xref: /linux/kernel/trace/ring_buffer.c (revision 744fab2d9ff9177a27647c3710e86d43f2efe68c)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Generic ring buffer
4   *
5   * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6   */
7  #include <linux/trace_recursion.h>
8  #include <linux/trace_events.h>
9  #include <linux/ring_buffer.h>
10  #include <linux/trace_clock.h>
11  #include <linux/sched/clock.h>
12  #include <linux/cacheflush.h>
13  #include <linux/trace_seq.h>
14  #include <linux/spinlock.h>
15  #include <linux/irq_work.h>
16  #include <linux/security.h>
17  #include <linux/uaccess.h>
18  #include <linux/hardirq.h>
19  #include <linux/kthread.h>	/* for self test */
20  #include <linux/module.h>
21  #include <linux/percpu.h>
22  #include <linux/mutex.h>
23  #include <linux/delay.h>
24  #include <linux/slab.h>
25  #include <linux/init.h>
26  #include <linux/hash.h>
27  #include <linux/list.h>
28  #include <linux/cpu.h>
29  #include <linux/oom.h>
30  #include <linux/mm.h>
31  
32  #include <asm/local64.h>
33  #include <asm/local.h>
34  
35  #include "trace.h"
36  
37  /*
38   * The "absolute" timestamp in the buffer is only 59 bits.
39   * If a clock has the 5 MSBs set, it needs to be saved and
40   * reinserted.
41   */
42  #define TS_MSB		(0xf8ULL << 56)
43  #define ABS_TS_MASK	(~TS_MSB)
44  
45  static void update_pages_handler(struct work_struct *work);
46  
47  #define RING_BUFFER_META_MAGIC	0xBADFEED
48  
49  struct ring_buffer_meta {
50  	int		magic;
51  	int		struct_size;
52  	unsigned long	text_addr;
53  	unsigned long	data_addr;
54  	unsigned long	first_buffer;
55  	unsigned long	head_buffer;
56  	unsigned long	commit_buffer;
57  	__u32		subbuf_size;
58  	__u32		nr_subbufs;
59  	int		buffers[];
60  };
61  
62  /*
63   * The ring buffer header is special. We must manually up keep it.
64   */
ring_buffer_print_entry_header(struct trace_seq * s)65  int ring_buffer_print_entry_header(struct trace_seq *s)
66  {
67  	trace_seq_puts(s, "# compressed entry header\n");
68  	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
69  	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
70  	trace_seq_puts(s, "\tarray       :   32 bits\n");
71  	trace_seq_putc(s, '\n');
72  	trace_seq_printf(s, "\tpadding     : type == %d\n",
73  			 RINGBUF_TYPE_PADDING);
74  	trace_seq_printf(s, "\ttime_extend : type == %d\n",
75  			 RINGBUF_TYPE_TIME_EXTEND);
76  	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77  			 RINGBUF_TYPE_TIME_STAMP);
78  	trace_seq_printf(s, "\tdata max type_len  == %d\n",
79  			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80  
81  	return !trace_seq_has_overflowed(s);
82  }
83  
84  /*
85   * The ring buffer is made up of a list of pages. A separate list of pages is
86   * allocated for each CPU. A writer may only write to a buffer that is
87   * associated with the CPU it is currently executing on.  A reader may read
88   * from any per cpu buffer.
89   *
90   * The reader is special. For each per cpu buffer, the reader has its own
91   * reader page. When a reader has read the entire reader page, this reader
92   * page is swapped with another page in the ring buffer.
93   *
94   * Now, as long as the writer is off the reader page, the reader can do what
95   * ever it wants with that page. The writer will never write to that page
96   * again (as long as it is out of the ring buffer).
97   *
98   * Here's some silly ASCII art.
99   *
100   *   +------+
101   *   |reader|          RING BUFFER
102   *   |page  |
103   *   +------+        +---+   +---+   +---+
104   *                   |   |-->|   |-->|   |
105   *                   +---+   +---+   +---+
106   *                     ^               |
107   *                     |               |
108   *                     +---------------+
109   *
110   *
111   *   +------+
112   *   |reader|          RING BUFFER
113   *   |page  |------------------v
114   *   +------+        +---+   +---+   +---+
115   *                   |   |-->|   |-->|   |
116   *                   +---+   +---+   +---+
117   *                     ^               |
118   *                     |               |
119   *                     +---------------+
120   *
121   *
122   *   +------+
123   *   |reader|          RING BUFFER
124   *   |page  |------------------v
125   *   +------+        +---+   +---+   +---+
126   *      ^            |   |-->|   |-->|   |
127   *      |            +---+   +---+   +---+
128   *      |                              |
129   *      |                              |
130   *      +------------------------------+
131   *
132   *
133   *   +------+
134   *   |buffer|          RING BUFFER
135   *   |page  |------------------v
136   *   +------+        +---+   +---+   +---+
137   *      ^            |   |   |   |-->|   |
138   *      |   New      +---+   +---+   +---+
139   *      |  Reader------^               |
140   *      |   page                       |
141   *      +------------------------------+
142   *
143   *
144   * After we make this swap, the reader can hand this page off to the splice
145   * code and be done with it. It can even allocate a new page if it needs to
146   * and swap that into the ring buffer.
147   *
148   * We will be using cmpxchg soon to make all this lockless.
149   *
150   */
151  
152  /* Used for individual buffers (after the counter) */
153  #define RB_BUFFER_OFF		(1 << 20)
154  
155  #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156  
157  #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158  #define RB_ALIGNMENT		4U
159  #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160  #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
161  
162  #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163  # define RB_FORCE_8BYTE_ALIGNMENT	0
164  # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
165  #else
166  # define RB_FORCE_8BYTE_ALIGNMENT	1
167  # define RB_ARCH_ALIGNMENT		8U
168  #endif
169  
170  #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
171  
172  /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173  #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174  
175  enum {
176  	RB_LEN_TIME_EXTEND = 8,
177  	RB_LEN_TIME_STAMP =  8,
178  };
179  
180  #define skip_time_extend(event) \
181  	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182  
183  #define extended_time(event) \
184  	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185  
rb_null_event(struct ring_buffer_event * event)186  static inline bool rb_null_event(struct ring_buffer_event *event)
187  {
188  	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189  }
190  
rb_event_set_padding(struct ring_buffer_event * event)191  static void rb_event_set_padding(struct ring_buffer_event *event)
192  {
193  	/* padding has a NULL time_delta */
194  	event->type_len = RINGBUF_TYPE_PADDING;
195  	event->time_delta = 0;
196  }
197  
198  static unsigned
rb_event_data_length(struct ring_buffer_event * event)199  rb_event_data_length(struct ring_buffer_event *event)
200  {
201  	unsigned length;
202  
203  	if (event->type_len)
204  		length = event->type_len * RB_ALIGNMENT;
205  	else
206  		length = event->array[0];
207  	return length + RB_EVNT_HDR_SIZE;
208  }
209  
210  /*
211   * Return the length of the given event. Will return
212   * the length of the time extend if the event is a
213   * time extend.
214   */
215  static inline unsigned
rb_event_length(struct ring_buffer_event * event)216  rb_event_length(struct ring_buffer_event *event)
217  {
218  	switch (event->type_len) {
219  	case RINGBUF_TYPE_PADDING:
220  		if (rb_null_event(event))
221  			/* undefined */
222  			return -1;
223  		return  event->array[0] + RB_EVNT_HDR_SIZE;
224  
225  	case RINGBUF_TYPE_TIME_EXTEND:
226  		return RB_LEN_TIME_EXTEND;
227  
228  	case RINGBUF_TYPE_TIME_STAMP:
229  		return RB_LEN_TIME_STAMP;
230  
231  	case RINGBUF_TYPE_DATA:
232  		return rb_event_data_length(event);
233  	default:
234  		WARN_ON_ONCE(1);
235  	}
236  	/* not hit */
237  	return 0;
238  }
239  
240  /*
241   * Return total length of time extend and data,
242   *   or just the event length for all other events.
243   */
244  static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)245  rb_event_ts_length(struct ring_buffer_event *event)
246  {
247  	unsigned len = 0;
248  
249  	if (extended_time(event)) {
250  		/* time extends include the data event after it */
251  		len = RB_LEN_TIME_EXTEND;
252  		event = skip_time_extend(event);
253  	}
254  	return len + rb_event_length(event);
255  }
256  
257  /**
258   * ring_buffer_event_length - return the length of the event
259   * @event: the event to get the length of
260   *
261   * Returns the size of the data load of a data event.
262   * If the event is something other than a data event, it
263   * returns the size of the event itself. With the exception
264   * of a TIME EXTEND, where it still returns the size of the
265   * data load of the data event after it.
266   */
ring_buffer_event_length(struct ring_buffer_event * event)267  unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268  {
269  	unsigned length;
270  
271  	if (extended_time(event))
272  		event = skip_time_extend(event);
273  
274  	length = rb_event_length(event);
275  	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276  		return length;
277  	length -= RB_EVNT_HDR_SIZE;
278  	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                  length -= sizeof(event->array[0]);
280  	return length;
281  }
282  EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283  
284  /* inline for ring buffer fast paths */
285  static __always_inline void *
rb_event_data(struct ring_buffer_event * event)286  rb_event_data(struct ring_buffer_event *event)
287  {
288  	if (extended_time(event))
289  		event = skip_time_extend(event);
290  	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291  	/* If length is in len field, then array[0] has the data */
292  	if (event->type_len)
293  		return (void *)&event->array[0];
294  	/* Otherwise length is in array[0] and array[1] has the data */
295  	return (void *)&event->array[1];
296  }
297  
298  /**
299   * ring_buffer_event_data - return the data of the event
300   * @event: the event to get the data from
301   */
ring_buffer_event_data(struct ring_buffer_event * event)302  void *ring_buffer_event_data(struct ring_buffer_event *event)
303  {
304  	return rb_event_data(event);
305  }
306  EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307  
308  #define for_each_buffer_cpu(buffer, cpu)		\
309  	for_each_cpu(cpu, buffer->cpumask)
310  
311  #define for_each_online_buffer_cpu(buffer, cpu)		\
312  	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313  
314  #define TS_SHIFT	27
315  #define TS_MASK		((1ULL << TS_SHIFT) - 1)
316  #define TS_DELTA_TEST	(~TS_MASK)
317  
rb_event_time_stamp(struct ring_buffer_event * event)318  static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319  {
320  	u64 ts;
321  
322  	ts = event->array[0];
323  	ts <<= TS_SHIFT;
324  	ts += event->time_delta;
325  
326  	return ts;
327  }
328  
329  /* Flag when events were overwritten */
330  #define RB_MISSED_EVENTS	(1 << 31)
331  /* Missed count stored at end */
332  #define RB_MISSED_STORED	(1 << 30)
333  
334  #define RB_MISSED_MASK		(3 << 30)
335  
336  struct buffer_data_page {
337  	u64		 time_stamp;	/* page time stamp */
338  	local_t		 commit;	/* write committed index */
339  	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
340  };
341  
342  struct buffer_data_read_page {
343  	unsigned		order;	/* order of the page */
344  	struct buffer_data_page	*data;	/* actual data, stored in this page */
345  };
346  
347  /*
348   * Note, the buffer_page list must be first. The buffer pages
349   * are allocated in cache lines, which means that each buffer
350   * page will be at the beginning of a cache line, and thus
351   * the least significant bits will be zero. We use this to
352   * add flags in the list struct pointers, to make the ring buffer
353   * lockless.
354   */
355  struct buffer_page {
356  	struct list_head list;		/* list of buffer pages */
357  	local_t		 write;		/* index for next write */
358  	unsigned	 read;		/* index for next read */
359  	local_t		 entries;	/* entries on this page */
360  	unsigned long	 real_end;	/* real end of data */
361  	unsigned	 order;		/* order of the page */
362  	u32		 id:30;		/* ID for external mapping */
363  	u32		 range:1;	/* Mapped via a range */
364  	struct buffer_data_page *page;	/* Actual data page */
365  };
366  
367  /*
368   * The buffer page counters, write and entries, must be reset
369   * atomically when crossing page boundaries. To synchronize this
370   * update, two counters are inserted into the number. One is
371   * the actual counter for the write position or count on the page.
372   *
373   * The other is a counter of updaters. Before an update happens
374   * the update partition of the counter is incremented. This will
375   * allow the updater to update the counter atomically.
376   *
377   * The counter is 20 bits, and the state data is 12.
378   */
379  #define RB_WRITE_MASK		0xfffff
380  #define RB_WRITE_INTCNT		(1 << 20)
381  
rb_init_page(struct buffer_data_page * bpage)382  static void rb_init_page(struct buffer_data_page *bpage)
383  {
384  	local_set(&bpage->commit, 0);
385  }
386  
rb_page_commit(struct buffer_page * bpage)387  static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388  {
389  	return local_read(&bpage->page->commit);
390  }
391  
free_buffer_page(struct buffer_page * bpage)392  static void free_buffer_page(struct buffer_page *bpage)
393  {
394  	/* Range pages are not to be freed */
395  	if (!bpage->range)
396  		free_pages((unsigned long)bpage->page, bpage->order);
397  	kfree(bpage);
398  }
399  
400  /*
401   * We need to fit the time_stamp delta into 27 bits.
402   */
test_time_stamp(u64 delta)403  static inline bool test_time_stamp(u64 delta)
404  {
405  	return !!(delta & TS_DELTA_TEST);
406  }
407  
408  struct rb_irq_work {
409  	struct irq_work			work;
410  	wait_queue_head_t		waiters;
411  	wait_queue_head_t		full_waiters;
412  	atomic_t			seq;
413  	bool				waiters_pending;
414  	bool				full_waiters_pending;
415  	bool				wakeup_full;
416  };
417  
418  /*
419   * Structure to hold event state and handle nested events.
420   */
421  struct rb_event_info {
422  	u64			ts;
423  	u64			delta;
424  	u64			before;
425  	u64			after;
426  	unsigned long		length;
427  	struct buffer_page	*tail_page;
428  	int			add_timestamp;
429  };
430  
431  /*
432   * Used for the add_timestamp
433   *  NONE
434   *  EXTEND - wants a time extend
435   *  ABSOLUTE - the buffer requests all events to have absolute time stamps
436   *  FORCE - force a full time stamp.
437   */
438  enum {
439  	RB_ADD_STAMP_NONE		= 0,
440  	RB_ADD_STAMP_EXTEND		= BIT(1),
441  	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
442  	RB_ADD_STAMP_FORCE		= BIT(3)
443  };
444  /*
445   * Used for which event context the event is in.
446   *  TRANSITION = 0
447   *  NMI     = 1
448   *  IRQ     = 2
449   *  SOFTIRQ = 3
450   *  NORMAL  = 4
451   *
452   * See trace_recursive_lock() comment below for more details.
453   */
454  enum {
455  	RB_CTX_TRANSITION,
456  	RB_CTX_NMI,
457  	RB_CTX_IRQ,
458  	RB_CTX_SOFTIRQ,
459  	RB_CTX_NORMAL,
460  	RB_CTX_MAX
461  };
462  
463  struct rb_time_struct {
464  	local64_t	time;
465  };
466  typedef struct rb_time_struct rb_time_t;
467  
468  #define MAX_NEST	5
469  
470  /*
471   * head_page == tail_page && head == tail then buffer is empty.
472   */
473  struct ring_buffer_per_cpu {
474  	int				cpu;
475  	atomic_t			record_disabled;
476  	atomic_t			resize_disabled;
477  	struct trace_buffer	*buffer;
478  	raw_spinlock_t			reader_lock;	/* serialize readers */
479  	arch_spinlock_t			lock;
480  	struct lock_class_key		lock_key;
481  	struct buffer_data_page		*free_page;
482  	unsigned long			nr_pages;
483  	unsigned int			current_context;
484  	struct list_head		*pages;
485  	/* pages generation counter, incremented when the list changes */
486  	unsigned long			cnt;
487  	struct buffer_page		*head_page;	/* read from head */
488  	struct buffer_page		*tail_page;	/* write to tail */
489  	struct buffer_page		*commit_page;	/* committed pages */
490  	struct buffer_page		*reader_page;
491  	unsigned long			lost_events;
492  	unsigned long			last_overrun;
493  	unsigned long			nest;
494  	local_t				entries_bytes;
495  	local_t				entries;
496  	local_t				overrun;
497  	local_t				commit_overrun;
498  	local_t				dropped_events;
499  	local_t				committing;
500  	local_t				commits;
501  	local_t				pages_touched;
502  	local_t				pages_lost;
503  	local_t				pages_read;
504  	long				last_pages_touch;
505  	size_t				shortest_full;
506  	unsigned long			read;
507  	unsigned long			read_bytes;
508  	rb_time_t			write_stamp;
509  	rb_time_t			before_stamp;
510  	u64				event_stamp[MAX_NEST];
511  	u64				read_stamp;
512  	/* pages removed since last reset */
513  	unsigned long			pages_removed;
514  
515  	unsigned int			mapped;
516  	unsigned int			user_mapped;	/* user space mapping */
517  	struct mutex			mapping_lock;
518  	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
519  	struct trace_buffer_meta	*meta_page;
520  	struct ring_buffer_meta		*ring_meta;
521  
522  	/* ring buffer pages to update, > 0 to add, < 0 to remove */
523  	long				nr_pages_to_update;
524  	struct list_head		new_pages; /* new pages to add */
525  	struct work_struct		update_pages_work;
526  	struct completion		update_done;
527  
528  	struct rb_irq_work		irq_work;
529  };
530  
531  struct trace_buffer {
532  	unsigned			flags;
533  	int				cpus;
534  	atomic_t			record_disabled;
535  	atomic_t			resizing;
536  	cpumask_var_t			cpumask;
537  
538  	struct lock_class_key		*reader_lock_key;
539  
540  	struct mutex			mutex;
541  
542  	struct ring_buffer_per_cpu	**buffers;
543  
544  	struct hlist_node		node;
545  	u64				(*clock)(void);
546  
547  	struct rb_irq_work		irq_work;
548  	bool				time_stamp_abs;
549  
550  	unsigned long			range_addr_start;
551  	unsigned long			range_addr_end;
552  
553  	long				last_text_delta;
554  	long				last_data_delta;
555  
556  	unsigned int			subbuf_size;
557  	unsigned int			subbuf_order;
558  	unsigned int			max_data_size;
559  };
560  
561  struct ring_buffer_iter {
562  	struct ring_buffer_per_cpu	*cpu_buffer;
563  	unsigned long			head;
564  	unsigned long			next_event;
565  	struct buffer_page		*head_page;
566  	struct buffer_page		*cache_reader_page;
567  	unsigned long			cache_read;
568  	unsigned long			cache_pages_removed;
569  	u64				read_stamp;
570  	u64				page_stamp;
571  	struct ring_buffer_event	*event;
572  	size_t				event_size;
573  	int				missed_events;
574  };
575  
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)576  int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
577  {
578  	struct buffer_data_page field;
579  
580  	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
581  			 "offset:0;\tsize:%u;\tsigned:%u;\n",
582  			 (unsigned int)sizeof(field.time_stamp),
583  			 (unsigned int)is_signed_type(u64));
584  
585  	trace_seq_printf(s, "\tfield: local_t commit;\t"
586  			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
587  			 (unsigned int)offsetof(typeof(field), commit),
588  			 (unsigned int)sizeof(field.commit),
589  			 (unsigned int)is_signed_type(long));
590  
591  	trace_seq_printf(s, "\tfield: int overwrite;\t"
592  			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
593  			 (unsigned int)offsetof(typeof(field), commit),
594  			 1,
595  			 (unsigned int)is_signed_type(long));
596  
597  	trace_seq_printf(s, "\tfield: char data;\t"
598  			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
599  			 (unsigned int)offsetof(typeof(field), data),
600  			 (unsigned int)buffer->subbuf_size,
601  			 (unsigned int)is_signed_type(char));
602  
603  	return !trace_seq_has_overflowed(s);
604  }
605  
rb_time_read(rb_time_t * t,u64 * ret)606  static inline void rb_time_read(rb_time_t *t, u64 *ret)
607  {
608  	*ret = local64_read(&t->time);
609  }
rb_time_set(rb_time_t * t,u64 val)610  static void rb_time_set(rb_time_t *t, u64 val)
611  {
612  	local64_set(&t->time, val);
613  }
614  
615  /*
616   * Enable this to make sure that the event passed to
617   * ring_buffer_event_time_stamp() is not committed and also
618   * is on the buffer that it passed in.
619   */
620  //#define RB_VERIFY_EVENT
621  #ifdef RB_VERIFY_EVENT
622  static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)623  static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
624  			 void *event)
625  {
626  	struct buffer_page *page = cpu_buffer->commit_page;
627  	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
628  	struct list_head *next;
629  	long commit, write;
630  	unsigned long addr = (unsigned long)event;
631  	bool done = false;
632  	int stop = 0;
633  
634  	/* Make sure the event exists and is not committed yet */
635  	do {
636  		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
637  			done = true;
638  		commit = local_read(&page->page->commit);
639  		write = local_read(&page->write);
640  		if (addr >= (unsigned long)&page->page->data[commit] &&
641  		    addr < (unsigned long)&page->page->data[write])
642  			return;
643  
644  		next = rb_list_head(page->list.next);
645  		page = list_entry(next, struct buffer_page, list);
646  	} while (!done);
647  	WARN_ON_ONCE(1);
648  }
649  #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)650  static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
651  			 void *event)
652  {
653  }
654  #endif
655  
656  /*
657   * The absolute time stamp drops the 5 MSBs and some clocks may
658   * require them. The rb_fix_abs_ts() will take a previous full
659   * time stamp, and add the 5 MSB of that time stamp on to the
660   * saved absolute time stamp. Then they are compared in case of
661   * the unlikely event that the latest time stamp incremented
662   * the 5 MSB.
663   */
rb_fix_abs_ts(u64 abs,u64 save_ts)664  static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
665  {
666  	if (save_ts & TS_MSB) {
667  		abs |= save_ts & TS_MSB;
668  		/* Check for overflow */
669  		if (unlikely(abs < save_ts))
670  			abs += 1ULL << 59;
671  	}
672  	return abs;
673  }
674  
675  static inline u64 rb_time_stamp(struct trace_buffer *buffer);
676  
677  /**
678   * ring_buffer_event_time_stamp - return the event's current time stamp
679   * @buffer: The buffer that the event is on
680   * @event: the event to get the time stamp of
681   *
682   * Note, this must be called after @event is reserved, and before it is
683   * committed to the ring buffer. And must be called from the same
684   * context where the event was reserved (normal, softirq, irq, etc).
685   *
686   * Returns the time stamp associated with the current event.
687   * If the event has an extended time stamp, then that is used as
688   * the time stamp to return.
689   * In the highly unlikely case that the event was nested more than
690   * the max nesting, then the write_stamp of the buffer is returned,
691   * otherwise  current time is returned, but that really neither of
692   * the last two cases should ever happen.
693   */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)694  u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
695  				 struct ring_buffer_event *event)
696  {
697  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
698  	unsigned int nest;
699  	u64 ts;
700  
701  	/* If the event includes an absolute time, then just use that */
702  	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
703  		ts = rb_event_time_stamp(event);
704  		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
705  	}
706  
707  	nest = local_read(&cpu_buffer->committing);
708  	verify_event(cpu_buffer, event);
709  	if (WARN_ON_ONCE(!nest))
710  		goto fail;
711  
712  	/* Read the current saved nesting level time stamp */
713  	if (likely(--nest < MAX_NEST))
714  		return cpu_buffer->event_stamp[nest];
715  
716  	/* Shouldn't happen, warn if it does */
717  	WARN_ONCE(1, "nest (%d) greater than max", nest);
718  
719   fail:
720  	rb_time_read(&cpu_buffer->write_stamp, &ts);
721  
722  	return ts;
723  }
724  
725  /**
726   * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
727   * @buffer: The ring_buffer to get the number of pages from
728   * @cpu: The cpu of the ring_buffer to get the number of pages from
729   *
730   * Returns the number of pages that have content in the ring buffer.
731   */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)732  size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
733  {
734  	size_t read;
735  	size_t lost;
736  	size_t cnt;
737  
738  	read = local_read(&buffer->buffers[cpu]->pages_read);
739  	lost = local_read(&buffer->buffers[cpu]->pages_lost);
740  	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
741  
742  	if (WARN_ON_ONCE(cnt < lost))
743  		return 0;
744  
745  	cnt -= lost;
746  
747  	/* The reader can read an empty page, but not more than that */
748  	if (cnt < read) {
749  		WARN_ON_ONCE(read > cnt + 1);
750  		return 0;
751  	}
752  
753  	return cnt - read;
754  }
755  
full_hit(struct trace_buffer * buffer,int cpu,int full)756  static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
757  {
758  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
759  	size_t nr_pages;
760  	size_t dirty;
761  
762  	nr_pages = cpu_buffer->nr_pages;
763  	if (!nr_pages || !full)
764  		return true;
765  
766  	/*
767  	 * Add one as dirty will never equal nr_pages, as the sub-buffer
768  	 * that the writer is on is not counted as dirty.
769  	 * This is needed if "buffer_percent" is set to 100.
770  	 */
771  	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
772  
773  	return (dirty * 100) >= (full * nr_pages);
774  }
775  
776  /*
777   * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
778   *
779   * Schedules a delayed work to wake up any task that is blocked on the
780   * ring buffer waiters queue.
781   */
rb_wake_up_waiters(struct irq_work * work)782  static void rb_wake_up_waiters(struct irq_work *work)
783  {
784  	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
785  
786  	/* For waiters waiting for the first wake up */
787  	(void)atomic_fetch_inc_release(&rbwork->seq);
788  
789  	wake_up_all(&rbwork->waiters);
790  	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
791  		/* Only cpu_buffer sets the above flags */
792  		struct ring_buffer_per_cpu *cpu_buffer =
793  			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
794  
795  		/* Called from interrupt context */
796  		raw_spin_lock(&cpu_buffer->reader_lock);
797  		rbwork->wakeup_full = false;
798  		rbwork->full_waiters_pending = false;
799  
800  		/* Waking up all waiters, they will reset the shortest full */
801  		cpu_buffer->shortest_full = 0;
802  		raw_spin_unlock(&cpu_buffer->reader_lock);
803  
804  		wake_up_all(&rbwork->full_waiters);
805  	}
806  }
807  
808  /**
809   * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
810   * @buffer: The ring buffer to wake waiters on
811   * @cpu: The CPU buffer to wake waiters on
812   *
813   * In the case of a file that represents a ring buffer is closing,
814   * it is prudent to wake up any waiters that are on this.
815   */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)816  void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
817  {
818  	struct ring_buffer_per_cpu *cpu_buffer;
819  	struct rb_irq_work *rbwork;
820  
821  	if (!buffer)
822  		return;
823  
824  	if (cpu == RING_BUFFER_ALL_CPUS) {
825  
826  		/* Wake up individual ones too. One level recursion */
827  		for_each_buffer_cpu(buffer, cpu)
828  			ring_buffer_wake_waiters(buffer, cpu);
829  
830  		rbwork = &buffer->irq_work;
831  	} else {
832  		if (WARN_ON_ONCE(!buffer->buffers))
833  			return;
834  		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
835  			return;
836  
837  		cpu_buffer = buffer->buffers[cpu];
838  		/* The CPU buffer may not have been initialized yet */
839  		if (!cpu_buffer)
840  			return;
841  		rbwork = &cpu_buffer->irq_work;
842  	}
843  
844  	/* This can be called in any context */
845  	irq_work_queue(&rbwork->work);
846  }
847  
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)848  static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
849  {
850  	struct ring_buffer_per_cpu *cpu_buffer;
851  	bool ret = false;
852  
853  	/* Reads of all CPUs always waits for any data */
854  	if (cpu == RING_BUFFER_ALL_CPUS)
855  		return !ring_buffer_empty(buffer);
856  
857  	cpu_buffer = buffer->buffers[cpu];
858  
859  	if (!ring_buffer_empty_cpu(buffer, cpu)) {
860  		unsigned long flags;
861  		bool pagebusy;
862  
863  		if (!full)
864  			return true;
865  
866  		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
867  		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
868  		ret = !pagebusy && full_hit(buffer, cpu, full);
869  
870  		if (!ret && (!cpu_buffer->shortest_full ||
871  			     cpu_buffer->shortest_full > full)) {
872  		    cpu_buffer->shortest_full = full;
873  		}
874  		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
875  	}
876  	return ret;
877  }
878  
879  static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)880  rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
881  	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
882  {
883  	if (rb_watermark_hit(buffer, cpu, full))
884  		return true;
885  
886  	if (cond(data))
887  		return true;
888  
889  	/*
890  	 * The events can happen in critical sections where
891  	 * checking a work queue can cause deadlocks.
892  	 * After adding a task to the queue, this flag is set
893  	 * only to notify events to try to wake up the queue
894  	 * using irq_work.
895  	 *
896  	 * We don't clear it even if the buffer is no longer
897  	 * empty. The flag only causes the next event to run
898  	 * irq_work to do the work queue wake up. The worse
899  	 * that can happen if we race with !trace_empty() is that
900  	 * an event will cause an irq_work to try to wake up
901  	 * an empty queue.
902  	 *
903  	 * There's no reason to protect this flag either, as
904  	 * the work queue and irq_work logic will do the necessary
905  	 * synchronization for the wake ups. The only thing
906  	 * that is necessary is that the wake up happens after
907  	 * a task has been queued. It's OK for spurious wake ups.
908  	 */
909  	if (full)
910  		rbwork->full_waiters_pending = true;
911  	else
912  		rbwork->waiters_pending = true;
913  
914  	return false;
915  }
916  
917  struct rb_wait_data {
918  	struct rb_irq_work		*irq_work;
919  	int				seq;
920  };
921  
922  /*
923   * The default wait condition for ring_buffer_wait() is to just to exit the
924   * wait loop the first time it is woken up.
925   */
rb_wait_once(void * data)926  static bool rb_wait_once(void *data)
927  {
928  	struct rb_wait_data *rdata = data;
929  	struct rb_irq_work *rbwork = rdata->irq_work;
930  
931  	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
932  }
933  
934  /**
935   * ring_buffer_wait - wait for input to the ring buffer
936   * @buffer: buffer to wait on
937   * @cpu: the cpu buffer to wait on
938   * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
939   * @cond: condition function to break out of wait (NULL to run once)
940   * @data: the data to pass to @cond.
941   *
942   * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
943   * as data is added to any of the @buffer's cpu buffers. Otherwise
944   * it will wait for data to be added to a specific cpu buffer.
