xref: /linux/kernel/trace/ring_buffer.c (revision 8934827db5403eae57d4537114a9ff88b0a8460f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/sched/isolation.h>
8 #include <linux/trace_recursion.h>
9 #include <linux/trace_events.h>
10 #include <linux/ring_buffer.h>
11 #include <linux/trace_clock.h>
12 #include <linux/sched/clock.h>
13 #include <linux/cacheflush.h>
14 #include <linux/trace_seq.h>
15 #include <linux/spinlock.h>
16 #include <linux/irq_work.h>
17 #include <linux/security.h>
18 #include <linux/uaccess.h>
19 #include <linux/hardirq.h>
20 #include <linux/kthread.h>	/* for self test */
21 #include <linux/module.h>
22 #include <linux/percpu.h>
23 #include <linux/mutex.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/list.h>
29 #include <linux/cpu.h>
30 #include <linux/oom.h>
31 #include <linux/mm.h>
32 
33 #include <asm/local64.h>
34 #include <asm/local.h>
35 #include <asm/setup.h>
36 
37 #include "trace.h"
38 
39 /*
40  * The "absolute" timestamp in the buffer is only 59 bits.
41  * If a clock has the 5 MSBs set, it needs to be saved and
42  * reinserted.
43  */
44 #define TS_MSB		(0xf8ULL << 56)
45 #define ABS_TS_MASK	(~TS_MSB)
46 
47 static void update_pages_handler(struct work_struct *work);
48 
49 #define RING_BUFFER_META_MAGIC	0xBADFEED
50 
51 struct ring_buffer_meta {
52 	int		magic;
53 	int		struct_sizes;
54 	unsigned long	total_size;
55 	unsigned long	buffers_offset;
56 };
57 
58 struct ring_buffer_cpu_meta {
59 	unsigned long	first_buffer;
60 	unsigned long	head_buffer;
61 	unsigned long	commit_buffer;
62 	__u32		subbuf_size;
63 	__u32		nr_subbufs;
64 	int		buffers[];
65 };
66 
67 /*
68  * The ring buffer header is special. We must manually up keep it.
69  */
ring_buffer_print_entry_header(struct trace_seq * s)70 int ring_buffer_print_entry_header(struct trace_seq *s)
71 {
72 	trace_seq_puts(s, "# compressed entry header\n");
73 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
74 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
75 	trace_seq_puts(s, "\tarray       :   32 bits\n");
76 	trace_seq_putc(s, '\n');
77 	trace_seq_printf(s, "\tpadding     : type == %d\n",
78 			 RINGBUF_TYPE_PADDING);
79 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
80 			 RINGBUF_TYPE_TIME_EXTEND);
81 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
82 			 RINGBUF_TYPE_TIME_STAMP);
83 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
84 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
85 
86 	return !trace_seq_has_overflowed(s);
87 }
88 
89 /*
90  * The ring buffer is made up of a list of pages. A separate list of pages is
91  * allocated for each CPU. A writer may only write to a buffer that is
92  * associated with the CPU it is currently executing on.  A reader may read
93  * from any per cpu buffer.
94  *
95  * The reader is special. For each per cpu buffer, the reader has its own
96  * reader page. When a reader has read the entire reader page, this reader
97  * page is swapped with another page in the ring buffer.
98  *
99  * Now, as long as the writer is off the reader page, the reader can do what
100  * ever it wants with that page. The writer will never write to that page
101  * again (as long as it is out of the ring buffer).
102  *
103  * Here's some silly ASCII art.
104  *
105  *   +------+
106  *   |reader|          RING BUFFER
107  *   |page  |
108  *   +------+        +---+   +---+   +---+
109  *                   |   |-->|   |-->|   |
110  *                   +---+   +---+   +---+
111  *                     ^               |
112  *                     |               |
113  *                     +---------------+
114  *
115  *
116  *   +------+
117  *   |reader|          RING BUFFER
118  *   |page  |------------------v
119  *   +------+        +---+   +---+   +---+
120  *                   |   |-->|   |-->|   |
121  *                   +---+   +---+   +---+
122  *                     ^               |
123  *                     |               |
124  *                     +---------------+
125  *
126  *
127  *   +------+
128  *   |reader|          RING BUFFER
129  *   |page  |------------------v
130  *   +------+        +---+   +---+   +---+
131  *      ^            |   |-->|   |-->|   |
132  *      |            +---+   +---+   +---+
133  *      |                              |
134  *      |                              |
135  *      +------------------------------+
136  *
137  *
138  *   +------+
139  *   |buffer|          RING BUFFER
140  *   |page  |------------------v
141  *   +------+        +---+   +---+   +---+
142  *      ^            |   |   |   |-->|   |
143  *      |   New      +---+   +---+   +---+
144  *      |  Reader------^               |
145  *      |   page                       |
146  *      +------------------------------+
147  *
148  *
149  * After we make this swap, the reader can hand this page off to the splice
150  * code and be done with it. It can even allocate a new page if it needs to
151  * and swap that into the ring buffer.
152  *
153  * We will be using cmpxchg soon to make all this lockless.
154  *
155  */
156 
157 /* Used for individual buffers (after the counter) */
158 #define RB_BUFFER_OFF		(1 << 20)
159 
160 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
161 
162 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
163 #define RB_ALIGNMENT		4U
164 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
165 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
166 
167 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
168 # define RB_FORCE_8BYTE_ALIGNMENT	0
169 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
170 #else
171 # define RB_FORCE_8BYTE_ALIGNMENT	1
172 # define RB_ARCH_ALIGNMENT		8U
173 #endif
174 
175 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
176 
177 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
178 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
179 
180 enum {
181 	RB_LEN_TIME_EXTEND = 8,
182 	RB_LEN_TIME_STAMP =  8,
183 };
184 
185 #define skip_time_extend(event) \
186 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
187 
188 #define extended_time(event) \
189 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
190 
rb_null_event(struct ring_buffer_event * event)191 static inline bool rb_null_event(struct ring_buffer_event *event)
192 {
193 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
194 }
195 
rb_event_set_padding(struct ring_buffer_event * event)196 static void rb_event_set_padding(struct ring_buffer_event *event)
197 {
198 	/* padding has a NULL time_delta */
199 	event->type_len = RINGBUF_TYPE_PADDING;
200 	event->time_delta = 0;
201 }
202 
203 static unsigned
rb_event_data_length(struct ring_buffer_event * event)204 rb_event_data_length(struct ring_buffer_event *event)
205 {
206 	unsigned length;
207 
208 	if (event->type_len)
209 		length = event->type_len * RB_ALIGNMENT;
210 	else
211 		length = event->array[0];
212 	return length + RB_EVNT_HDR_SIZE;
213 }
214 
215 /*
216  * Return the length of the given event. Will return
217  * the length of the time extend if the event is a
218  * time extend.
219  */
220 static inline unsigned
rb_event_length(struct ring_buffer_event * event)221 rb_event_length(struct ring_buffer_event *event)
222 {
223 	switch (event->type_len) {
224 	case RINGBUF_TYPE_PADDING:
225 		if (rb_null_event(event))
226 			/* undefined */
227 			return -1;
228 		return  event->array[0] + RB_EVNT_HDR_SIZE;
229 
230 	case RINGBUF_TYPE_TIME_EXTEND:
231 		return RB_LEN_TIME_EXTEND;
232 
233 	case RINGBUF_TYPE_TIME_STAMP:
234 		return RB_LEN_TIME_STAMP;
235 
236 	case RINGBUF_TYPE_DATA:
237 		return rb_event_data_length(event);
238 	default:
239 		WARN_ON_ONCE(1);
240 	}
241 	/* not hit */
242 	return 0;
243 }
244 
245 /*
246  * Return total length of time extend and data,
247  *   or just the event length for all other events.
248  */
249 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)250 rb_event_ts_length(struct ring_buffer_event *event)
251 {
252 	unsigned len = 0;
253 
254 	if (extended_time(event)) {
255 		/* time extends include the data event after it */
256 		len = RB_LEN_TIME_EXTEND;
257 		event = skip_time_extend(event);
258 	}
259 	return len + rb_event_length(event);
260 }
261 
262 /**
263  * ring_buffer_event_length - return the length of the event
264  * @event: the event to get the length of
265  *
266  * Returns the size of the data load of a data event.
267  * If the event is something other than a data event, it
268  * returns the size of the event itself. With the exception
269  * of a TIME EXTEND, where it still returns the size of the
270  * data load of the data event after it.
271  */
ring_buffer_event_length(struct ring_buffer_event * event)272 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
273 {
274 	unsigned length;
275 
276 	if (extended_time(event))
277 		event = skip_time_extend(event);
278 
279 	length = rb_event_length(event);
280 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
281 		return length;
282 	length -= RB_EVNT_HDR_SIZE;
283 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
284                 length -= sizeof(event->array[0]);
285 	return length;
286 }
287 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
288 
289 /* inline for ring buffer fast paths */
290 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)291 rb_event_data(struct ring_buffer_event *event)
292 {
293 	if (extended_time(event))
294 		event = skip_time_extend(event);
295 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
296 	/* If length is in len field, then array[0] has the data */
297 	if (event->type_len)
298 		return (void *)&event->array[0];
299 	/* Otherwise length is in array[0] and array[1] has the data */
300 	return (void *)&event->array[1];
301 }
302 
303 /**
304  * ring_buffer_event_data - return the data of the event
305  * @event: the event to get the data from
306  */
ring_buffer_event_data(struct ring_buffer_event * event)307 void *ring_buffer_event_data(struct ring_buffer_event *event)
308 {
309 	return rb_event_data(event);
310 }
311 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
312 
313 #define for_each_buffer_cpu(buffer, cpu)		\
314 	for_each_cpu(cpu, buffer->cpumask)
315 
316 #define for_each_online_buffer_cpu(buffer, cpu)		\
317 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
318 
319 #define TS_SHIFT	27
320 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
321 #define TS_DELTA_TEST	(~TS_MASK)
322 
rb_event_time_stamp(struct ring_buffer_event * event)323 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
324 {
325 	u64 ts;
326 
327 	ts = event->array[0];
328 	ts <<= TS_SHIFT;
329 	ts += event->time_delta;
330 
331 	return ts;
332 }
333 
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS	(1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED	(1 << 30)
338 
339 #define RB_MISSED_MASK		(3 << 30)
340 
341 struct buffer_data_page {
342 	u64		 time_stamp;	/* page time stamp */
343 	local_t		 commit;	/* write committed index */
344 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
345 };
346 
347 struct buffer_data_read_page {
348 	unsigned		order;	/* order of the page */
349 	struct buffer_data_page	*data;	/* actual data, stored in this page */
350 };
351 
352 /*
353  * Note, the buffer_page list must be first. The buffer pages
354  * are allocated in cache lines, which means that each buffer
355  * page will be at the beginning of a cache line, and thus
356  * the least significant bits will be zero. We use this to
357  * add flags in the list struct pointers, to make the ring buffer
358  * lockless.
359  */
360 struct buffer_page {
361 	struct list_head list;		/* list of buffer pages */
362 	local_t		 write;		/* index for next write */
363 	unsigned	 read;		/* index for next read */
364 	local_t		 entries;	/* entries on this page */
365 	unsigned long	 real_end;	/* real end of data */
366 	unsigned	 order;		/* order of the page */
367 	u32		 id:30;		/* ID for external mapping */
368 	u32		 range:1;	/* Mapped via a range */
369 	struct buffer_data_page *page;	/* Actual data page */
370 };
371 
372 /*
373  * The buffer page counters, write and entries, must be reset
374  * atomically when crossing page boundaries. To synchronize this
375  * update, two counters are inserted into the number. One is
376  * the actual counter for the write position or count on the page.
377  *
378  * The other is a counter of updaters. Before an update happens
379  * the update partition of the counter is incremented. This will
380  * allow the updater to update the counter atomically.
381  *
382  * The counter is 20 bits, and the state data is 12.
383  */
384 #define RB_WRITE_MASK		0xfffff
385 #define RB_WRITE_INTCNT		(1 << 20)
386 
rb_init_page(struct buffer_data_page * bpage)387 static void rb_init_page(struct buffer_data_page *bpage)
388 {
389 	local_set(&bpage->commit, 0);
390 }
391 
rb_page_commit(struct buffer_page * bpage)392 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
393 {
394 	return local_read(&bpage->page->commit);
395 }
396 
free_buffer_page(struct buffer_page * bpage)397 static void free_buffer_page(struct buffer_page *bpage)
398 {
399 	/* Range pages are not to be freed */
400 	if (!bpage->range)
401 		free_pages((unsigned long)bpage->page, bpage->order);
402 	kfree(bpage);
403 }
404 
405 /*
406  * For best performance, allocate cpu buffer data cache line sized
407  * and per CPU.
408  */
409 #define alloc_cpu_buffer(cpu) (struct ring_buffer_per_cpu *)		\
410 	kzalloc_node(ALIGN(sizeof(struct ring_buffer_per_cpu),		\
411 			   cache_line_size()), GFP_KERNEL, cpu_to_node(cpu));
412 
413 #define alloc_cpu_page(cpu) (struct buffer_page *)			\
414 	kzalloc_node(ALIGN(sizeof(struct buffer_page),			\
415 			   cache_line_size()), GFP_KERNEL, cpu_to_node(cpu));
416 
alloc_cpu_data(int cpu,int order)417 static struct buffer_data_page *alloc_cpu_data(int cpu, int order)
418 {
419 	struct buffer_data_page *dpage;
420 	struct page *page;
421 	gfp_t mflags;
422 
423 	/*
424 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
425 	 * gracefully without invoking oom-killer and the system is not
426 	 * destabilized.
427 	 */
428 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_COMP | __GFP_ZERO;
429 
430 	page = alloc_pages_node(cpu_to_node(cpu), mflags, order);
431 	if (!page)
432 		return NULL;
433 
434 	dpage = page_address(page);
435 	rb_init_page(dpage);
436 
437 	return dpage;
438 }
439 
440 /*
441  * We need to fit the time_stamp delta into 27 bits.
442  */
test_time_stamp(u64 delta)443 static inline bool test_time_stamp(u64 delta)
444 {
445 	return !!(delta & TS_DELTA_TEST);
446 }
447 
448 struct rb_irq_work {
449 	struct irq_work			work;
450 	wait_queue_head_t		waiters;
451 	wait_queue_head_t		full_waiters;
452 	atomic_t			seq;
453 	bool				waiters_pending;
454 	bool				full_waiters_pending;
455 	bool				wakeup_full;
456 };
457 
458 /*
459  * Structure to hold event state and handle nested events.
460  */
461 struct rb_event_info {
462 	u64			ts;
463 	u64			delta;
464 	u64			before;
465 	u64			after;
466 	unsigned long		length;
467 	struct buffer_page	*tail_page;
468 	int			add_timestamp;
469 };
470 
471 /*
472  * Used for the add_timestamp
473  *  NONE
474  *  EXTEND - wants a time extend
475  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
476  *  FORCE - force a full time stamp.
477  */
478 enum {
479 	RB_ADD_STAMP_NONE		= 0,
480 	RB_ADD_STAMP_EXTEND		= BIT(1),
481 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
482 	RB_ADD_STAMP_FORCE		= BIT(3)
483 };
484 /*
485  * Used for which event context the event is in.
486  *  TRANSITION = 0
487  *  NMI     = 1
488  *  IRQ     = 2
489  *  SOFTIRQ = 3
490  *  NORMAL  = 4
491  *
492  * See trace_recursive_lock() comment below for more details.
493  */
494 enum {
495 	RB_CTX_TRANSITION,
496 	RB_CTX_NMI,
497 	RB_CTX_IRQ,
498 	RB_CTX_SOFTIRQ,
499 	RB_CTX_NORMAL,
500 	RB_CTX_MAX
501 };
502 
503 struct rb_time_struct {
504 	local64_t	time;
505 };
506 typedef struct rb_time_struct rb_time_t;
507 
508 #define MAX_NEST	5
509 
510 /*
511  * head_page == tail_page && head == tail then buffer is empty.
512  */
513 struct ring_buffer_per_cpu {
514 	int				cpu;
515 	atomic_t			record_disabled;
516 	atomic_t			resize_disabled;
517 	struct trace_buffer	*buffer;
518 	raw_spinlock_t			reader_lock;	/* serialize readers */
519 	arch_spinlock_t			lock;
520 	struct lock_class_key		lock_key;
521 	struct buffer_data_page		*free_page;
522 	unsigned long			nr_pages;
523 	unsigned int			current_context;
524 	struct list_head		*pages;
525 	/* pages generation counter, incremented when the list changes */
526 	unsigned long			cnt;
527 	struct buffer_page		*head_page;	/* read from head */
528 	struct buffer_page		*tail_page;	/* write to tail */
529 	struct buffer_page		*commit_page;	/* committed pages */
530 	struct buffer_page		*reader_page;
531 	unsigned long			lost_events;
532 	unsigned long			last_overrun;
533 	unsigned long			nest;
534 	local_t				entries_bytes;
535 	local_t				entries;
536 	local_t				overrun;
537 	local_t				commit_overrun;
538 	local_t				dropped_events;
539 	local_t				committing;
540 	local_t				commits;
541 	local_t				pages_touched;
542 	local_t				pages_lost;
543 	local_t				pages_read;
544 	long				last_pages_touch;
545 	size_t				shortest_full;
546 	unsigned long			read;
547 	unsigned long			read_bytes;
548 	rb_time_t			write_stamp;
549 	rb_time_t			before_stamp;
550 	u64				event_stamp[MAX_NEST];
551 	u64				read_stamp;
552 	/* pages removed since last reset */
553 	unsigned long			pages_removed;
554 
555 	unsigned int			mapped;
556 	unsigned int			user_mapped;	/* user space mapping */
557 	struct mutex			mapping_lock;
558 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
559 	struct trace_buffer_meta	*meta_page;
560 	struct ring_buffer_cpu_meta	*ring_meta;
561 
562 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
563 	long				nr_pages_to_update;
564 	struct list_head		new_pages; /* new pages to add */
565 	struct work_struct		update_pages_work;
566 	struct completion		update_done;
567 
568 	struct rb_irq_work		irq_work;
569 };
570 
571 struct trace_buffer {
572 	unsigned			flags;
573 	int				cpus;
574 	atomic_t			record_disabled;
575 	atomic_t			resizing;
576 	cpumask_var_t			cpumask;
577 
578 	struct lock_class_key		*reader_lock_key;
579 
580 	struct mutex			mutex;
581 
582 	struct ring_buffer_per_cpu	**buffers;
583 
584 	struct hlist_node		node;
585 	u64				(*clock)(void);
586 
587 	struct rb_irq_work		irq_work;
588 	bool				time_stamp_abs;
589 
590 	unsigned long			range_addr_start;
591 	unsigned long			range_addr_end;
592 
593 	struct ring_buffer_meta		*meta;
594 
595 	unsigned int			subbuf_size;
596 	unsigned int			subbuf_order;
597 	unsigned int			max_data_size;
598 };
599 
600 struct ring_buffer_iter {
601 	struct ring_buffer_per_cpu	*cpu_buffer;
602 	unsigned long			head;
603 	unsigned long			next_event;
604 	struct buffer_page		*head_page;
605 	struct buffer_page		*cache_reader_page;
606 	unsigned long			cache_read;
607 	unsigned long			cache_pages_removed;
608 	u64				read_stamp;
609 	u64				page_stamp;
610 	struct ring_buffer_event	*event;
611 	size_t				event_size;
612 	int				missed_events;
613 };
614 
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)615 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
616 {
617 	struct buffer_data_page field;
618 
619 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
620 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
621 			 (unsigned int)sizeof(field.time_stamp),
622 			 (unsigned int)is_signed_type(u64));
623 
624 	trace_seq_printf(s, "\tfield: local_t commit;\t"
625 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
626 			 (unsigned int)offsetof(typeof(field), commit),
627 			 (unsigned int)sizeof(field.commit),
628 			 (unsigned int)is_signed_type(long));
629 
630 	trace_seq_printf(s, "\tfield: int overwrite;\t"
631 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
632 			 (unsigned int)offsetof(typeof(field), commit),
633 			 1,
634 			 (unsigned int)is_signed_type(long));
635 
636 	trace_seq_printf(s, "\tfield: char data;\t"
637 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
638 			 (unsigned int)offsetof(typeof(field), data),
639 			 (unsigned int)buffer->subbuf_size,
640 			 (unsigned int)is_signed_type(char));
641 
642 	return !trace_seq_has_overflowed(s);
643 }
644 
rb_time_read(rb_time_t * t,u64 * ret)645 static inline void rb_time_read(rb_time_t *t, u64 *ret)
646 {
647 	*ret = local64_read(&t->time);
648 }
rb_time_set(rb_time_t * t,u64 val)649 static void rb_time_set(rb_time_t *t, u64 val)
650 {
651 	local64_set(&t->time, val);
652 }
653 
654 /*
655  * Enable this to make sure that the event passed to
656  * ring_buffer_event_time_stamp() is not committed and also
657  * is on the buffer that it passed in.
