= 2;
4062
4063 if (pc & NMI_MASK)
4064 level |= 4;
4065
4066 return show_irq_str(level);
4067 }
4068
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4069 static void dump_buffer_page(struct buffer_data_page *bpage,
4070 struct rb_event_info *info,
4071 unsigned long tail)
4072 {
4073 struct ring_buffer_event *event;
4074 u64 ts, delta;
4075 int e;
4076
4077 ts = bpage->time_stamp;
4078 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
4079
4080 for (e = 0; e < tail; e += rb_event_length(event)) {
4081
4082 event = (struct ring_buffer_event *)(bpage->data + e);
4083
4084 switch (event->type_len) {
4085
4086 case RINGBUF_TYPE_TIME_EXTEND:
4087 delta = rb_event_time_stamp(event);
4088 ts += delta;
4089 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4090 e, ts, delta);
4091 break;
4092
4093 case RINGBUF_TYPE_TIME_STAMP:
4094 delta = rb_event_time_stamp(event);
4095 ts = rb_fix_abs_ts(delta, ts);
4096 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
4097 e, ts, delta);
4098 break;
4099
4100 case RINGBUF_TYPE_PADDING:
4101 ts += event->time_delta;
4102 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
4103 e, ts, event->time_delta);
4104 break;
4105
4106 case RINGBUF_TYPE_DATA:
4107 ts += event->time_delta;
4108 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
4109 e, ts, event->time_delta,
4110 show_flags(event), show_irq(event));
4111 break;
4112
4113 default:
4114 break;
4115 }
4116 }
4117 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4118 }
4119
4120 static DEFINE_PER_CPU(atomic_t, checking);
4121 static atomic_t ts_dump;
4122
4123 #define buffer_warn_return(fmt, ...) \
4124 do { \
4125 /* If another report is happening, ignore this one */ \
4126 if (atomic_inc_return(&ts_dump) != 1) { \
4127 atomic_dec(&ts_dump); \
4128 goto out; \
4129 } \
4130 atomic_inc(&cpu_buffer->record_disabled); \
4131 pr_warn(fmt, ##__VA_ARGS__); \
4132 dump_buffer_page(bpage, info, tail); \
4133 atomic_dec(&ts_dump); \
4134 /* There's some cases in boot up that this can happen */ \
4135 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
4136 /* Do not re-enable checking */ \
4137 return; \
4138 } while (0)
4139
4140 /*
4141 * Check if the current event time stamp matches the deltas on
4142 * the buffer page.
4143 */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4144 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4145 struct rb_event_info *info,
4146 unsigned long tail)
4147 {
4148 struct buffer_data_page *bpage;
4149 u64 ts, delta;
4150 bool full = false;
4151 int ret;
4152
4153 bpage = info->tail_page->page;
4154
4155 if (tail == CHECK_FULL_PAGE) {
4156 full = true;
4157 tail = local_read(&bpage->commit);
4158 } else if (info->add_timestamp &
4159 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4160 /* Ignore events with absolute time stamps */
4161 return;
4162 }
4163
4164 /*
4165 * Do not check the first event (skip possible extends too).
4166 * Also do not check if previous events have not been committed.
4167 */
4168 if (tail <= 8 || tail > local_read(&bpage->commit))
4169 return;
4170
4171 /*
4172 * If this interrupted another event,
4173 */
4174 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4175 goto out;
4176
4177 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4178 if (ret < 0) {
4179 if (delta < ts) {
4180 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4181 cpu_buffer->cpu, ts, delta);
4182 goto out;
4183 }
4184 }
4185 if ((full && ts > info->ts) ||
4186 (!full && ts + info->delta != info->ts)) {
4187 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4188 cpu_buffer->cpu,
4189 ts + info->delta, info->ts, info->delta,
4190 info->before, info->after,
4191 full ? " (full)" : "", show_interrupt_level());
4192 }
4193 out:
4194 atomic_dec(this_cpu_ptr(&checking));
4195 }
4196 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4197 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4198 struct rb_event_info *info,
4199 unsigned long tail)
4200 {
4201 }
4202 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4203
4204 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4205 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4206 struct rb_event_info *info)
4207 {
4208 struct ring_buffer_event *event;
4209 struct buffer_page *tail_page;
4210 unsigned long tail, write, w;
4211
4212 /* Don't let the compiler play games with cpu_buffer->tail_page */
4213 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4214
4215 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
4216 barrier();
4217 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4218 rb_time_read(&cpu_buffer->write_stamp, &info->after);
4219 barrier();
4220 info->ts = rb_time_stamp(cpu_buffer->buffer);
4221
4222 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4223 info->delta = info->ts;
4224 } else {
4225 /*
4226 * If interrupting an event time update, we may need an
4227 * absolute timestamp.
4228 * Don't bother if this is the start of a new page (w == 0).
4229 */
4230 if (!w) {
4231 /* Use the sub-buffer timestamp */
4232 info->delta = 0;
4233 } else if (unlikely(info->before != info->after)) {
4234 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4235 info->length += RB_LEN_TIME_EXTEND;
4236 } else {
4237 info->delta = info->ts - info->after;
4238 if (unlikely(test_time_stamp(info->delta))) {
4239 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4240 info->length += RB_LEN_TIME_EXTEND;
4241 }
4242 }
4243 }
4244
4245 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
4246
4247 /*C*/ write = local_add_return(info->length, &tail_page->write);
4248
4249 /* set write to only the index of the write */
4250 write &= RB_WRITE_MASK;
4251
4252 tail = write - info->length;
4253
4254 /* See if we shot pass the end of this buffer page */
4255 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4256 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4257 return rb_move_tail(cpu_buffer, tail, info);
4258 }
4259
4260 if (likely(tail == w)) {
4261 /* Nothing interrupted us between A and C */
4262 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
4263 /*
4264 * If something came in between C and D, the write stamp
4265 * may now not be in sync. But that's fine as the before_stamp
4266 * will be different and then next event will just be forced
4267 * to use an absolute timestamp.
4268 */
4269 if (likely(!(info->add_timestamp &
4270 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4271 /* This did not interrupt any time update */
4272 info->delta = info->ts - info->after;
4273 else
4274 /* Just use full timestamp for interrupting event */
4275 info->delta = info->ts;
4276 check_buffer(cpu_buffer, info, tail);
4277 } else {
4278 u64 ts;
4279 /* SLOW PATH - Interrupted between A and C */
4280
4281 /* Save the old before_stamp */
4282 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4283
4284 /*
4285 * Read a new timestamp and update the before_stamp to make
4286 * the next event after this one force using an absolute
4287 * timestamp. This is in case an interrupt were to come in
4288 * between E and F.
4289 */
4290 ts = rb_time_stamp(cpu_buffer->buffer);
4291 rb_time_set(&cpu_buffer->before_stamp, ts);
4292
4293 barrier();
4294 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after);
4295 barrier();
4296 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4297 info->after == info->before && info->after < ts) {
4298 /*
4299 * Nothing came after this event between C and F, it is
4300 * safe to use info->after for the delta as it
4301 * matched info->before and is still valid.
4302 */
4303 info->delta = ts - info->after;
4304 } else {
4305 /*
4306 * Interrupted between C and F:
4307 * Lost the previous events time stamp. Just set the
4308 * delta to zero, and this will be the same time as
4309 * the event this event interrupted. And the events that
4310 * came after this will still be correct (as they would
4311 * have built their delta on the previous event.
4312 */
4313 info->delta = 0;
4314 }
4315 info->ts = ts;
4316 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4317 }
4318
4319 /*
4320 * If this is the first commit on the page, then it has the same
4321 * timestamp as the page itself.
4322 */
4323 if (unlikely(!tail && !(info->add_timestamp &
4324 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4325 info->delta = 0;
4326
4327 /* We reserved something on the buffer */
4328
4329 event = __rb_page_index(tail_page, tail);
4330 rb_update_event(cpu_buffer, event, info);
4331
4332 local_inc(&tail_page->entries);
4333
4334 /*
4335 * If this is the first commit on the page, then update
4336 * its timestamp.
4337 */
4338 if (unlikely(!tail))
4339 tail_page->page->time_stamp = info->ts;
4340
4341 /* account for these added bytes */
4342 local_add(info->length, &cpu_buffer->entries_bytes);
4343
4344 return event;
4345 }
4346
4347 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4348 rb_reserve_next_event(struct trace_buffer *buffer,
4349 struct ring_buffer_per_cpu *cpu_buffer,
4350 unsigned long length)
4351 {
4352 struct ring_buffer_event *event;
4353 struct rb_event_info info;
4354 int nr_loops = 0;
4355 int add_ts_default;
4356
4357 /* ring buffer does cmpxchg, make sure it is safe in NMI context */
4358 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
4359 (unlikely(in_nmi()))) {
4360 return NULL;
4361 }
4362
4363 rb_start_commit(cpu_buffer);
4364 /* The commit page can not change after this */
4365
4366 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4367 /*
4368 * Due to the ability to swap a cpu buffer from a buffer
4369 * it is possible it was swapped before we committed.
4370 * (committing stops a swap). We check for it here and
4371 * if it happened, we have to fail the write.
4372 */
4373 barrier();
4374 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4375 local_dec(&cpu_buffer->committing);
4376 local_dec(&cpu_buffer->commits);
4377 return NULL;
4378 }
4379 #endif
4380
4381 info.length = rb_calculate_event_length(length);
4382
4383 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4384 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4385 info.length += RB_LEN_TIME_EXTEND;
4386 if (info.length > cpu_buffer->buffer->max_data_size)
4387 goto out_fail;
4388 } else {
4389 add_ts_default = RB_ADD_STAMP_NONE;
4390 }
4391
4392 again:
4393 info.add_timestamp = add_ts_default;
4394 info.delta = 0;
4395
4396 /*
4397 * We allow for interrupts to reenter here and do a trace.
4398 * If one does, it will cause this original code to loop
4399 * back here. Even with heavy interrupts happening, this
4400 * should only happen a few times in a row. If this happens
4401 * 1000 times in a row, there must be either an interrupt
4402 * storm or we have something buggy.
4403 * Bail!
4404 */
4405 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4406 goto out_fail;
4407
4408 event = __rb_reserve_next(cpu_buffer, &info);
4409
4410 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4411 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4412 info.length -= RB_LEN_TIME_EXTEND;
4413 goto again;
4414 }
4415
4416 if (likely(event))
4417 return event;
4418 out_fail:
4419 rb_end_commit(cpu_buffer);
4420 return NULL;
4421 }
4422
4423 /**
4424 * ring_buffer_lock_reserve - reserve a part of the buffer
4425 * @buffer: the ring buffer to reserve from
4426 * @length: the length of the data to reserve (excluding event header)
4427 *
4428 * Returns a reserved event on the ring buffer to copy directly to.
4429 * The user of this interface will need to get the body to write into
4430 * and can use the ring_buffer_event_data() interface.
4431 *
4432 * The length is the length of the data needed, not the event length
4433 * which also includes the event header.
4434 *
4435 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4436 * If NULL is returned, then nothing has been allocated or locked.
4437 */
4438 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4439 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4440 {
4441 struct ring_buffer_per_cpu *cpu_buffer;
4442 struct ring_buffer_event *event;
4443 int cpu;
4444
4445 /* If we are tracing schedule, we don't want to recurse */
4446 preempt_disable_notrace();
4447
4448 if (unlikely(atomic_read(&buffer->record_disabled)))
4449 goto out;
4450
4451 cpu = raw_smp_processor_id();
4452
4453 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4454 goto out;
4455
4456 cpu_buffer = buffer->buffers[cpu];
4457
4458 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4459 goto out;
4460
4461 if (unlikely(length > buffer->max_data_size))
4462 goto out;
4463
4464 if (unlikely(trace_recursive_lock(cpu_buffer)))
4465 goto out;
4466
4467 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4468 if (!event)
4469 goto out_unlock;
4470
4471 return event;
4472
4473 out_unlock:
4474 trace_recursive_unlock(cpu_buffer);
4475 out:
4476 preempt_enable_notrace();
4477 return NULL;
4478 }
4479 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4480
4481 /*
4482 * Decrement the entries to the page that an event is on.
4483 * The event does not even need to exist, only the pointer
4484 * to the page it is on. This may only be called before the commit
4485 * takes place.
4486 */
4487 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4488 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4489 struct ring_buffer_event *event)
4490 {
4491 unsigned long addr = (unsigned long)event;
4492 struct buffer_page *bpage = cpu_buffer->commit_page;
4493 struct buffer_page *start;
4494
4495 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4496
4497 /* Do the likely case first */
4498 if (likely(bpage->page == (void *)addr)) {
4499 local_dec(&bpage->entries);
4500 return;
4501 }
4502
4503 /*
4504 * Because the commit page may be on the reader page we
4505 * start with the next page and check the end loop there.
4506 */
4507 rb_inc_page(&bpage);
4508 start = bpage;
4509 do {
4510 if (bpage->page == (void *)addr) {
4511 local_dec(&bpage->entries);
4512 return;
4513 }
4514 rb_inc_page(&bpage);
4515 } while (bpage != start);
4516
4517 /* commit not part of this buffer?? */
4518 RB_WARN_ON(cpu_buffer, 1);
4519 }
4520
4521 /**
4522 * ring_buffer_discard_commit - discard an event that has not been committed
4523 * @buffer: the ring buffer
4524 * @event: non committed event to discard
4525 *
4526 * Sometimes an event that is in the ring buffer needs to be ignored.