945   */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)946  int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
947  		     ring_buffer_cond_fn cond, void *data)
948  {
949  	struct ring_buffer_per_cpu *cpu_buffer;
950  	struct wait_queue_head *waitq;
951  	struct rb_irq_work *rbwork;
952  	struct rb_wait_data rdata;
953  	int ret = 0;
954  
955  	/*
956  	 * Depending on what the caller is waiting for, either any
957  	 * data in any cpu buffer, or a specific buffer, put the
958  	 * caller on the appropriate wait queue.
959  	 */
960  	if (cpu == RING_BUFFER_ALL_CPUS) {
961  		rbwork = &buffer->irq_work;
962  		/* Full only makes sense on per cpu reads */
963  		full = 0;
964  	} else {
965  		if (!cpumask_test_cpu(cpu, buffer->cpumask))
966  			return -ENODEV;
967  		cpu_buffer = buffer->buffers[cpu];
968  		rbwork = &cpu_buffer->irq_work;
969  	}
970  
971  	if (full)
972  		waitq = &rbwork->full_waiters;
973  	else
974  		waitq = &rbwork->waiters;
975  
976  	/* Set up to exit loop as soon as it is woken */
977  	if (!cond) {
978  		cond = rb_wait_once;
979  		rdata.irq_work = rbwork;
980  		rdata.seq = atomic_read_acquire(&rbwork->seq);
981  		data = &rdata;
982  	}
983  
984  	ret = wait_event_interruptible((*waitq),
985  				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
986  
987  	return ret;
988  }
989  
990  /**
991   * ring_buffer_poll_wait - poll on buffer input
992   * @buffer: buffer to wait on
993   * @cpu: the cpu buffer to wait on
994   * @filp: the file descriptor
995   * @poll_table: The poll descriptor
996   * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
997   *
998   * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
999   * as data is added to any of the @buffer's cpu buffers. Otherwise
1000   * it will wait for data to be added to a specific cpu buffer.
1001   *
1002   * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003   * zero otherwise.
1004   */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1005  __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006  			  struct file *filp, poll_table *poll_table, int full)
1007  {
1008  	struct ring_buffer_per_cpu *cpu_buffer;
1009  	struct rb_irq_work *rbwork;
1010  
1011  	if (cpu == RING_BUFFER_ALL_CPUS) {
1012  		rbwork = &buffer->irq_work;
1013  		full = 0;
1014  	} else {
1015  		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016  			return EPOLLERR;
1017  
1018  		cpu_buffer = buffer->buffers[cpu];
1019  		rbwork = &cpu_buffer->irq_work;
1020  	}
1021  
1022  	if (full) {
1023  		poll_wait(filp, &rbwork->full_waiters, poll_table);
1024  
1025  		if (rb_watermark_hit(buffer, cpu, full))
1026  			return EPOLLIN | EPOLLRDNORM;
1027  		/*
1028  		 * Only allow full_waiters_pending update to be seen after
1029  		 * the shortest_full is set (in rb_watermark_hit). If the
1030  		 * writer sees the full_waiters_pending flag set, it will
1031  		 * compare the amount in the ring buffer to shortest_full.
1032  		 * If the amount in the ring buffer is greater than the
1033  		 * shortest_full percent, it will call the irq_work handler
1034  		 * to wake up this list. The irq_handler will reset shortest_full
1035  		 * back to zero. That's done under the reader_lock, but
1036  		 * the below smp_mb() makes sure that the update to
1037  		 * full_waiters_pending doesn't leak up into the above.
1038  		 */
1039  		smp_mb();
1040  		rbwork->full_waiters_pending = true;
1041  		return 0;
1042  	}
1043  
1044  	poll_wait(filp, &rbwork->waiters, poll_table);
1045  	rbwork->waiters_pending = true;
1046  
1047  	/*
1048  	 * There's a tight race between setting the waiters_pending and
1049  	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1050  	 * is set, the next event will wake the task up, but we can get stuck
1051  	 * if there's only a single event in.
1052  	 *
1053  	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054  	 * but adding a memory barrier to all events will cause too much of a
1055  	 * performance hit in the fast path.  We only need a memory barrier when
1056  	 * the buffer goes from empty to having content.  But as this race is
1057  	 * extremely small, and it's not a problem if another event comes in, we
1058  	 * will fix it later.
1059  	 */
1060  	smp_mb();
1061  
1062  	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063  	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064  		return EPOLLIN | EPOLLRDNORM;
1065  	return 0;
1066  }
1067  
1068  /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069  #define RB_WARN_ON(b, cond)						\
1070  	({								\
1071  		int _____ret = unlikely(cond);				\
1072  		if (_____ret) {						\
1073  			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074  				struct ring_buffer_per_cpu *__b =	\
1075  					(void *)b;			\
1076  				atomic_inc(&__b->buffer->record_disabled); \
1077  			} else						\
1078  				atomic_inc(&b->record_disabled);	\
1079  			WARN_ON(1);					\
1080  		}							\
1081  		_____ret;						\
1082  	})
1083  
1084  /* Up this if you want to test the TIME_EXTENTS and normalization */
1085  #define DEBUG_SHIFT 0
1086  
rb_time_stamp(struct trace_buffer * buffer)1087  static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088  {
1089  	u64 ts;
1090  
1091  	/* Skip retpolines :-( */
1092  	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093  		ts = trace_clock_local();
1094  	else
1095  		ts = buffer->clock();
1096  
1097  	/* shift to debug/test normalization and TIME_EXTENTS */
1098  	return ts << DEBUG_SHIFT;
1099  }
1100  
ring_buffer_time_stamp(struct trace_buffer * buffer)1101  u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102  {
1103  	u64 time;
1104  
1105  	preempt_disable_notrace();
1106  	time = rb_time_stamp(buffer);
1107  	preempt_enable_notrace();
1108  
1109  	return time;
1110  }
1111  EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112  
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1113  void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114  				      int cpu, u64 *ts)
1115  {
1116  	/* Just stupid testing the normalize function and deltas */
1117  	*ts >>= DEBUG_SHIFT;
1118  }
1119  EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120  
1121  /*
1122   * Making the ring buffer lockless makes things tricky.
1123   * Although writes only happen on the CPU that they are on,
1124   * and they only need to worry about interrupts. Reads can
1125   * happen on any CPU.
1126   *
1127   * The reader page is always off the ring buffer, but when the
1128   * reader finishes with a page, it needs to swap its page with
1129   * a new one from the buffer. The reader needs to take from
1130   * the head (writes go to the tail). But if a writer is in overwrite
1131   * mode and wraps, it must push the head page forward.
1132   *
1133   * Here lies the problem.
1134   *
1135   * The reader must be careful to replace only the head page, and
1136   * not another one. As described at the top of the file in the
1137   * ASCII art, the reader sets its old page to point to the next
1138   * page after head. It then sets the page after head to point to
1139   * the old reader page. But if the writer moves the head page
1140   * during this operation, the reader could end up with the tail.
1141   *
1142   * We use cmpxchg to help prevent this race. We also do something
1143   * special with the page before head. We set the LSB to 1.
1144   *
1145   * When the writer must push the page forward, it will clear the
1146   * bit that points to the head page, move the head, and then set
1147   * the bit that points to the new head page.
1148   *
1149   * We also don't want an interrupt coming in and moving the head
1150   * page on another writer. Thus we use the second LSB to catch
1151   * that too. Thus:
1152   *
1153   * head->list->prev->next        bit 1          bit 0
1154   *                              -------        -------
1155   * Normal page                     0              0
1156   * Points to head page             0              1
1157   * New head page                   1              0
1158   *
1159   * Note we can not trust the prev pointer of the head page, because:
1160   *
1161   * +----+       +-----+        +-----+
1162   * |    |------>|  T  |---X--->|  N  |
1163   * |    |<------|     |        |     |
1164   * +----+       +-----+        +-----+
1165   *   ^                           ^ |
1166   *   |          +-----+          | |
1167   *   +----------|  R  |----------+ |
1168   *              |     |<-----------+
1169   *              +-----+
1170   *
1171   * Key:  ---X-->  HEAD flag set in pointer
1172   *         T      Tail page
1173   *         R      Reader page
1174   *         N      Next page
1175   *
1176   * (see __rb_reserve_next() to see where this happens)
1177   *
1178   *  What the above shows is that the reader just swapped out
1179   *  the reader page with a page in the buffer, but before it
1180   *  could make the new header point back to the new page added
1181   *  it was preempted by a writer. The writer moved forward onto
1182   *  the new page added by the reader and is about to move forward
1183   *  again.
1184   *
1185   *  You can see, it is legitimate for the previous pointer of
1186   *  the head (or any page) not to point back to itself. But only
1187   *  temporarily.
1188   */
1189  
1190  #define RB_PAGE_NORMAL		0UL
1191  #define RB_PAGE_HEAD		1UL
1192  #define RB_PAGE_UPDATE		2UL
1193  
1194  
1195  #define RB_FLAG_MASK		3UL
1196  
1197  /* PAGE_MOVED is not part of the mask */
1198  #define RB_PAGE_MOVED		4UL
1199  
1200  /*
1201   * rb_list_head - remove any bit
1202   */
rb_list_head(struct list_head * list)1203  static struct list_head *rb_list_head(struct list_head *list)
1204  {
1205  	unsigned long val = (unsigned long)list;
1206  
1207  	return (struct list_head *)(val & ~RB_FLAG_MASK);
1208  }
1209  
1210  /*
1211   * rb_is_head_page - test if the given page is the head page
1212   *
1213   * Because the reader may move the head_page pointer, we can
1214   * not trust what the head page is (it may be pointing to
1215   * the reader page). But if the next page is a header page,
1216   * its flags will be non zero.
1217   */
1218  static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1219  rb_is_head_page(struct buffer_page *page, struct list_head *list)
1220  {
1221  	unsigned long val;
1222  
1223  	val = (unsigned long)list->next;
1224  
1225  	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226  		return RB_PAGE_MOVED;
1227  
1228  	return val & RB_FLAG_MASK;
1229  }
1230  
1231  /*
1232   * rb_is_reader_page
1233   *
1234   * The unique thing about the reader page, is that, if the
1235   * writer is ever on it, the previous pointer never points
1236   * back to the reader page.
1237   */
rb_is_reader_page(struct buffer_page * page)1238  static bool rb_is_reader_page(struct buffer_page *page)
1239  {
1240  	struct list_head *list = page->list.prev;
1241  
1242  	return rb_list_head(list->next) != &page->list;
1243  }
1244  
1245  /*
1246   * rb_set_list_to_head - set a list_head to be pointing to head.
1247   */
rb_set_list_to_head(struct list_head * list)1248  static void rb_set_list_to_head(struct list_head *list)
1249  {
1250  	unsigned long *ptr;
1251  
1252  	ptr = (unsigned long *)&list->next;
1253  	*ptr |= RB_PAGE_HEAD;
1254  	*ptr &= ~RB_PAGE_UPDATE;
1255  }
1256  
1257  /*
1258   * rb_head_page_activate - sets up head page
1259   */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1260  static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261  {
1262  	struct buffer_page *head;
1263  
1264  	head = cpu_buffer->head_page;
1265  	if (!head)
1266  		return;
1267  
1268  	/*
1269  	 * Set the previous list pointer to have the HEAD flag.
1270  	 */
1271  	rb_set_list_to_head(head->list.prev);
1272  
1273  	if (cpu_buffer->ring_meta) {
1274  		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275  		meta->head_buffer = (unsigned long)head->page;
1276  	}
1277  }
1278  
rb_list_head_clear(struct list_head * list)1279  static void rb_list_head_clear(struct list_head *list)
1280  {
1281  	unsigned long *ptr = (unsigned long *)&list->next;
1282  
1283  	*ptr &= ~RB_FLAG_MASK;
1284  }
1285  
1286  /*
1287   * rb_head_page_deactivate - clears head page ptr (for free list)
1288   */
1289  static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1290  rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291  {
1292  	struct list_head *hd;
1293  
1294  	/* Go through the whole list and clear any pointers found. */
1295  	rb_list_head_clear(cpu_buffer->pages);
1296  
1297  	list_for_each(hd, cpu_buffer->pages)
1298  		rb_list_head_clear(hd);
1299  }
1300  
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1301  static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302  			    struct buffer_page *head,
1303  			    struct buffer_page *prev,
1304  			    int old_flag, int new_flag)
1305  {
1306  	struct list_head *list;
1307  	unsigned long val = (unsigned long)&head->list;
1308  	unsigned long ret;
1309  
1310  	list = &prev->list;
1311  
1312  	val &= ~RB_FLAG_MASK;
1313  
1314  	ret = cmpxchg((unsigned long *)&list->next,
1315  		      val | old_flag, val | new_flag);
1316  
1317  	/* check if the reader took the page */
1318  	if ((ret & ~RB_FLAG_MASK) != val)
1319  		return RB_PAGE_MOVED;
1320  
1321  	return ret & RB_FLAG_MASK;
1322  }
1323  
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1324  static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325  				   struct buffer_page *head,
1326  				   struct buffer_page *prev,
1327  				   int old_flag)
1328  {
1329  	return rb_head_page_set(cpu_buffer, head, prev,
1330  				old_flag, RB_PAGE_UPDATE);
1331  }
1332  
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1333  static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334  				 struct buffer_page *head,
1335  				 struct buffer_page *prev,
1336  				 int old_flag)
1337  {
1338  	return rb_head_page_set(cpu_buffer, head, prev,
1339  				old_flag, RB_PAGE_HEAD);
1340  }
1341  
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1342  static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343  				   struct buffer_page *head,
1344  				   struct buffer_page *prev,
1345  				   int old_flag)
1346  {
1347  	return rb_head_page_set(cpu_buffer, head, prev,
1348  				old_flag, RB_PAGE_NORMAL);
1349  }
1350  
rb_inc_page(struct buffer_page ** bpage)1351  static inline void rb_inc_page(struct buffer_page **bpage)
1352  {
1353  	struct list_head *p = rb_list_head((*bpage)->list.next);
1354  
1355  	*bpage = list_entry(p, struct buffer_page, list);
1356  }
1357  
1358  static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1359  rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360  {
1361  	struct buffer_page *head;
1362  	struct buffer_page *page;
1363  	struct list_head *list;
1364  	int i;
1365  
1366  	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367  		return NULL;
1368  
1369  	/* sanity check */
1370  	list = cpu_buffer->pages;
1371  	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372  		return NULL;
1373  
1374  	page = head = cpu_buffer->head_page;
1375  	/*
1376  	 * It is possible that the writer moves the header behind
1377  	 * where we started, and we miss in one loop.
1378  	 * A second loop should grab the header, but we'll do
1379  	 * three loops just because I'm paranoid.
1380  	 */
1381  	for (i = 0; i < 3; i++) {
1382  		do {
1383  			if (rb_is_head_page(page, page->list.prev)) {
1384  				cpu_buffer->head_page = page;
1385  				return page;
1386  			}
1387  			rb_inc_page(&page);
1388  		} while (page != head);
1389  	}
1390  
1391  	RB_WARN_ON(cpu_buffer, 1);
1392  
1393  	return NULL;
1394  }
1395  
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1396  static bool rb_head_page_replace(struct buffer_page *old,
1397  				struct buffer_page *new)
1398  {
1399  	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400  	unsigned long val;
1401  
1402  	val = *ptr & ~RB_FLAG_MASK;
1403  	val |= RB_PAGE_HEAD;
1404  
1405  	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1406  }
1407  
1408  /*
1409   * rb_tail_page_update - move the tail page forward
1410   */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1411  static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412  			       struct buffer_page *tail_page,
1413  			       struct buffer_page *next_page)
1414  {
1415  	unsigned long old_entries;
1416  	unsigned long old_write;
1417  
1418  	/*
1419  	 * The tail page now needs to be moved forward.
1420  	 *
1421  	 * We need to reset the tail page, but without messing
1422  	 * with possible erasing of data brought in by interrupts
1423  	 * that have moved the tail page and are currently on it.
1424  	 *
1425  	 * We add a counter to the write field to denote this.
1426  	 */
1427  	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428  	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429  
1430  	/*
1431  	 * Just make sure we have seen our old_write and synchronize
1432  	 * with any interrupts that come in.
1433  	 */
1434  	barrier();
1435  
1436  	/*
1437  	 * If the tail page is still the same as what we think
1438  	 * it is, then it is up to us to update the tail
1439  	 * pointer.
1440  	 */
1441  	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442  		/* Zero the write counter */
1443  		unsigned long val = old_write & ~RB_WRITE_MASK;
1444  		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445  
1446  		/*
1447  		 * This will only succeed if an interrupt did
1448  		 * not come in and change it. In which case, we
1449  		 * do not want to modify it.
1450  		 *
1451  		 * We add (void) to let the compiler know that we do not care
1452  		 * about the return value of these functions. We use the
1453  		 * cmpxchg to only update if an interrupt did not already
1454  		 * do it for us. If the cmpxchg fails, we don't care.
1455  		 */
1456  		(void)local_cmpxchg(&next_page->write, old_write, val);
1457  		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458  
1459  		/*
1460  		 * No need to worry about races with clearing out the commit.
1461  		 * it only can increment when a commit takes place. But that
1462  		 * only happens in the outer most nested commit.
1463  		 */
1464  		local_set(&next_page->page->commit, 0);
1465  
1466  		/* Either we update tail_page or an interrupt does */
1467  		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468  			local_inc(&cpu_buffer->pages_touched);
1469  	}
1470  }
1471  
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1472  static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473  			  struct buffer_page *bpage)
1474  {
1475  	unsigned long val = (unsigned long)bpage;
1476  
1477  	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1478  }
1479  
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1480  static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481  			   struct list_head *list)
1482  {
1483  	if (RB_WARN_ON(cpu_buffer,
1484  		       rb_list_head(rb_list_head(list->next)->prev) != list))
1485  		return false;
1486  
1487  	if (RB_WARN_ON(cpu_buffer,
1488  		       rb_list_head(rb_list_head(list->prev)->next) != list))
1489  		return false;
1490  
1491  	return true;
1492  }
1493  
1494  /**
1495   * rb_check_pages - integrity check of buffer pages
1496   * @cpu_buffer: CPU buffer with pages to test
1497   *
1498   * As a safety measure we check to make sure the data pages have not
1499   * been corrupted.
1500   */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1501  static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502  {
1503  	struct list_head *head, *tmp;
1504  	unsigned long buffer_cnt;
1505  	unsigned long flags;
1506  	int nr_loops = 0;
1507  
1508  	/*
1509  	 * Walk the linked list underpinning the ring buffer and validate all
1510  	 * its next and prev links.
1511  	 *
1512  	 * The check acquires the reader_lock to avoid concurrent processing
1513  	 * with code that could be modifying the list. However, the lock cannot
1514  	 * be held for the entire duration of the walk, as this would make the
1515  	 * time when interrupts are disabled non-deterministic, dependent on the
1516  	 * ring buffer size. Therefore, the code releases and re-acquires the
1517  	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518  	 * is then used to detect if the list was modified while the lock was
1519  	 * not held, in which case the check needs to be restarted.
1520  	 *
1521  	 * The code attempts to perform the check at most three times before
1522  	 * giving up. This is acceptable because this is only a self-validation
1523  	 * to detect problems early on. In practice, the list modification
1524  	 * operations are fairly spaced, and so this check typically succeeds at
1525  	 * most on the second try.
1526  	 */
1527  again:
1528  	if (++nr_loops > 3)
1529  		return;
1530  
1531  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532  	head = rb_list_head(cpu_buffer->pages);
1533  	if (!rb_check_links(cpu_buffer, head))
1534  		goto out_locked;
1535  	buffer_cnt = cpu_buffer->cnt;
1536  	tmp = head;
1537  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538  
1539  	while (true) {
1540  		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1541  
1542  		if (buffer_cnt != cpu_buffer->cnt) {
1543  			/* The list was updated, try again. */
1544  			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545  			goto again;
1546  		}
1547  
1548  		tmp = rb_list_head(tmp->next);
1549  		if (tmp == head)
1550  			/* The iteration circled back, all is done. */
1551  			goto out_locked;
1552  
1553  		if (!rb_check_links(cpu_buffer, tmp))
1554  			goto out_locked;
1555  
1556  		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557  	}
1558  
1559  out_locked:
1560  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561  }
1562  
1563  /*
1564   * Take an address, add the meta data size as well as the array of
1565   * array subbuffer indexes, then align it to a subbuffer size.
1566   *
1567   * This is used to help find the next per cpu subbuffer within a mapped range.
1568   */
1569  static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1570  rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571  {
1572  	addr += sizeof(struct ring_buffer_meta) +
1573  		sizeof(int) * nr_subbufs;
1574  	return ALIGN(addr, subbuf_size);
1575  }
1576  
1577  /*
1578   * Return the ring_buffer_meta for a given @cpu.
1579   */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1580  static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581  {
1582  	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583  	unsigned long ptr = buffer->range_addr_start;
1584  	struct ring_buffer_meta *meta;
1585  	int nr_subbufs;
1586  
1587  	if (!ptr)
1588  		return NULL;
1589  
1590  	/* When nr_pages passed in is zero, the first meta has already been initialized */
1591  	if (!nr_pages) {
1592  		meta = (struct ring_buffer_meta *)ptr;
1593  		nr_subbufs = meta->nr_subbufs;
1594  	} else {
1595  		meta = NULL;
1596  		/* Include the reader page */
1597  		nr_subbufs = nr_pages + 1;
1598  	}
1599  
1600  	/*
1601  	 * The first chunk may not be subbuffer aligned, where as
1602  	 * the rest of the chunks are.
1603  	 */
1604  	if (cpu) {
1605  		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606  		ptr += subbuf_size * nr_subbufs;
1607  
1608  		/* We can use multiplication to find chunks greater than 1 */
1609  		if (cpu > 1) {
1610  			unsigned long size;
1611  			unsigned long p;
1612  
1613  			/* Save the beginning of this CPU chunk */
1614  			p = ptr;
1615  			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616  			ptr += subbuf_size * nr_subbufs;
1617  
1618  			/* Now all chunks after this are the same size */
1619  			size = ptr - p;
1620  			ptr += size * (cpu - 2);
1621  		}
1622  	}
1623  	return (void *)ptr;
1624  }
1625  
1626  /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_meta * meta)1627  static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628  {
1629  	int subbuf_size = meta->subbuf_size;
1630  	unsigned long ptr;
1631  
1632  	ptr = (unsigned long)meta;
1633  	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634  
1635  	return (void *)ptr;
1636  }
1637  
1638  /*
1639   * Return a specific sub-buffer for a given @cpu defined by @idx.
1640   */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1641  static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642  {
1643  	struct ring_buffer_meta *meta;
1644  	unsigned long ptr;
1645  	int subbuf_size;
1646  
1647  	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648  	if (!meta)
1649  		return NULL;
1650  
1651  	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652  		return NULL;
1653  
1654  	subbuf_size = meta->subbuf_size;
1655  
1656  	/* Map this buffer to the order that's in meta->buffers[] */
1657  	idx = meta->buffers[idx];
1658  
1659  	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660  
1661  	ptr += subbuf_size * idx;
1662  	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663  		return NULL;
1664  
1665  	return (void *)ptr;
1666  }
1667  
1668  /*
1669   * See if the existing memory contains valid ring buffer data.
1670   * As the previous kernel must be the same as this kernel, all
1671   * the calculations (size of buffers and number of buffers)
1672   * must be the same.
1673   */
rb_meta_valid(struct ring_buffer_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1674  static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675  			  struct trace_buffer *buffer, int nr_pages,
1676  			  unsigned long *subbuf_mask)
1677  {
1678  	int subbuf_size = PAGE_SIZE;
1679  	struct buffer_data_page *subbuf;
1680  	unsigned long buffers_start;
1681  	unsigned long buffers_end;
1682  	int i;
1683  
1684  	if (!subbuf_mask)
1685  		return false;
1686  
1687  	/* Check the meta magic and meta struct size */
1688  	if (meta->magic != RING_BUFFER_META_MAGIC ||
1689  	    meta->struct_size != sizeof(*meta)) {
1690  		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1691  		return false;
1692  	}
1693  
1694  	/* The subbuffer's size and number of subbuffers must match */
1695  	if (meta->subbuf_size != subbuf_size ||
1696  	    meta->nr_subbufs != nr_pages + 1) {
1697  		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1698  		return false;
1699  	}
1700  
1701  	buffers_start = meta->first_buffer;
1702  	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1703  
1704  	/* Is the head and commit buffers within the range of buffers? */
1705  	if (meta->head_buffer < buffers_start ||
1706  	    meta->head_buffer >= buffers_end) {
1707  		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1708  		return false;
1709  	}
1710  
1711  	if (meta->commit_buffer < buffers_start ||
1712  	    meta->commit_buffer >= buffers_end) {
1713  		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1714  		return false;
1715  	}
1716  
1717  	subbuf = rb_subbufs_from_meta(meta);
1718  
1719  	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1720  
1721  	/* Is the meta buffers and the subbufs themselves have correct data? */
1722  	for (i = 0; i < meta->nr_subbufs; i++) {
1723  		if (meta->buffers[i] < 0 ||
1724  		    meta->buffers[i] >= meta->nr_subbufs) {
1725  			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1726  			return false;
1727  		}
1728  
1729  		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1730  			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1731  			return false;
1732  		}
1733  
1734  		if (test_bit(meta->buffers[i], subbuf_mask)) {
1735  			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1736  			return false;
1737  		}
1738  
1739  		set_bit(meta->buffers[i], subbuf_mask);
1740  		subbuf = (void *)subbuf + subbuf_size;
1741  	}
1742  
1743  	return true;
1744  }
1745  
1746  static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1747  
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1748  static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1749  			       unsigned long long *timestamp, u64 *delta_ptr)
1750  {
1751  	struct ring_buffer_event *event;
1752  	u64 ts, delta;
1753  	int events = 0;
1754  	int e;
1755  
1756  	*delta_ptr = 0;
1757  	*timestamp = 0;
1758  
1759  	ts = dpage->time_stamp;
1760  
1761  	for (e = 0; e < tail; e += rb_event_length(event)) {
1762  
1763  		event = (struct ring_buffer_event *)(dpage->data + e);
1764  
1765  		switch (event->type_len) {
1766  
1767  		case RINGBUF_TYPE_TIME_EXTEND:
1768  			delta = rb_event_time_stamp(event);
1769  			ts += delta;
1770  			break;
1771  
1772  		case RINGBUF_TYPE_TIME_STAMP:
1773  			delta = rb_event_time_stamp(event);
1774  			delta = rb_fix_abs_ts(delta, ts);
1775  			if (delta < ts) {
1776  				*delta_ptr = delta;
1777  				*timestamp = ts;
1778  				return -1;
1779  			}
1780  			ts = delta;
1781  			break;
1782  
1783  		case RINGBUF_TYPE_PADDING:
1784  			if (event->time_delta == 1)
1785  				break;
1786  			fallthrough;
1787  		case RINGBUF_TYPE_DATA:
1788  			events++;
1789  			ts += event->time_delta;
1790  			break;
1791  
1792  		default:
1793  			return -1;
1794  		}
1795  	}
1796  	*timestamp = ts;
1797  	return events;
1798  }
1799  
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1800  static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1801  {
1802  	unsigned long long ts;
1803  	u64 delta;
1804  	int tail;
1805  
1806  	tail = local_read(&dpage->commit);
1807  	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1808  }
1809  
1810  /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1811  static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1812  {
1813  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1814  	struct buffer_page *head_page;
1815  	unsigned long entry_bytes = 0;
1816  	unsigned long entries = 0;
1817  	int ret;
1818  	int i;
1819  
1820  	if (!meta || !meta->head_buffer)
1821  		return;
1822  
1823  	/* Do the reader page first */
1824  	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1825  	if (ret < 0) {
1826  		pr_info("Ring buffer reader page is invalid\n");
1827  		goto invalid;
1828  	}
1829  	entries += ret;
1830  	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1831  	local_set(&cpu_buffer->reader_page->entries, ret);
1832  
1833  	head_page = cpu_buffer->head_page;
1834  
1835  	/* If both the head and commit are on the reader_page then we are done. */
1836  	if (head_page == cpu_buffer->reader_page &&
1837  	    head_page == cpu_buffer->commit_page)
1838  		goto done;
1839  
1840  	/* Iterate until finding the commit page */
1841  	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1842  
1843  		/* Reader page has already been done */
1844  		if (head_page == cpu_buffer->reader_page)
1845  			continue;
1846  
1847  		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1848  		if (ret < 0) {
1849  			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1850  				cpu_buffer->cpu);
1851  			goto invalid;
1852  		}
1853  
1854  		/* If the buffer has content, update pages_touched */
1855  		if (ret)
1856  			local_inc(&cpu_buffer->pages_touched);
1857  
1858  		entries += ret;
1859  		entry_bytes += local_read(&head_page->page->commit);
1860  		local_set(&cpu_buffer->head_page->entries, ret);
1861  
1862  		if (head_page == cpu_buffer->commit_page)
1863  			break;
1864  	}
1865  
1866  	if (head_page != cpu_buffer->commit_page) {
1867  		pr_info("Ring buffer meta [%d] commit page not found\n",
1868  			cpu_buffer->cpu);
1869  		goto invalid;
1870  	}
1871   done:
1872  	local_set(&cpu_buffer->entries, entries);
1873  	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1874  
1875  	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1876  	return;
1877  
1878   invalid:
1879  	/* The content of the buffers are invalid, reset the meta data */
1880  	meta->head_buffer = 0;
1881  	meta->commit_buffer = 0;
1882  
1883  	/* Reset the reader page */
1884  	local_set(&cpu_buffer->reader_page->entries, 0);
1885  	local_set(&cpu_buffer->reader_page->page->commit, 0);
1886  
1887  	/* Reset all the subbuffers */
1888  	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1889  		local_set(&head_page->entries, 0);
1890  		local_set(&head_page->page->commit, 0);
1891  	}
1892  }
1893  
1894  /* Used to calculate data delta */
1895  static char rb_data_ptr[] = "";
1896  
1897  #define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1898  #define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1899  
rb_meta_init_text_addr(struct ring_buffer_meta * meta)1900  static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1901  {
1902  	meta->text_addr = THIS_TEXT_PTR;
1903  	meta->data_addr = THIS_DATA_PTR;
1904  }
1905  
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages)1906  static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1907  {
1908  	struct ring_buffer_meta *meta;
1909  	unsigned long *subbuf_mask;
1910  	unsigned long delta;
1911  	void *subbuf;
1912  	int cpu;
1913  	int i;
1914  
1915  	/* Create a mask to test the subbuf array */
1916  	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1917  	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1918  
1919  	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1920  		void *next_meta;
1921  
1922  		meta = rb_range_meta(buffer, nr_pages, cpu);
1923  
1924  		if (rb_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1925  			/* Make the mappings match the current address */
1926  			subbuf = rb_subbufs_from_meta(meta);
1927  			delta = (unsigned long)subbuf - meta->first_buffer;
1928  			meta->first_buffer += delta;
1929  			meta->head_buffer += delta;
1930  			meta->commit_buffer += delta;
1931  			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1932  			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1933  			continue;
1934  		}
1935  
1936  		if (cpu < nr_cpu_ids - 1)
1937  			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1938  		else
1939  			next_meta = (void *)buffer->range_addr_end;
1940  
1941  		memset(meta, 0, next_meta - (void *)meta);
1942  
1943  		meta->magic = RING_BUFFER_META_MAGIC;
1944  		meta->struct_size = sizeof(*meta);
1945  
1946  		meta->nr_subbufs = nr_pages + 1;
1947  		meta->subbuf_size = PAGE_SIZE;
1948  
1949  		subbuf = rb_subbufs_from_meta(meta);
1950  
1951  		meta->first_buffer = (unsigned long)subbuf;
1952  		rb_meta_init_text_addr(meta);
1953  
1954  		/*
1955  		 * The buffers[] array holds the order of the sub-buffers
1956  		 * that are after the meta data. The sub-buffers may
1957  		 * be swapped out when read and inserted into a different
1958  		 * location of the ring buffer. Although their addresses
1959  		 * remain the same, the buffers[] array contains the
1960  		 * index into the sub-buffers holding their actual order.