658  */
659 //#define RB_VERIFY_EVENT
660 #ifdef RB_VERIFY_EVENT
661 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)662 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
663 			 void *event)
664 {
665 	struct buffer_page *page = cpu_buffer->commit_page;
666 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
667 	struct list_head *next;
668 	long commit, write;
669 	unsigned long addr = (unsigned long)event;
670 	bool done = false;
671 	int stop = 0;
672 
673 	/* Make sure the event exists and is not committed yet */
674 	do {
675 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
676 			done = true;
677 		commit = local_read(&page->page->commit);
678 		write = local_read(&page->write);
679 		if (addr >= (unsigned long)&page->page->data[commit] &&
680 		    addr < (unsigned long)&page->page->data[write])
681 			return;
682 
683 		next = rb_list_head(page->list.next);
684 		page = list_entry(next, struct buffer_page, list);
685 	} while (!done);
686 	WARN_ON_ONCE(1);
687 }
688 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)689 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
690 			 void *event)
691 {
692 }
693 #endif
694 
695 /*
696  * The absolute time stamp drops the 5 MSBs and some clocks may
697  * require them. The rb_fix_abs_ts() will take a previous full
698  * time stamp, and add the 5 MSB of that time stamp on to the
699  * saved absolute time stamp. Then they are compared in case of
700  * the unlikely event that the latest time stamp incremented
701  * the 5 MSB.
702  */
rb_fix_abs_ts(u64 abs,u64 save_ts)703 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
704 {
705 	if (save_ts & TS_MSB) {
706 		abs |= save_ts & TS_MSB;
707 		/* Check for overflow */
708 		if (unlikely(abs < save_ts))
709 			abs += 1ULL << 59;
710 	}
711 	return abs;
712 }
713 
714 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
715 
716 /**
717  * ring_buffer_event_time_stamp - return the event's current time stamp
718  * @buffer: The buffer that the event is on
719  * @event: the event to get the time stamp of
720  *
721  * Note, this must be called after @event is reserved, and before it is
722  * committed to the ring buffer. And must be called from the same
723  * context where the event was reserved (normal, softirq, irq, etc).
724  *
725  * Returns the time stamp associated with the current event.
726  * If the event has an extended time stamp, then that is used as
727  * the time stamp to return.
728  * In the highly unlikely case that the event was nested more than
729  * the max nesting, then the write_stamp of the buffer is returned,
730  * otherwise  current time is returned, but that really neither of
731  * the last two cases should ever happen.
732  */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)733 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
734 				 struct ring_buffer_event *event)
735 {
736 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
737 	unsigned int nest;
738 	u64 ts;
739 
740 	/* If the event includes an absolute time, then just use that */
741 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
742 		ts = rb_event_time_stamp(event);
743 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
744 	}
745 
746 	nest = local_read(&cpu_buffer->committing);
747 	verify_event(cpu_buffer, event);
748 	if (WARN_ON_ONCE(!nest))
749 		goto fail;
750 
751 	/* Read the current saved nesting level time stamp */
752 	if (likely(--nest < MAX_NEST))
753 		return cpu_buffer->event_stamp[nest];
754 
755 	/* Shouldn't happen, warn if it does */
756 	WARN_ONCE(1, "nest (%d) greater than max", nest);
757 
758  fail:
759 	rb_time_read(&cpu_buffer->write_stamp, &ts);
760 
761 	return ts;
762 }
763 
764 /**
765  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
766  * @buffer: The ring_buffer to get the number of pages from
767  * @cpu: The cpu of the ring_buffer to get the number of pages from
768  *
769  * Returns the number of pages that have content in the ring buffer.
770  */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)771 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
772 {
773 	size_t read;
774 	size_t lost;
775 	size_t cnt;
776 
777 	read = local_read(&buffer->buffers[cpu]->pages_read);
778 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
779 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
780 
781 	if (WARN_ON_ONCE(cnt < lost))
782 		return 0;
783 
784 	cnt -= lost;
785 
786 	/* The reader can read an empty page, but not more than that */
787 	if (cnt < read) {
788 		WARN_ON_ONCE(read > cnt + 1);
789 		return 0;
790 	}
791 
792 	return cnt - read;
793 }
794 
full_hit(struct trace_buffer * buffer,int cpu,int full)795 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
796 {
797 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
798 	size_t nr_pages;
799 	size_t dirty;
800 
801 	nr_pages = cpu_buffer->nr_pages;
802 	if (!nr_pages || !full)
803 		return true;
804 
805 	/*
806 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
807 	 * that the writer is on is not counted as dirty.
808 	 * This is needed if "buffer_percent" is set to 100.
809 	 */
810 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
811 
812 	return (dirty * 100) >= (full * nr_pages);
813 }
814 
815 /*
816  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
817  *
818  * Schedules a delayed work to wake up any task that is blocked on the
819  * ring buffer waiters queue.
820  */
rb_wake_up_waiters(struct irq_work * work)821 static void rb_wake_up_waiters(struct irq_work *work)
822 {
823 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
824 
825 	/* For waiters waiting for the first wake up */
826 	(void)atomic_fetch_inc_release(&rbwork->seq);
827 
828 	wake_up_all(&rbwork->waiters);
829 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
830 		/* Only cpu_buffer sets the above flags */
831 		struct ring_buffer_per_cpu *cpu_buffer =
832 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
833 
834 		/* Called from interrupt context */
835 		raw_spin_lock(&cpu_buffer->reader_lock);
836 		rbwork->wakeup_full = false;
837 		rbwork->full_waiters_pending = false;
838 
839 		/* Waking up all waiters, they will reset the shortest full */
840 		cpu_buffer->shortest_full = 0;
841 		raw_spin_unlock(&cpu_buffer->reader_lock);
842 
843 		wake_up_all(&rbwork->full_waiters);
844 	}
845 }
846 
847 /**
848  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
849  * @buffer: The ring buffer to wake waiters on
850  * @cpu: The CPU buffer to wake waiters on
851  *
852  * In the case of a file that represents a ring buffer is closing,
853  * it is prudent to wake up any waiters that are on this.
854  */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)855 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
856 {
857 	struct ring_buffer_per_cpu *cpu_buffer;
858 	struct rb_irq_work *rbwork;
859 
860 	if (!buffer)
861 		return;
862 
863 	if (cpu == RING_BUFFER_ALL_CPUS) {
864 
865 		/* Wake up individual ones too. One level recursion */
866 		for_each_buffer_cpu(buffer, cpu)
867 			ring_buffer_wake_waiters(buffer, cpu);
868 
869 		rbwork = &buffer->irq_work;
870 	} else {
871 		if (WARN_ON_ONCE(!buffer->buffers))
872 			return;
873 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
874 			return;
875 
876 		cpu_buffer = buffer->buffers[cpu];
877 		/* The CPU buffer may not have been initialized yet */
878 		if (!cpu_buffer)
879 			return;
880 		rbwork = &cpu_buffer->irq_work;
881 	}
882 
883 	/* This can be called in any context */
884 	irq_work_queue(&rbwork->work);
885 }
886 
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)887 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
888 {
889 	struct ring_buffer_per_cpu *cpu_buffer;
890 	bool ret = false;
891 
892 	/* Reads of all CPUs always waits for any data */
893 	if (cpu == RING_BUFFER_ALL_CPUS)
894 		return !ring_buffer_empty(buffer);
895 
896 	cpu_buffer = buffer->buffers[cpu];
897 
898 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
899 		unsigned long flags;
900 		bool pagebusy;
901 
902 		if (!full)
903 			return true;
904 
905 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
906 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
907 		ret = !pagebusy && full_hit(buffer, cpu, full);
908 
909 		if (!ret && (!cpu_buffer->shortest_full ||
910 			     cpu_buffer->shortest_full > full)) {
911 		    cpu_buffer->shortest_full = full;
912 		}
913 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
914 	}
915 	return ret;
916 }
917 
918 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)919 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
920 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
921 {
922 	if (rb_watermark_hit(buffer, cpu, full))
923 		return true;
924 
925 	if (cond(data))
926 		return true;
927 
928 	/*
929 	 * The events can happen in critical sections where
930 	 * checking a work queue can cause deadlocks.
931 	 * After adding a task to the queue, this flag is set
932 	 * only to notify events to try to wake up the queue
933 	 * using irq_work.
934 	 *
935 	 * We don't clear it even if the buffer is no longer
936 	 * empty. The flag only causes the next event to run
937 	 * irq_work to do the work queue wake up. The worse
938 	 * that can happen if we race with !trace_empty() is that
939 	 * an event will cause an irq_work to try to wake up
940 	 * an empty queue.
941 	 *
942 	 * There's no reason to protect this flag either, as
943 	 * the work queue and irq_work logic will do the necessary
944 	 * synchronization for the wake ups. The only thing
945 	 * that is necessary is that the wake up happens after
946 	 * a task has been queued. It's OK for spurious wake ups.
947 	 */
948 	if (full)
949 		rbwork->full_waiters_pending = true;
950 	else
951 		rbwork->waiters_pending = true;
952 
953 	return false;
954 }
955 
956 struct rb_wait_data {
957 	struct rb_irq_work		*irq_work;
958 	int				seq;
959 };
960 
961 /*
962  * The default wait condition for ring_buffer_wait() is to just to exit the
963  * wait loop the first time it is woken up.
964  */
rb_wait_once(void * data)965 static bool rb_wait_once(void *data)
966 {
967 	struct rb_wait_data *rdata = data;
968 	struct rb_irq_work *rbwork = rdata->irq_work;
969 
970 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
971 }
972 
973 /**
974  * ring_buffer_wait - wait for input to the ring buffer
975  * @buffer: buffer to wait on
976  * @cpu: the cpu buffer to wait on
977  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
978  * @cond: condition function to break out of wait (NULL to run once)
979  * @data: the data to pass to @cond.
980  *
981  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
982  * as data is added to any of the @buffer's cpu buffers. Otherwise
983  * it will wait for data to be added to a specific cpu buffer.
984  */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)985 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
986 		     ring_buffer_cond_fn cond, void *data)
987 {
988 	struct ring_buffer_per_cpu *cpu_buffer;
989 	struct wait_queue_head *waitq;
990 	struct rb_irq_work *rbwork;
991 	struct rb_wait_data rdata;
992 	int ret = 0;
993 
994 	/*
995 	 * Depending on what the caller is waiting for, either any
996 	 * data in any cpu buffer, or a specific buffer, put the
997 	 * caller on the appropriate wait queue.
998 	 */
999 	if (cpu == RING_BUFFER_ALL_CPUS) {
1000 		rbwork = &buffer->irq_work;
1001 		/* Full only makes sense on per cpu reads */
1002 		full = 0;
1003 	} else {
1004 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1005 			return -ENODEV;
1006 		cpu_buffer = buffer->buffers[cpu];
1007 		rbwork = &cpu_buffer->irq_work;
1008 	}
1009 
1010 	if (full)
1011 		waitq = &rbwork->full_waiters;
1012 	else
1013 		waitq = &rbwork->waiters;
1014 
1015 	/* Set up to exit loop as soon as it is woken */
1016 	if (!cond) {
1017 		cond = rb_wait_once;
1018 		rdata.irq_work = rbwork;
1019 		rdata.seq = atomic_read_acquire(&rbwork->seq);
1020 		data = &rdata;
1021 	}
1022 
1023 	ret = wait_event_interruptible((*waitq),
1024 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
1025 
1026 	return ret;
1027 }
1028 
1029 /**
1030  * ring_buffer_poll_wait - poll on buffer input
1031  * @buffer: buffer to wait on
1032  * @cpu: the cpu buffer to wait on
1033  * @filp: the file descriptor
1034  * @poll_table: The poll descriptor
1035  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1036  *
1037  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1038  * as data is added to any of the @buffer's cpu buffers. Otherwise
1039  * it will wait for data to be added to a specific cpu buffer.
1040  *
1041  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1042  * zero otherwise.
1043  */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1044 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1045 			  struct file *filp, poll_table *poll_table, int full)
1046 {
1047 	struct ring_buffer_per_cpu *cpu_buffer;
1048 	struct rb_irq_work *rbwork;
1049 
1050 	if (cpu == RING_BUFFER_ALL_CPUS) {
1051 		rbwork = &buffer->irq_work;
1052 		full = 0;
1053 	} else {
1054 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1055 			return EPOLLERR;
1056 
1057 		cpu_buffer = buffer->buffers[cpu];
1058 		rbwork = &cpu_buffer->irq_work;
1059 	}
1060 
1061 	if (full) {
1062 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1063 
1064 		if (rb_watermark_hit(buffer, cpu, full))
1065 			return EPOLLIN | EPOLLRDNORM;
1066 		/*
1067 		 * Only allow full_waiters_pending update to be seen after
1068 		 * the shortest_full is set (in rb_watermark_hit). If the
1069 		 * writer sees the full_waiters_pending flag set, it will
1070 		 * compare the amount in the ring buffer to shortest_full.
1071 		 * If the amount in the ring buffer is greater than the
1072 		 * shortest_full percent, it will call the irq_work handler
1073 		 * to wake up this list. The irq_handler will reset shortest_full
1074 		 * back to zero. That's done under the reader_lock, but
1075 		 * the below smp_mb() makes sure that the update to
1076 		 * full_waiters_pending doesn't leak up into the above.
1077 		 */
1078 		smp_mb();
1079 		rbwork->full_waiters_pending = true;
1080 		return 0;
1081 	}
1082 
1083 	poll_wait(filp, &rbwork->waiters, poll_table);
1084 	rbwork->waiters_pending = true;
1085 
1086 	/*
1087 	 * There's a tight race between setting the waiters_pending and
1088 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1089 	 * is set, the next event will wake the task up, but we can get stuck
1090 	 * if there's only a single event in.
1091 	 *
1092 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1093 	 * but adding a memory barrier to all events will cause too much of a
1094 	 * performance hit in the fast path.  We only need a memory barrier when
1095 	 * the buffer goes from empty to having content.  But as this race is
1096 	 * extremely small, and it's not a problem if another event comes in, we
1097 	 * will fix it later.
1098 	 */
1099 	smp_mb();
1100 
1101 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1102 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1103 		return EPOLLIN | EPOLLRDNORM;
1104 	return 0;
1105 }
1106 
1107 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1108 #define RB_WARN_ON(b, cond)						\
1109 	({								\
1110 		int _____ret = unlikely(cond);				\
1111 		if (_____ret) {						\
1112 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1113 				struct ring_buffer_per_cpu *__b =	\
1114 					(void *)b;			\
1115 				atomic_inc(&__b->buffer->record_disabled); \
1116 			} else						\
1117 				atomic_inc(&b->record_disabled);	\
1118 			WARN_ON(1);					\
1119 		}							\
1120 		_____ret;						\
1121 	})
1122 
1123 /* Up this if you want to test the TIME_EXTENTS and normalization */
1124 #define DEBUG_SHIFT 0
1125 
rb_time_stamp(struct trace_buffer * buffer)1126 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1127 {
1128 	u64 ts;
1129 
1130 	/* Skip retpolines :-( */
1131 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1132 		ts = trace_clock_local();
1133 	else
1134 		ts = buffer->clock();
1135 
1136 	/* shift to debug/test normalization and TIME_EXTENTS */
1137 	return ts << DEBUG_SHIFT;
1138 }
1139 
ring_buffer_time_stamp(struct trace_buffer * buffer)1140 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1141 {
1142 	u64 time;
1143 
1144 	preempt_disable_notrace();
1145 	time = rb_time_stamp(buffer);
1146 	preempt_enable_notrace();
1147 
1148 	return time;
1149 }
1150 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1151 
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1152 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1153 				      int cpu, u64 *ts)
1154 {
1155 	/* Just stupid testing the normalize function and deltas */
1156 	*ts >>= DEBUG_SHIFT;
1157 }
1158 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1159 
1160 /*
1161  * Making the ring buffer lockless makes things tricky.
1162  * Although writes only happen on the CPU that they are on,
1163  * and they only need to worry about interrupts. Reads can
1164  * happen on any CPU.
1165  *
1166  * The reader page is always off the ring buffer, but when the
1167  * reader finishes with a page, it needs to swap its page with
1168  * a new one from the buffer. The reader needs to take from
1169  * the head (writes go to the tail). But if a writer is in overwrite
1170  * mode and wraps, it must push the head page forward.
1171  *
1172  * Here lies the problem.
1173  *
1174  * The reader must be careful to replace only the head page, and
1175  * not another one. As described at the top of the file in the
1176  * ASCII art, the reader sets its old page to point to the next
1177  * page after head. It then sets the page after head to point to
1178  * the old reader page. But if the writer moves the head page
1179  * during this operation, the reader could end up with the tail.
1180  *
1181  * We use cmpxchg to help prevent this race. We also do something
1182  * special with the page before head. We set the LSB to 1.
1183  *
1184  * When the writer must push the page forward, it will clear the
1185  * bit that points to the head page, move the head, and then set
1186  * the bit that points to the new head page.
1187  *
1188  * We also don't want an interrupt coming in and moving the head
1189  * page on another writer. Thus we use the second LSB to catch
1190  * that too. Thus:
1191  *
1192  * head->list->prev->next        bit 1          bit 0
1193  *                              -------        -------
1194  * Normal page                     0              0
1195  * Points to head page             0              1
1196  * New head page                   1              0
1197  *
1198  * Note we can not trust the prev pointer of the head page, because:
1199  *
1200  * +----+       +-----+        +-----+
1201  * |    |------>|  T  |---X--->|  N  |
1202  * |    |<------|     |        |     |
1203  * +----+       +-----+        +-----+
1204  *   ^                           ^ |
1205  *   |          +-----+          | |
1206  *   +----------|  R  |----------+ |
1207  *              |     |<-----------+
1208  *              +-----+
1209  *
1210  * Key:  ---X-->  HEAD flag set in pointer
1211  *         T      Tail page
1212  *         R      Reader page
1213  *         N      Next page
1214  *
1215  * (see __rb_reserve_next() to see where this happens)
1216  *
1217  *  What the above shows is that the reader just swapped out
1218  *  the reader page with a page in the buffer, but before it
1219  *  could make the new header point back to the new page added
1220  *  it was preempted by a writer. The writer moved forward onto
1221  *  the new page added by the reader and is about to move forward
1222  *  again.
1223  *
1224  *  You can see, it is legitimate for the previous pointer of
1225  *  the head (or any page) not to point back to itself. But only
1226  *  temporarily.
1227  */
1228 
1229 #define RB_PAGE_NORMAL		0UL
1230 #define RB_PAGE_HEAD		1UL
1231 #define RB_PAGE_UPDATE		2UL
1232 
1233 
1234 #define RB_FLAG_MASK		3UL
1235 
1236 /* PAGE_MOVED is not part of the mask */
1237 #define RB_PAGE_MOVED		4UL
1238 
1239 /*
1240  * rb_list_head - remove any bit
1241  */
rb_list_head(struct list_head * list)1242 static struct list_head *rb_list_head(struct list_head *list)
1243 {
1244 	unsigned long val = (unsigned long)list;
1245 
1246 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1247 }
1248 
1249 /*
1250  * rb_is_head_page - test if the given page is the head page
1251  *
1252  * Because the reader may move the head_page pointer, we can
1253  * not trust what the head page is (it may be pointing to
1254  * the reader page). But if the next page is a header page,
1255  * its flags will be non zero.
1256  */
1257 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1258 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1259 {
1260 	unsigned long val;
1261 
1262 	val = (unsigned long)list->next;
1263 
1264 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1265 		return RB_PAGE_MOVED;
1266 
1267 	return val & RB_FLAG_MASK;
1268 }
1269 
1270 /*
1271  * rb_is_reader_page
1272  *
1273  * The unique thing about the reader page, is that, if the
1274  * writer is ever on it, the previous pointer never points
1275  * back to the reader page.
1276  */
rb_is_reader_page(struct buffer_page * page)1277 static bool rb_is_reader_page(struct buffer_page *page)
1278 {
1279 	struct list_head *list = page->list.prev;
1280 
1281 	return rb_list_head(list->next) != &page->list;
1282 }
1283 
1284 /*
1285  * rb_set_list_to_head - set a list_head to be pointing to head.
1286  */
rb_set_list_to_head(struct list_head * list)1287 static void rb_set_list_to_head(struct list_head *list)
1288 {
1289 	unsigned long *ptr;
1290 
1291 	ptr = (unsigned long *)&list->next;
1292 	*ptr |= RB_PAGE_HEAD;
1293 	*ptr &= ~RB_PAGE_UPDATE;
1294 }
1295 
1296 /*
1297  * rb_head_page_activate - sets up head page
1298  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1299 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1300 {
1301 	struct buffer_page *head;
1302 
1303 	head = cpu_buffer->head_page;
1304 	if (!head)
1305 		return;
1306 
1307 	/*
1308 	 * Set the previous list pointer to have the HEAD flag.
