1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/cacheflush.h> 13 #include <linux/trace_seq.h> 14 #include <linux/spinlock.h> 15 #include <linux/irq_work.h> 16 #include <linux/security.h> 17 #include <linux/uaccess.h> 18 #include <linux/hardirq.h> 19 #include <linux/kthread.h> /* for self test */ 20 #include <linux/module.h> 21 #include <linux/percpu.h> 22 #include <linux/mutex.h> 23 #include <linux/delay.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/list.h> 28 #include <linux/cpu.h> 29 #include <linux/oom.h> 30 #include <linux/mm.h> 31 32 #include <asm/local64.h> 33 #include <asm/local.h> 34 35 #include "trace.h" 36 37 /* 38 * The "absolute" timestamp in the buffer is only 59 bits. 39 * If a clock has the 5 MSBs set, it needs to be saved and 40 * reinserted. 41 */ 42 #define TS_MSB (0xf8ULL << 56) 43 #define ABS_TS_MASK (~TS_MSB) 44 45 static void update_pages_handler(struct work_struct *work); 46 47 #define RING_BUFFER_META_MAGIC 0xBADFEED 48 49 struct ring_buffer_meta { 50 int magic; 51 int struct_size; 52 unsigned long text_addr; 53 unsigned long data_addr; 54 unsigned long first_buffer; 55 unsigned long head_buffer; 56 unsigned long commit_buffer; 57 __u32 subbuf_size; 58 __u32 nr_subbufs; 59 int buffers[]; 60 }; 61 62 /* 63 * The ring buffer header is special. We must manually up keep it. 64 */ ring_buffer_print_entry_header(struct trace_seq * s)65 int ring_buffer_print_entry_header(struct trace_seq *s) 66 { 67 trace_seq_puts(s, "# compressed entry header\n"); 68 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 69 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 70 trace_seq_puts(s, "\tarray : 32 bits\n"); 71 trace_seq_putc(s, '\n'); 72 trace_seq_printf(s, "\tpadding : type == %d\n", 73 RINGBUF_TYPE_PADDING); 74 trace_seq_printf(s, "\ttime_extend : type == %d\n", 75 RINGBUF_TYPE_TIME_EXTEND); 76 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 77 RINGBUF_TYPE_TIME_STAMP); 78 trace_seq_printf(s, "\tdata max type_len == %d\n", 79 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 80 81 return !trace_seq_has_overflowed(s); 82 } 83 84 /* 85 * The ring buffer is made up of a list of pages. A separate list of pages is 86 * allocated for each CPU. A writer may only write to a buffer that is 87 * associated with the CPU it is currently executing on. A reader may read 88 * from any per cpu buffer. 89 * 90 * The reader is special. For each per cpu buffer, the reader has its own 91 * reader page. When a reader has read the entire reader page, this reader 92 * page is swapped with another page in the ring buffer. 93 * 94 * Now, as long as the writer is off the reader page, the reader can do what 95 * ever it wants with that page. The writer will never write to that page 96 * again (as long as it is out of the ring buffer). 97 * 98 * Here's some silly ASCII art. 99 * 100 * +------+ 101 * |reader| RING BUFFER 102 * |page | 103 * +------+ +---+ +---+ +---+ 104 * | |-->| |-->| | 105 * +---+ +---+ +---+ 106 * ^ | 107 * | | 108 * +---------------+ 109 * 110 * 111 * +------+ 112 * |reader| RING BUFFER 113 * |page |------------------v 114 * +------+ +---+ +---+ +---+ 115 * | |-->| |-->| | 116 * +---+ +---+ +---+ 117 * ^ | 118 * | | 119 * +---------------+ 120 * 121 * 122 * +------+ 123 * |reader| RING BUFFER 124 * |page |------------------v 125 * +------+ +---+ +---+ +---+ 126 * ^ | |-->| |-->| | 127 * | +---+ +---+ +---+ 128 * | | 129 * | | 130 * +------------------------------+ 131 * 132 * 133 * +------+ 134 * |buffer| RING BUFFER 135 * |page |------------------v 136 * +------+ +---+ +---+ +---+ 137 * ^ | | | |-->| | 138 * | New +---+ +---+ +---+ 139 * | Reader------^ | 140 * | page | 141 * +------------------------------+ 142 * 143 * 144 * After we make this swap, the reader can hand this page off to the splice 145 * code and be done with it. It can even allocate a new page if it needs to 146 * and swap that into the ring buffer. 147 * 148 * We will be using cmpxchg soon to make all this lockless. 149 * 150 */ 151 152 /* Used for individual buffers (after the counter) */ 153 #define RB_BUFFER_OFF (1 << 20) 154 155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 156 157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 158 #define RB_ALIGNMENT 4U 159 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 160 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 161 162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 163 # define RB_FORCE_8BYTE_ALIGNMENT 0 164 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 165 #else 166 # define RB_FORCE_8BYTE_ALIGNMENT 1 167 # define RB_ARCH_ALIGNMENT 8U 168 #endif 169 170 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 171 172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 174 175 enum { 176 RB_LEN_TIME_EXTEND = 8, 177 RB_LEN_TIME_STAMP = 8, 178 }; 179 180 #define skip_time_extend(event) \ 181 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 182 183 #define extended_time(event) \ 184 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 185 rb_null_event(struct ring_buffer_event * event)186 static inline bool rb_null_event(struct ring_buffer_event *event) 187 { 188 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 189 } 190 rb_event_set_padding(struct ring_buffer_event * event)191 static void rb_event_set_padding(struct ring_buffer_event *event) 192 { 193 /* padding has a NULL time_delta */ 194 event->type_len = RINGBUF_TYPE_PADDING; 195 event->time_delta = 0; 196 } 197 198 static unsigned rb_event_data_length(struct ring_buffer_event * event)199 rb_event_data_length(struct ring_buffer_event *event) 200 { 201 unsigned length; 202 203 if (event->type_len) 204 length = event->type_len * RB_ALIGNMENT; 205 else 206 length = event->array[0]; 207 return length + RB_EVNT_HDR_SIZE; 208 } 209 210 /* 211 * Return the length of the given event. Will return 212 * the length of the time extend if the event is a 213 * time extend. 214 */ 215 static inline unsigned rb_event_length(struct ring_buffer_event * event)216 rb_event_length(struct ring_buffer_event *event) 217 { 218 switch (event->type_len) { 219 case RINGBUF_TYPE_PADDING: 220 if (rb_null_event(event)) 221 /* undefined */ 222 return -1; 223 return event->array[0] + RB_EVNT_HDR_SIZE; 224 225 case RINGBUF_TYPE_TIME_EXTEND: 226 return RB_LEN_TIME_EXTEND; 227 228 case RINGBUF_TYPE_TIME_STAMP: 229 return RB_LEN_TIME_STAMP; 230 231 case RINGBUF_TYPE_DATA: 232 return rb_event_data_length(event); 233 default: 234 WARN_ON_ONCE(1); 235 } 236 /* not hit */ 237 return 0; 238 } 239 240 /* 241 * Return total length of time extend and data, 242 * or just the event length for all other events. 243 */ 244 static inline unsigned rb_event_ts_length(struct ring_buffer_event * event)245 rb_event_ts_length(struct ring_buffer_event *event) 246 { 247 unsigned len = 0; 248 249 if (extended_time(event)) { 250 /* time extends include the data event after it */ 251 len = RB_LEN_TIME_EXTEND; 252 event = skip_time_extend(event); 253 } 254 return len + rb_event_length(event); 255 } 256 257 /** 258 * ring_buffer_event_length - return the length of the event 259 * @event: the event to get the length of 260 * 261 * Returns the size of the data load of a data event. 262 * If the event is something other than a data event, it 263 * returns the size of the event itself. With the exception 264 * of a TIME EXTEND, where it still returns the size of the 265 * data load of the data event after it. 266 */ ring_buffer_event_length(struct ring_buffer_event * event)267 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 268 { 269 unsigned length; 270 271 if (extended_time(event)) 272 event = skip_time_extend(event); 273 274 length = rb_event_length(event); 275 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 276 return length; 277 length -= RB_EVNT_HDR_SIZE; 278 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 279 length -= sizeof(event->array[0]); 280 return length; 281 } 282 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 283 284 /* inline for ring buffer fast paths */ 285 static __always_inline void * rb_event_data(struct ring_buffer_event * event)286 rb_event_data(struct ring_buffer_event *event) 287 { 288 if (extended_time(event)) 289 event = skip_time_extend(event); 290 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 291 /* If length is in len field, then array[0] has the data */ 292 if (event->type_len) 293 return (void *)&event->array[0]; 294 /* Otherwise length is in array[0] and array[1] has the data */ 295 return (void *)&event->array[1]; 296 } 297 298 /** 299 * ring_buffer_event_data - return the data of the event 300 * @event: the event to get the data from 301 */ ring_buffer_event_data(struct ring_buffer_event * event)302 void *ring_buffer_event_data(struct ring_buffer_event *event) 303 { 304 return rb_event_data(event); 305 } 306 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 307 308 #define for_each_buffer_cpu(buffer, cpu) \ 309 for_each_cpu(cpu, buffer->cpumask) 310 311 #define for_each_online_buffer_cpu(buffer, cpu) \ 312 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 313 314 #define TS_SHIFT 27 315 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 316 #define TS_DELTA_TEST (~TS_MASK) 317 rb_event_time_stamp(struct ring_buffer_event * event)318 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 319 { 320 u64 ts; 321 322 ts = event->array[0]; 323 ts <<= TS_SHIFT; 324 ts += event->time_delta; 325 326 return ts; 327 } 328 329 /* Flag when events were overwritten */ 330 #define RB_MISSED_EVENTS (1 << 31) 331 /* Missed count stored at end */ 332 #define RB_MISSED_STORED (1 << 30) 333 334 #define RB_MISSED_MASK (3 << 30) 335 336 struct buffer_data_page { 337 u64 time_stamp; /* page time stamp */ 338 local_t commit; /* write committed index */ 339 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 340 }; 341 342 struct buffer_data_read_page { 343 unsigned order; /* order of the page */ 344 struct buffer_data_page *data; /* actual data, stored in this page */ 345 }; 346 347 /* 348 * Note, the buffer_page list must be first. The buffer pages 349 * are allocated in cache lines, which means that each buffer 350 * page will be at the beginning of a cache line, and thus 351 * the least significant bits will be zero. We use this to 352 * add flags in the list struct pointers, to make the ring buffer 353 * lockless. 354 */ 355 struct buffer_page { 356 struct list_head list; /* list of buffer pages */ 357 local_t write; /* index for next write */ 358 unsigned read; /* index for next read */ 359 local_t entries; /* entries on this page */ 360 unsigned long real_end; /* real end of data */ 361 unsigned order; /* order of the page */ 362 u32 id:30; /* ID for external mapping */ 363 u32 range:1; /* Mapped via a range */ 364 struct buffer_data_page *page; /* Actual data page */ 365 }; 366 367 /* 368 * The buffer page counters, write and entries, must be reset 369 * atomically when crossing page boundaries. To synchronize this 370 * update, two counters are inserted into the number. One is 371 * the actual counter for the write position or count on the page. 372 * 373 * The other is a counter of updaters. Before an update happens 374 * the update partition of the counter is incremented. This will 375 * allow the updater to update the counter atomically. 376 * 377 * The counter is 20 bits, and the state data is 12. 378 */ 379 #define RB_WRITE_MASK 0xfffff 380 #define RB_WRITE_INTCNT (1 << 20) 381 rb_init_page(struct buffer_data_page * bpage)382 static void rb_init_page(struct buffer_data_page *bpage) 383 { 384 local_set(&bpage->commit, 0); 385 } 386 rb_page_commit(struct buffer_page * bpage)387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 388 { 389 return local_read(&bpage->page->commit); 390 } 391 free_buffer_page(struct buffer_page * bpage)392 static void free_buffer_page(struct buffer_page *bpage) 393 { 394 /* Range pages are not to be freed */ 395 if (!bpage->range) 396 free_pages((unsigned long)bpage->page, bpage->order); 397 kfree(bpage); 398 } 399 400 /* 401 * We need to fit the time_stamp delta into 27 bits. 402 */ test_time_stamp(u64 delta)403 static inline bool test_time_stamp(u64 delta) 404 { 405 return !!(delta & TS_DELTA_TEST); 406 } 407 408 struct rb_irq_work { 409 struct irq_work work; 410 wait_queue_head_t waiters; 411 wait_queue_head_t full_waiters; 412 atomic_t seq; 413 bool waiters_pending; 414 bool full_waiters_pending; 415 bool wakeup_full; 416 }; 417 418 /* 419 * Structure to hold event state and handle nested events. 420 */ 421 struct rb_event_info { 422 u64 ts; 423 u64 delta; 424 u64 before; 425 u64 after; 426 unsigned long length; 427 struct buffer_page *tail_page; 428 int add_timestamp; 429 }; 430 431 /* 432 * Used for the add_timestamp 433 * NONE 434 * EXTEND - wants a time extend 435 * ABSOLUTE - the buffer requests all events to have absolute time stamps 436 * FORCE - force a full time stamp. 437 */ 438 enum { 439 RB_ADD_STAMP_NONE = 0, 440 RB_ADD_STAMP_EXTEND = BIT(1), 441 RB_ADD_STAMP_ABSOLUTE = BIT(2), 442 RB_ADD_STAMP_FORCE = BIT(3) 443 }; 444 /* 445 * Used for which event context the event is in. 446 * TRANSITION = 0 447 * NMI = 1 448 * IRQ = 2 449 * SOFTIRQ = 3 450 * NORMAL = 4 451 * 452 * See trace_recursive_lock() comment below for more details. 453 */ 454 enum { 455 RB_CTX_TRANSITION, 456 RB_CTX_NMI, 457 RB_CTX_IRQ, 458 RB_CTX_SOFTIRQ, 459 RB_CTX_NORMAL, 460 RB_CTX_MAX 461 }; 462 463 struct rb_time_struct { 464 local64_t time; 465 }; 466 typedef struct rb_time_struct rb_time_t; 467 468 #define MAX_NEST 5 469 470 /* 471 * head_page == tail_page && head == tail then buffer is empty. 472 */ 473 struct ring_buffer_per_cpu { 474 int cpu; 475 atomic_t record_disabled; 476 atomic_t resize_disabled; 477 struct trace_buffer *buffer; 478 raw_spinlock_t reader_lock; /* serialize readers */ 479 arch_spinlock_t lock; 480 struct lock_class_key lock_key; 481 struct buffer_data_page *free_page; 482 unsigned long nr_pages; 483 unsigned int current_context; 484 struct list_head *pages; 485 /* pages generation counter, incremented when the list changes */ 486 unsigned long cnt; 487 struct buffer_page *head_page; /* read from head */ 488 struct buffer_page *tail_page; /* write to tail */ 489 struct buffer_page *commit_page; /* committed pages */ 490 struct buffer_page *reader_page; 491 unsigned long lost_events; 492 unsigned long last_overrun; 493 unsigned long nest; 494 local_t entries_bytes; 495 local_t entries; 496 local_t overrun; 497 local_t commit_overrun; 498 local_t dropped_events; 499 local_t committing; 500 local_t commits; 501 local_t pages_touched; 502 local_t pages_lost; 503 local_t pages_read; 504 long last_pages_touch; 505 size_t shortest_full; 506 unsigned long read; 507 unsigned long read_bytes; 508 rb_time_t write_stamp; 509 rb_time_t before_stamp; 510 u64 event_stamp[MAX_NEST]; 511 u64 read_stamp; 512 /* pages removed since last reset */ 513 unsigned long pages_removed; 514 515 unsigned int mapped; 516 unsigned int user_mapped; /* user space mapping */ 517 struct mutex mapping_lock; 518 unsigned long *subbuf_ids; /* ID to subbuf VA */ 519 struct trace_buffer_meta *meta_page; 520 struct ring_buffer_meta *ring_meta; 521 522 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 523 long nr_pages_to_update; 524 struct list_head new_pages; /* new pages to add */ 525 struct work_struct update_pages_work; 526 struct completion update_done; 527 528 struct rb_irq_work irq_work; 529 }; 530 531 struct trace_buffer { 532 unsigned flags; 533 int cpus; 534 atomic_t record_disabled; 535 atomic_t resizing; 536 cpumask_var_t cpumask; 537 538 struct lock_class_key *reader_lock_key; 539 540 struct mutex mutex; 541 542 struct ring_buffer_per_cpu **buffers; 543 544 struct hlist_node node; 545 u64 (*clock)(void); 546 547 struct rb_irq_work irq_work; 548 bool time_stamp_abs; 549 550 unsigned long range_addr_start; 551 unsigned long range_addr_end; 552 553 long last_text_delta; 554 long last_data_delta; 555 556 unsigned int subbuf_size; 557 unsigned int subbuf_order; 558 unsigned int max_data_size; 559 }; 560 561 struct ring_buffer_iter { 562 struct ring_buffer_per_cpu *cpu_buffer; 563 unsigned long head; 564 unsigned long next_event; 565 struct buffer_page *head_page; 566 struct buffer_page *cache_reader_page; 567 unsigned long cache_read; 568 unsigned long cache_pages_removed; 569 u64 read_stamp; 570 u64 page_stamp; 571 struct ring_buffer_event *event; 572 size_t event_size; 573 int missed_events; 574 }; 575 ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)576 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 577 { 578 struct buffer_data_page field; 579 580 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 581 "offset:0;\tsize:%u;\tsigned:%u;\n", 582 (unsigned int)sizeof(field.time_stamp), 583 (unsigned int)is_signed_type(u64)); 584 585 trace_seq_printf(s, "\tfield: local_t commit;\t" 586 "offset:%u;\tsize:%u;\tsigned:%u;\n", 587 (unsigned int)offsetof(typeof(field), commit), 588 (unsigned int)sizeof(field.commit), 589 (unsigned int)is_signed_type(long)); 590 591 trace_seq_printf(s, "\tfield: int overwrite;\t" 592 "offset:%u;\tsize:%u;\tsigned:%u;\n", 593 (unsigned int)offsetof(typeof(field), commit), 594 1, 595 (unsigned int)is_signed_type(long)); 596 597 trace_seq_printf(s, "\tfield: char data;\t" 598 "offset:%u;\tsize:%u;\tsigned:%u;\n", 599 (unsigned int)offsetof(typeof(field), data), 600 (unsigned int)buffer->subbuf_size, 601 (unsigned int)is_signed_type(char)); 602 603 return !trace_seq_has_overflowed(s); 604 } 605 rb_time_read(rb_time_t * t,u64 * ret)606 static inline void rb_time_read(rb_time_t *t, u64 *ret) 607 { 608 *ret = local64_read(&t->time); 609 } rb_time_set(rb_time_t * t,u64 val)610 static void rb_time_set(rb_time_t *t, u64 val) 611 { 612 local64_set(&t->time, val); 613 } 614 615 /* 616 * Enable this to make sure that the event passed to 617 * ring_buffer_event_time_stamp() is not committed and also 618 * is on the buffer that it passed in. 619 */ 620 //#define RB_VERIFY_EVENT 621 #ifdef RB_VERIFY_EVENT 622 static struct list_head *rb_list_head(struct list_head *list); verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)623 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 624 void *event) 625 { 626 struct buffer_page *page = cpu_buffer->commit_page; 627 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 628 struct list_head *next; 629 long commit, write; 630 unsigned long addr = (unsigned long)event; 631 bool done = false; 632 int stop = 0; 633 634 /* Make sure the event exists and is not committed yet */ 635 do { 636 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 637 done = true; 638 commit = local_read(&page->page->commit); 639 write = local_read(&page->write); 640 if (addr >= (unsigned long)&page->page->data[commit] && 641 addr < (unsigned long)&page->page->data[write]) 642 return; 643 644 next = rb_list_head(page->list.next); 645 page = list_entry(next, struct buffer_page, list); 646 } while (!done); 647 WARN_ON_ONCE(1); 648 } 649 #else verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)650 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 651 void *event) 652 { 653 } 654 #endif 655 656 /* 657 * The absolute time stamp drops the 5 MSBs and some clocks may 658 * require them. The rb_fix_abs_ts() will take a previous full 659 * time stamp, and add the 5 MSB of that time stamp on to the 660 * saved absolute time stamp. Then they are compared in case of 661 * the unlikely event that the latest time stamp incremented 662 * the 5 MSB. 663 */ rb_fix_abs_ts(u64 abs,u64 save_ts)664 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 665 { 666 if (save_ts & TS_MSB) { 667 abs |= save_ts & TS_MSB; 668 /* Check for overflow */ 669 if (unlikely(abs < save_ts)) 670 abs += 1ULL << 59; 671 } 672 return abs; 673 } 674 675 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 676 677 /** 678 * ring_buffer_event_time_stamp - return the event's current time stamp 679 * @buffer: The buffer that the event is on 680 * @event: the event to get the time stamp of 681 * 682 * Note, this must be called after @event is reserved, and before it is 683 * committed to the ring buffer. And must be called from the same 684 * context where the event was reserved (normal, softirq, irq, etc). 685 * 686 * Returns the time stamp associated with the current event. 687 * If the event has an extended time stamp, then that is used as 688 * the time stamp to return. 689 * In the highly unlikely case that the event was nested more than 690 * the max nesting, then the write_stamp of the buffer is returned, 691 * otherwise current time is returned, but that really neither of 692 * the last two cases should ever happen. 693 */ ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)694 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 695 struct ring_buffer_event *event) 696 { 697 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 698 unsigned int nest; 699 u64 ts; 700 701 /* If the event includes an absolute time, then just use that */ 702 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 703 ts = rb_event_time_stamp(event); 704 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 705 } 706 707 nest = local_read(&cpu_buffer->committing); 708 verify_event(cpu_buffer, event); 709 if (WARN_ON_ONCE(!nest)) 710 goto fail; 711 712 /* Read the current saved nesting level time stamp */ 713 if (likely(--nest < MAX_NEST)) 714 return cpu_buffer->event_stamp[nest]; 715 716 /* Shouldn't happen, warn if it does */ 717 WARN_ONCE(1, "nest (%d) greater than max", nest); 718 719 fail: 720 rb_time_read(&cpu_buffer->write_stamp, &ts); 721 722 return ts; 723 } 724 725 /** 726 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 727 * @buffer: The ring_buffer to get the number of pages from 728 * @cpu: The cpu of the ring_buffer to get the number of pages from 729 * 730 * Returns the number of pages that have content in the ring buffer. 731 */ ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)732 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 733 { 734 size_t read; 735 size_t lost; 736 size_t cnt; 737 738 read = local_read(&buffer->buffers[cpu]->pages_read); 739 lost = local_read(&buffer->buffers[cpu]->pages_lost); 740 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 741 742 if (WARN_ON_ONCE(cnt < lost)) 743 return 0; 744 745 cnt -= lost; 746 747 /* The reader can read an empty page, but not more than that */ 748 if (cnt < read) { 749 WARN_ON_ONCE(read > cnt + 1); 750 return 0; 751 } 752 753 return cnt - read; 754 } 755 full_hit(struct trace_buffer * buffer,int cpu,int full)756 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 757 { 758 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 759 size_t nr_pages; 760 size_t dirty; 761 762 nr_pages = cpu_buffer->nr_pages; 763 if (!nr_pages || !full) 764 return true; 765 766 /* 767 * Add one as dirty will never equal nr_pages, as the sub-buffer 768 * that the writer is on is not counted as dirty. 769 * This is needed if "buffer_percent" is set to 100. 770 */ 771 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 772 773 return (dirty * 100) >= (full * nr_pages); 774 } 775 776 /* 777 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 778 * 779 * Schedules a delayed work to wake up any task that is blocked on the 780 * ring buffer waiters queue. 781 */ rb_wake_up_waiters(struct irq_work * work)782 static void rb_wake_up_waiters(struct irq_work *work) 783 { 784 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 785 786 /* For waiters waiting for the first wake up */ 787 (void)atomic_fetch_inc_release(&rbwork->seq); 788 789 wake_up_all(&rbwork->waiters); 790 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 791 /* Only cpu_buffer sets the above flags */ 792 struct ring_buffer_per_cpu *cpu_buffer = 793 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 794 795 /* Called from interrupt context */ 796 raw_spin_lock(&cpu_buffer->reader_lock); 797 rbwork->wakeup_full = false; 798 rbwork->full_waiters_pending = false; 799 800 /* Waking up all waiters, they will reset the shortest full */ 801 cpu_buffer->shortest_full = 0; 802 raw_spin_unlock(&cpu_buffer->reader_lock); 803 804 wake_up_all(&rbwork->full_waiters); 805 } 806 } 807 808 /** 809 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 810 * @buffer: The ring buffer to wake waiters on 811 * @cpu: The CPU buffer to wake waiters on 812 * 813 * In the case of a file that represents a ring buffer is closing, 814 * it is prudent to wake up any waiters that are on this. 815 */ ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)816 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 817 { 818 struct ring_buffer_per_cpu *cpu_buffer; 819 struct rb_irq_work *rbwork; 820 821 if (!buffer) 822 return; 823 824 if (cpu == RING_BUFFER_ALL_CPUS) { 825 826 /* Wake up individual ones too. One level recursion */ 827 for_each_buffer_cpu(buffer, cpu) 828 ring_buffer_wake_waiters(buffer, cpu); 829 830 rbwork = &buffer->irq_work; 831 } else { 832 if (WARN_ON_ONCE(!buffer->buffers)) 833 return; 834 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 835 return; 836 837 cpu_buffer = buffer->buffers[cpu]; 838 /* The CPU buffer may not have been initialized yet */ 839 if (!cpu_buffer) 840 return; 841 rbwork = &cpu_buffer->irq_work; 842 } 843 844 /* This can be called in any context */ 845 irq_work_queue(&rbwork->work); 846 } 847 rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)848 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 849 { 850 struct ring_buffer_per_cpu *cpu_buffer; 851 bool ret = false; 852 853 /* Reads of all CPUs always waits for any data */ 854 if (cpu == RING_BUFFER_ALL_CPUS) 855 return !ring_buffer_empty(buffer); 856 857 cpu_buffer = buffer->buffers[cpu]; 858 859 if (!ring_buffer_empty_cpu(buffer, cpu)) { 860 unsigned long flags; 861 bool pagebusy; 862 863 if (!full) 864 return true; 865 866 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 867 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 868 ret = !pagebusy && full_hit(buffer, cpu, full); 869 870 if (!ret && (!cpu_buffer->shortest_full || 871 cpu_buffer->shortest_full > full)) { 872 cpu_buffer->shortest_full = full; 873 } 874 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 875 } 876 return ret; 877 } 878 879 static inline bool rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)880 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 881 int cpu, int full, ring_buffer_cond_fn cond, void *data) 882 { 883 if (rb_watermark_hit(buffer, cpu, full)) 884 return true; 885 886 if (cond(data)) 887 return true; 888 889 /* 890 * The events can happen in critical sections where 891 * checking a work queue can cause deadlocks. 892 * After adding a task to the queue, this flag is set 893 * only to notify events to try to wake up the queue 894 * using irq_work. 895 * 896 * We don't clear it even if the buffer is no longer 897 * empty. The flag only causes the next event to run 898 * irq_work to do the work queue wake up. The worse 899 * that can happen if we race with !trace_empty() is that 900 * an event will cause an irq_work to try to wake up 901 * an empty queue. 902 * 903 * There's no reason to protect this flag either, as 904 * the work queue and irq_work logic will do the necessary 905 * synchronization for the wake ups. The only thing 906 * that is necessary is that the wake up happens after 907 * a task has been queued. It's OK for spurious wake ups. 908 */ 909 if (full) 910 rbwork->full_waiters_pending = true; 911 else 912 rbwork->waiters_pending = true; 913 914 return false; 915 } 916 917 struct rb_wait_data { 918 struct rb_irq_work *irq_work; 919 int seq; 920 }; 921 922 /* 923 * The default wait condition for ring_buffer_wait() is to just to exit the 924 * wait loop the first time it is woken up. 925 */ rb_wait_once(void * data)926 static bool rb_wait_once(void *data) 927 { 928 struct rb_wait_data *rdata = data; 929 struct rb_irq_work *rbwork = rdata->irq_work; 930 931 return atomic_read_acquire(&rbwork->seq) != rdata->seq; 932 } 933 934 /** 935 * ring_buffer_wait - wait for input to the ring buffer 936 * @buffer: buffer to wait on 937 * @cpu: the cpu buffer to wait on 938 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 939 * @cond: condition function to break out of wait (NULL to run once) 940 * @data: the data to pass to @cond. 941 * 942 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 943 * as data is added to any of the @buffer's cpu buffers. Otherwise 944 * it will wait for data to be added to a specific cpu buffer. 945 */ ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)946 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full, 947 ring_buffer_cond_fn cond, void *data) 948 { 949 struct ring_buffer_per_cpu *cpu_buffer; 950 struct wait_queue_head *waitq; 951 struct rb_irq_work *rbwork; 952 struct rb_wait_data rdata; 953 int ret = 0; 954 955 /* 956 * Depending on what the caller is waiting for, either any 957 * data in any cpu buffer, or a specific buffer, put the 958 * caller on the appropriate wait queue. 959 */ 960 if (cpu == RING_BUFFER_ALL_CPUS) { 961 rbwork = &buffer->irq_work; 962 /* Full only makes sense on per cpu reads */ 963 full = 0; 964 } else { 965 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 966 return -ENODEV; 967 cpu_buffer = buffer->buffers[cpu]; 968 rbwork = &cpu_buffer->irq_work; 969 } 970 971 if (full) 972 waitq = &rbwork->full_waiters; 973 else 974 waitq = &rbwork->waiters; 975 976 /* Set up to exit loop as soon as it is woken */ 977 if (!cond) { 978 cond = rb_wait_once; 979 rdata.irq_work = rbwork; 980 rdata.seq = atomic_read_acquire(&rbwork->seq); 981 data = &rdata; 982 } 983 984 ret = wait_event_interruptible((*waitq), 985 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 986 987 return ret; 988 } 989 990 /** 991 * ring_buffer_poll_wait - poll on buffer input 992 * @buffer: buffer to wait on 993 * @cpu: the cpu buffer to wait on 994 * @filp: the file descriptor 995 * @poll_table: The poll descriptor 996 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 997 * 998 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 999 * as data is added to any of the @buffer's cpu buffers. Otherwise 1000 * it will wait for data to be added to a specific cpu buffer. 