4527 * This function lets the user discard an event in the ring buffer
4528 * and then that event will not be read later.
4529 *
4530 * This function only works if it is called before the item has been
4531 * committed. It will try to free the event from the ring buffer
4532 * if another event has not been added behind it.
4533 *
4534 * If another event has been added behind it, it will set the event
4535 * up as discarded, and perform the commit.
4536 *
4537 * If this function is called, do not call ring_buffer_unlock_commit on
4538 * the event.
4539 */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4540 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4541 struct ring_buffer_event *event)
4542 {
4543 struct ring_buffer_per_cpu *cpu_buffer;
4544 int cpu;
4545
4546 /* The event is discarded regardless */
4547 rb_event_discard(event);
4548
4549 cpu = smp_processor_id();
4550 cpu_buffer = buffer->buffers[cpu];
4551
4552 /*
4553 * This must only be called if the event has not been
4554 * committed yet. Thus we can assume that preemption
4555 * is still disabled.
4556 */
4557 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4558
4559 rb_decrement_entry(cpu_buffer, event);
4560 if (rb_try_to_discard(cpu_buffer, event))
4561 goto out;
4562
4563 out:
4564 rb_end_commit(cpu_buffer);
4565
4566 trace_recursive_unlock(cpu_buffer);
4567
4568 preempt_enable_notrace();
4569
4570 }
4571 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4572
4573 /**
4574 * ring_buffer_write - write data to the buffer without reserving
4575 * @buffer: The ring buffer to write to.
4576 * @length: The length of the data being written (excluding the event header)
4577 * @data: The data to write to the buffer.
4578 *
4579 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4580 * one function. If you already have the data to write to the buffer, it
4581 * may be easier to simply call this function.
4582 *
4583 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4584 * and not the length of the event which would hold the header.
4585 */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4586 int ring_buffer_write(struct trace_buffer *buffer,
4587 unsigned long length,
4588 void *data)
4589 {
4590 struct ring_buffer_per_cpu *cpu_buffer;
4591 struct ring_buffer_event *event;
4592 void *body;
4593 int ret = -EBUSY;
4594 int cpu;
4595
4596 preempt_disable_notrace();
4597
4598 if (atomic_read(&buffer->record_disabled))
4599 goto out;
4600
4601 cpu = raw_smp_processor_id();
4602
4603 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4604 goto out;
4605
4606 cpu_buffer = buffer->buffers[cpu];
4607
4608 if (atomic_read(&cpu_buffer->record_disabled))
4609 goto out;
4610
4611 if (length > buffer->max_data_size)
4612 goto out;
4613
4614 if (unlikely(trace_recursive_lock(cpu_buffer)))
4615 goto out;
4616
4617 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4618 if (!event)
4619 goto out_unlock;
4620
4621 body = rb_event_data(event);
4622
4623 memcpy(body, data, length);
4624
4625 rb_commit(cpu_buffer);
4626
4627 rb_wakeups(buffer, cpu_buffer);
4628
4629 ret = 0;
4630
4631 out_unlock:
4632 trace_recursive_unlock(cpu_buffer);
4633
4634 out:
4635 preempt_enable_notrace();
4636
4637 return ret;
4638 }
4639 EXPORT_SYMBOL_GPL(ring_buffer_write);
4640
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4641 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4642 {
4643 struct buffer_page *reader = cpu_buffer->reader_page;
4644 struct buffer_page *head = rb_set_head_page(cpu_buffer);
4645 struct buffer_page *commit = cpu_buffer->commit_page;
4646
4647 /* In case of error, head will be NULL */
4648 if (unlikely(!head))
4649 return true;
4650
4651 /* Reader should exhaust content in reader page */
4652 if (reader->read != rb_page_size(reader))
4653 return false;
4654
4655 /*
4656 * If writers are committing on the reader page, knowing all
4657 * committed content has been read, the ring buffer is empty.
4658 */
4659 if (commit == reader)
4660 return true;
4661
4662 /*
4663 * If writers are committing on a page other than reader page
4664 * and head page, there should always be content to read.
4665 */
4666 if (commit != head)
4667 return false;
4668
4669 /*
4670 * Writers are committing on the head page, we just need
4671 * to care about there're committed data, and the reader will
4672 * swap reader page with head page when it is to read data.
4673 */
4674 return rb_page_commit(commit) == 0;
4675 }
4676
4677 /**
4678 * ring_buffer_record_disable - stop all writes into the buffer
4679 * @buffer: The ring buffer to stop writes to.
4680 *
4681 * This prevents all writes to the buffer. Any attempt to write
4682 * to the buffer after this will fail and return NULL.
4683 *
4684 * The caller should call synchronize_rcu() after this.
4685 */
ring_buffer_record_disable(struct trace_buffer * buffer)4686 void ring_buffer_record_disable(struct trace_buffer *buffer)
4687 {
4688 atomic_inc(&buffer->record_disabled);
4689 }
4690 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4691
4692 /**
4693 * ring_buffer_record_enable - enable writes to the buffer
4694 * @buffer: The ring buffer to enable writes
4695 *
4696 * Note, multiple disables will need the same number of enables
4697 * to truly enable the writing (much like preempt_disable).
4698 */
ring_buffer_record_enable(struct trace_buffer * buffer)4699 void ring_buffer_record_enable(struct trace_buffer *buffer)
4700 {
4701 atomic_dec(&buffer->record_disabled);
4702 }
4703 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4704
4705 /**
4706 * ring_buffer_record_off - stop all writes into the buffer
4707 * @buffer: The ring buffer to stop writes to.
4708 *
4709 * This prevents all writes to the buffer. Any attempt to write
4710 * to the buffer after this will fail and return NULL.
4711 *
4712 * This is different than ring_buffer_record_disable() as
4713 * it works like an on/off switch, where as the disable() version
4714 * must be paired with a enable().
4715 */
ring_buffer_record_off(struct trace_buffer * buffer)4716 void ring_buffer_record_off(struct trace_buffer *buffer)
4717 {
4718 unsigned int rd;
4719 unsigned int new_rd;
4720
4721 rd = atomic_read(&buffer->record_disabled);
4722 do {
4723 new_rd = rd | RB_BUFFER_OFF;
4724 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4725 }
4726 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4727
4728 /**
4729 * ring_buffer_record_on - restart writes into the buffer
4730 * @buffer: The ring buffer to start writes to.
4731 *
4732 * This enables all writes to the buffer that was disabled by
4733 * ring_buffer_record_off().
4734 *
4735 * This is different than ring_buffer_record_enable() as
4736 * it works like an on/off switch, where as the enable() version
4737 * must be paired with a disable().
4738 */
ring_buffer_record_on(struct trace_buffer * buffer)4739 void ring_buffer_record_on(struct trace_buffer *buffer)
4740 {
4741 unsigned int rd;
4742 unsigned int new_rd;
4743
4744 rd = atomic_read(&buffer->record_disabled);
4745 do {
4746 new_rd = rd & ~RB_BUFFER_OFF;
4747 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4748 }
4749 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4750
4751 /**
4752 * ring_buffer_record_is_on - return true if the ring buffer can write
4753 * @buffer: The ring buffer to see if write is enabled
4754 *
4755 * Returns true if the ring buffer is in a state that it accepts writes.
4756 */
ring_buffer_record_is_on(struct trace_buffer * buffer)4757 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4758 {
4759 return !atomic_read(&buffer->record_disabled);
4760 }
4761
4762 /**
4763 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4764 * @buffer: The ring buffer to see if write is set enabled
4765 *
4766 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4767 * Note that this does NOT mean it is in a writable state.
4768 *
4769 * It may return true when the ring buffer has been disabled by
4770 * ring_buffer_record_disable(), as that is a temporary disabling of
4771 * the ring buffer.
4772 */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4773 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4774 {
4775 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4776 }
4777
4778 /**
4779 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4780 * @buffer: The ring buffer to stop writes to.
4781 * @cpu: The CPU buffer to stop
4782 *
4783 * This prevents all writes to the buffer. Any attempt to write
4784 * to the buffer after this will fail and return NULL.
4785 *
4786 * The caller should call synchronize_rcu() after this.
4787 */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)4788 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4789 {
4790 struct ring_buffer_per_cpu *cpu_buffer;
4791
4792 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4793 return;
4794
4795 cpu_buffer = buffer->buffers[cpu];
4796 atomic_inc(&cpu_buffer->record_disabled);
4797 }
4798 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4799
4800 /**
4801 * ring_buffer_record_enable_cpu - enable writes to the buffer
4802 * @buffer: The ring buffer to enable writes
4803 * @cpu: The CPU to enable.
4804 *
4805 * Note, multiple disables will need the same number of enables
4806 * to truly enable the writing (much like preempt_disable).
4807 */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)4808 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4809 {
4810 struct ring_buffer_per_cpu *cpu_buffer;
4811
4812 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4813 return;
4814
4815 cpu_buffer = buffer->buffers[cpu];
4816 atomic_dec(&cpu_buffer->record_disabled);
4817 }
4818 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4819
4820 /*
4821 * The total entries in the ring buffer is the running counter
4822 * of entries entered into the ring buffer, minus the sum of
4823 * the entries read from the ring buffer and the number of
4824 * entries that were overwritten.
4825 */
4826 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4827 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4828 {
4829 return local_read(&cpu_buffer->entries) -
4830 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4831 }
4832
4833 /**
4834 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4835 * @buffer: The ring buffer
4836 * @cpu: The per CPU buffer to read from.
4837 */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)4838 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4839 {
4840 unsigned long flags;
4841 struct ring_buffer_per_cpu *cpu_buffer;
4842 struct buffer_page *bpage;
4843 u64 ret = 0;
4844
4845 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4846 return 0;
4847
4848 cpu_buffer = buffer->buffers[cpu];
4849 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4850 /*
4851 * if the tail is on reader_page, oldest time stamp is on the reader
4852 * page
4853 */
4854 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4855 bpage = cpu_buffer->reader_page;
4856 else
4857 bpage = rb_set_head_page(cpu_buffer);
4858 if (bpage)
4859 ret = bpage->page->time_stamp;
4860 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4861
4862 return ret;
4863 }
4864 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4865
4866 /**
4867 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4868 * @buffer: The ring buffer
4869 * @cpu: The per CPU buffer to read from.
4870 */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)4871 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4872 {
4873 struct ring_buffer_per_cpu *cpu_buffer;
4874 unsigned long ret;
4875
4876 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4877 return 0;
4878
4879 cpu_buffer = buffer->buffers[cpu];
4880 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4881
4882 return ret;
4883 }
4884 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4885
4886 /**
4887 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4888 * @buffer: The ring buffer
4889 * @cpu: The per CPU buffer to get the entries from.
4890 */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)4891 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4892 {
4893 struct ring_buffer_per_cpu *cpu_buffer;
4894
4895 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4896 return 0;
4897
4898 cpu_buffer = buffer->buffers[cpu];
4899
4900 return rb_num_of_entries(cpu_buffer);
4901 }
4902 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4903
4904 /**
4905 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4906 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4907 * @buffer: The ring buffer
4908 * @cpu: The per CPU buffer to get the number of overruns from
4909 */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4910 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4911 {
4912 struct ring_buffer_per_cpu *cpu_buffer;
4913 unsigned long ret;
4914
4915 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4916 return 0;
4917
4918 cpu_buffer = buffer->buffers[cpu];
4919 ret = local_read(&cpu_buffer->overrun);
4920
4921 return ret;
4922 }
4923 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4924
4925 /**
4926 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4927 * commits failing due to the buffer wrapping around while there are uncommitted
4928 * events, such as during an interrupt storm.