1309 	 */
1310 	rb_set_list_to_head(head->list.prev);
1311 
1312 	if (cpu_buffer->ring_meta) {
1313 		struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1314 		meta->head_buffer = (unsigned long)head->page;
1315 	}
1316 }
1317 
rb_list_head_clear(struct list_head * list)1318 static void rb_list_head_clear(struct list_head *list)
1319 {
1320 	unsigned long *ptr = (unsigned long *)&list->next;
1321 
1322 	*ptr &= ~RB_FLAG_MASK;
1323 }
1324 
1325 /*
1326  * rb_head_page_deactivate - clears head page ptr (for free list)
1327  */
1328 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1329 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1330 {
1331 	struct list_head *hd;
1332 
1333 	/* Go through the whole list and clear any pointers found. */
1334 	rb_list_head_clear(cpu_buffer->pages);
1335 
1336 	list_for_each(hd, cpu_buffer->pages)
1337 		rb_list_head_clear(hd);
1338 }
1339 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1340 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1341 			    struct buffer_page *head,
1342 			    struct buffer_page *prev,
1343 			    int old_flag, int new_flag)
1344 {
1345 	struct list_head *list;
1346 	unsigned long val = (unsigned long)&head->list;
1347 	unsigned long ret;
1348 
1349 	list = &prev->list;
1350 
1351 	val &= ~RB_FLAG_MASK;
1352 
1353 	ret = cmpxchg((unsigned long *)&list->next,
1354 		      val | old_flag, val | new_flag);
1355 
1356 	/* check if the reader took the page */
1357 	if ((ret & ~RB_FLAG_MASK) != val)
1358 		return RB_PAGE_MOVED;
1359 
1360 	return ret & RB_FLAG_MASK;
1361 }
1362 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1363 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1364 				   struct buffer_page *head,
1365 				   struct buffer_page *prev,
1366 				   int old_flag)
1367 {
1368 	return rb_head_page_set(cpu_buffer, head, prev,
1369 				old_flag, RB_PAGE_UPDATE);
1370 }
1371 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1372 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1373 				 struct buffer_page *head,
1374 				 struct buffer_page *prev,
1375 				 int old_flag)
1376 {
1377 	return rb_head_page_set(cpu_buffer, head, prev,
1378 				old_flag, RB_PAGE_HEAD);
1379 }
1380 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1381 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1382 				   struct buffer_page *head,
1383 				   struct buffer_page *prev,
1384 				   int old_flag)
1385 {
1386 	return rb_head_page_set(cpu_buffer, head, prev,
1387 				old_flag, RB_PAGE_NORMAL);
1388 }
1389 
rb_inc_page(struct buffer_page ** bpage)1390 static inline void rb_inc_page(struct buffer_page **bpage)
1391 {
1392 	struct list_head *p = rb_list_head((*bpage)->list.next);
1393 
1394 	*bpage = list_entry(p, struct buffer_page, list);
1395 }
1396 
rb_dec_page(struct buffer_page ** bpage)1397 static inline void rb_dec_page(struct buffer_page **bpage)
1398 {
1399 	struct list_head *p = rb_list_head((*bpage)->list.prev);
1400 
1401 	*bpage = list_entry(p, struct buffer_page, list);
1402 }
1403 
1404 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1405 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1406 {
1407 	struct buffer_page *head;
1408 	struct buffer_page *page;
1409 	struct list_head *list;
1410 	int i;
1411 
1412 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1413 		return NULL;
1414 
1415 	/* sanity check */
1416 	list = cpu_buffer->pages;
1417 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1418 		return NULL;
1419 
1420 	page = head = cpu_buffer->head_page;
1421 	/*
1422 	 * It is possible that the writer moves the header behind
1423 	 * where we started, and we miss in one loop.
1424 	 * A second loop should grab the header, but we'll do
1425 	 * three loops just because I'm paranoid.
1426 	 */
1427 	for (i = 0; i < 3; i++) {
1428 		do {
1429 			if (rb_is_head_page(page, page->list.prev)) {
1430 				cpu_buffer->head_page = page;
1431 				return page;
1432 			}
1433 			rb_inc_page(&page);
1434 		} while (page != head);
1435 	}
1436 
1437 	RB_WARN_ON(cpu_buffer, 1);
1438 
1439 	return NULL;
1440 }
1441 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1442 static bool rb_head_page_replace(struct buffer_page *old,
1443 				struct buffer_page *new)
1444 {
1445 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1446 	unsigned long val;
1447 
1448 	val = *ptr & ~RB_FLAG_MASK;
1449 	val |= RB_PAGE_HEAD;
1450 
1451 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1452 }
1453 
1454 /*
1455  * rb_tail_page_update - move the tail page forward
1456  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1457 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1458 			       struct buffer_page *tail_page,
1459 			       struct buffer_page *next_page)
1460 {
1461 	unsigned long old_entries;
1462 	unsigned long old_write;
1463 
1464 	/*
1465 	 * The tail page now needs to be moved forward.
1466 	 *
1467 	 * We need to reset the tail page, but without messing
1468 	 * with possible erasing of data brought in by interrupts
1469 	 * that have moved the tail page and are currently on it.
1470 	 *
1471 	 * We add a counter to the write field to denote this.
1472 	 */
1473 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1474 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1475 
1476 	/*
1477 	 * Just make sure we have seen our old_write and synchronize
1478 	 * with any interrupts that come in.
1479 	 */
1480 	barrier();
1481 
1482 	/*
1483 	 * If the tail page is still the same as what we think
1484 	 * it is, then it is up to us to update the tail
1485 	 * pointer.
1486 	 */
1487 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1488 		/* Zero the write counter */
1489 		unsigned long val = old_write & ~RB_WRITE_MASK;
1490 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1491 
1492 		/*
1493 		 * This will only succeed if an interrupt did
1494 		 * not come in and change it. In which case, we
1495 		 * do not want to modify it.
1496 		 *
1497 		 * We add (void) to let the compiler know that we do not care
1498 		 * about the return value of these functions. We use the
1499 		 * cmpxchg to only update if an interrupt did not already
1500 		 * do it for us. If the cmpxchg fails, we don't care.
1501 		 */
1502 		(void)local_cmpxchg(&next_page->write, old_write, val);
1503 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1504 
1505 		/*
1506 		 * No need to worry about races with clearing out the commit.
1507 		 * it only can increment when a commit takes place. But that
1508 		 * only happens in the outer most nested commit.
1509 		 */
1510 		local_set(&next_page->page->commit, 0);
1511 
1512 		/* Either we update tail_page or an interrupt does */
1513 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1514 			local_inc(&cpu_buffer->pages_touched);
1515 	}
1516 }
1517 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1518 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1519 			  struct buffer_page *bpage)
1520 {
1521 	unsigned long val = (unsigned long)bpage;
1522 
1523 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1524 }
1525 
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1526 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1527 			   struct list_head *list)
1528 {
1529 	if (RB_WARN_ON(cpu_buffer,
1530 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1531 		return false;
1532 
1533 	if (RB_WARN_ON(cpu_buffer,
1534 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1535 		return false;
1536 
1537 	return true;
1538 }
1539 
1540 /**
1541  * rb_check_pages - integrity check of buffer pages
1542  * @cpu_buffer: CPU buffer with pages to test
1543  *
1544  * As a safety measure we check to make sure the data pages have not
1545  * been corrupted.
1546  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1547 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1548 {
1549 	struct list_head *head, *tmp;
1550 	unsigned long buffer_cnt;
1551 	unsigned long flags;
1552 	int nr_loops = 0;
1553 
1554 	/*
1555 	 * Walk the linked list underpinning the ring buffer and validate all
1556 	 * its next and prev links.
1557 	 *
1558 	 * The check acquires the reader_lock to avoid concurrent processing
1559 	 * with code that could be modifying the list. However, the lock cannot
1560 	 * be held for the entire duration of the walk, as this would make the
1561 	 * time when interrupts are disabled non-deterministic, dependent on the
1562 	 * ring buffer size. Therefore, the code releases and re-acquires the
1563 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1564 	 * is then used to detect if the list was modified while the lock was
1565 	 * not held, in which case the check needs to be restarted.
1566 	 *
1567 	 * The code attempts to perform the check at most three times before
1568 	 * giving up. This is acceptable because this is only a self-validation
1569 	 * to detect problems early on. In practice, the list modification
1570 	 * operations are fairly spaced, and so this check typically succeeds at
1571 	 * most on the second try.
1572 	 */
1573 again:
1574 	if (++nr_loops > 3)
1575 		return;
1576 
1577 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1578 	head = rb_list_head(cpu_buffer->pages);
1579 	if (!rb_check_links(cpu_buffer, head))
1580 		goto out_locked;
1581 	buffer_cnt = cpu_buffer->cnt;
1582 	tmp = head;
1583 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1584 
1585 	while (true) {
1586 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1587 
1588 		if (buffer_cnt != cpu_buffer->cnt) {
1589 			/* The list was updated, try again. */
1590 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1591 			goto again;
1592 		}
1593 
1594 		tmp = rb_list_head(tmp->next);
1595 		if (tmp == head)
1596 			/* The iteration circled back, all is done. */
1597 			goto out_locked;
1598 
1599 		if (!rb_check_links(cpu_buffer, tmp))
1600 			goto out_locked;
1601 
1602 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1603 	}
1604 
1605 out_locked:
1606 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1607 }
1608 
1609 /*
1610  * Take an address, add the meta data size as well as the array of
1611  * array subbuffer indexes, then align it to a subbuffer size.
1612  *
1613  * This is used to help find the next per cpu subbuffer within a mapped range.
1614  */
1615 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1616 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1617 {
1618 	addr += sizeof(struct ring_buffer_cpu_meta) +
1619 		sizeof(int) * nr_subbufs;
1620 	return ALIGN(addr, subbuf_size);
1621 }
1622 
1623 /*
1624  * Return the ring_buffer_meta for a given @cpu.
1625  */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1626 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1627 {
1628 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1629 	struct ring_buffer_cpu_meta *meta;
1630 	struct ring_buffer_meta *bmeta;
1631 	unsigned long ptr;
1632 	int nr_subbufs;
1633 
1634 	bmeta = buffer->meta;
1635 	if (!bmeta)
1636 		return NULL;
1637 
1638 	ptr = (unsigned long)bmeta + bmeta->buffers_offset;
1639 	meta = (struct ring_buffer_cpu_meta *)ptr;
1640 
1641 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1642 	if (!nr_pages) {
1643 		nr_subbufs = meta->nr_subbufs;
1644 	} else {
1645 		/* Include the reader page */
1646 		nr_subbufs = nr_pages + 1;
1647 	}
1648 
1649 	/*
1650 	 * The first chunk may not be subbuffer aligned, where as
1651 	 * the rest of the chunks are.
1652 	 */
1653 	if (cpu) {
1654 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1655 		ptr += subbuf_size * nr_subbufs;
1656 
1657 		/* We can use multiplication to find chunks greater than 1 */
1658 		if (cpu > 1) {
1659 			unsigned long size;
1660 			unsigned long p;
1661 
1662 			/* Save the beginning of this CPU chunk */
1663 			p = ptr;
1664 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1665 			ptr += subbuf_size * nr_subbufs;
1666 
1667 			/* Now all chunks after this are the same size */
1668 			size = ptr - p;
1669 			ptr += size * (cpu - 2);
1670 		}
1671 	}
1672 	return (void *)ptr;
1673 }
1674 
1675 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_cpu_meta * meta)1676 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta)
1677 {
1678 	int subbuf_size = meta->subbuf_size;
1679 	unsigned long ptr;
1680 
1681 	ptr = (unsigned long)meta;
1682 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1683 
1684 	return (void *)ptr;
1685 }
1686 
1687 /*
1688  * Return a specific sub-buffer for a given @cpu defined by @idx.
1689  */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1690 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1691 {
1692 	struct ring_buffer_cpu_meta *meta;
1693 	unsigned long ptr;
1694 	int subbuf_size;
1695 
1696 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1697 	if (!meta)
1698 		return NULL;
1699 
1700 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1701 		return NULL;
1702 
1703 	subbuf_size = meta->subbuf_size;
1704 
1705 	/* Map this buffer to the order that's in meta->buffers[] */
1706 	idx = meta->buffers[idx];
1707 
1708 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1709 
1710 	ptr += subbuf_size * idx;
1711 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1712 		return NULL;
1713 
1714 	return (void *)ptr;
1715 }
1716 
1717 /*
1718  * See if the existing memory contains a valid meta section.
1719  * if so, use that, otherwise initialize it.
1720  */
rb_meta_init(struct trace_buffer * buffer,int scratch_size)1721 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size)
1722 {
1723 	unsigned long ptr = buffer->range_addr_start;
1724 	struct ring_buffer_meta *bmeta;
1725 	unsigned long total_size;
1726 	int struct_sizes;
1727 
1728 	bmeta = (struct ring_buffer_meta *)ptr;
1729 	buffer->meta = bmeta;
1730 
1731 	total_size = buffer->range_addr_end - buffer->range_addr_start;
1732 
1733 	struct_sizes = sizeof(struct ring_buffer_cpu_meta);
1734 	struct_sizes |= sizeof(*bmeta) << 16;
1735 
1736 	/* The first buffer will start word size after the meta page */
1737 	ptr += sizeof(*bmeta);
1738 	ptr = ALIGN(ptr, sizeof(long));
1739 	ptr += scratch_size;
1740 
1741 	if (bmeta->magic != RING_BUFFER_META_MAGIC) {
1742 		pr_info("Ring buffer boot meta mismatch of magic\n");
1743 		goto init;
1744 	}
1745 
1746 	if (bmeta->struct_sizes != struct_sizes) {
1747 		pr_info("Ring buffer boot meta mismatch of struct size\n");
1748 		goto init;
1749 	}
1750 
1751 	if (bmeta->total_size != total_size) {
1752 		pr_info("Ring buffer boot meta mismatch of total size\n");
1753 		goto init;
1754 	}
1755 
1756 	if (bmeta->buffers_offset > bmeta->total_size) {
1757 		pr_info("Ring buffer boot meta mismatch of offset outside of total size\n");
1758 		goto init;
1759 	}
1760 
1761 	if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) {
1762 		pr_info("Ring buffer boot meta mismatch of first buffer offset\n");
1763 		goto init;
1764 	}
1765 
1766 	return true;
1767 
1768  init:
1769 	bmeta->magic = RING_BUFFER_META_MAGIC;
1770 	bmeta->struct_sizes = struct_sizes;
1771 	bmeta->total_size = total_size;
1772 	bmeta->buffers_offset = (void *)ptr - (void *)bmeta;
1773 
1774 	/* Zero out the scratch pad */
1775 	memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta));
1776 
1777 	return false;
1778 }
1779 
1780 /*
1781  * See if the existing memory contains valid ring buffer data.
1782  * As the previous kernel must be the same as this kernel, all
1783  * the calculations (size of buffers and number of buffers)
1784  * must be the same.
1785  */
rb_cpu_meta_valid(struct ring_buffer_cpu_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1786 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu,
1787 			      struct trace_buffer *buffer, int nr_pages,
1788 			      unsigned long *subbuf_mask)
1789 {
1790 	int subbuf_size = PAGE_SIZE;
1791 	struct buffer_data_page *subbuf;
1792 	unsigned long buffers_start;
1793 	unsigned long buffers_end;
1794 	int i;
1795 
1796 	if (!subbuf_mask)
1797 		return false;
1798 
1799 	buffers_start = meta->first_buffer;
1800 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1801 
1802 	/* Is the head and commit buffers within the range of buffers? */
1803 	if (meta->head_buffer < buffers_start ||
1804 	    meta->head_buffer >= buffers_end) {
1805 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1806 		return false;
1807 	}
1808 
1809 	if (meta->commit_buffer < buffers_start ||
1810 	    meta->commit_buffer >= buffers_end) {
1811 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1812 		return false;
1813 	}
1814 
1815 	subbuf = rb_subbufs_from_meta(meta);
1816 
1817 	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1818 
1819 	/* Is the meta buffers and the subbufs themselves have correct data? */
1820 	for (i = 0; i < meta->nr_subbufs; i++) {
1821 		if (meta->buffers[i] < 0 ||
1822 		    meta->buffers[i] >= meta->nr_subbufs) {
1823 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1824 			return false;
1825 		}
1826 
1827 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1828 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1829 			return false;
1830 		}
1831 
1832 		if (test_bit(meta->buffers[i], subbuf_mask)) {
1833 			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1834 			return false;
1835 		}
1836 
1837 		set_bit(meta->buffers[i], subbuf_mask);
1838 		subbuf = (void *)subbuf + subbuf_size;
1839 	}
1840 
1841 	return true;
1842 }
1843 
1844 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf);
1845 
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1846 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1847 			       unsigned long long *timestamp, u64 *delta_ptr)
1848 {
1849 	struct ring_buffer_event *event;
1850 	u64 ts, delta;
1851 	int events = 0;
1852 	int len;
1853 	int e;
1854 
1855 	*delta_ptr = 0;
1856 	*timestamp = 0;
1857 
1858 	ts = dpage->time_stamp;
1859 
1860 	for (e = 0; e < tail; e += len) {
1861 
1862 		event = (struct ring_buffer_event *)(dpage->data + e);
1863 		len = rb_event_length(event);
1864 		if (len <= 0 || len > tail - e)
1865 			return -1;
1866 
1867 		switch (event->type_len) {
1868 
1869 		case RINGBUF_TYPE_TIME_EXTEND:
1870 			delta = rb_event_time_stamp(event);
1871 			ts += delta;
1872 			break;
1873 
1874 		case RINGBUF_TYPE_TIME_STAMP:
1875 			delta = rb_event_time_stamp(event);
1876 			delta = rb_fix_abs_ts(delta, ts);
1877 			if (delta < ts) {
1878 				*delta_ptr = delta;
1879 				*timestamp = ts;
1880 				return -1;
1881 			}
1882 			ts = delta;
1883 			break;
1884 
1885 		case RINGBUF_TYPE_PADDING:
1886 			if (event->time_delta == 1)
1887 				break;
1888 			fallthrough;
1889 		case RINGBUF_TYPE_DATA:
1890 			events++;
1891 			ts += event->time_delta;
1892 			break;
1893 
1894 		default:
1895 			return -1;
1896 		}
1897 	}
1898 	*timestamp = ts;
1899 	return events;
1900 }
1901 
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1902 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1903 {
1904 	unsigned long long ts;
1905 	u64 delta;
1906 	int tail;
1907 
1908 	tail = local_read(&dpage->commit);
1909 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1910 }
1911 
1912 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1913 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1914 {
1915 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1916 	struct buffer_page *head_page, *orig_head;
1917 	unsigned long entry_bytes = 0;
1918 	unsigned long entries = 0;
1919 	int ret;
1920 	u64 ts;
1921 	int i;
1922 
1923 	if (!meta || !meta->head_buffer)
1924 		return;
1925 
1926 	orig_head = head_page = cpu_buffer->head_page;
1927 
1928 	/* Do the reader page first */
1929 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1930 	if (ret < 0) {
1931 		pr_info("Ring buffer reader page is invalid\n");
1932 		goto invalid;
1933 	}
1934 	entries += ret;
1935 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1936 	local_set(&cpu_buffer->reader_page->entries, ret);
1937 
1938 	ts = head_page->page->time_stamp;
1939 
1940 	/*
1941 	 * Try to rewind the head so that we can read the pages which already
1942 	 * read in the previous boot.
1943 	 */
1944 	if (head_page == cpu_buffer->tail_page)
1945 		goto skip_rewind;
1946 
1947 	rb_dec_page(&head_page);
1948 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_dec_page(&head_page)) {
1949 
1950 		/* Rewind until tail (writer) page. */
1951 		if (head_page == cpu_buffer->tail_page)
1952 			break;
1953 
1954 		/* Ensure the page has older data than head. */
1955 		if (ts < head_page->page->time_stamp)
1956 			break;
1957 
1958 		ts = head_page->page->time_stamp;
1959 		/* Ensure the page has correct timestamp and some data. */
1960 		if (!ts || rb_page_commit(head_page) == 0)
1961 			break;
1962 
1963 		/* Stop rewind if the page is invalid. */
1964 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1965 		if (ret < 0)
1966 			break;
1967 
1968 		/* Recover the number of entries and update stats. */
1969 		local_set(&head_page->entries, ret);
1970 		if (ret)
1971 			local_inc(&cpu_buffer->pages_touched);
1972 		entries += ret;
1973 		entry_bytes += rb_page_commit(head_page);
1974 	}
1975 	if (i)
1976 		pr_info("Ring buffer [%d] rewound %d pages\n", cpu_buffer->cpu, i);
1977 
1978 	/* The last rewound page must be skipped. */
1979 	if (head_page != orig_head)
1980 		rb_inc_page(&head_page);
1981 
1982 	/*
1983 	 * If the ring buffer was rewound, then inject the reader page
1984 	 * into the location just before the original head page.
1985 	 */
1986 	if (head_page != orig_head) {
1987 		struct buffer_page *bpage = orig_head;
1988 
1989 		rb_dec_page(&bpage);
1990 		/*
1991 		 * Insert the reader_page before the original head page.
1992 		 * Since the list encode RB_PAGE flags, general list
1993 		 * operations should be avoided.