1001 * 1002 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1003 * zero otherwise. 1004 */ ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1005 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1006 struct file *filp, poll_table *poll_table, int full) 1007 { 1008 struct ring_buffer_per_cpu *cpu_buffer; 1009 struct rb_irq_work *rbwork; 1010 1011 if (cpu == RING_BUFFER_ALL_CPUS) { 1012 rbwork = &buffer->irq_work; 1013 full = 0; 1014 } else { 1015 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1016 return EPOLLERR; 1017 1018 cpu_buffer = buffer->buffers[cpu]; 1019 rbwork = &cpu_buffer->irq_work; 1020 } 1021 1022 if (full) { 1023 poll_wait(filp, &rbwork->full_waiters, poll_table); 1024 1025 if (rb_watermark_hit(buffer, cpu, full)) 1026 return EPOLLIN | EPOLLRDNORM; 1027 /* 1028 * Only allow full_waiters_pending update to be seen after 1029 * the shortest_full is set (in rb_watermark_hit). If the 1030 * writer sees the full_waiters_pending flag set, it will 1031 * compare the amount in the ring buffer to shortest_full. 1032 * If the amount in the ring buffer is greater than the 1033 * shortest_full percent, it will call the irq_work handler 1034 * to wake up this list. The irq_handler will reset shortest_full 1035 * back to zero. That's done under the reader_lock, but 1036 * the below smp_mb() makes sure that the update to 1037 * full_waiters_pending doesn't leak up into the above. 1038 */ 1039 smp_mb(); 1040 rbwork->full_waiters_pending = true; 1041 return 0; 1042 } 1043 1044 poll_wait(filp, &rbwork->waiters, poll_table); 1045 rbwork->waiters_pending = true; 1046 1047 /* 1048 * There's a tight race between setting the waiters_pending and 1049 * checking if the ring buffer is empty. Once the waiters_pending bit 1050 * is set, the next event will wake the task up, but we can get stuck 1051 * if there's only a single event in. 1052 * 1053 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1054 * but adding a memory barrier to all events will cause too much of a 1055 * performance hit in the fast path. We only need a memory barrier when 1056 * the buffer goes from empty to having content. But as this race is 1057 * extremely small, and it's not a problem if another event comes in, we 1058 * will fix it later. 1059 */ 1060 smp_mb(); 1061 1062 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1063 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1064 return EPOLLIN | EPOLLRDNORM; 1065 return 0; 1066 } 1067 1068 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1069 #define RB_WARN_ON(b, cond) \ 1070 ({ \ 1071 int _____ret = unlikely(cond); \ 1072 if (_____ret) { \ 1073 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1074 struct ring_buffer_per_cpu *__b = \ 1075 (void *)b; \ 1076 atomic_inc(&__b->buffer->record_disabled); \ 1077 } else \ 1078 atomic_inc(&b->record_disabled); \ 1079 WARN_ON(1); \ 1080 } \ 1081 _____ret; \ 1082 }) 1083 1084 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1085 #define DEBUG_SHIFT 0 1086 rb_time_stamp(struct trace_buffer * buffer)1087 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1088 { 1089 u64 ts; 1090 1091 /* Skip retpolines :-( */ 1092 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1093 ts = trace_clock_local(); 1094 else 1095 ts = buffer->clock(); 1096 1097 /* shift to debug/test normalization and TIME_EXTENTS */ 1098 return ts << DEBUG_SHIFT; 1099 } 1100 ring_buffer_time_stamp(struct trace_buffer * buffer)1101 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1102 { 1103 u64 time; 1104 1105 preempt_disable_notrace(); 1106 time = rb_time_stamp(buffer); 1107 preempt_enable_notrace(); 1108 1109 return time; 1110 } 1111 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1112 ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1113 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1114 int cpu, u64 *ts) 1115 { 1116 /* Just stupid testing the normalize function and deltas */ 1117 *ts >>= DEBUG_SHIFT; 1118 } 1119 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1120 1121 /* 1122 * Making the ring buffer lockless makes things tricky. 1123 * Although writes only happen on the CPU that they are on, 1124 * and they only need to worry about interrupts. Reads can 1125 * happen on any CPU. 1126 * 1127 * The reader page is always off the ring buffer, but when the 1128 * reader finishes with a page, it needs to swap its page with 1129 * a new one from the buffer. The reader needs to take from 1130 * the head (writes go to the tail). But if a writer is in overwrite 1131 * mode and wraps, it must push the head page forward. 1132 * 1133 * Here lies the problem. 1134 * 1135 * The reader must be careful to replace only the head page, and 1136 * not another one. As described at the top of the file in the 1137 * ASCII art, the reader sets its old page to point to the next 1138 * page after head. It then sets the page after head to point to 1139 * the old reader page. But if the writer moves the head page 1140 * during this operation, the reader could end up with the tail. 1141 * 1142 * We use cmpxchg to help prevent this race. We also do something 1143 * special with the page before head. We set the LSB to 1. 1144 * 1145 * When the writer must push the page forward, it will clear the 1146 * bit that points to the head page, move the head, and then set 1147 * the bit that points to the new head page. 1148 * 1149 * We also don't want an interrupt coming in and moving the head 1150 * page on another writer. Thus we use the second LSB to catch 1151 * that too. Thus: 1152 * 1153 * head->list->prev->next bit 1 bit 0 1154 * ------- ------- 1155 * Normal page 0 0 1156 * Points to head page 0 1 1157 * New head page 1 0 1158 * 1159 * Note we can not trust the prev pointer of the head page, because: 1160 * 1161 * +----+ +-----+ +-----+ 1162 * | |------>| T |---X--->| N | 1163 * | |<------| | | | 1164 * +----+ +-----+ +-----+ 1165 * ^ ^ | 1166 * | +-----+ | | 1167 * +----------| R |----------+ | 1168 * | |<-----------+ 1169 * +-----+ 1170 * 1171 * Key: ---X--> HEAD flag set in pointer 1172 * T Tail page 1173 * R Reader page 1174 * N Next page 1175 * 1176 * (see __rb_reserve_next() to see where this happens) 1177 * 1178 * What the above shows is that the reader just swapped out 1179 * the reader page with a page in the buffer, but before it 1180 * could make the new header point back to the new page added 1181 * it was preempted by a writer. The writer moved forward onto 1182 * the new page added by the reader and is about to move forward 1183 * again. 1184 * 1185 * You can see, it is legitimate for the previous pointer of 1186 * the head (or any page) not to point back to itself. But only 1187 * temporarily. 1188 */ 1189 1190 #define RB_PAGE_NORMAL 0UL 1191 #define RB_PAGE_HEAD 1UL 1192 #define RB_PAGE_UPDATE 2UL 1193 1194 1195 #define RB_FLAG_MASK 3UL 1196 1197 /* PAGE_MOVED is not part of the mask */ 1198 #define RB_PAGE_MOVED 4UL 1199 1200 /* 1201 * rb_list_head - remove any bit 1202 */ rb_list_head(struct list_head * list)1203 static struct list_head *rb_list_head(struct list_head *list) 1204 { 1205 unsigned long val = (unsigned long)list; 1206 1207 return (struct list_head *)(val & ~RB_FLAG_MASK); 1208 } 1209 1210 /* 1211 * rb_is_head_page - test if the given page is the head page 1212 * 1213 * Because the reader may move the head_page pointer, we can 1214 * not trust what the head page is (it may be pointing to 1215 * the reader page). But if the next page is a header page, 1216 * its flags will be non zero. 1217 */ 1218 static inline int rb_is_head_page(struct buffer_page * page,struct list_head * list)1219 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1220 { 1221 unsigned long val; 1222 1223 val = (unsigned long)list->next; 1224 1225 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1226 return RB_PAGE_MOVED; 1227 1228 return val & RB_FLAG_MASK; 1229 } 1230 1231 /* 1232 * rb_is_reader_page 1233 * 1234 * The unique thing about the reader page, is that, if the 1235 * writer is ever on it, the previous pointer never points 1236 * back to the reader page. 1237 */ rb_is_reader_page(struct buffer_page * page)1238 static bool rb_is_reader_page(struct buffer_page *page) 1239 { 1240 struct list_head *list = page->list.prev; 1241 1242 return rb_list_head(list->next) != &page->list; 1243 } 1244 1245 /* 1246 * rb_set_list_to_head - set a list_head to be pointing to head. 1247 */ rb_set_list_to_head(struct list_head * list)1248 static void rb_set_list_to_head(struct list_head *list) 1249 { 1250 unsigned long *ptr; 1251 1252 ptr = (unsigned long *)&list->next; 1253 *ptr |= RB_PAGE_HEAD; 1254 *ptr &= ~RB_PAGE_UPDATE; 1255 } 1256 1257 /* 1258 * rb_head_page_activate - sets up head page 1259 */ rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1260 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1261 { 1262 struct buffer_page *head; 1263 1264 head = cpu_buffer->head_page; 1265 if (!head) 1266 return; 1267 1268 /* 1269 * Set the previous list pointer to have the HEAD flag. 1270 */ 1271 rb_set_list_to_head(head->list.prev); 1272 1273 if (cpu_buffer->ring_meta) { 1274 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1275 meta->head_buffer = (unsigned long)head->page; 1276 } 1277 } 1278 rb_list_head_clear(struct list_head * list)1279 static void rb_list_head_clear(struct list_head *list) 1280 { 1281 unsigned long *ptr = (unsigned long *)&list->next; 1282 1283 *ptr &= ~RB_FLAG_MASK; 1284 } 1285 1286 /* 1287 * rb_head_page_deactivate - clears head page ptr (for free list) 1288 */ 1289 static void rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1290 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1291 { 1292 struct list_head *hd; 1293 1294 /* Go through the whole list and clear any pointers found. */ 1295 rb_list_head_clear(cpu_buffer->pages); 1296 1297 list_for_each(hd, cpu_buffer->pages) 1298 rb_list_head_clear(hd); 1299 } 1300 rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1301 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1302 struct buffer_page *head, 1303 struct buffer_page *prev, 1304 int old_flag, int new_flag) 1305 { 1306 struct list_head *list; 1307 unsigned long val = (unsigned long)&head->list; 1308 unsigned long ret; 1309 1310 list = &prev->list; 1311 1312 val &= ~RB_FLAG_MASK; 1313 1314 ret = cmpxchg((unsigned long *)&list->next, 1315 val | old_flag, val | new_flag); 1316 1317 /* check if the reader took the page */ 1318 if ((ret & ~RB_FLAG_MASK) != val) 1319 return RB_PAGE_MOVED; 1320 1321 return ret & RB_FLAG_MASK; 1322 } 1323 rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1324 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1325 struct buffer_page *head, 1326 struct buffer_page *prev, 1327 int old_flag) 1328 { 1329 return rb_head_page_set(cpu_buffer, head, prev, 1330 old_flag, RB_PAGE_UPDATE); 1331 } 1332 rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1333 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1334 struct buffer_page *head, 1335 struct buffer_page *prev, 1336 int old_flag) 1337 { 1338 return rb_head_page_set(cpu_buffer, head, prev, 1339 old_flag, RB_PAGE_HEAD); 1340 } 1341 rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1342 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1343 struct buffer_page *head, 1344 struct buffer_page *prev, 1345 int old_flag) 1346 { 1347 return rb_head_page_set(cpu_buffer, head, prev, 1348 old_flag, RB_PAGE_NORMAL); 1349 } 1350 rb_inc_page(struct buffer_page ** bpage)1351 static inline void rb_inc_page(struct buffer_page **bpage) 1352 { 1353 struct list_head *p = rb_list_head((*bpage)->list.next); 1354 1355 *bpage = list_entry(p, struct buffer_page, list); 1356 } 1357 1358 static struct buffer_page * rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1359 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1360 { 1361 struct buffer_page *head; 1362 struct buffer_page *page; 1363 struct list_head *list; 1364 int i; 1365 1366 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1367 return NULL; 1368 1369 /* sanity check */ 1370 list = cpu_buffer->pages; 1371 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1372 return NULL; 1373 1374 page = head = cpu_buffer->head_page; 1375 /* 1376 * It is possible that the writer moves the header behind 1377 * where we started, and we miss in one loop. 1378 * A second loop should grab the header, but we'll do 1379 * three loops just because I'm paranoid. 1380 */ 1381 for (i = 0; i < 3; i++) { 1382 do { 1383 if (rb_is_head_page(page, page->list.prev)) { 1384 cpu_buffer->head_page = page; 1385 return page; 1386 } 1387 rb_inc_page(&page); 1388 } while (page != head); 1389 } 1390 1391 RB_WARN_ON(cpu_buffer, 1); 1392 1393 return NULL; 1394 } 1395 rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1396 static bool rb_head_page_replace(struct buffer_page *old, 1397 struct buffer_page *new) 1398 { 1399 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1400 unsigned long val; 1401 1402 val = *ptr & ~RB_FLAG_MASK; 1403 val |= RB_PAGE_HEAD; 1404 1405 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1406 } 1407 1408 /* 1409 * rb_tail_page_update - move the tail page forward 1410 */ rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1411 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1412 struct buffer_page *tail_page, 1413 struct buffer_page *next_page) 1414 { 1415 unsigned long old_entries; 1416 unsigned long old_write; 1417 1418 /* 1419 * The tail page now needs to be moved forward. 1420 * 1421 * We need to reset the tail page, but without messing 1422 * with possible erasing of data brought in by interrupts 1423 * that have moved the tail page and are currently on it. 1424 * 1425 * We add a counter to the write field to denote this. 1426 */ 1427 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1428 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1429 1430 /* 1431 * Just make sure we have seen our old_write and synchronize 1432 * with any interrupts that come in. 1433 */ 1434 barrier(); 1435 1436 /* 1437 * If the tail page is still the same as what we think 1438 * it is, then it is up to us to update the tail 1439 * pointer. 1440 */ 1441 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1442 /* Zero the write counter */ 1443 unsigned long val = old_write & ~RB_WRITE_MASK; 1444 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1445 1446 /* 1447 * This will only succeed if an interrupt did 1448 * not come in and change it. In which case, we 1449 * do not want to modify it. 1450 * 1451 * We add (void) to let the compiler know that we do not care 1452 * about the return value of these functions. We use the 1453 * cmpxchg to only update if an interrupt did not already 1454 * do it for us. If the cmpxchg fails, we don't care. 1455 */ 1456 (void)local_cmpxchg(&next_page->write, old_write, val); 1457 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1458 1459 /* 1460 * No need to worry about races with clearing out the commit. 1461 * it only can increment when a commit takes place. But that 1462 * only happens in the outer most nested commit. 1463 */ 1464 local_set(&next_page->page->commit, 0); 1465 1466 /* Either we update tail_page or an interrupt does */ 1467 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) 1468 local_inc(&cpu_buffer->pages_touched); 1469 } 1470 } 1471 rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1472 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1473 struct buffer_page *bpage) 1474 { 1475 unsigned long val = (unsigned long)bpage; 1476 1477 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1478 } 1479 rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1480 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer, 1481 struct list_head *list) 1482 { 1483 if (RB_WARN_ON(cpu_buffer, 1484 rb_list_head(rb_list_head(list->next)->prev) != list)) 1485 return false; 1486 1487 if (RB_WARN_ON(cpu_buffer, 1488 rb_list_head(rb_list_head(list->prev)->next) != list)) 1489 return false; 1490 1491 return true; 1492 } 1493 1494 /** 1495 * rb_check_pages - integrity check of buffer pages 1496 * @cpu_buffer: CPU buffer with pages to test 1497 * 1498 * As a safety measure we check to make sure the data pages have not 1499 * been corrupted. 1500 */ rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1501 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1502 { 1503 struct list_head *head, *tmp; 1504 unsigned long buffer_cnt; 1505 unsigned long flags; 1506 int nr_loops = 0; 1507 1508 /* 1509 * Walk the linked list underpinning the ring buffer and validate all 1510 * its next and prev links. 1511 * 1512 * The check acquires the reader_lock to avoid concurrent processing 1513 * with code that could be modifying the list. However, the lock cannot 1514 * be held for the entire duration of the walk, as this would make the 1515 * time when interrupts are disabled non-deterministic, dependent on the 1516 * ring buffer size. Therefore, the code releases and re-acquires the 1517 * lock after checking each page. The ring_buffer_per_cpu.cnt variable 1518 * is then used to detect if the list was modified while the lock was 1519 * not held, in which case the check needs to be restarted. 1520 * 1521 * The code attempts to perform the check at most three times before 1522 * giving up. This is acceptable because this is only a self-validation 1523 * to detect problems early on. In practice, the list modification 1524 * operations are fairly spaced, and so this check typically succeeds at 1525 * most on the second try. 1526 */ 1527 again: 1528 if (++nr_loops > 3) 1529 return; 1530 1531 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1532 head = rb_list_head(cpu_buffer->pages); 1533 if (!rb_check_links(cpu_buffer, head)) 1534 goto out_locked; 1535 buffer_cnt = cpu_buffer->cnt; 1536 tmp = head; 1537 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1538 1539 while (true) { 1540 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1541 1542 if (buffer_cnt != cpu_buffer->cnt) { 1543 /* The list was updated, try again. */ 1544 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1545 goto again; 1546 } 1547 1548 tmp = rb_list_head(tmp->next); 1549 if (tmp == head) 1550 /* The iteration circled back, all is done. */ 1551 goto out_locked; 1552 1553 if (!rb_check_links(cpu_buffer, tmp)) 1554 goto out_locked; 1555 1556 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1557 } 1558 1559 out_locked: 1560 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1561 } 1562 1563 /* 1564 * Take an address, add the meta data size as well as the array of 1565 * array subbuffer indexes, then align it to a subbuffer size. 1566 * 1567 * This is used to help find the next per cpu subbuffer within a mapped range. 1568 */ 1569 static unsigned long rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1570 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs) 1571 { 1572 addr += sizeof(struct ring_buffer_meta) + 1573 sizeof(int) * nr_subbufs; 1574 return ALIGN(addr, subbuf_size); 1575 } 1576 1577 /* 1578 * Return the ring_buffer_meta for a given @cpu. 1579 */ rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1580 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu) 1581 { 1582 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 1583 unsigned long ptr = buffer->range_addr_start; 1584 struct ring_buffer_meta *meta; 1585 int nr_subbufs; 1586 1587 if (!ptr) 1588 return NULL; 1589 1590 /* When nr_pages passed in is zero, the first meta has already been initialized */ 1591 if (!nr_pages) { 1592 meta = (struct ring_buffer_meta *)ptr; 1593 nr_subbufs = meta->nr_subbufs; 1594 } else { 1595 meta = NULL; 1596 /* Include the reader page */ 1597 nr_subbufs = nr_pages + 1; 1598 } 1599 1600 /* 1601 * The first chunk may not be subbuffer aligned, where as 1602 * the rest of the chunks are. 1603 */ 1604 if (cpu) { 1605 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1606 ptr += subbuf_size * nr_subbufs; 1607 1608 /* We can use multiplication to find chunks greater than 1 */ 1609 if (cpu > 1) { 1610 unsigned long size; 1611 unsigned long p; 1612 1613 /* Save the beginning of this CPU chunk */ 1614 p = ptr; 1615 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1616 ptr += subbuf_size * nr_subbufs; 1617 1618 /* Now all chunks after this are the same size */ 1619 size = ptr - p; 1620 ptr += size * (cpu - 2); 1621 } 1622 } 1623 return (void *)ptr; 1624 } 1625 1626 /* Return the start of subbufs given the meta pointer */ rb_subbufs_from_meta(struct ring_buffer_meta * meta)1627 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta) 1628 { 1629 int subbuf_size = meta->subbuf_size; 1630 unsigned long ptr; 1631 1632 ptr = (unsigned long)meta; 1633 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs); 1634 1635 return (void *)ptr; 1636 } 1637 1638 /* 1639 * Return a specific sub-buffer for a given @cpu defined by @idx. 1640 */ rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1641 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx) 1642 { 1643 struct ring_buffer_meta *meta; 1644 unsigned long ptr; 1645 int subbuf_size; 1646 1647 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu); 1648 if (!meta) 1649 return NULL; 1650 1651 if (WARN_ON_ONCE(idx >= meta->nr_subbufs)) 1652 return NULL; 1653 1654 subbuf_size = meta->subbuf_size; 1655 1656 /* Map this buffer to the order that's in meta->buffers[] */ 1657 idx = meta->buffers[idx]; 1658 1659 ptr = (unsigned long)rb_subbufs_from_meta(meta); 1660 1661 ptr += subbuf_size * idx; 1662 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end) 1663 return NULL; 1664 1665 return (void *)ptr; 1666 } 1667 1668 /* 1669 * See if the existing memory contains valid ring buffer data. 1670 * As the previous kernel must be the same as this kernel, all 1671 * the calculations (size of buffers and number of buffers) 1672 * must be the same. 1673 */ rb_meta_valid(struct ring_buffer_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1674 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu, 1675 struct trace_buffer *buffer, int nr_pages, 1676 unsigned long *subbuf_mask) 1677 { 1678 int subbuf_size = PAGE_SIZE; 1679 struct buffer_data_page *subbuf; 1680 unsigned long buffers_start; 1681 unsigned long buffers_end; 1682 int i; 1683 1684 if (!subbuf_mask) 1685 return false; 1686 1687 /* Check the meta magic and meta struct size */ 1688 if (meta->magic != RING_BUFFER_META_MAGIC || 1689 meta->struct_size != sizeof(*meta)) { 1690 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu); 1691 return false; 1692 } 1693 1694 /* The subbuffer's size and number of subbuffers must match */ 1695 if (meta->subbuf_size != subbuf_size || 1696 meta->nr_subbufs != nr_pages + 1) { 1697 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu); 1698 return false; 1699 } 1700 1701 buffers_start = meta->first_buffer; 1702 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs); 1703 1704 /* Is the head and commit buffers within the range of buffers? */ 1705 if (meta->head_buffer < buffers_start || 1706 meta->head_buffer >= buffers_end) { 1707 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu); 1708 return false; 1709 } 1710 1711 if (meta->commit_buffer < buffers_start || 1712 meta->commit_buffer >= buffers_end) { 1713 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu); 1714 return false; 1715 } 1716 1717 subbuf = rb_subbufs_from_meta(meta); 1718 1719 bitmap_clear(subbuf_mask, 0, meta->nr_subbufs); 1720 1721 /* Is the meta buffers and the subbufs themselves have correct data? */ 1722 for (i = 0; i < meta->nr_subbufs; i++) { 1723 if (meta->buffers[i] < 0 || 1724 meta->buffers[i] >= meta->nr_subbufs) { 1725 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu); 1726 return false; 1727 } 1728 1729 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) { 1730 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu); 1731 return false; 1732 } 1733 1734 if (test_bit(meta->buffers[i], subbuf_mask)) { 1735 pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu); 1736 return false; 1737 } 1738 1739 set_bit(meta->buffers[i], subbuf_mask); 1740 subbuf = (void *)subbuf + subbuf_size; 1741 } 1742 1743 return true; 1744 } 1745 1746 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf); 1747 rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1748 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu, 1749 unsigned long long *timestamp, u64 *delta_ptr) 1750 { 1751 struct ring_buffer_event *event; 1752 u64 ts, delta; 1753 int events = 0; 1754 int e; 1755 1756 *delta_ptr = 0; 1757 *timestamp = 0; 1758 1759 ts = dpage->time_stamp; 1760 1761 for (e = 0; e < tail; e += rb_event_length(event)) { 1762 1763 event = (struct ring_buffer_event *)(dpage->data + e); 1764 1765 switch (event->type_len) { 1766 1767 case RINGBUF_TYPE_TIME_EXTEND: 1768 delta = rb_event_time_stamp(event); 1769 ts += delta; 1770 break; 1771 1772 case RINGBUF_TYPE_TIME_STAMP: 1773 delta = rb_event_time_stamp(event); 1774 delta = rb_fix_abs_ts(delta, ts); 1775 if (delta < ts) { 1776 *delta_ptr = delta; 1777 *timestamp = ts; 1778 return -1; 1779 } 1780 ts = delta; 1781 break; 1782 1783 case RINGBUF_TYPE_PADDING: 1784 if (event->time_delta == 1) 1785 break; 1786 fallthrough; 1787 case RINGBUF_TYPE_DATA: 1788 events++; 1789 ts += event->time_delta; 1790 break; 1791 1792 default: 1793 return -1; 1794 } 1795 } 1796 *timestamp = ts; 1797 return events; 1798 } 1799 rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1800 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu) 1801 { 1802 unsigned long long ts; 1803 u64 delta; 1804 int tail; 1805 1806 tail = local_read(&dpage->commit); 1807 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta); 1808 } 1809 1810 /* If the meta data has been validated, now validate the events */ rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1811 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer) 1812 { 1813 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1814 struct buffer_page *head_page; 1815 unsigned long entry_bytes = 0; 1816 unsigned long entries = 0; 1817 int ret; 1818 int i; 1819 1820 if (!meta || !meta->head_buffer) 1821 return; 1822 1823 /* Do the reader page first */ 1824 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu); 1825 if (ret < 0) { 1826 pr_info("Ring buffer reader page is invalid\n"); 1827 goto invalid; 1828 } 1829 entries += ret; 1830 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit); 1831 local_set(&cpu_buffer->reader_page->entries, ret); 1832 1833 head_page = cpu_buffer->head_page; 1834 1835 /* If both the head and commit are on the reader_page then we are done. */ 1836 if (head_page == cpu_buffer->reader_page && 1837 head_page == cpu_buffer->commit_page) 1838 goto done; 1839 1840 /* Iterate until finding the commit page */ 1841 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) { 1842 1843 /* Reader page has already been done */ 1844 if (head_page == cpu_buffer->reader_page) 1845 continue; 1846 1847 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu); 1848 if (ret < 0) { 1849 pr_info("Ring buffer meta [%d] invalid buffer page\n", 1850 cpu_buffer->cpu); 1851 goto invalid; 1852 } 1853 1854 /* If the buffer has content, update pages_touched */ 1855 if (ret) 1856 local_inc(&cpu_buffer->pages_touched); 1857 1858 entries += ret; 1859 entry_bytes += local_read(&head_page->page->commit); 1860 local_set(&cpu_buffer->head_page->entries, ret); 1861 1862 if (head_page == cpu_buffer->commit_page) 1863 break; 1864 } 1865 1866 if (head_page != cpu_buffer->commit_page) { 1867 pr_info("Ring buffer meta [%d] commit page not found\n", 1868 cpu_buffer->cpu); 1869 goto invalid; 1870 } 1871 done: 1872 local_set(&cpu_buffer->entries, entries); 1873 local_set(&cpu_buffer->entries_bytes, entry_bytes); 1874 1875 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu); 1876 return; 1877 1878 invalid: 1879 /* The content of the buffers are invalid, reset the meta data */ 1880 meta->head_buffer = 0; 1881 meta->commit_buffer = 0; 1882 1883 /* Reset the reader page */ 1884 local_set(&cpu_buffer->reader_page->entries, 0); 1885 local_set(&cpu_buffer->reader_page->page->commit, 0); 1886 1887 /* Reset all the subbuffers */ 1888 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) { 1889 local_set(&head_page->entries, 0); 1890 local_set(&head_page->page->commit, 0); 1891 } 1892 } 1893 1894 /* Used to calculate data delta */ 1895 static char rb_data_ptr[] = ""; 1896 1897 #define THIS_TEXT_PTR ((unsigned long)rb_meta_init_text_addr) 1898 #define THIS_DATA_PTR ((unsigned long)rb_data_ptr) 1899 rb_meta_init_text_addr(struct ring_buffer_meta * meta)1900 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta) 1901 { 1902 meta->text_addr = THIS_TEXT_PTR; 1903 meta->data_addr = THIS_DATA_PTR; 1904 } 1905 rb_range_meta_init(struct trace_buffer * buffer,int nr_pages)1906 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages) 1907 { 1908 struct ring_buffer_meta *meta; 1909 unsigned long *subbuf_mask; 1910 unsigned long delta; 1911 void *subbuf; 1912 int cpu; 1913 int i; 1914 1915 /* Create a mask to test the subbuf array */ 1916 subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL); 1917 /* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */ 1918 1919 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1920 void *next_meta; 1921 1922 meta = rb_range_meta(buffer, nr_pages, cpu); 1923 1924 if (rb_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) { 1925 /* Make the mappings match the current address */ 1926 subbuf = rb_subbufs_from_meta(meta); 1927 delta = (unsigned long)subbuf - meta->first_buffer; 1928 meta->first_buffer += delta; 1929 meta->head_buffer += delta; 1930 meta->commit_buffer += delta; 1931 buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr; 1932 buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr; 1933 continue; 1934 } 1935 1936 if (cpu < nr_cpu_ids - 1) 1937 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1); 1938 else 1939 next_meta = (void *)buffer->range_addr_end; 1940 1941 memset(meta, 0, next_meta - (void *)meta); 1942 1943 meta->magic = RING_BUFFER_META_MAGIC; 1944 meta->struct_size = sizeof(*meta); 1945 1946 meta->nr_subbufs = nr_pages + 1; 1947 meta->subbuf_size = PAGE_SIZE; 1948 1949 subbuf = rb_subbufs_from_meta(meta); 1950 1951 meta->first_buffer = (unsigned long)subbuf; 1952 rb_meta_init_text_addr(meta); 1953 1954 /* 1955 * The buffers[] array holds the order of the sub-buffers 1956 * that are after the meta data. The sub-buffers may 1957 * be swapped out when read and inserted into a different 1958 * location of the ring buffer. Although their addresses 1959 * remain the same, the buffers[] array contains the 1960 * index into the sub-buffers holding their actual order. 