1961  		 */
1962  		for (i = 0; i < meta->nr_subbufs; i++) {
1963  			meta->buffers[i] = i;
1964  			rb_init_page(subbuf);
1965  			subbuf += meta->subbuf_size;
1966  		}
1967  	}
1968  	bitmap_free(subbuf_mask);
1969  }
1970  
rbm_start(struct seq_file * m,loff_t * pos)1971  static void *rbm_start(struct seq_file *m, loff_t *pos)
1972  {
1973  	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1974  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1975  	unsigned long val;
1976  
1977  	if (!meta)
1978  		return NULL;
1979  
1980  	if (*pos > meta->nr_subbufs)
1981  		return NULL;
1982  
1983  	val = *pos;
1984  	val++;
1985  
1986  	return (void *)val;
1987  }
1988  
rbm_next(struct seq_file * m,void * v,loff_t * pos)1989  static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1990  {
1991  	(*pos)++;
1992  
1993  	return rbm_start(m, pos);
1994  }
1995  
rbm_show(struct seq_file * m,void * v)1996  static int rbm_show(struct seq_file *m, void *v)
1997  {
1998  	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1999  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2000  	unsigned long val = (unsigned long)v;
2001  
2002  	if (val == 1) {
2003  		seq_printf(m, "head_buffer:   %d\n",
2004  			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2005  		seq_printf(m, "commit_buffer: %d\n",
2006  			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2007  		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2008  		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2009  		return 0;
2010  	}
2011  
2012  	val -= 2;
2013  	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2014  
2015  	return 0;
2016  }
2017  
rbm_stop(struct seq_file * m,void * p)2018  static void rbm_stop(struct seq_file *m, void *p)
2019  {
2020  }
2021  
2022  static const struct seq_operations rb_meta_seq_ops = {
2023  	.start		= rbm_start,
2024  	.next		= rbm_next,
2025  	.show		= rbm_show,
2026  	.stop		= rbm_stop,
2027  };
2028  
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2029  int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2030  {
2031  	struct seq_file *m;
2032  	int ret;
2033  
2034  	ret = seq_open(file, &rb_meta_seq_ops);
2035  	if (ret)
2036  		return ret;
2037  
2038  	m = file->private_data;
2039  	m->private = buffer->buffers[cpu];
2040  
2041  	return 0;
2042  }
2043  
2044  /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2045  static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2046  				  struct buffer_page *bpage)
2047  {
2048  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2049  
2050  	if (meta->head_buffer == (unsigned long)bpage->page)
2051  		cpu_buffer->head_page = bpage;
2052  
2053  	if (meta->commit_buffer == (unsigned long)bpage->page) {
2054  		cpu_buffer->commit_page = bpage;
2055  		cpu_buffer->tail_page = bpage;
2056  	}
2057  }
2058  
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2059  static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2060  		long nr_pages, struct list_head *pages)
2061  {
2062  	struct trace_buffer *buffer = cpu_buffer->buffer;
2063  	struct ring_buffer_meta *meta = NULL;
2064  	struct buffer_page *bpage, *tmp;
2065  	bool user_thread = current->mm != NULL;
2066  	gfp_t mflags;
2067  	long i;
2068  
2069  	/*
2070  	 * Check if the available memory is there first.
2071  	 * Note, si_mem_available() only gives us a rough estimate of available
2072  	 * memory. It may not be accurate. But we don't care, we just want
2073  	 * to prevent doing any allocation when it is obvious that it is
2074  	 * not going to succeed.
2075  	 */
2076  	i = si_mem_available();
2077  	if (i < nr_pages)
2078  		return -ENOMEM;
2079  
2080  	/*
2081  	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2082  	 * gracefully without invoking oom-killer and the system is not
2083  	 * destabilized.
2084  	 */
2085  	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2086  
2087  	/*
2088  	 * If a user thread allocates too much, and si_mem_available()
2089  	 * reports there's enough memory, even though there is not.
2090  	 * Make sure the OOM killer kills this thread. This can happen
2091  	 * even with RETRY_MAYFAIL because another task may be doing
2092  	 * an allocation after this task has taken all memory.
2093  	 * This is the task the OOM killer needs to take out during this
2094  	 * loop, even if it was triggered by an allocation somewhere else.
2095  	 */
2096  	if (user_thread)
2097  		set_current_oom_origin();
2098  
2099  	if (buffer->range_addr_start)
2100  		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2101  
2102  	for (i = 0; i < nr_pages; i++) {
2103  		struct page *page;
2104  
2105  		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2106  				    mflags, cpu_to_node(cpu_buffer->cpu));
2107  		if (!bpage)
2108  			goto free_pages;
2109  
2110  		rb_check_bpage(cpu_buffer, bpage);
2111  
2112  		/*
2113  		 * Append the pages as for mapped buffers we want to keep
2114  		 * the order
2115  		 */
2116  		list_add_tail(&bpage->list, pages);
2117  
2118  		if (meta) {
2119  			/* A range was given. Use that for the buffer page */
2120  			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2121  			if (!bpage->page)
2122  				goto free_pages;
2123  			/* If this is valid from a previous boot */
2124  			if (meta->head_buffer)
2125  				rb_meta_buffer_update(cpu_buffer, bpage);
2126  			bpage->range = 1;
2127  			bpage->id = i + 1;
2128  		} else {
2129  			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2130  						mflags | __GFP_COMP | __GFP_ZERO,
2131  						cpu_buffer->buffer->subbuf_order);
2132  			if (!page)
2133  				goto free_pages;
2134  			bpage->page = page_address(page);
2135  			rb_init_page(bpage->page);
2136  		}
2137  		bpage->order = cpu_buffer->buffer->subbuf_order;
2138  
2139  		if (user_thread && fatal_signal_pending(current))
2140  			goto free_pages;
2141  	}
2142  	if (user_thread)
2143  		clear_current_oom_origin();
2144  
2145  	return 0;
2146  
2147  free_pages:
2148  	list_for_each_entry_safe(bpage, tmp, pages, list) {
2149  		list_del_init(&bpage->list);
2150  		free_buffer_page(bpage);
2151  	}
2152  	if (user_thread)
2153  		clear_current_oom_origin();
2154  
2155  	return -ENOMEM;
2156  }
2157  
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2158  static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2159  			     unsigned long nr_pages)
2160  {
2161  	LIST_HEAD(pages);
2162  
2163  	WARN_ON(!nr_pages);
2164  
2165  	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2166  		return -ENOMEM;
2167  
2168  	/*
2169  	 * The ring buffer page list is a circular list that does not
2170  	 * start and end with a list head. All page list items point to
2171  	 * other pages.
2172  	 */
2173  	cpu_buffer->pages = pages.next;
2174  	list_del(&pages);
2175  
2176  	cpu_buffer->nr_pages = nr_pages;
2177  
2178  	rb_check_pages(cpu_buffer);
2179  
2180  	return 0;
2181  }
2182  
2183  static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2184  rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2185  {
2186  	struct ring_buffer_per_cpu *cpu_buffer;
2187  	struct ring_buffer_meta *meta;
2188  	struct buffer_page *bpage;
2189  	struct page *page;
2190  	int ret;
2191  
2192  	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2193  				  GFP_KERNEL, cpu_to_node(cpu));
2194  	if (!cpu_buffer)
2195  		return NULL;
2196  
2197  	cpu_buffer->cpu = cpu;
2198  	cpu_buffer->buffer = buffer;
2199  	raw_spin_lock_init(&cpu_buffer->reader_lock);
2200  	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2201  	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2202  	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2203  	init_completion(&cpu_buffer->update_done);
2204  	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2205  	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2206  	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2207  	mutex_init(&cpu_buffer->mapping_lock);
2208  
2209  	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2210  			    GFP_KERNEL, cpu_to_node(cpu));
2211  	if (!bpage)
2212  		goto fail_free_buffer;
2213  
2214  	rb_check_bpage(cpu_buffer, bpage);
2215  
2216  	cpu_buffer->reader_page = bpage;
2217  
2218  	if (buffer->range_addr_start) {
2219  		/*
2220  		 * Range mapped buffers have the same restrictions as memory
2221  		 * mapped ones do.
2222  		 */
2223  		cpu_buffer->mapped = 1;
2224  		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2225  		bpage->page = rb_range_buffer(cpu_buffer, 0);
2226  		if (!bpage->page)
2227  			goto fail_free_reader;
2228  		if (cpu_buffer->ring_meta->head_buffer)
2229  			rb_meta_buffer_update(cpu_buffer, bpage);
2230  		bpage->range = 1;
2231  	} else {
2232  		page = alloc_pages_node(cpu_to_node(cpu),
2233  					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2234  					cpu_buffer->buffer->subbuf_order);
2235  		if (!page)
2236  			goto fail_free_reader;
2237  		bpage->page = page_address(page);
2238  		rb_init_page(bpage->page);
2239  	}
2240  
2241  	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2242  	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2243  
2244  	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2245  	if (ret < 0)
2246  		goto fail_free_reader;
2247  
2248  	rb_meta_validate_events(cpu_buffer);
2249  
2250  	/* If the boot meta was valid then this has already been updated */
2251  	meta = cpu_buffer->ring_meta;
2252  	if (!meta || !meta->head_buffer ||
2253  	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2254  		if (meta && meta->head_buffer &&
2255  		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2256  			pr_warn("Ring buffer meta buffers not all mapped\n");
2257  			if (!cpu_buffer->head_page)
2258  				pr_warn("   Missing head_page\n");
2259  			if (!cpu_buffer->commit_page)
2260  				pr_warn("   Missing commit_page\n");
2261  			if (!cpu_buffer->tail_page)
2262  				pr_warn("   Missing tail_page\n");
2263  		}
2264  
2265  		cpu_buffer->head_page
2266  			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2267  		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2268  
2269  		rb_head_page_activate(cpu_buffer);
2270  
2271  		if (cpu_buffer->ring_meta)
2272  			meta->commit_buffer = meta->head_buffer;
2273  	} else {
2274  		/* The valid meta buffer still needs to activate the head page */
2275  		rb_head_page_activate(cpu_buffer);
2276  	}
2277  
2278  	return cpu_buffer;
2279  
2280   fail_free_reader:
2281  	free_buffer_page(cpu_buffer->reader_page);
2282  
2283   fail_free_buffer:
2284  	kfree(cpu_buffer);
2285  	return NULL;
2286  }
2287  
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2288  static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2289  {
2290  	struct list_head *head = cpu_buffer->pages;
2291  	struct buffer_page *bpage, *tmp;
2292  
2293  	irq_work_sync(&cpu_buffer->irq_work.work);
2294  
2295  	free_buffer_page(cpu_buffer->reader_page);
2296  
2297  	if (head) {
2298  		rb_head_page_deactivate(cpu_buffer);
2299  
2300  		list_for_each_entry_safe(bpage, tmp, head, list) {
2301  			list_del_init(&bpage->list);
2302  			free_buffer_page(bpage);
2303  		}
2304  		bpage = list_entry(head, struct buffer_page, list);
2305  		free_buffer_page(bpage);
2306  	}
2307  
2308  	free_page((unsigned long)cpu_buffer->free_page);
2309  
2310  	kfree(cpu_buffer);
2311  }
2312  
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,struct lock_class_key * key)2313  static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2314  					 int order, unsigned long start,
2315  					 unsigned long end,
2316  					 struct lock_class_key *key)
2317  {
2318  	struct trace_buffer *buffer;
2319  	long nr_pages;
2320  	int subbuf_size;
2321  	int bsize;
2322  	int cpu;
2323  	int ret;
2324  
2325  	/* keep it in its own cache line */
2326  	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2327  			 GFP_KERNEL);
2328  	if (!buffer)
2329  		return NULL;
2330  
2331  	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2332  		goto fail_free_buffer;
2333  
2334  	buffer->subbuf_order = order;
2335  	subbuf_size = (PAGE_SIZE << order);
2336  	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2337  
2338  	/* Max payload is buffer page size - header (8bytes) */
2339  	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2340  
2341  	buffer->flags = flags;
2342  	buffer->clock = trace_clock_local;
2343  	buffer->reader_lock_key = key;
2344  
2345  	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2346  	init_waitqueue_head(&buffer->irq_work.waiters);
2347  
2348  	buffer->cpus = nr_cpu_ids;
2349  
2350  	bsize = sizeof(void *) * nr_cpu_ids;
2351  	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2352  				  GFP_KERNEL);
2353  	if (!buffer->buffers)
2354  		goto fail_free_cpumask;
2355  
2356  	/* If start/end are specified, then that overrides size */
2357  	if (start && end) {
2358  		unsigned long ptr;
2359  		int n;
2360  
2361  		size = end - start;
2362  		size = size / nr_cpu_ids;
2363  
2364  		/*
2365  		 * The number of sub-buffers (nr_pages) is determined by the
2366  		 * total size allocated minus the meta data size.
2367  		 * Then that is divided by the number of per CPU buffers
2368  		 * needed, plus account for the integer array index that
2369  		 * will be appended to the meta data.
2370  		 */
2371  		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2372  			(subbuf_size + sizeof(int));
2373  		/* Need at least two pages plus the reader page */
2374  		if (nr_pages < 3)
2375  			goto fail_free_buffers;
2376  
2377   again:
2378  		/* Make sure that the size fits aligned */
2379  		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2380  			ptr += sizeof(struct ring_buffer_meta) +
2381  				sizeof(int) * nr_pages;
2382  			ptr = ALIGN(ptr, subbuf_size);
2383  			ptr += subbuf_size * nr_pages;
2384  		}
2385  		if (ptr > end) {
2386  			if (nr_pages <= 3)
2387  				goto fail_free_buffers;
2388  			nr_pages--;
2389  			goto again;
2390  		}
2391  
2392  		/* nr_pages should not count the reader page */
2393  		nr_pages--;
2394  		buffer->range_addr_start = start;
2395  		buffer->range_addr_end = end;
2396  
2397  		rb_range_meta_init(buffer, nr_pages);
2398  	} else {
2399  
2400  		/* need at least two pages */
2401  		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2402  		if (nr_pages < 2)
2403  			nr_pages = 2;
2404  	}
2405  
2406  	cpu = raw_smp_processor_id();
2407  	cpumask_set_cpu(cpu, buffer->cpumask);
2408  	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2409  	if (!buffer->buffers[cpu])
2410  		goto fail_free_buffers;
2411  
2412  	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2413  	if (ret < 0)
2414  		goto fail_free_buffers;
2415  
2416  	mutex_init(&buffer->mutex);
2417  
2418  	return buffer;
2419  
2420   fail_free_buffers:
2421  	for_each_buffer_cpu(buffer, cpu) {
2422  		if (buffer->buffers[cpu])
2423  			rb_free_cpu_buffer(buffer->buffers[cpu]);
2424  	}
2425  	kfree(buffer->buffers);
2426  
2427   fail_free_cpumask:
2428  	free_cpumask_var(buffer->cpumask);
2429  
2430   fail_free_buffer:
2431  	kfree(buffer);
2432  	return NULL;
2433  }
2434  
2435  /**
2436   * __ring_buffer_alloc - allocate a new ring_buffer
2437   * @size: the size in bytes per cpu that is needed.
2438   * @flags: attributes to set for the ring buffer.
2439   * @key: ring buffer reader_lock_key.
2440   *
2441   * Currently the only flag that is available is the RB_FL_OVERWRITE
2442   * flag. This flag means that the buffer will overwrite old data
2443   * when the buffer wraps. If this flag is not set, the buffer will
2444   * drop data when the tail hits the head.
2445   */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2446  struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2447  					struct lock_class_key *key)
2448  {
2449  	/* Default buffer page size - one system page */
2450  	return alloc_buffer(size, flags, 0, 0, 0,key);
2451  
2452  }
2453  EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2454  
2455  /**
2456   * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2457   * @size: the size in bytes per cpu that is needed.
2458   * @flags: attributes to set for the ring buffer.
2459   * @order: sub-buffer order
2460   * @start: start of allocated range
2461   * @range_size: size of allocated range
2462   * @key: ring buffer reader_lock_key.
2463   *
2464   * Currently the only flag that is available is the RB_FL_OVERWRITE
2465   * flag. This flag means that the buffer will overwrite old data
2466   * when the buffer wraps. If this flag is not set, the buffer will
2467   * drop data when the tail hits the head.
2468   */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,struct lock_class_key * key)2469  struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2470  					       int order, unsigned long start,
2471  					       unsigned long range_size,
2472  					       struct lock_class_key *key)
2473  {
2474  	return alloc_buffer(size, flags, order, start, start + range_size, key);
2475  }
2476  
2477  /**
2478   * ring_buffer_last_boot_delta - return the delta offset from last boot
2479   * @buffer: The buffer to return the delta from
2480   * @text: Return text delta
2481   * @data: Return data delta
2482   *
2483   * Returns: The true if the delta is non zero
2484   */
ring_buffer_last_boot_delta(struct trace_buffer * buffer,long * text,long * data)2485  bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2486  				 long *data)
2487  {
2488  	if (!buffer)
2489  		return false;
2490  
2491  	if (!buffer->last_text_delta)
2492  		return false;
2493  
2494  	*text = buffer->last_text_delta;
2495  	*data = buffer->last_data_delta;
2496  
2497  	return true;
2498  }
2499  
2500  /**
2501   * ring_buffer_free - free a ring buffer.
2502   * @buffer: the buffer to free.
2503   */
2504  void
ring_buffer_free(struct trace_buffer * buffer)2505  ring_buffer_free(struct trace_buffer *buffer)
2506  {
2507  	int cpu;
2508  
2509  	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2510  
2511  	irq_work_sync(&buffer->irq_work.work);
2512  
2513  	for_each_buffer_cpu(buffer, cpu)
2514  		rb_free_cpu_buffer(buffer->buffers[cpu]);
2515  
2516  	kfree(buffer->buffers);
2517  	free_cpumask_var(buffer->cpumask);
2518  
2519  	kfree(buffer);
2520  }
2521  EXPORT_SYMBOL_GPL(ring_buffer_free);
2522  
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2523  void ring_buffer_set_clock(struct trace_buffer *buffer,
2524  			   u64 (*clock)(void))
2525  {
2526  	buffer->clock = clock;
2527  }
2528  
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2529  void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2530  {
2531  	buffer->time_stamp_abs = abs;
2532  }
2533  
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2534  bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2535  {
2536  	return buffer->time_stamp_abs;
2537  }
2538  
rb_page_entries(struct buffer_page * bpage)2539  static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2540  {
2541  	return local_read(&bpage->entries) & RB_WRITE_MASK;
2542  }
2543  
rb_page_write(struct buffer_page * bpage)2544  static inline unsigned long rb_page_write(struct buffer_page *bpage)
2545  {
2546  	return local_read(&bpage->write) & RB_WRITE_MASK;
2547  }
2548  
2549  static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2550  rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2551  {
2552  	struct list_head *tail_page, *to_remove, *next_page;
2553  	struct buffer_page *to_remove_page, *tmp_iter_page;
2554  	struct buffer_page *last_page, *first_page;
2555  	unsigned long nr_removed;
2556  	unsigned long head_bit;
2557  	int page_entries;
2558  
2559  	head_bit = 0;
2560  
2561  	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2562  	atomic_inc(&cpu_buffer->record_disabled);
2563  	/*
2564  	 * We don't race with the readers since we have acquired the reader
2565  	 * lock. We also don't race with writers after disabling recording.
2566  	 * This makes it easy to figure out the first and the last page to be
2567  	 * removed from the list. We unlink all the pages in between including
2568  	 * the first and last pages. This is done in a busy loop so that we
2569  	 * lose the least number of traces.
2570  	 * The pages are freed after we restart recording and unlock readers.
2571  	 */
2572  	tail_page = &cpu_buffer->tail_page->list;
2573  
2574  	/*
2575  	 * tail page might be on reader page, we remove the next page
2576  	 * from the ring buffer
2577  	 */
2578  	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2579  		tail_page = rb_list_head(tail_page->next);
2580  	to_remove = tail_page;
2581  
2582  	/* start of pages to remove */
2583  	first_page = list_entry(rb_list_head(to_remove->next),
2584  				struct buffer_page, list);
2585  
2586  	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2587  		to_remove = rb_list_head(to_remove)->next;
2588  		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2589  	}
2590  	/* Read iterators need to reset themselves when some pages removed */
2591  	cpu_buffer->pages_removed += nr_removed;
2592  
2593  	next_page = rb_list_head(to_remove)->next;
2594  
2595  	/*
2596  	 * Now we remove all pages between tail_page and next_page.
2597  	 * Make sure that we have head_bit value preserved for the
2598  	 * next page
2599  	 */
2600  	tail_page->next = (struct list_head *)((unsigned long)next_page |
2601  						head_bit);
2602  	next_page = rb_list_head(next_page);
2603  	next_page->prev = tail_page;
2604  
2605  	/* make sure pages points to a valid page in the ring buffer */
2606  	cpu_buffer->pages = next_page;
2607  	cpu_buffer->cnt++;
2608  
2609  	/* update head page */
2610  	if (head_bit)
2611  		cpu_buffer->head_page = list_entry(next_page,
2612  						struct buffer_page, list);
2613  
2614  	/* pages are removed, resume tracing and then free the pages */
2615  	atomic_dec(&cpu_buffer->record_disabled);
2616  	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2617  
2618  	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2619  
2620  	/* last buffer page to remove */
2621  	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2622  				list);
2623  	tmp_iter_page = first_page;
2624  
2625  	do {
2626  		cond_resched();
2627  
2628  		to_remove_page = tmp_iter_page;
2629  		rb_inc_page(&tmp_iter_page);
2630  
2631  		/* update the counters */
2632  		page_entries = rb_page_entries(to_remove_page);
2633  		if (page_entries) {
2634  			/*
2635  			 * If something was added to this page, it was full
2636  			 * since it is not the tail page. So we deduct the
2637  			 * bytes consumed in ring buffer from here.
2638  			 * Increment overrun to account for the lost events.
2639  			 */
2640  			local_add(page_entries, &cpu_buffer->overrun);
2641  			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2642  			local_inc(&cpu_buffer->pages_lost);
2643  		}
2644  
2645  		/*
2646  		 * We have already removed references to this list item, just
2647  		 * free up the buffer_page and its page
2648  		 */
2649  		free_buffer_page(to_remove_page);
2650  		nr_removed--;
2651  
2652  	} while (to_remove_page != last_page);
2653  
2654  	RB_WARN_ON(cpu_buffer, nr_removed);
2655  
2656  	return nr_removed == 0;
2657  }
2658  
2659  static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2660  rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2661  {
2662  	struct list_head *pages = &cpu_buffer->new_pages;
2663  	unsigned long flags;
2664  	bool success;
2665  	int retries;
2666  
2667  	/* Can be called at early boot up, where interrupts must not been enabled */
2668  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2669  	/*
2670  	 * We are holding the reader lock, so the reader page won't be swapped
2671  	 * in the ring buffer. Now we are racing with the writer trying to
2672  	 * move head page and the tail page.
2673  	 * We are going to adapt the reader page update process where:
2674  	 * 1. We first splice the start and end of list of new pages between
2675  	 *    the head page and its previous page.
2676  	 * 2. We cmpxchg the prev_page->next to point from head page to the
2677  	 *    start of new pages list.
2678  	 * 3. Finally, we update the head->prev to the end of new list.
2679  	 *
2680  	 * We will try this process 10 times, to make sure that we don't keep
2681  	 * spinning.
2682  	 */
2683  	retries = 10;
2684  	success = false;
2685  	while (retries--) {
2686  		struct list_head *head_page, *prev_page;
2687  		struct list_head *last_page, *first_page;
2688  		struct list_head *head_page_with_bit;
2689  		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2690  
2691  		if (!hpage)
2692  			break;
2693  		head_page = &hpage->list;
2694  		prev_page = head_page->prev;
2695  
2696  		first_page = pages->next;
2697  		last_page  = pages->prev;
2698  
2699  		head_page_with_bit = (struct list_head *)
2700  				     ((unsigned long)head_page | RB_PAGE_HEAD);
2701  
2702  		last_page->next = head_page_with_bit;
2703  		first_page->prev = prev_page;
2704  
2705  		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2706  		if (try_cmpxchg(&prev_page->next,
2707  				&head_page_with_bit, first_page)) {
2708  			/*
2709  			 * yay, we replaced the page pointer to our new list,
2710  			 * now, we just have to update to head page's prev
2711  			 * pointer to point to end of list
2712  			 */
2713  			head_page->prev = last_page;
2714  			cpu_buffer->cnt++;
2715  			success = true;
2716  			break;
2717  		}
2718  	}
2719  
2720  	if (success)
2721  		INIT_LIST_HEAD(pages);
2722  	/*
2723  	 * If we weren't successful in adding in new pages, warn and stop
2724  	 * tracing
2725  	 */
2726  	RB_WARN_ON(cpu_buffer, !success);
2727  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2728  
2729  	/* free pages if they weren't inserted */
2730  	if (!success) {
2731  		struct buffer_page *bpage, *tmp;
2732  		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2733  					 list) {
2734  			list_del_init(&bpage->list);
2735  			free_buffer_page(bpage);
2736  		}
2737  	}
2738  	return success;
2739  }
2740  
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2741  static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2742  {
2743  	bool success;
2744  
2745  	if (cpu_buffer->nr_pages_to_update > 0)
2746  		success = rb_insert_pages(cpu_buffer);
2747  	else
2748  		success = rb_remove_pages(cpu_buffer,
2749  					-cpu_buffer->nr_pages_to_update);
2750  
2751  	if (success)
2752  		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2753  }
2754  
update_pages_handler(struct work_struct * work)2755  static void update_pages_handler(struct work_struct *work)
2756  {
2757  	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2758  			struct ring_buffer_per_cpu, update_pages_work);
2759  	rb_update_pages(cpu_buffer);
2760  	complete(&cpu_buffer->update_done);
2761  }
2762  
2763  /**
2764   * ring_buffer_resize - resize the ring buffer
2765   * @buffer: the buffer to resize.
2766   * @size: the new size.
2767   * @cpu_id: the cpu buffer to resize
2768   *
2769   * Minimum size is 2 * buffer->subbuf_size.
2770   *
2771   * Returns 0 on success and < 0 on failure.
2772   */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2773  int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2774  			int cpu_id)
2775  {
2776  	struct ring_buffer_per_cpu *cpu_buffer;
2777  	unsigned long nr_pages;
2778  	int cpu, err;
2779  
2780  	/*
2781  	 * Always succeed at resizing a non-existent buffer:
2782  	 */
2783  	if (!buffer)
2784  		return 0;
2785  
2786  	/* Make sure the requested buffer exists */
2787  	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2788  	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2789  		return 0;
2790  
2791  	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2792  
2793  	/* we need a minimum of two pages */
2794  	if (nr_pages < 2)
2795  		nr_pages = 2;
2796  
2797  	/* prevent another thread from changing buffer sizes */
2798  	mutex_lock(&buffer->mutex);
2799  	atomic_inc(&buffer->resizing);
2800  
2801  	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2802  		/*
2803  		 * Don't succeed if resizing is disabled, as a reader might be
2804  		 * manipulating the ring buffer and is expecting a sane state while
2805  		 * this is true.
2806  		 */
2807  		for_each_buffer_cpu(buffer, cpu) {
2808  			cpu_buffer = buffer->buffers[cpu];
2809  			if (atomic_read(&cpu_buffer->resize_disabled)) {
2810  				err = -EBUSY;
2811  				goto out_err_unlock;
2812  			}
2813  		}
2814  
2815  		/* calculate the pages to update */
2816  		for_each_buffer_cpu(buffer, cpu) {
2817  			cpu_buffer = buffer->buffers[cpu];
2818  
2819  			cpu_buffer->nr_pages_to_update = nr_pages -
2820  							cpu_buffer->nr_pages;
2821  			/*
2822  			 * nothing more to do for removing pages or no update
2823  			 */
2824  			if (cpu_buffer->nr_pages_to_update <= 0)
2825  				continue;
2826  			/*
2827  			 * to add pages, make sure all new pages can be
2828  			 * allocated without receiving ENOMEM
2829  			 */
2830  			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2831  			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2832  						&cpu_buffer->new_pages)) {
2833  				/* not enough memory for new pages */
2834  				err = -ENOMEM;
2835  				goto out_err;
2836  			}
2837  
2838  			cond_resched();
2839  		}
2840  
2841  		cpus_read_lock();
2842  		/*
2843  		 * Fire off all the required work handlers
2844  		 * We can't schedule on offline CPUs, but it's not necessary
2845  		 * since we can change their buffer sizes without any race.