1994 		 */
1995 		cpu_buffer->reader_page->list.next = &orig_head->list;
1996 		cpu_buffer->reader_page->list.prev = orig_head->list.prev;
1997 		orig_head->list.prev = &cpu_buffer->reader_page->list;
1998 		bpage->list.next = &cpu_buffer->reader_page->list;
1999 
2000 		/* Make the head_page the reader page */
2001 		cpu_buffer->reader_page = head_page;
2002 		bpage = head_page;
2003 		rb_inc_page(&head_page);
2004 		head_page->list.prev = bpage->list.prev;
2005 		rb_dec_page(&bpage);
2006 		bpage->list.next = &head_page->list;
2007 		rb_set_list_to_head(&bpage->list);
2008 		cpu_buffer->pages = &head_page->list;
2009 
2010 		cpu_buffer->head_page = head_page;
2011 		meta->head_buffer = (unsigned long)head_page->page;
2012 
2013 		/* Reset all the indexes */
2014 		bpage = cpu_buffer->reader_page;
2015 		meta->buffers[0] = rb_meta_subbuf_idx(meta, bpage->page);
2016 		bpage->id = 0;
2017 
2018 		for (i = 1, bpage = head_page; i < meta->nr_subbufs;
2019 		     i++, rb_inc_page(&bpage)) {
2020 			meta->buffers[i] = rb_meta_subbuf_idx(meta, bpage->page);
2021 			bpage->id = i;
2022 		}
2023 
2024 		/* We'll restart verifying from orig_head */
2025 		head_page = orig_head;
2026 	}
2027 
2028  skip_rewind:
2029 	/* If the commit_buffer is the reader page, update the commit page */
2030 	if (meta->commit_buffer == (unsigned long)cpu_buffer->reader_page->page) {
2031 		cpu_buffer->commit_page = cpu_buffer->reader_page;
2032 		/* Nothing more to do, the only page is the reader page */
2033 		goto done;
2034 	}
2035 
2036 	/* Iterate until finding the commit page */
2037 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
2038 
2039 		/* Reader page has already been done */
2040 		if (head_page == cpu_buffer->reader_page)
2041 			continue;
2042 
2043 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
2044 		if (ret < 0) {
2045 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
2046 				cpu_buffer->cpu);
2047 			goto invalid;
2048 		}
2049 
2050 		/* If the buffer has content, update pages_touched */
2051 		if (ret)
2052 			local_inc(&cpu_buffer->pages_touched);
2053 
2054 		entries += ret;
2055 		entry_bytes += local_read(&head_page->page->commit);
2056 		local_set(&cpu_buffer->head_page->entries, ret);
2057 
2058 		if (head_page == cpu_buffer->commit_page)
2059 			break;
2060 	}
2061 
2062 	if (head_page != cpu_buffer->commit_page) {
2063 		pr_info("Ring buffer meta [%d] commit page not found\n",
2064 			cpu_buffer->cpu);
2065 		goto invalid;
2066 	}
2067  done:
2068 	local_set(&cpu_buffer->entries, entries);
2069 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
2070 
2071 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
2072 	return;
2073 
2074  invalid:
2075 	/* The content of the buffers are invalid, reset the meta data */
2076 	meta->head_buffer = 0;
2077 	meta->commit_buffer = 0;
2078 
2079 	/* Reset the reader page */
2080 	local_set(&cpu_buffer->reader_page->entries, 0);
2081 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2082 
2083 	/* Reset all the subbuffers */
2084 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
2085 		local_set(&head_page->entries, 0);
2086 		local_set(&head_page->page->commit, 0);
2087 	}
2088 }
2089 
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages,int scratch_size)2090 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size)
2091 {
2092 	struct ring_buffer_cpu_meta *meta;
2093 	unsigned long *subbuf_mask;
2094 	unsigned long delta;
2095 	void *subbuf;
2096 	bool valid = false;
2097 	int cpu;
2098 	int i;
2099 
2100 	/* Create a mask to test the subbuf array */
2101 	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
2102 	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
2103 
2104 	if (rb_meta_init(buffer, scratch_size))
2105 		valid = true;
2106 
2107 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
2108 		void *next_meta;
2109 
2110 		meta = rb_range_meta(buffer, nr_pages, cpu);
2111 
2112 		if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
2113 			/* Make the mappings match the current address */
2114 			subbuf = rb_subbufs_from_meta(meta);
2115 			delta = (unsigned long)subbuf - meta->first_buffer;
2116 			meta->first_buffer += delta;
2117 			meta->head_buffer += delta;
2118 			meta->commit_buffer += delta;
2119 			continue;
2120 		}
2121 
2122 		if (cpu < nr_cpu_ids - 1)
2123 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
2124 		else
2125 			next_meta = (void *)buffer->range_addr_end;
2126 
2127 		memset(meta, 0, next_meta - (void *)meta);
2128 
2129 		meta->nr_subbufs = nr_pages + 1;
2130 		meta->subbuf_size = PAGE_SIZE;
2131 
2132 		subbuf = rb_subbufs_from_meta(meta);
2133 
2134 		meta->first_buffer = (unsigned long)subbuf;
2135 
2136 		/*
2137 		 * The buffers[] array holds the order of the sub-buffers
2138 		 * that are after the meta data. The sub-buffers may
2139 		 * be swapped out when read and inserted into a different
2140 		 * location of the ring buffer. Although their addresses
2141 		 * remain the same, the buffers[] array contains the
2142 		 * index into the sub-buffers holding their actual order.
2143 		 */
2144 		for (i = 0; i < meta->nr_subbufs; i++) {
2145 			meta->buffers[i] = i;
2146 			rb_init_page(subbuf);
2147 			subbuf += meta->subbuf_size;
2148 		}
2149 	}
2150 	bitmap_free(subbuf_mask);
2151 }
2152 
rbm_start(struct seq_file * m,loff_t * pos)2153 static void *rbm_start(struct seq_file *m, loff_t *pos)
2154 {
2155 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2156 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2157 	unsigned long val;
2158 
2159 	if (!meta)
2160 		return NULL;
2161 
2162 	if (*pos > meta->nr_subbufs)
2163 		return NULL;
2164 
2165 	val = *pos;
2166 	val++;
2167 
2168 	return (void *)val;
2169 }
2170 
rbm_next(struct seq_file * m,void * v,loff_t * pos)2171 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
2172 {
2173 	(*pos)++;
2174 
2175 	return rbm_start(m, pos);
2176 }
2177 
rbm_show(struct seq_file * m,void * v)2178 static int rbm_show(struct seq_file *m, void *v)
2179 {
2180 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2181 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2182 	unsigned long val = (unsigned long)v;
2183 
2184 	if (val == 1) {
2185 		seq_printf(m, "head_buffer:   %d\n",
2186 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2187 		seq_printf(m, "commit_buffer: %d\n",
2188 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2189 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2190 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2191 		return 0;
2192 	}
2193 
2194 	val -= 2;
2195 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2196 
2197 	return 0;
2198 }
2199 
rbm_stop(struct seq_file * m,void * p)2200 static void rbm_stop(struct seq_file *m, void *p)
2201 {
2202 }
2203 
2204 static const struct seq_operations rb_meta_seq_ops = {
2205 	.start		= rbm_start,
2206 	.next		= rbm_next,
2207 	.show		= rbm_show,
2208 	.stop		= rbm_stop,
2209 };
2210 
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2211 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2212 {
2213 	struct seq_file *m;
2214 	int ret;
2215 
2216 	ret = seq_open(file, &rb_meta_seq_ops);
2217 	if (ret)
2218 		return ret;
2219 
2220 	m = file->private_data;
2221 	m->private = buffer->buffers[cpu];
2222 
2223 	return 0;
2224 }
2225 
2226 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2227 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2228 				  struct buffer_page *bpage)
2229 {
2230 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2231 
2232 	if (meta->head_buffer == (unsigned long)bpage->page)
2233 		cpu_buffer->head_page = bpage;
2234 
2235 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2236 		cpu_buffer->commit_page = bpage;
2237 		cpu_buffer->tail_page = bpage;
2238 	}
2239 }
2240 
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2241 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2242 		long nr_pages, struct list_head *pages)
2243 {
2244 	struct trace_buffer *buffer = cpu_buffer->buffer;
2245 	struct ring_buffer_cpu_meta *meta = NULL;
2246 	struct buffer_page *bpage, *tmp;
2247 	bool user_thread = current->mm != NULL;
2248 	long i;
2249 
2250 	/*
2251 	 * Check if the available memory is there first.
2252 	 * Note, si_mem_available() only gives us a rough estimate of available
2253 	 * memory. It may not be accurate. But we don't care, we just want
2254 	 * to prevent doing any allocation when it is obvious that it is
2255 	 * not going to succeed.
2256 	 */
2257 	i = si_mem_available();
2258 	if (i < nr_pages)
2259 		return -ENOMEM;
2260 
2261 	/*
2262 	 * If a user thread allocates too much, and si_mem_available()
2263 	 * reports there's enough memory, even though there is not.
2264 	 * Make sure the OOM killer kills this thread. This can happen
2265 	 * even with RETRY_MAYFAIL because another task may be doing
2266 	 * an allocation after this task has taken all memory.
2267 	 * This is the task the OOM killer needs to take out during this
2268 	 * loop, even if it was triggered by an allocation somewhere else.
2269 	 */
2270 	if (user_thread)
2271 		set_current_oom_origin();
2272 
2273 	if (buffer->range_addr_start)
2274 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2275 
2276 	for (i = 0; i < nr_pages; i++) {
2277 
2278 		bpage = alloc_cpu_page(cpu_buffer->cpu);
2279 		if (!bpage)
2280 			goto free_pages;
2281 
2282 		rb_check_bpage(cpu_buffer, bpage);
2283 
2284 		/*
2285 		 * Append the pages as for mapped buffers we want to keep
2286 		 * the order
2287 		 */
2288 		list_add_tail(&bpage->list, pages);
2289 
2290 		if (meta) {
2291 			/* A range was given. Use that for the buffer page */
2292 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2293 			if (!bpage->page)
2294 				goto free_pages;
2295 			/* If this is valid from a previous boot */
2296 			if (meta->head_buffer)
2297 				rb_meta_buffer_update(cpu_buffer, bpage);
2298 			bpage->range = 1;
2299 			bpage->id = i + 1;
2300 		} else {
2301 			int order = cpu_buffer->buffer->subbuf_order;
2302 			bpage->page = alloc_cpu_data(cpu_buffer->cpu, order);
2303 			if (!bpage->page)
2304 				goto free_pages;
2305 		}
2306 		bpage->order = cpu_buffer->buffer->subbuf_order;
2307 
2308 		if (user_thread && fatal_signal_pending(current))
2309 			goto free_pages;
2310 	}
2311 	if (user_thread)
2312 		clear_current_oom_origin();
2313 
2314 	return 0;
2315 
2316 free_pages:
2317 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2318 		list_del_init(&bpage->list);
2319 		free_buffer_page(bpage);
2320 	}
2321 	if (user_thread)
2322 		clear_current_oom_origin();
2323 
2324 	return -ENOMEM;
2325 }
2326 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2327 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2328 			     unsigned long nr_pages)
2329 {
2330 	LIST_HEAD(pages);
2331 
2332 	WARN_ON(!nr_pages);
2333 
2334 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2335 		return -ENOMEM;
2336 
2337 	/*
2338 	 * The ring buffer page list is a circular list that does not
2339 	 * start and end with a list head. All page list items point to
2340 	 * other pages.
2341 	 */
2342 	cpu_buffer->pages = pages.next;
2343 	list_del(&pages);
2344 
2345 	cpu_buffer->nr_pages = nr_pages;
2346 
2347 	rb_check_pages(cpu_buffer);
2348 
2349 	return 0;
2350 }
2351 
2352 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2353 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2354 {
2355 	struct ring_buffer_per_cpu *cpu_buffer __free(kfree) =
2356 		alloc_cpu_buffer(cpu);
2357 	struct ring_buffer_cpu_meta *meta;
2358 	struct buffer_page *bpage;
2359 	int ret;
2360 
2361 	if (!cpu_buffer)
2362 		return NULL;
2363 
2364 	cpu_buffer->cpu = cpu;
2365 	cpu_buffer->buffer = buffer;
2366 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2367 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2368 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2369 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2370 	init_completion(&cpu_buffer->update_done);
2371 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2372 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2373 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2374 	mutex_init(&cpu_buffer->mapping_lock);
2375 
2376 	bpage = alloc_cpu_page(cpu);
2377 	if (!bpage)
2378 		return NULL;
2379 
2380 	rb_check_bpage(cpu_buffer, bpage);
2381 
2382 	cpu_buffer->reader_page = bpage;
2383 
2384 	if (buffer->range_addr_start) {
2385 		/*
2386 		 * Range mapped buffers have the same restrictions as memory
2387 		 * mapped ones do.
2388 		 */
2389 		cpu_buffer->mapped = 1;
2390 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2391 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2392 		if (!bpage->page)
2393 			goto fail_free_reader;
2394 		if (cpu_buffer->ring_meta->head_buffer)
2395 			rb_meta_buffer_update(cpu_buffer, bpage);
2396 		bpage->range = 1;
2397 	} else {
2398 		int order = cpu_buffer->buffer->subbuf_order;
2399 		bpage->page = alloc_cpu_data(cpu, order);
2400 		if (!bpage->page)
2401 			goto fail_free_reader;
2402 	}
2403 
2404 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2405 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2406 
2407 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2408 	if (ret < 0)
2409 		goto fail_free_reader;
2410 
2411 	rb_meta_validate_events(cpu_buffer);
2412 
2413 	/* If the boot meta was valid then this has already been updated */
2414 	meta = cpu_buffer->ring_meta;
2415 	if (!meta || !meta->head_buffer ||
2416 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2417 		if (meta && meta->head_buffer &&
2418 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2419 			pr_warn("Ring buffer meta buffers not all mapped\n");
2420 			if (!cpu_buffer->head_page)
2421 				pr_warn("   Missing head_page\n");
2422 			if (!cpu_buffer->commit_page)
2423 				pr_warn("   Missing commit_page\n");
2424 			if (!cpu_buffer->tail_page)
2425 				pr_warn("   Missing tail_page\n");
2426 		}
2427 
2428 		cpu_buffer->head_page
2429 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2430 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2431 
2432 		rb_head_page_activate(cpu_buffer);
2433 
2434 		if (cpu_buffer->ring_meta)
2435 			meta->commit_buffer = meta->head_buffer;
2436 	} else {
2437 		/* The valid meta buffer still needs to activate the head page */
2438 		rb_head_page_activate(cpu_buffer);
2439 	}
2440 
2441 	return_ptr(cpu_buffer);
2442 
2443  fail_free_reader:
2444 	free_buffer_page(cpu_buffer->reader_page);
2445 
2446 	return NULL;
2447 }
2448 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2449 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2450 {
2451 	struct list_head *head = cpu_buffer->pages;
2452 	struct buffer_page *bpage, *tmp;
2453 
2454 	irq_work_sync(&cpu_buffer->irq_work.work);
2455 
2456 	free_buffer_page(cpu_buffer->reader_page);
2457 
2458 	if (head) {
2459 		rb_head_page_deactivate(cpu_buffer);
2460 
2461 		list_for_each_entry_safe(bpage, tmp, head, list) {
2462 			list_del_init(&bpage->list);
2463 			free_buffer_page(bpage);
2464 		}
2465 		bpage = list_entry(head, struct buffer_page, list);
2466 		free_buffer_page(bpage);
2467 	}
2468 
2469 	free_page((unsigned long)cpu_buffer->free_page);
2470 
2471 	kfree(cpu_buffer);
2472 }
2473 
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,unsigned long scratch_size,struct lock_class_key * key)2474 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2475 					 int order, unsigned long start,
2476 					 unsigned long end,
2477 					 unsigned long scratch_size,
2478 					 struct lock_class_key *key)
2479 {
2480 	struct trace_buffer *buffer __free(kfree) = NULL;
2481 	long nr_pages;
2482 	int subbuf_size;
2483 	int bsize;
2484 	int cpu;
2485 	int ret;
2486 
2487 	/* keep it in its own cache line */
2488 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2489 			 GFP_KERNEL);
2490 	if (!buffer)
2491 		return NULL;
2492 
2493 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2494 		return NULL;
2495 
2496 	buffer->subbuf_order = order;
2497 	subbuf_size = (PAGE_SIZE << order);
2498 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2499 
2500 	/* Max payload is buffer page size - header (8bytes) */
2501 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2502 
2503 	buffer->flags = flags;
2504 	buffer->clock = trace_clock_local;
2505 	buffer->reader_lock_key = key;
2506 
2507 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2508 	init_waitqueue_head(&buffer->irq_work.waiters);
2509 
2510 	buffer->cpus = nr_cpu_ids;
2511 
2512 	bsize = sizeof(void *) * nr_cpu_ids;
2513 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2514 				  GFP_KERNEL);
2515 	if (!buffer->buffers)
2516 		goto fail_free_cpumask;
2517 
2518 	/* If start/end are specified, then that overrides size */
2519 	if (start && end) {
2520 		unsigned long buffers_start;
2521 		unsigned long ptr;
2522 		int n;
2523 
2524 		/* Make sure that start is word aligned */
2525 		start = ALIGN(start, sizeof(long));
2526 
2527 		/* scratch_size needs to be aligned too */
2528 		scratch_size = ALIGN(scratch_size, sizeof(long));
2529 
2530 		/* Subtract the buffer meta data and word aligned */
2531 		buffers_start = start + sizeof(struct ring_buffer_cpu_meta);
2532 		buffers_start = ALIGN(buffers_start, sizeof(long));
2533 		buffers_start += scratch_size;
2534 
2535 		/* Calculate the size for the per CPU data */
2536 		size = end - buffers_start;
2537 		size = size / nr_cpu_ids;
2538 
2539 		/*
2540 		 * The number of sub-buffers (nr_pages) is determined by the
2541 		 * total size allocated minus the meta data size.
2542 		 * Then that is divided by the number of per CPU buffers
2543 		 * needed, plus account for the integer array index that
2544 		 * will be appended to the meta data.
2545 		 */
2546 		nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) /
2547 			(subbuf_size + sizeof(int));
2548 		/* Need at least two pages plus the reader page */
2549 		if (nr_pages < 3)
2550 			goto fail_free_buffers;
2551 
2552  again:
2553 		/* Make sure that the size fits aligned */
2554 		for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) {
2555 			ptr += sizeof(struct ring_buffer_cpu_meta) +
2556 				sizeof(int) * nr_pages;
2557 			ptr = ALIGN(ptr, subbuf_size);
2558 			ptr += subbuf_size * nr_pages;
2559 		}
2560 		if (ptr > end) {
2561 			if (nr_pages <= 3)
2562 				goto fail_free_buffers;
2563 			nr_pages--;
2564 			goto again;
2565 		}
2566 
2567 		/* nr_pages should not count the reader page */
2568 		nr_pages--;
2569 		buffer->range_addr_start = start;
2570 		buffer->range_addr_end = end;
2571 
2572 		rb_range_meta_init(buffer, nr_pages, scratch_size);
2573 	} else {
2574 
2575 		/* need at least two pages */
2576 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2577 		if (nr_pages < 2)
2578 			nr_pages = 2;
2579 	}
2580 
2581 	cpu = raw_smp_processor_id();
2582 	cpumask_set_cpu(cpu, buffer->cpumask);
2583 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2584 	if (!buffer->buffers[cpu])
2585 		goto fail_free_buffers;
2586 
2587 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2588 	if (ret < 0)
2589 		goto fail_free_buffers;
2590 
2591 	mutex_init(&buffer->mutex);
2592 
2593 	return_ptr(buffer);
2594 
2595  fail_free_buffers:
2596 	for_each_buffer_cpu(buffer, cpu) {
2597 		if (buffer->buffers[cpu])
2598 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2599 	}
2600 	kfree(buffer->buffers);
2601 
2602  fail_free_cpumask:
2603 	free_cpumask_var(buffer->cpumask);
2604 
2605 	return NULL;
2606 }
2607 
2608 /**
2609  * __ring_buffer_alloc - allocate a new ring_buffer
2610  * @size: the size in bytes per cpu that is needed.
2611  * @flags: attributes to set for the ring buffer.
2612  * @key: ring buffer reader_lock_key.
2613  *
2614  * Currently the only flag that is available is the RB_FL_OVERWRITE
2615  * flag. This flag means that the buffer will overwrite old data
2616  * when the buffer wraps. If this flag is not set, the buffer will
2617  * drop data when the tail hits the head.
2618  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2619 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2620 					struct lock_class_key *key)
2621 {
2622 	/* Default buffer page size - one system page */
2623 	return alloc_buffer(size, flags, 0, 0, 0, 0, key);
2624 
2625 }
2626 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2627 
2628 /**
2629  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2630  * @size: the size in bytes per cpu that is needed.
2631  * @flags: attributes to set for the ring buffer.
2632  * @order: sub-buffer order
2633  * @start: start of allocated range
2634  * @range_size: size of allocated range
2635  * @scratch_size: size of scratch area (for preallocated memory buffers)
2636  * @key: ring buffer reader_lock_key.
2637  *
2638  * Currently the only flag that is available is the RB_FL_OVERWRITE
2639  * flag. This flag means that the buffer will overwrite old data
2640  * when the buffer wraps. If this flag is not set, the buffer will
2641  * drop data when the tail hits the head.
2642  */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,unsigned long scratch_size,struct lock_class_key * key)2643 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2644 					       int order, unsigned long start,
2645 					       unsigned long range_size,
2646 					       unsigned long scratch_size,
2647 					       struct lock_class_key *key)
2648 {
2649 	return alloc_buffer(size, flags, order, start, start + range_size,
2650 			    scratch_size, key);
2651 }
2652 
ring_buffer_meta_scratch(struct trace_buffer * buffer,unsigned int * size)2653 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size)
2654 {
2655 	struct ring_buffer_meta *meta;
2656 	void *ptr;
2657 
2658 	if (!buffer || !buffer->meta)
2659 		return NULL;
2660 
2661 	meta = buffer->meta;
2662 
2663 	ptr = (void *)ALIGN((unsigned long)meta + sizeof(*meta), sizeof(long));
2664 
2665 	if (size)
2666 		*size = (void *)meta + meta->buffers_offset - ptr;
2667 
2668 	return ptr;
2669 }
2670 
2671 /**
2672  * ring_buffer_free - free a ring buffer.