1961 */ 1962 for (i = 0; i < meta->nr_subbufs; i++) { 1963 meta->buffers[i] = i; 1964 rb_init_page(subbuf); 1965 subbuf += meta->subbuf_size; 1966 } 1967 } 1968 bitmap_free(subbuf_mask); 1969 } 1970 rbm_start(struct seq_file * m,loff_t * pos)1971 static void *rbm_start(struct seq_file *m, loff_t *pos) 1972 { 1973 struct ring_buffer_per_cpu *cpu_buffer = m->private; 1974 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1975 unsigned long val; 1976 1977 if (!meta) 1978 return NULL; 1979 1980 if (*pos > meta->nr_subbufs) 1981 return NULL; 1982 1983 val = *pos; 1984 val++; 1985 1986 return (void *)val; 1987 } 1988 rbm_next(struct seq_file * m,void * v,loff_t * pos)1989 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos) 1990 { 1991 (*pos)++; 1992 1993 return rbm_start(m, pos); 1994 } 1995 rbm_show(struct seq_file * m,void * v)1996 static int rbm_show(struct seq_file *m, void *v) 1997 { 1998 struct ring_buffer_per_cpu *cpu_buffer = m->private; 1999 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 2000 unsigned long val = (unsigned long)v; 2001 2002 if (val == 1) { 2003 seq_printf(m, "head_buffer: %d\n", 2004 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer)); 2005 seq_printf(m, "commit_buffer: %d\n", 2006 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer)); 2007 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size); 2008 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs); 2009 return 0; 2010 } 2011 2012 val -= 2; 2013 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]); 2014 2015 return 0; 2016 } 2017 rbm_stop(struct seq_file * m,void * p)2018 static void rbm_stop(struct seq_file *m, void *p) 2019 { 2020 } 2021 2022 static const struct seq_operations rb_meta_seq_ops = { 2023 .start = rbm_start, 2024 .next = rbm_next, 2025 .show = rbm_show, 2026 .stop = rbm_stop, 2027 }; 2028 ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2029 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu) 2030 { 2031 struct seq_file *m; 2032 int ret; 2033 2034 ret = seq_open(file, &rb_meta_seq_ops); 2035 if (ret) 2036 return ret; 2037 2038 m = file->private_data; 2039 m->private = buffer->buffers[cpu]; 2040 2041 return 0; 2042 } 2043 2044 /* Map the buffer_pages to the previous head and commit pages */ rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2045 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer, 2046 struct buffer_page *bpage) 2047 { 2048 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 2049 2050 if (meta->head_buffer == (unsigned long)bpage->page) 2051 cpu_buffer->head_page = bpage; 2052 2053 if (meta->commit_buffer == (unsigned long)bpage->page) { 2054 cpu_buffer->commit_page = bpage; 2055 cpu_buffer->tail_page = bpage; 2056 } 2057 } 2058 __rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2059 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2060 long nr_pages, struct list_head *pages) 2061 { 2062 struct trace_buffer *buffer = cpu_buffer->buffer; 2063 struct ring_buffer_meta *meta = NULL; 2064 struct buffer_page *bpage, *tmp; 2065 bool user_thread = current->mm != NULL; 2066 gfp_t mflags; 2067 long i; 2068 2069 /* 2070 * Check if the available memory is there first. 2071 * Note, si_mem_available() only gives us a rough estimate of available 2072 * memory. It may not be accurate. But we don't care, we just want 2073 * to prevent doing any allocation when it is obvious that it is 2074 * not going to succeed. 2075 */ 2076 i = si_mem_available(); 2077 if (i < nr_pages) 2078 return -ENOMEM; 2079 2080 /* 2081 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 2082 * gracefully without invoking oom-killer and the system is not 2083 * destabilized. 2084 */ 2085 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 2086 2087 /* 2088 * If a user thread allocates too much, and si_mem_available() 2089 * reports there's enough memory, even though there is not. 2090 * Make sure the OOM killer kills this thread. This can happen 2091 * even with RETRY_MAYFAIL because another task may be doing 2092 * an allocation after this task has taken all memory. 2093 * This is the task the OOM killer needs to take out during this 2094 * loop, even if it was triggered by an allocation somewhere else. 2095 */ 2096 if (user_thread) 2097 set_current_oom_origin(); 2098 2099 if (buffer->range_addr_start) 2100 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu); 2101 2102 for (i = 0; i < nr_pages; i++) { 2103 struct page *page; 2104 2105 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2106 mflags, cpu_to_node(cpu_buffer->cpu)); 2107 if (!bpage) 2108 goto free_pages; 2109 2110 rb_check_bpage(cpu_buffer, bpage); 2111 2112 /* 2113 * Append the pages as for mapped buffers we want to keep 2114 * the order 2115 */ 2116 list_add_tail(&bpage->list, pages); 2117 2118 if (meta) { 2119 /* A range was given. Use that for the buffer page */ 2120 bpage->page = rb_range_buffer(cpu_buffer, i + 1); 2121 if (!bpage->page) 2122 goto free_pages; 2123 /* If this is valid from a previous boot */ 2124 if (meta->head_buffer) 2125 rb_meta_buffer_update(cpu_buffer, bpage); 2126 bpage->range = 1; 2127 bpage->id = i + 1; 2128 } else { 2129 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), 2130 mflags | __GFP_COMP | __GFP_ZERO, 2131 cpu_buffer->buffer->subbuf_order); 2132 if (!page) 2133 goto free_pages; 2134 bpage->page = page_address(page); 2135 rb_init_page(bpage->page); 2136 } 2137 bpage->order = cpu_buffer->buffer->subbuf_order; 2138 2139 if (user_thread && fatal_signal_pending(current)) 2140 goto free_pages; 2141 } 2142 if (user_thread) 2143 clear_current_oom_origin(); 2144 2145 return 0; 2146 2147 free_pages: 2148 list_for_each_entry_safe(bpage, tmp, pages, list) { 2149 list_del_init(&bpage->list); 2150 free_buffer_page(bpage); 2151 } 2152 if (user_thread) 2153 clear_current_oom_origin(); 2154 2155 return -ENOMEM; 2156 } 2157 rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2158 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2159 unsigned long nr_pages) 2160 { 2161 LIST_HEAD(pages); 2162 2163 WARN_ON(!nr_pages); 2164 2165 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 2166 return -ENOMEM; 2167 2168 /* 2169 * The ring buffer page list is a circular list that does not 2170 * start and end with a list head. All page list items point to 2171 * other pages. 2172 */ 2173 cpu_buffer->pages = pages.next; 2174 list_del(&pages); 2175 2176 cpu_buffer->nr_pages = nr_pages; 2177 2178 rb_check_pages(cpu_buffer); 2179 2180 return 0; 2181 } 2182 2183 static struct ring_buffer_per_cpu * rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2184 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 2185 { 2186 struct ring_buffer_per_cpu *cpu_buffer; 2187 struct ring_buffer_meta *meta; 2188 struct buffer_page *bpage; 2189 struct page *page; 2190 int ret; 2191 2192 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 2193 GFP_KERNEL, cpu_to_node(cpu)); 2194 if (!cpu_buffer) 2195 return NULL; 2196 2197 cpu_buffer->cpu = cpu; 2198 cpu_buffer->buffer = buffer; 2199 raw_spin_lock_init(&cpu_buffer->reader_lock); 2200 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 2201 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 2202 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 2203 init_completion(&cpu_buffer->update_done); 2204 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 2205 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 2206 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 2207 mutex_init(&cpu_buffer->mapping_lock); 2208 2209 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2210 GFP_KERNEL, cpu_to_node(cpu)); 2211 if (!bpage) 2212 goto fail_free_buffer; 2213 2214 rb_check_bpage(cpu_buffer, bpage); 2215 2216 cpu_buffer->reader_page = bpage; 2217 2218 if (buffer->range_addr_start) { 2219 /* 2220 * Range mapped buffers have the same restrictions as memory 2221 * mapped ones do. 2222 */ 2223 cpu_buffer->mapped = 1; 2224 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu); 2225 bpage->page = rb_range_buffer(cpu_buffer, 0); 2226 if (!bpage->page) 2227 goto fail_free_reader; 2228 if (cpu_buffer->ring_meta->head_buffer) 2229 rb_meta_buffer_update(cpu_buffer, bpage); 2230 bpage->range = 1; 2231 } else { 2232 page = alloc_pages_node(cpu_to_node(cpu), 2233 GFP_KERNEL | __GFP_COMP | __GFP_ZERO, 2234 cpu_buffer->buffer->subbuf_order); 2235 if (!page) 2236 goto fail_free_reader; 2237 bpage->page = page_address(page); 2238 rb_init_page(bpage->page); 2239 } 2240 2241 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 2242 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2243 2244 ret = rb_allocate_pages(cpu_buffer, nr_pages); 2245 if (ret < 0) 2246 goto fail_free_reader; 2247 2248 rb_meta_validate_events(cpu_buffer); 2249 2250 /* If the boot meta was valid then this has already been updated */ 2251 meta = cpu_buffer->ring_meta; 2252 if (!meta || !meta->head_buffer || 2253 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) { 2254 if (meta && meta->head_buffer && 2255 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) { 2256 pr_warn("Ring buffer meta buffers not all mapped\n"); 2257 if (!cpu_buffer->head_page) 2258 pr_warn(" Missing head_page\n"); 2259 if (!cpu_buffer->commit_page) 2260 pr_warn(" Missing commit_page\n"); 2261 if (!cpu_buffer->tail_page) 2262 pr_warn(" Missing tail_page\n"); 2263 } 2264 2265 cpu_buffer->head_page 2266 = list_entry(cpu_buffer->pages, struct buffer_page, list); 2267 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 2268 2269 rb_head_page_activate(cpu_buffer); 2270 2271 if (cpu_buffer->ring_meta) 2272 meta->commit_buffer = meta->head_buffer; 2273 } else { 2274 /* The valid meta buffer still needs to activate the head page */ 2275 rb_head_page_activate(cpu_buffer); 2276 } 2277 2278 return cpu_buffer; 2279 2280 fail_free_reader: 2281 free_buffer_page(cpu_buffer->reader_page); 2282 2283 fail_free_buffer: 2284 kfree(cpu_buffer); 2285 return NULL; 2286 } 2287 rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2288 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 2289 { 2290 struct list_head *head = cpu_buffer->pages; 2291 struct buffer_page *bpage, *tmp; 2292 2293 irq_work_sync(&cpu_buffer->irq_work.work); 2294 2295 free_buffer_page(cpu_buffer->reader_page); 2296 2297 if (head) { 2298 rb_head_page_deactivate(cpu_buffer); 2299 2300 list_for_each_entry_safe(bpage, tmp, head, list) { 2301 list_del_init(&bpage->list); 2302 free_buffer_page(bpage); 2303 } 2304 bpage = list_entry(head, struct buffer_page, list); 2305 free_buffer_page(bpage); 2306 } 2307 2308 free_page((unsigned long)cpu_buffer->free_page); 2309 2310 kfree(cpu_buffer); 2311 } 2312 alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,struct lock_class_key * key)2313 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags, 2314 int order, unsigned long start, 2315 unsigned long end, 2316 struct lock_class_key *key) 2317 { 2318 struct trace_buffer *buffer; 2319 long nr_pages; 2320 int subbuf_size; 2321 int bsize; 2322 int cpu; 2323 int ret; 2324 2325 /* keep it in its own cache line */ 2326 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 2327 GFP_KERNEL); 2328 if (!buffer) 2329 return NULL; 2330 2331 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 2332 goto fail_free_buffer; 2333 2334 buffer->subbuf_order = order; 2335 subbuf_size = (PAGE_SIZE << order); 2336 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE; 2337 2338 /* Max payload is buffer page size - header (8bytes) */ 2339 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 2340 2341 buffer->flags = flags; 2342 buffer->clock = trace_clock_local; 2343 buffer->reader_lock_key = key; 2344 2345 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 2346 init_waitqueue_head(&buffer->irq_work.waiters); 2347 2348 buffer->cpus = nr_cpu_ids; 2349 2350 bsize = sizeof(void *) * nr_cpu_ids; 2351 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 2352 GFP_KERNEL); 2353 if (!buffer->buffers) 2354 goto fail_free_cpumask; 2355 2356 /* If start/end are specified, then that overrides size */ 2357 if (start && end) { 2358 unsigned long ptr; 2359 int n; 2360 2361 size = end - start; 2362 size = size / nr_cpu_ids; 2363 2364 /* 2365 * The number of sub-buffers (nr_pages) is determined by the 2366 * total size allocated minus the meta data size. 2367 * Then that is divided by the number of per CPU buffers 2368 * needed, plus account for the integer array index that 2369 * will be appended to the meta data. 2370 */ 2371 nr_pages = (size - sizeof(struct ring_buffer_meta)) / 2372 (subbuf_size + sizeof(int)); 2373 /* Need at least two pages plus the reader page */ 2374 if (nr_pages < 3) 2375 goto fail_free_buffers; 2376 2377 again: 2378 /* Make sure that the size fits aligned */ 2379 for (n = 0, ptr = start; n < nr_cpu_ids; n++) { 2380 ptr += sizeof(struct ring_buffer_meta) + 2381 sizeof(int) * nr_pages; 2382 ptr = ALIGN(ptr, subbuf_size); 2383 ptr += subbuf_size * nr_pages; 2384 } 2385 if (ptr > end) { 2386 if (nr_pages <= 3) 2387 goto fail_free_buffers; 2388 nr_pages--; 2389 goto again; 2390 } 2391 2392 /* nr_pages should not count the reader page */ 2393 nr_pages--; 2394 buffer->range_addr_start = start; 2395 buffer->range_addr_end = end; 2396 2397 rb_range_meta_init(buffer, nr_pages); 2398 } else { 2399 2400 /* need at least two pages */ 2401 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2402 if (nr_pages < 2) 2403 nr_pages = 2; 2404 } 2405 2406 cpu = raw_smp_processor_id(); 2407 cpumask_set_cpu(cpu, buffer->cpumask); 2408 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 2409 if (!buffer->buffers[cpu]) 2410 goto fail_free_buffers; 2411 2412 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2413 if (ret < 0) 2414 goto fail_free_buffers; 2415 2416 mutex_init(&buffer->mutex); 2417 2418 return buffer; 2419 2420 fail_free_buffers: 2421 for_each_buffer_cpu(buffer, cpu) { 2422 if (buffer->buffers[cpu]) 2423 rb_free_cpu_buffer(buffer->buffers[cpu]); 2424 } 2425 kfree(buffer->buffers); 2426 2427 fail_free_cpumask: 2428 free_cpumask_var(buffer->cpumask); 2429 2430 fail_free_buffer: 2431 kfree(buffer); 2432 return NULL; 2433 } 2434 2435 /** 2436 * __ring_buffer_alloc - allocate a new ring_buffer 2437 * @size: the size in bytes per cpu that is needed. 2438 * @flags: attributes to set for the ring buffer. 2439 * @key: ring buffer reader_lock_key. 2440 * 2441 * Currently the only flag that is available is the RB_FL_OVERWRITE 2442 * flag. This flag means that the buffer will overwrite old data 2443 * when the buffer wraps. If this flag is not set, the buffer will 2444 * drop data when the tail hits the head. 2445 */ __ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2446 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 2447 struct lock_class_key *key) 2448 { 2449 /* Default buffer page size - one system page */ 2450 return alloc_buffer(size, flags, 0, 0, 0,key); 2451 2452 } 2453 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 2454 2455 /** 2456 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory 2457 * @size: the size in bytes per cpu that is needed. 2458 * @flags: attributes to set for the ring buffer. 2459 * @order: sub-buffer order 2460 * @start: start of allocated range 2461 * @range_size: size of allocated range 2462 * @key: ring buffer reader_lock_key. 2463 * 2464 * Currently the only flag that is available is the RB_FL_OVERWRITE 2465 * flag. This flag means that the buffer will overwrite old data 2466 * when the buffer wraps. If this flag is not set, the buffer will 2467 * drop data when the tail hits the head. 2468 */ __ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,struct lock_class_key * key)2469 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags, 2470 int order, unsigned long start, 2471 unsigned long range_size, 2472 struct lock_class_key *key) 2473 { 2474 return alloc_buffer(size, flags, order, start, start + range_size, key); 2475 } 2476 2477 /** 2478 * ring_buffer_last_boot_delta - return the delta offset from last boot 2479 * @buffer: The buffer to return the delta from 2480 * @text: Return text delta 2481 * @data: Return data delta 2482 * 2483 * Returns: The true if the delta is non zero 2484 */ ring_buffer_last_boot_delta(struct trace_buffer * buffer,long * text,long * data)2485 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text, 2486 long *data) 2487 { 2488 if (!buffer) 2489 return false; 2490 2491 if (!buffer->last_text_delta) 2492 return false; 2493 2494 *text = buffer->last_text_delta; 2495 *data = buffer->last_data_delta; 2496 2497 return true; 2498 } 2499 2500 /** 2501 * ring_buffer_free - free a ring buffer. 2502 * @buffer: the buffer to free. 2503 */ 2504 void ring_buffer_free(struct trace_buffer * buffer)2505 ring_buffer_free(struct trace_buffer *buffer) 2506 { 2507 int cpu; 2508 2509 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2510 2511 irq_work_sync(&buffer->irq_work.work); 2512 2513 for_each_buffer_cpu(buffer, cpu) 2514 rb_free_cpu_buffer(buffer->buffers[cpu]); 2515 2516 kfree(buffer->buffers); 2517 free_cpumask_var(buffer->cpumask); 2518 2519 kfree(buffer); 2520 } 2521 EXPORT_SYMBOL_GPL(ring_buffer_free); 2522 ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2523 void ring_buffer_set_clock(struct trace_buffer *buffer, 2524 u64 (*clock)(void)) 2525 { 2526 buffer->clock = clock; 2527 } 2528 ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2529 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 2530 { 2531 buffer->time_stamp_abs = abs; 2532 } 2533 ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2534 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 2535 { 2536 return buffer->time_stamp_abs; 2537 } 2538 rb_page_entries(struct buffer_page * bpage)2539 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 2540 { 2541 return local_read(&bpage->entries) & RB_WRITE_MASK; 2542 } 2543 rb_page_write(struct buffer_page * bpage)2544 static inline unsigned long rb_page_write(struct buffer_page *bpage) 2545 { 2546 return local_read(&bpage->write) & RB_WRITE_MASK; 2547 } 2548 2549 static bool rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2550 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 2551 { 2552 struct list_head *tail_page, *to_remove, *next_page; 2553 struct buffer_page *to_remove_page, *tmp_iter_page; 2554 struct buffer_page *last_page, *first_page; 2555 unsigned long nr_removed; 2556 unsigned long head_bit; 2557 int page_entries; 2558 2559 head_bit = 0; 2560 2561 raw_spin_lock_irq(&cpu_buffer->reader_lock); 2562 atomic_inc(&cpu_buffer->record_disabled); 2563 /* 2564 * We don't race with the readers since we have acquired the reader 2565 * lock. We also don't race with writers after disabling recording. 2566 * This makes it easy to figure out the first and the last page to be 2567 * removed from the list. We unlink all the pages in between including 2568 * the first and last pages. This is done in a busy loop so that we 2569 * lose the least number of traces. 2570 * The pages are freed after we restart recording and unlock readers. 2571 */ 2572 tail_page = &cpu_buffer->tail_page->list; 2573 2574 /* 2575 * tail page might be on reader page, we remove the next page 2576 * from the ring buffer 2577 */ 2578 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2579 tail_page = rb_list_head(tail_page->next); 2580 to_remove = tail_page; 2581 2582 /* start of pages to remove */ 2583 first_page = list_entry(rb_list_head(to_remove->next), 2584 struct buffer_page, list); 2585 2586 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 2587 to_remove = rb_list_head(to_remove)->next; 2588 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 2589 } 2590 /* Read iterators need to reset themselves when some pages removed */ 2591 cpu_buffer->pages_removed += nr_removed; 2592 2593 next_page = rb_list_head(to_remove)->next; 2594 2595 /* 2596 * Now we remove all pages between tail_page and next_page. 2597 * Make sure that we have head_bit value preserved for the 2598 * next page 2599 */ 2600 tail_page->next = (struct list_head *)((unsigned long)next_page | 2601 head_bit); 2602 next_page = rb_list_head(next_page); 2603 next_page->prev = tail_page; 2604 2605 /* make sure pages points to a valid page in the ring buffer */ 2606 cpu_buffer->pages = next_page; 2607 cpu_buffer->cnt++; 2608 2609 /* update head page */ 2610 if (head_bit) 2611 cpu_buffer->head_page = list_entry(next_page, 2612 struct buffer_page, list); 2613 2614 /* pages are removed, resume tracing and then free the pages */ 2615 atomic_dec(&cpu_buffer->record_disabled); 2616 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2617 2618 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 2619 2620 /* last buffer page to remove */ 2621 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2622 list); 2623 tmp_iter_page = first_page; 2624 2625 do { 2626 cond_resched(); 2627 2628 to_remove_page = tmp_iter_page; 2629 rb_inc_page(&tmp_iter_page); 2630 2631 /* update the counters */ 2632 page_entries = rb_page_entries(to_remove_page); 2633 if (page_entries) { 2634 /* 2635 * If something was added to this page, it was full 2636 * since it is not the tail page. So we deduct the 2637 * bytes consumed in ring buffer from here. 2638 * Increment overrun to account for the lost events. 2639 */ 2640 local_add(page_entries, &cpu_buffer->overrun); 2641 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 2642 local_inc(&cpu_buffer->pages_lost); 2643 } 2644 2645 /* 2646 * We have already removed references to this list item, just 2647 * free up the buffer_page and its page 2648 */ 2649 free_buffer_page(to_remove_page); 2650 nr_removed--; 2651 2652 } while (to_remove_page != last_page); 2653 2654 RB_WARN_ON(cpu_buffer, nr_removed); 2655 2656 return nr_removed == 0; 2657 } 2658 2659 static bool rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2660 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2661 { 2662 struct list_head *pages = &cpu_buffer->new_pages; 2663 unsigned long flags; 2664 bool success; 2665 int retries; 2666 2667 /* Can be called at early boot up, where interrupts must not been enabled */ 2668 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2669 /* 2670 * We are holding the reader lock, so the reader page won't be swapped 2671 * in the ring buffer. Now we are racing with the writer trying to 2672 * move head page and the tail page. 2673 * We are going to adapt the reader page update process where: 2674 * 1. We first splice the start and end of list of new pages between 2675 * the head page and its previous page. 2676 * 2. We cmpxchg the prev_page->next to point from head page to the 2677 * start of new pages list. 2678 * 3. Finally, we update the head->prev to the end of new list. 2679 * 2680 * We will try this process 10 times, to make sure that we don't keep 2681 * spinning. 2682 */ 2683 retries = 10; 2684 success = false; 2685 while (retries--) { 2686 struct list_head *head_page, *prev_page; 2687 struct list_head *last_page, *first_page; 2688 struct list_head *head_page_with_bit; 2689 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2690 2691 if (!hpage) 2692 break; 2693 head_page = &hpage->list; 2694 prev_page = head_page->prev; 2695 2696 first_page = pages->next; 2697 last_page = pages->prev; 2698 2699 head_page_with_bit = (struct list_head *) 2700 ((unsigned long)head_page | RB_PAGE_HEAD); 2701 2702 last_page->next = head_page_with_bit; 2703 first_page->prev = prev_page; 2704 2705 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 2706 if (try_cmpxchg(&prev_page->next, 2707 &head_page_with_bit, first_page)) { 2708 /* 2709 * yay, we replaced the page pointer to our new list, 2710 * now, we just have to update to head page's prev 2711 * pointer to point to end of list 2712 */ 2713 head_page->prev = last_page; 2714 cpu_buffer->cnt++; 2715 success = true; 2716 break; 2717 } 2718 } 2719 2720 if (success) 2721 INIT_LIST_HEAD(pages); 2722 /* 2723 * If we weren't successful in adding in new pages, warn and stop 2724 * tracing 2725 */ 2726 RB_WARN_ON(cpu_buffer, !success); 2727 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2728 2729 /* free pages if they weren't inserted */ 2730 if (!success) { 2731 struct buffer_page *bpage, *tmp; 2732 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2733 list) { 2734 list_del_init(&bpage->list); 2735 free_buffer_page(bpage); 2736 } 2737 } 2738 return success; 2739 } 2740 rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2741 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2742 { 2743 bool success; 2744 2745 if (cpu_buffer->nr_pages_to_update > 0) 2746 success = rb_insert_pages(cpu_buffer); 2747 else 2748 success = rb_remove_pages(cpu_buffer, 2749 -cpu_buffer->nr_pages_to_update); 2750 2751 if (success) 2752 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2753 } 2754 update_pages_handler(struct work_struct * work)2755 static void update_pages_handler(struct work_struct *work) 2756 { 2757 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2758 struct ring_buffer_per_cpu, update_pages_work); 2759 rb_update_pages(cpu_buffer); 2760 complete(&cpu_buffer->update_done); 2761 } 2762 2763 /** 2764 * ring_buffer_resize - resize the ring buffer 2765 * @buffer: the buffer to resize. 2766 * @size: the new size. 2767 * @cpu_id: the cpu buffer to resize 2768 * 2769 * Minimum size is 2 * buffer->subbuf_size. 2770 * 2771 * Returns 0 on success and < 0 on failure. 2772 */ ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2773 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2774 int cpu_id) 2775 { 2776 struct ring_buffer_per_cpu *cpu_buffer; 2777 unsigned long nr_pages; 2778 int cpu, err; 2779 2780 /* 2781 * Always succeed at resizing a non-existent buffer: 2782 */ 2783 if (!buffer) 2784 return 0; 2785 2786 /* Make sure the requested buffer exists */ 2787 if (cpu_id != RING_BUFFER_ALL_CPUS && 2788 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2789 return 0; 2790 2791 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2792 2793 /* we need a minimum of two pages */ 2794 if (nr_pages < 2) 2795 nr_pages = 2; 2796 2797 /* prevent another thread from changing buffer sizes */ 2798 mutex_lock(&buffer->mutex); 2799 atomic_inc(&buffer->resizing); 2800 2801 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2802 /* 2803 * Don't succeed if resizing is disabled, as a reader might be 2804 * manipulating the ring buffer and is expecting a sane state while 2805 * this is true. 2806 */ 2807 for_each_buffer_cpu(buffer, cpu) { 2808 cpu_buffer = buffer->buffers[cpu]; 2809 if (atomic_read(&cpu_buffer->resize_disabled)) { 2810 err = -EBUSY; 2811 goto out_err_unlock; 2812 } 2813 } 2814 2815 /* calculate the pages to update */ 2816 for_each_buffer_cpu(buffer, cpu) { 2817 cpu_buffer = buffer->buffers[cpu]; 2818 2819 cpu_buffer->nr_pages_to_update = nr_pages - 2820 cpu_buffer->nr_pages; 2821 /* 2822 * nothing more to do for removing pages or no update 2823 */ 2824 if (cpu_buffer->nr_pages_to_update <= 0) 2825 continue; 2826 /* 2827 * to add pages, make sure all new pages can be 2828 * allocated without receiving ENOMEM 2829 */ 2830 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2831 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2832 &cpu_buffer->new_pages)) { 2833 /* not enough memory for new pages */ 2834 err = -ENOMEM; 2835 goto out_err; 2836 } 2837 2838 cond_resched(); 2839 } 2840 2841 cpus_read_lock(); 2842 /* 2843 * Fire off all the required work handlers 2844 * We can't schedule on offline CPUs, but it's not necessary 2845 * since we can change their buffer sizes without any race. 2846 */ 2847 for_each_buffer_cpu(buffer, cpu) { 2848 cpu_buffer = buffer->buffers[cpu]; 2849 if (!cpu_buffer->nr_pages_to_update) 2850 continue; 2851 2852 /* Can't run something on an offline CPU. */ 2853 if (!cpu_online(cpu)) { 2854 rb_update_pages(cpu_buffer); 2855 cpu_buffer->nr_pages_to_update = 0; 2856 } else { 2857 /* Run directly if possible. */ 2858 migrate_disable(); 2859 if (cpu != smp_processor_id()) { 2860 migrate_enable(); 2861 schedule_work_on(cpu, 2862 &cpu_buffer->update_pages_work); 2863 } else { 2864 update_pages_handler(&cpu_buffer->update_pages_work); 2865 migrate_enable(); 2866 } 2867 } 2868 } 2869 2870 /* wait for all the updates to complete */ 2871 for_each_buffer_cpu(buffer, cpu) { 2872 cpu_buffer = buffer->buffers[cpu]; 2873 if (!cpu_buffer->nr_pages_to_update) 2874 continue; 2875 2876 if (cpu_online(cpu)) 2877 wait_for_completion(&cpu_buffer->update_done); 2878 cpu_buffer->nr_pages_to_update = 0; 2879 } 2880 2881 cpus_read_unlock(); 2882 } else { 2883 cpu_buffer = buffer->buffers[cpu_id]; 2884 2885 if (nr_pages == cpu_buffer->nr_pages) 2886 goto out; 2887 2888 /* 2889 * Don't succeed if resizing is disabled, as a reader might be 2890 * manipulating the ring buffer and is expecting a sane state while 2891 * this is true. 2892 */ 2893 if (atomic_read(&cpu_buffer->resize_disabled)) { 2894 err = -EBUSY; 2895 goto out_err_unlock; 2896 } 2897 2898 cpu_buffer->nr_pages_to_update = nr_pages - 2899 cpu_buffer->nr_pages; 2900 2901 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2902 if (cpu_buffer->nr_pages_to_update > 0 && 2903 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2904 &cpu_buffer->new_pages)) { 2905 err = -ENOMEM; 2906 goto out_err; 2907 } 2908 2909 cpus_read_lock(); 2910 2911 /* Can't run something on an offline CPU. */ 2912 if (!cpu_online(cpu_id)) 2913 rb_update_pages(cpu_buffer); 2914 else { 2915 /* Run directly if possible. */ 2916 migrate_disable(); 2917 if (cpu_id == smp_processor_id()) { 2918 rb_update_pages(cpu_buffer); 2919 migrate_enable(); 2920 } else { 2921 migrate_enable(); 2922 schedule_work_on(cpu_id, 2923 &cpu_buffer->update_pages_work); 2924 wait_for_completion(&cpu_buffer->update_done); 2925 } 2926 } 2927 2928 cpu_buffer->nr_pages_to_update = 0; 2929 cpus_read_unlock(); 2930 } 2931 2932 out: 2933 /* 2934 * The ring buffer resize can happen with the ring buffer 2935 * enabled, so that the update disturbs the tracing as little 2936 * as possible. But if the buffer is disabled, we do not need 2937 * to worry about that, and we can take the time to verify 2938 * that the buffer is not corrupt. 