4929 * @buffer: The ring buffer
4930 * @cpu: The per CPU buffer to get the number of overruns from
4931 */
4932 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)4933 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4934 {
4935 struct ring_buffer_per_cpu *cpu_buffer;
4936 unsigned long ret;
4937
4938 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4939 return 0;
4940
4941 cpu_buffer = buffer->buffers[cpu];
4942 ret = local_read(&cpu_buffer->commit_overrun);
4943
4944 return ret;
4945 }
4946 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4947
4948 /**
4949 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4950 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4951 * @buffer: The ring buffer
4952 * @cpu: The per CPU buffer to get the number of overruns from
4953 */
4954 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4955 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4956 {
4957 struct ring_buffer_per_cpu *cpu_buffer;
4958 unsigned long ret;
4959
4960 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4961 return 0;
4962
4963 cpu_buffer = buffer->buffers[cpu];
4964 ret = local_read(&cpu_buffer->dropped_events);
4965
4966 return ret;
4967 }
4968 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4969
4970 /**
4971 * ring_buffer_read_events_cpu - get the number of events successfully read
4972 * @buffer: The ring buffer
4973 * @cpu: The per CPU buffer to get the number of events read
4974 */
4975 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)4976 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4977 {
4978 struct ring_buffer_per_cpu *cpu_buffer;
4979
4980 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4981 return 0;
4982
4983 cpu_buffer = buffer->buffers[cpu];
4984 return cpu_buffer->read;
4985 }
4986 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4987
4988 /**
4989 * ring_buffer_entries - get the number of entries in a buffer
4990 * @buffer: The ring buffer
4991 *
4992 * Returns the total number of entries in the ring buffer
4993 * (all CPU entries)
4994 */
ring_buffer_entries(struct trace_buffer * buffer)4995 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4996 {
4997 struct ring_buffer_per_cpu *cpu_buffer;
4998 unsigned long entries = 0;
4999 int cpu;
5000
5001 /* if you care about this being correct, lock the buffer */
5002 for_each_buffer_cpu(buffer, cpu) {
5003 cpu_buffer = buffer->buffers[cpu];
5004 entries += rb_num_of_entries(cpu_buffer);
5005 }
5006
5007 return entries;
5008 }
5009 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5010
5011 /**
5012 * ring_buffer_overruns - get the number of overruns in buffer
5013 * @buffer: The ring buffer
5014 *
5015 * Returns the total number of overruns in the ring buffer
5016 * (all CPU entries)
5017 */
ring_buffer_overruns(struct trace_buffer * buffer)5018 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5019 {
5020 struct ring_buffer_per_cpu *cpu_buffer;
5021 unsigned long overruns = 0;
5022 int cpu;
5023
5024 /* if you care about this being correct, lock the buffer */
5025 for_each_buffer_cpu(buffer, cpu) {
5026 cpu_buffer = buffer->buffers[cpu];
5027 overruns += local_read(&cpu_buffer->overrun);
5028 }
5029
5030 return overruns;
5031 }
5032 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5033
rb_iter_reset(struct ring_buffer_iter * iter)5034 static void rb_iter_reset(struct ring_buffer_iter *iter)
5035 {
5036 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5037
5038 /* Iterator usage is expected to have record disabled */
5039 iter->head_page = cpu_buffer->reader_page;
5040 iter->head = cpu_buffer->reader_page->read;
5041 iter->next_event = iter->head;
5042
5043 iter->cache_reader_page = iter->head_page;
5044 iter->cache_read = cpu_buffer->read;
5045 iter->cache_pages_removed = cpu_buffer->pages_removed;
5046
5047 if (iter->head) {
5048 iter->read_stamp = cpu_buffer->read_stamp;
5049 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5050 } else {
5051 iter->read_stamp = iter->head_page->page->time_stamp;
5052 iter->page_stamp = iter->read_stamp;
5053 }
5054 }
5055
5056 /**
5057 * ring_buffer_iter_reset - reset an iterator
5058 * @iter: The iterator to reset
5059 *
5060 * Resets the iterator, so that it will start from the beginning
5061 * again.
5062 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5063 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5064 {
5065 struct ring_buffer_per_cpu *cpu_buffer;
5066 unsigned long flags;
5067
5068 if (!iter)
5069 return;
5070
5071 cpu_buffer = iter->cpu_buffer;
5072
5073 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5074 rb_iter_reset(iter);
5075 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5076 }
5077 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5078
5079 /**
5080 * ring_buffer_iter_empty - check if an iterator has no more to read
5081 * @iter: The iterator to check
5082 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5083 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5084 {
5085 struct ring_buffer_per_cpu *cpu_buffer;
5086 struct buffer_page *reader;
5087 struct buffer_page *head_page;
5088 struct buffer_page *commit_page;
5089 struct buffer_page *curr_commit_page;
5090 unsigned commit;
5091 u64 curr_commit_ts;
5092 u64 commit_ts;
5093
5094 cpu_buffer = iter->cpu_buffer;
5095 reader = cpu_buffer->reader_page;
5096 head_page = cpu_buffer->head_page;
5097 commit_page = READ_ONCE(cpu_buffer->commit_page);
5098 commit_ts = commit_page->page->time_stamp;
5099
5100 /*
5101 * When the writer goes across pages, it issues a cmpxchg which
5102 * is a mb(), which will synchronize with the rmb here.
5103 * (see rb_tail_page_update())
5104 */
5105 smp_rmb();
5106 commit = rb_page_commit(commit_page);
5107 /* We want to make sure that the commit page doesn't change */
5108 smp_rmb();
5109
5110 /* Make sure commit page didn't change */
5111 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5112 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5113
5114 /* If the commit page changed, then there's more data */
5115 if (curr_commit_page != commit_page ||
5116 curr_commit_ts != commit_ts)
5117 return 0;
5118
5119 /* Still racy, as it may return a false positive, but that's OK */
5120 return ((iter->head_page == commit_page && iter->head >= commit) ||
5121 (iter->head_page == reader && commit_page == head_page &&
5122 head_page->read == commit &&
5123 iter->head == rb_page_size(cpu_buffer->reader_page)));
5124 }
5125 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5126
5127 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5128 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5129 struct ring_buffer_event *event)
5130 {
5131 u64 delta;
5132
5133 switch (event->type_len) {
5134 case RINGBUF_TYPE_PADDING:
5135 return;
5136
5137 case RINGBUF_TYPE_TIME_EXTEND:
5138 delta = rb_event_time_stamp(event);
5139 cpu_buffer->read_stamp += delta;
5140 return;
5141
5142 case RINGBUF_TYPE_TIME_STAMP:
5143 delta = rb_event_time_stamp(event);
5144 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5145 cpu_buffer->read_stamp = delta;
5146 return;
5147
5148 case RINGBUF_TYPE_DATA:
5149 cpu_buffer->read_stamp += event->time_delta;
5150 return;
5151
5152 default:
5153 RB_WARN_ON(cpu_buffer, 1);
5154 }
5155 }
5156
5157 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5158 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5159 struct ring_buffer_event *event)
5160 {
5161 u64 delta;
5162
5163 switch (event->type_len) {
5164 case RINGBUF_TYPE_PADDING:
5165 return;
5166
5167 case RINGBUF_TYPE_TIME_EXTEND:
5168 delta = rb_event_time_stamp(event);
5169 iter->read_stamp += delta;
5170 return;
5171
5172 case RINGBUF_TYPE_TIME_STAMP:
5173 delta = rb_event_time_stamp(event);
5174 delta = rb_fix_abs_ts(delta, iter->read_stamp);
5175 iter->read_stamp = delta;
5176 return;
5177
5178 case RINGBUF_TYPE_DATA:
5179 iter->read_stamp += event->time_delta;
5180 return;
5181
5182 default:
5183 RB_WARN_ON(iter->cpu_buffer, 1);
5184 }
5185 }
5186
5187 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5188 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5189 {
5190 struct buffer_page *reader = NULL;
5191 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5192 unsigned long overwrite;
5193 unsigned long flags;
5194 int nr_loops = 0;
5195 bool ret;
5196
5197 local_irq_save(flags);
5198 arch_spin_lock(&cpu_buffer->lock);
5199
5200 again:
5201 /*
5202 * This should normally only loop twice. But because the
5203 * start of the reader inserts an empty page, it causes
5204 * a case where we will loop three times. There should be no
5205 * reason to loop four times (that I know of).
5206 */
5207 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5208 reader = NULL;
5209 goto out;
5210 }
5211
5212 reader = cpu_buffer->reader_page;
5213
5214 /* If there's more to read, return this page */
5215 if (cpu_buffer->reader_page->read < rb_page_size(reader))
5216 goto out;
5217
5218 /* Never should we have an index greater than the size */
5219 if (RB_WARN_ON(cpu_buffer,
5220 cpu_buffer->reader_page->read > rb_page_size(reader)))
5221 goto out;
5222
5223 /* check if we caught up to the tail */
5224 reader = NULL;
5225 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5226 goto out;
5227
5228 /* Don't bother swapping if the ring buffer is empty */
5229 if (rb_num_of_entries(cpu_buffer) == 0)
5230 goto out;
5231
5232 /*
5233 * Reset the reader page to size zero.
5234 */
5235 local_set(&cpu_buffer->reader_page->write, 0);
5236 local_set(&cpu_buffer->reader_page->entries, 0);
5237 local_set(&cpu_buffer->reader_page->page->commit, 0);
5238 cpu_buffer->reader_page->real_end = 0;
5239
5240 spin:
5241 /*
5242 * Splice the empty reader page into the list around the head.
5243 */
5244 reader = rb_set_head_page(cpu_buffer);
5245 if (!reader)
5246 goto out;
5247 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5248 cpu_buffer->reader_page->list.prev = reader->list.prev;
5249
5250 /*
5251 * cpu_buffer->pages just needs to point to the buffer, it
5252 * has no specific buffer page to point to. Lets move it out
5253 * of our way so we don't accidentally swap it.
5254 */
5255 cpu_buffer->pages = reader->list.prev;
5256
5257 /* The reader page will be pointing to the new head */
5258 rb_set_list_to_head(&cpu_buffer->reader_page->list);
5259
5260 /*
5261 * We want to make sure we read the overruns after we set up our
5262 * pointers to the next object. The writer side does a
5263 * cmpxchg to cross pages which acts as the mb on the writer
5264 * side. Note, the reader will constantly fail the swap
5265 * while the writer is updating the pointers, so this
5266 * guarantees that the overwrite recorded here is the one we
5267 * want to compare with the last_overrun.
5268 */
5269 smp_mb();
5270 overwrite = local_read(&(cpu_buffer->overrun));
5271
5272 /*
5273 * Here's the tricky part.
5274 *
5275 * We need to move the pointer past the header page.
5276 * But we can only do that if a writer is not currently
5277 * moving it. The page before the header page has the
5278 * flag bit '1' set if it is pointing to the page we want.
5279 * but if the writer is in the process of moving it
5280 * than it will be '2' or already moved '0'.
5281 */
5282
5283 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5284
5285 /*
5286 * If we did not convert it, then we must try again.
5287 */
5288 if (!ret)
5289 goto spin;
5290
5291 if (cpu_buffer->ring_meta)
5292 rb_update_meta_reader(cpu_buffer, reader);
5293
5294 /*
5295 * Yay! We succeeded in replacing the page.
5296 *
5297 * Now make the new head point back to the reader page.
5298 */
5299 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5300 rb_inc_page(&cpu_buffer->head_page);
5301
5302 local_inc(&cpu_buffer->pages_read);
5303
5304 /* Finally update the reader page to the new head */
5305 cpu_buffer->reader_page = reader;
5306 cpu_buffer->reader_page->read = 0;
5307
5308 if (overwrite != cpu_buffer->last_overrun) {
5309 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5310 cpu_buffer->last_overrun = overwrite;
5311 }
5312
5313 goto again;
5314
5315 out:
5316 /* Update the read_stamp on the first event */
5317 if (reader && reader->read == 0)
5318 cpu_buffer->read_stamp = reader->page->time_stamp;
5319
5320 arch_spin_unlock(&cpu_buffer->lock);
5321 local_irq_restore(flags);
5322
5323 /*
5324 * The writer has preempt disable, wait for it. But not forever
5325 * Although, 1 second is pretty much "forever"
5326 */
5327 #define USECS_WAIT 1000000
5328 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5329 /* If the write is past the end of page, a writer is still updating it */
5330 if (likely(!reader || rb_page_write(reader) <= bsize))
5331 break;
5332
5333 udelay(1);
5334
5335 /* Get the latest version of the reader write value */
5336 smp_rmb();
5337 }
5338
5339 /* The writer is not moving forward? Something is wrong */
5340 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5341 reader = NULL;
5342
5343 /*
5344 * Make sure we see any padding after the write update
5345 * (see rb_reset_tail()).
5346 *
5347 * In addition, a writer may be writing on the reader page
5348 * if the page has not been fully filled, so the read barrier
5349 * is also needed to make sure we see the content of what is
5350 * committed by the writer (see rb_set_commit_to_write()).
5351 */
5352 smp_rmb();
5353
5354
5355 return reader;
5356 }
5357
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5358 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5359 {
5360 struct ring_buffer_event *event;
5361 struct buffer_page *reader;
5362 unsigned length;
5363
5364 reader = rb_get_reader_page(cpu_buffer);
5365
5366 /* This function should not be called when buffer is empty */
5367 if (RB_WARN_ON(cpu_buffer, !reader))
5368 return;
5369
5370 event = rb_reader_event(cpu_buffer);
5371
5372 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5373 cpu_buffer->read++;
5374
5375 rb_update_read_stamp(cpu_buffer, event);
5376
5377 length = rb_event_length(event);
5378 cpu_buffer->reader_page->read += length;
5379 cpu_buffer->read_bytes += length;
5380 }
5381
rb_advance_iter(struct ring_buffer_iter * iter)5382 static void rb_advance_iter(struct ring_buffer_iter *iter)
5383 {
5384 struct ring_buffer_per_cpu *cpu_buffer;
5385
5386 cpu_buffer = iter->cpu_buffer;
5387
5388 /* If head == next_event then we need to jump to the next event */
5389 if (iter->head == iter->next_event) {
5390 /* If the event gets overwritten again, there's nothing to do */
5391 if (rb_iter_head_event(iter) == NULL)
5392 return;
5393 }
5394
5395 iter->head = iter->next_event;
5396
5397 /*
5398 * Check if we are at the end of the buffer.