2673  * @buffer: the buffer to free.
2674  */
2675 void
ring_buffer_free(struct trace_buffer * buffer)2676 ring_buffer_free(struct trace_buffer *buffer)
2677 {
2678 	int cpu;
2679 
2680 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2681 
2682 	irq_work_sync(&buffer->irq_work.work);
2683 
2684 	for_each_buffer_cpu(buffer, cpu)
2685 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2686 
2687 	kfree(buffer->buffers);
2688 	free_cpumask_var(buffer->cpumask);
2689 
2690 	kfree(buffer);
2691 }
2692 EXPORT_SYMBOL_GPL(ring_buffer_free);
2693 
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2694 void ring_buffer_set_clock(struct trace_buffer *buffer,
2695 			   u64 (*clock)(void))
2696 {
2697 	buffer->clock = clock;
2698 }
2699 
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2700 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2701 {
2702 	buffer->time_stamp_abs = abs;
2703 }
2704 
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2705 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2706 {
2707 	return buffer->time_stamp_abs;
2708 }
2709 
rb_page_entries(struct buffer_page * bpage)2710 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2711 {
2712 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2713 }
2714 
rb_page_write(struct buffer_page * bpage)2715 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2716 {
2717 	return local_read(&bpage->write) & RB_WRITE_MASK;
2718 }
2719 
2720 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2721 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2722 {
2723 	struct list_head *tail_page, *to_remove, *next_page;
2724 	struct buffer_page *to_remove_page, *tmp_iter_page;
2725 	struct buffer_page *last_page, *first_page;
2726 	unsigned long nr_removed;
2727 	unsigned long head_bit;
2728 	int page_entries;
2729 
2730 	head_bit = 0;
2731 
2732 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2733 	atomic_inc(&cpu_buffer->record_disabled);
2734 	/*
2735 	 * We don't race with the readers since we have acquired the reader
2736 	 * lock. We also don't race with writers after disabling recording.
2737 	 * This makes it easy to figure out the first and the last page to be
2738 	 * removed from the list. We unlink all the pages in between including
2739 	 * the first and last pages. This is done in a busy loop so that we
2740 	 * lose the least number of traces.
2741 	 * The pages are freed after we restart recording and unlock readers.
2742 	 */
2743 	tail_page = &cpu_buffer->tail_page->list;
2744 
2745 	/*
2746 	 * tail page might be on reader page, we remove the next page
2747 	 * from the ring buffer
2748 	 */
2749 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2750 		tail_page = rb_list_head(tail_page->next);
2751 	to_remove = tail_page;
2752 
2753 	/* start of pages to remove */
2754 	first_page = list_entry(rb_list_head(to_remove->next),
2755 				struct buffer_page, list);
2756 
2757 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2758 		to_remove = rb_list_head(to_remove)->next;
2759 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2760 	}
2761 	/* Read iterators need to reset themselves when some pages removed */
2762 	cpu_buffer->pages_removed += nr_removed;
2763 
2764 	next_page = rb_list_head(to_remove)->next;
2765 
2766 	/*
2767 	 * Now we remove all pages between tail_page and next_page.
2768 	 * Make sure that we have head_bit value preserved for the
2769 	 * next page
2770 	 */
2771 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2772 						head_bit);
2773 	next_page = rb_list_head(next_page);
2774 	next_page->prev = tail_page;
2775 
2776 	/* make sure pages points to a valid page in the ring buffer */
2777 	cpu_buffer->pages = next_page;
2778 	cpu_buffer->cnt++;
2779 
2780 	/* update head page */
2781 	if (head_bit)
2782 		cpu_buffer->head_page = list_entry(next_page,
2783 						struct buffer_page, list);
2784 
2785 	/* pages are removed, resume tracing and then free the pages */
2786 	atomic_dec(&cpu_buffer->record_disabled);
2787 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2788 
2789 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2790 
2791 	/* last buffer page to remove */
2792 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2793 				list);
2794 	tmp_iter_page = first_page;
2795 
2796 	do {
2797 		cond_resched();
2798 
2799 		to_remove_page = tmp_iter_page;
2800 		rb_inc_page(&tmp_iter_page);
2801 
2802 		/* update the counters */
2803 		page_entries = rb_page_entries(to_remove_page);
2804 		if (page_entries) {
2805 			/*
2806 			 * If something was added to this page, it was full
2807 			 * since it is not the tail page. So we deduct the
2808 			 * bytes consumed in ring buffer from here.
2809 			 * Increment overrun to account for the lost events.
2810 			 */
2811 			local_add(page_entries, &cpu_buffer->overrun);
2812 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2813 			local_inc(&cpu_buffer->pages_lost);
2814 		}
2815 
2816 		/*
2817 		 * We have already removed references to this list item, just
2818 		 * free up the buffer_page and its page
2819 		 */
2820 		free_buffer_page(to_remove_page);
2821 		nr_removed--;
2822 
2823 	} while (to_remove_page != last_page);
2824 
2825 	RB_WARN_ON(cpu_buffer, nr_removed);
2826 
2827 	return nr_removed == 0;
2828 }
2829 
2830 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2831 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2832 {
2833 	struct list_head *pages = &cpu_buffer->new_pages;
2834 	unsigned long flags;
2835 	bool success;
2836 	int retries;
2837 
2838 	/* Can be called at early boot up, where interrupts must not been enabled */
2839 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2840 	/*
2841 	 * We are holding the reader lock, so the reader page won't be swapped
2842 	 * in the ring buffer. Now we are racing with the writer trying to
2843 	 * move head page and the tail page.
2844 	 * We are going to adapt the reader page update process where:
2845 	 * 1. We first splice the start and end of list of new pages between
2846 	 *    the head page and its previous page.
2847 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2848 	 *    start of new pages list.
2849 	 * 3. Finally, we update the head->prev to the end of new list.
2850 	 *
2851 	 * We will try this process 10 times, to make sure that we don't keep
2852 	 * spinning.
2853 	 */
2854 	retries = 10;
2855 	success = false;
2856 	while (retries--) {
2857 		struct list_head *head_page, *prev_page;
2858 		struct list_head *last_page, *first_page;
2859 		struct list_head *head_page_with_bit;
2860 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2861 
2862 		if (!hpage)
2863 			break;
2864 		head_page = &hpage->list;
2865 		prev_page = head_page->prev;
2866 
2867 		first_page = pages->next;
2868 		last_page  = pages->prev;
2869 
2870 		head_page_with_bit = (struct list_head *)
2871 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2872 
2873 		last_page->next = head_page_with_bit;
2874 		first_page->prev = prev_page;
2875 
2876 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2877 		if (try_cmpxchg(&prev_page->next,
2878 				&head_page_with_bit, first_page)) {
2879 			/*
2880 			 * yay, we replaced the page pointer to our new list,
2881 			 * now, we just have to update to head page's prev
2882 			 * pointer to point to end of list
2883 			 */
2884 			head_page->prev = last_page;
2885 			cpu_buffer->cnt++;
2886 			success = true;
2887 			break;
2888 		}
2889 	}
2890 
2891 	if (success)
2892 		INIT_LIST_HEAD(pages);
2893 	/*
2894 	 * If we weren't successful in adding in new pages, warn and stop
2895 	 * tracing
2896 	 */
2897 	RB_WARN_ON(cpu_buffer, !success);
2898 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2899 
2900 	/* free pages if they weren't inserted */
2901 	if (!success) {
2902 		struct buffer_page *bpage, *tmp;
2903 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2904 					 list) {
2905 			list_del_init(&bpage->list);
2906 			free_buffer_page(bpage);
2907 		}
2908 	}
2909 	return success;
2910 }
2911 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2912 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2913 {
2914 	bool success;
2915 
2916 	if (cpu_buffer->nr_pages_to_update > 0)
2917 		success = rb_insert_pages(cpu_buffer);
2918 	else
2919 		success = rb_remove_pages(cpu_buffer,
2920 					-cpu_buffer->nr_pages_to_update);
2921 
2922 	if (success)
2923 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2924 }
2925 
update_pages_handler(struct work_struct * work)2926 static void update_pages_handler(struct work_struct *work)
2927 {
2928 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2929 			struct ring_buffer_per_cpu, update_pages_work);
2930 	rb_update_pages(cpu_buffer);
2931 	complete(&cpu_buffer->update_done);
2932 }
2933 
2934 /**
2935  * ring_buffer_resize - resize the ring buffer
2936  * @buffer: the buffer to resize.
2937  * @size: the new size.
2938  * @cpu_id: the cpu buffer to resize
2939  *
2940  * Minimum size is 2 * buffer->subbuf_size.
2941  *
2942  * Returns 0 on success and < 0 on failure.
2943  */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2944 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2945 			int cpu_id)
2946 {
2947 	struct ring_buffer_per_cpu *cpu_buffer;
2948 	unsigned long nr_pages;
2949 	int cpu, err;
2950 
2951 	/*
2952 	 * Always succeed at resizing a non-existent buffer:
2953 	 */
2954 	if (!buffer)
2955 		return 0;
2956 
2957 	/* Make sure the requested buffer exists */
2958 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2959 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2960 		return 0;
2961 
2962 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2963 
2964 	/* we need a minimum of two pages */
2965 	if (nr_pages < 2)
2966 		nr_pages = 2;
2967 
2968 	/*
2969 	 * Keep CPUs from coming online while resizing to synchronize
2970 	 * with new per CPU buffers being created.
2971 	 */
2972 	guard(cpus_read_lock)();
2973 
2974 	/* prevent another thread from changing buffer sizes */
2975 	mutex_lock(&buffer->mutex);
2976 	atomic_inc(&buffer->resizing);
2977 
2978 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2979 		/*
2980 		 * Don't succeed if resizing is disabled, as a reader might be
2981 		 * manipulating the ring buffer and is expecting a sane state while
2982 		 * this is true.
2983 		 */
2984 		for_each_buffer_cpu(buffer, cpu) {
2985 			cpu_buffer = buffer->buffers[cpu];
2986 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2987 				err = -EBUSY;
2988 				goto out_err_unlock;
2989 			}
2990 		}
2991 
2992 		/* calculate the pages to update */
2993 		for_each_buffer_cpu(buffer, cpu) {
2994 			cpu_buffer = buffer->buffers[cpu];
2995 
2996 			cpu_buffer->nr_pages_to_update = nr_pages -
2997 							cpu_buffer->nr_pages;
2998 			/*
2999 			 * nothing more to do for removing pages or no update
3000 			 */
3001 			if (cpu_buffer->nr_pages_to_update <= 0)
3002 				continue;
3003 			/*
3004 			 * to add pages, make sure all new pages can be
3005 			 * allocated without receiving ENOMEM
3006 			 */
3007 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
3008 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
3009 						&cpu_buffer->new_pages)) {
3010 				/* not enough memory for new pages */
3011 				err = -ENOMEM;
3012 				goto out_err;
3013 			}
3014 
3015 			cond_resched();
3016 		}
3017 
3018 		/*
3019 		 * Fire off all the required work handlers
3020 		 * We can't schedule on offline CPUs, but it's not necessary
3021 		 * since we can change their buffer sizes without any race.
3022 		 */
3023 		for_each_buffer_cpu(buffer, cpu) {
3024 			cpu_buffer = buffer->buffers[cpu];
3025 			if (!cpu_buffer->nr_pages_to_update)
3026 				continue;
3027 
3028 			/* Can't run something on an offline CPU. */
3029 			if (!cpu_online(cpu)) {
3030 				rb_update_pages(cpu_buffer);
3031 				cpu_buffer->nr_pages_to_update = 0;
3032 			} else {
3033 				/* Run directly if possible. */
3034 				migrate_disable();
3035 				if (cpu != smp_processor_id()) {
3036 					migrate_enable();
3037 					schedule_work_on(cpu,
3038 							 &cpu_buffer->update_pages_work);
3039 				} else {
3040 					update_pages_handler(&cpu_buffer->update_pages_work);
3041 					migrate_enable();
3042 				}
3043 			}
3044 		}
3045 
3046 		/* wait for all the updates to complete */
3047 		for_each_buffer_cpu(buffer, cpu) {
3048 			cpu_buffer = buffer->buffers[cpu];
3049 			if (!cpu_buffer->nr_pages_to_update)
3050 				continue;
3051 
3052 			if (cpu_online(cpu))
3053 				wait_for_completion(&cpu_buffer->update_done);
3054 			cpu_buffer->nr_pages_to_update = 0;
3055 		}
3056 
3057 	} else {
3058 		cpu_buffer = buffer->buffers[cpu_id];
3059 
3060 		if (nr_pages == cpu_buffer->nr_pages)
3061 			goto out;
3062 
3063 		/*
3064 		 * Don't succeed if resizing is disabled, as a reader might be
3065 		 * manipulating the ring buffer and is expecting a sane state while
3066 		 * this is true.
3067 		 */
3068 		if (atomic_read(&cpu_buffer->resize_disabled)) {
3069 			err = -EBUSY;
3070 			goto out_err_unlock;
3071 		}
3072 
3073 		cpu_buffer->nr_pages_to_update = nr_pages -
3074 						cpu_buffer->nr_pages;
3075 
3076 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
3077 		if (cpu_buffer->nr_pages_to_update > 0 &&
3078 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
3079 					    &cpu_buffer->new_pages)) {
3080 			err = -ENOMEM;
3081 			goto out_err;
3082 		}
3083 
3084 		/* Can't run something on an offline CPU. */
3085 		if (!cpu_online(cpu_id))
3086 			rb_update_pages(cpu_buffer);
3087 		else {
3088 			/* Run directly if possible. */
3089 			migrate_disable();
3090 			if (cpu_id == smp_processor_id()) {
3091 				rb_update_pages(cpu_buffer);
3092 				migrate_enable();
3093 			} else {
3094 				migrate_enable();
3095 				schedule_work_on(cpu_id,
3096 						 &cpu_buffer->update_pages_work);
3097 				wait_for_completion(&cpu_buffer->update_done);
3098 			}
3099 		}
3100 
3101 		cpu_buffer->nr_pages_to_update = 0;
3102 	}
3103 
3104  out:
3105 	/*
3106 	 * The ring buffer resize can happen with the ring buffer
3107 	 * enabled, so that the update disturbs the tracing as little
3108 	 * as possible. But if the buffer is disabled, we do not need
3109 	 * to worry about that, and we can take the time to verify
3110 	 * that the buffer is not corrupt.
3111 	 */
3112 	if (atomic_read(&buffer->record_disabled)) {
3113 		atomic_inc(&buffer->record_disabled);
3114 		/*
3115 		 * Even though the buffer was disabled, we must make sure
3116 		 * that it is truly disabled before calling rb_check_pages.
3117 		 * There could have been a race between checking
3118 		 * record_disable and incrementing it.
3119 		 */
3120 		synchronize_rcu();
3121 		for_each_buffer_cpu(buffer, cpu) {
3122 			cpu_buffer = buffer->buffers[cpu];
3123 			rb_check_pages(cpu_buffer);
3124 		}
3125 		atomic_dec(&buffer->record_disabled);
3126 	}
3127 
3128 	atomic_dec(&buffer->resizing);
3129 	mutex_unlock(&buffer->mutex);
3130 	return 0;
3131 
3132  out_err:
3133 	for_each_buffer_cpu(buffer, cpu) {
3134 		struct buffer_page *bpage, *tmp;
3135 
3136 		cpu_buffer = buffer->buffers[cpu];
3137 		cpu_buffer->nr_pages_to_update = 0;
3138 
3139 		if (list_empty(&cpu_buffer->new_pages))
3140 			continue;
3141 
3142 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3143 					list) {
3144 			list_del_init(&bpage->list);
3145 			free_buffer_page(bpage);
3146 
3147 			cond_resched();
3148 		}
3149 	}
3150  out_err_unlock:
3151 	atomic_dec(&buffer->resizing);
3152 	mutex_unlock(&buffer->mutex);
3153 	return err;
3154 }
3155 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3156 
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)3157 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3158 {
3159 	mutex_lock(&buffer->mutex);
3160 	if (val)
3161 		buffer->flags |= RB_FL_OVERWRITE;
3162 	else
3163 		buffer->flags &= ~RB_FL_OVERWRITE;
3164 	mutex_unlock(&buffer->mutex);
3165 }
3166 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3167 
__rb_page_index(struct buffer_page * bpage,unsigned index)3168 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3169 {
3170 	return bpage->page->data + index;
3171 }
3172 
3173 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3174 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3175 {
3176 	return __rb_page_index(cpu_buffer->reader_page,
3177 			       cpu_buffer->reader_page->read);
3178 }
3179 
3180 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)3181 rb_iter_head_event(struct ring_buffer_iter *iter)
3182 {
3183 	struct ring_buffer_event *event;
3184 	struct buffer_page *iter_head_page = iter->head_page;
3185 	unsigned long commit;
3186 	unsigned length;
3187 
3188 	if (iter->head != iter->next_event)
3189 		return iter->event;
3190 
3191 	/*
3192 	 * When the writer goes across pages, it issues a cmpxchg which
3193 	 * is a mb(), which will synchronize with the rmb here.
3194 	 * (see rb_tail_page_update() and __rb_reserve_next())
3195 	 */
3196 	commit = rb_page_commit(iter_head_page);
3197 	smp_rmb();
3198 
3199 	/* An event needs to be at least 8 bytes in size */
3200 	if (iter->head > commit - 8)
3201 		goto reset;
3202 
3203 	event = __rb_page_index(iter_head_page, iter->head);
3204 	length = rb_event_length(event);
3205 
3206 	/*
3207 	 * READ_ONCE() doesn't work on functions and we don't want the
3208 	 * compiler doing any crazy optimizations with length.
3209 	 */
3210 	barrier();
3211 
3212 	if ((iter->head + length) > commit || length > iter->event_size)
3213 		/* Writer corrupted the read? */
3214 		goto reset;
3215 
3216 	memcpy(iter->event, event, length);
3217 	/*
3218 	 * If the page stamp is still the same after this rmb() then the
3219 	 * event was safely copied without the writer entering the page.
3220 	 */
3221 	smp_rmb();
3222 
3223 	/* Make sure the page didn't change since we read this */
3224 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3225 	    commit > rb_page_commit(iter_head_page))
3226 		goto reset;
3227 
3228 	iter->next_event = iter->head + length;
3229 	return iter->event;
3230  reset:
3231 	/* Reset to the beginning */
3232 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3233 	iter->head = 0;
3234 	iter->next_event = 0;
3235 	iter->missed_events = 1;
3236 	return NULL;
3237 }
3238 
3239 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3240 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3241 {
3242 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3243 }
3244 
3245 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3246 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3247 {
3248 	return rb_page_commit(cpu_buffer->commit_page);
3249 }
3250 
3251 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3252 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3253 {
3254 	unsigned long addr = (unsigned long)event;
3255 
3256 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3257 
3258 	return addr - BUF_PAGE_HDR_SIZE;
3259 }
3260 
rb_inc_iter(struct ring_buffer_iter * iter)3261 static void rb_inc_iter(struct ring_buffer_iter *iter)
3262 {
3263 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3264 
3265 	/*
3266 	 * The iterator could be on the reader page (it starts there).
3267 	 * But the head could have moved, since the reader was
3268 	 * found. Check for this case and assign the iterator
3269 	 * to the head page instead of next.
3270 	 */
3271 	if (iter->head_page == cpu_buffer->reader_page)
3272 		iter->head_page = rb_set_head_page(cpu_buffer);
3273 	else
3274 		rb_inc_page(&iter->head_page);
3275 
3276 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3277 	iter->head = 0;
3278 	iter->next_event = 0;
3279 }
3280 
3281 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_cpu_meta * meta,void * subbuf)3282 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf)
3283 {
3284 	void *subbuf_array;
3285 
3286 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3287 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3288 	return (subbuf - subbuf_array) / meta->subbuf_size;
3289 }
3290 
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3291 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3292 				struct buffer_page *next_page)
3293 {
3294 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3295 	unsigned long old_head = (unsigned long)next_page->page;
3296 	unsigned long new_head;
3297 
3298 	rb_inc_page(&next_page);
3299 	new_head = (unsigned long)next_page->page;
3300 
3301 	/*
3302 	 * Only move it forward once, if something else came in and
3303 	 * moved it forward, then we don't want to touch it.