2939 */ 2940 if (atomic_read(&buffer->record_disabled)) { 2941 atomic_inc(&buffer->record_disabled); 2942 /* 2943 * Even though the buffer was disabled, we must make sure 2944 * that it is truly disabled before calling rb_check_pages. 2945 * There could have been a race between checking 2946 * record_disable and incrementing it. 2947 */ 2948 synchronize_rcu(); 2949 for_each_buffer_cpu(buffer, cpu) { 2950 cpu_buffer = buffer->buffers[cpu]; 2951 rb_check_pages(cpu_buffer); 2952 } 2953 atomic_dec(&buffer->record_disabled); 2954 } 2955 2956 atomic_dec(&buffer->resizing); 2957 mutex_unlock(&buffer->mutex); 2958 return 0; 2959 2960 out_err: 2961 for_each_buffer_cpu(buffer, cpu) { 2962 struct buffer_page *bpage, *tmp; 2963 2964 cpu_buffer = buffer->buffers[cpu]; 2965 cpu_buffer->nr_pages_to_update = 0; 2966 2967 if (list_empty(&cpu_buffer->new_pages)) 2968 continue; 2969 2970 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2971 list) { 2972 list_del_init(&bpage->list); 2973 free_buffer_page(bpage); 2974 } 2975 } 2976 out_err_unlock: 2977 atomic_dec(&buffer->resizing); 2978 mutex_unlock(&buffer->mutex); 2979 return err; 2980 } 2981 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2982 ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2983 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2984 { 2985 mutex_lock(&buffer->mutex); 2986 if (val) 2987 buffer->flags |= RB_FL_OVERWRITE; 2988 else 2989 buffer->flags &= ~RB_FL_OVERWRITE; 2990 mutex_unlock(&buffer->mutex); 2991 } 2992 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2993 __rb_page_index(struct buffer_page * bpage,unsigned index)2994 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2995 { 2996 return bpage->page->data + index; 2997 } 2998 2999 static __always_inline struct ring_buffer_event * rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3000 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 3001 { 3002 return __rb_page_index(cpu_buffer->reader_page, 3003 cpu_buffer->reader_page->read); 3004 } 3005 3006 static struct ring_buffer_event * rb_iter_head_event(struct ring_buffer_iter * iter)3007 rb_iter_head_event(struct ring_buffer_iter *iter) 3008 { 3009 struct ring_buffer_event *event; 3010 struct buffer_page *iter_head_page = iter->head_page; 3011 unsigned long commit; 3012 unsigned length; 3013 3014 if (iter->head != iter->next_event) 3015 return iter->event; 3016 3017 /* 3018 * When the writer goes across pages, it issues a cmpxchg which 3019 * is a mb(), which will synchronize with the rmb here. 3020 * (see rb_tail_page_update() and __rb_reserve_next()) 3021 */ 3022 commit = rb_page_commit(iter_head_page); 3023 smp_rmb(); 3024 3025 /* An event needs to be at least 8 bytes in size */ 3026 if (iter->head > commit - 8) 3027 goto reset; 3028 3029 event = __rb_page_index(iter_head_page, iter->head); 3030 length = rb_event_length(event); 3031 3032 /* 3033 * READ_ONCE() doesn't work on functions and we don't want the 3034 * compiler doing any crazy optimizations with length. 3035 */ 3036 barrier(); 3037 3038 if ((iter->head + length) > commit || length > iter->event_size) 3039 /* Writer corrupted the read? */ 3040 goto reset; 3041 3042 memcpy(iter->event, event, length); 3043 /* 3044 * If the page stamp is still the same after this rmb() then the 3045 * event was safely copied without the writer entering the page. 3046 */ 3047 smp_rmb(); 3048 3049 /* Make sure the page didn't change since we read this */ 3050 if (iter->page_stamp != iter_head_page->page->time_stamp || 3051 commit > rb_page_commit(iter_head_page)) 3052 goto reset; 3053 3054 iter->next_event = iter->head + length; 3055 return iter->event; 3056 reset: 3057 /* Reset to the beginning */ 3058 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3059 iter->head = 0; 3060 iter->next_event = 0; 3061 iter->missed_events = 1; 3062 return NULL; 3063 } 3064 3065 /* Size is determined by what has been committed */ rb_page_size(struct buffer_page * bpage)3066 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 3067 { 3068 return rb_page_commit(bpage) & ~RB_MISSED_MASK; 3069 } 3070 3071 static __always_inline unsigned rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3072 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 3073 { 3074 return rb_page_commit(cpu_buffer->commit_page); 3075 } 3076 3077 static __always_inline unsigned rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3078 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 3079 { 3080 unsigned long addr = (unsigned long)event; 3081 3082 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 3083 3084 return addr - BUF_PAGE_HDR_SIZE; 3085 } 3086 rb_inc_iter(struct ring_buffer_iter * iter)3087 static void rb_inc_iter(struct ring_buffer_iter *iter) 3088 { 3089 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3090 3091 /* 3092 * The iterator could be on the reader page (it starts there). 3093 * But the head could have moved, since the reader was 3094 * found. Check for this case and assign the iterator 3095 * to the head page instead of next. 3096 */ 3097 if (iter->head_page == cpu_buffer->reader_page) 3098 iter->head_page = rb_set_head_page(cpu_buffer); 3099 else 3100 rb_inc_page(&iter->head_page); 3101 3102 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3103 iter->head = 0; 3104 iter->next_event = 0; 3105 } 3106 3107 /* Return the index into the sub-buffers for a given sub-buffer */ rb_meta_subbuf_idx(struct ring_buffer_meta * meta,void * subbuf)3108 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf) 3109 { 3110 void *subbuf_array; 3111 3112 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs; 3113 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size); 3114 return (subbuf - subbuf_array) / meta->subbuf_size; 3115 } 3116 rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3117 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer, 3118 struct buffer_page *next_page) 3119 { 3120 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3121 unsigned long old_head = (unsigned long)next_page->page; 3122 unsigned long new_head; 3123 3124 rb_inc_page(&next_page); 3125 new_head = (unsigned long)next_page->page; 3126 3127 /* 3128 * Only move it forward once, if something else came in and 3129 * moved it forward, then we don't want to touch it. 3130 */ 3131 (void)cmpxchg(&meta->head_buffer, old_head, new_head); 3132 } 3133 rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3134 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer, 3135 struct buffer_page *reader) 3136 { 3137 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3138 void *old_reader = cpu_buffer->reader_page->page; 3139 void *new_reader = reader->page; 3140 int id; 3141 3142 id = reader->id; 3143 cpu_buffer->reader_page->id = id; 3144 reader->id = 0; 3145 3146 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader); 3147 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader); 3148 3149 /* The head pointer is the one after the reader */ 3150 rb_update_meta_head(cpu_buffer, reader); 3151 } 3152 3153 /* 3154 * rb_handle_head_page - writer hit the head page 3155 * 3156 * Returns: +1 to retry page 3157 * 0 to continue 3158 * -1 on error 3159 */ 3160 static int rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3161 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 3162 struct buffer_page *tail_page, 3163 struct buffer_page *next_page) 3164 { 3165 struct buffer_page *new_head; 3166 int entries; 3167 int type; 3168 int ret; 3169 3170 entries = rb_page_entries(next_page); 3171 3172 /* 3173 * The hard part is here. We need to move the head 3174 * forward, and protect against both readers on 3175 * other CPUs and writers coming in via interrupts. 3176 */ 3177 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 3178 RB_PAGE_HEAD); 3179 3180 /* 3181 * type can be one of four: 3182 * NORMAL - an interrupt already moved it for us 3183 * HEAD - we are the first to get here. 3184 * UPDATE - we are the interrupt interrupting 3185 * a current move. 3186 * MOVED - a reader on another CPU moved the next 3187 * pointer to its reader page. Give up 3188 * and try again. 3189 */ 3190 3191 switch (type) { 3192 case RB_PAGE_HEAD: 3193 /* 3194 * We changed the head to UPDATE, thus 3195 * it is our responsibility to update 3196 * the counters. 3197 */ 3198 local_add(entries, &cpu_buffer->overrun); 3199 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 3200 local_inc(&cpu_buffer->pages_lost); 3201 3202 if (cpu_buffer->ring_meta) 3203 rb_update_meta_head(cpu_buffer, next_page); 3204 /* 3205 * The entries will be zeroed out when we move the 3206 * tail page. 3207 */ 3208 3209 /* still more to do */ 3210 break; 3211 3212 case RB_PAGE_UPDATE: 3213 /* 3214 * This is an interrupt that interrupt the 3215 * previous update. Still more to do. 3216 */ 3217 break; 3218 case RB_PAGE_NORMAL: 3219 /* 3220 * An interrupt came in before the update 3221 * and processed this for us. 3222 * Nothing left to do. 3223 */ 3224 return 1; 3225 case RB_PAGE_MOVED: 3226 /* 3227 * The reader is on another CPU and just did 3228 * a swap with our next_page. 3229 * Try again. 3230 */ 3231 return 1; 3232 default: 3233 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 3234 return -1; 3235 } 3236 3237 /* 3238 * Now that we are here, the old head pointer is 3239 * set to UPDATE. This will keep the reader from 3240 * swapping the head page with the reader page. 3241 * The reader (on another CPU) will spin till 3242 * we are finished. 3243 * 3244 * We just need to protect against interrupts 3245 * doing the job. We will set the next pointer 3246 * to HEAD. After that, we set the old pointer 3247 * to NORMAL, but only if it was HEAD before. 3248 * otherwise we are an interrupt, and only 3249 * want the outer most commit to reset it. 3250 */ 3251 new_head = next_page; 3252 rb_inc_page(&new_head); 3253 3254 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 3255 RB_PAGE_NORMAL); 3256 3257 /* 3258 * Valid returns are: 3259 * HEAD - an interrupt came in and already set it. 3260 * NORMAL - One of two things: 3261 * 1) We really set it. 3262 * 2) A bunch of interrupts came in and moved 3263 * the page forward again. 3264 */ 3265 switch (ret) { 3266 case RB_PAGE_HEAD: 3267 case RB_PAGE_NORMAL: 3268 /* OK */ 3269 break; 3270 default: 3271 RB_WARN_ON(cpu_buffer, 1); 3272 return -1; 3273 } 3274 3275 /* 3276 * It is possible that an interrupt came in, 3277 * set the head up, then more interrupts came in 3278 * and moved it again. When we get back here, 3279 * the page would have been set to NORMAL but we 3280 * just set it back to HEAD. 3281 * 3282 * How do you detect this? Well, if that happened 3283 * the tail page would have moved. 3284 */ 3285 if (ret == RB_PAGE_NORMAL) { 3286 struct buffer_page *buffer_tail_page; 3287 3288 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 3289 /* 3290 * If the tail had moved passed next, then we need 3291 * to reset the pointer. 3292 */ 3293 if (buffer_tail_page != tail_page && 3294 buffer_tail_page != next_page) 3295 rb_head_page_set_normal(cpu_buffer, new_head, 3296 next_page, 3297 RB_PAGE_HEAD); 3298 } 3299 3300 /* 3301 * If this was the outer most commit (the one that 3302 * changed the original pointer from HEAD to UPDATE), 3303 * then it is up to us to reset it to NORMAL. 3304 */ 3305 if (type == RB_PAGE_HEAD) { 3306 ret = rb_head_page_set_normal(cpu_buffer, next_page, 3307 tail_page, 3308 RB_PAGE_UPDATE); 3309 if (RB_WARN_ON(cpu_buffer, 3310 ret != RB_PAGE_UPDATE)) 3311 return -1; 3312 } 3313 3314 return 0; 3315 } 3316 3317 static inline void rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3318 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 3319 unsigned long tail, struct rb_event_info *info) 3320 { 3321 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 3322 struct buffer_page *tail_page = info->tail_page; 3323 struct ring_buffer_event *event; 3324 unsigned long length = info->length; 3325 3326 /* 3327 * Only the event that crossed the page boundary 3328 * must fill the old tail_page with padding. 3329 */ 3330 if (tail >= bsize) { 3331 /* 3332 * If the page was filled, then we still need 3333 * to update the real_end. Reset it to zero 3334 * and the reader will ignore it. 3335 */ 3336 if (tail == bsize) 3337 tail_page->real_end = 0; 3338 3339 local_sub(length, &tail_page->write); 3340 return; 3341 } 3342 3343 event = __rb_page_index(tail_page, tail); 3344 3345 /* 3346 * Save the original length to the meta data. 3347 * This will be used by the reader to add lost event 3348 * counter. 3349 */ 3350 tail_page->real_end = tail; 3351 3352 /* 3353 * If this event is bigger than the minimum size, then 3354 * we need to be careful that we don't subtract the 3355 * write counter enough to allow another writer to slip 3356 * in on this page. 3357 * We put in a discarded commit instead, to make sure 3358 * that this space is not used again, and this space will 3359 * not be accounted into 'entries_bytes'. 3360 * 3361 * If we are less than the minimum size, we don't need to 3362 * worry about it. 3363 */ 3364 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 3365 /* No room for any events */ 3366 3367 /* Mark the rest of the page with padding */ 3368 rb_event_set_padding(event); 3369 3370 /* Make sure the padding is visible before the write update */ 3371 smp_wmb(); 3372 3373 /* Set the write back to the previous setting */ 3374 local_sub(length, &tail_page->write); 3375 return; 3376 } 3377 3378 /* Put in a discarded event */ 3379 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 3380 event->type_len = RINGBUF_TYPE_PADDING; 3381 /* time delta must be non zero */ 3382 event->time_delta = 1; 3383 3384 /* account for padding bytes */ 3385 local_add(bsize - tail, &cpu_buffer->entries_bytes); 3386 3387 /* Make sure the padding is visible before the tail_page->write update */ 3388 smp_wmb(); 3389 3390 /* Set write to end of buffer */ 3391 length = (tail + length) - bsize; 3392 local_sub(length, &tail_page->write); 3393 } 3394 3395 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 3396 3397 /* 3398 * This is the slow path, force gcc not to inline it. 3399 */ 3400 static noinline struct ring_buffer_event * rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3401 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 3402 unsigned long tail, struct rb_event_info *info) 3403 { 3404 struct buffer_page *tail_page = info->tail_page; 3405 struct buffer_page *commit_page = cpu_buffer->commit_page; 3406 struct trace_buffer *buffer = cpu_buffer->buffer; 3407 struct buffer_page *next_page; 3408 int ret; 3409 3410 next_page = tail_page; 3411 3412 rb_inc_page(&next_page); 3413 3414 /* 3415 * If for some reason, we had an interrupt storm that made 3416 * it all the way around the buffer, bail, and warn 3417 * about it. 3418 */ 3419 if (unlikely(next_page == commit_page)) { 3420 local_inc(&cpu_buffer->commit_overrun); 3421 goto out_reset; 3422 } 3423 3424 /* 3425 * This is where the fun begins! 3426 * 3427 * We are fighting against races between a reader that 3428 * could be on another CPU trying to swap its reader 3429 * page with the buffer head. 3430 * 3431 * We are also fighting against interrupts coming in and 3432 * moving the head or tail on us as well. 3433 * 3434 * If the next page is the head page then we have filled 3435 * the buffer, unless the commit page is still on the 3436 * reader page. 3437 */ 3438 if (rb_is_head_page(next_page, &tail_page->list)) { 3439 3440 /* 3441 * If the commit is not on the reader page, then 3442 * move the header page. 3443 */ 3444 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 3445 /* 3446 * If we are not in overwrite mode, 3447 * this is easy, just stop here. 3448 */ 3449 if (!(buffer->flags & RB_FL_OVERWRITE)) { 3450 local_inc(&cpu_buffer->dropped_events); 3451 goto out_reset; 3452 } 3453 3454 ret = rb_handle_head_page(cpu_buffer, 3455 tail_page, 3456 next_page); 3457 if (ret < 0) 3458 goto out_reset; 3459 if (ret) 3460 goto out_again; 3461 } else { 3462 /* 3463 * We need to be careful here too. The 3464 * commit page could still be on the reader 3465 * page. We could have a small buffer, and 3466 * have filled up the buffer with events 3467 * from interrupts and such, and wrapped. 3468 * 3469 * Note, if the tail page is also on the 3470 * reader_page, we let it move out. 3471 */ 3472 if (unlikely((cpu_buffer->commit_page != 3473 cpu_buffer->tail_page) && 3474 (cpu_buffer->commit_page == 3475 cpu_buffer->reader_page))) { 3476 local_inc(&cpu_buffer->commit_overrun); 3477 goto out_reset; 3478 } 3479 } 3480 } 3481 3482 rb_tail_page_update(cpu_buffer, tail_page, next_page); 3483 3484 out_again: 3485 3486 rb_reset_tail(cpu_buffer, tail, info); 3487 3488 /* Commit what we have for now. */ 3489 rb_end_commit(cpu_buffer); 3490 /* rb_end_commit() decs committing */ 3491 local_inc(&cpu_buffer->committing); 3492 3493 /* fail and let the caller try again */ 3494 return ERR_PTR(-EAGAIN); 3495 3496 out_reset: 3497 /* reset write */ 3498 rb_reset_tail(cpu_buffer, tail, info); 3499 3500 return NULL; 3501 } 3502 3503 /* Slow path */ 3504 static struct ring_buffer_event * rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3505 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3506 struct ring_buffer_event *event, u64 delta, bool abs) 3507 { 3508 if (abs) 3509 event->type_len = RINGBUF_TYPE_TIME_STAMP; 3510 else 3511 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 3512 3513 /* Not the first event on the page, or not delta? */ 3514 if (abs || rb_event_index(cpu_buffer, event)) { 3515 event->time_delta = delta & TS_MASK; 3516 event->array[0] = delta >> TS_SHIFT; 3517 } else { 3518 /* nope, just zero it */ 3519 event->time_delta = 0; 3520 event->array[0] = 0; 3521 } 3522 3523 return skip_time_extend(event); 3524 } 3525 3526 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK sched_clock_stable(void)3527 static inline bool sched_clock_stable(void) 3528 { 3529 return true; 3530 } 3531 #endif 3532 3533 static void rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3534 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3535 struct rb_event_info *info) 3536 { 3537 u64 write_stamp; 3538 3539 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 3540 (unsigned long long)info->delta, 3541 (unsigned long long)info->ts, 3542 (unsigned long long)info->before, 3543 (unsigned long long)info->after, 3544 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 3545 sched_clock_stable() ? "" : 3546 "If you just came from a suspend/resume,\n" 3547 "please switch to the trace global clock:\n" 3548 " echo global > /sys/kernel/tracing/trace_clock\n" 3549 "or add trace_clock=global to the kernel command line\n"); 3550 } 3551 rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3552 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3553 struct ring_buffer_event **event, 3554 struct rb_event_info *info, 3555 u64 *delta, 3556 unsigned int *length) 3557 { 3558 bool abs = info->add_timestamp & 3559 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 3560 3561 if (unlikely(info->delta > (1ULL << 59))) { 3562 /* 3563 * Some timers can use more than 59 bits, and when a timestamp 3564 * is added to the buffer, it will lose those bits. 3565 */ 3566 if (abs && (info->ts & TS_MSB)) { 3567 info->delta &= ABS_TS_MASK; 3568 3569 /* did the clock go backwards */ 3570 } else if (info->before == info->after && info->before > info->ts) { 3571 /* not interrupted */ 3572 static int once; 3573 3574 /* 3575 * This is possible with a recalibrating of the TSC. 3576 * Do not produce a call stack, but just report it. 3577 */ 3578 if (!once) { 3579 once++; 3580 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 3581 info->before, info->ts); 3582 } 3583 } else 3584 rb_check_timestamp(cpu_buffer, info); 3585 if (!abs) 3586 info->delta = 0; 3587 } 3588 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 3589 *length -= RB_LEN_TIME_EXTEND; 3590 *delta = 0; 3591 } 3592 3593 /** 3594 * rb_update_event - update event type and data 3595 * @cpu_buffer: The per cpu buffer of the @event 3596 * @event: the event to update 3597 * @info: The info to update the @event with (contains length and delta) 3598 * 3599 * Update the type and data fields of the @event. The length 3600 * is the actual size that is written to the ring buffer, 3601 * and with this, we can determine what to place into the 3602 * data field. 3603 */ 3604 static void rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3605 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 3606 struct ring_buffer_event *event, 3607 struct rb_event_info *info) 3608 { 3609 unsigned length = info->length; 3610 u64 delta = info->delta; 3611 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 3612 3613 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 3614 cpu_buffer->event_stamp[nest] = info->ts; 3615 3616 /* 3617 * If we need to add a timestamp, then we 3618 * add it to the start of the reserved space. 3619 */ 3620 if (unlikely(info->add_timestamp)) 3621 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 3622 3623 event->time_delta = delta; 3624 length -= RB_EVNT_HDR_SIZE; 3625 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 3626 event->type_len = 0; 3627 event->array[0] = length; 3628 } else 3629 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 3630 } 3631 rb_calculate_event_length(unsigned length)3632 static unsigned rb_calculate_event_length(unsigned length) 3633 { 3634 struct ring_buffer_event event; /* Used only for sizeof array */ 3635 3636 /* zero length can cause confusions */ 3637 if (!length) 3638 length++; 3639 3640 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 3641 length += sizeof(event.array[0]); 3642 3643 length += RB_EVNT_HDR_SIZE; 3644 length = ALIGN(length, RB_ARCH_ALIGNMENT); 3645 3646 /* 3647 * In case the time delta is larger than the 27 bits for it 3648 * in the header, we need to add a timestamp. If another 3649 * event comes in when trying to discard this one to increase 3650 * the length, then the timestamp will be added in the allocated 3651 * space of this event. If length is bigger than the size needed 3652 * for the TIME_EXTEND, then padding has to be used. The events 3653 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 3654 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 3655 * As length is a multiple of 4, we only need to worry if it 3656 * is 12 (RB_LEN_TIME_EXTEND + 4). 3657 */ 3658 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 3659 length += RB_ALIGNMENT; 3660 3661 return length; 3662 } 3663 3664 static inline bool rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3665 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3666 struct ring_buffer_event *event) 3667 { 3668 unsigned long new_index, old_index; 3669 struct buffer_page *bpage; 3670 unsigned long addr; 3671 3672 new_index = rb_event_index(cpu_buffer, event); 3673 old_index = new_index + rb_event_ts_length(event); 3674 addr = (unsigned long)event; 3675 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3676 3677 bpage = READ_ONCE(cpu_buffer->tail_page); 3678 3679 /* 3680 * Make sure the tail_page is still the same and 3681 * the next write location is the end of this event 3682 */ 3683 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3684 unsigned long write_mask = 3685 local_read(&bpage->write) & ~RB_WRITE_MASK; 3686 unsigned long event_length = rb_event_length(event); 3687 3688 /* 3689 * For the before_stamp to be different than the write_stamp 3690 * to make sure that the next event adds an absolute 3691 * value and does not rely on the saved write stamp, which 3692 * is now going to be bogus. 3693 * 3694 * By setting the before_stamp to zero, the next event 3695 * is not going to use the write_stamp and will instead 3696 * create an absolute timestamp. This means there's no 3697 * reason to update the wirte_stamp! 3698 */ 3699 rb_time_set(&cpu_buffer->before_stamp, 0); 3700 3701 /* 3702 * If an event were to come in now, it would see that the 3703 * write_stamp and the before_stamp are different, and assume 3704 * that this event just added itself before updating 3705 * the write stamp. The interrupting event will fix the 3706 * write stamp for us, and use an absolute timestamp. 3707 */ 3708 3709 /* 3710 * This is on the tail page. It is possible that 3711 * a write could come in and move the tail page 3712 * and write to the next page. That is fine 3713 * because we just shorten what is on this page. 3714 */ 3715 old_index += write_mask; 3716 new_index += write_mask; 3717 3718 /* caution: old_index gets updated on cmpxchg failure */ 3719 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3720 /* update counters */ 3721 local_sub(event_length, &cpu_buffer->entries_bytes); 3722 return true; 3723 } 3724 } 3725 3726 /* could not discard */ 3727 return false; 3728 } 3729 rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3730 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3731 { 3732 local_inc(&cpu_buffer->committing); 3733 local_inc(&cpu_buffer->commits); 3734 } 3735 3736 static __always_inline void rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3737 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3738 { 3739 unsigned long max_count; 3740 3741 /* 3742 * We only race with interrupts and NMIs on this CPU. 3743 * If we own the commit event, then we can commit 3744 * all others that interrupted us, since the interruptions 3745 * are in stack format (they finish before they come 3746 * back to us). This allows us to do a simple loop to 3747 * assign the commit to the tail. 3748 */ 3749 again: 3750 max_count = cpu_buffer->nr_pages * 100; 3751 3752 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3753 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3754 return; 3755 if (RB_WARN_ON(cpu_buffer, 3756 rb_is_reader_page(cpu_buffer->tail_page))) 3757 return; 3758 /* 3759 * No need for a memory barrier here, as the update 3760 * of the tail_page did it for this page. 3761 */ 3762 local_set(&cpu_buffer->commit_page->page->commit, 3763 rb_page_write(cpu_buffer->commit_page)); 3764 rb_inc_page(&cpu_buffer->commit_page); 3765 if (cpu_buffer->ring_meta) { 3766 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3767 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page; 3768 } 3769 /* add barrier to keep gcc from optimizing too much */ 3770 barrier(); 3771 } 3772 while (rb_commit_index(cpu_buffer) != 3773 rb_page_write(cpu_buffer->commit_page)) { 3774 3775 /* Make sure the readers see the content of what is committed. */ 3776 smp_wmb(); 3777 local_set(&cpu_buffer->commit_page->page->commit, 3778 rb_page_write(cpu_buffer->commit_page)); 3779 RB_WARN_ON(cpu_buffer, 3780 local_read(&cpu_buffer->commit_page->page->commit) & 3781 ~RB_WRITE_MASK); 3782 barrier(); 3783 } 3784 3785 /* again, keep gcc from optimizing */ 3786 barrier(); 3787 3788 /* 3789 * If an interrupt came in just after the first while loop 3790 * and pushed the tail page forward, we will be left with 3791 * a dangling commit that will never go forward. 3792 */ 3793 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3794 goto again; 3795 } 3796 rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3797 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3798 { 3799 unsigned long commits; 3800 3801 if (RB_WARN_ON(cpu_buffer, 3802 !local_read(&cpu_buffer->committing))) 3803 return; 3804 3805 again: 3806 commits = local_read(&cpu_buffer->commits); 3807 /* synchronize with interrupts */ 3808 barrier(); 3809 if (local_read(&cpu_buffer->committing) == 1) 3810 rb_set_commit_to_write(cpu_buffer); 3811 3812 local_dec(&cpu_buffer->committing); 3813 3814 /* synchronize with interrupts */ 3815 barrier(); 3816 3817 /* 3818 * Need to account for interrupts coming in between the 3819 * updating of the commit page and the clearing of the 3820 * committing counter. 