2846  		 */
2847  		for_each_buffer_cpu(buffer, cpu) {
2848  			cpu_buffer = buffer->buffers[cpu];
2849  			if (!cpu_buffer->nr_pages_to_update)
2850  				continue;
2851  
2852  			/* Can't run something on an offline CPU. */
2853  			if (!cpu_online(cpu)) {
2854  				rb_update_pages(cpu_buffer);
2855  				cpu_buffer->nr_pages_to_update = 0;
2856  			} else {
2857  				/* Run directly if possible. */
2858  				migrate_disable();
2859  				if (cpu != smp_processor_id()) {
2860  					migrate_enable();
2861  					schedule_work_on(cpu,
2862  							 &cpu_buffer->update_pages_work);
2863  				} else {
2864  					update_pages_handler(&cpu_buffer->update_pages_work);
2865  					migrate_enable();
2866  				}
2867  			}
2868  		}
2869  
2870  		/* wait for all the updates to complete */
2871  		for_each_buffer_cpu(buffer, cpu) {
2872  			cpu_buffer = buffer->buffers[cpu];
2873  			if (!cpu_buffer->nr_pages_to_update)
2874  				continue;
2875  
2876  			if (cpu_online(cpu))
2877  				wait_for_completion(&cpu_buffer->update_done);
2878  			cpu_buffer->nr_pages_to_update = 0;
2879  		}
2880  
2881  		cpus_read_unlock();
2882  	} else {
2883  		cpu_buffer = buffer->buffers[cpu_id];
2884  
2885  		if (nr_pages == cpu_buffer->nr_pages)
2886  			goto out;
2887  
2888  		/*
2889  		 * Don't succeed if resizing is disabled, as a reader might be
2890  		 * manipulating the ring buffer and is expecting a sane state while
2891  		 * this is true.
2892  		 */
2893  		if (atomic_read(&cpu_buffer->resize_disabled)) {
2894  			err = -EBUSY;
2895  			goto out_err_unlock;
2896  		}
2897  
2898  		cpu_buffer->nr_pages_to_update = nr_pages -
2899  						cpu_buffer->nr_pages;
2900  
2901  		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2902  		if (cpu_buffer->nr_pages_to_update > 0 &&
2903  			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2904  					    &cpu_buffer->new_pages)) {
2905  			err = -ENOMEM;
2906  			goto out_err;
2907  		}
2908  
2909  		cpus_read_lock();
2910  
2911  		/* Can't run something on an offline CPU. */
2912  		if (!cpu_online(cpu_id))
2913  			rb_update_pages(cpu_buffer);
2914  		else {
2915  			/* Run directly if possible. */
2916  			migrate_disable();
2917  			if (cpu_id == smp_processor_id()) {
2918  				rb_update_pages(cpu_buffer);
2919  				migrate_enable();
2920  			} else {
2921  				migrate_enable();
2922  				schedule_work_on(cpu_id,
2923  						 &cpu_buffer->update_pages_work);
2924  				wait_for_completion(&cpu_buffer->update_done);
2925  			}
2926  		}
2927  
2928  		cpu_buffer->nr_pages_to_update = 0;
2929  		cpus_read_unlock();
2930  	}
2931  
2932   out:
2933  	/*
2934  	 * The ring buffer resize can happen with the ring buffer
2935  	 * enabled, so that the update disturbs the tracing as little
2936  	 * as possible. But if the buffer is disabled, we do not need
2937  	 * to worry about that, and we can take the time to verify
2938  	 * that the buffer is not corrupt.
2939  	 */
2940  	if (atomic_read(&buffer->record_disabled)) {
2941  		atomic_inc(&buffer->record_disabled);
2942  		/*
2943  		 * Even though the buffer was disabled, we must make sure
2944  		 * that it is truly disabled before calling rb_check_pages.
2945  		 * There could have been a race between checking
2946  		 * record_disable and incrementing it.
2947  		 */
2948  		synchronize_rcu();
2949  		for_each_buffer_cpu(buffer, cpu) {
2950  			cpu_buffer = buffer->buffers[cpu];
2951  			rb_check_pages(cpu_buffer);
2952  		}
2953  		atomic_dec(&buffer->record_disabled);
2954  	}
2955  
2956  	atomic_dec(&buffer->resizing);
2957  	mutex_unlock(&buffer->mutex);
2958  	return 0;
2959  
2960   out_err:
2961  	for_each_buffer_cpu(buffer, cpu) {
2962  		struct buffer_page *bpage, *tmp;
2963  
2964  		cpu_buffer = buffer->buffers[cpu];
2965  		cpu_buffer->nr_pages_to_update = 0;
2966  
2967  		if (list_empty(&cpu_buffer->new_pages))
2968  			continue;
2969  
2970  		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2971  					list) {
2972  			list_del_init(&bpage->list);
2973  			free_buffer_page(bpage);
2974  		}
2975  	}
2976   out_err_unlock:
2977  	atomic_dec(&buffer->resizing);
2978  	mutex_unlock(&buffer->mutex);
2979  	return err;
2980  }
2981  EXPORT_SYMBOL_GPL(ring_buffer_resize);
2982  
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2983  void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2984  {
2985  	mutex_lock(&buffer->mutex);
2986  	if (val)
2987  		buffer->flags |= RB_FL_OVERWRITE;
2988  	else
2989  		buffer->flags &= ~RB_FL_OVERWRITE;
2990  	mutex_unlock(&buffer->mutex);
2991  }
2992  EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2993  
__rb_page_index(struct buffer_page * bpage,unsigned index)2994  static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2995  {
2996  	return bpage->page->data + index;
2997  }
2998  
2999  static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3000  rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3001  {
3002  	return __rb_page_index(cpu_buffer->reader_page,
3003  			       cpu_buffer->reader_page->read);
3004  }
3005  
3006  static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)3007  rb_iter_head_event(struct ring_buffer_iter *iter)
3008  {
3009  	struct ring_buffer_event *event;
3010  	struct buffer_page *iter_head_page = iter->head_page;
3011  	unsigned long commit;
3012  	unsigned length;
3013  
3014  	if (iter->head != iter->next_event)
3015  		return iter->event;
3016  
3017  	/*
3018  	 * When the writer goes across pages, it issues a cmpxchg which
3019  	 * is a mb(), which will synchronize with the rmb here.
3020  	 * (see rb_tail_page_update() and __rb_reserve_next())
3021  	 */
3022  	commit = rb_page_commit(iter_head_page);
3023  	smp_rmb();
3024  
3025  	/* An event needs to be at least 8 bytes in size */
3026  	if (iter->head > commit - 8)
3027  		goto reset;
3028  
3029  	event = __rb_page_index(iter_head_page, iter->head);
3030  	length = rb_event_length(event);
3031  
3032  	/*
3033  	 * READ_ONCE() doesn't work on functions and we don't want the
3034  	 * compiler doing any crazy optimizations with length.
3035  	 */
3036  	barrier();
3037  
3038  	if ((iter->head + length) > commit || length > iter->event_size)
3039  		/* Writer corrupted the read? */
3040  		goto reset;
3041  
3042  	memcpy(iter->event, event, length);
3043  	/*
3044  	 * If the page stamp is still the same after this rmb() then the
3045  	 * event was safely copied without the writer entering the page.
3046  	 */
3047  	smp_rmb();
3048  
3049  	/* Make sure the page didn't change since we read this */
3050  	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3051  	    commit > rb_page_commit(iter_head_page))
3052  		goto reset;
3053  
3054  	iter->next_event = iter->head + length;
3055  	return iter->event;
3056   reset:
3057  	/* Reset to the beginning */
3058  	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3059  	iter->head = 0;
3060  	iter->next_event = 0;
3061  	iter->missed_events = 1;
3062  	return NULL;
3063  }
3064  
3065  /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3066  static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3067  {
3068  	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3069  }
3070  
3071  static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3072  rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3073  {
3074  	return rb_page_commit(cpu_buffer->commit_page);
3075  }
3076  
3077  static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3078  rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3079  {
3080  	unsigned long addr = (unsigned long)event;
3081  
3082  	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3083  
3084  	return addr - BUF_PAGE_HDR_SIZE;
3085  }
3086  
rb_inc_iter(struct ring_buffer_iter * iter)3087  static void rb_inc_iter(struct ring_buffer_iter *iter)
3088  {
3089  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3090  
3091  	/*
3092  	 * The iterator could be on the reader page (it starts there).
3093  	 * But the head could have moved, since the reader was
3094  	 * found. Check for this case and assign the iterator
3095  	 * to the head page instead of next.
3096  	 */
3097  	if (iter->head_page == cpu_buffer->reader_page)
3098  		iter->head_page = rb_set_head_page(cpu_buffer);
3099  	else
3100  		rb_inc_page(&iter->head_page);
3101  
3102  	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3103  	iter->head = 0;
3104  	iter->next_event = 0;
3105  }
3106  
3107  /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_meta * meta,void * subbuf)3108  static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3109  {
3110  	void *subbuf_array;
3111  
3112  	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3113  	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3114  	return (subbuf - subbuf_array) / meta->subbuf_size;
3115  }
3116  
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3117  static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3118  				struct buffer_page *next_page)
3119  {
3120  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3121  	unsigned long old_head = (unsigned long)next_page->page;
3122  	unsigned long new_head;
3123  
3124  	rb_inc_page(&next_page);
3125  	new_head = (unsigned long)next_page->page;
3126  
3127  	/*
3128  	 * Only move it forward once, if something else came in and
3129  	 * moved it forward, then we don't want to touch it.
3130  	 */
3131  	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3132  }
3133  
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3134  static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3135  				  struct buffer_page *reader)
3136  {
3137  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3138  	void *old_reader = cpu_buffer->reader_page->page;
3139  	void *new_reader = reader->page;
3140  	int id;
3141  
3142  	id = reader->id;
3143  	cpu_buffer->reader_page->id = id;
3144  	reader->id = 0;
3145  
3146  	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3147  	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3148  
3149  	/* The head pointer is the one after the reader */
3150  	rb_update_meta_head(cpu_buffer, reader);
3151  }
3152  
3153  /*
3154   * rb_handle_head_page - writer hit the head page
3155   *
3156   * Returns: +1 to retry page
3157   *           0 to continue
3158   *          -1 on error
3159   */
3160  static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3161  rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3162  		    struct buffer_page *tail_page,
3163  		    struct buffer_page *next_page)
3164  {
3165  	struct buffer_page *new_head;
3166  	int entries;
3167  	int type;
3168  	int ret;
3169  
3170  	entries = rb_page_entries(next_page);
3171  
3172  	/*
3173  	 * The hard part is here. We need to move the head
3174  	 * forward, and protect against both readers on
3175  	 * other CPUs and writers coming in via interrupts.
3176  	 */
3177  	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3178  				       RB_PAGE_HEAD);
3179  
3180  	/*
3181  	 * type can be one of four:
3182  	 *  NORMAL - an interrupt already moved it for us
3183  	 *  HEAD   - we are the first to get here.
3184  	 *  UPDATE - we are the interrupt interrupting
3185  	 *           a current move.
3186  	 *  MOVED  - a reader on another CPU moved the next
3187  	 *           pointer to its reader page. Give up
3188  	 *           and try again.
3189  	 */
3190  
3191  	switch (type) {
3192  	case RB_PAGE_HEAD:
3193  		/*
3194  		 * We changed the head to UPDATE, thus
3195  		 * it is our responsibility to update
3196  		 * the counters.
3197  		 */
3198  		local_add(entries, &cpu_buffer->overrun);
3199  		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3200  		local_inc(&cpu_buffer->pages_lost);
3201  
3202  		if (cpu_buffer->ring_meta)
3203  			rb_update_meta_head(cpu_buffer, next_page);
3204  		/*
3205  		 * The entries will be zeroed out when we move the
3206  		 * tail page.
3207  		 */
3208  
3209  		/* still more to do */
3210  		break;
3211  
3212  	case RB_PAGE_UPDATE:
3213  		/*
3214  		 * This is an interrupt that interrupt the
3215  		 * previous update. Still more to do.
3216  		 */
3217  		break;
3218  	case RB_PAGE_NORMAL:
3219  		/*
3220  		 * An interrupt came in before the update
3221  		 * and processed this for us.
3222  		 * Nothing left to do.
3223  		 */
3224  		return 1;
3225  	case RB_PAGE_MOVED:
3226  		/*
3227  		 * The reader is on another CPU and just did
3228  		 * a swap with our next_page.
3229  		 * Try again.
3230  		 */
3231  		return 1;
3232  	default:
3233  		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3234  		return -1;
3235  	}
3236  
3237  	/*
3238  	 * Now that we are here, the old head pointer is
3239  	 * set to UPDATE. This will keep the reader from
3240  	 * swapping the head page with the reader page.
3241  	 * The reader (on another CPU) will spin till
3242  	 * we are finished.
3243  	 *
3244  	 * We just need to protect against interrupts
3245  	 * doing the job. We will set the next pointer
3246  	 * to HEAD. After that, we set the old pointer
3247  	 * to NORMAL, but only if it was HEAD before.
3248  	 * otherwise we are an interrupt, and only
3249  	 * want the outer most commit to reset it.
3250  	 */
3251  	new_head = next_page;
3252  	rb_inc_page(&new_head);
3253  
3254  	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3255  				    RB_PAGE_NORMAL);
3256  
3257  	/*
3258  	 * Valid returns are:
3259  	 *  HEAD   - an interrupt came in and already set it.
3260  	 *  NORMAL - One of two things:
3261  	 *            1) We really set it.
3262  	 *            2) A bunch of interrupts came in and moved
3263  	 *               the page forward again.
3264  	 */
3265  	switch (ret) {
3266  	case RB_PAGE_HEAD:
3267  	case RB_PAGE_NORMAL:
3268  		/* OK */
3269  		break;
3270  	default:
3271  		RB_WARN_ON(cpu_buffer, 1);
3272  		return -1;
3273  	}
3274  
3275  	/*
3276  	 * It is possible that an interrupt came in,
3277  	 * set the head up, then more interrupts came in
3278  	 * and moved it again. When we get back here,
3279  	 * the page would have been set to NORMAL but we
3280  	 * just set it back to HEAD.
3281  	 *
3282  	 * How do you detect this? Well, if that happened
3283  	 * the tail page would have moved.
3284  	 */
3285  	if (ret == RB_PAGE_NORMAL) {
3286  		struct buffer_page *buffer_tail_page;
3287  
3288  		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3289  		/*
3290  		 * If the tail had moved passed next, then we need
3291  		 * to reset the pointer.
3292  		 */
3293  		if (buffer_tail_page != tail_page &&
3294  		    buffer_tail_page != next_page)
3295  			rb_head_page_set_normal(cpu_buffer, new_head,
3296  						next_page,
3297  						RB_PAGE_HEAD);
3298  	}
3299  
3300  	/*
3301  	 * If this was the outer most commit (the one that
3302  	 * changed the original pointer from HEAD to UPDATE),
3303  	 * then it is up to us to reset it to NORMAL.
3304  	 */
3305  	if (type == RB_PAGE_HEAD) {
3306  		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3307  					      tail_page,
3308  					      RB_PAGE_UPDATE);
3309  		if (RB_WARN_ON(cpu_buffer,
3310  			       ret != RB_PAGE_UPDATE))
3311  			return -1;
3312  	}
3313  
3314  	return 0;
3315  }
3316  
3317  static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3318  rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3319  	      unsigned long tail, struct rb_event_info *info)
3320  {
3321  	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3322  	struct buffer_page *tail_page = info->tail_page;
3323  	struct ring_buffer_event *event;
3324  	unsigned long length = info->length;
3325  
3326  	/*
3327  	 * Only the event that crossed the page boundary
3328  	 * must fill the old tail_page with padding.
3329  	 */
3330  	if (tail >= bsize) {
3331  		/*
3332  		 * If the page was filled, then we still need
3333  		 * to update the real_end. Reset it to zero
3334  		 * and the reader will ignore it.
3335  		 */
3336  		if (tail == bsize)
3337  			tail_page->real_end = 0;
3338  
3339  		local_sub(length, &tail_page->write);
3340  		return;
3341  	}
3342  
3343  	event = __rb_page_index(tail_page, tail);
3344  
3345  	/*
3346  	 * Save the original length to the meta data.
3347  	 * This will be used by the reader to add lost event
3348  	 * counter.
3349  	 */
3350  	tail_page->real_end = tail;
3351  
3352  	/*
3353  	 * If this event is bigger than the minimum size, then
3354  	 * we need to be careful that we don't subtract the
3355  	 * write counter enough to allow another writer to slip
3356  	 * in on this page.
3357  	 * We put in a discarded commit instead, to make sure
3358  	 * that this space is not used again, and this space will
3359  	 * not be accounted into 'entries_bytes'.
3360  	 *
3361  	 * If we are less than the minimum size, we don't need to
3362  	 * worry about it.
3363  	 */
3364  	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3365  		/* No room for any events */
3366  
3367  		/* Mark the rest of the page with padding */
3368  		rb_event_set_padding(event);
3369  
3370  		/* Make sure the padding is visible before the write update */
3371  		smp_wmb();
3372  
3373  		/* Set the write back to the previous setting */
3374  		local_sub(length, &tail_page->write);
3375  		return;
3376  	}
3377  
3378  	/* Put in a discarded event */
3379  	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3380  	event->type_len = RINGBUF_TYPE_PADDING;
3381  	/* time delta must be non zero */
3382  	event->time_delta = 1;
3383  
3384  	/* account for padding bytes */
3385  	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3386  
3387  	/* Make sure the padding is visible before the tail_page->write update */
3388  	smp_wmb();
3389  
3390  	/* Set write to end of buffer */
3391  	length = (tail + length) - bsize;
3392  	local_sub(length, &tail_page->write);
3393  }
3394  
3395  static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3396  
3397  /*
3398   * This is the slow path, force gcc not to inline it.
3399   */
3400  static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3401  rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3402  	     unsigned long tail, struct rb_event_info *info)
3403  {
3404  	struct buffer_page *tail_page = info->tail_page;
3405  	struct buffer_page *commit_page = cpu_buffer->commit_page;
3406  	struct trace_buffer *buffer = cpu_buffer->buffer;
3407  	struct buffer_page *next_page;
3408  	int ret;
3409  
3410  	next_page = tail_page;
3411  
3412  	rb_inc_page(&next_page);
3413  
3414  	/*
3415  	 * If for some reason, we had an interrupt storm that made
3416  	 * it all the way around the buffer, bail, and warn
3417  	 * about it.
3418  	 */
3419  	if (unlikely(next_page == commit_page)) {
3420  		local_inc(&cpu_buffer->commit_overrun);
3421  		goto out_reset;
3422  	}
3423  
3424  	/*
3425  	 * This is where the fun begins!
3426  	 *
3427  	 * We are fighting against races between a reader that
3428  	 * could be on another CPU trying to swap its reader
3429  	 * page with the buffer head.
3430  	 *
3431  	 * We are also fighting against interrupts coming in and
3432  	 * moving the head or tail on us as well.
3433  	 *
3434  	 * If the next page is the head page then we have filled
3435  	 * the buffer, unless the commit page is still on the
3436  	 * reader page.
3437  	 */
3438  	if (rb_is_head_page(next_page, &tail_page->list)) {
3439  
3440  		/*
3441  		 * If the commit is not on the reader page, then
3442  		 * move the header page.
3443  		 */
3444  		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3445  			/*
3446  			 * If we are not in overwrite mode,
3447  			 * this is easy, just stop here.
3448  			 */
3449  			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3450  				local_inc(&cpu_buffer->dropped_events);
3451  				goto out_reset;
3452  			}
3453  
3454  			ret = rb_handle_head_page(cpu_buffer,
3455  						  tail_page,
3456  						  next_page);
3457  			if (ret < 0)
3458  				goto out_reset;
3459  			if (ret)
3460  				goto out_again;
3461  		} else {
3462  			/*
3463  			 * We need to be careful here too. The
3464  			 * commit page could still be on the reader
3465  			 * page. We could have a small buffer, and
3466  			 * have filled up the buffer with events
3467  			 * from interrupts and such, and wrapped.
3468  			 *
3469  			 * Note, if the tail page is also on the
3470  			 * reader_page, we let it move out.
3471  			 */
3472  			if (unlikely((cpu_buffer->commit_page !=
3473  				      cpu_buffer->tail_page) &&
3474  				     (cpu_buffer->commit_page ==
3475  				      cpu_buffer->reader_page))) {
3476  				local_inc(&cpu_buffer->commit_overrun);
3477  				goto out_reset;
3478  			}
3479  		}
3480  	}
3481  
3482  	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3483  
3484   out_again:
3485  
3486  	rb_reset_tail(cpu_buffer, tail, info);
3487  
3488  	/* Commit what we have for now. */
3489  	rb_end_commit(cpu_buffer);
3490  	/* rb_end_commit() decs committing */
3491  	local_inc(&cpu_buffer->committing);
3492  
3493  	/* fail and let the caller try again */
3494  	return ERR_PTR(-EAGAIN);
3495  
3496   out_reset:
3497  	/* reset write */
3498  	rb_reset_tail(cpu_buffer, tail, info);
3499  
3500  	return NULL;
3501  }
3502  
3503  /* Slow path */
3504  static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3505  rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3506  		  struct ring_buffer_event *event, u64 delta, bool abs)
3507  {
3508  	if (abs)
3509  		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3510  	else
3511  		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3512  
3513  	/* Not the first event on the page, or not delta? */
3514  	if (abs || rb_event_index(cpu_buffer, event)) {
3515  		event->time_delta = delta & TS_MASK;
3516  		event->array[0] = delta >> TS_SHIFT;
3517  	} else {
3518  		/* nope, just zero it */
3519  		event->time_delta = 0;
3520  		event->array[0] = 0;
3521  	}
3522  
3523  	return skip_time_extend(event);
3524  }
3525  
3526  #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3527  static inline bool sched_clock_stable(void)
3528  {
3529  	return true;
3530  }
3531  #endif
3532  
3533  static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3534  rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3535  		   struct rb_event_info *info)
3536  {
3537  	u64 write_stamp;
3538  
3539  	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3540  		  (unsigned long long)info->delta,
3541  		  (unsigned long long)info->ts,
3542  		  (unsigned long long)info->before,
3543  		  (unsigned long long)info->after,
3544  		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3545  		  sched_clock_stable() ? "" :
3546  		  "If you just came from a suspend/resume,\n"
3547  		  "please switch to the trace global clock:\n"
3548  		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3549  		  "or add trace_clock=global to the kernel command line\n");
3550  }
3551  
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3552  static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3553  				      struct ring_buffer_event **event,
3554  				      struct rb_event_info *info,
3555  				      u64 *delta,
3556  				      unsigned int *length)
3557  {
3558  	bool abs = info->add_timestamp &
3559  		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3560  
3561  	if (unlikely(info->delta > (1ULL << 59))) {
3562  		/*
3563  		 * Some timers can use more than 59 bits, and when a timestamp
3564  		 * is added to the buffer, it will lose those bits.
3565  		 */
3566  		if (abs && (info->ts & TS_MSB)) {
3567  			info->delta &= ABS_TS_MASK;
3568  
3569  		/* did the clock go backwards */
3570  		} else if (info->before == info->after && info->before > info->ts) {
3571  			/* not interrupted */
3572  			static int once;
3573  
3574  			/*
3575  			 * This is possible with a recalibrating of the TSC.
3576  			 * Do not produce a call stack, but just report it.
3577  			 */
3578  			if (!once) {
3579  				once++;
3580  				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3581  					info->before, info->ts);
3582  			}
3583  		} else
3584  			rb_check_timestamp(cpu_buffer, info);
3585  		if (!abs)
3586  			info->delta = 0;
3587  	}
3588  	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3589  	*length -= RB_LEN_TIME_EXTEND;
3590  	*delta = 0;
3591  }
3592  
3593  /**
3594   * rb_update_event - update event type and data
3595   * @cpu_buffer: The per cpu buffer of the @event
3596   * @event: the event to update
3597   * @info: The info to update the @event with (contains length and delta)
3598   *
3599   * Update the type and data fields of the @event. The length
3600   * is the actual size that is written to the ring buffer,
3601   * and with this, we can determine what to place into the
3602   * data field.
3603   */
3604  static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3605  rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3606  		struct ring_buffer_event *event,
3607  		struct rb_event_info *info)
3608  {
3609  	unsigned length = info->length;
3610  	u64 delta = info->delta;
3611  	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3612  
3613  	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3614  		cpu_buffer->event_stamp[nest] = info->ts;
3615  
3616  	/*
3617  	 * If we need to add a timestamp, then we
3618  	 * add it to the start of the reserved space.
3619  	 */
3620  	if (unlikely(info->add_timestamp))
3621  		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3622  
3623  	event->time_delta = delta;
3624  	length -= RB_EVNT_HDR_SIZE;
3625  	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3626  		event->type_len = 0;
3627  		event->array[0] = length;
3628  	} else
3629  		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3630  }
3631  
rb_calculate_event_length(unsigned length)3632  static unsigned rb_calculate_event_length(unsigned length)
3633  {
3634  	struct ring_buffer_event event; /* Used only for sizeof array */
3635  
3636  	/* zero length can cause confusions */
3637  	if (!length)
3638  		length++;
3639  
3640  	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3641  		length += sizeof(event.array[0]);
3642  
3643  	length += RB_EVNT_HDR_SIZE;
3644  	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3645  
3646  	/*
3647  	 * In case the time delta is larger than the 27 bits for it
3648  	 * in the header, we need to add a timestamp. If another
3649  	 * event comes in when trying to discard this one to increase
3650  	 * the length, then the timestamp will be added in the allocated
3651  	 * space of this event. If length is bigger than the size needed
3652  	 * for the TIME_EXTEND, then padding has to be used. The events
3653  	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3654  	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3655  	 * As length is a multiple of 4, we only need to worry if it
3656  	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3657  	 */
3658  	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3659  		length += RB_ALIGNMENT;
3660  
3661  	return length;
3662  }
3663  
3664  static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3665  rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3666  		  struct ring_buffer_event *event)
3667  {
3668  	unsigned long new_index, old_index;
3669  	struct buffer_page *bpage;
3670  	unsigned long addr;
3671  
3672  	new_index = rb_event_index(cpu_buffer, event);
3673  	old_index = new_index + rb_event_ts_length(event);
3674  	addr = (unsigned long)event;
3675  	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3676  
3677  	bpage = READ_ONCE(cpu_buffer->tail_page);
3678  
3679  	/*
3680  	 * Make sure the tail_page is still the same and
3681  	 * the next write location is the end of this event
3682  	 */
3683  	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3684  		unsigned long write_mask =
3685  			local_read(&bpage->write) & ~RB_WRITE_MASK;
3686  		unsigned long event_length = rb_event_length(event);
3687  
3688  		/*
3689  		 * For the before_stamp to be different than the write_stamp
3690  		 * to make sure that the next event adds an absolute
3691  		 * value and does not rely on the saved write stamp, which
3692  		 * is now going to be bogus.
3693  		 *
3694  		 * By setting the before_stamp to zero, the next event
3695  		 * is not going to use the write_stamp and will instead
3696  		 * create an absolute timestamp. This means there's no
3697  		 * reason to update the wirte_stamp!
3698  		 */
3699  		rb_time_set(&cpu_buffer->before_stamp, 0);
3700  
3701  		/*
3702  		 * If an event were to come in now, it would see that the
3703  		 * write_stamp and the before_stamp are different, and assume
3704  		 * that this event just added itself before updating
3705  		 * the write stamp. The interrupting event will fix the
3706  		 * write stamp for us, and use an absolute timestamp.
3707  		 */
3708  
3709  		/*
3710  		 * This is on the tail page. It is possible that
3711  		 * a write could come in and move the tail page
3712  		 * and write to the next page. That is fine
3713  		 * because we just shorten what is on this page.
3714  		 */
3715  		old_index += write_mask;
3716  		new_index += write_mask;
3717  
3718  		/* caution: old_index gets updated on cmpxchg failure */
3719  		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3720  			/* update counters */
3721  			local_sub(event_length, &cpu_buffer->entries_bytes);
3722  			return true;
3723  		}
3724  	}
3725  
3726  	/* could not discard */
3727  	return false;
3728  }
3729  
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3730  static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3731  {
3732  	local_inc(&cpu_buffer->committing);
3733  	local_inc(&cpu_buffer->commits);
3734  }
3735  
3736  static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3737  rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3738  {
3739  	unsigned long max_count;
3740  
3741  	/*
3742  	 * We only race with interrupts and NMIs on this CPU.
3743  	 * If we own the commit event, then we can commit
3744  	 * all others that interrupted us, since the interruptions
3745  	 * are in stack format (they finish before they come
3746  	 * back to us). This allows us to do a simple loop to
3747  	 * assign the commit to the tail.
3748  	 */
3749   again:
3750  	max_count = cpu_buffer->nr_pages * 100;
3751  
3752  	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3753  		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3754  			return;
3755  		if (RB_WARN_ON(cpu_buffer,
3756  			       rb_is_reader_page(cpu_buffer->tail_page)))
3757  			return;
3758  		/*
3759  		 * No need for a memory barrier here, as the update
3760  		 * of the tail_page did it for this page.
3761  		 */
3762  		local_set(&cpu_buffer->commit_page->page->commit,
3763  			  rb_page_write(cpu_buffer->commit_page));
3764  		rb_inc_page(&cpu_buffer->commit_page);
3765  		if (cpu_buffer->ring_meta) {
3766  			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3767  			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3768  		}
3769  		/* add barrier to keep gcc from optimizing too much */
3770  		barrier();
3771  	}
3772  	while (rb_commit_index(cpu_buffer) !=
3773  	       rb_page_write(cpu_buffer->commit_page)) {
3774  
3775  		/* Make sure the readers see the content of what is committed. */
3776  		smp_wmb();
3777  		local_set(&cpu_buffer->commit_page->page->commit,
3778  			  rb_page_write(cpu_buffer->commit_page));
3779  		RB_WARN_ON(cpu_buffer,
3780  			   local_read(&cpu_buffer->commit_page->page->commit) &
3781  			   ~RB_WRITE_MASK);
3782  		barrier();
3783  	}
3784  
3785  	/* again, keep gcc from optimizing */
3786  	barrier();
3787  
3788  	/*
3789  	 * If an interrupt came in just after the first while loop
3790  	 * and pushed the tail page forward, we will be left with
3791  	 * a dangling commit that will never go forward.
3792  	 */
3793  	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3794  		goto again;
3795  }
3796  
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3797  static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3798  {
3799  	unsigned long commits;
3800  
3801  	if (RB_WARN_ON(cpu_buffer,
3802  		       !local_read(&cpu_buffer->committing)))
3803  		return;
3804  
3805   again:
3806  	commits = local_read(&cpu_buffer->commits);
3807  	/* synchronize with interrupts */
3808  	barrier();
3809  	if (local_read(&cpu_buffer->committing) == 1)
3810  		rb_set_commit_to_write(cpu_buffer);
3811  
3812  	local_dec(&cpu_buffer->committing);
3813  
3814  	/* synchronize with interrupts */
3815  	barrier();
3816  
3817  	/*
3818  	 * Need to account for interrupts coming in between the
3819  	 * updating of the commit page and the clearing of the
3820  	 * committing counter.