3304 	 */
3305 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3306 }
3307 
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3308 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3309 				  struct buffer_page *reader)
3310 {
3311 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3312 	void *old_reader = cpu_buffer->reader_page->page;
3313 	void *new_reader = reader->page;
3314 	int id;
3315 
3316 	id = reader->id;
3317 	cpu_buffer->reader_page->id = id;
3318 	reader->id = 0;
3319 
3320 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3321 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3322 
3323 	/* The head pointer is the one after the reader */
3324 	rb_update_meta_head(cpu_buffer, reader);
3325 }
3326 
3327 /*
3328  * rb_handle_head_page - writer hit the head page
3329  *
3330  * Returns: +1 to retry page
3331  *           0 to continue
3332  *          -1 on error
3333  */
3334 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3335 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3336 		    struct buffer_page *tail_page,
3337 		    struct buffer_page *next_page)
3338 {
3339 	struct buffer_page *new_head;
3340 	int entries;
3341 	int type;
3342 	int ret;
3343 
3344 	entries = rb_page_entries(next_page);
3345 
3346 	/*
3347 	 * The hard part is here. We need to move the head
3348 	 * forward, and protect against both readers on
3349 	 * other CPUs and writers coming in via interrupts.
3350 	 */
3351 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3352 				       RB_PAGE_HEAD);
3353 
3354 	/*
3355 	 * type can be one of four:
3356 	 *  NORMAL - an interrupt already moved it for us
3357 	 *  HEAD   - we are the first to get here.
3358 	 *  UPDATE - we are the interrupt interrupting
3359 	 *           a current move.
3360 	 *  MOVED  - a reader on another CPU moved the next
3361 	 *           pointer to its reader page. Give up
3362 	 *           and try again.
3363 	 */
3364 
3365 	switch (type) {
3366 	case RB_PAGE_HEAD:
3367 		/*
3368 		 * We changed the head to UPDATE, thus
3369 		 * it is our responsibility to update
3370 		 * the counters.
3371 		 */
3372 		local_add(entries, &cpu_buffer->overrun);
3373 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3374 		local_inc(&cpu_buffer->pages_lost);
3375 
3376 		if (cpu_buffer->ring_meta)
3377 			rb_update_meta_head(cpu_buffer, next_page);
3378 		/*
3379 		 * The entries will be zeroed out when we move the
3380 		 * tail page.
3381 		 */
3382 
3383 		/* still more to do */
3384 		break;
3385 
3386 	case RB_PAGE_UPDATE:
3387 		/*
3388 		 * This is an interrupt that interrupt the
3389 		 * previous update. Still more to do.
3390 		 */
3391 		break;
3392 	case RB_PAGE_NORMAL:
3393 		/*
3394 		 * An interrupt came in before the update
3395 		 * and processed this for us.
3396 		 * Nothing left to do.
3397 		 */
3398 		return 1;
3399 	case RB_PAGE_MOVED:
3400 		/*
3401 		 * The reader is on another CPU and just did
3402 		 * a swap with our next_page.
3403 		 * Try again.
3404 		 */
3405 		return 1;
3406 	default:
3407 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3408 		return -1;
3409 	}
3410 
3411 	/*
3412 	 * Now that we are here, the old head pointer is
3413 	 * set to UPDATE. This will keep the reader from
3414 	 * swapping the head page with the reader page.
3415 	 * The reader (on another CPU) will spin till
3416 	 * we are finished.
3417 	 *
3418 	 * We just need to protect against interrupts
3419 	 * doing the job. We will set the next pointer
3420 	 * to HEAD. After that, we set the old pointer
3421 	 * to NORMAL, but only if it was HEAD before.
3422 	 * otherwise we are an interrupt, and only
3423 	 * want the outer most commit to reset it.
3424 	 */
3425 	new_head = next_page;
3426 	rb_inc_page(&new_head);
3427 
3428 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3429 				    RB_PAGE_NORMAL);
3430 
3431 	/*
3432 	 * Valid returns are:
3433 	 *  HEAD   - an interrupt came in and already set it.
3434 	 *  NORMAL - One of two things:
3435 	 *            1) We really set it.
3436 	 *            2) A bunch of interrupts came in and moved
3437 	 *               the page forward again.
3438 	 */
3439 	switch (ret) {
3440 	case RB_PAGE_HEAD:
3441 	case RB_PAGE_NORMAL:
3442 		/* OK */
3443 		break;
3444 	default:
3445 		RB_WARN_ON(cpu_buffer, 1);
3446 		return -1;
3447 	}
3448 
3449 	/*
3450 	 * It is possible that an interrupt came in,
3451 	 * set the head up, then more interrupts came in
3452 	 * and moved it again. When we get back here,
3453 	 * the page would have been set to NORMAL but we
3454 	 * just set it back to HEAD.
3455 	 *
3456 	 * How do you detect this? Well, if that happened
3457 	 * the tail page would have moved.
3458 	 */
3459 	if (ret == RB_PAGE_NORMAL) {
3460 		struct buffer_page *buffer_tail_page;
3461 
3462 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3463 		/*
3464 		 * If the tail had moved passed next, then we need
3465 		 * to reset the pointer.
3466 		 */
3467 		if (buffer_tail_page != tail_page &&
3468 		    buffer_tail_page != next_page)
3469 			rb_head_page_set_normal(cpu_buffer, new_head,
3470 						next_page,
3471 						RB_PAGE_HEAD);
3472 	}
3473 
3474 	/*
3475 	 * If this was the outer most commit (the one that
3476 	 * changed the original pointer from HEAD to UPDATE),
3477 	 * then it is up to us to reset it to NORMAL.
3478 	 */
3479 	if (type == RB_PAGE_HEAD) {
3480 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3481 					      tail_page,
3482 					      RB_PAGE_UPDATE);
3483 		if (RB_WARN_ON(cpu_buffer,
3484 			       ret != RB_PAGE_UPDATE))
3485 			return -1;
3486 	}
3487 
3488 	return 0;
3489 }
3490 
3491 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3492 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3493 	      unsigned long tail, struct rb_event_info *info)
3494 {
3495 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3496 	struct buffer_page *tail_page = info->tail_page;
3497 	struct ring_buffer_event *event;
3498 	unsigned long length = info->length;
3499 
3500 	/*
3501 	 * Only the event that crossed the page boundary
3502 	 * must fill the old tail_page with padding.
3503 	 */
3504 	if (tail >= bsize) {
3505 		/*
3506 		 * If the page was filled, then we still need
3507 		 * to update the real_end. Reset it to zero
3508 		 * and the reader will ignore it.
3509 		 */
3510 		if (tail == bsize)
3511 			tail_page->real_end = 0;
3512 
3513 		local_sub(length, &tail_page->write);
3514 		return;
3515 	}
3516 
3517 	event = __rb_page_index(tail_page, tail);
3518 
3519 	/*
3520 	 * Save the original length to the meta data.
3521 	 * This will be used by the reader to add lost event
3522 	 * counter.
3523 	 */
3524 	tail_page->real_end = tail;
3525 
3526 	/*
3527 	 * If this event is bigger than the minimum size, then
3528 	 * we need to be careful that we don't subtract the
3529 	 * write counter enough to allow another writer to slip
3530 	 * in on this page.
3531 	 * We put in a discarded commit instead, to make sure
3532 	 * that this space is not used again, and this space will
3533 	 * not be accounted into 'entries_bytes'.
3534 	 *
3535 	 * If we are less than the minimum size, we don't need to
3536 	 * worry about it.
3537 	 */
3538 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3539 		/* No room for any events */
3540 
3541 		/* Mark the rest of the page with padding */
3542 		rb_event_set_padding(event);
3543 
3544 		/* Make sure the padding is visible before the write update */
3545 		smp_wmb();
3546 
3547 		/* Set the write back to the previous setting */
3548 		local_sub(length, &tail_page->write);
3549 		return;
3550 	}
3551 
3552 	/* Put in a discarded event */
3553 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3554 	event->type_len = RINGBUF_TYPE_PADDING;
3555 	/* time delta must be non zero */
3556 	event->time_delta = 1;
3557 
3558 	/* account for padding bytes */
3559 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3560 
3561 	/* Make sure the padding is visible before the tail_page->write update */
3562 	smp_wmb();
3563 
3564 	/* Set write to end of buffer */
3565 	length = (tail + length) - bsize;
3566 	local_sub(length, &tail_page->write);
3567 }
3568 
3569 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3570 
3571 /*
3572  * This is the slow path, force gcc not to inline it.
3573  */
3574 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3575 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3576 	     unsigned long tail, struct rb_event_info *info)
3577 {
3578 	struct buffer_page *tail_page = info->tail_page;
3579 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3580 	struct trace_buffer *buffer = cpu_buffer->buffer;
3581 	struct buffer_page *next_page;
3582 	int ret;
3583 
3584 	next_page = tail_page;
3585 
3586 	rb_inc_page(&next_page);
3587 
3588 	/*
3589 	 * If for some reason, we had an interrupt storm that made
3590 	 * it all the way around the buffer, bail, and warn
3591 	 * about it.
3592 	 */
3593 	if (unlikely(next_page == commit_page)) {
3594 		local_inc(&cpu_buffer->commit_overrun);
3595 		goto out_reset;
3596 	}
3597 
3598 	/*
3599 	 * This is where the fun begins!
3600 	 *
3601 	 * We are fighting against races between a reader that
3602 	 * could be on another CPU trying to swap its reader
3603 	 * page with the buffer head.
3604 	 *
3605 	 * We are also fighting against interrupts coming in and
3606 	 * moving the head or tail on us as well.
3607 	 *
3608 	 * If the next page is the head page then we have filled
3609 	 * the buffer, unless the commit page is still on the
3610 	 * reader page.
3611 	 */
3612 	if (rb_is_head_page(next_page, &tail_page->list)) {
3613 
3614 		/*
3615 		 * If the commit is not on the reader page, then
3616 		 * move the header page.
3617 		 */
3618 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3619 			/*
3620 			 * If we are not in overwrite mode,
3621 			 * this is easy, just stop here.
3622 			 */
3623 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3624 				local_inc(&cpu_buffer->dropped_events);
3625 				goto out_reset;
3626 			}
3627 
3628 			ret = rb_handle_head_page(cpu_buffer,
3629 						  tail_page,
3630 						  next_page);
3631 			if (ret < 0)
3632 				goto out_reset;
3633 			if (ret)
3634 				goto out_again;
3635 		} else {
3636 			/*
3637 			 * We need to be careful here too. The
3638 			 * commit page could still be on the reader
3639 			 * page. We could have a small buffer, and
3640 			 * have filled up the buffer with events
3641 			 * from interrupts and such, and wrapped.
3642 			 *
3643 			 * Note, if the tail page is also on the
3644 			 * reader_page, we let it move out.
3645 			 */
3646 			if (unlikely((cpu_buffer->commit_page !=
3647 				      cpu_buffer->tail_page) &&
3648 				     (cpu_buffer->commit_page ==
3649 				      cpu_buffer->reader_page))) {
3650 				local_inc(&cpu_buffer->commit_overrun);
3651 				goto out_reset;
3652 			}
3653 		}
3654 	}
3655 
3656 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3657 
3658  out_again:
3659 
3660 	rb_reset_tail(cpu_buffer, tail, info);
3661 
3662 	/* Commit what we have for now. */
3663 	rb_end_commit(cpu_buffer);
3664 	/* rb_end_commit() decs committing */
3665 	local_inc(&cpu_buffer->committing);
3666 
3667 	/* fail and let the caller try again */
3668 	return ERR_PTR(-EAGAIN);
3669 
3670  out_reset:
3671 	/* reset write */
3672 	rb_reset_tail(cpu_buffer, tail, info);
3673 
3674 	return NULL;
3675 }
3676 
3677 /* Slow path */
3678 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3679 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3680 		  struct ring_buffer_event *event, u64 delta, bool abs)
3681 {
3682 	if (abs)
3683 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3684 	else
3685 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3686 
3687 	/* Not the first event on the page, or not delta? */
3688 	if (abs || rb_event_index(cpu_buffer, event)) {
3689 		event->time_delta = delta & TS_MASK;
3690 		event->array[0] = delta >> TS_SHIFT;
3691 	} else {
3692 		/* nope, just zero it */
3693 		event->time_delta = 0;
3694 		event->array[0] = 0;
3695 	}
3696 
3697 	return skip_time_extend(event);
3698 }
3699 
3700 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3701 static inline bool sched_clock_stable(void)
3702 {
3703 	return true;
3704 }
3705 #endif
3706 
3707 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3708 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3709 		   struct rb_event_info *info)
3710 {
3711 	u64 write_stamp;
3712 
3713 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3714 		  (unsigned long long)info->delta,
3715 		  (unsigned long long)info->ts,
3716 		  (unsigned long long)info->before,
3717 		  (unsigned long long)info->after,
3718 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3719 		  sched_clock_stable() ? "" :
3720 		  "If you just came from a suspend/resume,\n"
3721 		  "please switch to the trace global clock:\n"
3722 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3723 		  "or add trace_clock=global to the kernel command line\n");
3724 }
3725 
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3726 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3727 				      struct ring_buffer_event **event,
3728 				      struct rb_event_info *info,
3729 				      u64 *delta,
3730 				      unsigned int *length)
3731 {
3732 	bool abs = info->add_timestamp &
3733 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3734 
3735 	if (unlikely(info->delta > (1ULL << 59))) {
3736 		/*
3737 		 * Some timers can use more than 59 bits, and when a timestamp
3738 		 * is added to the buffer, it will lose those bits.
3739 		 */
3740 		if (abs && (info->ts & TS_MSB)) {
3741 			info->delta &= ABS_TS_MASK;
3742 
3743 		/* did the clock go backwards */
3744 		} else if (info->before == info->after && info->before > info->ts) {
3745 			/* not interrupted */
3746 			static int once;
3747 
3748 			/*
3749 			 * This is possible with a recalibrating of the TSC.
3750 			 * Do not produce a call stack, but just report it.
3751 			 */
3752 			if (!once) {
3753 				once++;
3754 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3755 					info->before, info->ts);
3756 			}
3757 		} else
3758 			rb_check_timestamp(cpu_buffer, info);
3759 		if (!abs)
3760 			info->delta = 0;
3761 	}
3762 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3763 	*length -= RB_LEN_TIME_EXTEND;
3764 	*delta = 0;
3765 }
3766 
3767 /**
3768  * rb_update_event - update event type and data
3769  * @cpu_buffer: The per cpu buffer of the @event
3770  * @event: the event to update
3771  * @info: The info to update the @event with (contains length and delta)
3772  *
3773  * Update the type and data fields of the @event. The length
3774  * is the actual size that is written to the ring buffer,
3775  * and with this, we can determine what to place into the
3776  * data field.
3777  */
3778 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3779 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3780 		struct ring_buffer_event *event,
3781 		struct rb_event_info *info)
3782 {
3783 	unsigned length = info->length;
3784 	u64 delta = info->delta;
3785 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3786 
3787 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3788 		cpu_buffer->event_stamp[nest] = info->ts;
3789 
3790 	/*
3791 	 * If we need to add a timestamp, then we
3792 	 * add it to the start of the reserved space.
3793 	 */
3794 	if (unlikely(info->add_timestamp))
3795 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3796 
3797 	event->time_delta = delta;
3798 	length -= RB_EVNT_HDR_SIZE;
3799 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3800 		event->type_len = 0;
3801 		event->array[0] = length;
3802 	} else
3803 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3804 }
3805 
rb_calculate_event_length(unsigned length)3806 static unsigned rb_calculate_event_length(unsigned length)
3807 {
3808 	struct ring_buffer_event event; /* Used only for sizeof array */
3809 
3810 	/* zero length can cause confusions */
3811 	if (!length)
3812 		length++;
3813 
3814 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3815 		length += sizeof(event.array[0]);
3816 
3817 	length += RB_EVNT_HDR_SIZE;
3818 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3819 
3820 	/*
3821 	 * In case the time delta is larger than the 27 bits for it
3822 	 * in the header, we need to add a timestamp. If another
3823 	 * event comes in when trying to discard this one to increase
3824 	 * the length, then the timestamp will be added in the allocated
3825 	 * space of this event. If length is bigger than the size needed
3826 	 * for the TIME_EXTEND, then padding has to be used. The events
3827 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3828 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3829 	 * As length is a multiple of 4, we only need to worry if it
3830 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3831 	 */
3832 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3833 		length += RB_ALIGNMENT;
3834 
3835 	return length;
3836 }
3837 
3838 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3839 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3840 		  struct ring_buffer_event *event)
3841 {
3842 	unsigned long new_index, old_index;
3843 	struct buffer_page *bpage;
3844 	unsigned long addr;
3845 
3846 	new_index = rb_event_index(cpu_buffer, event);
3847 	old_index = new_index + rb_event_ts_length(event);
3848 	addr = (unsigned long)event;
3849 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3850 
3851 	bpage = READ_ONCE(cpu_buffer->tail_page);
3852 
3853 	/*
3854 	 * Make sure the tail_page is still the same and
3855 	 * the next write location is the end of this event
3856 	 */
3857 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3858 		unsigned long write_mask =
3859 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3860 		unsigned long event_length = rb_event_length(event);
3861 
3862 		/*
3863 		 * For the before_stamp to be different than the write_stamp
3864 		 * to make sure that the next event adds an absolute
3865 		 * value and does not rely on the saved write stamp, which
3866 		 * is now going to be bogus.
3867 		 *
3868 		 * By setting the before_stamp to zero, the next event
3869 		 * is not going to use the write_stamp and will instead
3870 		 * create an absolute timestamp. This means there's no
3871 		 * reason to update the wirte_stamp!
3872 		 */
3873 		rb_time_set(&cpu_buffer->before_stamp, 0);
3874 
3875 		/*
3876 		 * If an event were to come in now, it would see that the
3877 		 * write_stamp and the before_stamp are different, and assume
3878 		 * that this event just added itself before updating
3879 		 * the write stamp. The interrupting event will fix the
3880 		 * write stamp for us, and use an absolute timestamp.
3881 		 */
3882 
3883 		/*
3884 		 * This is on the tail page. It is possible that
3885 		 * a write could come in and move the tail page
3886 		 * and write to the next page. That is fine
3887 		 * because we just shorten what is on this page.
3888 		 */
3889 		old_index += write_mask;
3890 		new_index += write_mask;
3891 
3892 		/* caution: old_index gets updated on cmpxchg failure */
3893 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3894 			/* update counters */
3895 			local_sub(event_length, &cpu_buffer->entries_bytes);
3896 			return true;
3897 		}
3898 	}
3899 
3900 	/* could not discard */
3901 	return false;
3902 }
3903 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3904 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3905 {
3906 	local_inc(&cpu_buffer->committing);
3907 	local_inc(&cpu_buffer->commits);
3908 }
3909 
3910 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3911 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3912 {
3913 	unsigned long max_count;
3914 
3915 	/*
3916 	 * We only race with interrupts and NMIs on this CPU.
3917 	 * If we own the commit event, then we can commit
3918 	 * all others that interrupted us, since the interruptions
3919 	 * are in stack format (they finish before they come
3920 	 * back to us). This allows us to do a simple loop to
3921 	 * assign the commit to the tail.
3922 	 */
3923  again:
3924 	max_count = cpu_buffer->nr_pages * 100;
3925 
3926 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3927 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3928 			return;
3929 		if (RB_WARN_ON(cpu_buffer,
3930 			       rb_is_reader_page(cpu_buffer->tail_page)))
3931 			return;
3932 		/*
3933 		 * No need for a memory barrier here, as the update
3934 		 * of the tail_page did it for this page.
3935 		 */
3936 		local_set(&cpu_buffer->commit_page->page->commit,
3937 			  rb_page_write(cpu_buffer->commit_page));
3938 		rb_inc_page(&cpu_buffer->commit_page);
3939 		if (cpu_buffer->ring_meta) {
3940 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3941 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3942 		}
3943 		/* add barrier to keep gcc from optimizing too much */
3944 		barrier();
3945 	}
3946 	while (rb_commit_index(cpu_buffer) !=
3947 	       rb_page_write(cpu_buffer->commit_page)) {
3948 
3949 		/* Make sure the readers see the content of what is committed. */
3950 		smp_wmb();
3951 		local_set(&cpu_buffer->commit_page->page->commit,
3952 			  rb_page_write(cpu_buffer->commit_page));
3953 		RB_WARN_ON(cpu_buffer,
3954 			   local_read(&cpu_buffer->commit_page->page->commit) &
3955 			   ~RB_WRITE_MASK);
3956 		barrier();
3957 	}
3958 
3959 	/* again, keep gcc from optimizing */
3960 	barrier();
3961 
3962 	/*
3963 	 * If an interrupt came in just after the first while loop
3964 	 * and pushed the tail page forward, we will be left with
3965 	 * a dangling commit that will never go forward.
3966 	 */
3967 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3968 		goto again;
3969 }
3970 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3971 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3972 {
3973 	unsigned long commits;
3974 
3975 	if (RB_WARN_ON(cpu_buffer,
3976 		       !local_read(&cpu_buffer->committing)))
3977 		return;
3978 
3979  again:
3980 	commits = local_read(&cpu_buffer->commits);
3981 	/* synchronize with interrupts */
3982 	barrier();
3983 	if (local_read(&cpu_buffer->committing) == 1)
3984 		rb_set_commit_to_write(cpu_buffer);
3985 
3986 	local_dec(&cpu_buffer->committing);
3987 
3988 	/* synchronize with interrupts */
3989 	barrier();
3990 
3991 	/*
3992 	 * Need to account for interrupts coming in between the
3993 	 * updating of the commit page and the clearing of the
3994 	 * committing counter.