3821 */ 3822 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3823 !local_read(&cpu_buffer->committing)) { 3824 local_inc(&cpu_buffer->committing); 3825 goto again; 3826 } 3827 } 3828 rb_event_discard(struct ring_buffer_event * event)3829 static inline void rb_event_discard(struct ring_buffer_event *event) 3830 { 3831 if (extended_time(event)) 3832 event = skip_time_extend(event); 3833 3834 /* array[0] holds the actual length for the discarded event */ 3835 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3836 event->type_len = RINGBUF_TYPE_PADDING; 3837 /* time delta must be non zero */ 3838 if (!event->time_delta) 3839 event->time_delta = 1; 3840 } 3841 rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3842 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3843 { 3844 local_inc(&cpu_buffer->entries); 3845 rb_end_commit(cpu_buffer); 3846 } 3847 3848 static __always_inline void rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3849 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3850 { 3851 if (buffer->irq_work.waiters_pending) { 3852 buffer->irq_work.waiters_pending = false; 3853 /* irq_work_queue() supplies it's own memory barriers */ 3854 irq_work_queue(&buffer->irq_work.work); 3855 } 3856 3857 if (cpu_buffer->irq_work.waiters_pending) { 3858 cpu_buffer->irq_work.waiters_pending = false; 3859 /* irq_work_queue() supplies it's own memory barriers */ 3860 irq_work_queue(&cpu_buffer->irq_work.work); 3861 } 3862 3863 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3864 return; 3865 3866 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3867 return; 3868 3869 if (!cpu_buffer->irq_work.full_waiters_pending) 3870 return; 3871 3872 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3873 3874 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3875 return; 3876 3877 cpu_buffer->irq_work.wakeup_full = true; 3878 cpu_buffer->irq_work.full_waiters_pending = false; 3879 /* irq_work_queue() supplies it's own memory barriers */ 3880 irq_work_queue(&cpu_buffer->irq_work.work); 3881 } 3882 3883 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3884 # define do_ring_buffer_record_recursion() \ 3885 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3886 #else 3887 # define do_ring_buffer_record_recursion() do { } while (0) 3888 #endif 3889 3890 /* 3891 * The lock and unlock are done within a preempt disable section. 3892 * The current_context per_cpu variable can only be modified 3893 * by the current task between lock and unlock. But it can 3894 * be modified more than once via an interrupt. To pass this 3895 * information from the lock to the unlock without having to 3896 * access the 'in_interrupt()' functions again (which do show 3897 * a bit of overhead in something as critical as function tracing, 3898 * we use a bitmask trick. 3899 * 3900 * bit 1 = NMI context 3901 * bit 2 = IRQ context 3902 * bit 3 = SoftIRQ context 3903 * bit 4 = normal context. 3904 * 3905 * This works because this is the order of contexts that can 3906 * preempt other contexts. A SoftIRQ never preempts an IRQ 3907 * context. 3908 * 3909 * When the context is determined, the corresponding bit is 3910 * checked and set (if it was set, then a recursion of that context 3911 * happened). 3912 * 3913 * On unlock, we need to clear this bit. To do so, just subtract 3914 * 1 from the current_context and AND it to itself. 3915 * 3916 * (binary) 3917 * 101 - 1 = 100 3918 * 101 & 100 = 100 (clearing bit zero) 3919 * 3920 * 1010 - 1 = 1001 3921 * 1010 & 1001 = 1000 (clearing bit 1) 3922 * 3923 * The least significant bit can be cleared this way, and it 3924 * just so happens that it is the same bit corresponding to 3925 * the current context. 3926 * 3927 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3928 * is set when a recursion is detected at the current context, and if 3929 * the TRANSITION bit is already set, it will fail the recursion. 3930 * This is needed because there's a lag between the changing of 3931 * interrupt context and updating the preempt count. In this case, 3932 * a false positive will be found. To handle this, one extra recursion 3933 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3934 * bit is already set, then it is considered a recursion and the function 3935 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3936 * 3937 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3938 * to be cleared. Even if it wasn't the context that set it. That is, 3939 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3940 * is called before preempt_count() is updated, since the check will 3941 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3942 * NMI then comes in, it will set the NMI bit, but when the NMI code 3943 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3944 * and leave the NMI bit set. But this is fine, because the interrupt 3945 * code that set the TRANSITION bit will then clear the NMI bit when it 3946 * calls trace_recursive_unlock(). If another NMI comes in, it will 3947 * set the TRANSITION bit and continue. 3948 * 3949 * Note: The TRANSITION bit only handles a single transition between context. 3950 */ 3951 3952 static __always_inline bool trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3953 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3954 { 3955 unsigned int val = cpu_buffer->current_context; 3956 int bit = interrupt_context_level(); 3957 3958 bit = RB_CTX_NORMAL - bit; 3959 3960 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3961 /* 3962 * It is possible that this was called by transitioning 3963 * between interrupt context, and preempt_count() has not 3964 * been updated yet. In this case, use the TRANSITION bit. 3965 */ 3966 bit = RB_CTX_TRANSITION; 3967 if (val & (1 << (bit + cpu_buffer->nest))) { 3968 do_ring_buffer_record_recursion(); 3969 return true; 3970 } 3971 } 3972 3973 val |= (1 << (bit + cpu_buffer->nest)); 3974 cpu_buffer->current_context = val; 3975 3976 return false; 3977 } 3978 3979 static __always_inline void trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3980 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3981 { 3982 cpu_buffer->current_context &= 3983 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3984 } 3985 3986 /* The recursive locking above uses 5 bits */ 3987 #define NESTED_BITS 5 3988 3989 /** 3990 * ring_buffer_nest_start - Allow to trace while nested 3991 * @buffer: The ring buffer to modify 3992 * 3993 * The ring buffer has a safety mechanism to prevent recursion. 3994 * But there may be a case where a trace needs to be done while 3995 * tracing something else. In this case, calling this function 3996 * will allow this function to nest within a currently active 3997 * ring_buffer_lock_reserve(). 3998 * 3999 * Call this function before calling another ring_buffer_lock_reserve() and 4000 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 4001 */ ring_buffer_nest_start(struct trace_buffer * buffer)4002 void ring_buffer_nest_start(struct trace_buffer *buffer) 4003 { 4004 struct ring_buffer_per_cpu *cpu_buffer; 4005 int cpu; 4006 4007 /* Enabled by ring_buffer_nest_end() */ 4008 preempt_disable_notrace(); 4009 cpu = raw_smp_processor_id(); 4010 cpu_buffer = buffer->buffers[cpu]; 4011 /* This is the shift value for the above recursive locking */ 4012 cpu_buffer->nest += NESTED_BITS; 4013 } 4014 4015 /** 4016 * ring_buffer_nest_end - Allow to trace while nested 4017 * @buffer: The ring buffer to modify 4018 * 4019 * Must be called after ring_buffer_nest_start() and after the 4020 * ring_buffer_unlock_commit(). 4021 */ ring_buffer_nest_end(struct trace_buffer * buffer)4022 void ring_buffer_nest_end(struct trace_buffer *buffer) 4023 { 4024 struct ring_buffer_per_cpu *cpu_buffer; 4025 int cpu; 4026 4027 /* disabled by ring_buffer_nest_start() */ 4028 cpu = raw_smp_processor_id(); 4029 cpu_buffer = buffer->buffers[cpu]; 4030 /* This is the shift value for the above recursive locking */ 4031 cpu_buffer->nest -= NESTED_BITS; 4032 preempt_enable_notrace(); 4033 } 4034 4035 /** 4036 * ring_buffer_unlock_commit - commit a reserved 4037 * @buffer: The buffer to commit to 4038 * 4039 * This commits the data to the ring buffer, and releases any locks held. 4040 * 4041 * Must be paired with ring_buffer_lock_reserve. 4042 */ ring_buffer_unlock_commit(struct trace_buffer * buffer)4043 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 4044 { 4045 struct ring_buffer_per_cpu *cpu_buffer; 4046 int cpu = raw_smp_processor_id(); 4047 4048 cpu_buffer = buffer->buffers[cpu]; 4049 4050 rb_commit(cpu_buffer); 4051 4052 rb_wakeups(buffer, cpu_buffer); 4053 4054 trace_recursive_unlock(cpu_buffer); 4055 4056 preempt_enable_notrace(); 4057 4058 return 0; 4059 } 4060 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 4061 4062 /* Special value to validate all deltas on a page. */ 4063 #define CHECK_FULL_PAGE 1L 4064 4065 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 4066 show_irq_str(int bits)4067 static const char *show_irq_str(int bits) 4068 { 4069 const char *type[] = { 4070 ".", // 0 4071 "s", // 1 4072 "h", // 2 4073 "Hs", // 3 4074 "n", // 4 4075 "Ns", // 5 4076 "Nh", // 6 4077 "NHs", // 7 4078 }; 4079 4080 return type[bits]; 4081 } 4082 4083 /* Assume this is a trace event */ show_flags(struct ring_buffer_event * event)4084 static const char *show_flags(struct ring_buffer_event *event) 4085 { 4086 struct trace_entry *entry; 4087 int bits = 0; 4088 4089 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4090 return "X"; 4091 4092 entry = ring_buffer_event_data(event); 4093 4094 if (entry->flags & TRACE_FLAG_SOFTIRQ) 4095 bits |= 1; 4096 4097 if (entry->flags & TRACE_FLAG_HARDIRQ) 4098 bits |= 2; 4099 4100 if (entry->flags & TRACE_FLAG_NMI) 4101 bits |= 4; 4102 4103 return show_irq_str(bits); 4104 } 4105 show_irq(struct ring_buffer_event * event)4106 static const char *show_irq(struct ring_buffer_event *event) 4107 { 4108 struct trace_entry *entry; 4109 4110 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4111 return ""; 4112 4113 entry = ring_buffer_event_data(event); 4114 if (entry->flags & TRACE_FLAG_IRQS_OFF) 4115 return "d"; 4116 return ""; 4117 } 4118 show_interrupt_level(void)4119 static const char *show_interrupt_level(void) 4120 { 4121 unsigned long pc = preempt_count(); 4122 unsigned char level = 0; 4123 4124 if (pc & SOFTIRQ_OFFSET) 4125 level |= 1; 4126 4127 if (pc & HARDIRQ_MASK) 4128 level |= 2; 4129 4130 if (pc & NMI_MASK) 4131 level |= 4; 4132 4133 return show_irq_str(level); 4134 } 4135 dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4136 static void dump_buffer_page(struct buffer_data_page *bpage, 4137 struct rb_event_info *info, 4138 unsigned long tail) 4139 { 4140 struct ring_buffer_event *event; 4141 u64 ts, delta; 4142 int e; 4143 4144 ts = bpage->time_stamp; 4145 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 4146 4147 for (e = 0; e < tail; e += rb_event_length(event)) { 4148 4149 event = (struct ring_buffer_event *)(bpage->data + e); 4150 4151 switch (event->type_len) { 4152 4153 case RINGBUF_TYPE_TIME_EXTEND: 4154 delta = rb_event_time_stamp(event); 4155 ts += delta; 4156 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 4157 e, ts, delta); 4158 break; 4159 4160 case RINGBUF_TYPE_TIME_STAMP: 4161 delta = rb_event_time_stamp(event); 4162 ts = rb_fix_abs_ts(delta, ts); 4163 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 4164 e, ts, delta); 4165 break; 4166 4167 case RINGBUF_TYPE_PADDING: 4168 ts += event->time_delta; 4169 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 4170 e, ts, event->time_delta); 4171 break; 4172 4173 case RINGBUF_TYPE_DATA: 4174 ts += event->time_delta; 4175 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 4176 e, ts, event->time_delta, 4177 show_flags(event), show_irq(event)); 4178 break; 4179 4180 default: 4181 break; 4182 } 4183 } 4184 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 4185 } 4186 4187 static DEFINE_PER_CPU(atomic_t, checking); 4188 static atomic_t ts_dump; 4189 4190 #define buffer_warn_return(fmt, ...) \ 4191 do { \ 4192 /* If another report is happening, ignore this one */ \ 4193 if (atomic_inc_return(&ts_dump) != 1) { \ 4194 atomic_dec(&ts_dump); \ 4195 goto out; \ 4196 } \ 4197 atomic_inc(&cpu_buffer->record_disabled); \ 4198 pr_warn(fmt, ##__VA_ARGS__); \ 4199 dump_buffer_page(bpage, info, tail); \ 4200 atomic_dec(&ts_dump); \ 4201 /* There's some cases in boot up that this can happen */ \ 4202 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 4203 /* Do not re-enable checking */ \ 4204 return; \ 4205 } while (0) 4206 4207 /* 4208 * Check if the current event time stamp matches the deltas on 4209 * the buffer page. 4210 */ check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4211 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4212 struct rb_event_info *info, 4213 unsigned long tail) 4214 { 4215 struct buffer_data_page *bpage; 4216 u64 ts, delta; 4217 bool full = false; 4218 int ret; 4219 4220 bpage = info->tail_page->page; 4221 4222 if (tail == CHECK_FULL_PAGE) { 4223 full = true; 4224 tail = local_read(&bpage->commit); 4225 } else if (info->add_timestamp & 4226 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 4227 /* Ignore events with absolute time stamps */ 4228 return; 4229 } 4230 4231 /* 4232 * Do not check the first event (skip possible extends too). 4233 * Also do not check if previous events have not been committed. 4234 */ 4235 if (tail <= 8 || tail > local_read(&bpage->commit)) 4236 return; 4237 4238 /* 4239 * If this interrupted another event, 4240 */ 4241 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 4242 goto out; 4243 4244 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta); 4245 if (ret < 0) { 4246 if (delta < ts) { 4247 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 4248 cpu_buffer->cpu, ts, delta); 4249 goto out; 4250 } 4251 } 4252 if ((full && ts > info->ts) || 4253 (!full && ts + info->delta != info->ts)) { 4254 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 4255 cpu_buffer->cpu, 4256 ts + info->delta, info->ts, info->delta, 4257 info->before, info->after, 4258 full ? " (full)" : "", show_interrupt_level()); 4259 } 4260 out: 4261 atomic_dec(this_cpu_ptr(&checking)); 4262 } 4263 #else check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4264 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4265 struct rb_event_info *info, 4266 unsigned long tail) 4267 { 4268 } 4269 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 4270 4271 static struct ring_buffer_event * __rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4272 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 4273 struct rb_event_info *info) 4274 { 4275 struct ring_buffer_event *event; 4276 struct buffer_page *tail_page; 4277 unsigned long tail, write, w; 4278 4279 /* Don't let the compiler play games with cpu_buffer->tail_page */ 4280 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 4281 4282 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 4283 barrier(); 4284 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4285 rb_time_read(&cpu_buffer->write_stamp, &info->after); 4286 barrier(); 4287 info->ts = rb_time_stamp(cpu_buffer->buffer); 4288 4289 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 4290 info->delta = info->ts; 4291 } else { 4292 /* 4293 * If interrupting an event time update, we may need an 4294 * absolute timestamp. 4295 * Don't bother if this is the start of a new page (w == 0). 4296 */ 4297 if (!w) { 4298 /* Use the sub-buffer timestamp */ 4299 info->delta = 0; 4300 } else if (unlikely(info->before != info->after)) { 4301 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 4302 info->length += RB_LEN_TIME_EXTEND; 4303 } else { 4304 info->delta = info->ts - info->after; 4305 if (unlikely(test_time_stamp(info->delta))) { 4306 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 4307 info->length += RB_LEN_TIME_EXTEND; 4308 } 4309 } 4310 } 4311 4312 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 4313 4314 /*C*/ write = local_add_return(info->length, &tail_page->write); 4315 4316 /* set write to only the index of the write */ 4317 write &= RB_WRITE_MASK; 4318 4319 tail = write - info->length; 4320 4321 /* See if we shot pass the end of this buffer page */ 4322 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 4323 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 4324 return rb_move_tail(cpu_buffer, tail, info); 4325 } 4326 4327 if (likely(tail == w)) { 4328 /* Nothing interrupted us between A and C */ 4329 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 4330 /* 4331 * If something came in between C and D, the write stamp 4332 * may now not be in sync. But that's fine as the before_stamp 4333 * will be different and then next event will just be forced 4334 * to use an absolute timestamp. 4335 */ 4336 if (likely(!(info->add_timestamp & 4337 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4338 /* This did not interrupt any time update */ 4339 info->delta = info->ts - info->after; 4340 else 4341 /* Just use full timestamp for interrupting event */ 4342 info->delta = info->ts; 4343 check_buffer(cpu_buffer, info, tail); 4344 } else { 4345 u64 ts; 4346 /* SLOW PATH - Interrupted between A and C */ 4347 4348 /* Save the old before_stamp */ 4349 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4350 4351 /* 4352 * Read a new timestamp and update the before_stamp to make 4353 * the next event after this one force using an absolute 4354 * timestamp. This is in case an interrupt were to come in 4355 * between E and F. 4356 */ 4357 ts = rb_time_stamp(cpu_buffer->buffer); 4358 rb_time_set(&cpu_buffer->before_stamp, ts); 4359 4360 barrier(); 4361 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 4362 barrier(); 4363 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 4364 info->after == info->before && info->after < ts) { 4365 /* 4366 * Nothing came after this event between C and F, it is 4367 * safe to use info->after for the delta as it 4368 * matched info->before and is still valid. 4369 */ 4370 info->delta = ts - info->after; 4371 } else { 4372 /* 4373 * Interrupted between C and F: 4374 * Lost the previous events time stamp. Just set the 4375 * delta to zero, and this will be the same time as 4376 * the event this event interrupted. And the events that 4377 * came after this will still be correct (as they would 4378 * have built their delta on the previous event. 4379 */ 4380 info->delta = 0; 4381 } 4382 info->ts = ts; 4383 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 4384 } 4385 4386 /* 4387 * If this is the first commit on the page, then it has the same 4388 * timestamp as the page itself. 4389 */ 4390 if (unlikely(!tail && !(info->add_timestamp & 4391 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4392 info->delta = 0; 4393 4394 /* We reserved something on the buffer */ 4395 4396 event = __rb_page_index(tail_page, tail); 4397 rb_update_event(cpu_buffer, event, info); 4398 4399 local_inc(&tail_page->entries); 4400 4401 /* 4402 * If this is the first commit on the page, then update 4403 * its timestamp. 4404 */ 4405 if (unlikely(!tail)) 4406 tail_page->page->time_stamp = info->ts; 4407 4408 /* account for these added bytes */ 4409 local_add(info->length, &cpu_buffer->entries_bytes); 4410 4411 return event; 4412 } 4413 4414 static __always_inline struct ring_buffer_event * rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4415 rb_reserve_next_event(struct trace_buffer *buffer, 4416 struct ring_buffer_per_cpu *cpu_buffer, 4417 unsigned long length) 4418 { 4419 struct ring_buffer_event *event; 4420 struct rb_event_info info; 4421 int nr_loops = 0; 4422 int add_ts_default; 4423 4424 /* 4425 * ring buffer does cmpxchg as well as atomic64 operations 4426 * (which some archs use locking for atomic64), make sure this 4427 * is safe in NMI context 4428 */ 4429 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) || 4430 IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) && 4431 (unlikely(in_nmi()))) { 4432 return NULL; 4433 } 4434 4435 rb_start_commit(cpu_buffer); 4436 /* The commit page can not change after this */ 4437 4438 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4439 /* 4440 * Due to the ability to swap a cpu buffer from a buffer 4441 * it is possible it was swapped before we committed. 4442 * (committing stops a swap). We check for it here and 4443 * if it happened, we have to fail the write. 4444 */ 4445 barrier(); 4446 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 4447 local_dec(&cpu_buffer->committing); 4448 local_dec(&cpu_buffer->commits); 4449 return NULL; 4450 } 4451 #endif 4452 4453 info.length = rb_calculate_event_length(length); 4454 4455 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 4456 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 4457 info.length += RB_LEN_TIME_EXTEND; 4458 if (info.length > cpu_buffer->buffer->max_data_size) 4459 goto out_fail; 4460 } else { 4461 add_ts_default = RB_ADD_STAMP_NONE; 4462 } 4463 4464 again: 4465 info.add_timestamp = add_ts_default; 4466 info.delta = 0; 4467 4468 /* 4469 * We allow for interrupts to reenter here and do a trace. 4470 * If one does, it will cause this original code to loop 4471 * back here. Even with heavy interrupts happening, this 4472 * should only happen a few times in a row. If this happens 4473 * 1000 times in a row, there must be either an interrupt 4474 * storm or we have something buggy. 4475 * Bail! 4476 */ 4477 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 4478 goto out_fail; 4479 4480 event = __rb_reserve_next(cpu_buffer, &info); 4481 4482 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 4483 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 4484 info.length -= RB_LEN_TIME_EXTEND; 4485 goto again; 4486 } 4487 4488 if (likely(event)) 4489 return event; 4490 out_fail: 4491 rb_end_commit(cpu_buffer); 4492 return NULL; 4493 } 4494 4495 /** 4496 * ring_buffer_lock_reserve - reserve a part of the buffer 4497 * @buffer: the ring buffer to reserve from 4498 * @length: the length of the data to reserve (excluding event header) 4499 * 4500 * Returns a reserved event on the ring buffer to copy directly to. 4501 * The user of this interface will need to get the body to write into 4502 * and can use the ring_buffer_event_data() interface. 4503 * 4504 * The length is the length of the data needed, not the event length 4505 * which also includes the event header. 4506 * 4507 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 4508 * If NULL is returned, then nothing has been allocated or locked. 4509 */ 4510 struct ring_buffer_event * ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4511 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 4512 { 4513 struct ring_buffer_per_cpu *cpu_buffer; 4514 struct ring_buffer_event *event; 4515 int cpu; 4516 4517 /* If we are tracing schedule, we don't want to recurse */ 4518 preempt_disable_notrace(); 4519 4520 if (unlikely(atomic_read(&buffer->record_disabled))) 4521 goto out; 4522 4523 cpu = raw_smp_processor_id(); 4524 4525 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 4526 goto out; 4527 4528 cpu_buffer = buffer->buffers[cpu]; 4529 4530 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 4531 goto out; 4532 4533 if (unlikely(length > buffer->max_data_size)) 4534 goto out; 4535 4536 if (unlikely(trace_recursive_lock(cpu_buffer))) 4537 goto out; 4538 4539 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4540 if (!event) 4541 goto out_unlock; 4542 4543 return event; 4544 4545 out_unlock: 4546 trace_recursive_unlock(cpu_buffer); 4547 out: 4548 preempt_enable_notrace(); 4549 return NULL; 4550 } 4551 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 4552 4553 /* 4554 * Decrement the entries to the page that an event is on. 4555 * The event does not even need to exist, only the pointer 4556 * to the page it is on. This may only be called before the commit 4557 * takes place. 4558 */ 4559 static inline void rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4560 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 4561 struct ring_buffer_event *event) 4562 { 4563 unsigned long addr = (unsigned long)event; 4564 struct buffer_page *bpage = cpu_buffer->commit_page; 4565 struct buffer_page *start; 4566 4567 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 4568 4569 /* Do the likely case first */ 4570 if (likely(bpage->page == (void *)addr)) { 4571 local_dec(&bpage->entries); 4572 return; 4573 } 4574 4575 /* 4576 * Because the commit page may be on the reader page we 4577 * start with the next page and check the end loop there. 4578 */ 4579 rb_inc_page(&bpage); 4580 start = bpage; 4581 do { 4582 if (bpage->page == (void *)addr) { 4583 local_dec(&bpage->entries); 4584 return; 4585 } 4586 rb_inc_page(&bpage); 4587 } while (bpage != start); 4588 4589 /* commit not part of this buffer?? */ 4590 RB_WARN_ON(cpu_buffer, 1); 4591 } 4592 4593 /** 4594 * ring_buffer_discard_commit - discard an event that has not been committed 4595 * @buffer: the ring buffer 4596 * @event: non committed event to discard 4597 * 4598 * Sometimes an event that is in the ring buffer needs to be ignored. 4599 * This function lets the user discard an event in the ring buffer 4600 * and then that event will not be read later. 4601 * 4602 * This function only works if it is called before the item has been 4603 * committed. It will try to free the event from the ring buffer 4604 * if another event has not been added behind it. 4605 * 4606 * If another event has been added behind it, it will set the event 4607 * up as discarded, and perform the commit. 4608 * 4609 * If this function is called, do not call ring_buffer_unlock_commit on 4610 * the event. 4611 */ ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4612 void ring_buffer_discard_commit(struct trace_buffer *buffer, 4613 struct ring_buffer_event *event) 4614 { 4615 struct ring_buffer_per_cpu *cpu_buffer; 4616 int cpu; 4617 4618 /* The event is discarded regardless */ 4619 rb_event_discard(event); 4620 4621 cpu = smp_processor_id(); 4622 cpu_buffer = buffer->buffers[cpu]; 4623 4624 /* 4625 * This must only be called if the event has not been 4626 * committed yet. Thus we can assume that preemption 4627 * is still disabled. 4628 */ 4629 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 4630 4631 rb_decrement_entry(cpu_buffer, event); 4632 if (rb_try_to_discard(cpu_buffer, event)) 4633 goto out; 4634 4635 out: 4636 rb_end_commit(cpu_buffer); 4637 4638 trace_recursive_unlock(cpu_buffer); 4639 4640 preempt_enable_notrace(); 4641 4642 } 4643 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 4644 4645 /** 4646 * ring_buffer_write - write data to the buffer without reserving 4647 * @buffer: The ring buffer to write to. 4648 * @length: The length of the data being written (excluding the event header) 4649 * @data: The data to write to the buffer. 4650 * 4651 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 4652 * one function. If you already have the data to write to the buffer, it 4653 * may be easier to simply call this function. 4654 * 4655 * Note, like ring_buffer_lock_reserve, the length is the length of the data 4656 * and not the length of the event which would hold the header. 4657 */ ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4658 int ring_buffer_write(struct trace_buffer *buffer, 4659 unsigned long length, 4660 void *data) 4661 { 4662 struct ring_buffer_per_cpu *cpu_buffer; 4663 struct ring_buffer_event *event; 4664 void *body; 4665 int ret = -EBUSY; 4666 int cpu; 4667 4668 preempt_disable_notrace(); 4669 4670 if (atomic_read(&buffer->record_disabled)) 4671 goto out; 4672 4673 cpu = raw_smp_processor_id(); 4674 4675 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4676 goto out; 4677 4678 cpu_buffer = buffer->buffers[cpu]; 4679 4680 if (atomic_read(&cpu_buffer->record_disabled)) 4681 goto out; 4682 4683 if (length > buffer->max_data_size) 4684 goto out; 4685 4686 if (unlikely(trace_recursive_lock(cpu_buffer))) 4687 goto out; 4688 4689 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4690 if (!event) 4691 goto out_unlock; 4692 4693 body = rb_event_data(event); 4694 4695 memcpy(body, data, length); 4696 4697 rb_commit(cpu_buffer); 4698 4699 rb_wakeups(buffer, cpu_buffer); 4700 4701 ret = 0; 4702 4703 out_unlock: 4704 trace_recursive_unlock(cpu_buffer); 4705 4706 out: 4707 preempt_enable_notrace(); 4708 4709 return ret; 4710 } 4711 EXPORT_SYMBOL_GPL(ring_buffer_write); 4712 4713 /* 4714 * The total entries in the ring buffer is the running counter 4715 * of entries entered into the ring buffer, minus the sum of 4716 * the entries read from the ring buffer and the number of 4717 * entries that were overwritten. 4718 */ 4719 static inline unsigned long rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4720 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4721 { 4722 return local_read(&cpu_buffer->entries) - 4723 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4724 } 4725 rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4726 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 4727 { 4728 return !rb_num_of_entries(cpu_buffer); 4729 } 4730 4731 /** 4732 * ring_buffer_record_disable - stop all writes into the buffer 4733 * @buffer: The ring buffer to stop writes to. 4734 * 4735 * This prevents all writes to the buffer. Any attempt to write 4736 * to the buffer after this will fail and return NULL. 4737 * 4738 * The caller should call synchronize_rcu() after this. 4739 */ ring_buffer_record_disable(struct trace_buffer * buffer)4740 void ring_buffer_record_disable(struct trace_buffer *buffer) 4741 { 4742 atomic_inc(&buffer->record_disabled); 4743 } 4744 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4745 4746 /** 4747 * ring_buffer_record_enable - enable writes to the buffer 4748 * @buffer: The ring buffer to enable writes 4749 * 4750 * Note, multiple disables will need the same number of enables 4751 * to truly enable the writing (much like preempt_disable). 4752 */ ring_buffer_record_enable(struct trace_buffer * buffer)4753 void ring_buffer_record_enable(struct trace_buffer *buffer) 4754 { 4755 atomic_dec(&buffer->record_disabled); 4756 } 4757 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4758 4759 /** 4760 * ring_buffer_record_off - stop all writes into the buffer 4761 * @buffer: The ring buffer to stop writes to. 4762 * 4763 * This prevents all writes to the buffer. Any attempt to write 4764 * to the buffer after this will fail and return NULL. 4765 * 4766 * This is different than ring_buffer_record_disable() as 4767 * it works like an on/off switch, where as the disable() version 4768 * must be paired with a enable(). 