3821  	 */
3822  	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3823  	    !local_read(&cpu_buffer->committing)) {
3824  		local_inc(&cpu_buffer->committing);
3825  		goto again;
3826  	}
3827  }
3828  
rb_event_discard(struct ring_buffer_event * event)3829  static inline void rb_event_discard(struct ring_buffer_event *event)
3830  {
3831  	if (extended_time(event))
3832  		event = skip_time_extend(event);
3833  
3834  	/* array[0] holds the actual length for the discarded event */
3835  	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3836  	event->type_len = RINGBUF_TYPE_PADDING;
3837  	/* time delta must be non zero */
3838  	if (!event->time_delta)
3839  		event->time_delta = 1;
3840  }
3841  
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3842  static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3843  {
3844  	local_inc(&cpu_buffer->entries);
3845  	rb_end_commit(cpu_buffer);
3846  }
3847  
3848  static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3849  rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3850  {
3851  	if (buffer->irq_work.waiters_pending) {
3852  		buffer->irq_work.waiters_pending = false;
3853  		/* irq_work_queue() supplies it's own memory barriers */
3854  		irq_work_queue(&buffer->irq_work.work);
3855  	}
3856  
3857  	if (cpu_buffer->irq_work.waiters_pending) {
3858  		cpu_buffer->irq_work.waiters_pending = false;
3859  		/* irq_work_queue() supplies it's own memory barriers */
3860  		irq_work_queue(&cpu_buffer->irq_work.work);
3861  	}
3862  
3863  	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3864  		return;
3865  
3866  	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3867  		return;
3868  
3869  	if (!cpu_buffer->irq_work.full_waiters_pending)
3870  		return;
3871  
3872  	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3873  
3874  	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3875  		return;
3876  
3877  	cpu_buffer->irq_work.wakeup_full = true;
3878  	cpu_buffer->irq_work.full_waiters_pending = false;
3879  	/* irq_work_queue() supplies it's own memory barriers */
3880  	irq_work_queue(&cpu_buffer->irq_work.work);
3881  }
3882  
3883  #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3884  # define do_ring_buffer_record_recursion()	\
3885  	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3886  #else
3887  # define do_ring_buffer_record_recursion() do { } while (0)
3888  #endif
3889  
3890  /*
3891   * The lock and unlock are done within a preempt disable section.
3892   * The current_context per_cpu variable can only be modified
3893   * by the current task between lock and unlock. But it can
3894   * be modified more than once via an interrupt. To pass this
3895   * information from the lock to the unlock without having to
3896   * access the 'in_interrupt()' functions again (which do show
3897   * a bit of overhead in something as critical as function tracing,
3898   * we use a bitmask trick.
3899   *
3900   *  bit 1 =  NMI context
3901   *  bit 2 =  IRQ context
3902   *  bit 3 =  SoftIRQ context
3903   *  bit 4 =  normal context.
3904   *
3905   * This works because this is the order of contexts that can
3906   * preempt other contexts. A SoftIRQ never preempts an IRQ
3907   * context.
3908   *
3909   * When the context is determined, the corresponding bit is
3910   * checked and set (if it was set, then a recursion of that context
3911   * happened).
3912   *
3913   * On unlock, we need to clear this bit. To do so, just subtract
3914   * 1 from the current_context and AND it to itself.
3915   *
3916   * (binary)
3917   *  101 - 1 = 100
3918   *  101 & 100 = 100 (clearing bit zero)
3919   *
3920   *  1010 - 1 = 1001
3921   *  1010 & 1001 = 1000 (clearing bit 1)
3922   *
3923   * The least significant bit can be cleared this way, and it
3924   * just so happens that it is the same bit corresponding to
3925   * the current context.
3926   *
3927   * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3928   * is set when a recursion is detected at the current context, and if
3929   * the TRANSITION bit is already set, it will fail the recursion.
3930   * This is needed because there's a lag between the changing of
3931   * interrupt context and updating the preempt count. In this case,
3932   * a false positive will be found. To handle this, one extra recursion
3933   * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3934   * bit is already set, then it is considered a recursion and the function
3935   * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3936   *
3937   * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3938   * to be cleared. Even if it wasn't the context that set it. That is,
3939   * if an interrupt comes in while NORMAL bit is set and the ring buffer
3940   * is called before preempt_count() is updated, since the check will
3941   * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3942   * NMI then comes in, it will set the NMI bit, but when the NMI code
3943   * does the trace_recursive_unlock() it will clear the TRANSITION bit
3944   * and leave the NMI bit set. But this is fine, because the interrupt
3945   * code that set the TRANSITION bit will then clear the NMI bit when it
3946   * calls trace_recursive_unlock(). If another NMI comes in, it will
3947   * set the TRANSITION bit and continue.
3948   *
3949   * Note: The TRANSITION bit only handles a single transition between context.
3950   */
3951  
3952  static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3953  trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3954  {
3955  	unsigned int val = cpu_buffer->current_context;
3956  	int bit = interrupt_context_level();
3957  
3958  	bit = RB_CTX_NORMAL - bit;
3959  
3960  	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3961  		/*
3962  		 * It is possible that this was called by transitioning
3963  		 * between interrupt context, and preempt_count() has not
3964  		 * been updated yet. In this case, use the TRANSITION bit.
3965  		 */
3966  		bit = RB_CTX_TRANSITION;
3967  		if (val & (1 << (bit + cpu_buffer->nest))) {
3968  			do_ring_buffer_record_recursion();
3969  			return true;
3970  		}
3971  	}
3972  
3973  	val |= (1 << (bit + cpu_buffer->nest));
3974  	cpu_buffer->current_context = val;
3975  
3976  	return false;
3977  }
3978  
3979  static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3980  trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3981  {
3982  	cpu_buffer->current_context &=
3983  		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3984  }
3985  
3986  /* The recursive locking above uses 5 bits */
3987  #define NESTED_BITS 5
3988  
3989  /**
3990   * ring_buffer_nest_start - Allow to trace while nested
3991   * @buffer: The ring buffer to modify
3992   *
3993   * The ring buffer has a safety mechanism to prevent recursion.
3994   * But there may be a case where a trace needs to be done while
3995   * tracing something else. In this case, calling this function
3996   * will allow this function to nest within a currently active
3997   * ring_buffer_lock_reserve().
3998   *
3999   * Call this function before calling another ring_buffer_lock_reserve() and
4000   * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4001   */
ring_buffer_nest_start(struct trace_buffer * buffer)4002  void ring_buffer_nest_start(struct trace_buffer *buffer)
4003  {
4004  	struct ring_buffer_per_cpu *cpu_buffer;
4005  	int cpu;
4006  
4007  	/* Enabled by ring_buffer_nest_end() */
4008  	preempt_disable_notrace();
4009  	cpu = raw_smp_processor_id();
4010  	cpu_buffer = buffer->buffers[cpu];
4011  	/* This is the shift value for the above recursive locking */
4012  	cpu_buffer->nest += NESTED_BITS;
4013  }
4014  
4015  /**
4016   * ring_buffer_nest_end - Allow to trace while nested
4017   * @buffer: The ring buffer to modify
4018   *
4019   * Must be called after ring_buffer_nest_start() and after the
4020   * ring_buffer_unlock_commit().
4021   */
ring_buffer_nest_end(struct trace_buffer * buffer)4022  void ring_buffer_nest_end(struct trace_buffer *buffer)
4023  {
4024  	struct ring_buffer_per_cpu *cpu_buffer;
4025  	int cpu;
4026  
4027  	/* disabled by ring_buffer_nest_start() */
4028  	cpu = raw_smp_processor_id();
4029  	cpu_buffer = buffer->buffers[cpu];
4030  	/* This is the shift value for the above recursive locking */
4031  	cpu_buffer->nest -= NESTED_BITS;
4032  	preempt_enable_notrace();
4033  }
4034  
4035  /**
4036   * ring_buffer_unlock_commit - commit a reserved
4037   * @buffer: The buffer to commit to
4038   *
4039   * This commits the data to the ring buffer, and releases any locks held.
4040   *
4041   * Must be paired with ring_buffer_lock_reserve.
4042   */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4043  int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4044  {
4045  	struct ring_buffer_per_cpu *cpu_buffer;
4046  	int cpu = raw_smp_processor_id();
4047  
4048  	cpu_buffer = buffer->buffers[cpu];
4049  
4050  	rb_commit(cpu_buffer);
4051  
4052  	rb_wakeups(buffer, cpu_buffer);
4053  
4054  	trace_recursive_unlock(cpu_buffer);
4055  
4056  	preempt_enable_notrace();
4057  
4058  	return 0;
4059  }
4060  EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4061  
4062  /* Special value to validate all deltas on a page. */
4063  #define CHECK_FULL_PAGE		1L
4064  
4065  #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4066  
show_irq_str(int bits)4067  static const char *show_irq_str(int bits)
4068  {
4069  	const char *type[] = {
4070  		".",	// 0
4071  		"s",	// 1
4072  		"h",	// 2
4073  		"Hs",	// 3
4074  		"n",	// 4
4075  		"Ns",	// 5
4076  		"Nh",	// 6
4077  		"NHs",	// 7
4078  	};
4079  
4080  	return type[bits];
4081  }
4082  
4083  /* Assume this is a trace event */
show_flags(struct ring_buffer_event * event)4084  static const char *show_flags(struct ring_buffer_event *event)
4085  {
4086  	struct trace_entry *entry;
4087  	int bits = 0;
4088  
4089  	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4090  		return "X";
4091  
4092  	entry = ring_buffer_event_data(event);
4093  
4094  	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4095  		bits |= 1;
4096  
4097  	if (entry->flags & TRACE_FLAG_HARDIRQ)
4098  		bits |= 2;
4099  
4100  	if (entry->flags & TRACE_FLAG_NMI)
4101  		bits |= 4;
4102  
4103  	return show_irq_str(bits);
4104  }
4105  
show_irq(struct ring_buffer_event * event)4106  static const char *show_irq(struct ring_buffer_event *event)
4107  {
4108  	struct trace_entry *entry;
4109  
4110  	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4111  		return "";
4112  
4113  	entry = ring_buffer_event_data(event);
4114  	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4115  		return "d";
4116  	return "";
4117  }
4118  
show_interrupt_level(void)4119  static const char *show_interrupt_level(void)
4120  {
4121  	unsigned long pc = preempt_count();
4122  	unsigned char level = 0;
4123  
4124  	if (pc & SOFTIRQ_OFFSET)
4125  		level |= 1;
4126  
4127  	if (pc & HARDIRQ_MASK)
4128  		level |= 2;
4129  
4130  	if (pc & NMI_MASK)
4131  		level |= 4;
4132  
4133  	return show_irq_str(level);
4134  }
4135  
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4136  static void dump_buffer_page(struct buffer_data_page *bpage,
4137  			     struct rb_event_info *info,
4138  			     unsigned long tail)
4139  {
4140  	struct ring_buffer_event *event;
4141  	u64 ts, delta;
4142  	int e;
4143  
4144  	ts = bpage->time_stamp;
4145  	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4146  
4147  	for (e = 0; e < tail; e += rb_event_length(event)) {
4148  
4149  		event = (struct ring_buffer_event *)(bpage->data + e);
4150  
4151  		switch (event->type_len) {
4152  
4153  		case RINGBUF_TYPE_TIME_EXTEND:
4154  			delta = rb_event_time_stamp(event);
4155  			ts += delta;
4156  			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4157  				e, ts, delta);
4158  			break;
4159  
4160  		case RINGBUF_TYPE_TIME_STAMP:
4161  			delta = rb_event_time_stamp(event);
4162  			ts = rb_fix_abs_ts(delta, ts);
4163  			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4164  				e, ts, delta);
4165  			break;
4166  
4167  		case RINGBUF_TYPE_PADDING:
4168  			ts += event->time_delta;
4169  			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4170  				e, ts, event->time_delta);
4171  			break;
4172  
4173  		case RINGBUF_TYPE_DATA:
4174  			ts += event->time_delta;
4175  			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4176  				e, ts, event->time_delta,
4177  				show_flags(event), show_irq(event));
4178  			break;
4179  
4180  		default:
4181  			break;
4182  		}
4183  	}
4184  	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4185  }
4186  
4187  static DEFINE_PER_CPU(atomic_t, checking);
4188  static atomic_t ts_dump;
4189  
4190  #define buffer_warn_return(fmt, ...)					\
4191  	do {								\
4192  		/* If another report is happening, ignore this one */	\
4193  		if (atomic_inc_return(&ts_dump) != 1) {			\
4194  			atomic_dec(&ts_dump);				\
4195  			goto out;					\
4196  		}							\
4197  		atomic_inc(&cpu_buffer->record_disabled);		\
4198  		pr_warn(fmt, ##__VA_ARGS__);				\
4199  		dump_buffer_page(bpage, info, tail);			\
4200  		atomic_dec(&ts_dump);					\
4201  		/* There's some cases in boot up that this can happen */ \
4202  		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4203  			/* Do not re-enable checking */			\
4204  			return;						\
4205  	} while (0)
4206  
4207  /*
4208   * Check if the current event time stamp matches the deltas on
4209   * the buffer page.
4210   */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4211  static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4212  			 struct rb_event_info *info,
4213  			 unsigned long tail)
4214  {
4215  	struct buffer_data_page *bpage;
4216  	u64 ts, delta;
4217  	bool full = false;
4218  	int ret;
4219  
4220  	bpage = info->tail_page->page;
4221  
4222  	if (tail == CHECK_FULL_PAGE) {
4223  		full = true;
4224  		tail = local_read(&bpage->commit);
4225  	} else if (info->add_timestamp &
4226  		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4227  		/* Ignore events with absolute time stamps */
4228  		return;
4229  	}
4230  
4231  	/*
4232  	 * Do not check the first event (skip possible extends too).
4233  	 * Also do not check if previous events have not been committed.
4234  	 */
4235  	if (tail <= 8 || tail > local_read(&bpage->commit))
4236  		return;
4237  
4238  	/*
4239  	 * If this interrupted another event,
4240  	 */
4241  	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4242  		goto out;
4243  
4244  	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4245  	if (ret < 0) {
4246  		if (delta < ts) {
4247  			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4248  					   cpu_buffer->cpu, ts, delta);
4249  			goto out;
4250  		}
4251  	}
4252  	if ((full && ts > info->ts) ||
4253  	    (!full && ts + info->delta != info->ts)) {
4254  		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4255  				   cpu_buffer->cpu,
4256  				   ts + info->delta, info->ts, info->delta,
4257  				   info->before, info->after,
4258  				   full ? " (full)" : "", show_interrupt_level());
4259  	}
4260  out:
4261  	atomic_dec(this_cpu_ptr(&checking));
4262  }
4263  #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4264  static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4265  			 struct rb_event_info *info,
4266  			 unsigned long tail)
4267  {
4268  }
4269  #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4270  
4271  static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4272  __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4273  		  struct rb_event_info *info)
4274  {
4275  	struct ring_buffer_event *event;
4276  	struct buffer_page *tail_page;
4277  	unsigned long tail, write, w;
4278  
4279  	/* Don't let the compiler play games with cpu_buffer->tail_page */
4280  	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4281  
4282   /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4283  	barrier();
4284  	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4285  	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4286  	barrier();
4287  	info->ts = rb_time_stamp(cpu_buffer->buffer);
4288  
4289  	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4290  		info->delta = info->ts;
4291  	} else {
4292  		/*
4293  		 * If interrupting an event time update, we may need an
4294  		 * absolute timestamp.
4295  		 * Don't bother if this is the start of a new page (w == 0).
4296  		 */
4297  		if (!w) {
4298  			/* Use the sub-buffer timestamp */
4299  			info->delta = 0;
4300  		} else if (unlikely(info->before != info->after)) {
4301  			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4302  			info->length += RB_LEN_TIME_EXTEND;
4303  		} else {
4304  			info->delta = info->ts - info->after;
4305  			if (unlikely(test_time_stamp(info->delta))) {
4306  				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4307  				info->length += RB_LEN_TIME_EXTEND;
4308  			}
4309  		}
4310  	}
4311  
4312   /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4313  
4314   /*C*/	write = local_add_return(info->length, &tail_page->write);
4315  
4316  	/* set write to only the index of the write */
4317  	write &= RB_WRITE_MASK;
4318  
4319  	tail = write - info->length;
4320  
4321  	/* See if we shot pass the end of this buffer page */
4322  	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4323  		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4324  		return rb_move_tail(cpu_buffer, tail, info);
4325  	}
4326  
4327  	if (likely(tail == w)) {
4328  		/* Nothing interrupted us between A and C */
4329   /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4330  		/*
4331  		 * If something came in between C and D, the write stamp
4332  		 * may now not be in sync. But that's fine as the before_stamp
4333  		 * will be different and then next event will just be forced
4334  		 * to use an absolute timestamp.
4335  		 */
4336  		if (likely(!(info->add_timestamp &
4337  			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4338  			/* This did not interrupt any time update */
4339  			info->delta = info->ts - info->after;
4340  		else
4341  			/* Just use full timestamp for interrupting event */
4342  			info->delta = info->ts;
4343  		check_buffer(cpu_buffer, info, tail);
4344  	} else {
4345  		u64 ts;
4346  		/* SLOW PATH - Interrupted between A and C */
4347  
4348  		/* Save the old before_stamp */
4349  		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4350  
4351  		/*
4352  		 * Read a new timestamp and update the before_stamp to make
4353  		 * the next event after this one force using an absolute
4354  		 * timestamp. This is in case an interrupt were to come in
4355  		 * between E and F.
4356  		 */
4357  		ts = rb_time_stamp(cpu_buffer->buffer);
4358  		rb_time_set(&cpu_buffer->before_stamp, ts);
4359  
4360  		barrier();
4361   /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4362  		barrier();
4363   /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4364  		    info->after == info->before && info->after < ts) {
4365  			/*
4366  			 * Nothing came after this event between C and F, it is
4367  			 * safe to use info->after for the delta as it
4368  			 * matched info->before and is still valid.
4369  			 */
4370  			info->delta = ts - info->after;
4371  		} else {
4372  			/*
4373  			 * Interrupted between C and F:
4374  			 * Lost the previous events time stamp. Just set the
4375  			 * delta to zero, and this will be the same time as
4376  			 * the event this event interrupted. And the events that
4377  			 * came after this will still be correct (as they would
4378  			 * have built their delta on the previous event.
4379  			 */
4380  			info->delta = 0;
4381  		}
4382  		info->ts = ts;
4383  		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4384  	}
4385  
4386  	/*
4387  	 * If this is the first commit on the page, then it has the same
4388  	 * timestamp as the page itself.
4389  	 */
4390  	if (unlikely(!tail && !(info->add_timestamp &
4391  				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4392  		info->delta = 0;
4393  
4394  	/* We reserved something on the buffer */
4395  
4396  	event = __rb_page_index(tail_page, tail);
4397  	rb_update_event(cpu_buffer, event, info);
4398  
4399  	local_inc(&tail_page->entries);
4400  
4401  	/*
4402  	 * If this is the first commit on the page, then update
4403  	 * its timestamp.
4404  	 */
4405  	if (unlikely(!tail))
4406  		tail_page->page->time_stamp = info->ts;
4407  
4408  	/* account for these added bytes */
4409  	local_add(info->length, &cpu_buffer->entries_bytes);
4410  
4411  	return event;
4412  }
4413  
4414  static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4415  rb_reserve_next_event(struct trace_buffer *buffer,
4416  		      struct ring_buffer_per_cpu *cpu_buffer,
4417  		      unsigned long length)
4418  {
4419  	struct ring_buffer_event *event;
4420  	struct rb_event_info info;
4421  	int nr_loops = 0;
4422  	int add_ts_default;
4423  
4424  	/*
4425  	 * ring buffer does cmpxchg as well as atomic64 operations
4426  	 * (which some archs use locking for atomic64), make sure this
4427  	 * is safe in NMI context
4428  	 */
4429  	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4430  	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4431  	    (unlikely(in_nmi()))) {
4432  		return NULL;
4433  	}
4434  
4435  	rb_start_commit(cpu_buffer);
4436  	/* The commit page can not change after this */
4437  
4438  #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4439  	/*
4440  	 * Due to the ability to swap a cpu buffer from a buffer
4441  	 * it is possible it was swapped before we committed.
4442  	 * (committing stops a swap). We check for it here and
4443  	 * if it happened, we have to fail the write.
4444  	 */
4445  	barrier();
4446  	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4447  		local_dec(&cpu_buffer->committing);
4448  		local_dec(&cpu_buffer->commits);
4449  		return NULL;
4450  	}
4451  #endif
4452  
4453  	info.length = rb_calculate_event_length(length);
4454  
4455  	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4456  		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4457  		info.length += RB_LEN_TIME_EXTEND;
4458  		if (info.length > cpu_buffer->buffer->max_data_size)
4459  			goto out_fail;
4460  	} else {
4461  		add_ts_default = RB_ADD_STAMP_NONE;
4462  	}
4463  
4464   again:
4465  	info.add_timestamp = add_ts_default;
4466  	info.delta = 0;
4467  
4468  	/*
4469  	 * We allow for interrupts to reenter here and do a trace.
4470  	 * If one does, it will cause this original code to loop
4471  	 * back here. Even with heavy interrupts happening, this
4472  	 * should only happen a few times in a row. If this happens
4473  	 * 1000 times in a row, there must be either an interrupt
4474  	 * storm or we have something buggy.
4475  	 * Bail!
4476  	 */
4477  	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4478  		goto out_fail;
4479  
4480  	event = __rb_reserve_next(cpu_buffer, &info);
4481  
4482  	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4483  		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4484  			info.length -= RB_LEN_TIME_EXTEND;
4485  		goto again;
4486  	}
4487  
4488  	if (likely(event))
4489  		return event;
4490   out_fail:
4491  	rb_end_commit(cpu_buffer);
4492  	return NULL;
4493  }
4494  
4495  /**
4496   * ring_buffer_lock_reserve - reserve a part of the buffer
4497   * @buffer: the ring buffer to reserve from
4498   * @length: the length of the data to reserve (excluding event header)
4499   *
4500   * Returns a reserved event on the ring buffer to copy directly to.
4501   * The user of this interface will need to get the body to write into
4502   * and can use the ring_buffer_event_data() interface.
4503   *
4504   * The length is the length of the data needed, not the event length
4505   * which also includes the event header.
4506   *
4507   * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4508   * If NULL is returned, then nothing has been allocated or locked.
4509   */
4510  struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4511  ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4512  {
4513  	struct ring_buffer_per_cpu *cpu_buffer;
4514  	struct ring_buffer_event *event;
4515  	int cpu;
4516  
4517  	/* If we are tracing schedule, we don't want to recurse */
4518  	preempt_disable_notrace();
4519  
4520  	if (unlikely(atomic_read(&buffer->record_disabled)))
4521  		goto out;
4522  
4523  	cpu = raw_smp_processor_id();
4524  
4525  	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4526  		goto out;
4527  
4528  	cpu_buffer = buffer->buffers[cpu];
4529  
4530  	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4531  		goto out;
4532  
4533  	if (unlikely(length > buffer->max_data_size))
4534  		goto out;
4535  
4536  	if (unlikely(trace_recursive_lock(cpu_buffer)))
4537  		goto out;
4538  
4539  	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4540  	if (!event)
4541  		goto out_unlock;
4542  
4543  	return event;
4544  
4545   out_unlock:
4546  	trace_recursive_unlock(cpu_buffer);
4547   out:
4548  	preempt_enable_notrace();
4549  	return NULL;
4550  }
4551  EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4552  
4553  /*
4554   * Decrement the entries to the page that an event is on.
4555   * The event does not even need to exist, only the pointer
4556   * to the page it is on. This may only be called before the commit
4557   * takes place.
4558   */
4559  static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4560  rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4561  		   struct ring_buffer_event *event)
4562  {
4563  	unsigned long addr = (unsigned long)event;
4564  	struct buffer_page *bpage = cpu_buffer->commit_page;
4565  	struct buffer_page *start;
4566  
4567  	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4568  
4569  	/* Do the likely case first */
4570  	if (likely(bpage->page == (void *)addr)) {
4571  		local_dec(&bpage->entries);
4572  		return;
4573  	}
4574  
4575  	/*
4576  	 * Because the commit page may be on the reader page we
4577  	 * start with the next page and check the end loop there.
4578  	 */
4579  	rb_inc_page(&bpage);
4580  	start = bpage;
4581  	do {
4582  		if (bpage->page == (void *)addr) {
4583  			local_dec(&bpage->entries);
4584  			return;
4585  		}
4586  		rb_inc_page(&bpage);
4587  	} while (bpage != start);
4588  
4589  	/* commit not part of this buffer?? */
4590  	RB_WARN_ON(cpu_buffer, 1);
4591  }
4592  
4593  /**
4594   * ring_buffer_discard_commit - discard an event that has not been committed
4595   * @buffer: the ring buffer
4596   * @event: non committed event to discard
4597   *
4598   * Sometimes an event that is in the ring buffer needs to be ignored.
4599   * This function lets the user discard an event in the ring buffer
4600   * and then that event will not be read later.
4601   *
4602   * This function only works if it is called before the item has been
4603   * committed. It will try to free the event from the ring buffer
4604   * if another event has not been added behind it.
4605   *
4606   * If another event has been added behind it, it will set the event
4607   * up as discarded, and perform the commit.
4608   *
4609   * If this function is called, do not call ring_buffer_unlock_commit on
4610   * the event.
4611   */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4612  void ring_buffer_discard_commit(struct trace_buffer *buffer,
4613  				struct ring_buffer_event *event)
4614  {
4615  	struct ring_buffer_per_cpu *cpu_buffer;
4616  	int cpu;
4617  
4618  	/* The event is discarded regardless */
4619  	rb_event_discard(event);
4620  
4621  	cpu = smp_processor_id();
4622  	cpu_buffer = buffer->buffers[cpu];
4623  
4624  	/*
4625  	 * This must only be called if the event has not been
4626  	 * committed yet. Thus we can assume that preemption
4627  	 * is still disabled.
4628  	 */
4629  	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4630  
4631  	rb_decrement_entry(cpu_buffer, event);
4632  	if (rb_try_to_discard(cpu_buffer, event))
4633  		goto out;
4634  
4635   out:
4636  	rb_end_commit(cpu_buffer);
4637  
4638  	trace_recursive_unlock(cpu_buffer);
4639  
4640  	preempt_enable_notrace();
4641  
4642  }
4643  EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4644  
4645  /**
4646   * ring_buffer_write - write data to the buffer without reserving
4647   * @buffer: The ring buffer to write to.
4648   * @length: The length of the data being written (excluding the event header)
4649   * @data: The data to write to the buffer.
4650   *
4651   * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4652   * one function. If you already have the data to write to the buffer, it
4653   * may be easier to simply call this function.
4654   *
4655   * Note, like ring_buffer_lock_reserve, the length is the length of the data
4656   * and not the length of the event which would hold the header.
4657   */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4658  int ring_buffer_write(struct trace_buffer *buffer,
4659  		      unsigned long length,
4660  		      void *data)
4661  {
4662  	struct ring_buffer_per_cpu *cpu_buffer;
4663  	struct ring_buffer_event *event;
4664  	void *body;
4665  	int ret = -EBUSY;
4666  	int cpu;
4667  
4668  	preempt_disable_notrace();
4669  
4670  	if (atomic_read(&buffer->record_disabled))
4671  		goto out;
4672  
4673  	cpu = raw_smp_processor_id();
4674  
4675  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4676  		goto out;
4677  
4678  	cpu_buffer = buffer->buffers[cpu];
4679  
4680  	if (atomic_read(&cpu_buffer->record_disabled))
4681  		goto out;
4682  
4683  	if (length > buffer->max_data_size)
4684  		goto out;
4685  
4686  	if (unlikely(trace_recursive_lock(cpu_buffer)))
4687  		goto out;
4688  
4689  	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4690  	if (!event)
4691  		goto out_unlock;
4692  
4693  	body = rb_event_data(event);
4694  
4695  	memcpy(body, data, length);
4696  
4697  	rb_commit(cpu_buffer);
4698  
4699  	rb_wakeups(buffer, cpu_buffer);
4700  
4701  	ret = 0;
4702  
4703   out_unlock:
4704  	trace_recursive_unlock(cpu_buffer);
4705  
4706   out:
4707  	preempt_enable_notrace();
4708  
4709  	return ret;
4710  }
4711  EXPORT_SYMBOL_GPL(ring_buffer_write);
4712  
4713  /*
4714   * The total entries in the ring buffer is the running counter
4715   * of entries entered into the ring buffer, minus the sum of
4716   * the entries read from the ring buffer and the number of
4717   * entries that were overwritten.
4718   */
4719  static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4720  rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4721  {
4722  	return local_read(&cpu_buffer->entries) -
4723  		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4724  }
4725  
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4726  static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4727  {
4728  	return !rb_num_of_entries(cpu_buffer);
4729  }
4730  
4731  /**
4732   * ring_buffer_record_disable - stop all writes into the buffer
4733   * @buffer: The ring buffer to stop writes to.
4734   *
4735   * This prevents all writes to the buffer. Any attempt to write
4736   * to the buffer after this will fail and return NULL.
4737   *
4738   * The caller should call synchronize_rcu() after this.
4739   */
ring_buffer_record_disable(struct trace_buffer * buffer)4740  void ring_buffer_record_disable(struct trace_buffer *buffer)
4741  {
4742  	atomic_inc(&buffer->record_disabled);
4743  }
4744  EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4745  
4746  /**
4747   * ring_buffer_record_enable - enable writes to the buffer
4748   * @buffer: The ring buffer to enable writes
4749   *
4750   * Note, multiple disables will need the same number of enables
4751   * to truly enable the writing (much like preempt_disable).
4752   */
ring_buffer_record_enable(struct trace_buffer * buffer)4753  void ring_buffer_record_enable(struct trace_buffer *buffer)
4754  {
4755  	atomic_dec(&buffer->record_disabled);
4756  }
4757  EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4758  
4759  /**
4760   * ring_buffer_record_off - stop all writes into the buffer
4761   * @buffer: The ring buffer to stop writes to.
4762   *
4763   * This prevents all writes to the buffer. Any attempt to write
4764   * to the buffer after this will fail and return NULL.