3995 	 */
3996 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3997 	    !local_read(&cpu_buffer->committing)) {
3998 		local_inc(&cpu_buffer->committing);
3999 		goto again;
4000 	}
4001 }
4002 
rb_event_discard(struct ring_buffer_event * event)4003 static inline void rb_event_discard(struct ring_buffer_event *event)
4004 {
4005 	if (extended_time(event))
4006 		event = skip_time_extend(event);
4007 
4008 	/* array[0] holds the actual length for the discarded event */
4009 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
4010 	event->type_len = RINGBUF_TYPE_PADDING;
4011 	/* time delta must be non zero */
4012 	if (!event->time_delta)
4013 		event->time_delta = 1;
4014 }
4015 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)4016 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
4017 {
4018 	local_inc(&cpu_buffer->entries);
4019 	rb_end_commit(cpu_buffer);
4020 }
4021 
4022 static bool
rb_irq_work_queue(struct rb_irq_work * irq_work)4023 rb_irq_work_queue(struct rb_irq_work *irq_work)
4024 {
4025 	int cpu;
4026 
4027 	/* irq_work_queue_on() is not NMI-safe */
4028 	if (unlikely(in_nmi()))
4029 		return irq_work_queue(&irq_work->work);
4030 
4031 	/*
4032 	 * If CPU isolation is not active, cpu is always the current
4033 	 * CPU, and the following is equivallent to irq_work_queue().
4034 	 */
4035 	cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
4036 	return irq_work_queue_on(&irq_work->work, cpu);
4037 }
4038 
4039 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)4040 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
4041 {
4042 	if (buffer->irq_work.waiters_pending) {
4043 		buffer->irq_work.waiters_pending = false;
4044 		/* irq_work_queue() supplies it's own memory barriers */
4045 		rb_irq_work_queue(&buffer->irq_work);
4046 	}
4047 
4048 	if (cpu_buffer->irq_work.waiters_pending) {
4049 		cpu_buffer->irq_work.waiters_pending = false;
4050 		/* irq_work_queue() supplies it's own memory barriers */
4051 		rb_irq_work_queue(&cpu_buffer->irq_work);
4052 	}
4053 
4054 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
4055 		return;
4056 
4057 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
4058 		return;
4059 
4060 	if (!cpu_buffer->irq_work.full_waiters_pending)
4061 		return;
4062 
4063 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
4064 
4065 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
4066 		return;
4067 
4068 	cpu_buffer->irq_work.wakeup_full = true;
4069 	cpu_buffer->irq_work.full_waiters_pending = false;
4070 	/* irq_work_queue() supplies it's own memory barriers */
4071 	rb_irq_work_queue(&cpu_buffer->irq_work);
4072 }
4073 
4074 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
4075 # define do_ring_buffer_record_recursion()	\
4076 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
4077 #else
4078 # define do_ring_buffer_record_recursion() do { } while (0)
4079 #endif
4080 
4081 /*
4082  * The lock and unlock are done within a preempt disable section.
4083  * The current_context per_cpu variable can only be modified
4084  * by the current task between lock and unlock. But it can
4085  * be modified more than once via an interrupt. To pass this
4086  * information from the lock to the unlock without having to
4087  * access the 'in_interrupt()' functions again (which do show
4088  * a bit of overhead in something as critical as function tracing,
4089  * we use a bitmask trick.
4090  *
4091  *  bit 1 =  NMI context
4092  *  bit 2 =  IRQ context
4093  *  bit 3 =  SoftIRQ context
4094  *  bit 4 =  normal context.
4095  *
4096  * This works because this is the order of contexts that can
4097  * preempt other contexts. A SoftIRQ never preempts an IRQ
4098  * context.
4099  *
4100  * When the context is determined, the corresponding bit is
4101  * checked and set (if it was set, then a recursion of that context
4102  * happened).
4103  *
4104  * On unlock, we need to clear this bit. To do so, just subtract
4105  * 1 from the current_context and AND it to itself.
4106  *
4107  * (binary)
4108  *  101 - 1 = 100
4109  *  101 & 100 = 100 (clearing bit zero)
4110  *
4111  *  1010 - 1 = 1001
4112  *  1010 & 1001 = 1000 (clearing bit 1)
4113  *
4114  * The least significant bit can be cleared this way, and it
4115  * just so happens that it is the same bit corresponding to
4116  * the current context.
4117  *
4118  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
4119  * is set when a recursion is detected at the current context, and if
4120  * the TRANSITION bit is already set, it will fail the recursion.
4121  * This is needed because there's a lag between the changing of
4122  * interrupt context and updating the preempt count. In this case,
4123  * a false positive will be found. To handle this, one extra recursion
4124  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
4125  * bit is already set, then it is considered a recursion and the function
4126  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
4127  *
4128  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
4129  * to be cleared. Even if it wasn't the context that set it. That is,
4130  * if an interrupt comes in while NORMAL bit is set and the ring buffer
4131  * is called before preempt_count() is updated, since the check will
4132  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
4133  * NMI then comes in, it will set the NMI bit, but when the NMI code
4134  * does the trace_recursive_unlock() it will clear the TRANSITION bit
4135  * and leave the NMI bit set. But this is fine, because the interrupt
4136  * code that set the TRANSITION bit will then clear the NMI bit when it
4137  * calls trace_recursive_unlock(). If another NMI comes in, it will
4138  * set the TRANSITION bit and continue.
4139  *
4140  * Note: The TRANSITION bit only handles a single transition between context.
4141  */
4142 
4143 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)4144 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
4145 {
4146 	unsigned int val = cpu_buffer->current_context;
4147 	int bit = interrupt_context_level();
4148 
4149 	bit = RB_CTX_NORMAL - bit;
4150 
4151 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
4152 		/*
4153 		 * It is possible that this was called by transitioning
4154 		 * between interrupt context, and preempt_count() has not
4155 		 * been updated yet. In this case, use the TRANSITION bit.
4156 		 */
4157 		bit = RB_CTX_TRANSITION;
4158 		if (val & (1 << (bit + cpu_buffer->nest))) {
4159 			do_ring_buffer_record_recursion();
4160 			return true;
4161 		}
4162 	}
4163 
4164 	val |= (1 << (bit + cpu_buffer->nest));
4165 	cpu_buffer->current_context = val;
4166 
4167 	return false;
4168 }
4169 
4170 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)4171 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4172 {
4173 	cpu_buffer->current_context &=
4174 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
4175 }
4176 
4177 /* The recursive locking above uses 5 bits */
4178 #define NESTED_BITS 5
4179 
4180 /**
4181  * ring_buffer_nest_start - Allow to trace while nested
4182  * @buffer: The ring buffer to modify
4183  *
4184  * The ring buffer has a safety mechanism to prevent recursion.
4185  * But there may be a case where a trace needs to be done while
4186  * tracing something else. In this case, calling this function
4187  * will allow this function to nest within a currently active
4188  * ring_buffer_lock_reserve().
4189  *
4190  * Call this function before calling another ring_buffer_lock_reserve() and
4191  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4192  */
ring_buffer_nest_start(struct trace_buffer * buffer)4193 void ring_buffer_nest_start(struct trace_buffer *buffer)
4194 {
4195 	struct ring_buffer_per_cpu *cpu_buffer;
4196 	int cpu;
4197 
4198 	/* Enabled by ring_buffer_nest_end() */
4199 	preempt_disable_notrace();
4200 	cpu = raw_smp_processor_id();
4201 	cpu_buffer = buffer->buffers[cpu];
4202 	/* This is the shift value for the above recursive locking */
4203 	cpu_buffer->nest += NESTED_BITS;
4204 }
4205 
4206 /**
4207  * ring_buffer_nest_end - Allow to trace while nested
4208  * @buffer: The ring buffer to modify
4209  *
4210  * Must be called after ring_buffer_nest_start() and after the
4211  * ring_buffer_unlock_commit().
4212  */
ring_buffer_nest_end(struct trace_buffer * buffer)4213 void ring_buffer_nest_end(struct trace_buffer *buffer)
4214 {
4215 	struct ring_buffer_per_cpu *cpu_buffer;
4216 	int cpu;
4217 
4218 	/* disabled by ring_buffer_nest_start() */
4219 	cpu = raw_smp_processor_id();
4220 	cpu_buffer = buffer->buffers[cpu];
4221 	/* This is the shift value for the above recursive locking */
4222 	cpu_buffer->nest -= NESTED_BITS;
4223 	preempt_enable_notrace();
4224 }
4225 
4226 /**
4227  * ring_buffer_unlock_commit - commit a reserved
4228  * @buffer: The buffer to commit to
4229  *
4230  * This commits the data to the ring buffer, and releases any locks held.
4231  *
4232  * Must be paired with ring_buffer_lock_reserve.
4233  */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4234 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4235 {
4236 	struct ring_buffer_per_cpu *cpu_buffer;
4237 	int cpu = raw_smp_processor_id();
4238 
4239 	cpu_buffer = buffer->buffers[cpu];
4240 
4241 	rb_commit(cpu_buffer);
4242 
4243 	rb_wakeups(buffer, cpu_buffer);
4244 
4245 	trace_recursive_unlock(cpu_buffer);
4246 
4247 	preempt_enable_notrace();
4248 
4249 	return 0;
4250 }
4251 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4252 
4253 /* Special value to validate all deltas on a page. */
4254 #define CHECK_FULL_PAGE		1L
4255 
4256 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4257 
show_irq_str(int bits)4258 static const char *show_irq_str(int bits)
4259 {
4260 	static const char * type[] = {
4261 		".",	// 0
4262 		"s",	// 1
4263 		"h",	// 2
4264 		"Hs",	// 3
4265 		"n",	// 4
4266 		"Ns",	// 5
4267 		"Nh",	// 6
4268 		"NHs",	// 7
4269 	};
4270 
4271 	return type[bits];
4272 }
4273 
4274 /* Assume this is a trace event */
show_flags(struct ring_buffer_event * event)4275 static const char *show_flags(struct ring_buffer_event *event)
4276 {
4277 	struct trace_entry *entry;
4278 	int bits = 0;
4279 
4280 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4281 		return "X";
4282 
4283 	entry = ring_buffer_event_data(event);
4284 
4285 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4286 		bits |= 1;
4287 
4288 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4289 		bits |= 2;
4290 
4291 	if (entry->flags & TRACE_FLAG_NMI)
4292 		bits |= 4;
4293 
4294 	return show_irq_str(bits);
4295 }
4296 
show_irq(struct ring_buffer_event * event)4297 static const char *show_irq(struct ring_buffer_event *event)
4298 {
4299 	struct trace_entry *entry;
4300 
4301 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4302 		return "";
4303 
4304 	entry = ring_buffer_event_data(event);
4305 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4306 		return "d";
4307 	return "";
4308 }
4309 
show_interrupt_level(void)4310 static const char *show_interrupt_level(void)
4311 {
4312 	unsigned long pc = preempt_count();
4313 	unsigned char level = 0;
4314 
4315 	if (pc & SOFTIRQ_OFFSET)
4316 		level |= 1;
4317 
4318 	if (pc & HARDIRQ_MASK)
4319 		level |= 2;
4320 
4321 	if (pc & NMI_MASK)
4322 		level |= 4;
4323 
4324 	return show_irq_str(level);
4325 }
4326 
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4327 static void dump_buffer_page(struct buffer_data_page *bpage,
4328 			     struct rb_event_info *info,
4329 			     unsigned long tail)
4330 {
4331 	struct ring_buffer_event *event;
4332 	u64 ts, delta;
4333 	int e;
4334 
4335 	ts = bpage->time_stamp;
4336 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4337 
4338 	for (e = 0; e < tail; e += rb_event_length(event)) {
4339 
4340 		event = (struct ring_buffer_event *)(bpage->data + e);
4341 
4342 		switch (event->type_len) {
4343 
4344 		case RINGBUF_TYPE_TIME_EXTEND:
4345 			delta = rb_event_time_stamp(event);
4346 			ts += delta;
4347 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4348 				e, ts, delta);
4349 			break;
4350 
4351 		case RINGBUF_TYPE_TIME_STAMP:
4352 			delta = rb_event_time_stamp(event);
4353 			ts = rb_fix_abs_ts(delta, ts);
4354 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4355 				e, ts, delta);
4356 			break;
4357 
4358 		case RINGBUF_TYPE_PADDING:
4359 			ts += event->time_delta;
4360 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4361 				e, ts, event->time_delta);
4362 			break;
4363 
4364 		case RINGBUF_TYPE_DATA:
4365 			ts += event->time_delta;
4366 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4367 				e, ts, event->time_delta,
4368 				show_flags(event), show_irq(event));
4369 			break;
4370 
4371 		default:
4372 			break;
4373 		}
4374 	}
4375 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4376 }
4377 
4378 static DEFINE_PER_CPU(atomic_t, checking);
4379 static atomic_t ts_dump;
4380 
4381 #define buffer_warn_return(fmt, ...)					\
4382 	do {								\
4383 		/* If another report is happening, ignore this one */	\
4384 		if (atomic_inc_return(&ts_dump) != 1) {			\
4385 			atomic_dec(&ts_dump);				\
4386 			goto out;					\
4387 		}							\
4388 		atomic_inc(&cpu_buffer->record_disabled);		\
4389 		pr_warn(fmt, ##__VA_ARGS__);				\
4390 		dump_buffer_page(bpage, info, tail);			\
4391 		atomic_dec(&ts_dump);					\
4392 		/* There's some cases in boot up that this can happen */ \
4393 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4394 			/* Do not re-enable checking */			\
4395 			return;						\
4396 	} while (0)
4397 
4398 /*
4399  * Check if the current event time stamp matches the deltas on
4400  * the buffer page.
4401  */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4402 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4403 			 struct rb_event_info *info,
4404 			 unsigned long tail)
4405 {
4406 	struct buffer_data_page *bpage;
4407 	u64 ts, delta;
4408 	bool full = false;
4409 	int ret;
4410 
4411 	bpage = info->tail_page->page;
4412 
4413 	if (tail == CHECK_FULL_PAGE) {
4414 		full = true;
4415 		tail = local_read(&bpage->commit);
4416 	} else if (info->add_timestamp &
4417 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4418 		/* Ignore events with absolute time stamps */
4419 		return;
4420 	}
4421 
4422 	/*
4423 	 * Do not check the first event (skip possible extends too).
4424 	 * Also do not check if previous events have not been committed.
4425 	 */
4426 	if (tail <= 8 || tail > local_read(&bpage->commit))
4427 		return;
4428 
4429 	/*
4430 	 * If this interrupted another event,
4431 	 */
4432 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4433 		goto out;
4434 
4435 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4436 	if (ret < 0) {
4437 		if (delta < ts) {
4438 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4439 					   cpu_buffer->cpu, ts, delta);
4440 			goto out;
4441 		}
4442 	}
4443 	if ((full && ts > info->ts) ||
4444 	    (!full && ts + info->delta != info->ts)) {
4445 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4446 				   cpu_buffer->cpu,
4447 				   ts + info->delta, info->ts, info->delta,
4448 				   info->before, info->after,
4449 				   full ? " (full)" : "", show_interrupt_level());
4450 	}
4451 out:
4452 	atomic_dec(this_cpu_ptr(&checking));
4453 }
4454 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4455 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4456 			 struct rb_event_info *info,
4457 			 unsigned long tail)
4458 {
4459 }
4460 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4461 
4462 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4463 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4464 		  struct rb_event_info *info)
4465 {
4466 	struct ring_buffer_event *event;
4467 	struct buffer_page *tail_page;
4468 	unsigned long tail, write, w;
4469 
4470 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4471 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4472 
4473  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4474 	barrier();
4475 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4476 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4477 	barrier();
4478 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4479 
4480 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4481 		info->delta = info->ts;
4482 	} else {
4483 		/*
4484 		 * If interrupting an event time update, we may need an
4485 		 * absolute timestamp.
4486 		 * Don't bother if this is the start of a new page (w == 0).
4487 		 */
4488 		if (!w) {
4489 			/* Use the sub-buffer timestamp */
4490 			info->delta = 0;
4491 		} else if (unlikely(info->before != info->after)) {
4492 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4493 			info->length += RB_LEN_TIME_EXTEND;
4494 		} else {
4495 			info->delta = info->ts - info->after;
4496 			if (unlikely(test_time_stamp(info->delta))) {
4497 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4498 				info->length += RB_LEN_TIME_EXTEND;
4499 			}
4500 		}
4501 	}
4502 
4503  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4504 
4505  /*C*/	write = local_add_return(info->length, &tail_page->write);
4506 
4507 	/* set write to only the index of the write */
4508 	write &= RB_WRITE_MASK;
4509 
4510 	tail = write - info->length;
4511 
4512 	/* See if we shot pass the end of this buffer page */
4513 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4514 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4515 		return rb_move_tail(cpu_buffer, tail, info);
4516 	}
4517 
4518 	if (likely(tail == w)) {
4519 		/* Nothing interrupted us between A and C */
4520  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4521 		/*
4522 		 * If something came in between C and D, the write stamp
4523 		 * may now not be in sync. But that's fine as the before_stamp
4524 		 * will be different and then next event will just be forced
4525 		 * to use an absolute timestamp.
4526 		 */
4527 		if (likely(!(info->add_timestamp &
4528 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4529 			/* This did not interrupt any time update */
4530 			info->delta = info->ts - info->after;
4531 		else
4532 			/* Just use full timestamp for interrupting event */
4533 			info->delta = info->ts;
4534 		check_buffer(cpu_buffer, info, tail);
4535 	} else {
4536 		u64 ts;
4537 		/* SLOW PATH - Interrupted between A and C */
4538 
4539 		/* Save the old before_stamp */
4540 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4541 
4542 		/*
4543 		 * Read a new timestamp and update the before_stamp to make
4544 		 * the next event after this one force using an absolute
4545 		 * timestamp. This is in case an interrupt were to come in
4546 		 * between E and F.
4547 		 */
4548 		ts = rb_time_stamp(cpu_buffer->buffer);
4549 		rb_time_set(&cpu_buffer->before_stamp, ts);
4550 
4551 		barrier();
4552  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4553 		barrier();
4554  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4555 		    info->after == info->before && info->after < ts) {
4556 			/*
4557 			 * Nothing came after this event between C and F, it is
4558 			 * safe to use info->after for the delta as it
4559 			 * matched info->before and is still valid.
4560 			 */
4561 			info->delta = ts - info->after;
4562 		} else {
4563 			/*
4564 			 * Interrupted between C and F:
4565 			 * Lost the previous events time stamp. Just set the
4566 			 * delta to zero, and this will be the same time as
4567 			 * the event this event interrupted. And the events that
4568 			 * came after this will still be correct (as they would
4569 			 * have built their delta on the previous event.
4570 			 */
4571 			info->delta = 0;
4572 		}
4573 		info->ts = ts;
4574 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4575 	}
4576 
4577 	/*
4578 	 * If this is the first commit on the page, then it has the same
4579 	 * timestamp as the page itself.
4580 	 */
4581 	if (unlikely(!tail && !(info->add_timestamp &
4582 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4583 		info->delta = 0;
4584 
4585 	/* We reserved something on the buffer */
4586 
4587 	event = __rb_page_index(tail_page, tail);
4588 	rb_update_event(cpu_buffer, event, info);
4589 
4590 	local_inc(&tail_page->entries);
4591 
4592 	/*
4593 	 * If this is the first commit on the page, then update
4594 	 * its timestamp.
4595 	 */
4596 	if (unlikely(!tail))
4597 		tail_page->page->time_stamp = info->ts;
4598 
4599 	/* account for these added bytes */
4600 	local_add(info->length, &cpu_buffer->entries_bytes);
4601 
4602 	return event;
4603 }
4604 
4605 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4606 rb_reserve_next_event(struct trace_buffer *buffer,
4607 		      struct ring_buffer_per_cpu *cpu_buffer,
4608 		      unsigned long length)
4609 {
4610 	struct ring_buffer_event *event;
4611 	struct rb_event_info info;
4612 	int nr_loops = 0;
4613 	int add_ts_default;
4614 
4615 	/*
4616 	 * ring buffer does cmpxchg as well as atomic64 operations
4617 	 * (which some archs use locking for atomic64), make sure this
4618 	 * is safe in NMI context
4619 	 */
4620 	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4621 	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4622 	    (unlikely(in_nmi()))) {
4623 		return NULL;
4624 	}
4625 
4626 	rb_start_commit(cpu_buffer);
4627 	/* The commit page can not change after this */
4628 
4629 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4630 	/*
4631 	 * Due to the ability to swap a cpu buffer from a buffer
4632 	 * it is possible it was swapped before we committed.
4633 	 * (committing stops a swap). We check for it here and
4634 	 * if it happened, we have to fail the write.
4635 	 */
4636 	barrier();
4637 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4638 		local_dec(&cpu_buffer->committing);
4639 		local_dec(&cpu_buffer->commits);
4640 		return NULL;
4641 	}
4642 #endif
4643 
4644 	info.length = rb_calculate_event_length(length);
4645 
4646 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4647 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4648 		info.length += RB_LEN_TIME_EXTEND;
4649 		if (info.length > cpu_buffer->buffer->max_data_size)
4650 			goto out_fail;
4651 	} else {
4652 		add_ts_default = RB_ADD_STAMP_NONE;
4653 	}
4654 
4655  again:
4656 	info.add_timestamp = add_ts_default;
4657 	info.delta = 0;
4658 
4659 	/*
4660 	 * We allow for interrupts to reenter here and do a trace.