5399 */
5400 if (iter->next_event >= rb_page_size(iter->head_page)) {
5401 /* discarded commits can make the page empty */
5402 if (iter->head_page == cpu_buffer->commit_page)
5403 return;
5404 rb_inc_iter(iter);
5405 return;
5406 }
5407
5408 rb_update_iter_read_stamp(iter, iter->event);
5409 }
5410
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5411 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5412 {
5413 return cpu_buffer->lost_events;
5414 }
5415
5416 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5417 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5418 unsigned long *lost_events)
5419 {
5420 struct ring_buffer_event *event;
5421 struct buffer_page *reader;
5422 int nr_loops = 0;
5423
5424 if (ts)
5425 *ts = 0;
5426 again:
5427 /*
5428 * We repeat when a time extend is encountered.
5429 * Since the time extend is always attached to a data event,
5430 * we should never loop more than once.
5431 * (We never hit the following condition more than twice).
5432 */
5433 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5434 return NULL;
5435
5436 reader = rb_get_reader_page(cpu_buffer);
5437 if (!reader)
5438 return NULL;
5439
5440 event = rb_reader_event(cpu_buffer);
5441
5442 switch (event->type_len) {
5443 case RINGBUF_TYPE_PADDING:
5444 if (rb_null_event(event))
5445 RB_WARN_ON(cpu_buffer, 1);
5446 /*
5447 * Because the writer could be discarding every
5448 * event it creates (which would probably be bad)
5449 * if we were to go back to "again" then we may never
5450 * catch up, and will trigger the warn on, or lock
5451 * the box. Return the padding, and we will release
5452 * the current locks, and try again.
5453 */
5454 return event;
5455
5456 case RINGBUF_TYPE_TIME_EXTEND:
5457 /* Internal data, OK to advance */
5458 rb_advance_reader(cpu_buffer);
5459 goto again;
5460
5461 case RINGBUF_TYPE_TIME_STAMP:
5462 if (ts) {
5463 *ts = rb_event_time_stamp(event);
5464 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5465 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5466 cpu_buffer->cpu, ts);
5467 }
5468 /* Internal data, OK to advance */
5469 rb_advance_reader(cpu_buffer);
5470 goto again;
5471
5472 case RINGBUF_TYPE_DATA:
5473 if (ts && !(*ts)) {
5474 *ts = cpu_buffer->read_stamp + event->time_delta;
5475 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5476 cpu_buffer->cpu, ts);
5477 }
5478 if (lost_events)
5479 *lost_events = rb_lost_events(cpu_buffer);
5480 return event;
5481
5482 default:
5483 RB_WARN_ON(cpu_buffer, 1);
5484 }
5485
5486 return NULL;
5487 }
5488 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5489
5490 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5491 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5492 {
5493 struct trace_buffer *buffer;
5494 struct ring_buffer_per_cpu *cpu_buffer;
5495 struct ring_buffer_event *event;
5496 int nr_loops = 0;
5497
5498 if (ts)
5499 *ts = 0;
5500
5501 cpu_buffer = iter->cpu_buffer;
5502 buffer = cpu_buffer->buffer;
5503
5504 /*
5505 * Check if someone performed a consuming read to the buffer
5506 * or removed some pages from the buffer. In these cases,
5507 * iterator was invalidated and we need to reset it.
5508 */
5509 if (unlikely(iter->cache_read != cpu_buffer->read ||
5510 iter->cache_reader_page != cpu_buffer->reader_page ||
5511 iter->cache_pages_removed != cpu_buffer->pages_removed))
5512 rb_iter_reset(iter);
5513
5514 again:
5515 if (ring_buffer_iter_empty(iter))
5516 return NULL;
5517
5518 /*
5519 * As the writer can mess with what the iterator is trying
5520 * to read, just give up if we fail to get an event after
5521 * three tries. The iterator is not as reliable when reading
5522 * the ring buffer with an active write as the consumer is.
5523 * Do not warn if the three failures is reached.
5524 */
5525 if (++nr_loops > 3)
5526 return NULL;
5527
5528 if (rb_per_cpu_empty(cpu_buffer))
5529 return NULL;
5530
5531 if (iter->head >= rb_page_size(iter->head_page)) {
5532 rb_inc_iter(iter);
5533 goto again;
5534 }
5535
5536 event = rb_iter_head_event(iter);
5537 if (!event)
5538 goto again;
5539
5540 switch (event->type_len) {
5541 case RINGBUF_TYPE_PADDING:
5542 if (rb_null_event(event)) {
5543 rb_inc_iter(iter);
5544 goto again;
5545 }
5546 rb_advance_iter(iter);
5547 return event;
5548
5549 case RINGBUF_TYPE_TIME_EXTEND:
5550 /* Internal data, OK to advance */
5551 rb_advance_iter(iter);
5552 goto again;
5553
5554 case RINGBUF_TYPE_TIME_STAMP:
5555 if (ts) {
5556 *ts = rb_event_time_stamp(event);
5557 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5558 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5559 cpu_buffer->cpu, ts);
5560 }
5561 /* Internal data, OK to advance */
5562 rb_advance_iter(iter);
5563 goto again;
5564
5565 case RINGBUF_TYPE_DATA:
5566 if (ts && !(*ts)) {
5567 *ts = iter->read_stamp + event->time_delta;
5568 ring_buffer_normalize_time_stamp(buffer,
5569 cpu_buffer->cpu, ts);
5570 }
5571 return event;
5572
5573 default:
5574 RB_WARN_ON(cpu_buffer, 1);
5575 }
5576
5577 return NULL;
5578 }
5579 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5580
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5581 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5582 {
5583 if (likely(!in_nmi())) {
5584 raw_spin_lock(&cpu_buffer->reader_lock);
5585 return true;
5586 }
5587
5588 /*
5589 * If an NMI die dumps out the content of the ring buffer
5590 * trylock must be used to prevent a deadlock if the NMI
5591 * preempted a task that holds the ring buffer locks. If
5592 * we get the lock then all is fine, if not, then continue
5593 * to do the read, but this can corrupt the ring buffer,
5594 * so it must be permanently disabled from future writes.
5595 * Reading from NMI is a oneshot deal.
5596 */
5597 if (raw_spin_trylock(&cpu_buffer->reader_lock))
5598 return true;
5599
5600 /* Continue without locking, but disable the ring buffer */
5601 atomic_inc(&cpu_buffer->record_disabled);
5602 return false;
5603 }
5604
5605 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5606 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5607 {
5608 if (likely(locked))
5609 raw_spin_unlock(&cpu_buffer->reader_lock);
5610 }
5611
5612 /**
5613 * ring_buffer_peek - peek at the next event to be read
5614 * @buffer: The ring buffer to read
5615 * @cpu: The cpu to peak at
5616 * @ts: The timestamp counter of this event.
5617 * @lost_events: a variable to store if events were lost (may be NULL)
5618 *
5619 * This will return the event that will be read next, but does
5620 * not consume the data.
5621 */
5622 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5623 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5624 unsigned long *lost_events)
5625 {
5626 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5627 struct ring_buffer_event *event;
5628 unsigned long flags;
5629 bool dolock;
5630
5631 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5632 return NULL;
5633
5634 again:
5635 local_irq_save(flags);
5636 dolock = rb_reader_lock(cpu_buffer);
5637 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5638 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5639 rb_advance_reader(cpu_buffer);
5640 rb_reader_unlock(cpu_buffer, dolock);
5641 local_irq_restore(flags);
5642
5643 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5644 goto again;
5645
5646 return event;
5647 }
5648
5649 /** ring_buffer_iter_dropped - report if there are dropped events
5650 * @iter: The ring buffer iterator
5651 *
5652 * Returns true if there was dropped events since the last peek.
5653 */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5654 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5655 {
5656 bool ret = iter->missed_events != 0;
5657
5658 iter->missed_events = 0;
5659 return ret;
5660 }
5661 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5662
5663 /**
5664 * ring_buffer_iter_peek - peek at the next event to be read
5665 * @iter: The ring buffer iterator
5666 * @ts: The timestamp counter of this event.
5667 *
5668 * This will return the event that will be read next, but does
5669 * not increment the iterator.
5670 */
5671 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5672 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5673 {
5674 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5675 struct ring_buffer_event *event;
5676 unsigned long flags;
5677
5678 again:
5679 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5680 event = rb_iter_peek(iter, ts);
5681 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5682
5683 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5684 goto again;
5685
5686 return event;
5687 }
5688
5689 /**
5690 * ring_buffer_consume - return an event and consume it
5691 * @buffer: The ring buffer to get the next event from
5692 * @cpu: the cpu to read the buffer from
5693 * @ts: a variable to store the timestamp (may be NULL)
5694 * @lost_events: a variable to store if events were lost (may be NULL)
5695 *
5696 * Returns the next event in the ring buffer, and that event is consumed.
5697 * Meaning, that sequential reads will keep returning a different event,
5698 * and eventually empty the ring buffer if the producer is slower.
5699 */
5700 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5701 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5702 unsigned long *lost_events)
5703 {
5704 struct ring_buffer_per_cpu *cpu_buffer;
5705 struct ring_buffer_event *event = NULL;
5706 unsigned long flags;
5707 bool dolock;
5708
5709 again:
5710 /* might be called in atomic */
5711 preempt_disable();
5712
5713 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5714 goto out;
5715
5716 cpu_buffer = buffer->buffers[cpu];
5717 local_irq_save(flags);
5718 dolock = rb_reader_lock(cpu_buffer);
5719
5720 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5721 if (event) {
5722 cpu_buffer->lost_events = 0;
5723 rb_advance_reader(cpu_buffer);
5724 }
5725
5726 rb_reader_unlock(cpu_buffer, dolock);
5727 local_irq_restore(flags);
5728
5729 out:
5730 preempt_enable();
5731
5732 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5733 goto again;
5734
5735 return event;
5736 }
5737 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5738
5739 /**
5740 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5741 * @buffer: The ring buffer to read from
5742 * @cpu: The cpu buffer to iterate over
5743 * @flags: gfp flags to use for memory allocation
5744 *
5745 * This performs the initial preparations necessary to iterate
5746 * through the buffer. Memory is allocated, buffer resizing
5747 * is disabled, and the iterator pointer is returned to the caller.
5748 *
5749 * After a sequence of ring_buffer_read_prepare calls, the user is
5750 * expected to make at least one call to ring_buffer_read_prepare_sync.
5751 * Afterwards, ring_buffer_read_start is invoked to get things going
5752 * for real.
5753 *
5754 * This overall must be paired with ring_buffer_read_finish.
5755 */
5756 struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)5757 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5758 {
5759 struct ring_buffer_per_cpu *cpu_buffer;
5760 struct ring_buffer_iter *iter;
5761
5762 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5763 return NULL;
5764
5765 iter = kzalloc(sizeof(*iter), flags);
5766 if (!iter)
5767 return NULL;
5768
5769 /* Holds the entire event: data and meta data */
5770 iter->event_size = buffer->subbuf_size;
5771 iter->event = kmalloc(iter->event_size, flags);
5772 if (!iter->event) {
5773 kfree(iter);
5774 return NULL;
5775 }
5776
5777 cpu_buffer = buffer->buffers[cpu];
5778
5779 iter->cpu_buffer = cpu_buffer;
5780
5781 atomic_inc(&cpu_buffer->resize_disabled);
5782
5783 return iter;
5784 }
5785 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5786
5787 /**
5788 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5789 *
5790 * All previously invoked ring_buffer_read_prepare calls to prepare
5791 * iterators will be synchronized. Afterwards, read_buffer_read_start
5792 * calls on those iterators are allowed.
5793 */
5794 void
ring_buffer_read_prepare_sync(void)5795 ring_buffer_read_prepare_sync(void)
5796 {
5797 synchronize_rcu();
5798 }
5799 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5800
5801 /**
5802 * ring_buffer_read_start - start a non consuming read of the buffer
5803 * @iter: The iterator returned by ring_buffer_read_prepare
5804 *
5805 * This finalizes the startup of an iteration through the buffer.
5806 * The iterator comes from a call to ring_buffer_read_prepare and
5807 * an intervening ring_buffer_read_prepare_sync must have been
5808 * performed.
5809 *
5810 * Must be paired with ring_buffer_read_finish.
5811 */
5812 void
ring_buffer_read_start(struct ring_buffer_iter * iter)5813 ring_buffer_read_start(struct ring_buffer_iter *iter)
5814 {
5815 struct ring_buffer_per_cpu *cpu_buffer;
5816 unsigned long flags;
5817
5818 if (!iter)
5819 return;
5820
5821 cpu_buffer = iter->cpu_buffer;
5822
5823 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5824 arch_spin_lock(&cpu_buffer->lock);
5825 rb_iter_reset(iter);
5826 arch_spin_unlock(&cpu_buffer->lock);
5827 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5828 }
5829 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5830
5831 /**
5832 * ring_buffer_read_finish - finish reading the iterator of the buffer
5833 * @iter: The iterator retrieved by ring_buffer_start
5834 *
5835 * This re-enables resizing of the buffer, and frees the iterator.
5836 */
5837 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)5838 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5839 {
5840 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5841 unsigned long flags;
5842
5843 /* Use this opportunity to check the integrity of the ring buffer. */
5844 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5845 rb_check_pages(cpu_buffer);
5846 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5847
5848 atomic_dec(&cpu_buffer->resize_disabled);
5849 kfree(iter->event);
5850 kfree(iter);
5851 }
5852 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5853
5854 /**
5855 * ring_buffer_iter_advance - advance the iterator to the next location
5856 * @iter: The ring buffer iterator
5857 *
5858 * Move the location of the iterator such that the next read will
5859 * be the next location of the iterator.