4765   *
4766   * This is different than ring_buffer_record_disable() as
4767   * it works like an on/off switch, where as the disable() version
4768   * must be paired with a enable().
4769   */
ring_buffer_record_off(struct trace_buffer * buffer)4770  void ring_buffer_record_off(struct trace_buffer *buffer)
4771  {
4772  	unsigned int rd;
4773  	unsigned int new_rd;
4774  
4775  	rd = atomic_read(&buffer->record_disabled);
4776  	do {
4777  		new_rd = rd | RB_BUFFER_OFF;
4778  	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4779  }
4780  EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4781  
4782  /**
4783   * ring_buffer_record_on - restart writes into the buffer
4784   * @buffer: The ring buffer to start writes to.
4785   *
4786   * This enables all writes to the buffer that was disabled by
4787   * ring_buffer_record_off().
4788   *
4789   * This is different than ring_buffer_record_enable() as
4790   * it works like an on/off switch, where as the enable() version
4791   * must be paired with a disable().
4792   */
ring_buffer_record_on(struct trace_buffer * buffer)4793  void ring_buffer_record_on(struct trace_buffer *buffer)
4794  {
4795  	unsigned int rd;
4796  	unsigned int new_rd;
4797  
4798  	rd = atomic_read(&buffer->record_disabled);
4799  	do {
4800  		new_rd = rd & ~RB_BUFFER_OFF;
4801  	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4802  }
4803  EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4804  
4805  /**
4806   * ring_buffer_record_is_on - return true if the ring buffer can write
4807   * @buffer: The ring buffer to see if write is enabled
4808   *
4809   * Returns true if the ring buffer is in a state that it accepts writes.
4810   */
ring_buffer_record_is_on(struct trace_buffer * buffer)4811  bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4812  {
4813  	return !atomic_read(&buffer->record_disabled);
4814  }
4815  
4816  /**
4817   * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4818   * @buffer: The ring buffer to see if write is set enabled
4819   *
4820   * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4821   * Note that this does NOT mean it is in a writable state.
4822   *
4823   * It may return true when the ring buffer has been disabled by
4824   * ring_buffer_record_disable(), as that is a temporary disabling of
4825   * the ring buffer.
4826   */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4827  bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4828  {
4829  	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4830  }
4831  
4832  /**
4833   * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4834   * @buffer: The ring buffer to stop writes to.
4835   * @cpu: The CPU buffer to stop
4836   *
4837   * This prevents all writes to the buffer. Any attempt to write
4838   * to the buffer after this will fail and return NULL.
4839   *
4840   * The caller should call synchronize_rcu() after this.
4841   */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)4842  void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4843  {
4844  	struct ring_buffer_per_cpu *cpu_buffer;
4845  
4846  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4847  		return;
4848  
4849  	cpu_buffer = buffer->buffers[cpu];
4850  	atomic_inc(&cpu_buffer->record_disabled);
4851  }
4852  EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4853  
4854  /**
4855   * ring_buffer_record_enable_cpu - enable writes to the buffer
4856   * @buffer: The ring buffer to enable writes
4857   * @cpu: The CPU to enable.
4858   *
4859   * Note, multiple disables will need the same number of enables
4860   * to truly enable the writing (much like preempt_disable).
4861   */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)4862  void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4863  {
4864  	struct ring_buffer_per_cpu *cpu_buffer;
4865  
4866  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4867  		return;
4868  
4869  	cpu_buffer = buffer->buffers[cpu];
4870  	atomic_dec(&cpu_buffer->record_disabled);
4871  }
4872  EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4873  
4874  /**
4875   * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4876   * @buffer: The ring buffer
4877   * @cpu: The per CPU buffer to read from.
4878   */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)4879  u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4880  {
4881  	unsigned long flags;
4882  	struct ring_buffer_per_cpu *cpu_buffer;
4883  	struct buffer_page *bpage;
4884  	u64 ret = 0;
4885  
4886  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4887  		return 0;
4888  
4889  	cpu_buffer = buffer->buffers[cpu];
4890  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4891  	/*
4892  	 * if the tail is on reader_page, oldest time stamp is on the reader
4893  	 * page
4894  	 */
4895  	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4896  		bpage = cpu_buffer->reader_page;
4897  	else
4898  		bpage = rb_set_head_page(cpu_buffer);
4899  	if (bpage)
4900  		ret = bpage->page->time_stamp;
4901  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4902  
4903  	return ret;
4904  }
4905  EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4906  
4907  /**
4908   * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4909   * @buffer: The ring buffer
4910   * @cpu: The per CPU buffer to read from.
4911   */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)4912  unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4913  {
4914  	struct ring_buffer_per_cpu *cpu_buffer;
4915  	unsigned long ret;
4916  
4917  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4918  		return 0;
4919  
4920  	cpu_buffer = buffer->buffers[cpu];
4921  	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4922  
4923  	return ret;
4924  }
4925  EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4926  
4927  /**
4928   * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4929   * @buffer: The ring buffer
4930   * @cpu: The per CPU buffer to get the entries from.
4931   */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)4932  unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4933  {
4934  	struct ring_buffer_per_cpu *cpu_buffer;
4935  
4936  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4937  		return 0;
4938  
4939  	cpu_buffer = buffer->buffers[cpu];
4940  
4941  	return rb_num_of_entries(cpu_buffer);
4942  }
4943  EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4944  
4945  /**
4946   * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4947   * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4948   * @buffer: The ring buffer
4949   * @cpu: The per CPU buffer to get the number of overruns from
4950   */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4951  unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4952  {
4953  	struct ring_buffer_per_cpu *cpu_buffer;
4954  	unsigned long ret;
4955  
4956  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4957  		return 0;
4958  
4959  	cpu_buffer = buffer->buffers[cpu];
4960  	ret = local_read(&cpu_buffer->overrun);
4961  
4962  	return ret;
4963  }
4964  EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4965  
4966  /**
4967   * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4968   * commits failing due to the buffer wrapping around while there are uncommitted
4969   * events, such as during an interrupt storm.
4970   * @buffer: The ring buffer
4971   * @cpu: The per CPU buffer to get the number of overruns from
4972   */
4973  unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)4974  ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4975  {
4976  	struct ring_buffer_per_cpu *cpu_buffer;
4977  	unsigned long ret;
4978  
4979  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4980  		return 0;
4981  
4982  	cpu_buffer = buffer->buffers[cpu];
4983  	ret = local_read(&cpu_buffer->commit_overrun);
4984  
4985  	return ret;
4986  }
4987  EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4988  
4989  /**
4990   * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4991   * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4992   * @buffer: The ring buffer
4993   * @cpu: The per CPU buffer to get the number of overruns from
4994   */
4995  unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4996  ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4997  {
4998  	struct ring_buffer_per_cpu *cpu_buffer;
4999  	unsigned long ret;
5000  
5001  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5002  		return 0;
5003  
5004  	cpu_buffer = buffer->buffers[cpu];
5005  	ret = local_read(&cpu_buffer->dropped_events);
5006  
5007  	return ret;
5008  }
5009  EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5010  
5011  /**
5012   * ring_buffer_read_events_cpu - get the number of events successfully read
5013   * @buffer: The ring buffer
5014   * @cpu: The per CPU buffer to get the number of events read
5015   */
5016  unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5017  ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5018  {
5019  	struct ring_buffer_per_cpu *cpu_buffer;
5020  
5021  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5022  		return 0;
5023  
5024  	cpu_buffer = buffer->buffers[cpu];
5025  	return cpu_buffer->read;
5026  }
5027  EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5028  
5029  /**
5030   * ring_buffer_entries - get the number of entries in a buffer
5031   * @buffer: The ring buffer
5032   *
5033   * Returns the total number of entries in the ring buffer
5034   * (all CPU entries)
5035   */
ring_buffer_entries(struct trace_buffer * buffer)5036  unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5037  {
5038  	struct ring_buffer_per_cpu *cpu_buffer;
5039  	unsigned long entries = 0;
5040  	int cpu;
5041  
5042  	/* if you care about this being correct, lock the buffer */
5043  	for_each_buffer_cpu(buffer, cpu) {
5044  		cpu_buffer = buffer->buffers[cpu];
5045  		entries += rb_num_of_entries(cpu_buffer);
5046  	}
5047  
5048  	return entries;
5049  }
5050  EXPORT_SYMBOL_GPL(ring_buffer_entries);
5051  
5052  /**
5053   * ring_buffer_overruns - get the number of overruns in buffer
5054   * @buffer: The ring buffer
5055   *
5056   * Returns the total number of overruns in the ring buffer
5057   * (all CPU entries)
5058   */
ring_buffer_overruns(struct trace_buffer * buffer)5059  unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5060  {
5061  	struct ring_buffer_per_cpu *cpu_buffer;
5062  	unsigned long overruns = 0;
5063  	int cpu;
5064  
5065  	/* if you care about this being correct, lock the buffer */
5066  	for_each_buffer_cpu(buffer, cpu) {
5067  		cpu_buffer = buffer->buffers[cpu];
5068  		overruns += local_read(&cpu_buffer->overrun);
5069  	}
5070  
5071  	return overruns;
5072  }
5073  EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5074  
rb_iter_reset(struct ring_buffer_iter * iter)5075  static void rb_iter_reset(struct ring_buffer_iter *iter)
5076  {
5077  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5078  
5079  	/* Iterator usage is expected to have record disabled */
5080  	iter->head_page = cpu_buffer->reader_page;
5081  	iter->head = cpu_buffer->reader_page->read;
5082  	iter->next_event = iter->head;
5083  
5084  	iter->cache_reader_page = iter->head_page;
5085  	iter->cache_read = cpu_buffer->read;
5086  	iter->cache_pages_removed = cpu_buffer->pages_removed;
5087  
5088  	if (iter->head) {
5089  		iter->read_stamp = cpu_buffer->read_stamp;
5090  		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5091  	} else {
5092  		iter->read_stamp = iter->head_page->page->time_stamp;
5093  		iter->page_stamp = iter->read_stamp;
5094  	}
5095  }
5096  
5097  /**
5098   * ring_buffer_iter_reset - reset an iterator
5099   * @iter: The iterator to reset
5100   *
5101   * Resets the iterator, so that it will start from the beginning
5102   * again.
5103   */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5104  void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5105  {
5106  	struct ring_buffer_per_cpu *cpu_buffer;
5107  	unsigned long flags;
5108  
5109  	if (!iter)
5110  		return;
5111  
5112  	cpu_buffer = iter->cpu_buffer;
5113  
5114  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5115  	rb_iter_reset(iter);
5116  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5117  }
5118  EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5119  
5120  /**
5121   * ring_buffer_iter_empty - check if an iterator has no more to read
5122   * @iter: The iterator to check
5123   */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5124  int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5125  {
5126  	struct ring_buffer_per_cpu *cpu_buffer;
5127  	struct buffer_page *reader;
5128  	struct buffer_page *head_page;
5129  	struct buffer_page *commit_page;
5130  	struct buffer_page *curr_commit_page;
5131  	unsigned commit;
5132  	u64 curr_commit_ts;
5133  	u64 commit_ts;
5134  
5135  	cpu_buffer = iter->cpu_buffer;
5136  	reader = cpu_buffer->reader_page;
5137  	head_page = cpu_buffer->head_page;
5138  	commit_page = READ_ONCE(cpu_buffer->commit_page);
5139  	commit_ts = commit_page->page->time_stamp;
5140  
5141  	/*
5142  	 * When the writer goes across pages, it issues a cmpxchg which
5143  	 * is a mb(), which will synchronize with the rmb here.
5144  	 * (see rb_tail_page_update())
5145  	 */
5146  	smp_rmb();
5147  	commit = rb_page_commit(commit_page);
5148  	/* We want to make sure that the commit page doesn't change */
5149  	smp_rmb();
5150  
5151  	/* Make sure commit page didn't change */
5152  	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5153  	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5154  
5155  	/* If the commit page changed, then there's more data */
5156  	if (curr_commit_page != commit_page ||
5157  	    curr_commit_ts != commit_ts)
5158  		return 0;
5159  
5160  	/* Still racy, as it may return a false positive, but that's OK */
5161  	return ((iter->head_page == commit_page && iter->head >= commit) ||
5162  		(iter->head_page == reader && commit_page == head_page &&
5163  		 head_page->read == commit &&
5164  		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5165  }
5166  EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5167  
5168  static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5169  rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5170  		     struct ring_buffer_event *event)
5171  {
5172  	u64 delta;
5173  
5174  	switch (event->type_len) {
5175  	case RINGBUF_TYPE_PADDING:
5176  		return;
5177  
5178  	case RINGBUF_TYPE_TIME_EXTEND:
5179  		delta = rb_event_time_stamp(event);
5180  		cpu_buffer->read_stamp += delta;
5181  		return;
5182  
5183  	case RINGBUF_TYPE_TIME_STAMP:
5184  		delta = rb_event_time_stamp(event);
5185  		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5186  		cpu_buffer->read_stamp = delta;
5187  		return;
5188  
5189  	case RINGBUF_TYPE_DATA:
5190  		cpu_buffer->read_stamp += event->time_delta;
5191  		return;
5192  
5193  	default:
5194  		RB_WARN_ON(cpu_buffer, 1);
5195  	}
5196  }
5197  
5198  static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5199  rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5200  			  struct ring_buffer_event *event)
5201  {
5202  	u64 delta;
5203  
5204  	switch (event->type_len) {
5205  	case RINGBUF_TYPE_PADDING:
5206  		return;
5207  
5208  	case RINGBUF_TYPE_TIME_EXTEND:
5209  		delta = rb_event_time_stamp(event);
5210  		iter->read_stamp += delta;
5211  		return;
5212  
5213  	case RINGBUF_TYPE_TIME_STAMP:
5214  		delta = rb_event_time_stamp(event);
5215  		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5216  		iter->read_stamp = delta;
5217  		return;
5218  
5219  	case RINGBUF_TYPE_DATA:
5220  		iter->read_stamp += event->time_delta;
5221  		return;
5222  
5223  	default:
5224  		RB_WARN_ON(iter->cpu_buffer, 1);
5225  	}
5226  }
5227  
5228  static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5229  rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5230  {
5231  	struct buffer_page *reader = NULL;
5232  	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5233  	unsigned long overwrite;
5234  	unsigned long flags;
5235  	int nr_loops = 0;
5236  	bool ret;
5237  
5238  	local_irq_save(flags);
5239  	arch_spin_lock(&cpu_buffer->lock);
5240  
5241   again:
5242  	/*
5243  	 * This should normally only loop twice. But because the
5244  	 * start of the reader inserts an empty page, it causes
5245  	 * a case where we will loop three times. There should be no
5246  	 * reason to loop four times (that I know of).
5247  	 */
5248  	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5249  		reader = NULL;
5250  		goto out;
5251  	}
5252  
5253  	reader = cpu_buffer->reader_page;
5254  
5255  	/* If there's more to read, return this page */
5256  	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5257  		goto out;
5258  
5259  	/* Never should we have an index greater than the size */
5260  	if (RB_WARN_ON(cpu_buffer,
5261  		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5262  		goto out;
5263  
5264  	/* check if we caught up to the tail */
5265  	reader = NULL;
5266  	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5267  		goto out;
5268  
5269  	/* Don't bother swapping if the ring buffer is empty */
5270  	if (rb_num_of_entries(cpu_buffer) == 0)
5271  		goto out;
5272  
5273  	/*
5274  	 * Reset the reader page to size zero.
5275  	 */
5276  	local_set(&cpu_buffer->reader_page->write, 0);
5277  	local_set(&cpu_buffer->reader_page->entries, 0);
5278  	local_set(&cpu_buffer->reader_page->page->commit, 0);
5279  	cpu_buffer->reader_page->real_end = 0;
5280  
5281   spin:
5282  	/*
5283  	 * Splice the empty reader page into the list around the head.
5284  	 */
5285  	reader = rb_set_head_page(cpu_buffer);
5286  	if (!reader)
5287  		goto out;
5288  	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5289  	cpu_buffer->reader_page->list.prev = reader->list.prev;
5290  
5291  	/*
5292  	 * cpu_buffer->pages just needs to point to the buffer, it
5293  	 *  has no specific buffer page to point to. Lets move it out
5294  	 *  of our way so we don't accidentally swap it.
5295  	 */
5296  	cpu_buffer->pages = reader->list.prev;
5297  
5298  	/* The reader page will be pointing to the new head */
5299  	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5300  
5301  	/*
5302  	 * We want to make sure we read the overruns after we set up our
5303  	 * pointers to the next object. The writer side does a
5304  	 * cmpxchg to cross pages which acts as the mb on the writer
5305  	 * side. Note, the reader will constantly fail the swap
5306  	 * while the writer is updating the pointers, so this
5307  	 * guarantees that the overwrite recorded here is the one we
5308  	 * want to compare with the last_overrun.
5309  	 */
5310  	smp_mb();
5311  	overwrite = local_read(&(cpu_buffer->overrun));
5312  
5313  	/*
5314  	 * Here's the tricky part.
5315  	 *
5316  	 * We need to move the pointer past the header page.
5317  	 * But we can only do that if a writer is not currently
5318  	 * moving it. The page before the header page has the
5319  	 * flag bit '1' set if it is pointing to the page we want.
5320  	 * but if the writer is in the process of moving it
5321  	 * then it will be '2' or already moved '0'.
5322  	 */
5323  
5324  	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5325  
5326  	/*
5327  	 * If we did not convert it, then we must try again.
5328  	 */
5329  	if (!ret)
5330  		goto spin;
5331  
5332  	if (cpu_buffer->ring_meta)
5333  		rb_update_meta_reader(cpu_buffer, reader);
5334  
5335  	/*
5336  	 * Yay! We succeeded in replacing the page.
5337  	 *
5338  	 * Now make the new head point back to the reader page.
5339  	 */
5340  	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5341  	rb_inc_page(&cpu_buffer->head_page);
5342  
5343  	cpu_buffer->cnt++;
5344  	local_inc(&cpu_buffer->pages_read);
5345  
5346  	/* Finally update the reader page to the new head */
5347  	cpu_buffer->reader_page = reader;
5348  	cpu_buffer->reader_page->read = 0;
5349  
5350  	if (overwrite != cpu_buffer->last_overrun) {
5351  		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5352  		cpu_buffer->last_overrun = overwrite;
5353  	}
5354  
5355  	goto again;
5356  
5357   out:
5358  	/* Update the read_stamp on the first event */
5359  	if (reader && reader->read == 0)
5360  		cpu_buffer->read_stamp = reader->page->time_stamp;
5361  
5362  	arch_spin_unlock(&cpu_buffer->lock);
5363  	local_irq_restore(flags);
5364  
5365  	/*
5366  	 * The writer has preempt disable, wait for it. But not forever
5367  	 * Although, 1 second is pretty much "forever"
5368  	 */
5369  #define USECS_WAIT	1000000
5370          for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5371  		/* If the write is past the end of page, a writer is still updating it */
5372  		if (likely(!reader || rb_page_write(reader) <= bsize))
5373  			break;
5374  
5375  		udelay(1);
5376  
5377  		/* Get the latest version of the reader write value */
5378  		smp_rmb();
5379  	}
5380  
5381  	/* The writer is not moving forward? Something is wrong */
5382  	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5383  		reader = NULL;
5384  
5385  	/*
5386  	 * Make sure we see any padding after the write update
5387  	 * (see rb_reset_tail()).
5388  	 *
5389  	 * In addition, a writer may be writing on the reader page
5390  	 * if the page has not been fully filled, so the read barrier
5391  	 * is also needed to make sure we see the content of what is
5392  	 * committed by the writer (see rb_set_commit_to_write()).
5393  	 */
5394  	smp_rmb();
5395  
5396  
5397  	return reader;
5398  }
5399  
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5400  static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5401  {
5402  	struct ring_buffer_event *event;
5403  	struct buffer_page *reader;
5404  	unsigned length;
5405  
5406  	reader = rb_get_reader_page(cpu_buffer);
5407  
5408  	/* This function should not be called when buffer is empty */
5409  	if (RB_WARN_ON(cpu_buffer, !reader))
5410  		return;
5411  
5412  	event = rb_reader_event(cpu_buffer);
5413  
5414  	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5415  		cpu_buffer->read++;
5416  
5417  	rb_update_read_stamp(cpu_buffer, event);
5418  
5419  	length = rb_event_length(event);
5420  	cpu_buffer->reader_page->read += length;
5421  	cpu_buffer->read_bytes += length;
5422  }
5423  
rb_advance_iter(struct ring_buffer_iter * iter)5424  static void rb_advance_iter(struct ring_buffer_iter *iter)
5425  {
5426  	struct ring_buffer_per_cpu *cpu_buffer;
5427  
5428  	cpu_buffer = iter->cpu_buffer;
5429  
5430  	/* If head == next_event then we need to jump to the next event */
5431  	if (iter->head == iter->next_event) {
5432  		/* If the event gets overwritten again, there's nothing to do */
5433  		if (rb_iter_head_event(iter) == NULL)
5434  			return;
5435  	}
5436  
5437  	iter->head = iter->next_event;
5438  
5439  	/*
5440  	 * Check if we are at the end of the buffer.
5441  	 */
5442  	if (iter->next_event >= rb_page_size(iter->head_page)) {
5443  		/* discarded commits can make the page empty */
5444  		if (iter->head_page == cpu_buffer->commit_page)
5445  			return;
5446  		rb_inc_iter(iter);
5447  		return;
5448  	}
5449  
5450  	rb_update_iter_read_stamp(iter, iter->event);
5451  }
5452  
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5453  static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5454  {
5455  	return cpu_buffer->lost_events;
5456  }
5457  
5458  static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5459  rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5460  	       unsigned long *lost_events)
5461  {
5462  	struct ring_buffer_event *event;
5463  	struct buffer_page *reader;
5464  	int nr_loops = 0;
5465  
5466  	if (ts)
5467  		*ts = 0;
5468   again:
5469  	/*
5470  	 * We repeat when a time extend is encountered.
5471  	 * Since the time extend is always attached to a data event,
5472  	 * we should never loop more than once.
5473  	 * (We never hit the following condition more than twice).
5474  	 */
5475  	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5476  		return NULL;
5477  
5478  	reader = rb_get_reader_page(cpu_buffer);
5479  	if (!reader)
5480  		return NULL;
5481  
5482  	event = rb_reader_event(cpu_buffer);
5483  
5484  	switch (event->type_len) {
5485  	case RINGBUF_TYPE_PADDING:
5486  		if (rb_null_event(event))
5487  			RB_WARN_ON(cpu_buffer, 1);
5488  		/*
5489  		 * Because the writer could be discarding every
5490  		 * event it creates (which would probably be bad)
5491  		 * if we were to go back to "again" then we may never
5492  		 * catch up, and will trigger the warn on, or lock
5493  		 * the box. Return the padding, and we will release
5494  		 * the current locks, and try again.
5495  		 */
5496  		return event;
5497  
5498  	case RINGBUF_TYPE_TIME_EXTEND:
5499  		/* Internal data, OK to advance */
5500  		rb_advance_reader(cpu_buffer);
5501  		goto again;
5502  
5503  	case RINGBUF_TYPE_TIME_STAMP:
5504  		if (ts) {
5505  			*ts = rb_event_time_stamp(event);
5506  			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5507  			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5508  							 cpu_buffer->cpu, ts);
5509  		}
5510  		/* Internal data, OK to advance */
5511  		rb_advance_reader(cpu_buffer);
5512  		goto again;
5513  
5514  	case RINGBUF_TYPE_DATA:
5515  		if (ts && !(*ts)) {
5516  			*ts = cpu_buffer->read_stamp + event->time_delta;
5517  			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5518  							 cpu_buffer->cpu, ts);
5519  		}
5520  		if (lost_events)
5521  			*lost_events = rb_lost_events(cpu_buffer);
5522  		return event;
5523  
5524  	default:
5525  		RB_WARN_ON(cpu_buffer, 1);
5526  	}
5527  
5528  	return NULL;
5529  }
5530  EXPORT_SYMBOL_GPL(ring_buffer_peek);
5531  
5532  static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5533  rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5534  {
5535  	struct trace_buffer *buffer;
5536  	struct ring_buffer_per_cpu *cpu_buffer;
5537  	struct ring_buffer_event *event;
5538  	int nr_loops = 0;
5539  
5540  	if (ts)
5541  		*ts = 0;
5542  
5543  	cpu_buffer = iter->cpu_buffer;
5544  	buffer = cpu_buffer->buffer;
5545  
5546  	/*
5547  	 * Check if someone performed a consuming read to the buffer
5548  	 * or removed some pages from the buffer. In these cases,
5549  	 * iterator was invalidated and we need to reset it.
5550  	 */
5551  	if (unlikely(iter->cache_read != cpu_buffer->read ||
5552  		     iter->cache_reader_page != cpu_buffer->reader_page ||
5553  		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5554  		rb_iter_reset(iter);
5555  
5556   again:
5557  	if (ring_buffer_iter_empty(iter))
5558  		return NULL;
5559  
5560  	/*
5561  	 * As the writer can mess with what the iterator is trying
5562  	 * to read, just give up if we fail to get an event after
5563  	 * three tries. The iterator is not as reliable when reading
5564  	 * the ring buffer with an active write as the consumer is.
5565  	 * Do not warn if the three failures is reached.
5566  	 */
5567  	if (++nr_loops > 3)
5568  		return NULL;
5569  
5570  	if (rb_per_cpu_empty(cpu_buffer))
5571  		return NULL;
5572  
5573  	if (iter->head >= rb_page_size(iter->head_page)) {
5574  		rb_inc_iter(iter);
5575  		goto again;
5576  	}
5577  
5578  	event = rb_iter_head_event(iter);
5579  	if (!event)
5580  		goto again;
5581  
5582  	switch (event->type_len) {
5583  	case RINGBUF_TYPE_PADDING:
5584  		if (rb_null_event(event)) {
5585  			rb_inc_iter(iter);
5586  			goto again;
5587  		}
5588  		rb_advance_iter(iter);
5589  		return event;
5590  
5591  	case RINGBUF_TYPE_TIME_EXTEND:
5592  		/* Internal data, OK to advance */
5593  		rb_advance_iter(iter);
5594  		goto again;
5595  
5596  	case RINGBUF_TYPE_TIME_STAMP:
5597  		if (ts) {
5598  			*ts = rb_event_time_stamp(event);
5599  			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5600  			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5601  							 cpu_buffer->cpu, ts);
5602  		}
5603  		/* Internal data, OK to advance */
5604  		rb_advance_iter(iter);
5605  		goto again;
5606  
5607  	case RINGBUF_TYPE_DATA:
5608  		if (ts && !(*ts)) {
5609  			*ts = iter->read_stamp + event->time_delta;
5610  			ring_buffer_normalize_time_stamp(buffer,
5611  							 cpu_buffer->cpu, ts);
5612  		}
5613  		return event;
5614  
5615  	default:
5616  		RB_WARN_ON(cpu_buffer, 1);
5617  	}
5618  
5619  	return NULL;
5620  }
5621  EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5622  
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5623  static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5624  {
5625  	if (likely(!in_nmi())) {
5626  		raw_spin_lock(&cpu_buffer->reader_lock);
5627  		return true;
5628  	}
5629  
5630  	/*
5631  	 * If an NMI die dumps out the content of the ring buffer
5632  	 * trylock must be used to prevent a deadlock if the NMI
5633  	 * preempted a task that holds the ring buffer locks. If
5634  	 * we get the lock then all is fine, if not, then continue
5635  	 * to do the read, but this can corrupt the ring buffer,
5636  	 * so it must be permanently disabled from future writes.
5637  	 * Reading from NMI is a oneshot deal.
5638  	 */
5639  	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5640  		return true;
5641  
5642  	/* Continue without locking, but disable the ring buffer */
5643  	atomic_inc(&cpu_buffer->record_disabled);
5644  	return false;
5645  }
5646  
5647  static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5648  rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5649  {
5650  	if (likely(locked))
5651  		raw_spin_unlock(&cpu_buffer->reader_lock);
5652  }
5653  
5654  /**
5655   * ring_buffer_peek - peek at the next event to be read
5656   * @buffer: The ring buffer to read
5657   * @cpu: The cpu to peak at
5658   * @ts: The timestamp counter of this event.
5659   * @lost_events: a variable to store if events were lost (may be NULL)
5660   *
5661   * This will return the event that will be read next, but does
5662   * not consume the data.
5663   */
5664  struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5665  ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5666  		 unsigned long *lost_events)
5667  {
5668  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5669  	struct ring_buffer_event *event;
5670  	unsigned long flags;
5671  	bool dolock;
5672  
5673  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5674  		return NULL;
5675  
5676   again:
5677  	local_irq_save(flags);
5678  	dolock = rb_reader_lock(cpu_buffer);
5679  	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5680  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5681  		rb_advance_reader(cpu_buffer);
5682  	rb_reader_unlock(cpu_buffer, dolock);
5683  	local_irq_restore(flags);
5684  
5685  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5686  		goto again;
5687  
5688  	return event;
5689  }
5690  
5691  /** ring_buffer_iter_dropped - report if there are dropped events
5692   * @iter: The ring buffer iterator
5693   *
5694   * Returns true if there was dropped events since the last peek.
5695   */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5696  bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5697  {
5698  	bool ret = iter->missed_events != 0;
5699  
5700  	iter->missed_events = 0;
5701  	return ret;
5702  }
5703  EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5704  
5705  /**
5706   * ring_buffer_iter_peek - peek at the next event to be read
5707   * @iter: The ring buffer iterator
5708   * @ts: The timestamp counter of this event.
5709   *
5710   * This will return the event that will be read next, but does
5711   * not increment the iterator.
5712   */
5713  struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5714  ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5715  {
5716  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5717  	struct ring_buffer_event *event;
5718  	unsigned long flags;
5719  
5720   again:
5721  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5722  	event = rb_iter_peek(iter, ts);
5723  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5724  
5725  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5726  		goto again;
5727  
5728  	return event;
5729  }
5730  
5731  /**
5732   * ring_buffer_consume - return an event and consume it
5733   * @buffer: The ring buffer to get the next event from
5734   * @cpu: the cpu to read the buffer from
5735   * @ts: a variable to store the timestamp (may be NULL)
5736   * @lost_events: a variable to store if events were lost (may be NULL)
5737   *
5738   * Returns the next event in the ring buffer, and that event is consumed.
5739   * Meaning, that sequential reads will keep returning a different event,
5740   * and eventually empty the ring buffer if the producer is slower.