4769 */ ring_buffer_record_off(struct trace_buffer * buffer)4770 void ring_buffer_record_off(struct trace_buffer *buffer) 4771 { 4772 unsigned int rd; 4773 unsigned int new_rd; 4774 4775 rd = atomic_read(&buffer->record_disabled); 4776 do { 4777 new_rd = rd | RB_BUFFER_OFF; 4778 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4779 } 4780 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4781 4782 /** 4783 * ring_buffer_record_on - restart writes into the buffer 4784 * @buffer: The ring buffer to start writes to. 4785 * 4786 * This enables all writes to the buffer that was disabled by 4787 * ring_buffer_record_off(). 4788 * 4789 * This is different than ring_buffer_record_enable() as 4790 * it works like an on/off switch, where as the enable() version 4791 * must be paired with a disable(). 4792 */ ring_buffer_record_on(struct trace_buffer * buffer)4793 void ring_buffer_record_on(struct trace_buffer *buffer) 4794 { 4795 unsigned int rd; 4796 unsigned int new_rd; 4797 4798 rd = atomic_read(&buffer->record_disabled); 4799 do { 4800 new_rd = rd & ~RB_BUFFER_OFF; 4801 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4802 } 4803 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4804 4805 /** 4806 * ring_buffer_record_is_on - return true if the ring buffer can write 4807 * @buffer: The ring buffer to see if write is enabled 4808 * 4809 * Returns true if the ring buffer is in a state that it accepts writes. 4810 */ ring_buffer_record_is_on(struct trace_buffer * buffer)4811 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4812 { 4813 return !atomic_read(&buffer->record_disabled); 4814 } 4815 4816 /** 4817 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4818 * @buffer: The ring buffer to see if write is set enabled 4819 * 4820 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4821 * Note that this does NOT mean it is in a writable state. 4822 * 4823 * It may return true when the ring buffer has been disabled by 4824 * ring_buffer_record_disable(), as that is a temporary disabling of 4825 * the ring buffer. 4826 */ ring_buffer_record_is_set_on(struct trace_buffer * buffer)4827 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4828 { 4829 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4830 } 4831 4832 /** 4833 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4834 * @buffer: The ring buffer to stop writes to. 4835 * @cpu: The CPU buffer to stop 4836 * 4837 * This prevents all writes to the buffer. Any attempt to write 4838 * to the buffer after this will fail and return NULL. 4839 * 4840 * The caller should call synchronize_rcu() after this. 4841 */ ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)4842 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4843 { 4844 struct ring_buffer_per_cpu *cpu_buffer; 4845 4846 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4847 return; 4848 4849 cpu_buffer = buffer->buffers[cpu]; 4850 atomic_inc(&cpu_buffer->record_disabled); 4851 } 4852 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4853 4854 /** 4855 * ring_buffer_record_enable_cpu - enable writes to the buffer 4856 * @buffer: The ring buffer to enable writes 4857 * @cpu: The CPU to enable. 4858 * 4859 * Note, multiple disables will need the same number of enables 4860 * to truly enable the writing (much like preempt_disable). 4861 */ ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)4862 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4863 { 4864 struct ring_buffer_per_cpu *cpu_buffer; 4865 4866 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4867 return; 4868 4869 cpu_buffer = buffer->buffers[cpu]; 4870 atomic_dec(&cpu_buffer->record_disabled); 4871 } 4872 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4873 4874 /** 4875 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4876 * @buffer: The ring buffer 4877 * @cpu: The per CPU buffer to read from. 4878 */ ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)4879 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4880 { 4881 unsigned long flags; 4882 struct ring_buffer_per_cpu *cpu_buffer; 4883 struct buffer_page *bpage; 4884 u64 ret = 0; 4885 4886 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4887 return 0; 4888 4889 cpu_buffer = buffer->buffers[cpu]; 4890 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4891 /* 4892 * if the tail is on reader_page, oldest time stamp is on the reader 4893 * page 4894 */ 4895 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4896 bpage = cpu_buffer->reader_page; 4897 else 4898 bpage = rb_set_head_page(cpu_buffer); 4899 if (bpage) 4900 ret = bpage->page->time_stamp; 4901 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4902 4903 return ret; 4904 } 4905 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4906 4907 /** 4908 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4909 * @buffer: The ring buffer 4910 * @cpu: The per CPU buffer to read from. 4911 */ ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)4912 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4913 { 4914 struct ring_buffer_per_cpu *cpu_buffer; 4915 unsigned long ret; 4916 4917 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4918 return 0; 4919 4920 cpu_buffer = buffer->buffers[cpu]; 4921 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4922 4923 return ret; 4924 } 4925 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4926 4927 /** 4928 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4929 * @buffer: The ring buffer 4930 * @cpu: The per CPU buffer to get the entries from. 4931 */ ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)4932 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4933 { 4934 struct ring_buffer_per_cpu *cpu_buffer; 4935 4936 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4937 return 0; 4938 4939 cpu_buffer = buffer->buffers[cpu]; 4940 4941 return rb_num_of_entries(cpu_buffer); 4942 } 4943 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4944 4945 /** 4946 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4947 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4948 * @buffer: The ring buffer 4949 * @cpu: The per CPU buffer to get the number of overruns from 4950 */ ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4951 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4952 { 4953 struct ring_buffer_per_cpu *cpu_buffer; 4954 unsigned long ret; 4955 4956 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4957 return 0; 4958 4959 cpu_buffer = buffer->buffers[cpu]; 4960 ret = local_read(&cpu_buffer->overrun); 4961 4962 return ret; 4963 } 4964 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4965 4966 /** 4967 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4968 * commits failing due to the buffer wrapping around while there are uncommitted 4969 * events, such as during an interrupt storm. 4970 * @buffer: The ring buffer 4971 * @cpu: The per CPU buffer to get the number of overruns from 4972 */ 4973 unsigned long ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)4974 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4975 { 4976 struct ring_buffer_per_cpu *cpu_buffer; 4977 unsigned long ret; 4978 4979 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4980 return 0; 4981 4982 cpu_buffer = buffer->buffers[cpu]; 4983 ret = local_read(&cpu_buffer->commit_overrun); 4984 4985 return ret; 4986 } 4987 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4988 4989 /** 4990 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4991 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4992 * @buffer: The ring buffer 4993 * @cpu: The per CPU buffer to get the number of overruns from 4994 */ 4995 unsigned long ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4996 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4997 { 4998 struct ring_buffer_per_cpu *cpu_buffer; 4999 unsigned long ret; 5000 5001 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5002 return 0; 5003 5004 cpu_buffer = buffer->buffers[cpu]; 5005 ret = local_read(&cpu_buffer->dropped_events); 5006 5007 return ret; 5008 } 5009 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 5010 5011 /** 5012 * ring_buffer_read_events_cpu - get the number of events successfully read 5013 * @buffer: The ring buffer 5014 * @cpu: The per CPU buffer to get the number of events read 5015 */ 5016 unsigned long ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5017 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 5018 { 5019 struct ring_buffer_per_cpu *cpu_buffer; 5020 5021 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5022 return 0; 5023 5024 cpu_buffer = buffer->buffers[cpu]; 5025 return cpu_buffer->read; 5026 } 5027 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 5028 5029 /** 5030 * ring_buffer_entries - get the number of entries in a buffer 5031 * @buffer: The ring buffer 5032 * 5033 * Returns the total number of entries in the ring buffer 5034 * (all CPU entries) 5035 */ ring_buffer_entries(struct trace_buffer * buffer)5036 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 5037 { 5038 struct ring_buffer_per_cpu *cpu_buffer; 5039 unsigned long entries = 0; 5040 int cpu; 5041 5042 /* if you care about this being correct, lock the buffer */ 5043 for_each_buffer_cpu(buffer, cpu) { 5044 cpu_buffer = buffer->buffers[cpu]; 5045 entries += rb_num_of_entries(cpu_buffer); 5046 } 5047 5048 return entries; 5049 } 5050 EXPORT_SYMBOL_GPL(ring_buffer_entries); 5051 5052 /** 5053 * ring_buffer_overruns - get the number of overruns in buffer 5054 * @buffer: The ring buffer 5055 * 5056 * Returns the total number of overruns in the ring buffer 5057 * (all CPU entries) 5058 */ ring_buffer_overruns(struct trace_buffer * buffer)5059 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 5060 { 5061 struct ring_buffer_per_cpu *cpu_buffer; 5062 unsigned long overruns = 0; 5063 int cpu; 5064 5065 /* if you care about this being correct, lock the buffer */ 5066 for_each_buffer_cpu(buffer, cpu) { 5067 cpu_buffer = buffer->buffers[cpu]; 5068 overruns += local_read(&cpu_buffer->overrun); 5069 } 5070 5071 return overruns; 5072 } 5073 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 5074 rb_iter_reset(struct ring_buffer_iter * iter)5075 static void rb_iter_reset(struct ring_buffer_iter *iter) 5076 { 5077 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5078 5079 /* Iterator usage is expected to have record disabled */ 5080 iter->head_page = cpu_buffer->reader_page; 5081 iter->head = cpu_buffer->reader_page->read; 5082 iter->next_event = iter->head; 5083 5084 iter->cache_reader_page = iter->head_page; 5085 iter->cache_read = cpu_buffer->read; 5086 iter->cache_pages_removed = cpu_buffer->pages_removed; 5087 5088 if (iter->head) { 5089 iter->read_stamp = cpu_buffer->read_stamp; 5090 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 5091 } else { 5092 iter->read_stamp = iter->head_page->page->time_stamp; 5093 iter->page_stamp = iter->read_stamp; 5094 } 5095 } 5096 5097 /** 5098 * ring_buffer_iter_reset - reset an iterator 5099 * @iter: The iterator to reset 5100 * 5101 * Resets the iterator, so that it will start from the beginning 5102 * again. 5103 */ ring_buffer_iter_reset(struct ring_buffer_iter * iter)5104 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 5105 { 5106 struct ring_buffer_per_cpu *cpu_buffer; 5107 unsigned long flags; 5108 5109 if (!iter) 5110 return; 5111 5112 cpu_buffer = iter->cpu_buffer; 5113 5114 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5115 rb_iter_reset(iter); 5116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5117 } 5118 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 5119 5120 /** 5121 * ring_buffer_iter_empty - check if an iterator has no more to read 5122 * @iter: The iterator to check 5123 */ ring_buffer_iter_empty(struct ring_buffer_iter * iter)5124 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 5125 { 5126 struct ring_buffer_per_cpu *cpu_buffer; 5127 struct buffer_page *reader; 5128 struct buffer_page *head_page; 5129 struct buffer_page *commit_page; 5130 struct buffer_page *curr_commit_page; 5131 unsigned commit; 5132 u64 curr_commit_ts; 5133 u64 commit_ts; 5134 5135 cpu_buffer = iter->cpu_buffer; 5136 reader = cpu_buffer->reader_page; 5137 head_page = cpu_buffer->head_page; 5138 commit_page = READ_ONCE(cpu_buffer->commit_page); 5139 commit_ts = commit_page->page->time_stamp; 5140 5141 /* 5142 * When the writer goes across pages, it issues a cmpxchg which 5143 * is a mb(), which will synchronize with the rmb here. 5144 * (see rb_tail_page_update()) 5145 */ 5146 smp_rmb(); 5147 commit = rb_page_commit(commit_page); 5148 /* We want to make sure that the commit page doesn't change */ 5149 smp_rmb(); 5150 5151 /* Make sure commit page didn't change */ 5152 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 5153 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 5154 5155 /* If the commit page changed, then there's more data */ 5156 if (curr_commit_page != commit_page || 5157 curr_commit_ts != commit_ts) 5158 return 0; 5159 5160 /* Still racy, as it may return a false positive, but that's OK */ 5161 return ((iter->head_page == commit_page && iter->head >= commit) || 5162 (iter->head_page == reader && commit_page == head_page && 5163 head_page->read == commit && 5164 iter->head == rb_page_size(cpu_buffer->reader_page))); 5165 } 5166 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 5167 5168 static void rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5169 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 5170 struct ring_buffer_event *event) 5171 { 5172 u64 delta; 5173 5174 switch (event->type_len) { 5175 case RINGBUF_TYPE_PADDING: 5176 return; 5177 5178 case RINGBUF_TYPE_TIME_EXTEND: 5179 delta = rb_event_time_stamp(event); 5180 cpu_buffer->read_stamp += delta; 5181 return; 5182 5183 case RINGBUF_TYPE_TIME_STAMP: 5184 delta = rb_event_time_stamp(event); 5185 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 5186 cpu_buffer->read_stamp = delta; 5187 return; 5188 5189 case RINGBUF_TYPE_DATA: 5190 cpu_buffer->read_stamp += event->time_delta; 5191 return; 5192 5193 default: 5194 RB_WARN_ON(cpu_buffer, 1); 5195 } 5196 } 5197 5198 static void rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5199 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 5200 struct ring_buffer_event *event) 5201 { 5202 u64 delta; 5203 5204 switch (event->type_len) { 5205 case RINGBUF_TYPE_PADDING: 5206 return; 5207 5208 case RINGBUF_TYPE_TIME_EXTEND: 5209 delta = rb_event_time_stamp(event); 5210 iter->read_stamp += delta; 5211 return; 5212 5213 case RINGBUF_TYPE_TIME_STAMP: 5214 delta = rb_event_time_stamp(event); 5215 delta = rb_fix_abs_ts(delta, iter->read_stamp); 5216 iter->read_stamp = delta; 5217 return; 5218 5219 case RINGBUF_TYPE_DATA: 5220 iter->read_stamp += event->time_delta; 5221 return; 5222 5223 default: 5224 RB_WARN_ON(iter->cpu_buffer, 1); 5225 } 5226 } 5227 5228 static struct buffer_page * rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5229 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 5230 { 5231 struct buffer_page *reader = NULL; 5232 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 5233 unsigned long overwrite; 5234 unsigned long flags; 5235 int nr_loops = 0; 5236 bool ret; 5237 5238 local_irq_save(flags); 5239 arch_spin_lock(&cpu_buffer->lock); 5240 5241 again: 5242 /* 5243 * This should normally only loop twice. But because the 5244 * start of the reader inserts an empty page, it causes 5245 * a case where we will loop three times. There should be no 5246 * reason to loop four times (that I know of). 5247 */ 5248 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 5249 reader = NULL; 5250 goto out; 5251 } 5252 5253 reader = cpu_buffer->reader_page; 5254 5255 /* If there's more to read, return this page */ 5256 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 5257 goto out; 5258 5259 /* Never should we have an index greater than the size */ 5260 if (RB_WARN_ON(cpu_buffer, 5261 cpu_buffer->reader_page->read > rb_page_size(reader))) 5262 goto out; 5263 5264 /* check if we caught up to the tail */ 5265 reader = NULL; 5266 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 5267 goto out; 5268 5269 /* Don't bother swapping if the ring buffer is empty */ 5270 if (rb_num_of_entries(cpu_buffer) == 0) 5271 goto out; 5272 5273 /* 5274 * Reset the reader page to size zero. 5275 */ 5276 local_set(&cpu_buffer->reader_page->write, 0); 5277 local_set(&cpu_buffer->reader_page->entries, 0); 5278 local_set(&cpu_buffer->reader_page->page->commit, 0); 5279 cpu_buffer->reader_page->real_end = 0; 5280 5281 spin: 5282 /* 5283 * Splice the empty reader page into the list around the head. 5284 */ 5285 reader = rb_set_head_page(cpu_buffer); 5286 if (!reader) 5287 goto out; 5288 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 5289 cpu_buffer->reader_page->list.prev = reader->list.prev; 5290 5291 /* 5292 * cpu_buffer->pages just needs to point to the buffer, it 5293 * has no specific buffer page to point to. Lets move it out 5294 * of our way so we don't accidentally swap it. 5295 */ 5296 cpu_buffer->pages = reader->list.prev; 5297 5298 /* The reader page will be pointing to the new head */ 5299 rb_set_list_to_head(&cpu_buffer->reader_page->list); 5300 5301 /* 5302 * We want to make sure we read the overruns after we set up our 5303 * pointers to the next object. The writer side does a 5304 * cmpxchg to cross pages which acts as the mb on the writer 5305 * side. Note, the reader will constantly fail the swap 5306 * while the writer is updating the pointers, so this 5307 * guarantees that the overwrite recorded here is the one we 5308 * want to compare with the last_overrun. 5309 */ 5310 smp_mb(); 5311 overwrite = local_read(&(cpu_buffer->overrun)); 5312 5313 /* 5314 * Here's the tricky part. 5315 * 5316 * We need to move the pointer past the header page. 5317 * But we can only do that if a writer is not currently 5318 * moving it. The page before the header page has the 5319 * flag bit '1' set if it is pointing to the page we want. 5320 * but if the writer is in the process of moving it 5321 * then it will be '2' or already moved '0'. 5322 */ 5323 5324 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 5325 5326 /* 5327 * If we did not convert it, then we must try again. 5328 */ 5329 if (!ret) 5330 goto spin; 5331 5332 if (cpu_buffer->ring_meta) 5333 rb_update_meta_reader(cpu_buffer, reader); 5334 5335 /* 5336 * Yay! We succeeded in replacing the page. 5337 * 5338 * Now make the new head point back to the reader page. 5339 */ 5340 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 5341 rb_inc_page(&cpu_buffer->head_page); 5342 5343 cpu_buffer->cnt++; 5344 local_inc(&cpu_buffer->pages_read); 5345 5346 /* Finally update the reader page to the new head */ 5347 cpu_buffer->reader_page = reader; 5348 cpu_buffer->reader_page->read = 0; 5349 5350 if (overwrite != cpu_buffer->last_overrun) { 5351 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 5352 cpu_buffer->last_overrun = overwrite; 5353 } 5354 5355 goto again; 5356 5357 out: 5358 /* Update the read_stamp on the first event */ 5359 if (reader && reader->read == 0) 5360 cpu_buffer->read_stamp = reader->page->time_stamp; 5361 5362 arch_spin_unlock(&cpu_buffer->lock); 5363 local_irq_restore(flags); 5364 5365 /* 5366 * The writer has preempt disable, wait for it. But not forever 5367 * Although, 1 second is pretty much "forever" 5368 */ 5369 #define USECS_WAIT 1000000 5370 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 5371 /* If the write is past the end of page, a writer is still updating it */ 5372 if (likely(!reader || rb_page_write(reader) <= bsize)) 5373 break; 5374 5375 udelay(1); 5376 5377 /* Get the latest version of the reader write value */ 5378 smp_rmb(); 5379 } 5380 5381 /* The writer is not moving forward? Something is wrong */ 5382 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 5383 reader = NULL; 5384 5385 /* 5386 * Make sure we see any padding after the write update 5387 * (see rb_reset_tail()). 5388 * 5389 * In addition, a writer may be writing on the reader page 5390 * if the page has not been fully filled, so the read barrier 5391 * is also needed to make sure we see the content of what is 5392 * committed by the writer (see rb_set_commit_to_write()). 5393 */ 5394 smp_rmb(); 5395 5396 5397 return reader; 5398 } 5399 rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5400 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 5401 { 5402 struct ring_buffer_event *event; 5403 struct buffer_page *reader; 5404 unsigned length; 5405 5406 reader = rb_get_reader_page(cpu_buffer); 5407 5408 /* This function should not be called when buffer is empty */ 5409 if (RB_WARN_ON(cpu_buffer, !reader)) 5410 return; 5411 5412 event = rb_reader_event(cpu_buffer); 5413 5414 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 5415 cpu_buffer->read++; 5416 5417 rb_update_read_stamp(cpu_buffer, event); 5418 5419 length = rb_event_length(event); 5420 cpu_buffer->reader_page->read += length; 5421 cpu_buffer->read_bytes += length; 5422 } 5423 rb_advance_iter(struct ring_buffer_iter * iter)5424 static void rb_advance_iter(struct ring_buffer_iter *iter) 5425 { 5426 struct ring_buffer_per_cpu *cpu_buffer; 5427 5428 cpu_buffer = iter->cpu_buffer; 5429 5430 /* If head == next_event then we need to jump to the next event */ 5431 if (iter->head == iter->next_event) { 5432 /* If the event gets overwritten again, there's nothing to do */ 5433 if (rb_iter_head_event(iter) == NULL) 5434 return; 5435 } 5436 5437 iter->head = iter->next_event; 5438 5439 /* 5440 * Check if we are at the end of the buffer. 5441 */ 5442 if (iter->next_event >= rb_page_size(iter->head_page)) { 5443 /* discarded commits can make the page empty */ 5444 if (iter->head_page == cpu_buffer->commit_page) 5445 return; 5446 rb_inc_iter(iter); 5447 return; 5448 } 5449 5450 rb_update_iter_read_stamp(iter, iter->event); 5451 } 5452 rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5453 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 5454 { 5455 return cpu_buffer->lost_events; 5456 } 5457 5458 static struct ring_buffer_event * rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5459 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 5460 unsigned long *lost_events) 5461 { 5462 struct ring_buffer_event *event; 5463 struct buffer_page *reader; 5464 int nr_loops = 0; 5465 5466 if (ts) 5467 *ts = 0; 5468 again: 5469 /* 5470 * We repeat when a time extend is encountered. 5471 * Since the time extend is always attached to a data event, 5472 * we should never loop more than once. 5473 * (We never hit the following condition more than twice). 5474 */ 5475 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 5476 return NULL; 5477 5478 reader = rb_get_reader_page(cpu_buffer); 5479 if (!reader) 5480 return NULL; 5481 5482 event = rb_reader_event(cpu_buffer); 5483 5484 switch (event->type_len) { 5485 case RINGBUF_TYPE_PADDING: 5486 if (rb_null_event(event)) 5487 RB_WARN_ON(cpu_buffer, 1); 5488 /* 5489 * Because the writer could be discarding every 5490 * event it creates (which would probably be bad) 5491 * if we were to go back to "again" then we may never 5492 * catch up, and will trigger the warn on, or lock 5493 * the box. Return the padding, and we will release 5494 * the current locks, and try again. 5495 */ 5496 return event; 5497 5498 case RINGBUF_TYPE_TIME_EXTEND: 5499 /* Internal data, OK to advance */ 5500 rb_advance_reader(cpu_buffer); 5501 goto again; 5502 5503 case RINGBUF_TYPE_TIME_STAMP: 5504 if (ts) { 5505 *ts = rb_event_time_stamp(event); 5506 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 5507 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5508 cpu_buffer->cpu, ts); 5509 } 5510 /* Internal data, OK to advance */ 5511 rb_advance_reader(cpu_buffer); 5512 goto again; 5513 5514 case RINGBUF_TYPE_DATA: 5515 if (ts && !(*ts)) { 5516 *ts = cpu_buffer->read_stamp + event->time_delta; 5517 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5518 cpu_buffer->cpu, ts); 5519 } 5520 if (lost_events) 5521 *lost_events = rb_lost_events(cpu_buffer); 5522 return event; 5523 5524 default: 5525 RB_WARN_ON(cpu_buffer, 1); 5526 } 5527 5528 return NULL; 5529 } 5530 EXPORT_SYMBOL_GPL(ring_buffer_peek); 5531 5532 static struct ring_buffer_event * rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5533 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5534 { 5535 struct trace_buffer *buffer; 5536 struct ring_buffer_per_cpu *cpu_buffer; 5537 struct ring_buffer_event *event; 5538 int nr_loops = 0; 5539 5540 if (ts) 5541 *ts = 0; 5542 5543 cpu_buffer = iter->cpu_buffer; 5544 buffer = cpu_buffer->buffer; 5545 5546 /* 5547 * Check if someone performed a consuming read to the buffer 5548 * or removed some pages from the buffer. In these cases, 5549 * iterator was invalidated and we need to reset it. 5550 */ 5551 if (unlikely(iter->cache_read != cpu_buffer->read || 5552 iter->cache_reader_page != cpu_buffer->reader_page || 5553 iter->cache_pages_removed != cpu_buffer->pages_removed)) 5554 rb_iter_reset(iter); 5555 5556 again: 5557 if (ring_buffer_iter_empty(iter)) 5558 return NULL; 5559 5560 /* 5561 * As the writer can mess with what the iterator is trying 5562 * to read, just give up if we fail to get an event after 5563 * three tries. The iterator is not as reliable when reading 5564 * the ring buffer with an active write as the consumer is. 5565 * Do not warn if the three failures is reached. 5566 */ 5567 if (++nr_loops > 3) 5568 return NULL; 5569 5570 if (rb_per_cpu_empty(cpu_buffer)) 5571 return NULL; 5572 5573 if (iter->head >= rb_page_size(iter->head_page)) { 5574 rb_inc_iter(iter); 5575 goto again; 5576 } 5577 5578 event = rb_iter_head_event(iter); 5579 if (!event) 5580 goto again; 5581 5582 switch (event->type_len) { 5583 case RINGBUF_TYPE_PADDING: 5584 if (rb_null_event(event)) { 5585 rb_inc_iter(iter); 5586 goto again; 5587 } 5588 rb_advance_iter(iter); 5589 return event; 5590 5591 case RINGBUF_TYPE_TIME_EXTEND: 5592 /* Internal data, OK to advance */ 5593 rb_advance_iter(iter); 5594 goto again; 5595 5596 case RINGBUF_TYPE_TIME_STAMP: 5597 if (ts) { 5598 *ts = rb_event_time_stamp(event); 5599 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 5600 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5601 cpu_buffer->cpu, ts); 5602 } 5603 /* Internal data, OK to advance */ 5604 rb_advance_iter(iter); 5605 goto again; 5606 5607 case RINGBUF_TYPE_DATA: 5608 if (ts && !(*ts)) { 5609 *ts = iter->read_stamp + event->time_delta; 5610 ring_buffer_normalize_time_stamp(buffer, 5611 cpu_buffer->cpu, ts); 5612 } 5613 return event; 5614 5615 default: 5616 RB_WARN_ON(cpu_buffer, 1); 5617 } 5618 5619 return NULL; 5620 } 5621 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 5622 rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5623 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 5624 { 5625 if (likely(!in_nmi())) { 5626 raw_spin_lock(&cpu_buffer->reader_lock); 5627 return true; 5628 } 5629 5630 /* 5631 * If an NMI die dumps out the content of the ring buffer 5632 * trylock must be used to prevent a deadlock if the NMI 5633 * preempted a task that holds the ring buffer locks. If 5634 * we get the lock then all is fine, if not, then continue 5635 * to do the read, but this can corrupt the ring buffer, 5636 * so it must be permanently disabled from future writes. 5637 * Reading from NMI is a oneshot deal. 5638 */ 5639 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 5640 return true; 5641 5642 /* Continue without locking, but disable the ring buffer */ 5643 atomic_inc(&cpu_buffer->record_disabled); 5644 return false; 5645 } 5646 5647 static inline void rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5648 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 5649 { 5650 if (likely(locked)) 5651 raw_spin_unlock(&cpu_buffer->reader_lock); 5652 } 5653 5654 /** 5655 * ring_buffer_peek - peek at the next event to be read 5656 * @buffer: The ring buffer to read 5657 * @cpu: The cpu to peak at 5658 * @ts: The timestamp counter of this event. 5659 * @lost_events: a variable to store if events were lost (may be NULL) 5660 * 5661 * This will return the event that will be read next, but does 5662 * not consume the data. 5663 */ 5664 struct ring_buffer_event * ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5665 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 5666 unsigned long *lost_events) 5667 { 5668 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5669 struct ring_buffer_event *event; 5670 unsigned long flags; 5671 bool dolock; 5672 5673 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5674 return NULL; 5675 5676 again: 5677 local_irq_save(flags); 5678 dolock = rb_reader_lock(cpu_buffer); 5679 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5680 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5681 rb_advance_reader(cpu_buffer); 5682 rb_reader_unlock(cpu_buffer, dolock); 5683 local_irq_restore(flags); 5684 5685 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5686 goto again; 5687 5688 return event; 5689 } 5690 5691 /** ring_buffer_iter_dropped - report if there are dropped events 5692 * @iter: The ring buffer iterator 5693 * 5694 * Returns true if there was dropped events since the last peek. 5695 */ ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5696 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5697 { 5698 bool ret = iter->missed_events != 0; 5699 5700 iter->missed_events = 0; 5701 return ret; 5702 } 5703 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5704 5705 /** 5706 * ring_buffer_iter_peek - peek at the next event to be read 5707 * @iter: The ring buffer iterator 5708 * @ts: The timestamp counter of this event. 