5860 */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)5861 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5862 {
5863 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5864 unsigned long flags;
5865
5866 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5867
5868 rb_advance_iter(iter);
5869
5870 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5871 }
5872 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5873
5874 /**
5875 * ring_buffer_size - return the size of the ring buffer (in bytes)
5876 * @buffer: The ring buffer.
5877 * @cpu: The CPU to get ring buffer size from.
5878 */
ring_buffer_size(struct trace_buffer * buffer,int cpu)5879 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5880 {
5881 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5882 return 0;
5883
5884 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5885 }
5886 EXPORT_SYMBOL_GPL(ring_buffer_size);
5887
5888 /**
5889 * ring_buffer_max_event_size - return the max data size of an event
5890 * @buffer: The ring buffer.
5891 *
5892 * Returns the maximum size an event can be.
5893 */
ring_buffer_max_event_size(struct trace_buffer * buffer)5894 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5895 {
5896 /* If abs timestamp is requested, events have a timestamp too */
5897 if (ring_buffer_time_stamp_abs(buffer))
5898 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5899 return buffer->max_data_size;
5900 }
5901 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5902
rb_clear_buffer_page(struct buffer_page * page)5903 static void rb_clear_buffer_page(struct buffer_page *page)
5904 {
5905 local_set(&page->write, 0);
5906 local_set(&page->entries, 0);
5907 rb_init_page(page->page);
5908 page->read = 0;
5909 }
5910
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)5911 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5912 {
5913 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5914
5915 if (!meta)
5916 return;
5917
5918 meta->reader.read = cpu_buffer->reader_page->read;
5919 meta->reader.id = cpu_buffer->reader_page->id;
5920 meta->reader.lost_events = cpu_buffer->lost_events;
5921
5922 meta->entries = local_read(&cpu_buffer->entries);
5923 meta->overrun = local_read(&cpu_buffer->overrun);
5924 meta->read = cpu_buffer->read;
5925
5926 /* Some archs do not have data cache coherency between kernel and user-space */
5927 flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5928 }
5929
5930 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)5931 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5932 {
5933 struct buffer_page *page;
5934
5935 rb_head_page_deactivate(cpu_buffer);
5936
5937 cpu_buffer->head_page
5938 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5939 rb_clear_buffer_page(cpu_buffer->head_page);
5940 list_for_each_entry(page, cpu_buffer->pages, list) {
5941 rb_clear_buffer_page(page);
5942 }
5943
5944 cpu_buffer->tail_page = cpu_buffer->head_page;
5945 cpu_buffer->commit_page = cpu_buffer->head_page;
5946
5947 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5948 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5949 rb_clear_buffer_page(cpu_buffer->reader_page);
5950
5951 local_set(&cpu_buffer->entries_bytes, 0);
5952 local_set(&cpu_buffer->overrun, 0);
5953 local_set(&cpu_buffer->commit_overrun, 0);
5954 local_set(&cpu_buffer->dropped_events, 0);
5955 local_set(&cpu_buffer->entries, 0);
5956 local_set(&cpu_buffer->committing, 0);
5957 local_set(&cpu_buffer->commits, 0);
5958 local_set(&cpu_buffer->pages_touched, 0);
5959 local_set(&cpu_buffer->pages_lost, 0);
5960 local_set(&cpu_buffer->pages_read, 0);
5961 cpu_buffer->last_pages_touch = 0;
5962 cpu_buffer->shortest_full = 0;
5963 cpu_buffer->read = 0;
5964 cpu_buffer->read_bytes = 0;
5965
5966 rb_time_set(&cpu_buffer->write_stamp, 0);
5967 rb_time_set(&cpu_buffer->before_stamp, 0);
5968
5969 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5970
5971 cpu_buffer->lost_events = 0;
5972 cpu_buffer->last_overrun = 0;
5973
5974 rb_head_page_activate(cpu_buffer);
5975 cpu_buffer->pages_removed = 0;
5976
5977 if (cpu_buffer->mapped) {
5978 rb_update_meta_page(cpu_buffer);
5979 if (cpu_buffer->ring_meta) {
5980 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
5981 meta->commit_buffer = meta->head_buffer;
5982 }
5983 }
5984 }
5985
5986 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)5987 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5988 {
5989 unsigned long flags;
5990
5991 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5992
5993 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5994 goto out;
5995
5996 arch_spin_lock(&cpu_buffer->lock);
5997
5998 rb_reset_cpu(cpu_buffer);
5999
6000 arch_spin_unlock(&cpu_buffer->lock);
6001
6002 out:
6003 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6004 }
6005
6006 /**
6007 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6008 * @buffer: The ring buffer to reset a per cpu buffer of
6009 * @cpu: The CPU buffer to be reset
6010 */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6011 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6012 {
6013 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6014 struct ring_buffer_meta *meta;
6015
6016 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6017 return;
6018
6019 /* prevent another thread from changing buffer sizes */
6020 mutex_lock(&buffer->mutex);
6021
6022 atomic_inc(&cpu_buffer->resize_disabled);
6023 atomic_inc(&cpu_buffer->record_disabled);
6024
6025 /* Make sure all commits have finished */
6026 synchronize_rcu();
6027
6028 reset_disabled_cpu_buffer(cpu_buffer);
6029
6030 atomic_dec(&cpu_buffer->record_disabled);
6031 atomic_dec(&cpu_buffer->resize_disabled);
6032
6033 /* Make sure persistent meta now uses this buffer's addresses */
6034 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6035 if (meta)
6036 rb_meta_init_text_addr(meta);
6037
6038 mutex_unlock(&buffer->mutex);
6039 }
6040 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6041
6042 /* Flag to ensure proper resetting of atomic variables */
6043 #define RESET_BIT (1 << 30)
6044
6045 /**
6046 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6047 * @buffer: The ring buffer to reset a per cpu buffer of
6048 */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6049 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6050 {
6051 struct ring_buffer_per_cpu *cpu_buffer;
6052 struct ring_buffer_meta *meta;
6053 int cpu;
6054
6055 /* prevent another thread from changing buffer sizes */
6056 mutex_lock(&buffer->mutex);
6057
6058 for_each_online_buffer_cpu(buffer, cpu) {
6059 cpu_buffer = buffer->buffers[cpu];
6060
6061 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6062 atomic_inc(&cpu_buffer->record_disabled);
6063 }
6064
6065 /* Make sure all commits have finished */
6066 synchronize_rcu();
6067
6068 for_each_buffer_cpu(buffer, cpu) {
6069 cpu_buffer = buffer->buffers[cpu];
6070
6071 /*
6072 * If a CPU came online during the synchronize_rcu(), then
6073 * ignore it.
6074 */
6075 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6076 continue;
6077
6078 reset_disabled_cpu_buffer(cpu_buffer);
6079
6080 /* Make sure persistent meta now uses this buffer's addresses */
6081 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6082 if (meta)
6083 rb_meta_init_text_addr(meta);
6084
6085 atomic_dec(&cpu_buffer->record_disabled);
6086 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6087 }
6088
6089 mutex_unlock(&buffer->mutex);
6090 }
6091
6092 /**
6093 * ring_buffer_reset - reset a ring buffer
6094 * @buffer: The ring buffer to reset all cpu buffers
6095 */
ring_buffer_reset(struct trace_buffer * buffer)6096 void ring_buffer_reset(struct trace_buffer *buffer)
6097 {
6098 struct ring_buffer_per_cpu *cpu_buffer;
6099 int cpu;
6100
6101 /* prevent another thread from changing buffer sizes */
6102 mutex_lock(&buffer->mutex);
6103
6104 for_each_buffer_cpu(buffer, cpu) {
6105 cpu_buffer = buffer->buffers[cpu];
6106
6107 atomic_inc(&cpu_buffer->resize_disabled);
6108 atomic_inc(&cpu_buffer->record_disabled);
6109 }
6110
6111 /* Make sure all commits have finished */
6112 synchronize_rcu();
6113
6114 for_each_buffer_cpu(buffer, cpu) {
6115 cpu_buffer = buffer->buffers[cpu];
6116
6117 reset_disabled_cpu_buffer(cpu_buffer);
6118
6119 atomic_dec(&cpu_buffer->record_disabled);
6120 atomic_dec(&cpu_buffer->resize_disabled);
6121 }
6122
6123 mutex_unlock(&buffer->mutex);
6124 }
6125 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6126
6127 /**
6128 * ring_buffer_empty - is the ring buffer empty?
6129 * @buffer: The ring buffer to test
6130 */
ring_buffer_empty(struct trace_buffer * buffer)6131 bool ring_buffer_empty(struct trace_buffer *buffer)
6132 {
6133 struct ring_buffer_per_cpu *cpu_buffer;
6134 unsigned long flags;
6135 bool dolock;
6136 bool ret;
6137 int cpu;
6138
6139 /* yes this is racy, but if you don't like the race, lock the buffer */
6140 for_each_buffer_cpu(buffer, cpu) {
6141 cpu_buffer = buffer->buffers[cpu];
6142 local_irq_save(flags);
6143 dolock = rb_reader_lock(cpu_buffer);
6144 ret = rb_per_cpu_empty(cpu_buffer);
6145 rb_reader_unlock(cpu_buffer, dolock);
6146 local_irq_restore(flags);
6147
6148 if (!ret)
6149 return false;
6150 }
6151
6152 return true;
6153 }
6154 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6155
6156 /**
6157 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6158 * @buffer: The ring buffer
6159 * @cpu: The CPU buffer to test
6160 */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6161 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6162 {
6163 struct ring_buffer_per_cpu *cpu_buffer;
6164 unsigned long flags;
6165 bool dolock;
6166 bool ret;
6167
6168 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6169 return true;
6170
6171 cpu_buffer = buffer->buffers[cpu];
6172 local_irq_save(flags);
6173 dolock = rb_reader_lock(cpu_buffer);
6174 ret = rb_per_cpu_empty(cpu_buffer);
6175 rb_reader_unlock(cpu_buffer, dolock);
6176 local_irq_restore(flags);
6177
6178 return ret;
6179 }
6180 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6181
6182 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6183 /**
6184 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6185 * @buffer_a: One buffer to swap with
6186 * @buffer_b: The other buffer to swap with
6187 * @cpu: the CPU of the buffers to swap
6188 *
6189 * This function is useful for tracers that want to take a "snapshot"
6190 * of a CPU buffer and has another back up buffer lying around.
6191 * it is expected that the tracer handles the cpu buffer not being
6192 * used at the moment.
6193 */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6194 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6195 struct trace_buffer *buffer_b, int cpu)
6196 {
6197 struct ring_buffer_per_cpu *cpu_buffer_a;
6198 struct ring_buffer_per_cpu *cpu_buffer_b;
6199 int ret = -EINVAL;
6200
6201 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6202 !cpumask_test_cpu(cpu, buffer_b->cpumask))
6203 goto out;
6204
6205 cpu_buffer_a = buffer_a->buffers[cpu];
6206 cpu_buffer_b = buffer_b->buffers[cpu];
6207
6208 /* It's up to the callers to not try to swap mapped buffers */
6209 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6210 ret = -EBUSY;
6211 goto out;
6212 }
6213
6214 /* At least make sure the two buffers are somewhat the same */
6215 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6216 goto out;
6217
6218 if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6219 goto out;
6220
6221 ret = -EAGAIN;
6222
6223 if (atomic_read(&buffer_a->record_disabled))
6224 goto out;
6225
6226 if (atomic_read(&buffer_b->record_disabled))
6227 goto out;
6228
6229 if (atomic_read(&cpu_buffer_a->record_disabled))
6230 goto out;
6231
6232 if (atomic_read(&cpu_buffer_b->record_disabled))
6233 goto out;
6234
6235 /*
6236 * We can't do a synchronize_rcu here because this
6237 * function can be called in atomic context.
6238 * Normally this will be called from the same CPU as cpu.
6239 * If not it's up to the caller to protect this.
6240 */
6241 atomic_inc(&cpu_buffer_a->record_disabled);
6242 atomic_inc(&cpu_buffer_b->record_disabled);
6243
6244 ret = -EBUSY;
6245 if (local_read(&cpu_buffer_a->committing))
6246 goto out_dec;
6247 if (local_read(&cpu_buffer_b->committing))
6248 goto out_dec;
6249
6250 /*
6251 * When resize is in progress, we cannot swap it because
6252 * it will mess the state of the cpu buffer.
6253 */
6254 if (atomic_read(&buffer_a->resizing))
6255 goto out_dec;
6256 if (atomic_read(&buffer_b->resizing))
6257 goto out_dec;
6258
6259 buffer_a->buffers[cpu] = cpu_buffer_b;
6260 buffer_b->buffers[cpu] = cpu_buffer_a;
6261
6262 cpu_buffer_b->buffer = buffer_a;
6263 cpu_buffer_a->buffer = buffer_b;
6264
6265 ret = 0;
6266
6267 out_dec:
6268 atomic_dec(&cpu_buffer_a->record_disabled);
6269 atomic_dec(&cpu_buffer_b->record_disabled);
6270 out:
6271 return ret;
6272 }
6273 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6274 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6275
6276 /**
6277 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6278 * @buffer: the buffer to allocate for.
6279 * @cpu: the cpu buffer to allocate.