5741   */
5742  struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5743  ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5744  		    unsigned long *lost_events)
5745  {
5746  	struct ring_buffer_per_cpu *cpu_buffer;
5747  	struct ring_buffer_event *event = NULL;
5748  	unsigned long flags;
5749  	bool dolock;
5750  
5751   again:
5752  	/* might be called in atomic */
5753  	preempt_disable();
5754  
5755  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5756  		goto out;
5757  
5758  	cpu_buffer = buffer->buffers[cpu];
5759  	local_irq_save(flags);
5760  	dolock = rb_reader_lock(cpu_buffer);
5761  
5762  	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5763  	if (event) {
5764  		cpu_buffer->lost_events = 0;
5765  		rb_advance_reader(cpu_buffer);
5766  	}
5767  
5768  	rb_reader_unlock(cpu_buffer, dolock);
5769  	local_irq_restore(flags);
5770  
5771   out:
5772  	preempt_enable();
5773  
5774  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5775  		goto again;
5776  
5777  	return event;
5778  }
5779  EXPORT_SYMBOL_GPL(ring_buffer_consume);
5780  
5781  /**
5782   * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5783   * @buffer: The ring buffer to read from
5784   * @cpu: The cpu buffer to iterate over
5785   * @flags: gfp flags to use for memory allocation
5786   *
5787   * This performs the initial preparations necessary to iterate
5788   * through the buffer.  Memory is allocated, buffer resizing
5789   * is disabled, and the iterator pointer is returned to the caller.
5790   *
5791   * After a sequence of ring_buffer_read_prepare calls, the user is
5792   * expected to make at least one call to ring_buffer_read_prepare_sync.
5793   * Afterwards, ring_buffer_read_start is invoked to get things going
5794   * for real.
5795   *
5796   * This overall must be paired with ring_buffer_read_finish.
5797   */
5798  struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)5799  ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5800  {
5801  	struct ring_buffer_per_cpu *cpu_buffer;
5802  	struct ring_buffer_iter *iter;
5803  
5804  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5805  		return NULL;
5806  
5807  	iter = kzalloc(sizeof(*iter), flags);
5808  	if (!iter)
5809  		return NULL;
5810  
5811  	/* Holds the entire event: data and meta data */
5812  	iter->event_size = buffer->subbuf_size;
5813  	iter->event = kmalloc(iter->event_size, flags);
5814  	if (!iter->event) {
5815  		kfree(iter);
5816  		return NULL;
5817  	}
5818  
5819  	cpu_buffer = buffer->buffers[cpu];
5820  
5821  	iter->cpu_buffer = cpu_buffer;
5822  
5823  	atomic_inc(&cpu_buffer->resize_disabled);
5824  
5825  	return iter;
5826  }
5827  EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5828  
5829  /**
5830   * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5831   *
5832   * All previously invoked ring_buffer_read_prepare calls to prepare
5833   * iterators will be synchronized.  Afterwards, read_buffer_read_start
5834   * calls on those iterators are allowed.
5835   */
5836  void
ring_buffer_read_prepare_sync(void)5837  ring_buffer_read_prepare_sync(void)
5838  {
5839  	synchronize_rcu();
5840  }
5841  EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5842  
5843  /**
5844   * ring_buffer_read_start - start a non consuming read of the buffer
5845   * @iter: The iterator returned by ring_buffer_read_prepare
5846   *
5847   * This finalizes the startup of an iteration through the buffer.
5848   * The iterator comes from a call to ring_buffer_read_prepare and
5849   * an intervening ring_buffer_read_prepare_sync must have been
5850   * performed.
5851   *
5852   * Must be paired with ring_buffer_read_finish.
5853   */
5854  void
ring_buffer_read_start(struct ring_buffer_iter * iter)5855  ring_buffer_read_start(struct ring_buffer_iter *iter)
5856  {
5857  	struct ring_buffer_per_cpu *cpu_buffer;
5858  	unsigned long flags;
5859  
5860  	if (!iter)
5861  		return;
5862  
5863  	cpu_buffer = iter->cpu_buffer;
5864  
5865  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5866  	arch_spin_lock(&cpu_buffer->lock);
5867  	rb_iter_reset(iter);
5868  	arch_spin_unlock(&cpu_buffer->lock);
5869  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5870  }
5871  EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5872  
5873  /**
5874   * ring_buffer_read_finish - finish reading the iterator of the buffer
5875   * @iter: The iterator retrieved by ring_buffer_start
5876   *
5877   * This re-enables resizing of the buffer, and frees the iterator.
5878   */
5879  void
ring_buffer_read_finish(struct ring_buffer_iter * iter)5880  ring_buffer_read_finish(struct ring_buffer_iter *iter)
5881  {
5882  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5883  
5884  	/* Use this opportunity to check the integrity of the ring buffer. */
5885  	rb_check_pages(cpu_buffer);
5886  
5887  	atomic_dec(&cpu_buffer->resize_disabled);
5888  	kfree(iter->event);
5889  	kfree(iter);
5890  }
5891  EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5892  
5893  /**
5894   * ring_buffer_iter_advance - advance the iterator to the next location
5895   * @iter: The ring buffer iterator
5896   *
5897   * Move the location of the iterator such that the next read will
5898   * be the next location of the iterator.
5899   */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)5900  void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5901  {
5902  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5903  	unsigned long flags;
5904  
5905  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5906  
5907  	rb_advance_iter(iter);
5908  
5909  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5910  }
5911  EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5912  
5913  /**
5914   * ring_buffer_size - return the size of the ring buffer (in bytes)
5915   * @buffer: The ring buffer.
5916   * @cpu: The CPU to get ring buffer size from.
5917   */
ring_buffer_size(struct trace_buffer * buffer,int cpu)5918  unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5919  {
5920  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5921  		return 0;
5922  
5923  	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5924  }
5925  EXPORT_SYMBOL_GPL(ring_buffer_size);
5926  
5927  /**
5928   * ring_buffer_max_event_size - return the max data size of an event
5929   * @buffer: The ring buffer.
5930   *
5931   * Returns the maximum size an event can be.
5932   */
ring_buffer_max_event_size(struct trace_buffer * buffer)5933  unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5934  {
5935  	/* If abs timestamp is requested, events have a timestamp too */
5936  	if (ring_buffer_time_stamp_abs(buffer))
5937  		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5938  	return buffer->max_data_size;
5939  }
5940  EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5941  
rb_clear_buffer_page(struct buffer_page * page)5942  static void rb_clear_buffer_page(struct buffer_page *page)
5943  {
5944  	local_set(&page->write, 0);
5945  	local_set(&page->entries, 0);
5946  	rb_init_page(page->page);
5947  	page->read = 0;
5948  }
5949  
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)5950  static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5951  {
5952  	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5953  
5954  	if (!meta)
5955  		return;
5956  
5957  	meta->reader.read = cpu_buffer->reader_page->read;
5958  	meta->reader.id = cpu_buffer->reader_page->id;
5959  	meta->reader.lost_events = cpu_buffer->lost_events;
5960  
5961  	meta->entries = local_read(&cpu_buffer->entries);
5962  	meta->overrun = local_read(&cpu_buffer->overrun);
5963  	meta->read = cpu_buffer->read;
5964  
5965  	/* Some archs do not have data cache coherency between kernel and user-space */
5966  	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5967  }
5968  
5969  static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)5970  rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5971  {
5972  	struct buffer_page *page;
5973  
5974  	rb_head_page_deactivate(cpu_buffer);
5975  
5976  	cpu_buffer->head_page
5977  		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5978  	rb_clear_buffer_page(cpu_buffer->head_page);
5979  	list_for_each_entry(page, cpu_buffer->pages, list) {
5980  		rb_clear_buffer_page(page);
5981  	}
5982  
5983  	cpu_buffer->tail_page = cpu_buffer->head_page;
5984  	cpu_buffer->commit_page = cpu_buffer->head_page;
5985  
5986  	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5987  	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5988  	rb_clear_buffer_page(cpu_buffer->reader_page);
5989  
5990  	local_set(&cpu_buffer->entries_bytes, 0);
5991  	local_set(&cpu_buffer->overrun, 0);
5992  	local_set(&cpu_buffer->commit_overrun, 0);
5993  	local_set(&cpu_buffer->dropped_events, 0);
5994  	local_set(&cpu_buffer->entries, 0);
5995  	local_set(&cpu_buffer->committing, 0);
5996  	local_set(&cpu_buffer->commits, 0);
5997  	local_set(&cpu_buffer->pages_touched, 0);
5998  	local_set(&cpu_buffer->pages_lost, 0);
5999  	local_set(&cpu_buffer->pages_read, 0);
6000  	cpu_buffer->last_pages_touch = 0;
6001  	cpu_buffer->shortest_full = 0;
6002  	cpu_buffer->read = 0;
6003  	cpu_buffer->read_bytes = 0;
6004  
6005  	rb_time_set(&cpu_buffer->write_stamp, 0);
6006  	rb_time_set(&cpu_buffer->before_stamp, 0);
6007  
6008  	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6009  
6010  	cpu_buffer->lost_events = 0;
6011  	cpu_buffer->last_overrun = 0;
6012  
6013  	rb_head_page_activate(cpu_buffer);
6014  	cpu_buffer->pages_removed = 0;
6015  
6016  	if (cpu_buffer->mapped) {
6017  		rb_update_meta_page(cpu_buffer);
6018  		if (cpu_buffer->ring_meta) {
6019  			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6020  			meta->commit_buffer = meta->head_buffer;
6021  		}
6022  	}
6023  }
6024  
6025  /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6026  static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6027  {
6028  	unsigned long flags;
6029  
6030  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6031  
6032  	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6033  		goto out;
6034  
6035  	arch_spin_lock(&cpu_buffer->lock);
6036  
6037  	rb_reset_cpu(cpu_buffer);
6038  
6039  	arch_spin_unlock(&cpu_buffer->lock);
6040  
6041   out:
6042  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6043  }
6044  
6045  /**
6046   * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6047   * @buffer: The ring buffer to reset a per cpu buffer of
6048   * @cpu: The CPU buffer to be reset
6049   */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6050  void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6051  {
6052  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6053  	struct ring_buffer_meta *meta;
6054  
6055  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6056  		return;
6057  
6058  	/* prevent another thread from changing buffer sizes */
6059  	mutex_lock(&buffer->mutex);
6060  
6061  	atomic_inc(&cpu_buffer->resize_disabled);
6062  	atomic_inc(&cpu_buffer->record_disabled);
6063  
6064  	/* Make sure all commits have finished */
6065  	synchronize_rcu();
6066  
6067  	reset_disabled_cpu_buffer(cpu_buffer);
6068  
6069  	atomic_dec(&cpu_buffer->record_disabled);
6070  	atomic_dec(&cpu_buffer->resize_disabled);
6071  
6072  	/* Make sure persistent meta now uses this buffer's addresses */
6073  	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6074  	if (meta)
6075  		rb_meta_init_text_addr(meta);
6076  
6077  	mutex_unlock(&buffer->mutex);
6078  }
6079  EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6080  
6081  /* Flag to ensure proper resetting of atomic variables */
6082  #define RESET_BIT	(1 << 30)
6083  
6084  /**
6085   * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6086   * @buffer: The ring buffer to reset a per cpu buffer of
6087   */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6088  void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6089  {
6090  	struct ring_buffer_per_cpu *cpu_buffer;
6091  	struct ring_buffer_meta *meta;
6092  	int cpu;
6093  
6094  	/* prevent another thread from changing buffer sizes */
6095  	mutex_lock(&buffer->mutex);
6096  
6097  	for_each_online_buffer_cpu(buffer, cpu) {
6098  		cpu_buffer = buffer->buffers[cpu];
6099  
6100  		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6101  		atomic_inc(&cpu_buffer->record_disabled);
6102  	}
6103  
6104  	/* Make sure all commits have finished */
6105  	synchronize_rcu();
6106  
6107  	for_each_buffer_cpu(buffer, cpu) {
6108  		cpu_buffer = buffer->buffers[cpu];
6109  
6110  		/*
6111  		 * If a CPU came online during the synchronize_rcu(), then
6112  		 * ignore it.
6113  		 */
6114  		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6115  			continue;
6116  
6117  		reset_disabled_cpu_buffer(cpu_buffer);
6118  
6119  		/* Make sure persistent meta now uses this buffer's addresses */
6120  		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6121  		if (meta)
6122  			rb_meta_init_text_addr(meta);
6123  
6124  		atomic_dec(&cpu_buffer->record_disabled);
6125  		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6126  	}
6127  
6128  	mutex_unlock(&buffer->mutex);
6129  }
6130  
6131  /**
6132   * ring_buffer_reset - reset a ring buffer
6133   * @buffer: The ring buffer to reset all cpu buffers
6134   */
ring_buffer_reset(struct trace_buffer * buffer)6135  void ring_buffer_reset(struct trace_buffer *buffer)
6136  {
6137  	struct ring_buffer_per_cpu *cpu_buffer;
6138  	int cpu;
6139  
6140  	/* prevent another thread from changing buffer sizes */
6141  	mutex_lock(&buffer->mutex);
6142  
6143  	for_each_buffer_cpu(buffer, cpu) {
6144  		cpu_buffer = buffer->buffers[cpu];
6145  
6146  		atomic_inc(&cpu_buffer->resize_disabled);
6147  		atomic_inc(&cpu_buffer->record_disabled);
6148  	}
6149  
6150  	/* Make sure all commits have finished */
6151  	synchronize_rcu();
6152  
6153  	for_each_buffer_cpu(buffer, cpu) {
6154  		cpu_buffer = buffer->buffers[cpu];
6155  
6156  		reset_disabled_cpu_buffer(cpu_buffer);
6157  
6158  		atomic_dec(&cpu_buffer->record_disabled);
6159  		atomic_dec(&cpu_buffer->resize_disabled);
6160  	}
6161  
6162  	mutex_unlock(&buffer->mutex);
6163  }
6164  EXPORT_SYMBOL_GPL(ring_buffer_reset);
6165  
6166  /**
6167   * ring_buffer_empty - is the ring buffer empty?
6168   * @buffer: The ring buffer to test
6169   */
ring_buffer_empty(struct trace_buffer * buffer)6170  bool ring_buffer_empty(struct trace_buffer *buffer)
6171  {
6172  	struct ring_buffer_per_cpu *cpu_buffer;
6173  	unsigned long flags;
6174  	bool dolock;
6175  	bool ret;
6176  	int cpu;
6177  
6178  	/* yes this is racy, but if you don't like the race, lock the buffer */
6179  	for_each_buffer_cpu(buffer, cpu) {
6180  		cpu_buffer = buffer->buffers[cpu];
6181  		local_irq_save(flags);
6182  		dolock = rb_reader_lock(cpu_buffer);
6183  		ret = rb_per_cpu_empty(cpu_buffer);
6184  		rb_reader_unlock(cpu_buffer, dolock);
6185  		local_irq_restore(flags);
6186  
6187  		if (!ret)
6188  			return false;
6189  	}
6190  
6191  	return true;
6192  }
6193  EXPORT_SYMBOL_GPL(ring_buffer_empty);
6194  
6195  /**
6196   * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6197   * @buffer: The ring buffer
6198   * @cpu: The CPU buffer to test
6199   */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6200  bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6201  {
6202  	struct ring_buffer_per_cpu *cpu_buffer;
6203  	unsigned long flags;
6204  	bool dolock;
6205  	bool ret;
6206  
6207  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6208  		return true;
6209  
6210  	cpu_buffer = buffer->buffers[cpu];
6211  	local_irq_save(flags);
6212  	dolock = rb_reader_lock(cpu_buffer);
6213  	ret = rb_per_cpu_empty(cpu_buffer);
6214  	rb_reader_unlock(cpu_buffer, dolock);
6215  	local_irq_restore(flags);
6216  
6217  	return ret;
6218  }
6219  EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6220  
6221  #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6222  /**
6223   * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6224   * @buffer_a: One buffer to swap with
6225   * @buffer_b: The other buffer to swap with
6226   * @cpu: the CPU of the buffers to swap
6227   *
6228   * This function is useful for tracers that want to take a "snapshot"
6229   * of a CPU buffer and has another back up buffer lying around.
6230   * it is expected that the tracer handles the cpu buffer not being
6231   * used at the moment.
6232   */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6233  int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6234  			 struct trace_buffer *buffer_b, int cpu)
6235  {
6236  	struct ring_buffer_per_cpu *cpu_buffer_a;
6237  	struct ring_buffer_per_cpu *cpu_buffer_b;
6238  	int ret = -EINVAL;
6239  
6240  	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6241  	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6242  		goto out;
6243  
6244  	cpu_buffer_a = buffer_a->buffers[cpu];
6245  	cpu_buffer_b = buffer_b->buffers[cpu];
6246  
6247  	/* It's up to the callers to not try to swap mapped buffers */
6248  	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6249  		ret = -EBUSY;
6250  		goto out;
6251  	}
6252  
6253  	/* At least make sure the two buffers are somewhat the same */
6254  	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6255  		goto out;
6256  
6257  	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6258  		goto out;
6259  
6260  	ret = -EAGAIN;
6261  
6262  	if (atomic_read(&buffer_a->record_disabled))
6263  		goto out;
6264  
6265  	if (atomic_read(&buffer_b->record_disabled))
6266  		goto out;
6267  
6268  	if (atomic_read(&cpu_buffer_a->record_disabled))
6269  		goto out;
6270  
6271  	if (atomic_read(&cpu_buffer_b->record_disabled))
6272  		goto out;
6273  
6274  	/*
6275  	 * We can't do a synchronize_rcu here because this
6276  	 * function can be called in atomic context.
6277  	 * Normally this will be called from the same CPU as cpu.
6278  	 * If not it's up to the caller to protect this.
6279  	 */
6280  	atomic_inc(&cpu_buffer_a->record_disabled);
6281  	atomic_inc(&cpu_buffer_b->record_disabled);
6282  
6283  	ret = -EBUSY;
6284  	if (local_read(&cpu_buffer_a->committing))
6285  		goto out_dec;
6286  	if (local_read(&cpu_buffer_b->committing))
6287  		goto out_dec;
6288  
6289  	/*
6290  	 * When resize is in progress, we cannot swap it because
6291  	 * it will mess the state of the cpu buffer.
6292  	 */
6293  	if (atomic_read(&buffer_a->resizing))
6294  		goto out_dec;
6295  	if (atomic_read(&buffer_b->resizing))
6296  		goto out_dec;
6297  
6298  	buffer_a->buffers[cpu] = cpu_buffer_b;
6299  	buffer_b->buffers[cpu] = cpu_buffer_a;
6300  
6301  	cpu_buffer_b->buffer = buffer_a;
6302  	cpu_buffer_a->buffer = buffer_b;
6303  
6304  	ret = 0;
6305  
6306  out_dec:
6307  	atomic_dec(&cpu_buffer_a->record_disabled);
6308  	atomic_dec(&cpu_buffer_b->record_disabled);
6309  out:
6310  	return ret;
6311  }
6312  EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6313  #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6314  
6315  /**
6316   * ring_buffer_alloc_read_page - allocate a page to read from buffer
6317   * @buffer: the buffer to allocate for.
6318   * @cpu: the cpu buffer to allocate.
6319   *
6320   * This function is used in conjunction with ring_buffer_read_page.
6321   * When reading a full page from the ring buffer, these functions
6322   * can be used to speed up the process. The calling function should
6323   * allocate a few pages first with this function. Then when it
6324   * needs to get pages from the ring buffer, it passes the result
6325   * of this function into ring_buffer_read_page, which will swap
6326   * the page that was allocated, with the read page of the buffer.
6327   *
6328   * Returns:
6329   *  The page allocated, or ERR_PTR
6330   */
6331  struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6332  ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6333  {
6334  	struct ring_buffer_per_cpu *cpu_buffer;
6335  	struct buffer_data_read_page *bpage = NULL;
6336  	unsigned long flags;
6337  	struct page *page;
6338  
6339  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6340  		return ERR_PTR(-ENODEV);
6341  
6342  	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6343  	if (!bpage)
6344  		return ERR_PTR(-ENOMEM);
6345  
6346  	bpage->order = buffer->subbuf_order;
6347  	cpu_buffer = buffer->buffers[cpu];
6348  	local_irq_save(flags);
6349  	arch_spin_lock(&cpu_buffer->lock);
6350  
6351  	if (cpu_buffer->free_page) {
6352  		bpage->data = cpu_buffer->free_page;
6353  		cpu_buffer->free_page = NULL;
6354  	}
6355  
6356  	arch_spin_unlock(&cpu_buffer->lock);
6357  	local_irq_restore(flags);
6358  
6359  	if (bpage->data)
6360  		goto out;
6361  
6362  	page = alloc_pages_node(cpu_to_node(cpu),
6363  				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6364  				cpu_buffer->buffer->subbuf_order);
6365  	if (!page) {
6366  		kfree(bpage);
6367  		return ERR_PTR(-ENOMEM);
6368  	}
6369  
6370  	bpage->data = page_address(page);
6371  
6372   out:
6373  	rb_init_page(bpage->data);
6374  
6375  	return bpage;
6376  }
6377  EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6378  
6379  /**
6380   * ring_buffer_free_read_page - free an allocated read page
6381   * @buffer: the buffer the page was allocate for
6382   * @cpu: the cpu buffer the page came from
6383   * @data_page: the page to free
6384   *
6385   * Free a page allocated from ring_buffer_alloc_read_page.
6386   */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6387  void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6388  				struct buffer_data_read_page *data_page)
6389  {
6390  	struct ring_buffer_per_cpu *cpu_buffer;
6391  	struct buffer_data_page *bpage = data_page->data;
6392  	struct page *page = virt_to_page(bpage);
6393  	unsigned long flags;
6394  
6395  	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6396  		return;
6397  
6398  	cpu_buffer = buffer->buffers[cpu];
6399  
6400  	/*
6401  	 * If the page is still in use someplace else, or order of the page
6402  	 * is different from the subbuffer order of the buffer -
6403  	 * we can't reuse it
6404  	 */
6405  	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6406  		goto out;
6407  
6408  	local_irq_save(flags);
6409  	arch_spin_lock(&cpu_buffer->lock);
6410  
6411  	if (!cpu_buffer->free_page) {
6412  		cpu_buffer->free_page = bpage;
6413  		bpage = NULL;
6414  	}
6415  
6416  	arch_spin_unlock(&cpu_buffer->lock);
6417  	local_irq_restore(flags);
6418  
6419   out:
6420  	free_pages((unsigned long)bpage, data_page->order);
6421  	kfree(data_page);
6422  }
6423  EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6424  
6425  /**
6426   * ring_buffer_read_page - extract a page from the ring buffer
6427   * @buffer: buffer to extract from
6428   * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6429   * @len: amount to extract
6430   * @cpu: the cpu of the buffer to extract
6431   * @full: should the extraction only happen when the page is full.
6432   *
6433   * This function will pull out a page from the ring buffer and consume it.
6434   * @data_page must be the address of the variable that was returned
6435   * from ring_buffer_alloc_read_page. This is because the page might be used
6436   * to swap with a page in the ring buffer.
6437   *
6438   * for example:
6439   *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6440   *	if (IS_ERR(rpage))
6441   *		return PTR_ERR(rpage);
6442   *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6443   *	if (ret >= 0)
6444   *		process_page(ring_buffer_read_page_data(rpage), ret);
6445   *	ring_buffer_free_read_page(buffer, cpu, rpage);
6446   *
6447   * When @full is set, the function will not return true unless
6448   * the writer is off the reader page.
6449   *
6450   * Note: it is up to the calling functions to handle sleeps and wakeups.
6451   *  The ring buffer can be used anywhere in the kernel and can not
6452   *  blindly call wake_up. The layer that uses the ring buffer must be
6453   *  responsible for that.
6454   *
6455   * Returns:
6456   *  >=0 if data has been transferred, returns the offset of consumed data.
6457   *  <0 if no data has been transferred.
6458   */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6459  int ring_buffer_read_page(struct trace_buffer *buffer,
6460  			  struct buffer_data_read_page *data_page,
6461  			  size_t len, int cpu, int full)
6462  {
6463  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6464  	struct ring_buffer_event *event;
6465  	struct buffer_data_page *bpage;
6466  	struct buffer_page *reader;
6467  	unsigned long missed_events;
6468  	unsigned long flags;
6469  	unsigned int commit;
6470  	unsigned int read;
6471  	u64 save_timestamp;
6472  	int ret = -1;
6473  
6474  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6475  		goto out;
6476  
6477  	/*
6478  	 * If len is not big enough to hold the page header, then
6479  	 * we can not copy anything.
6480  	 */
6481  	if (len <= BUF_PAGE_HDR_SIZE)
6482  		goto out;
6483  
6484  	len -= BUF_PAGE_HDR_SIZE;
6485  
6486  	if (!data_page || !data_page->data)
6487  		goto out;
6488  	if (data_page->order != buffer->subbuf_order)
6489  		goto out;
6490  
6491  	bpage = data_page->data;
6492  	if (!bpage)
6493  		goto out;
6494  
6495  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6496  
6497  	reader = rb_get_reader_page(cpu_buffer);
6498  	if (!reader)
6499  		goto out_unlock;
6500  
6501  	event = rb_reader_event(cpu_buffer);
6502  
6503  	read = reader->read;
6504  	commit = rb_page_size(reader);
6505  
6506  	/* Check if any events were dropped */
6507  	missed_events = cpu_buffer->lost_events;
6508  
6509  	/*
6510  	 * If this page has been partially read or
6511  	 * if len is not big enough to read the rest of the page or
6512  	 * a writer is still on the page, then
6513  	 * we must copy the data from the page to the buffer.
6514  	 * Otherwise, we can simply swap the page with the one passed in.
6515  	 */
6516  	if (read || (len < (commit - read)) ||
6517  	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6518  	    cpu_buffer->mapped) {
6519  		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6520  		unsigned int rpos = read;
6521  		unsigned int pos = 0;
6522  		unsigned int size;
6523  
6524  		/*
6525  		 * If a full page is expected, this can still be returned
6526  		 * if there's been a previous partial read and the
6527  		 * rest of the page can be read and the commit page is off
6528  		 * the reader page.
6529  		 */
6530  		if (full &&
6531  		    (!read || (len < (commit - read)) ||
6532  		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6533  			goto out_unlock;
6534  
6535  		if (len > (commit - read))
6536  			len = (commit - read);
6537  
6538  		/* Always keep the time extend and data together */
6539  		size = rb_event_ts_length(event);
6540  
6541  		if (len < size)
6542  			goto out_unlock;
6543  
6544  		/* save the current timestamp, since the user will need it */
6545  		save_timestamp = cpu_buffer->read_stamp;
6546  
6547  		/* Need to copy one event at a time */
6548  		do {
6549  			/* We need the size of one event, because
6550  			 * rb_advance_reader only advances by one event,
6551  			 * whereas rb_event_ts_length may include the size of
6552  			 * one or two events.
6553  			 * We have already ensured there's enough space if this
6554  			 * is a time extend. */
6555  			size = rb_event_length(event);
6556  			memcpy(bpage->data + pos, rpage->data + rpos, size);
6557  
6558  			len -= size;
6559  
6560  			rb_advance_reader(cpu_buffer);
6561  			rpos = reader->read;
6562  			pos += size;
6563  
6564  			if (rpos >= commit)
6565  				break;
6566  
6567  			event = rb_reader_event(cpu_buffer);
6568  			/* Always keep the time extend and data together */
6569  			size = rb_event_ts_length(event);
6570  		} while (len >= size);
6571  
6572  		/* update bpage */
6573  		local_set(&bpage->commit, pos);
6574  		bpage->time_stamp = save_timestamp;
6575  
6576  		/* we copied everything to the beginning */
6577  		read = 0;
6578  	} else {
6579  		/* update the entry counter */
6580  		cpu_buffer->read += rb_page_entries(reader);
6581  		cpu_buffer->read_bytes += rb_page_size(reader);
6582  
6583  		/* swap the pages */
6584  		rb_init_page(bpage);
6585  		bpage = reader->page;
6586  		reader->page = data_page->data;
6587  		local_set(&reader->write, 0);
6588  		local_set(&reader->entries, 0);
6589  		reader->read = 0;
6590  		data_page->data = bpage;
6591  
6592  		/*
6593  		 * Use the real_end for the data size,
6594  		 * This gives us a chance to store the lost events
6595  		 * on the page.
6596  		 */
6597  		if (reader->real_end)
6598  			local_set(&bpage->commit, reader->real_end);
6599  	}
6600  	ret = read;
6601  
6602  	cpu_buffer->lost_events = 0;
6603  
6604  	commit = local_read(&bpage->commit);
6605  	/*
6606  	 * Set a flag in the commit field if we lost events
6607  	 */
6608  	if (missed_events) {
6609  		/* If there is room at the end of the page to save the
6610  		 * missed events, then record it there.
6611  		 */
6612  		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6613  			memcpy(&bpage->data[commit], &missed_events,
6614  			       sizeof(missed_events));
6615  			local_add(RB_MISSED_STORED, &bpage->commit);
6616  			commit += sizeof(missed_events);
6617  		}
6618  		local_add(RB_MISSED_EVENTS, &bpage->commit);
6619  	}
6620  
6621  	/*
6622  	 * This page may be off to user land. Zero it out here.
6623  	 */
6624  	if (commit < buffer->subbuf_size)
6625  		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6626  
6627   out_unlock:
6628  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6629  
6630   out:
6631  	return ret;
6632  }
6633  EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6634  
6635  /**
6636   * ring_buffer_read_page_data - get pointer to the data in the page.
6637   * @page:  the page to get the data from
6638   *
6639   * Returns pointer to the actual data in this page.
6640   */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6641  void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6642  {
6643  	return page->data;
6644  }
6645  EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6646  
6647  /**
6648   * ring_buffer_subbuf_size_get - get size of the sub buffer.
6649   * @buffer: the buffer to get the sub buffer size from
6650   *
6651   * Returns size of the sub buffer, in bytes.
6652   */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6653  int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6654  {
6655  	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6656  }
6657  EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6658  
6659  /**
6660   * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6661   * @buffer: The ring_buffer to get the system sub page order from
6662   *
6663   * By default, one ring buffer sub page equals to one system page. This parameter
6664   * is configurable, per ring buffer. The size of the ring buffer sub page can be
6665   * extended, but must be an order of system page size.
6666   *
6667   * Returns the order of buffer sub page size, in system pages:
6668   * 0 means the sub buffer size is 1 system page and so forth.
6669   * In case of an error < 0 is returned.
6670   */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6671  int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6672  {
6673  	if (!buffer)
6674  		return -EINVAL;
6675  
6676  	return buffer->subbuf_order;
6677  }
6678  EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6679  
6680  /**
6681   * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6682   * @buffer: The ring_buffer to set the new page size.