5709 * 5710 * This will return the event that will be read next, but does 5711 * not increment the iterator. 5712 */ 5713 struct ring_buffer_event * ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5714 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5715 { 5716 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5717 struct ring_buffer_event *event; 5718 unsigned long flags; 5719 5720 again: 5721 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5722 event = rb_iter_peek(iter, ts); 5723 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5724 5725 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5726 goto again; 5727 5728 return event; 5729 } 5730 5731 /** 5732 * ring_buffer_consume - return an event and consume it 5733 * @buffer: The ring buffer to get the next event from 5734 * @cpu: the cpu to read the buffer from 5735 * @ts: a variable to store the timestamp (may be NULL) 5736 * @lost_events: a variable to store if events were lost (may be NULL) 5737 * 5738 * Returns the next event in the ring buffer, and that event is consumed. 5739 * Meaning, that sequential reads will keep returning a different event, 5740 * and eventually empty the ring buffer if the producer is slower. 5741 */ 5742 struct ring_buffer_event * ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5743 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5744 unsigned long *lost_events) 5745 { 5746 struct ring_buffer_per_cpu *cpu_buffer; 5747 struct ring_buffer_event *event = NULL; 5748 unsigned long flags; 5749 bool dolock; 5750 5751 again: 5752 /* might be called in atomic */ 5753 preempt_disable(); 5754 5755 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5756 goto out; 5757 5758 cpu_buffer = buffer->buffers[cpu]; 5759 local_irq_save(flags); 5760 dolock = rb_reader_lock(cpu_buffer); 5761 5762 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5763 if (event) { 5764 cpu_buffer->lost_events = 0; 5765 rb_advance_reader(cpu_buffer); 5766 } 5767 5768 rb_reader_unlock(cpu_buffer, dolock); 5769 local_irq_restore(flags); 5770 5771 out: 5772 preempt_enable(); 5773 5774 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5775 goto again; 5776 5777 return event; 5778 } 5779 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5780 5781 /** 5782 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5783 * @buffer: The ring buffer to read from 5784 * @cpu: The cpu buffer to iterate over 5785 * @flags: gfp flags to use for memory allocation 5786 * 5787 * This performs the initial preparations necessary to iterate 5788 * through the buffer. Memory is allocated, buffer resizing 5789 * is disabled, and the iterator pointer is returned to the caller. 5790 * 5791 * After a sequence of ring_buffer_read_prepare calls, the user is 5792 * expected to make at least one call to ring_buffer_read_prepare_sync. 5793 * Afterwards, ring_buffer_read_start is invoked to get things going 5794 * for real. 5795 * 5796 * This overall must be paired with ring_buffer_read_finish. 5797 */ 5798 struct ring_buffer_iter * ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)5799 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5800 { 5801 struct ring_buffer_per_cpu *cpu_buffer; 5802 struct ring_buffer_iter *iter; 5803 5804 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5805 return NULL; 5806 5807 iter = kzalloc(sizeof(*iter), flags); 5808 if (!iter) 5809 return NULL; 5810 5811 /* Holds the entire event: data and meta data */ 5812 iter->event_size = buffer->subbuf_size; 5813 iter->event = kmalloc(iter->event_size, flags); 5814 if (!iter->event) { 5815 kfree(iter); 5816 return NULL; 5817 } 5818 5819 cpu_buffer = buffer->buffers[cpu]; 5820 5821 iter->cpu_buffer = cpu_buffer; 5822 5823 atomic_inc(&cpu_buffer->resize_disabled); 5824 5825 return iter; 5826 } 5827 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5828 5829 /** 5830 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5831 * 5832 * All previously invoked ring_buffer_read_prepare calls to prepare 5833 * iterators will be synchronized. Afterwards, read_buffer_read_start 5834 * calls on those iterators are allowed. 5835 */ 5836 void ring_buffer_read_prepare_sync(void)5837 ring_buffer_read_prepare_sync(void) 5838 { 5839 synchronize_rcu(); 5840 } 5841 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5842 5843 /** 5844 * ring_buffer_read_start - start a non consuming read of the buffer 5845 * @iter: The iterator returned by ring_buffer_read_prepare 5846 * 5847 * This finalizes the startup of an iteration through the buffer. 5848 * The iterator comes from a call to ring_buffer_read_prepare and 5849 * an intervening ring_buffer_read_prepare_sync must have been 5850 * performed. 5851 * 5852 * Must be paired with ring_buffer_read_finish. 5853 */ 5854 void ring_buffer_read_start(struct ring_buffer_iter * iter)5855 ring_buffer_read_start(struct ring_buffer_iter *iter) 5856 { 5857 struct ring_buffer_per_cpu *cpu_buffer; 5858 unsigned long flags; 5859 5860 if (!iter) 5861 return; 5862 5863 cpu_buffer = iter->cpu_buffer; 5864 5865 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5866 arch_spin_lock(&cpu_buffer->lock); 5867 rb_iter_reset(iter); 5868 arch_spin_unlock(&cpu_buffer->lock); 5869 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5870 } 5871 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5872 5873 /** 5874 * ring_buffer_read_finish - finish reading the iterator of the buffer 5875 * @iter: The iterator retrieved by ring_buffer_start 5876 * 5877 * This re-enables resizing of the buffer, and frees the iterator. 5878 */ 5879 void ring_buffer_read_finish(struct ring_buffer_iter * iter)5880 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5881 { 5882 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5883 5884 /* Use this opportunity to check the integrity of the ring buffer. */ 5885 rb_check_pages(cpu_buffer); 5886 5887 atomic_dec(&cpu_buffer->resize_disabled); 5888 kfree(iter->event); 5889 kfree(iter); 5890 } 5891 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5892 5893 /** 5894 * ring_buffer_iter_advance - advance the iterator to the next location 5895 * @iter: The ring buffer iterator 5896 * 5897 * Move the location of the iterator such that the next read will 5898 * be the next location of the iterator. 5899 */ ring_buffer_iter_advance(struct ring_buffer_iter * iter)5900 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5901 { 5902 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5903 unsigned long flags; 5904 5905 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5906 5907 rb_advance_iter(iter); 5908 5909 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5910 } 5911 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5912 5913 /** 5914 * ring_buffer_size - return the size of the ring buffer (in bytes) 5915 * @buffer: The ring buffer. 5916 * @cpu: The CPU to get ring buffer size from. 5917 */ ring_buffer_size(struct trace_buffer * buffer,int cpu)5918 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5919 { 5920 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5921 return 0; 5922 5923 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 5924 } 5925 EXPORT_SYMBOL_GPL(ring_buffer_size); 5926 5927 /** 5928 * ring_buffer_max_event_size - return the max data size of an event 5929 * @buffer: The ring buffer. 5930 * 5931 * Returns the maximum size an event can be. 5932 */ ring_buffer_max_event_size(struct trace_buffer * buffer)5933 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 5934 { 5935 /* If abs timestamp is requested, events have a timestamp too */ 5936 if (ring_buffer_time_stamp_abs(buffer)) 5937 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 5938 return buffer->max_data_size; 5939 } 5940 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 5941 rb_clear_buffer_page(struct buffer_page * page)5942 static void rb_clear_buffer_page(struct buffer_page *page) 5943 { 5944 local_set(&page->write, 0); 5945 local_set(&page->entries, 0); 5946 rb_init_page(page->page); 5947 page->read = 0; 5948 } 5949 rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)5950 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 5951 { 5952 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 5953 5954 if (!meta) 5955 return; 5956 5957 meta->reader.read = cpu_buffer->reader_page->read; 5958 meta->reader.id = cpu_buffer->reader_page->id; 5959 meta->reader.lost_events = cpu_buffer->lost_events; 5960 5961 meta->entries = local_read(&cpu_buffer->entries); 5962 meta->overrun = local_read(&cpu_buffer->overrun); 5963 meta->read = cpu_buffer->read; 5964 5965 /* Some archs do not have data cache coherency between kernel and user-space */ 5966 flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page)); 5967 } 5968 5969 static void rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)5970 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5971 { 5972 struct buffer_page *page; 5973 5974 rb_head_page_deactivate(cpu_buffer); 5975 5976 cpu_buffer->head_page 5977 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5978 rb_clear_buffer_page(cpu_buffer->head_page); 5979 list_for_each_entry(page, cpu_buffer->pages, list) { 5980 rb_clear_buffer_page(page); 5981 } 5982 5983 cpu_buffer->tail_page = cpu_buffer->head_page; 5984 cpu_buffer->commit_page = cpu_buffer->head_page; 5985 5986 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5987 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5988 rb_clear_buffer_page(cpu_buffer->reader_page); 5989 5990 local_set(&cpu_buffer->entries_bytes, 0); 5991 local_set(&cpu_buffer->overrun, 0); 5992 local_set(&cpu_buffer->commit_overrun, 0); 5993 local_set(&cpu_buffer->dropped_events, 0); 5994 local_set(&cpu_buffer->entries, 0); 5995 local_set(&cpu_buffer->committing, 0); 5996 local_set(&cpu_buffer->commits, 0); 5997 local_set(&cpu_buffer->pages_touched, 0); 5998 local_set(&cpu_buffer->pages_lost, 0); 5999 local_set(&cpu_buffer->pages_read, 0); 6000 cpu_buffer->last_pages_touch = 0; 6001 cpu_buffer->shortest_full = 0; 6002 cpu_buffer->read = 0; 6003 cpu_buffer->read_bytes = 0; 6004 6005 rb_time_set(&cpu_buffer->write_stamp, 0); 6006 rb_time_set(&cpu_buffer->before_stamp, 0); 6007 6008 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 6009 6010 cpu_buffer->lost_events = 0; 6011 cpu_buffer->last_overrun = 0; 6012 6013 rb_head_page_activate(cpu_buffer); 6014 cpu_buffer->pages_removed = 0; 6015 6016 if (cpu_buffer->mapped) { 6017 rb_update_meta_page(cpu_buffer); 6018 if (cpu_buffer->ring_meta) { 6019 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 6020 meta->commit_buffer = meta->head_buffer; 6021 } 6022 } 6023 } 6024 6025 /* Must have disabled the cpu buffer then done a synchronize_rcu */ reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6026 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6027 { 6028 unsigned long flags; 6029 6030 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6031 6032 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 6033 goto out; 6034 6035 arch_spin_lock(&cpu_buffer->lock); 6036 6037 rb_reset_cpu(cpu_buffer); 6038 6039 arch_spin_unlock(&cpu_buffer->lock); 6040 6041 out: 6042 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6043 } 6044 6045 /** 6046 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 6047 * @buffer: The ring buffer to reset a per cpu buffer of 6048 * @cpu: The CPU buffer to be reset 6049 */ ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6050 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 6051 { 6052 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6053 struct ring_buffer_meta *meta; 6054 6055 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6056 return; 6057 6058 /* prevent another thread from changing buffer sizes */ 6059 mutex_lock(&buffer->mutex); 6060 6061 atomic_inc(&cpu_buffer->resize_disabled); 6062 atomic_inc(&cpu_buffer->record_disabled); 6063 6064 /* Make sure all commits have finished */ 6065 synchronize_rcu(); 6066 6067 reset_disabled_cpu_buffer(cpu_buffer); 6068 6069 atomic_dec(&cpu_buffer->record_disabled); 6070 atomic_dec(&cpu_buffer->resize_disabled); 6071 6072 /* Make sure persistent meta now uses this buffer's addresses */ 6073 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu); 6074 if (meta) 6075 rb_meta_init_text_addr(meta); 6076 6077 mutex_unlock(&buffer->mutex); 6078 } 6079 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 6080 6081 /* Flag to ensure proper resetting of atomic variables */ 6082 #define RESET_BIT (1 << 30) 6083 6084 /** 6085 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 6086 * @buffer: The ring buffer to reset a per cpu buffer of 6087 */ ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6088 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 6089 { 6090 struct ring_buffer_per_cpu *cpu_buffer; 6091 struct ring_buffer_meta *meta; 6092 int cpu; 6093 6094 /* prevent another thread from changing buffer sizes */ 6095 mutex_lock(&buffer->mutex); 6096 6097 for_each_online_buffer_cpu(buffer, cpu) { 6098 cpu_buffer = buffer->buffers[cpu]; 6099 6100 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 6101 atomic_inc(&cpu_buffer->record_disabled); 6102 } 6103 6104 /* Make sure all commits have finished */ 6105 synchronize_rcu(); 6106 6107 for_each_buffer_cpu(buffer, cpu) { 6108 cpu_buffer = buffer->buffers[cpu]; 6109 6110 /* 6111 * If a CPU came online during the synchronize_rcu(), then 6112 * ignore it. 6113 */ 6114 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 6115 continue; 6116 6117 reset_disabled_cpu_buffer(cpu_buffer); 6118 6119 /* Make sure persistent meta now uses this buffer's addresses */ 6120 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu); 6121 if (meta) 6122 rb_meta_init_text_addr(meta); 6123 6124 atomic_dec(&cpu_buffer->record_disabled); 6125 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 6126 } 6127 6128 mutex_unlock(&buffer->mutex); 6129 } 6130 6131 /** 6132 * ring_buffer_reset - reset a ring buffer 6133 * @buffer: The ring buffer to reset all cpu buffers 6134 */ ring_buffer_reset(struct trace_buffer * buffer)6135 void ring_buffer_reset(struct trace_buffer *buffer) 6136 { 6137 struct ring_buffer_per_cpu *cpu_buffer; 6138 int cpu; 6139 6140 /* prevent another thread from changing buffer sizes */ 6141 mutex_lock(&buffer->mutex); 6142 6143 for_each_buffer_cpu(buffer, cpu) { 6144 cpu_buffer = buffer->buffers[cpu]; 6145 6146 atomic_inc(&cpu_buffer->resize_disabled); 6147 atomic_inc(&cpu_buffer->record_disabled); 6148 } 6149 6150 /* Make sure all commits have finished */ 6151 synchronize_rcu(); 6152 6153 for_each_buffer_cpu(buffer, cpu) { 6154 cpu_buffer = buffer->buffers[cpu]; 6155 6156 reset_disabled_cpu_buffer(cpu_buffer); 6157 6158 atomic_dec(&cpu_buffer->record_disabled); 6159 atomic_dec(&cpu_buffer->resize_disabled); 6160 } 6161 6162 mutex_unlock(&buffer->mutex); 6163 } 6164 EXPORT_SYMBOL_GPL(ring_buffer_reset); 6165 6166 /** 6167 * ring_buffer_empty - is the ring buffer empty? 6168 * @buffer: The ring buffer to test 6169 */ ring_buffer_empty(struct trace_buffer * buffer)6170 bool ring_buffer_empty(struct trace_buffer *buffer) 6171 { 6172 struct ring_buffer_per_cpu *cpu_buffer; 6173 unsigned long flags; 6174 bool dolock; 6175 bool ret; 6176 int cpu; 6177 6178 /* yes this is racy, but if you don't like the race, lock the buffer */ 6179 for_each_buffer_cpu(buffer, cpu) { 6180 cpu_buffer = buffer->buffers[cpu]; 6181 local_irq_save(flags); 6182 dolock = rb_reader_lock(cpu_buffer); 6183 ret = rb_per_cpu_empty(cpu_buffer); 6184 rb_reader_unlock(cpu_buffer, dolock); 6185 local_irq_restore(flags); 6186 6187 if (!ret) 6188 return false; 6189 } 6190 6191 return true; 6192 } 6193 EXPORT_SYMBOL_GPL(ring_buffer_empty); 6194 6195 /** 6196 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 6197 * @buffer: The ring buffer 6198 * @cpu: The CPU buffer to test 6199 */ ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6200 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 6201 { 6202 struct ring_buffer_per_cpu *cpu_buffer; 6203 unsigned long flags; 6204 bool dolock; 6205 bool ret; 6206 6207 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6208 return true; 6209 6210 cpu_buffer = buffer->buffers[cpu]; 6211 local_irq_save(flags); 6212 dolock = rb_reader_lock(cpu_buffer); 6213 ret = rb_per_cpu_empty(cpu_buffer); 6214 rb_reader_unlock(cpu_buffer, dolock); 6215 local_irq_restore(flags); 6216 6217 return ret; 6218 } 6219 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 6220 6221 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 6222 /** 6223 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 6224 * @buffer_a: One buffer to swap with 6225 * @buffer_b: The other buffer to swap with 6226 * @cpu: the CPU of the buffers to swap 6227 * 6228 * This function is useful for tracers that want to take a "snapshot" 6229 * of a CPU buffer and has another back up buffer lying around. 6230 * it is expected that the tracer handles the cpu buffer not being 6231 * used at the moment. 6232 */ ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6233 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 6234 struct trace_buffer *buffer_b, int cpu) 6235 { 6236 struct ring_buffer_per_cpu *cpu_buffer_a; 6237 struct ring_buffer_per_cpu *cpu_buffer_b; 6238 int ret = -EINVAL; 6239 6240 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 6241 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 6242 goto out; 6243 6244 cpu_buffer_a = buffer_a->buffers[cpu]; 6245 cpu_buffer_b = buffer_b->buffers[cpu]; 6246 6247 /* It's up to the callers to not try to swap mapped buffers */ 6248 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) { 6249 ret = -EBUSY; 6250 goto out; 6251 } 6252 6253 /* At least make sure the two buffers are somewhat the same */ 6254 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 6255 goto out; 6256 6257 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 6258 goto out; 6259 6260 ret = -EAGAIN; 6261 6262 if (atomic_read(&buffer_a->record_disabled)) 6263 goto out; 6264 6265 if (atomic_read(&buffer_b->record_disabled)) 6266 goto out; 6267 6268 if (atomic_read(&cpu_buffer_a->record_disabled)) 6269 goto out; 6270 6271 if (atomic_read(&cpu_buffer_b->record_disabled)) 6272 goto out; 6273 6274 /* 6275 * We can't do a synchronize_rcu here because this 6276 * function can be called in atomic context. 6277 * Normally this will be called from the same CPU as cpu. 6278 * If not it's up to the caller to protect this. 6279 */ 6280 atomic_inc(&cpu_buffer_a->record_disabled); 6281 atomic_inc(&cpu_buffer_b->record_disabled); 6282 6283 ret = -EBUSY; 6284 if (local_read(&cpu_buffer_a->committing)) 6285 goto out_dec; 6286 if (local_read(&cpu_buffer_b->committing)) 6287 goto out_dec; 6288 6289 /* 6290 * When resize is in progress, we cannot swap it because 6291 * it will mess the state of the cpu buffer. 6292 */ 6293 if (atomic_read(&buffer_a->resizing)) 6294 goto out_dec; 6295 if (atomic_read(&buffer_b->resizing)) 6296 goto out_dec; 6297 6298 buffer_a->buffers[cpu] = cpu_buffer_b; 6299 buffer_b->buffers[cpu] = cpu_buffer_a; 6300 6301 cpu_buffer_b->buffer = buffer_a; 6302 cpu_buffer_a->buffer = buffer_b; 6303 6304 ret = 0; 6305 6306 out_dec: 6307 atomic_dec(&cpu_buffer_a->record_disabled); 6308 atomic_dec(&cpu_buffer_b->record_disabled); 6309 out: 6310 return ret; 6311 } 6312 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 6313 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 6314 6315 /** 6316 * ring_buffer_alloc_read_page - allocate a page to read from buffer 6317 * @buffer: the buffer to allocate for. 6318 * @cpu: the cpu buffer to allocate. 6319 * 6320 * This function is used in conjunction with ring_buffer_read_page. 6321 * When reading a full page from the ring buffer, these functions 6322 * can be used to speed up the process. The calling function should 6323 * allocate a few pages first with this function. Then when it 6324 * needs to get pages from the ring buffer, it passes the result 6325 * of this function into ring_buffer_read_page, which will swap 6326 * the page that was allocated, with the read page of the buffer. 6327 * 6328 * Returns: 6329 * The page allocated, or ERR_PTR 6330 */ 6331 struct buffer_data_read_page * ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6332 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 6333 { 6334 struct ring_buffer_per_cpu *cpu_buffer; 6335 struct buffer_data_read_page *bpage = NULL; 6336 unsigned long flags; 6337 struct page *page; 6338 6339 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6340 return ERR_PTR(-ENODEV); 6341 6342 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 6343 if (!bpage) 6344 return ERR_PTR(-ENOMEM); 6345 6346 bpage->order = buffer->subbuf_order; 6347 cpu_buffer = buffer->buffers[cpu]; 6348 local_irq_save(flags); 6349 arch_spin_lock(&cpu_buffer->lock); 6350 6351 if (cpu_buffer->free_page) { 6352 bpage->data = cpu_buffer->free_page; 6353 cpu_buffer->free_page = NULL; 6354 } 6355 6356 arch_spin_unlock(&cpu_buffer->lock); 6357 local_irq_restore(flags); 6358 6359 if (bpage->data) 6360 goto out; 6361 6362 page = alloc_pages_node(cpu_to_node(cpu), 6363 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO, 6364 cpu_buffer->buffer->subbuf_order); 6365 if (!page) { 6366 kfree(bpage); 6367 return ERR_PTR(-ENOMEM); 6368 } 6369 6370 bpage->data = page_address(page); 6371 6372 out: 6373 rb_init_page(bpage->data); 6374 6375 return bpage; 6376 } 6377 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 6378 6379 /** 6380 * ring_buffer_free_read_page - free an allocated read page 6381 * @buffer: the buffer the page was allocate for 6382 * @cpu: the cpu buffer the page came from 6383 * @data_page: the page to free 6384 * 6385 * Free a page allocated from ring_buffer_alloc_read_page. 6386 */ ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6387 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 6388 struct buffer_data_read_page *data_page) 6389 { 6390 struct ring_buffer_per_cpu *cpu_buffer; 6391 struct buffer_data_page *bpage = data_page->data; 6392 struct page *page = virt_to_page(bpage); 6393 unsigned long flags; 6394 6395 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 6396 return; 6397 6398 cpu_buffer = buffer->buffers[cpu]; 6399 6400 /* 6401 * If the page is still in use someplace else, or order of the page 6402 * is different from the subbuffer order of the buffer - 6403 * we can't reuse it 6404 */ 6405 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 6406 goto out; 6407 6408 local_irq_save(flags); 6409 arch_spin_lock(&cpu_buffer->lock); 6410 6411 if (!cpu_buffer->free_page) { 6412 cpu_buffer->free_page = bpage; 6413 bpage = NULL; 6414 } 6415 6416 arch_spin_unlock(&cpu_buffer->lock); 6417 local_irq_restore(flags); 6418 6419 out: 6420 free_pages((unsigned long)bpage, data_page->order); 6421 kfree(data_page); 6422 } 6423 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 6424 6425 /** 6426 * ring_buffer_read_page - extract a page from the ring buffer 6427 * @buffer: buffer to extract from 6428 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 6429 * @len: amount to extract 6430 * @cpu: the cpu of the buffer to extract 6431 * @full: should the extraction only happen when the page is full. 6432 * 6433 * This function will pull out a page from the ring buffer and consume it. 6434 * @data_page must be the address of the variable that was returned 6435 * from ring_buffer_alloc_read_page. This is because the page might be used 6436 * to swap with a page in the ring buffer. 6437 * 6438 * for example: 6439 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 6440 * if (IS_ERR(rpage)) 6441 * return PTR_ERR(rpage); 6442 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 6443 * if (ret >= 0) 6444 * process_page(ring_buffer_read_page_data(rpage), ret); 6445 * ring_buffer_free_read_page(buffer, cpu, rpage); 6446 * 6447 * When @full is set, the function will not return true unless 6448 * the writer is off the reader page. 6449 * 6450 * Note: it is up to the calling functions to handle sleeps and wakeups. 6451 * The ring buffer can be used anywhere in the kernel and can not 6452 * blindly call wake_up. The layer that uses the ring buffer must be 6453 * responsible for that. 6454 * 6455 * Returns: 6456 * >=0 if data has been transferred, returns the offset of consumed data. 6457 * <0 if no data has been transferred. 6458 */ ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6459 int ring_buffer_read_page(struct trace_buffer *buffer, 6460 struct buffer_data_read_page *data_page, 6461 size_t len, int cpu, int full) 6462 { 6463 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6464 struct ring_buffer_event *event; 6465 struct buffer_data_page *bpage; 6466 struct buffer_page *reader; 6467 unsigned long missed_events; 6468 unsigned long flags; 6469 unsigned int commit; 6470 unsigned int read; 6471 u64 save_timestamp; 6472 int ret = -1; 6473 6474 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6475 goto out; 6476 6477 /* 6478 * If len is not big enough to hold the page header, then 6479 * we can not copy anything. 6480 */ 6481 if (len <= BUF_PAGE_HDR_SIZE) 6482 goto out; 6483 6484 len -= BUF_PAGE_HDR_SIZE; 6485 6486 if (!data_page || !data_page->data) 6487 goto out; 6488 if (data_page->order != buffer->subbuf_order) 6489 goto out; 6490 6491 bpage = data_page->data; 6492 if (!bpage) 6493 goto out; 6494 6495 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6496 6497 reader = rb_get_reader_page(cpu_buffer); 6498 if (!reader) 6499 goto out_unlock; 6500 6501 event = rb_reader_event(cpu_buffer); 6502 6503 read = reader->read; 6504 commit = rb_page_size(reader); 6505 6506 /* Check if any events were dropped */ 6507 missed_events = cpu_buffer->lost_events; 6508 6509 /* 6510 * If this page has been partially read or 6511 * if len is not big enough to read the rest of the page or 6512 * a writer is still on the page, then 6513 * we must copy the data from the page to the buffer. 6514 * Otherwise, we can simply swap the page with the one passed in. 6515 */ 6516 if (read || (len < (commit - read)) || 6517 cpu_buffer->reader_page == cpu_buffer->commit_page || 6518 cpu_buffer->mapped) { 6519 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 6520 unsigned int rpos = read; 6521 unsigned int pos = 0; 6522 unsigned int size; 6523 6524 /* 6525 * If a full page is expected, this can still be returned 6526 * if there's been a previous partial read and the 6527 * rest of the page can be read and the commit page is off 6528 * the reader page. 6529 */ 6530 if (full && 6531 (!read || (len < (commit - read)) || 6532 cpu_buffer->reader_page == cpu_buffer->commit_page)) 6533 goto out_unlock; 6534 6535 if (len > (commit - read)) 6536 len = (commit - read); 6537 6538 /* Always keep the time extend and data together */ 6539 size = rb_event_ts_length(event); 6540 6541 if (len < size) 6542 goto out_unlock; 6543 6544 /* save the current timestamp, since the user will need it */ 6545 save_timestamp = cpu_buffer->read_stamp; 6546 6547 /* Need to copy one event at a time */ 6548 do { 6549 /* We need the size of one event, because 6550 * rb_advance_reader only advances by one event, 6551 * whereas rb_event_ts_length may include the size of 6552 * one or two events. 6553 * We have already ensured there's enough space if this 6554 * is a time extend. */ 6555 size = rb_event_length(event); 6556 memcpy(bpage->data + pos, rpage->data + rpos, size); 6557 6558 len -= size; 6559 6560 rb_advance_reader(cpu_buffer); 6561 rpos = reader->read; 6562 pos += size; 6563 6564 if (rpos >= commit) 6565 break; 6566 6567 event = rb_reader_event(cpu_buffer); 6568 /* Always keep the time extend and data together */ 6569 size = rb_event_ts_length(event); 6570 } while (len >= size); 6571 6572 /* update bpage */ 6573 local_set(&bpage->commit, pos); 6574 bpage->time_stamp = save_timestamp; 6575 6576 /* we copied everything to the beginning */ 6577 read = 0; 6578 } else { 6579 /* update the entry counter */ 6580 cpu_buffer->read += rb_page_entries(reader); 6581 cpu_buffer->read_bytes += rb_page_size(reader); 6582 6583 /* swap the pages */ 6584 rb_init_page(bpage); 6585 bpage = reader->page; 6586 reader->page = data_page->data; 6587 local_set(&reader->write, 0); 6588 local_set(&reader->entries, 0); 6589 reader->read = 0; 6590 data_page->data = bpage; 6591 6592 /* 6593 * Use the real_end for the data size, 6594 * This gives us a chance to store the lost events 6595 * on the page. 6596 */ 6597 if (reader->real_end) 6598 local_set(&bpage->commit, reader->real_end); 6599 } 6600 ret = read; 6601 6602 cpu_buffer->lost_events = 0; 6603 6604 commit = local_read(&bpage->commit); 6605 /* 6606 * Set a flag in the commit field if we lost events 6607 */ 6608 if (missed_events) { 6609 /* If there is room at the end of the page to save the 6610 * missed events, then record it there. 6611 */ 6612 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 6613 memcpy(&bpage->data[commit], &missed_events, 6614 sizeof(missed_events)); 6615 local_add(RB_MISSED_STORED, &bpage->commit); 6616 commit += sizeof(missed_events); 6617 } 6618 local_add(RB_MISSED_EVENTS, &bpage->commit); 6619 } 6620 6621 /* 6622 * This page may be off to user land. Zero it out here. 6623 */ 6624 if (commit < buffer->subbuf_size) 6625 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 6626 6627 out_unlock: 6628 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6629 6630 out: 6631 return ret; 6632 } 6633 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 6634 6635 /** 6636 * ring_buffer_read_page_data - get pointer to the data in the page. 6637 * @page: the page to get the data from 6638 * 6639 * Returns pointer to the actual data in this page. 6640 */ ring_buffer_read_page_data(struct buffer_data_read_page * page)6641 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 6642 { 6643 return page->data; 6644 } 6645 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 6646 6647 /** 6648 * ring_buffer_subbuf_size_get - get size of the sub buffer. 