6280 *
6281 * This function is used in conjunction with ring_buffer_read_page.
6282 * When reading a full page from the ring buffer, these functions
6283 * can be used to speed up the process. The calling function should
6284 * allocate a few pages first with this function. Then when it
6285 * needs to get pages from the ring buffer, it passes the result
6286 * of this function into ring_buffer_read_page, which will swap
6287 * the page that was allocated, with the read page of the buffer.
6288 *
6289 * Returns:
6290 * The page allocated, or ERR_PTR
6291 */
6292 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6293 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6294 {
6295 struct ring_buffer_per_cpu *cpu_buffer;
6296 struct buffer_data_read_page *bpage = NULL;
6297 unsigned long flags;
6298 struct page *page;
6299
6300 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6301 return ERR_PTR(-ENODEV);
6302
6303 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6304 if (!bpage)
6305 return ERR_PTR(-ENOMEM);
6306
6307 bpage->order = buffer->subbuf_order;
6308 cpu_buffer = buffer->buffers[cpu];
6309 local_irq_save(flags);
6310 arch_spin_lock(&cpu_buffer->lock);
6311
6312 if (cpu_buffer->free_page) {
6313 bpage->data = cpu_buffer->free_page;
6314 cpu_buffer->free_page = NULL;
6315 }
6316
6317 arch_spin_unlock(&cpu_buffer->lock);
6318 local_irq_restore(flags);
6319
6320 if (bpage->data)
6321 goto out;
6322
6323 page = alloc_pages_node(cpu_to_node(cpu),
6324 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6325 cpu_buffer->buffer->subbuf_order);
6326 if (!page) {
6327 kfree(bpage);
6328 return ERR_PTR(-ENOMEM);
6329 }
6330
6331 bpage->data = page_address(page);
6332
6333 out:
6334 rb_init_page(bpage->data);
6335
6336 return bpage;
6337 }
6338 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6339
6340 /**
6341 * ring_buffer_free_read_page - free an allocated read page
6342 * @buffer: the buffer the page was allocate for
6343 * @cpu: the cpu buffer the page came from
6344 * @data_page: the page to free
6345 *
6346 * Free a page allocated from ring_buffer_alloc_read_page.
6347 */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6348 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6349 struct buffer_data_read_page *data_page)
6350 {
6351 struct ring_buffer_per_cpu *cpu_buffer;
6352 struct buffer_data_page *bpage = data_page->data;
6353 struct page *page = virt_to_page(bpage);
6354 unsigned long flags;
6355
6356 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6357 return;
6358
6359 cpu_buffer = buffer->buffers[cpu];
6360
6361 /*
6362 * If the page is still in use someplace else, or order of the page
6363 * is different from the subbuffer order of the buffer -
6364 * we can't reuse it
6365 */
6366 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6367 goto out;
6368
6369 local_irq_save(flags);
6370 arch_spin_lock(&cpu_buffer->lock);
6371
6372 if (!cpu_buffer->free_page) {
6373 cpu_buffer->free_page = bpage;
6374 bpage = NULL;
6375 }
6376
6377 arch_spin_unlock(&cpu_buffer->lock);
6378 local_irq_restore(flags);
6379
6380 out:
6381 free_pages((unsigned long)bpage, data_page->order);
6382 kfree(data_page);
6383 }
6384 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6385
6386 /**
6387 * ring_buffer_read_page - extract a page from the ring buffer
6388 * @buffer: buffer to extract from
6389 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6390 * @len: amount to extract
6391 * @cpu: the cpu of the buffer to extract
6392 * @full: should the extraction only happen when the page is full.
6393 *
6394 * This function will pull out a page from the ring buffer and consume it.
6395 * @data_page must be the address of the variable that was returned
6396 * from ring_buffer_alloc_read_page. This is because the page might be used
6397 * to swap with a page in the ring buffer.
6398 *
6399 * for example:
6400 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
6401 * if (IS_ERR(rpage))
6402 * return PTR_ERR(rpage);
6403 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6404 * if (ret >= 0)
6405 * process_page(ring_buffer_read_page_data(rpage), ret);
6406 * ring_buffer_free_read_page(buffer, cpu, rpage);
6407 *
6408 * When @full is set, the function will not return true unless
6409 * the writer is off the reader page.
6410 *
6411 * Note: it is up to the calling functions to handle sleeps and wakeups.
6412 * The ring buffer can be used anywhere in the kernel and can not
6413 * blindly call wake_up. The layer that uses the ring buffer must be
6414 * responsible for that.
6415 *
6416 * Returns:
6417 * >=0 if data has been transferred, returns the offset of consumed data.
6418 * <0 if no data has been transferred.
6419 */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6420 int ring_buffer_read_page(struct trace_buffer *buffer,
6421 struct buffer_data_read_page *data_page,
6422 size_t len, int cpu, int full)
6423 {
6424 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6425 struct ring_buffer_event *event;
6426 struct buffer_data_page *bpage;
6427 struct buffer_page *reader;
6428 unsigned long missed_events;
6429 unsigned long flags;
6430 unsigned int commit;
6431 unsigned int read;
6432 u64 save_timestamp;
6433 int ret = -1;
6434
6435 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6436 goto out;
6437
6438 /*
6439 * If len is not big enough to hold the page header, then
6440 * we can not copy anything.
6441 */
6442 if (len <= BUF_PAGE_HDR_SIZE)
6443 goto out;
6444
6445 len -= BUF_PAGE_HDR_SIZE;
6446
6447 if (!data_page || !data_page->data)
6448 goto out;
6449 if (data_page->order != buffer->subbuf_order)
6450 goto out;
6451
6452 bpage = data_page->data;
6453 if (!bpage)
6454 goto out;
6455
6456 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6457
6458 reader = rb_get_reader_page(cpu_buffer);
6459 if (!reader)
6460 goto out_unlock;
6461
6462 event = rb_reader_event(cpu_buffer);
6463
6464 read = reader->read;
6465 commit = rb_page_size(reader);
6466
6467 /* Check if any events were dropped */
6468 missed_events = cpu_buffer->lost_events;
6469
6470 /*
6471 * If this page has been partially read or
6472 * if len is not big enough to read the rest of the page or
6473 * a writer is still on the page, then
6474 * we must copy the data from the page to the buffer.
6475 * Otherwise, we can simply swap the page with the one passed in.
6476 */
6477 if (read || (len < (commit - read)) ||
6478 cpu_buffer->reader_page == cpu_buffer->commit_page ||
6479 cpu_buffer->mapped) {
6480 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6481 unsigned int rpos = read;
6482 unsigned int pos = 0;
6483 unsigned int size;
6484
6485 /*
6486 * If a full page is expected, this can still be returned
6487 * if there's been a previous partial read and the
6488 * rest of the page can be read and the commit page is off
6489 * the reader page.
6490 */
6491 if (full &&
6492 (!read || (len < (commit - read)) ||
6493 cpu_buffer->reader_page == cpu_buffer->commit_page))
6494 goto out_unlock;
6495
6496 if (len > (commit - read))
6497 len = (commit - read);
6498
6499 /* Always keep the time extend and data together */
6500 size = rb_event_ts_length(event);
6501
6502 if (len < size)
6503 goto out_unlock;
6504
6505 /* save the current timestamp, since the user will need it */
6506 save_timestamp = cpu_buffer->read_stamp;
6507
6508 /* Need to copy one event at a time */
6509 do {
6510 /* We need the size of one event, because
6511 * rb_advance_reader only advances by one event,
6512 * whereas rb_event_ts_length may include the size of
6513 * one or two events.
6514 * We have already ensured there's enough space if this
6515 * is a time extend. */
6516 size = rb_event_length(event);
6517 memcpy(bpage->data + pos, rpage->data + rpos, size);
6518
6519 len -= size;
6520
6521 rb_advance_reader(cpu_buffer);
6522 rpos = reader->read;
6523 pos += size;
6524
6525 if (rpos >= commit)
6526 break;
6527
6528 event = rb_reader_event(cpu_buffer);
6529 /* Always keep the time extend and data together */
6530 size = rb_event_ts_length(event);
6531 } while (len >= size);
6532
6533 /* update bpage */
6534 local_set(&bpage->commit, pos);
6535 bpage->time_stamp = save_timestamp;
6536
6537 /* we copied everything to the beginning */
6538 read = 0;
6539 } else {
6540 /* update the entry counter */
6541 cpu_buffer->read += rb_page_entries(reader);
6542 cpu_buffer->read_bytes += rb_page_size(reader);
6543
6544 /* swap the pages */
6545 rb_init_page(bpage);
6546 bpage = reader->page;
6547 reader->page = data_page->data;
6548 local_set(&reader->write, 0);
6549 local_set(&reader->entries, 0);
6550 reader->read = 0;
6551 data_page->data = bpage;
6552
6553 /*
6554 * Use the real_end for the data size,
6555 * This gives us a chance to store the lost events
6556 * on the page.
6557 */
6558 if (reader->real_end)
6559 local_set(&bpage->commit, reader->real_end);
6560 }
6561 ret = read;
6562
6563 cpu_buffer->lost_events = 0;
6564
6565 commit = local_read(&bpage->commit);
6566 /*
6567 * Set a flag in the commit field if we lost events
6568 */
6569 if (missed_events) {
6570 /* If there is room at the end of the page to save the
6571 * missed events, then record it there.
6572 */
6573 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6574 memcpy(&bpage->data[commit], &missed_events,
6575 sizeof(missed_events));
6576 local_add(RB_MISSED_STORED, &bpage->commit);
6577 commit += sizeof(missed_events);
6578 }
6579 local_add(RB_MISSED_EVENTS, &bpage->commit);
6580 }
6581
6582 /*
6583 * This page may be off to user land. Zero it out here.
6584 */
6585 if (commit < buffer->subbuf_size)
6586 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6587
6588 out_unlock:
6589 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6590
6591 out:
6592 return ret;
6593 }
6594 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6595
6596 /**
6597 * ring_buffer_read_page_data - get pointer to the data in the page.
6598 * @page: the page to get the data from
6599 *
6600 * Returns pointer to the actual data in this page.
6601 */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6602 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6603 {
6604 return page->data;
6605 }
6606 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6607
6608 /**
6609 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6610 * @buffer: the buffer to get the sub buffer size from
6611 *
6612 * Returns size of the sub buffer, in bytes.
6613 */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6614 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6615 {
6616 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6617 }
6618 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6619
6620 /**
6621 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6622 * @buffer: The ring_buffer to get the system sub page order from
6623 *
6624 * By default, one ring buffer sub page equals to one system page. This parameter
6625 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6626 * extended, but must be an order of system page size.
6627 *
6628 * Returns the order of buffer sub page size, in system pages:
6629 * 0 means the sub buffer size is 1 system page and so forth.
6630 * In case of an error < 0 is returned.
6631 */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6632 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6633 {
6634 if (!buffer)
6635 return -EINVAL;
6636
6637 return buffer->subbuf_order;
6638 }
6639 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6640
6641 /**
6642 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6643 * @buffer: The ring_buffer to set the new page size.
6644 * @order: Order of the system pages in one sub buffer page
6645 *
6646 * By default, one ring buffer pages equals to one system page. This API can be
6647 * used to set new size of the ring buffer page. The size must be order of
6648 * system page size, that's why the input parameter @order is the order of
6649 * system pages that are allocated for one ring buffer page:
6650 * 0 - 1 system page
6651 * 1 - 2 system pages
6652 * 3 - 4 system pages
6653 * ...
6654 *
6655 * Returns 0 on success or < 0 in case of an error.
6656 */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6657 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6658 {
6659 struct ring_buffer_per_cpu *cpu_buffer;
6660 struct buffer_page *bpage, *tmp;
6661 int old_order, old_size;
6662 int nr_pages;
6663 int psize;
6664 int err;
6665 int cpu;
6666
6667 if (!buffer || order < 0)
6668 return -EINVAL;
6669
6670 if (buffer->subbuf_order == order)
6671 return 0;
6672
6673 psize = (1 << order) * PAGE_SIZE;
6674 if (psize <= BUF_PAGE_HDR_SIZE)
6675 return -EINVAL;
6676
6677 /* Size of a subbuf cannot be greater than the write counter */
6678 if (psize > RB_WRITE_MASK + 1)
6679 return -EINVAL;
6680
6681 old_order = buffer->subbuf_order;
6682 old_size = buffer->subbuf_size;
6683
6684 /* prevent another thread from changing buffer sizes */
6685 mutex_lock(&buffer->mutex);
6686 atomic_inc(&buffer->record_disabled);
6687
6688 /* Make sure all commits have finished */
6689 synchronize_rcu();
6690
6691 buffer->subbuf_order = order;
6692 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6693
6694 /* Make sure all new buffers are allocated, before deleting the old ones */
6695 for_each_buffer_cpu(buffer, cpu) {
6696
6697 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6698 continue;
6699
6700 cpu_buffer = buffer->buffers[cpu];
6701
6702 if (cpu_buffer->mapped) {
6703 err = -EBUSY;
6704 goto error;
6705 }
6706
6707 /* Update the number of pages to match the new size */
6708 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6709 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6710
6711 /* we need a minimum of two pages */
6712 if (nr_pages < 2)
6713 nr_pages = 2;
6714
6715 cpu_buffer->nr_pages_to_update = nr_pages;
6716
6717 /* Include the reader page */
6718 nr_pages++;
6719
6720 /* Allocate the new size buffer */
6721 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6722 if (__rb_allocate_pages(cpu_buffer, nr_pages,
6723 &cpu_buffer->new_pages)) {
6724 /* not enough memory for new pages */
6725 err = -ENOMEM;
6726 goto error;
6727 }
6728 }
6729
6730 for_each_buffer_cpu(buffer, cpu) {
6731 struct buffer_data_page *old_free_data_page;
6732 struct list_head old_pages;
6733 unsigned long flags;
6734
6735 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6736 continue;
6737
6738 cpu_buffer = buffer->buffers[cpu];
6739
6740 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6741
6742 /* Clear the head bit to make the link list normal to read */
6743 rb_head_page_deactivate(cpu_buffer);
6744
6745 /*
6746 * Collect buffers from the cpu_buffer pages list and the
6747 * reader_page on old_pages, so they can be freed later when not
6748 * under a spinlock. The pages list is a linked list with no
6749 * head, adding old_pages turns it into a regular list with
6750 * old_pages being the head.