6683   * @order: Order of the system pages in one sub buffer page
6684   *
6685   * By default, one ring buffer pages equals to one system page. This API can be
6686   * used to set new size of the ring buffer page. The size must be order of
6687   * system page size, that's why the input parameter @order is the order of
6688   * system pages that are allocated for one ring buffer page:
6689   *  0 - 1 system page
6690   *  1 - 2 system pages
6691   *  3 - 4 system pages
6692   *  ...
6693   *
6694   * Returns 0 on success or < 0 in case of an error.
6695   */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6696  int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6697  {
6698  	struct ring_buffer_per_cpu *cpu_buffer;
6699  	struct buffer_page *bpage, *tmp;
6700  	int old_order, old_size;
6701  	int nr_pages;
6702  	int psize;
6703  	int err;
6704  	int cpu;
6705  
6706  	if (!buffer || order < 0)
6707  		return -EINVAL;
6708  
6709  	if (buffer->subbuf_order == order)
6710  		return 0;
6711  
6712  	psize = (1 << order) * PAGE_SIZE;
6713  	if (psize <= BUF_PAGE_HDR_SIZE)
6714  		return -EINVAL;
6715  
6716  	/* Size of a subbuf cannot be greater than the write counter */
6717  	if (psize > RB_WRITE_MASK + 1)
6718  		return -EINVAL;
6719  
6720  	old_order = buffer->subbuf_order;
6721  	old_size = buffer->subbuf_size;
6722  
6723  	/* prevent another thread from changing buffer sizes */
6724  	mutex_lock(&buffer->mutex);
6725  	atomic_inc(&buffer->record_disabled);
6726  
6727  	/* Make sure all commits have finished */
6728  	synchronize_rcu();
6729  
6730  	buffer->subbuf_order = order;
6731  	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6732  
6733  	/* Make sure all new buffers are allocated, before deleting the old ones */
6734  	for_each_buffer_cpu(buffer, cpu) {
6735  
6736  		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6737  			continue;
6738  
6739  		cpu_buffer = buffer->buffers[cpu];
6740  
6741  		if (cpu_buffer->mapped) {
6742  			err = -EBUSY;
6743  			goto error;
6744  		}
6745  
6746  		/* Update the number of pages to match the new size */
6747  		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6748  		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6749  
6750  		/* we need a minimum of two pages */
6751  		if (nr_pages < 2)
6752  			nr_pages = 2;
6753  
6754  		cpu_buffer->nr_pages_to_update = nr_pages;
6755  
6756  		/* Include the reader page */
6757  		nr_pages++;
6758  
6759  		/* Allocate the new size buffer */
6760  		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6761  		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6762  					&cpu_buffer->new_pages)) {
6763  			/* not enough memory for new pages */
6764  			err = -ENOMEM;
6765  			goto error;
6766  		}
6767  	}
6768  
6769  	for_each_buffer_cpu(buffer, cpu) {
6770  		struct buffer_data_page *old_free_data_page;
6771  		struct list_head old_pages;
6772  		unsigned long flags;
6773  
6774  		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6775  			continue;
6776  
6777  		cpu_buffer = buffer->buffers[cpu];
6778  
6779  		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6780  
6781  		/* Clear the head bit to make the link list normal to read */
6782  		rb_head_page_deactivate(cpu_buffer);
6783  
6784  		/*
6785  		 * Collect buffers from the cpu_buffer pages list and the
6786  		 * reader_page on old_pages, so they can be freed later when not
6787  		 * under a spinlock. The pages list is a linked list with no
6788  		 * head, adding old_pages turns it into a regular list with
6789  		 * old_pages being the head.
6790  		 */
6791  		list_add(&old_pages, cpu_buffer->pages);
6792  		list_add(&cpu_buffer->reader_page->list, &old_pages);
6793  
6794  		/* One page was allocated for the reader page */
6795  		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6796  						     struct buffer_page, list);
6797  		list_del_init(&cpu_buffer->reader_page->list);
6798  
6799  		/* Install the new pages, remove the head from the list */
6800  		cpu_buffer->pages = cpu_buffer->new_pages.next;
6801  		list_del_init(&cpu_buffer->new_pages);
6802  		cpu_buffer->cnt++;
6803  
6804  		cpu_buffer->head_page
6805  			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6806  		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6807  
6808  		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6809  		cpu_buffer->nr_pages_to_update = 0;
6810  
6811  		old_free_data_page = cpu_buffer->free_page;
6812  		cpu_buffer->free_page = NULL;
6813  
6814  		rb_head_page_activate(cpu_buffer);
6815  
6816  		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6817  
6818  		/* Free old sub buffers */
6819  		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6820  			list_del_init(&bpage->list);
6821  			free_buffer_page(bpage);
6822  		}
6823  		free_pages((unsigned long)old_free_data_page, old_order);
6824  
6825  		rb_check_pages(cpu_buffer);
6826  	}
6827  
6828  	atomic_dec(&buffer->record_disabled);
6829  	mutex_unlock(&buffer->mutex);
6830  
6831  	return 0;
6832  
6833  error:
6834  	buffer->subbuf_order = old_order;
6835  	buffer->subbuf_size = old_size;
6836  
6837  	atomic_dec(&buffer->record_disabled);
6838  	mutex_unlock(&buffer->mutex);
6839  
6840  	for_each_buffer_cpu(buffer, cpu) {
6841  		cpu_buffer = buffer->buffers[cpu];
6842  
6843  		if (!cpu_buffer->nr_pages_to_update)
6844  			continue;
6845  
6846  		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6847  			list_del_init(&bpage->list);
6848  			free_buffer_page(bpage);
6849  		}
6850  	}
6851  
6852  	return err;
6853  }
6854  EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6855  
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6856  static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6857  {
6858  	struct page *page;
6859  
6860  	if (cpu_buffer->meta_page)
6861  		return 0;
6862  
6863  	page = alloc_page(GFP_USER | __GFP_ZERO);
6864  	if (!page)
6865  		return -ENOMEM;
6866  
6867  	cpu_buffer->meta_page = page_to_virt(page);
6868  
6869  	return 0;
6870  }
6871  
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6872  static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6873  {
6874  	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6875  
6876  	free_page(addr);
6877  	cpu_buffer->meta_page = NULL;
6878  }
6879  
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)6880  static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6881  				   unsigned long *subbuf_ids)
6882  {
6883  	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6884  	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6885  	struct buffer_page *first_subbuf, *subbuf;
6886  	int id = 0;
6887  
6888  	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6889  	cpu_buffer->reader_page->id = id++;
6890  
6891  	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6892  	do {
6893  		if (WARN_ON(id >= nr_subbufs))
6894  			break;
6895  
6896  		subbuf_ids[id] = (unsigned long)subbuf->page;
6897  		subbuf->id = id;
6898  
6899  		rb_inc_page(&subbuf);
6900  		id++;
6901  	} while (subbuf != first_subbuf);
6902  
6903  	/* install subbuf ID to kern VA translation */
6904  	cpu_buffer->subbuf_ids = subbuf_ids;
6905  
6906  	meta->meta_struct_len = sizeof(*meta);
6907  	meta->nr_subbufs = nr_subbufs;
6908  	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6909  	meta->meta_page_size = meta->subbuf_size;
6910  
6911  	rb_update_meta_page(cpu_buffer);
6912  }
6913  
6914  static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)6915  rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6916  {
6917  	struct ring_buffer_per_cpu *cpu_buffer;
6918  
6919  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6920  		return ERR_PTR(-EINVAL);
6921  
6922  	cpu_buffer = buffer->buffers[cpu];
6923  
6924  	mutex_lock(&cpu_buffer->mapping_lock);
6925  
6926  	if (!cpu_buffer->user_mapped) {
6927  		mutex_unlock(&cpu_buffer->mapping_lock);
6928  		return ERR_PTR(-ENODEV);
6929  	}
6930  
6931  	return cpu_buffer;
6932  }
6933  
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)6934  static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6935  {
6936  	mutex_unlock(&cpu_buffer->mapping_lock);
6937  }
6938  
6939  /*
6940   * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6941   * to be set-up or torn-down.
6942   */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)6943  static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6944  			       bool inc)
6945  {
6946  	unsigned long flags;
6947  
6948  	lockdep_assert_held(&cpu_buffer->mapping_lock);
6949  
6950  	/* mapped is always greater or equal to user_mapped */
6951  	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6952  		return -EINVAL;
6953  
6954  	if (inc && cpu_buffer->mapped == UINT_MAX)
6955  		return -EBUSY;
6956  
6957  	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6958  		return -EINVAL;
6959  
6960  	mutex_lock(&cpu_buffer->buffer->mutex);
6961  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6962  
6963  	if (inc) {
6964  		cpu_buffer->user_mapped++;
6965  		cpu_buffer->mapped++;
6966  	} else {
6967  		cpu_buffer->user_mapped--;
6968  		cpu_buffer->mapped--;
6969  	}
6970  
6971  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6972  	mutex_unlock(&cpu_buffer->buffer->mutex);
6973  
6974  	return 0;
6975  }
6976  
6977  /*
6978   *   +--------------+  pgoff == 0
6979   *   |   meta page  |
6980   *   +--------------+  pgoff == 1
6981   *   | subbuffer 0  |
6982   *   |              |
6983   *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6984   *   | subbuffer 1  |
6985   *   |              |
6986   *         ...
6987   */
6988  #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)6989  static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6990  			struct vm_area_struct *vma)
6991  {
6992  	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6993  	unsigned int subbuf_pages, subbuf_order;
6994  	struct page **pages;
6995  	int p = 0, s = 0;
6996  	int err;
6997  
6998  	/* Refuse MP_PRIVATE or writable mappings */
6999  	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7000  	    !(vma->vm_flags & VM_MAYSHARE))
7001  		return -EPERM;
7002  
7003  	subbuf_order = cpu_buffer->buffer->subbuf_order;
7004  	subbuf_pages = 1 << subbuf_order;
7005  
7006  	if (subbuf_order && pgoff % subbuf_pages)
7007  		return -EINVAL;
7008  
7009  	/*
7010  	 * Make sure the mapping cannot become writable later. Also tell the VM
7011  	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7012  	 */
7013  	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7014  		     VM_MAYWRITE);
7015  
7016  	lockdep_assert_held(&cpu_buffer->mapping_lock);
7017  
7018  	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7019  	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7020  	if (nr_pages <= pgoff)
7021  		return -EINVAL;
7022  
7023  	nr_pages -= pgoff;
7024  
7025  	nr_vma_pages = vma_pages(vma);
7026  	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7027  		return -EINVAL;
7028  
7029  	nr_pages = nr_vma_pages;
7030  
7031  	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7032  	if (!pages)
7033  		return -ENOMEM;
7034  
7035  	if (!pgoff) {
7036  		unsigned long meta_page_padding;
7037  
7038  		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7039  
7040  		/*
7041  		 * Pad with the zero-page to align the meta-page with the
7042  		 * sub-buffers.
7043  		 */
7044  		meta_page_padding = subbuf_pages - 1;
7045  		while (meta_page_padding-- && p < nr_pages) {
7046  			unsigned long __maybe_unused zero_addr =
7047  				vma->vm_start + (PAGE_SIZE * p);
7048  
7049  			pages[p++] = ZERO_PAGE(zero_addr);
7050  		}
7051  	} else {
7052  		/* Skip the meta-page */
7053  		pgoff -= subbuf_pages;
7054  
7055  		s += pgoff / subbuf_pages;
7056  	}
7057  
7058  	while (p < nr_pages) {
7059  		struct page *page;
7060  		int off = 0;
7061  
7062  		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7063  			err = -EINVAL;
7064  			goto out;
7065  		}
7066  
7067  		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7068  
7069  		for (; off < (1 << (subbuf_order)); off++, page++) {
7070  			if (p >= nr_pages)
7071  				break;
7072  
7073  			pages[p++] = page;
7074  		}
7075  		s++;
7076  	}
7077  
7078  	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7079  
7080  out:
7081  	kfree(pages);
7082  
7083  	return err;
7084  }
7085  #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7086  static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7087  			struct vm_area_struct *vma)
7088  {
7089  	return -EOPNOTSUPP;
7090  }
7091  #endif
7092  
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7093  int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7094  		    struct vm_area_struct *vma)
7095  {
7096  	struct ring_buffer_per_cpu *cpu_buffer;
7097  	unsigned long flags, *subbuf_ids;
7098  	int err = 0;
7099  
7100  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7101  		return -EINVAL;
7102  
7103  	cpu_buffer = buffer->buffers[cpu];
7104  
7105  	mutex_lock(&cpu_buffer->mapping_lock);
7106  
7107  	if (cpu_buffer->user_mapped) {
7108  		err = __rb_map_vma(cpu_buffer, vma);
7109  		if (!err)
7110  			err = __rb_inc_dec_mapped(cpu_buffer, true);
7111  		mutex_unlock(&cpu_buffer->mapping_lock);
7112  		return err;
7113  	}
7114  
7115  	/* prevent another thread from changing buffer/sub-buffer sizes */
7116  	mutex_lock(&buffer->mutex);
7117  
7118  	err = rb_alloc_meta_page(cpu_buffer);
7119  	if (err)
7120  		goto unlock;
7121  
7122  	/* subbuf_ids include the reader while nr_pages does not */
7123  	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7124  	if (!subbuf_ids) {
7125  		rb_free_meta_page(cpu_buffer);
7126  		err = -ENOMEM;
7127  		goto unlock;
7128  	}
7129  
7130  	atomic_inc(&cpu_buffer->resize_disabled);
7131  
7132  	/*
7133  	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7134  	 * assigned.
7135  	 */
7136  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7137  	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7138  
7139  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7140  
7141  	err = __rb_map_vma(cpu_buffer, vma);
7142  	if (!err) {
7143  		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7144  		/* This is the first time it is mapped by user */
7145  		cpu_buffer->mapped++;
7146  		cpu_buffer->user_mapped = 1;
7147  		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7148  	} else {
7149  		kfree(cpu_buffer->subbuf_ids);
7150  		cpu_buffer->subbuf_ids = NULL;
7151  		rb_free_meta_page(cpu_buffer);
7152  		atomic_dec(&cpu_buffer->resize_disabled);
7153  	}
7154  
7155  unlock:
7156  	mutex_unlock(&buffer->mutex);
7157  	mutex_unlock(&cpu_buffer->mapping_lock);
7158  
7159  	return err;
7160  }
7161  
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7162  int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7163  {
7164  	struct ring_buffer_per_cpu *cpu_buffer;
7165  	unsigned long flags;
7166  	int err = 0;
7167  
7168  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7169  		return -EINVAL;
7170  
7171  	cpu_buffer = buffer->buffers[cpu];
7172  
7173  	mutex_lock(&cpu_buffer->mapping_lock);
7174  
7175  	if (!cpu_buffer->user_mapped) {
7176  		err = -ENODEV;
7177  		goto out;
7178  	} else if (cpu_buffer->user_mapped > 1) {
7179  		__rb_inc_dec_mapped(cpu_buffer, false);
7180  		goto out;
7181  	}
7182  
7183  	mutex_lock(&buffer->mutex);
7184  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7185  
7186  	/* This is the last user space mapping */
7187  	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7188  		cpu_buffer->mapped--;
7189  	cpu_buffer->user_mapped = 0;
7190  
7191  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7192  
7193  	kfree(cpu_buffer->subbuf_ids);
7194  	cpu_buffer->subbuf_ids = NULL;
7195  	rb_free_meta_page(cpu_buffer);
7196  	atomic_dec(&cpu_buffer->resize_disabled);
7197  
7198  	mutex_unlock(&buffer->mutex);
7199  
7200  out:
7201  	mutex_unlock(&cpu_buffer->mapping_lock);
7202  
7203  	return err;
7204  }
7205  
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7206  int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7207  {
7208  	struct ring_buffer_per_cpu *cpu_buffer;
7209  	struct buffer_page *reader;
7210  	unsigned long missed_events;
7211  	unsigned long reader_size;
7212  	unsigned long flags;
7213  
7214  	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7215  	if (IS_ERR(cpu_buffer))
7216  		return (int)PTR_ERR(cpu_buffer);
7217  
7218  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7219  
7220  consume:
7221  	if (rb_per_cpu_empty(cpu_buffer))
7222  		goto out;
7223  
7224  	reader_size = rb_page_size(cpu_buffer->reader_page);
7225  
7226  	/*
7227  	 * There are data to be read on the current reader page, we can
7228  	 * return to the caller. But before that, we assume the latter will read
7229  	 * everything. Let's update the kernel reader accordingly.
7230  	 */
7231  	if (cpu_buffer->reader_page->read < reader_size) {
7232  		while (cpu_buffer->reader_page->read < reader_size)
7233  			rb_advance_reader(cpu_buffer);
7234  		goto out;
7235  	}
7236  
7237  	reader = rb_get_reader_page(cpu_buffer);
7238  	if (WARN_ON(!reader))
7239  		goto out;
7240  
7241  	/* Check if any events were dropped */
7242  	missed_events = cpu_buffer->lost_events;
7243  
7244  	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7245  		if (missed_events) {
7246  			struct buffer_data_page *bpage = reader->page;
7247  			unsigned int commit;
7248  			/*
7249  			 * Use the real_end for the data size,
7250  			 * This gives us a chance to store the lost events
7251  			 * on the page.
7252  			 */
7253  			if (reader->real_end)
7254  				local_set(&bpage->commit, reader->real_end);
7255  			/*
7256  			 * If there is room at the end of the page to save the
7257  			 * missed events, then record it there.
7258  			 */
7259  			commit = rb_page_size(reader);
7260  			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7261  				memcpy(&bpage->data[commit], &missed_events,
7262  				       sizeof(missed_events));
7263  				local_add(RB_MISSED_STORED, &bpage->commit);
7264  			}
7265  			local_add(RB_MISSED_EVENTS, &bpage->commit);
7266  		}
7267  	} else {
7268  		/*
7269  		 * There really shouldn't be any missed events if the commit
7270  		 * is on the reader page.
7271  		 */
7272  		WARN_ON_ONCE(missed_events);
7273  	}
7274  
7275  	cpu_buffer->lost_events = 0;
7276  
7277  	goto consume;
7278  
7279  out:
7280  	/* Some archs do not have data cache coherency between kernel and user-space */
7281  	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7282  
7283  	rb_update_meta_page(cpu_buffer);
7284  
7285  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7286  	rb_put_mapped_buffer(cpu_buffer);
7287  
7288  	return 0;
7289  }
7290  
7291  /*
7292   * We only allocate new buffers, never free them if the CPU goes down.
7293   * If we were to free the buffer, then the user would lose any trace that was in
7294   * the buffer.
7295   */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7296  int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7297  {
7298  	struct trace_buffer *buffer;
7299  	long nr_pages_same;
7300  	int cpu_i;
7301  	unsigned long nr_pages;
7302  
7303  	buffer = container_of(node, struct trace_buffer, node);
7304  	if (cpumask_test_cpu(cpu, buffer->cpumask))
7305  		return 0;
7306  
7307  	nr_pages = 0;
7308  	nr_pages_same = 1;
7309  	/* check if all cpu sizes are same */
7310  	for_each_buffer_cpu(buffer, cpu_i) {
7311  		/* fill in the size from first enabled cpu */
7312  		if (nr_pages == 0)
7313  			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7314  		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7315  			nr_pages_same = 0;
7316  			break;
7317  		}
7318  	}
7319  	/* allocate minimum pages, user can later expand it */
7320  	if (!nr_pages_same)
7321  		nr_pages = 2;
7322  	buffer->buffers[cpu] =
7323  		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7324  	if (!buffer->buffers[cpu]) {
7325  		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7326  		     cpu);
7327  		return -ENOMEM;
7328  	}
7329  	smp_wmb();
7330  	cpumask_set_cpu(cpu, buffer->cpumask);
7331  	return 0;
7332  }
7333  
7334  #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7335  /*
7336   * This is a basic integrity check of the ring buffer.
7337   * Late in the boot cycle this test will run when configured in.
7338   * It will kick off a thread per CPU that will go into a loop
7339   * writing to the per cpu ring buffer various sizes of data.
7340   * Some of the data will be large items, some small.
7341   *
7342   * Another thread is created that goes into a spin, sending out
7343   * IPIs to the other CPUs to also write into the ring buffer.
7344   * this is to test the nesting ability of the buffer.
7345   *
7346   * Basic stats are recorded and reported. If something in the
7347   * ring buffer should happen that's not expected, a big warning
7348   * is displayed and all ring buffers are disabled.
7349   */
7350  static struct task_struct *rb_threads[NR_CPUS] __initdata;
7351  
7352  struct rb_test_data {
7353  	struct trace_buffer *buffer;
7354  	unsigned long		events;
7355  	unsigned long		bytes_written;
7356  	unsigned long		bytes_alloc;
7357  	unsigned long		bytes_dropped;
7358  	unsigned long		events_nested;
7359  	unsigned long		bytes_written_nested;
7360  	unsigned long		bytes_alloc_nested;
7361  	unsigned long		bytes_dropped_nested;
7362  	int			min_size_nested;
7363  	int			max_size_nested;
7364  	int			max_size;
7365  	int			min_size;
7366  	int			cpu;
7367  	int			cnt;
7368  };
7369  
7370  static struct rb_test_data rb_data[NR_CPUS] __initdata;
7371  
7372  /* 1 meg per cpu */
7373  #define RB_TEST_BUFFER_SIZE	1048576
7374  
7375  static char rb_string[] __initdata =
7376  	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7377  	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7378  	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7379  
7380  static bool rb_test_started __initdata;
7381  
7382  struct rb_item {
7383  	int size;
7384  	char str[];
7385  };
7386  
rb_write_something(struct rb_test_data * data,bool nested)7387  static __init int rb_write_something(struct rb_test_data *data, bool nested)
7388  {
7389  	struct ring_buffer_event *event;
7390  	struct rb_item *item;
7391  	bool started;
7392  	int event_len;
7393  	int size;
7394  	int len;
7395  	int cnt;
7396  
7397  	/* Have nested writes different that what is written */
7398  	cnt = data->cnt + (nested ? 27 : 0);
7399  
7400  	/* Multiply cnt by ~e, to make some unique increment */
7401  	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7402  
7403  	len = size + sizeof(struct rb_item);
7404  
7405  	started = rb_test_started;
7406  	/* read rb_test_started before checking buffer enabled */
7407  	smp_rmb();
7408  
7409  	event = ring_buffer_lock_reserve(data->buffer, len);
7410  	if (!event) {
7411  		/* Ignore dropped events before test starts. */
7412  		if (started) {
7413  			if (nested)
7414  				data->bytes_dropped += len;
7415  			else
7416  				data->bytes_dropped_nested += len;
7417  		}
7418  		return len;
7419  	}
7420  
7421  	event_len = ring_buffer_event_length(event);
7422  
7423  	if (RB_WARN_ON(data->buffer, event_len < len))
7424  		goto out;
7425  
7426  	item = ring_buffer_event_data(event);
7427  	item->size = size;
7428  	memcpy(item->str, rb_string, size);
7429  
7430  	if (nested) {
7431  		data->bytes_alloc_nested += event_len;
7432  		data->bytes_written_nested += len;
7433  		data->events_nested++;
7434  		if (!data->min_size_nested || len < data->min_size_nested)
7435  			data->min_size_nested = len;
7436  		if (len > data->max_size_nested)
7437  			data->max_size_nested = len;
7438  	} else {
7439  		data->bytes_alloc += event_len;
7440  		data->bytes_written += len;
7441  		data->events++;
7442  		if (!data->min_size || len < data->min_size)
7443  			data->max_size = len;
7444  		if (len > data->max_size)
7445  			data->max_size = len;
7446  	}
7447  
7448   out:
7449  	ring_buffer_unlock_commit(data->buffer);
7450  
7451  	return 0;
7452  }
7453  
rb_test(void * arg)7454  static __init int rb_test(void *arg)
7455  {
7456  	struct rb_test_data *data = arg;
7457  
7458  	while (!kthread_should_stop()) {
7459  		rb_write_something(data, false);
7460  		data->cnt++;
7461  
7462  		set_current_state(TASK_INTERRUPTIBLE);
7463  		/* Now sleep between a min of 100-300us and a max of 1ms */
7464  		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7465  	}
7466  
7467  	return 0;
7468  }
7469  
rb_ipi(void * ignore)7470  static __init void rb_ipi(void *ignore)
7471  {
7472  	struct rb_test_data *data;
7473  	int cpu = smp_processor_id();
7474  
7475  	data = &rb_data[cpu];
7476  	rb_write_something(data, true);
7477  }
7478  
rb_hammer_test(void * arg)7479  static __init int rb_hammer_test(void *arg)
7480  {
7481  	while (!kthread_should_stop()) {
7482  
7483  		/* Send an IPI to all cpus to write data! */
7484  		smp_call_function(rb_ipi, NULL, 1);
7485  		/* No sleep, but for non preempt, let others run */
7486  		schedule();
7487  	}
7488  
7489  	return 0;
7490  }
7491  
test_ringbuffer(void)7492  static __init int test_ringbuffer(void)
7493  {
7494  	struct task_struct *rb_hammer;
7495  	struct trace_buffer *buffer;
7496  	int cpu;
7497  	int ret = 0;
7498  
7499  	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7500  		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7501  		return 0;
7502  	}
7503  
7504  	pr_info("Running ring buffer tests...\n");
7505  
7506  	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7507  	if (WARN_ON(!buffer))
7508  		return 0;
7509  
7510  	/* Disable buffer so that threads can't write to it yet */
7511  	ring_buffer_record_off(buffer);
7512  
7513  	for_each_online_cpu(cpu) {
7514  		rb_data[cpu].buffer = buffer;
7515  		rb_data[cpu].cpu = cpu;
7516  		rb_data[cpu].cnt = cpu;
7517  		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7518  						     cpu, "rbtester/%u");
7519  		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7520  			pr_cont("FAILED\n");
7521  			ret = PTR_ERR(rb_threads[cpu]);
7522  			goto out_free;
7523  		}
7524  	}
7525  
7526  	/* Now create the rb hammer! */
7527  	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7528  	if (WARN_ON(IS_ERR(rb_hammer))) {
7529  		pr_cont("FAILED\n");
7530  		ret = PTR_ERR(rb_hammer);
7531  		goto out_free;
7532  	}
7533  
7534  	ring_buffer_record_on(buffer);
7535  	/*
7536  	 * Show buffer is enabled before setting rb_test_started.
7537  	 * Yes there's a small race window where events could be
7538  	 * dropped and the thread wont catch it. But when a ring
7539  	 * buffer gets enabled, there will always be some kind of
7540  	 * delay before other CPUs see it. Thus, we don't care about
7541  	 * those dropped events. We care about events dropped after
7542  	 * the threads see that the buffer is active.
7543  	 */
7544  	smp_wmb();
7545  	rb_test_started = true;
7546  
7547  	set_current_state(TASK_INTERRUPTIBLE);
7548  	/* Just run for 10 seconds */;
7549  	schedule_timeout(10 * HZ);
7550  
7551  	kthread_stop(rb_hammer);
7552  
7553   out_free:
7554  	for_each_online_cpu(cpu) {
7555  		if (!rb_threads[cpu])
7556  			break;
7557  		kthread_stop(rb_threads[cpu]);
7558  	}
7559  	if (ret) {
7560  		ring_buffer_free(buffer);
7561  		return ret;
7562  	}
7563  
7564  	/* Report! */
7565  	pr_info("finished\n");
7566  	for_each_online_cpu(cpu) {
7567  		struct ring_buffer_event *event;
7568  		struct rb_test_data *data = &rb_data[cpu];
7569  		struct rb_item *item;
7570  		unsigned long total_events;
7571  		unsigned long total_dropped;
7572  		unsigned long total_written;
7573  		unsigned long total_alloc;
7574  		unsigned long total_read = 0;
7575  		unsigned long total_size = 0;
7576  		unsigned long total_len = 0;
7577  		unsigned long total_lost = 0;
7578  		unsigned long lost;
7579  		int big_event_size;
7580  		int small_event_size;
7581  
7582  		ret = -1;
7583  
7584  		total_events = data->events + data->events_nested;
7585  		total_written = data->bytes_written + data->bytes_written_nested;
7586  		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7587  		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7588  
7589  		big_event_size = data->max_size + data->max_size_nested;
7590  		small_event_size = data->min_size + data->min_size_nested;
7591  
7592  		pr_info("CPU %d:\n", cpu);
7593  		pr_info("              events:    %ld\n", total_events);
7594  		pr_info("       dropped bytes:    %ld\n", total_dropped);
7595  		pr_info("       alloced bytes:    %ld\n", total_alloc);
7596  		pr_info("       written bytes:    %ld\n", total_written);
7597  		pr_info("       biggest event:    %d\n", big_event_size);
7598  		pr_info("      smallest event:    %d\n", small_event_size);
7599  
7600  		if (RB_WARN_ON(buffer, total_dropped))
7601  			break;
7602  
7603  		ret = 0;
7604  
7605  		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7606  			total_lost += lost;
7607  			item = ring_buffer_event_data(event);
7608  			total_len += ring_buffer_event_length(event);
7609  			total_size += item->size + sizeof(struct rb_item);
7610  			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7611  				pr_info("FAILED!\n");
7612  				pr_info("buffer had: %.*s\n", item->size, item->str);
7613  				pr_info("expected:   %.*s\n", item->size, rb_string);
7614  				RB_WARN_ON(buffer, 1);
7615  				ret = -1;
7616  				break;
7617  			}
7618  			total_read++;
7619  		}
7620  		if (ret)
7621  			break;
7622  
7623  		ret = -1;
7624  
7625  		pr_info("         read events:   %ld\n", total_read);
7626  		pr_info("         lost events:   %ld\n", total_lost);
7627  		pr_info("        total events:   %ld\n", total_lost + total_read);
7628  		pr_info("  recorded len bytes:   %ld\n", total_len);
7629  		pr_info(" recorded size bytes:   %ld\n", total_size);
7630  		if (total_lost) {
7631  			pr_info(" With dropped events, record len and size may not match\n"
7632  				" alloced and written from above\n");
7633  		} else {
7634  			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7635  				       total_size != total_written))
7636  				break;
7637  		}
7638  		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7639  			break;
7640  
7641  		ret = 0;
7642  	}
7643  	if (!ret)
7644  		pr_info("Ring buffer PASSED!\n");
7645  
7646  	ring_buffer_free(buffer);
7647  	return 0;
7648  }
7649  
7650  late_initcall(test_ringbuffer);
7651  #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7652