6649 * @buffer: the buffer to get the sub buffer size from 6650 * 6651 * Returns size of the sub buffer, in bytes. 6652 */ ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6653 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 6654 { 6655 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6656 } 6657 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 6658 6659 /** 6660 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 6661 * @buffer: The ring_buffer to get the system sub page order from 6662 * 6663 * By default, one ring buffer sub page equals to one system page. This parameter 6664 * is configurable, per ring buffer. The size of the ring buffer sub page can be 6665 * extended, but must be an order of system page size. 6666 * 6667 * Returns the order of buffer sub page size, in system pages: 6668 * 0 means the sub buffer size is 1 system page and so forth. 6669 * In case of an error < 0 is returned. 6670 */ ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6671 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 6672 { 6673 if (!buffer) 6674 return -EINVAL; 6675 6676 return buffer->subbuf_order; 6677 } 6678 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 6679 6680 /** 6681 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 6682 * @buffer: The ring_buffer to set the new page size. 6683 * @order: Order of the system pages in one sub buffer page 6684 * 6685 * By default, one ring buffer pages equals to one system page. This API can be 6686 * used to set new size of the ring buffer page. The size must be order of 6687 * system page size, that's why the input parameter @order is the order of 6688 * system pages that are allocated for one ring buffer page: 6689 * 0 - 1 system page 6690 * 1 - 2 system pages 6691 * 3 - 4 system pages 6692 * ... 6693 * 6694 * Returns 0 on success or < 0 in case of an error. 6695 */ ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6696 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 6697 { 6698 struct ring_buffer_per_cpu *cpu_buffer; 6699 struct buffer_page *bpage, *tmp; 6700 int old_order, old_size; 6701 int nr_pages; 6702 int psize; 6703 int err; 6704 int cpu; 6705 6706 if (!buffer || order < 0) 6707 return -EINVAL; 6708 6709 if (buffer->subbuf_order == order) 6710 return 0; 6711 6712 psize = (1 << order) * PAGE_SIZE; 6713 if (psize <= BUF_PAGE_HDR_SIZE) 6714 return -EINVAL; 6715 6716 /* Size of a subbuf cannot be greater than the write counter */ 6717 if (psize > RB_WRITE_MASK + 1) 6718 return -EINVAL; 6719 6720 old_order = buffer->subbuf_order; 6721 old_size = buffer->subbuf_size; 6722 6723 /* prevent another thread from changing buffer sizes */ 6724 mutex_lock(&buffer->mutex); 6725 atomic_inc(&buffer->record_disabled); 6726 6727 /* Make sure all commits have finished */ 6728 synchronize_rcu(); 6729 6730 buffer->subbuf_order = order; 6731 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 6732 6733 /* Make sure all new buffers are allocated, before deleting the old ones */ 6734 for_each_buffer_cpu(buffer, cpu) { 6735 6736 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6737 continue; 6738 6739 cpu_buffer = buffer->buffers[cpu]; 6740 6741 if (cpu_buffer->mapped) { 6742 err = -EBUSY; 6743 goto error; 6744 } 6745 6746 /* Update the number of pages to match the new size */ 6747 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 6748 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 6749 6750 /* we need a minimum of two pages */ 6751 if (nr_pages < 2) 6752 nr_pages = 2; 6753 6754 cpu_buffer->nr_pages_to_update = nr_pages; 6755 6756 /* Include the reader page */ 6757 nr_pages++; 6758 6759 /* Allocate the new size buffer */ 6760 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6761 if (__rb_allocate_pages(cpu_buffer, nr_pages, 6762 &cpu_buffer->new_pages)) { 6763 /* not enough memory for new pages */ 6764 err = -ENOMEM; 6765 goto error; 6766 } 6767 } 6768 6769 for_each_buffer_cpu(buffer, cpu) { 6770 struct buffer_data_page *old_free_data_page; 6771 struct list_head old_pages; 6772 unsigned long flags; 6773 6774 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6775 continue; 6776 6777 cpu_buffer = buffer->buffers[cpu]; 6778 6779 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6780 6781 /* Clear the head bit to make the link list normal to read */ 6782 rb_head_page_deactivate(cpu_buffer); 6783 6784 /* 6785 * Collect buffers from the cpu_buffer pages list and the 6786 * reader_page on old_pages, so they can be freed later when not 6787 * under a spinlock. The pages list is a linked list with no 6788 * head, adding old_pages turns it into a regular list with 6789 * old_pages being the head. 6790 */ 6791 list_add(&old_pages, cpu_buffer->pages); 6792 list_add(&cpu_buffer->reader_page->list, &old_pages); 6793 6794 /* One page was allocated for the reader page */ 6795 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 6796 struct buffer_page, list); 6797 list_del_init(&cpu_buffer->reader_page->list); 6798 6799 /* Install the new pages, remove the head from the list */ 6800 cpu_buffer->pages = cpu_buffer->new_pages.next; 6801 list_del_init(&cpu_buffer->new_pages); 6802 cpu_buffer->cnt++; 6803 6804 cpu_buffer->head_page 6805 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6806 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 6807 6808 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 6809 cpu_buffer->nr_pages_to_update = 0; 6810 6811 old_free_data_page = cpu_buffer->free_page; 6812 cpu_buffer->free_page = NULL; 6813 6814 rb_head_page_activate(cpu_buffer); 6815 6816 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6817 6818 /* Free old sub buffers */ 6819 list_for_each_entry_safe(bpage, tmp, &old_pages, list) { 6820 list_del_init(&bpage->list); 6821 free_buffer_page(bpage); 6822 } 6823 free_pages((unsigned long)old_free_data_page, old_order); 6824 6825 rb_check_pages(cpu_buffer); 6826 } 6827 6828 atomic_dec(&buffer->record_disabled); 6829 mutex_unlock(&buffer->mutex); 6830 6831 return 0; 6832 6833 error: 6834 buffer->subbuf_order = old_order; 6835 buffer->subbuf_size = old_size; 6836 6837 atomic_dec(&buffer->record_disabled); 6838 mutex_unlock(&buffer->mutex); 6839 6840 for_each_buffer_cpu(buffer, cpu) { 6841 cpu_buffer = buffer->buffers[cpu]; 6842 6843 if (!cpu_buffer->nr_pages_to_update) 6844 continue; 6845 6846 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 6847 list_del_init(&bpage->list); 6848 free_buffer_page(bpage); 6849 } 6850 } 6851 6852 return err; 6853 } 6854 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6855 rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6856 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6857 { 6858 struct page *page; 6859 6860 if (cpu_buffer->meta_page) 6861 return 0; 6862 6863 page = alloc_page(GFP_USER | __GFP_ZERO); 6864 if (!page) 6865 return -ENOMEM; 6866 6867 cpu_buffer->meta_page = page_to_virt(page); 6868 6869 return 0; 6870 } 6871 rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6872 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6873 { 6874 unsigned long addr = (unsigned long)cpu_buffer->meta_page; 6875 6876 free_page(addr); 6877 cpu_buffer->meta_page = NULL; 6878 } 6879 rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)6880 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer, 6881 unsigned long *subbuf_ids) 6882 { 6883 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 6884 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1; 6885 struct buffer_page *first_subbuf, *subbuf; 6886 int id = 0; 6887 6888 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page; 6889 cpu_buffer->reader_page->id = id++; 6890 6891 first_subbuf = subbuf = rb_set_head_page(cpu_buffer); 6892 do { 6893 if (WARN_ON(id >= nr_subbufs)) 6894 break; 6895 6896 subbuf_ids[id] = (unsigned long)subbuf->page; 6897 subbuf->id = id; 6898 6899 rb_inc_page(&subbuf); 6900 id++; 6901 } while (subbuf != first_subbuf); 6902 6903 /* install subbuf ID to kern VA translation */ 6904 cpu_buffer->subbuf_ids = subbuf_ids; 6905 6906 meta->meta_struct_len = sizeof(*meta); 6907 meta->nr_subbufs = nr_subbufs; 6908 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6909 meta->meta_page_size = meta->subbuf_size; 6910 6911 rb_update_meta_page(cpu_buffer); 6912 } 6913 6914 static struct ring_buffer_per_cpu * rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)6915 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu) 6916 { 6917 struct ring_buffer_per_cpu *cpu_buffer; 6918 6919 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6920 return ERR_PTR(-EINVAL); 6921 6922 cpu_buffer = buffer->buffers[cpu]; 6923 6924 mutex_lock(&cpu_buffer->mapping_lock); 6925 6926 if (!cpu_buffer->user_mapped) { 6927 mutex_unlock(&cpu_buffer->mapping_lock); 6928 return ERR_PTR(-ENODEV); 6929 } 6930 6931 return cpu_buffer; 6932 } 6933 rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)6934 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6935 { 6936 mutex_unlock(&cpu_buffer->mapping_lock); 6937 } 6938 6939 /* 6940 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need 6941 * to be set-up or torn-down. 6942 */ __rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)6943 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer, 6944 bool inc) 6945 { 6946 unsigned long flags; 6947 6948 lockdep_assert_held(&cpu_buffer->mapping_lock); 6949 6950 /* mapped is always greater or equal to user_mapped */ 6951 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped)) 6952 return -EINVAL; 6953 6954 if (inc && cpu_buffer->mapped == UINT_MAX) 6955 return -EBUSY; 6956 6957 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0)) 6958 return -EINVAL; 6959 6960 mutex_lock(&cpu_buffer->buffer->mutex); 6961 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6962 6963 if (inc) { 6964 cpu_buffer->user_mapped++; 6965 cpu_buffer->mapped++; 6966 } else { 6967 cpu_buffer->user_mapped--; 6968 cpu_buffer->mapped--; 6969 } 6970 6971 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6972 mutex_unlock(&cpu_buffer->buffer->mutex); 6973 6974 return 0; 6975 } 6976 6977 /* 6978 * +--------------+ pgoff == 0 6979 * | meta page | 6980 * +--------------+ pgoff == 1 6981 * | subbuffer 0 | 6982 * | | 6983 * +--------------+ pgoff == (1 + (1 << subbuf_order)) 6984 * | subbuffer 1 | 6985 * | | 6986 * ... 6987 */ 6988 #ifdef CONFIG_MMU __rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)6989 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 6990 struct vm_area_struct *vma) 6991 { 6992 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff; 6993 unsigned int subbuf_pages, subbuf_order; 6994 struct page **pages; 6995 int p = 0, s = 0; 6996 int err; 6997 6998 /* Refuse MP_PRIVATE or writable mappings */ 6999 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC || 7000 !(vma->vm_flags & VM_MAYSHARE)) 7001 return -EPERM; 7002 7003 subbuf_order = cpu_buffer->buffer->subbuf_order; 7004 subbuf_pages = 1 << subbuf_order; 7005 7006 if (subbuf_order && pgoff % subbuf_pages) 7007 return -EINVAL; 7008 7009 /* 7010 * Make sure the mapping cannot become writable later. Also tell the VM 7011 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND). 7012 */ 7013 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP, 7014 VM_MAYWRITE); 7015 7016 lockdep_assert_held(&cpu_buffer->mapping_lock); 7017 7018 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */ 7019 nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */ 7020 if (nr_pages <= pgoff) 7021 return -EINVAL; 7022 7023 nr_pages -= pgoff; 7024 7025 nr_vma_pages = vma_pages(vma); 7026 if (!nr_vma_pages || nr_vma_pages > nr_pages) 7027 return -EINVAL; 7028 7029 nr_pages = nr_vma_pages; 7030 7031 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL); 7032 if (!pages) 7033 return -ENOMEM; 7034 7035 if (!pgoff) { 7036 unsigned long meta_page_padding; 7037 7038 pages[p++] = virt_to_page(cpu_buffer->meta_page); 7039 7040 /* 7041 * Pad with the zero-page to align the meta-page with the 7042 * sub-buffers. 7043 */ 7044 meta_page_padding = subbuf_pages - 1; 7045 while (meta_page_padding-- && p < nr_pages) { 7046 unsigned long __maybe_unused zero_addr = 7047 vma->vm_start + (PAGE_SIZE * p); 7048 7049 pages[p++] = ZERO_PAGE(zero_addr); 7050 } 7051 } else { 7052 /* Skip the meta-page */ 7053 pgoff -= subbuf_pages; 7054 7055 s += pgoff / subbuf_pages; 7056 } 7057 7058 while (p < nr_pages) { 7059 struct page *page; 7060 int off = 0; 7061 7062 if (WARN_ON_ONCE(s >= nr_subbufs)) { 7063 err = -EINVAL; 7064 goto out; 7065 } 7066 7067 page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]); 7068 7069 for (; off < (1 << (subbuf_order)); off++, page++) { 7070 if (p >= nr_pages) 7071 break; 7072 7073 pages[p++] = page; 7074 } 7075 s++; 7076 } 7077 7078 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages); 7079 7080 out: 7081 kfree(pages); 7082 7083 return err; 7084 } 7085 #else __rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7086 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 7087 struct vm_area_struct *vma) 7088 { 7089 return -EOPNOTSUPP; 7090 } 7091 #endif 7092 ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7093 int ring_buffer_map(struct trace_buffer *buffer, int cpu, 7094 struct vm_area_struct *vma) 7095 { 7096 struct ring_buffer_per_cpu *cpu_buffer; 7097 unsigned long flags, *subbuf_ids; 7098 int err = 0; 7099 7100 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7101 return -EINVAL; 7102 7103 cpu_buffer = buffer->buffers[cpu]; 7104 7105 mutex_lock(&cpu_buffer->mapping_lock); 7106 7107 if (cpu_buffer->user_mapped) { 7108 err = __rb_map_vma(cpu_buffer, vma); 7109 if (!err) 7110 err = __rb_inc_dec_mapped(cpu_buffer, true); 7111 mutex_unlock(&cpu_buffer->mapping_lock); 7112 return err; 7113 } 7114 7115 /* prevent another thread from changing buffer/sub-buffer sizes */ 7116 mutex_lock(&buffer->mutex); 7117 7118 err = rb_alloc_meta_page(cpu_buffer); 7119 if (err) 7120 goto unlock; 7121 7122 /* subbuf_ids include the reader while nr_pages does not */ 7123 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL); 7124 if (!subbuf_ids) { 7125 rb_free_meta_page(cpu_buffer); 7126 err = -ENOMEM; 7127 goto unlock; 7128 } 7129 7130 atomic_inc(&cpu_buffer->resize_disabled); 7131 7132 /* 7133 * Lock all readers to block any subbuf swap until the subbuf IDs are 7134 * assigned. 7135 */ 7136 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7137 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids); 7138 7139 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7140 7141 err = __rb_map_vma(cpu_buffer, vma); 7142 if (!err) { 7143 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7144 /* This is the first time it is mapped by user */ 7145 cpu_buffer->mapped++; 7146 cpu_buffer->user_mapped = 1; 7147 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7148 } else { 7149 kfree(cpu_buffer->subbuf_ids); 7150 cpu_buffer->subbuf_ids = NULL; 7151 rb_free_meta_page(cpu_buffer); 7152 atomic_dec(&cpu_buffer->resize_disabled); 7153 } 7154 7155 unlock: 7156 mutex_unlock(&buffer->mutex); 7157 mutex_unlock(&cpu_buffer->mapping_lock); 7158 7159 return err; 7160 } 7161 ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7162 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu) 7163 { 7164 struct ring_buffer_per_cpu *cpu_buffer; 7165 unsigned long flags; 7166 int err = 0; 7167 7168 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7169 return -EINVAL; 7170 7171 cpu_buffer = buffer->buffers[cpu]; 7172 7173 mutex_lock(&cpu_buffer->mapping_lock); 7174 7175 if (!cpu_buffer->user_mapped) { 7176 err = -ENODEV; 7177 goto out; 7178 } else if (cpu_buffer->user_mapped > 1) { 7179 __rb_inc_dec_mapped(cpu_buffer, false); 7180 goto out; 7181 } 7182 7183 mutex_lock(&buffer->mutex); 7184 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7185 7186 /* This is the last user space mapping */ 7187 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped)) 7188 cpu_buffer->mapped--; 7189 cpu_buffer->user_mapped = 0; 7190 7191 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7192 7193 kfree(cpu_buffer->subbuf_ids); 7194 cpu_buffer->subbuf_ids = NULL; 7195 rb_free_meta_page(cpu_buffer); 7196 atomic_dec(&cpu_buffer->resize_disabled); 7197 7198 mutex_unlock(&buffer->mutex); 7199 7200 out: 7201 mutex_unlock(&cpu_buffer->mapping_lock); 7202 7203 return err; 7204 } 7205 ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7206 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu) 7207 { 7208 struct ring_buffer_per_cpu *cpu_buffer; 7209 struct buffer_page *reader; 7210 unsigned long missed_events; 7211 unsigned long reader_size; 7212 unsigned long flags; 7213 7214 cpu_buffer = rb_get_mapped_buffer(buffer, cpu); 7215 if (IS_ERR(cpu_buffer)) 7216 return (int)PTR_ERR(cpu_buffer); 7217 7218 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7219 7220 consume: 7221 if (rb_per_cpu_empty(cpu_buffer)) 7222 goto out; 7223 7224 reader_size = rb_page_size(cpu_buffer->reader_page); 7225 7226 /* 7227 * There are data to be read on the current reader page, we can 7228 * return to the caller. But before that, we assume the latter will read 7229 * everything. Let's update the kernel reader accordingly. 7230 */ 7231 if (cpu_buffer->reader_page->read < reader_size) { 7232 while (cpu_buffer->reader_page->read < reader_size) 7233 rb_advance_reader(cpu_buffer); 7234 goto out; 7235 } 7236 7237 reader = rb_get_reader_page(cpu_buffer); 7238 if (WARN_ON(!reader)) 7239 goto out; 7240 7241 /* Check if any events were dropped */ 7242 missed_events = cpu_buffer->lost_events; 7243 7244 if (cpu_buffer->reader_page != cpu_buffer->commit_page) { 7245 if (missed_events) { 7246 struct buffer_data_page *bpage = reader->page; 7247 unsigned int commit; 7248 /* 7249 * Use the real_end for the data size, 7250 * This gives us a chance to store the lost events 7251 * on the page. 7252 */ 7253 if (reader->real_end) 7254 local_set(&bpage->commit, reader->real_end); 7255 /* 7256 * If there is room at the end of the page to save the 7257 * missed events, then record it there. 7258 */ 7259 commit = rb_page_size(reader); 7260 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 7261 memcpy(&bpage->data[commit], &missed_events, 7262 sizeof(missed_events)); 7263 local_add(RB_MISSED_STORED, &bpage->commit); 7264 } 7265 local_add(RB_MISSED_EVENTS, &bpage->commit); 7266 } 7267 } else { 7268 /* 7269 * There really shouldn't be any missed events if the commit 7270 * is on the reader page. 7271 */ 7272 WARN_ON_ONCE(missed_events); 7273 } 7274 7275 cpu_buffer->lost_events = 0; 7276 7277 goto consume; 7278 7279 out: 7280 /* Some archs do not have data cache coherency between kernel and user-space */ 7281 flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page)); 7282 7283 rb_update_meta_page(cpu_buffer); 7284 7285 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7286 rb_put_mapped_buffer(cpu_buffer); 7287 7288 return 0; 7289 } 7290 7291 /* 7292 * We only allocate new buffers, never free them if the CPU goes down. 7293 * If we were to free the buffer, then the user would lose any trace that was in 7294 * the buffer. 7295 */ trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7296 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 7297 { 7298 struct trace_buffer *buffer; 7299 long nr_pages_same; 7300 int cpu_i; 7301 unsigned long nr_pages; 7302 7303 buffer = container_of(node, struct trace_buffer, node); 7304 if (cpumask_test_cpu(cpu, buffer->cpumask)) 7305 return 0; 7306 7307 nr_pages = 0; 7308 nr_pages_same = 1; 7309 /* check if all cpu sizes are same */ 7310 for_each_buffer_cpu(buffer, cpu_i) { 7311 /* fill in the size from first enabled cpu */ 7312 if (nr_pages == 0) 7313 nr_pages = buffer->buffers[cpu_i]->nr_pages; 7314 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 7315 nr_pages_same = 0; 7316 break; 7317 } 7318 } 7319 /* allocate minimum pages, user can later expand it */ 7320 if (!nr_pages_same) 7321 nr_pages = 2; 7322 buffer->buffers[cpu] = 7323 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 7324 if (!buffer->buffers[cpu]) { 7325 WARN(1, "failed to allocate ring buffer on CPU %u\n", 7326 cpu); 7327 return -ENOMEM; 7328 } 7329 smp_wmb(); 7330 cpumask_set_cpu(cpu, buffer->cpumask); 7331 return 0; 7332 } 7333 7334 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 7335 /* 7336 * This is a basic integrity check of the ring buffer. 7337 * Late in the boot cycle this test will run when configured in. 7338 * It will kick off a thread per CPU that will go into a loop 7339 * writing to the per cpu ring buffer various sizes of data. 7340 * Some of the data will be large items, some small. 7341 * 7342 * Another thread is created that goes into a spin, sending out 7343 * IPIs to the other CPUs to also write into the ring buffer. 7344 * this is to test the nesting ability of the buffer. 7345 * 7346 * Basic stats are recorded and reported. If something in the 7347 * ring buffer should happen that's not expected, a big warning 7348 * is displayed and all ring buffers are disabled. 7349 */ 7350 static struct task_struct *rb_threads[NR_CPUS] __initdata; 7351 7352 struct rb_test_data { 7353 struct trace_buffer *buffer; 7354 unsigned long events; 7355 unsigned long bytes_written; 7356 unsigned long bytes_alloc; 7357 unsigned long bytes_dropped; 7358 unsigned long events_nested; 7359 unsigned long bytes_written_nested; 7360 unsigned long bytes_alloc_nested; 7361 unsigned long bytes_dropped_nested; 7362 int min_size_nested; 7363 int max_size_nested; 7364 int max_size; 7365 int min_size; 7366 int cpu; 7367 int cnt; 7368 }; 7369 7370 static struct rb_test_data rb_data[NR_CPUS] __initdata; 7371 7372 /* 1 meg per cpu */ 7373 #define RB_TEST_BUFFER_SIZE 1048576 7374 7375 static char rb_string[] __initdata = 7376 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 7377 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 7378 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 7379 7380 static bool rb_test_started __initdata; 7381 7382 struct rb_item { 7383 int size; 7384 char str[]; 7385 }; 7386 rb_write_something(struct rb_test_data * data,bool nested)7387 static __init int rb_write_something(struct rb_test_data *data, bool nested) 7388 { 7389 struct ring_buffer_event *event; 7390 struct rb_item *item; 7391 bool started; 7392 int event_len; 7393 int size; 7394 int len; 7395 int cnt; 7396 7397 /* Have nested writes different that what is written */ 7398 cnt = data->cnt + (nested ? 27 : 0); 7399 7400 /* Multiply cnt by ~e, to make some unique increment */ 7401 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 7402 7403 len = size + sizeof(struct rb_item); 7404 7405 started = rb_test_started; 7406 /* read rb_test_started before checking buffer enabled */ 7407 smp_rmb(); 7408 7409 event = ring_buffer_lock_reserve(data->buffer, len); 7410 if (!event) { 7411 /* Ignore dropped events before test starts. */ 7412 if (started) { 7413 if (nested) 7414 data->bytes_dropped += len; 7415 else 7416 data->bytes_dropped_nested += len; 7417 } 7418 return len; 7419 } 7420 7421 event_len = ring_buffer_event_length(event); 7422 7423 if (RB_WARN_ON(data->buffer, event_len < len)) 7424 goto out; 7425 7426 item = ring_buffer_event_data(event); 7427 item->size = size; 7428 memcpy(item->str, rb_string, size); 7429 7430 if (nested) { 7431 data->bytes_alloc_nested += event_len; 7432 data->bytes_written_nested += len; 7433 data->events_nested++; 7434 if (!data->min_size_nested || len < data->min_size_nested) 7435 data->min_size_nested = len; 7436 if (len > data->max_size_nested) 7437 data->max_size_nested = len; 7438 } else { 7439 data->bytes_alloc += event_len; 7440 data->bytes_written += len; 7441 data->events++; 7442 if (!data->min_size || len < data->min_size) 7443 data->max_size = len; 7444 if (len > data->max_size) 7445 data->max_size = len; 7446 } 7447 7448 out: 7449 ring_buffer_unlock_commit(data->buffer); 7450 7451 return 0; 7452 } 7453 rb_test(void * arg)7454 static __init int rb_test(void *arg) 7455 { 7456 struct rb_test_data *data = arg; 7457 7458 while (!kthread_should_stop()) { 7459 rb_write_something(data, false); 7460 data->cnt++; 7461 7462 set_current_state(TASK_INTERRUPTIBLE); 7463 /* Now sleep between a min of 100-300us and a max of 1ms */ 7464 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 7465 } 7466 7467 return 0; 7468 } 7469 rb_ipi(void * ignore)7470 static __init void rb_ipi(void *ignore) 7471 { 7472 struct rb_test_data *data; 7473 int cpu = smp_processor_id(); 7474 7475 data = &rb_data[cpu]; 7476 rb_write_something(data, true); 7477 } 7478 rb_hammer_test(void * arg)7479 static __init int rb_hammer_test(void *arg) 7480 { 7481 while (!kthread_should_stop()) { 7482 7483 /* Send an IPI to all cpus to write data! */ 7484 smp_call_function(rb_ipi, NULL, 1); 7485 /* No sleep, but for non preempt, let others run */ 7486 schedule(); 7487 } 7488 7489 return 0; 7490 } 7491 test_ringbuffer(void)7492 static __init int test_ringbuffer(void) 7493 { 7494 struct task_struct *rb_hammer; 7495 struct trace_buffer *buffer; 7496 int cpu; 7497 int ret = 0; 7498 7499 if (security_locked_down(LOCKDOWN_TRACEFS)) { 7500 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 7501 return 0; 7502 } 7503 7504 pr_info("Running ring buffer tests...\n"); 7505 7506 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 7507 if (WARN_ON(!buffer)) 7508 return 0; 7509 7510 /* Disable buffer so that threads can't write to it yet */ 7511 ring_buffer_record_off(buffer); 7512 7513 for_each_online_cpu(cpu) { 7514 rb_data[cpu].buffer = buffer; 7515 rb_data[cpu].cpu = cpu; 7516 rb_data[cpu].cnt = cpu; 7517 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 7518 cpu, "rbtester/%u"); 7519 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 7520 pr_cont("FAILED\n"); 7521 ret = PTR_ERR(rb_threads[cpu]); 7522 goto out_free; 7523 } 7524 } 7525 7526 /* Now create the rb hammer! */ 7527 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 7528 if (WARN_ON(IS_ERR(rb_hammer))) { 7529 pr_cont("FAILED\n"); 7530 ret = PTR_ERR(rb_hammer); 7531 goto out_free; 7532 } 7533 7534 ring_buffer_record_on(buffer); 7535 /* 7536 * Show buffer is enabled before setting rb_test_started. 7537 * Yes there's a small race window where events could be 7538 * dropped and the thread wont catch it. But when a ring 7539 * buffer gets enabled, there will always be some kind of 7540 * delay before other CPUs see it. Thus, we don't care about 7541 * those dropped events. We care about events dropped after 7542 * the threads see that the buffer is active. 7543 */ 7544 smp_wmb(); 7545 rb_test_started = true; 7546 7547 set_current_state(TASK_INTERRUPTIBLE); 7548 /* Just run for 10 seconds */; 7549 schedule_timeout(10 * HZ); 7550 7551 kthread_stop(rb_hammer); 7552 7553 out_free: 7554 for_each_online_cpu(cpu) { 7555 if (!rb_threads[cpu]) 7556 break; 7557 kthread_stop(rb_threads[cpu]); 7558 } 7559 if (ret) { 7560 ring_buffer_free(buffer); 7561 return ret; 7562 } 7563 7564 /* Report! */ 7565 pr_info("finished\n"); 7566 for_each_online_cpu(cpu) { 7567 struct ring_buffer_event *event; 7568 struct rb_test_data *data = &rb_data[cpu]; 7569 struct rb_item *item; 7570 unsigned long total_events; 7571 unsigned long total_dropped; 7572 unsigned long total_written; 7573 unsigned long total_alloc; 7574 unsigned long total_read = 0; 7575 unsigned long total_size = 0; 7576 unsigned long total_len = 0; 7577 unsigned long total_lost = 0; 7578 unsigned long lost; 7579 int big_event_size; 7580 int small_event_size; 7581 7582 ret = -1; 7583 7584 total_events = data->events + data->events_nested; 7585 total_written = data->bytes_written + data->bytes_written_nested; 7586 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 7587 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 7588 7589 big_event_size = data->max_size + data->max_size_nested; 7590 small_event_size = data->min_size + data->min_size_nested; 7591 7592 pr_info("CPU %d:\n", cpu); 7593 pr_info(" events: %ld\n", total_events); 7594 pr_info(" dropped bytes: %ld\n", total_dropped); 7595 pr_info(" alloced bytes: %ld\n", total_alloc); 7596 pr_info(" written bytes: %ld\n", total_written); 7597 pr_info(" biggest event: %d\n", big_event_size); 7598 pr_info(" smallest event: %d\n", small_event_size); 7599 7600 if (RB_WARN_ON(buffer, total_dropped)) 7601 break; 7602 7603 ret = 0; 7604 7605 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 7606 total_lost += lost; 7607 item = ring_buffer_event_data(event); 7608 total_len += ring_buffer_event_length(event); 7609 total_size += item->size + sizeof(struct rb_item); 7610 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 7611 pr_info("FAILED!\n"); 7612 pr_info("buffer had: %.*s\n", item->size, item->str); 7613 pr_info("expected: %.*s\n", item->size, rb_string); 7614 RB_WARN_ON(buffer, 1); 7615 ret = -1; 7616 break; 7617 } 7618 total_read++; 7619 } 7620 if (ret) 7621 break; 7622 7623 ret = -1; 7624 7625 pr_info(" read events: %ld\n", total_read); 7626 pr_info(" lost events: %ld\n", total_lost); 7627 pr_info(" total events: %ld\n", total_lost + total_read); 7628 pr_info(" recorded len bytes: %ld\n", total_len); 7629 pr_info(" recorded size bytes: %ld\n", total_size); 7630 if (total_lost) { 7631 pr_info(" With dropped events, record len and size may not match\n" 7632 " alloced and written from above\n"); 7633 } else { 7634 if (RB_WARN_ON(buffer, total_len != total_alloc || 7635 total_size != total_written)) 7636 break; 7637 } 7638 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 7639 break; 7640 7641 ret = 0; 7642 } 7643 if (!ret) 7644 pr_info("Ring buffer PASSED!\n"); 7645 7646 ring_buffer_free(buffer); 7647 return 0; 7648 } 7649 7650 late_initcall(test_ringbuffer); 7651 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 7652