6751 */
6752 list_add(&old_pages, cpu_buffer->pages);
6753 list_add(&cpu_buffer->reader_page->list, &old_pages);
6754
6755 /* One page was allocated for the reader page */
6756 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6757 struct buffer_page, list);
6758 list_del_init(&cpu_buffer->reader_page->list);
6759
6760 /* Install the new pages, remove the head from the list */
6761 cpu_buffer->pages = cpu_buffer->new_pages.next;
6762 list_del_init(&cpu_buffer->new_pages);
6763
6764 cpu_buffer->head_page
6765 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6766 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6767
6768 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6769 cpu_buffer->nr_pages_to_update = 0;
6770
6771 old_free_data_page = cpu_buffer->free_page;
6772 cpu_buffer->free_page = NULL;
6773
6774 rb_head_page_activate(cpu_buffer);
6775
6776 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6777
6778 /* Free old sub buffers */
6779 list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6780 list_del_init(&bpage->list);
6781 free_buffer_page(bpage);
6782 }
6783 free_pages((unsigned long)old_free_data_page, old_order);
6784
6785 rb_check_pages(cpu_buffer);
6786 }
6787
6788 atomic_dec(&buffer->record_disabled);
6789 mutex_unlock(&buffer->mutex);
6790
6791 return 0;
6792
6793 error:
6794 buffer->subbuf_order = old_order;
6795 buffer->subbuf_size = old_size;
6796
6797 atomic_dec(&buffer->record_disabled);
6798 mutex_unlock(&buffer->mutex);
6799
6800 for_each_buffer_cpu(buffer, cpu) {
6801 cpu_buffer = buffer->buffers[cpu];
6802
6803 if (!cpu_buffer->nr_pages_to_update)
6804 continue;
6805
6806 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6807 list_del_init(&bpage->list);
6808 free_buffer_page(bpage);
6809 }
6810 }
6811
6812 return err;
6813 }
6814 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6815
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6816 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6817 {
6818 struct page *page;
6819
6820 if (cpu_buffer->meta_page)
6821 return 0;
6822
6823 page = alloc_page(GFP_USER | __GFP_ZERO);
6824 if (!page)
6825 return -ENOMEM;
6826
6827 cpu_buffer->meta_page = page_to_virt(page);
6828
6829 return 0;
6830 }
6831
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6832 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6833 {
6834 unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6835
6836 free_page(addr);
6837 cpu_buffer->meta_page = NULL;
6838 }
6839
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)6840 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6841 unsigned long *subbuf_ids)
6842 {
6843 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6844 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6845 struct buffer_page *first_subbuf, *subbuf;
6846 int id = 0;
6847
6848 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6849 cpu_buffer->reader_page->id = id++;
6850
6851 first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6852 do {
6853 if (WARN_ON(id >= nr_subbufs))
6854 break;
6855
6856 subbuf_ids[id] = (unsigned long)subbuf->page;
6857 subbuf->id = id;
6858
6859 rb_inc_page(&subbuf);
6860 id++;
6861 } while (subbuf != first_subbuf);
6862
6863 /* install subbuf ID to kern VA translation */
6864 cpu_buffer->subbuf_ids = subbuf_ids;
6865
6866 meta->meta_struct_len = sizeof(*meta);
6867 meta->nr_subbufs = nr_subbufs;
6868 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6869 meta->meta_page_size = meta->subbuf_size;
6870
6871 rb_update_meta_page(cpu_buffer);
6872 }
6873
6874 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)6875 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6876 {
6877 struct ring_buffer_per_cpu *cpu_buffer;
6878
6879 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6880 return ERR_PTR(-EINVAL);
6881
6882 cpu_buffer = buffer->buffers[cpu];
6883
6884 mutex_lock(&cpu_buffer->mapping_lock);
6885
6886 if (!cpu_buffer->user_mapped) {
6887 mutex_unlock(&cpu_buffer->mapping_lock);
6888 return ERR_PTR(-ENODEV);
6889 }
6890
6891 return cpu_buffer;
6892 }
6893
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)6894 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6895 {
6896 mutex_unlock(&cpu_buffer->mapping_lock);
6897 }
6898
6899 /*
6900 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6901 * to be set-up or torn-down.
6902 */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)6903 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6904 bool inc)
6905 {
6906 unsigned long flags;
6907
6908 lockdep_assert_held(&cpu_buffer->mapping_lock);
6909
6910 /* mapped is always greater or equal to user_mapped */
6911 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6912 return -EINVAL;
6913
6914 if (inc && cpu_buffer->mapped == UINT_MAX)
6915 return -EBUSY;
6916
6917 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6918 return -EINVAL;
6919
6920 mutex_lock(&cpu_buffer->buffer->mutex);
6921 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6922
6923 if (inc) {
6924 cpu_buffer->user_mapped++;
6925 cpu_buffer->mapped++;
6926 } else {
6927 cpu_buffer->user_mapped--;
6928 cpu_buffer->mapped--;
6929 }
6930
6931 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6932 mutex_unlock(&cpu_buffer->buffer->mutex);
6933
6934 return 0;
6935 }
6936
6937 /*
6938 * +--------------+ pgoff == 0
6939 * | meta page |
6940 * +--------------+ pgoff == 1
6941 * | subbuffer 0 |
6942 * | |
6943 * +--------------+ pgoff == (1 + (1 << subbuf_order))
6944 * | subbuffer 1 |
6945 * | |
6946 * ...
6947 */
6948 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)6949 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6950 struct vm_area_struct *vma)
6951 {
6952 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6953 unsigned int subbuf_pages, subbuf_order;
6954 struct page **pages;
6955 int p = 0, s = 0;
6956 int err;
6957
6958 /* Refuse MP_PRIVATE or writable mappings */
6959 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
6960 !(vma->vm_flags & VM_MAYSHARE))
6961 return -EPERM;
6962
6963 subbuf_order = cpu_buffer->buffer->subbuf_order;
6964 subbuf_pages = 1 << subbuf_order;
6965
6966 if (subbuf_order && pgoff % subbuf_pages)
6967 return -EINVAL;
6968
6969 /*
6970 * Make sure the mapping cannot become writable later. Also tell the VM
6971 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
6972 */
6973 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
6974 VM_MAYWRITE);
6975
6976 lockdep_assert_held(&cpu_buffer->mapping_lock);
6977
6978 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
6979 nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; /* + meta-page */
6980
6981 nr_vma_pages = vma_pages(vma);
6982 if (!nr_vma_pages || nr_vma_pages > nr_pages)
6983 return -EINVAL;
6984
6985 nr_pages = nr_vma_pages;
6986
6987 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
6988 if (!pages)
6989 return -ENOMEM;
6990
6991 if (!pgoff) {
6992 unsigned long meta_page_padding;
6993
6994 pages[p++] = virt_to_page(cpu_buffer->meta_page);
6995
6996 /*
6997 * Pad with the zero-page to align the meta-page with the
6998 * sub-buffers.
6999 */
7000 meta_page_padding = subbuf_pages - 1;
7001 while (meta_page_padding-- && p < nr_pages) {
7002 unsigned long __maybe_unused zero_addr =
7003 vma->vm_start + (PAGE_SIZE * p);
7004
7005 pages[p++] = ZERO_PAGE(zero_addr);
7006 }
7007 } else {
7008 /* Skip the meta-page */
7009 pgoff -= subbuf_pages;
7010
7011 s += pgoff / subbuf_pages;
7012 }
7013
7014 while (p < nr_pages) {
7015 struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7016 int off = 0;
7017
7018 if (WARN_ON_ONCE(s >= nr_subbufs)) {
7019 err = -EINVAL;
7020 goto out;
7021 }
7022
7023 for (; off < (1 << (subbuf_order)); off++, page++) {
7024 if (p >= nr_pages)
7025 break;
7026
7027 pages[p++] = page;
7028 }
7029 s++;
7030 }
7031
7032 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7033
7034 out:
7035 kfree(pages);
7036
7037 return err;
7038 }
7039 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7040 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7041 struct vm_area_struct *vma)
7042 {
7043 return -EOPNOTSUPP;
7044 }
7045 #endif
7046
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7047 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7048 struct vm_area_struct *vma)
7049 {
7050 struct ring_buffer_per_cpu *cpu_buffer;
7051 unsigned long flags, *subbuf_ids;
7052 int err = 0;
7053
7054 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7055 return -EINVAL;
7056
7057 cpu_buffer = buffer->buffers[cpu];
7058
7059 mutex_lock(&cpu_buffer->mapping_lock);
7060
7061 if (cpu_buffer->user_mapped) {
7062 err = __rb_map_vma(cpu_buffer, vma);
7063 if (!err)
7064 err = __rb_inc_dec_mapped(cpu_buffer, true);
7065 mutex_unlock(&cpu_buffer->mapping_lock);
7066 return err;
7067 }
7068
7069 /* prevent another thread from changing buffer/sub-buffer sizes */
7070 mutex_lock(&buffer->mutex);
7071
7072 err = rb_alloc_meta_page(cpu_buffer);
7073 if (err)
7074 goto unlock;
7075
7076 /* subbuf_ids include the reader while nr_pages does not */
7077 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7078 if (!subbuf_ids) {
7079 rb_free_meta_page(cpu_buffer);
7080 err = -ENOMEM;
7081 goto unlock;
7082 }
7083
7084 atomic_inc(&cpu_buffer->resize_disabled);
7085
7086 /*
7087 * Lock all readers to block any subbuf swap until the subbuf IDs are
7088 * assigned.
7089 */
7090 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7091 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7092
7093 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7094
7095 err = __rb_map_vma(cpu_buffer, vma);
7096 if (!err) {
7097 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7098 /* This is the first time it is mapped by user */
7099 cpu_buffer->mapped++;
7100 cpu_buffer->user_mapped = 1;
7101 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7102 } else {
7103 kfree(cpu_buffer->subbuf_ids);
7104 cpu_buffer->subbuf_ids = NULL;
7105 rb_free_meta_page(cpu_buffer);
7106 }
7107
7108 unlock:
7109 mutex_unlock(&buffer->mutex);
7110 mutex_unlock(&cpu_buffer->mapping_lock);
7111
7112 return err;
7113 }
7114
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7115 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7116 {
7117 struct ring_buffer_per_cpu *cpu_buffer;
7118 unsigned long flags;
7119 int err = 0;
7120
7121 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7122 return -EINVAL;
7123
7124 cpu_buffer = buffer->buffers[cpu];
7125
7126 mutex_lock(&cpu_buffer->mapping_lock);
7127
7128 if (!cpu_buffer->user_mapped) {
7129 err = -ENODEV;
7130 goto out;
7131 } else if (cpu_buffer->user_mapped > 1) {
7132 __rb_inc_dec_mapped(cpu_buffer, false);
7133 goto out;
7134 }
7135
7136 mutex_lock(&buffer->mutex);
7137 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7138
7139 /* This is the last user space mapping */
7140 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7141 cpu_buffer->mapped--;
7142 cpu_buffer->user_mapped = 0;
7143
7144 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7145
7146 kfree(cpu_buffer->subbuf_ids);
7147 cpu_buffer->subbuf_ids = NULL;
7148 rb_free_meta_page(cpu_buffer);
7149 atomic_dec(&cpu_buffer->resize_disabled);
7150
7151 mutex_unlock(&buffer->mutex);
7152
7153 out:
7154 mutex_unlock(&cpu_buffer->mapping_lock);
7155
7156 return err;
7157 }
7158
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7159 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7160 {
7161 struct ring_buffer_per_cpu *cpu_buffer;
7162 struct buffer_page *reader;
7163 unsigned long missed_events;
7164 unsigned long reader_size;
7165 unsigned long flags;
7166
7167 cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7168 if (IS_ERR(cpu_buffer))
7169 return (int)PTR_ERR(cpu_buffer);
7170
7171 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7172
7173 consume:
7174 if (rb_per_cpu_empty(cpu_buffer))
7175 goto out;
7176
7177 reader_size = rb_page_size(cpu_buffer->reader_page);
7178
7179 /*
7180 * There are data to be read on the current reader page, we can
7181 * return to the caller. But before that, we assume the latter will read
7182 * everything. Let's update the kernel reader accordingly.
7183 */
7184 if (cpu_buffer->reader_page->read < reader_size) {
7185 while (cpu_buffer->reader_page->read < reader_size)
7186 rb_advance_reader(cpu_buffer);
7187 goto out;
7188 }
7189
7190 reader = rb_get_reader_page(cpu_buffer);
7191 if (WARN_ON(!reader))
7192 goto out;
7193
7194 /* Check if any events were dropped */
7195 missed_events = cpu_buffer->lost_events;
7196
7197 if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7198 if (missed_events) {
7199 struct buffer_data_page *bpage = reader->page;
7200 unsigned int commit;
7201 /*
7202 * Use the real_end for the data size,
7203 * This gives us a chance to store the lost events
7204 * on the page.
7205 */
7206 if (reader->real_end)
7207 local_set(&bpage->commit, reader->real_end);
7208 /*
7209 * If there is room at the end of the page to save the
7210 * missed events, then record it there.
7211 */
7212 commit = rb_page_size(reader);
7213 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7214 memcpy(&bpage->data[commit], &missed_events,
7215 sizeof(missed_events));
7216 local_add(RB_MISSED_STORED, &bpage->commit);
7217 }
7218 local_add(RB_MISSED_EVENTS, &bpage->commit);
7219 }
7220 } else {
7221 /*
7222 * There really shouldn't be any missed events if the commit
7223 * is on the reader page.
7224 */
7225 WARN_ON_ONCE(missed_events);
7226 }
7227
7228 cpu_buffer->lost_events = 0;
7229
7230 goto consume;
7231
7232 out:
7233 /* Some archs do not have data cache coherency between kernel and user-space */
7234 flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7235
7236 rb_update_meta_page(cpu_buffer);
7237
7238 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7239 rb_put_mapped_buffer(cpu_buffer);
7240
7241 return 0;
7242 }
7243
7244 /*
7245 * We only allocate new buffers, never free them if the CPU goes down.
7246 * If we were to free the buffer, then the user would lose any trace that was in
7247 * the buffer.
7248 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7249 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7250 {
7251 struct trace_buffer *buffer;
7252 long nr_pages_same;
7253 int cpu_i;
7254 unsigned long nr_pages;
7255
7256 buffer = container_of(node, struct trace_buffer, node);
7257 if (cpumask_test_cpu(cpu, buffer->cpumask))
7258 return 0;
7259
7260 nr_pages = 0;
7261 nr_pages_same = 1;
7262 /* check if all cpu sizes are same */
7263 for_each_buffer_cpu(buffer, cpu_i) {
7264 /* fill in the size from first enabled cpu */
7265 if (nr_pages == 0)
7266 nr_pages = buffer->buffers[cpu_i]->nr_pages;
7267 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7268 nr_pages_same = 0;
7269 break;
7270 }
7271 }
7272 /* allocate minimum pages, user can later expand it */
7273 if (!nr_pages_same)
7274 nr_pages = 2;
7275 buffer->buffers[cpu] =
7276 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7277 if (!buffer->buffers[cpu]) {
7278 WARN(1, "failed to allocate ring buffer on CPU %u\n",
7279 cpu);
7280 return -ENOMEM;
7281 }
7282 smp_wmb();
7283 cpumask_set_cpu(cpu, buffer->cpumask);
7284 return 0;
7285 }
7286
7287 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7288 /*
7289 * This is a basic integrity check of the ring buffer.
7290 * Late in the boot cycle this test will run when configured in.
7291 * It will kick off a thread per CPU that will go into a loop
7292 * writing to the per cpu ring buffer various sizes of data.
7293 * Some of the data will be large items, some small.
7294 *
7295 * Another thread is created that goes into a spin, sending out
7296 * IPIs to the other CPUs to also write into the ring buffer.
7297 * this is to test the nesting ability of the buffer.
7298 *
7299 * Basic stats are recorded and reported. If something in the
7300 * ring buffer should happen that's not expected, a big warning
7301 * is displayed and all ring buffers are disabled.
7302 */
7303 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7304
7305 struct rb_test_data {
7306 struct trace_buffer *buffer;
7307 unsigned long events;
7308 unsigned long bytes_written;
7309 unsigned long bytes_alloc;
7310 unsigned long bytes_dropped;
7311 unsigned long events_nested;
7312 unsigned long bytes_written_nested;
7313 unsigned long bytes_alloc_nested;
7314 unsigned long bytes_dropped_nested;
7315 int min_size_nested;
7316 int max_size_nested;
7317 int max_size;
7318 int min_size;
7319 int cpu;
7320 int cnt;
7321 };
7322
7323 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7324
7325 /* 1 meg per cpu */
7326 #define RB_TEST_BUFFER_SIZE 1048576
7327
7328 static char rb_string[] __initdata =
7329 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7330 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7331 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7332
7333 static bool rb_test_started __initdata;
7334
7335 struct rb_item {
7336 int size;
7337 char str[];
7338 };
7339
rb_write_something(struct rb_test_data * data,bool nested)7340 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7341 {
7342 struct ring_buffer_event *event;
7343 struct rb_item *item;
7344 bool started;
7345 int event_len;
7346 int size;
7347 int len;
7348 int cnt;
7349
7350 /* Have nested writes different that what is written */
7351 cnt = data->cnt + (nested ? 27 : 0);
7352
7353 /* Multiply cnt by ~e, to make some unique increment */
7354 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7355
7356 len = size + sizeof(struct rb_item);
7357
7358 started = rb_test_started;
7359 /* read rb_test_started before checking buffer enabled */
7360 smp_rmb();
7361
7362 event = ring_buffer_lock_reserve(data->buffer, len);
7363 if (!event) {
7364 /* Ignore dropped events before test starts. */
7365 if (started) {
7366 if (nested)
7367 data->bytes_dropped += len;
7368 else
7369 data->bytes_dropped_nested += len;
7370 }
7371 return len;
7372 }
7373
7374 event_len = ring_buffer_event_length(event);
7375
7376 if (RB_WARN_ON(data->buffer, event_len < len))
7377 goto out;
7378
7379 item = ring_buffer_event_data(event);
7380 item->size = size;
7381 memcpy(item->str, rb_string, size);
7382
7383 if (nested) {
7384 data->bytes_alloc_nested += event_len;
7385 data->bytes_written_nested += len;
7386 data->events_nested++;
7387 if (!data->min_size_nested || len < data->min_size_nested)
7388 data->min_size_nested = len;
7389 if (len > data->max_size_nested)
7390 data->max_size_nested = len;
7391 } else {
7392 data->bytes_alloc += event_len;
7393 data->bytes_written += len;
7394 data->events++;
7395 if (!data->min_size || len < data->min_size)
7396 data->max_size = len;
7397 if (len > data->max_size)
7398 data->max_size = len;
7399 }
7400
7401 out:
7402 ring_buffer_unlock_commit(data->buffer);
7403
7404 return 0;
7405 }
7406
rb_test(void * arg)7407 static __init int rb_test(void *arg)
7408 {
7409 struct rb_test_data *data = arg;
7410
7411 while (!kthread_should_stop()) {
7412 rb_write_something(data, false);
7413 data->cnt++;
7414
7415 set_current_state(TASK_INTERRUPTIBLE);
7416 /* Now sleep between a min of 100-300us and a max of 1ms */
7417 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7418 }
7419
7420 return 0;
7421 }
7422
rb_ipi(void * ignore)7423 static __init void rb_ipi(void *ignore)
7424 {
7425 struct rb_test_data *data;
7426 int cpu = smp_processor_id();
7427
7428 data = &rb_data[cpu];
7429 rb_write_something(data, true);
7430 }
7431
rb_hammer_test(void * arg)7432 static __init int rb_hammer_test(void *arg)
7433 {
7434 while (!kthread_should_stop()) {
7435
7436 /* Send an IPI to all cpus to write data! */
7437 smp_call_function(rb_ipi, NULL, 1);
7438 /* No sleep, but for non preempt, let others run */
7439 schedule();
7440 }
7441
7442 return 0;
7443 }
7444
test_ringbuffer(void)7445 static __init int test_ringbuffer(void)
7446 {
7447 struct task_struct *rb_hammer;
7448 struct trace_buffer *buffer;
7449 int cpu;
7450 int ret = 0;
7451
7452 if (security_locked_down(LOCKDOWN_TRACEFS)) {
7453 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7454 return 0;
7455 }
7456
7457 pr_info("Running ring buffer tests...\n");
7458
7459 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7460 if (WARN_ON(!buffer))
7461 return 0;
7462
7463 /* Disable buffer so that threads can't write to it yet */
7464 ring_buffer_record_off(buffer);
7465
7466 for_each_online_cpu(cpu) {
7467 rb_data[cpu].buffer = buffer;
7468 rb_data[cpu].cpu = cpu;
7469 rb_data[cpu].cnt = cpu;
7470 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7471 cpu, "rbtester/%u");
7472 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7473 pr_cont("FAILED\n");
7474 ret = PTR_ERR(rb_threads[cpu]);
7475 goto out_free;
7476 }
7477 }
7478
7479 /* Now create the rb hammer! */
7480 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7481 if (WARN_ON(IS_ERR(rb_hammer))) {
7482 pr_cont("FAILED\n");
7483 ret = PTR_ERR(rb_hammer);
7484 goto out_free;
7485 }
7486
7487 ring_buffer_record_on(buffer);
7488 /*
7489 * Show buffer is enabled before setting rb_test_started.
7490 * Yes there's a small race window where events could be
7491 * dropped and the thread wont catch it. But when a ring
7492 * buffer gets enabled, there will always be some kind of
7493 * delay before other CPUs see it. Thus, we don't care about
7494 * those dropped events. We care about events dropped after
7495 * the threads see that the buffer is active.
7496 */
7497 smp_wmb();
7498 rb_test_started = true;
7499
7500 set_current_state(TASK_INTERRUPTIBLE);
7501 /* Just run for 10 seconds */;
7502 schedule_timeout(10 * HZ);
7503
7504 kthread_stop(rb_hammer);
7505
7506 out_free:
7507 for_each_online_cpu(cpu) {
7508 if (!rb_threads[cpu])
7509 break;
7510 kthread_stop(rb_threads[cpu]);
7511 }
7512 if (ret) {
7513 ring_buffer_free(buffer);
7514 return ret;
7515 }
7516
7517 /* Report! */
7518 pr_info("finished\n");
7519 for_each_online_cpu(cpu) {
7520 struct ring_buffer_event *event;
7521 struct rb_test_data *data = &rb_data[cpu];
7522 struct rb_item *item;
7523 unsigned long total_events;
7524 unsigned long total_dropped;
7525 unsigned long total_written;
7526 unsigned long total_alloc;
7527 unsigned long total_read = 0;
7528 unsigned long total_size = 0;
7529 unsigned long total_len = 0;
7530 unsigned long total_lost = 0;
7531 unsigned long lost;
7532 int big_event_size;
7533 int small_event_size;
7534
7535 ret = -1;
7536
7537 total_events = data->events + data->events_nested;
7538 total_written = data->bytes_written + data->bytes_written_nested;
7539 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7540 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7541
7542 big_event_size = data->max_size + data->max_size_nested;
7543 small_event_size = data->min_size + data->min_size_nested;
7544
7545 pr_info("CPU %d:\n", cpu);
7546 pr_info(" events: %ld\n", total_events);
7547 pr_info(" dropped bytes: %ld\n", total_dropped);
7548 pr_info(" alloced bytes: %ld\n", total_alloc);
7549 pr_info(" written bytes: %ld\n", total_written);
7550 pr_info(" biggest event: %d\n", big_event_size);
7551 pr_info(" smallest event: %d\n", small_event_size);
7552
7553 if (RB_WARN_ON(buffer, total_dropped))
7554 break;
7555
7556 ret = 0;
7557
7558 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7559 total_lost += lost;
7560 item = ring_buffer_event_data(event);
7561 total_len += ring_buffer_event_length(event);
7562 total_size += item->size + sizeof(struct rb_item);
7563 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7564 pr_info("FAILED!\n");
7565 pr_info("buffer had: %.*s\n", item->size, item->str);
7566 pr_info("expected: %.*s\n", item->size, rb_string);
7567 RB_WARN_ON(buffer, 1);
7568 ret = -1;
7569 break;
7570 }
7571 total_read++;
7572 }
7573 if (ret)
7574 break;
7575
7576 ret = -1;
7577
7578 pr_info(" read events: %ld\n", total_read);
7579 pr_info(" lost events: %ld\n", total_lost);
7580 pr_info(" total events: %ld\n", total_lost + total_read);
7581 pr_info(" recorded len bytes: %ld\n", total_len);
7582 pr_info(" recorded size bytes: %ld\n", total_size);
7583 if (total_lost) {
7584 pr_info(" With dropped events, record len and size may not match\n"
7585 " alloced and written from above\n");
7586 } else {
7587 if (RB_WARN_ON(buffer, total_len != total_alloc ||
7588 total_size != total_written))
7589 break;
7590 }
7591 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7592 break;
7593
7594 ret = 0;
7595 }
7596 if (!ret)
7597 pr_info("Ring buffer PASSED!\n");
7598
7599 ring_buffer_free(buffer);
7600 return 0;
7601 }
7602
7603 late_initcall(test_ringbuffer);
7604 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7605