4661 	 * If one does, it will cause this original code to loop
4662 	 * back here. Even with heavy interrupts happening, this
4663 	 * should only happen a few times in a row. If this happens
4664 	 * 1000 times in a row, there must be either an interrupt
4665 	 * storm or we have something buggy.
4666 	 * Bail!
4667 	 */
4668 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4669 		goto out_fail;
4670 
4671 	event = __rb_reserve_next(cpu_buffer, &info);
4672 
4673 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4674 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4675 			info.length -= RB_LEN_TIME_EXTEND;
4676 		goto again;
4677 	}
4678 
4679 	if (likely(event))
4680 		return event;
4681  out_fail:
4682 	rb_end_commit(cpu_buffer);
4683 	return NULL;
4684 }
4685 
4686 /**
4687  * ring_buffer_lock_reserve - reserve a part of the buffer
4688  * @buffer: the ring buffer to reserve from
4689  * @length: the length of the data to reserve (excluding event header)
4690  *
4691  * Returns a reserved event on the ring buffer to copy directly to.
4692  * The user of this interface will need to get the body to write into
4693  * and can use the ring_buffer_event_data() interface.
4694  *
4695  * The length is the length of the data needed, not the event length
4696  * which also includes the event header.
4697  *
4698  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4699  * If NULL is returned, then nothing has been allocated or locked.
4700  */
4701 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4702 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4703 {
4704 	struct ring_buffer_per_cpu *cpu_buffer;
4705 	struct ring_buffer_event *event;
4706 	int cpu;
4707 
4708 	/* If we are tracing schedule, we don't want to recurse */
4709 	preempt_disable_notrace();
4710 
4711 	if (unlikely(atomic_read(&buffer->record_disabled)))
4712 		goto out;
4713 
4714 	cpu = raw_smp_processor_id();
4715 
4716 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4717 		goto out;
4718 
4719 	cpu_buffer = buffer->buffers[cpu];
4720 
4721 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4722 		goto out;
4723 
4724 	if (unlikely(length > buffer->max_data_size))
4725 		goto out;
4726 
4727 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4728 		goto out;
4729 
4730 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4731 	if (!event)
4732 		goto out_unlock;
4733 
4734 	return event;
4735 
4736  out_unlock:
4737 	trace_recursive_unlock(cpu_buffer);
4738  out:
4739 	preempt_enable_notrace();
4740 	return NULL;
4741 }
4742 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4743 
4744 /*
4745  * Decrement the entries to the page that an event is on.
4746  * The event does not even need to exist, only the pointer
4747  * to the page it is on. This may only be called before the commit
4748  * takes place.
4749  */
4750 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4751 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4752 		   struct ring_buffer_event *event)
4753 {
4754 	unsigned long addr = (unsigned long)event;
4755 	struct buffer_page *bpage = cpu_buffer->commit_page;
4756 	struct buffer_page *start;
4757 
4758 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4759 
4760 	/* Do the likely case first */
4761 	if (likely(bpage->page == (void *)addr)) {
4762 		local_dec(&bpage->entries);
4763 		return;
4764 	}
4765 
4766 	/*
4767 	 * Because the commit page may be on the reader page we
4768 	 * start with the next page and check the end loop there.
4769 	 */
4770 	rb_inc_page(&bpage);
4771 	start = bpage;
4772 	do {
4773 		if (bpage->page == (void *)addr) {
4774 			local_dec(&bpage->entries);
4775 			return;
4776 		}
4777 		rb_inc_page(&bpage);
4778 	} while (bpage != start);
4779 
4780 	/* commit not part of this buffer?? */
4781 	RB_WARN_ON(cpu_buffer, 1);
4782 }
4783 
4784 /**
4785  * ring_buffer_discard_commit - discard an event that has not been committed
4786  * @buffer: the ring buffer
4787  * @event: non committed event to discard
4788  *
4789  * Sometimes an event that is in the ring buffer needs to be ignored.
4790  * This function lets the user discard an event in the ring buffer
4791  * and then that event will not be read later.
4792  *
4793  * This function only works if it is called before the item has been
4794  * committed. It will try to free the event from the ring buffer
4795  * if another event has not been added behind it.
4796  *
4797  * If another event has been added behind it, it will set the event
4798  * up as discarded, and perform the commit.
4799  *
4800  * If this function is called, do not call ring_buffer_unlock_commit on
4801  * the event.
4802  */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4803 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4804 				struct ring_buffer_event *event)
4805 {
4806 	struct ring_buffer_per_cpu *cpu_buffer;
4807 	int cpu;
4808 
4809 	/* The event is discarded regardless */
4810 	rb_event_discard(event);
4811 
4812 	cpu = smp_processor_id();
4813 	cpu_buffer = buffer->buffers[cpu];
4814 
4815 	/*
4816 	 * This must only be called if the event has not been
4817 	 * committed yet. Thus we can assume that preemption
4818 	 * is still disabled.
4819 	 */
4820 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4821 
4822 	rb_decrement_entry(cpu_buffer, event);
4823 	rb_try_to_discard(cpu_buffer, event);
4824 	rb_end_commit(cpu_buffer);
4825 
4826 	trace_recursive_unlock(cpu_buffer);
4827 
4828 	preempt_enable_notrace();
4829 
4830 }
4831 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4832 
4833 /**
4834  * ring_buffer_write - write data to the buffer without reserving
4835  * @buffer: The ring buffer to write to.
4836  * @length: The length of the data being written (excluding the event header)
4837  * @data: The data to write to the buffer.
4838  *
4839  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4840  * one function. If you already have the data to write to the buffer, it
4841  * may be easier to simply call this function.
4842  *
4843  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4844  * and not the length of the event which would hold the header.
4845  */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4846 int ring_buffer_write(struct trace_buffer *buffer,
4847 		      unsigned long length,
4848 		      void *data)
4849 {
4850 	struct ring_buffer_per_cpu *cpu_buffer;
4851 	struct ring_buffer_event *event;
4852 	void *body;
4853 	int ret = -EBUSY;
4854 	int cpu;
4855 
4856 	guard(preempt_notrace)();
4857 
4858 	if (atomic_read(&buffer->record_disabled))
4859 		return -EBUSY;
4860 
4861 	cpu = raw_smp_processor_id();
4862 
4863 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4864 		return -EBUSY;
4865 
4866 	cpu_buffer = buffer->buffers[cpu];
4867 
4868 	if (atomic_read(&cpu_buffer->record_disabled))
4869 		return -EBUSY;
4870 
4871 	if (length > buffer->max_data_size)
4872 		return -EBUSY;
4873 
4874 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4875 		return -EBUSY;
4876 
4877 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4878 	if (!event)
4879 		goto out_unlock;
4880 
4881 	body = rb_event_data(event);
4882 
4883 	memcpy(body, data, length);
4884 
4885 	rb_commit(cpu_buffer);
4886 
4887 	rb_wakeups(buffer, cpu_buffer);
4888 
4889 	ret = 0;
4890 
4891  out_unlock:
4892 	trace_recursive_unlock(cpu_buffer);
4893 	return ret;
4894 }
4895 EXPORT_SYMBOL_GPL(ring_buffer_write);
4896 
4897 /*
4898  * The total entries in the ring buffer is the running counter
4899  * of entries entered into the ring buffer, minus the sum of
4900  * the entries read from the ring buffer and the number of
4901  * entries that were overwritten.
4902  */
4903 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4904 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4905 {
4906 	return local_read(&cpu_buffer->entries) -
4907 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4908 }
4909 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4910 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4911 {
4912 	return !rb_num_of_entries(cpu_buffer);
4913 }
4914 
4915 /**
4916  * ring_buffer_record_disable - stop all writes into the buffer
4917  * @buffer: The ring buffer to stop writes to.
4918  *
4919  * This prevents all writes to the buffer. Any attempt to write
4920  * to the buffer after this will fail and return NULL.
4921  *
4922  * The caller should call synchronize_rcu() after this.
4923  */
ring_buffer_record_disable(struct trace_buffer * buffer)4924 void ring_buffer_record_disable(struct trace_buffer *buffer)
4925 {
4926 	atomic_inc(&buffer->record_disabled);
4927 }
4928 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4929 
4930 /**
4931  * ring_buffer_record_enable - enable writes to the buffer
4932  * @buffer: The ring buffer to enable writes
4933  *
4934  * Note, multiple disables will need the same number of enables
4935  * to truly enable the writing (much like preempt_disable).
4936  */
ring_buffer_record_enable(struct trace_buffer * buffer)4937 void ring_buffer_record_enable(struct trace_buffer *buffer)
4938 {
4939 	atomic_dec(&buffer->record_disabled);
4940 }
4941 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4942 
4943 /**
4944  * ring_buffer_record_off - stop all writes into the buffer
4945  * @buffer: The ring buffer to stop writes to.
4946  *
4947  * This prevents all writes to the buffer. Any attempt to write
4948  * to the buffer after this will fail and return NULL.
4949  *
4950  * This is different than ring_buffer_record_disable() as
4951  * it works like an on/off switch, where as the disable() version
4952  * must be paired with a enable().
4953  */
ring_buffer_record_off(struct trace_buffer * buffer)4954 void ring_buffer_record_off(struct trace_buffer *buffer)
4955 {
4956 	unsigned int rd;
4957 	unsigned int new_rd;
4958 
4959 	rd = atomic_read(&buffer->record_disabled);
4960 	do {
4961 		new_rd = rd | RB_BUFFER_OFF;
4962 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4963 }
4964 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4965 
4966 /**
4967  * ring_buffer_record_on - restart writes into the buffer
4968  * @buffer: The ring buffer to start writes to.
4969  *
4970  * This enables all writes to the buffer that was disabled by
4971  * ring_buffer_record_off().
4972  *
4973  * This is different than ring_buffer_record_enable() as
4974  * it works like an on/off switch, where as the enable() version
4975  * must be paired with a disable().
4976  */
ring_buffer_record_on(struct trace_buffer * buffer)4977 void ring_buffer_record_on(struct trace_buffer *buffer)
4978 {
4979 	unsigned int rd;
4980 	unsigned int new_rd;
4981 
4982 	rd = atomic_read(&buffer->record_disabled);
4983 	do {
4984 		new_rd = rd & ~RB_BUFFER_OFF;
4985 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4986 }
4987 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4988 
4989 /**
4990  * ring_buffer_record_is_on - return true if the ring buffer can write
4991  * @buffer: The ring buffer to see if write is enabled
4992  *
4993  * Returns true if the ring buffer is in a state that it accepts writes.
4994  */
ring_buffer_record_is_on(struct trace_buffer * buffer)4995 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4996 {
4997 	return !atomic_read(&buffer->record_disabled);
4998 }
4999 
5000 /**
5001  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
5002  * @buffer: The ring buffer to see if write is set enabled
5003  *
5004  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
5005  * Note that this does NOT mean it is in a writable state.
5006  *
5007  * It may return true when the ring buffer has been disabled by
5008  * ring_buffer_record_disable(), as that is a temporary disabling of
5009  * the ring buffer.
5010  */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)5011 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
5012 {
5013 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
5014 }
5015 
5016 /**
5017  * ring_buffer_record_is_on_cpu - return true if the ring buffer can write
5018  * @buffer: The ring buffer to see if write is enabled
5019  * @cpu: The CPU to test if the ring buffer can write too
5020  *
5021  * Returns true if the ring buffer is in a state that it accepts writes
5022  *   for a particular CPU.
5023  */
ring_buffer_record_is_on_cpu(struct trace_buffer * buffer,int cpu)5024 bool ring_buffer_record_is_on_cpu(struct trace_buffer *buffer, int cpu)
5025 {
5026 	struct ring_buffer_per_cpu *cpu_buffer;
5027 
5028 	cpu_buffer = buffer->buffers[cpu];
5029 
5030 	return ring_buffer_record_is_set_on(buffer) &&
5031 		!atomic_read(&cpu_buffer->record_disabled);
5032 }
5033 
5034 /**
5035  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
5036  * @buffer: The ring buffer to stop writes to.
5037  * @cpu: The CPU buffer to stop
5038  *
5039  * This prevents all writes to the buffer. Any attempt to write
5040  * to the buffer after this will fail and return NULL.
5041  *
5042  * The caller should call synchronize_rcu() after this.
5043  */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)5044 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
5045 {
5046 	struct ring_buffer_per_cpu *cpu_buffer;
5047 
5048 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5049 		return;
5050 
5051 	cpu_buffer = buffer->buffers[cpu];
5052 	atomic_inc(&cpu_buffer->record_disabled);
5053 }
5054 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
5055 
5056 /**
5057  * ring_buffer_record_enable_cpu - enable writes to the buffer
5058  * @buffer: The ring buffer to enable writes
5059  * @cpu: The CPU to enable.
5060  *
5061  * Note, multiple disables will need the same number of enables
5062  * to truly enable the writing (much like preempt_disable).
5063  */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)5064 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
5065 {
5066 	struct ring_buffer_per_cpu *cpu_buffer;
5067 
5068 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5069 		return;
5070 
5071 	cpu_buffer = buffer->buffers[cpu];
5072 	atomic_dec(&cpu_buffer->record_disabled);
5073 }
5074 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
5075 
5076 /**
5077  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
5078  * @buffer: The ring buffer
5079  * @cpu: The per CPU buffer to read from.
5080  */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)5081 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
5082 {
5083 	unsigned long flags;
5084 	struct ring_buffer_per_cpu *cpu_buffer;
5085 	struct buffer_page *bpage;
5086 	u64 ret = 0;
5087 
5088 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5089 		return 0;
5090 
5091 	cpu_buffer = buffer->buffers[cpu];
5092 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5093 	/*
5094 	 * if the tail is on reader_page, oldest time stamp is on the reader
5095 	 * page
5096 	 */
5097 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
5098 		bpage = cpu_buffer->reader_page;
5099 	else
5100 		bpage = rb_set_head_page(cpu_buffer);
5101 	if (bpage)
5102 		ret = bpage->page->time_stamp;
5103 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5104 
5105 	return ret;
5106 }
5107 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
5108 
5109 /**
5110  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
5111  * @buffer: The ring buffer
5112  * @cpu: The per CPU buffer to read from.
5113  */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)5114 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
5115 {
5116 	struct ring_buffer_per_cpu *cpu_buffer;
5117 	unsigned long ret;
5118 
5119 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5120 		return 0;
5121 
5122 	cpu_buffer = buffer->buffers[cpu];
5123 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
5124 
5125 	return ret;
5126 }
5127 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
5128 
5129 /**
5130  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
5131  * @buffer: The ring buffer
5132  * @cpu: The per CPU buffer to get the entries from.
5133  */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)5134 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
5135 {
5136 	struct ring_buffer_per_cpu *cpu_buffer;
5137 
5138 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5139 		return 0;
5140 
5141 	cpu_buffer = buffer->buffers[cpu];
5142 
5143 	return rb_num_of_entries(cpu_buffer);
5144 }
5145 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
5146 
5147 /**
5148  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
5149  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
5150  * @buffer: The ring buffer
5151  * @cpu: The per CPU buffer to get the number of overruns from
5152  */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)5153 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
5154 {
5155 	struct ring_buffer_per_cpu *cpu_buffer;
5156 	unsigned long ret;
5157 
5158 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5159 		return 0;
5160 
5161 	cpu_buffer = buffer->buffers[cpu];
5162 	ret = local_read(&cpu_buffer->overrun);
5163 
5164 	return ret;
5165 }
5166 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
5167 
5168 /**
5169  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5170  * commits failing due to the buffer wrapping around while there are uncommitted
5171  * events, such as during an interrupt storm.
5172  * @buffer: The ring buffer
5173  * @cpu: The per CPU buffer to get the number of overruns from
5174  */
5175 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)5176 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5177 {
5178 	struct ring_buffer_per_cpu *cpu_buffer;
5179 	unsigned long ret;
5180 
5181 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5182 		return 0;
5183 
5184 	cpu_buffer = buffer->buffers[cpu];
5185 	ret = local_read(&cpu_buffer->commit_overrun);
5186 
5187 	return ret;
5188 }
5189 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5190 
5191 /**
5192  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5193  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5194  * @buffer: The ring buffer
5195  * @cpu: The per CPU buffer to get the number of overruns from
5196  */
5197 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)5198 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5199 {
5200 	struct ring_buffer_per_cpu *cpu_buffer;
5201 	unsigned long ret;
5202 
5203 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5204 		return 0;
5205 
5206 	cpu_buffer = buffer->buffers[cpu];
5207 	ret = local_read(&cpu_buffer->dropped_events);
5208 
5209 	return ret;
5210 }
5211 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5212 
5213 /**
5214  * ring_buffer_read_events_cpu - get the number of events successfully read
5215  * @buffer: The ring buffer
5216  * @cpu: The per CPU buffer to get the number of events read
5217  */
5218 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5219 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5220 {
5221 	struct ring_buffer_per_cpu *cpu_buffer;
5222 
5223 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5224 		return 0;
5225 
5226 	cpu_buffer = buffer->buffers[cpu];
5227 	return cpu_buffer->read;
5228 }
5229 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5230 
5231 /**
5232  * ring_buffer_entries - get the number of entries in a buffer
5233  * @buffer: The ring buffer
5234  *
5235  * Returns the total number of entries in the ring buffer
5236  * (all CPU entries)
5237  */
ring_buffer_entries(struct trace_buffer * buffer)5238 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5239 {
5240 	struct ring_buffer_per_cpu *cpu_buffer;
5241 	unsigned long entries = 0;
5242 	int cpu;
5243 
5244 	/* if you care about this being correct, lock the buffer */
5245 	for_each_buffer_cpu(buffer, cpu) {
5246 		cpu_buffer = buffer->buffers[cpu];
5247 		entries += rb_num_of_entries(cpu_buffer);
5248 	}
5249 
5250 	return entries;
5251 }
5252 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5253 
5254 /**
5255  * ring_buffer_overruns - get the number of overruns in buffer
5256  * @buffer: The ring buffer
5257  *
5258  * Returns the total number of overruns in the ring buffer
5259  * (all CPU entries)
5260  */
ring_buffer_overruns(struct trace_buffer * buffer)5261 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5262 {
5263 	struct ring_buffer_per_cpu *cpu_buffer;
5264 	unsigned long overruns = 0;
5265 	int cpu;
5266 
5267 	/* if you care about this being correct, lock the buffer */
5268 	for_each_buffer_cpu(buffer, cpu) {
5269 		cpu_buffer = buffer->buffers[cpu];
5270 		overruns += local_read(&cpu_buffer->overrun);
5271 	}
5272 
5273 	return overruns;
5274 }
5275 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5276 
rb_iter_reset(struct ring_buffer_iter * iter)5277 static void rb_iter_reset(struct ring_buffer_iter *iter)
5278 {
5279 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5280 
5281 	/* Iterator usage is expected to have record disabled */
5282 	iter->head_page = cpu_buffer->reader_page;
5283 	iter->head = cpu_buffer->reader_page->read;
5284 	iter->next_event = iter->head;
5285 
5286 	iter->cache_reader_page = iter->head_page;
5287 	iter->cache_read = cpu_buffer->read;
5288 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5289 
5290 	if (iter->head) {
5291 		iter->read_stamp = cpu_buffer->read_stamp;
5292 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5293 	} else {
5294 		iter->read_stamp = iter->head_page->page->time_stamp;
5295 		iter->page_stamp = iter->read_stamp;
5296 	}
5297 }
5298 
5299 /**
5300  * ring_buffer_iter_reset - reset an iterator
5301  * @iter: The iterator to reset
5302  *
5303  * Resets the iterator, so that it will start from the beginning
5304  * again.
5305  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5306 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5307 {
5308 	struct ring_buffer_per_cpu *cpu_buffer;
5309 	unsigned long flags;
5310 
5311 	if (!iter)
5312 		return;
5313 
5314 	cpu_buffer = iter->cpu_buffer;
5315 
5316 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5317 	rb_iter_reset(iter);
5318 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5319 }
5320 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5321 
5322 /**
5323  * ring_buffer_iter_empty - check if an iterator has no more to read
5324  * @iter: The iterator to check
5325  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5326 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5327 {
5328 	struct ring_buffer_per_cpu *cpu_buffer;
5329 	struct buffer_page *reader;
5330 	struct buffer_page *head_page;
5331 	struct buffer_page *commit_page;
5332 	struct buffer_page *curr_commit_page;
5333 	unsigned commit;
5334 	u64 curr_commit_ts;
5335 	u64 commit_ts;
5336 
5337 	cpu_buffer = iter->cpu_buffer;
5338 	reader = cpu_buffer->reader_page;
5339 	head_page = cpu_buffer->head_page;
5340 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5341 	commit_ts = commit_page->page->time_stamp;
5342 
5343 	/*
5344 	 * When the writer goes across pages, it issues a cmpxchg which
5345 	 * is a mb(), which will synchronize with the rmb here.
5346 	 * (see rb_tail_page_update())
5347 	 */
5348 	smp_rmb();
5349 	commit = rb_page_commit(commit_page);
5350 	/* We want to make sure that the commit page doesn't change */
5351 	smp_rmb();
5352 
5353 	/* Make sure commit page didn't change */
5354 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5355 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5356 
5357 	/* If the commit page changed, then there's more data */
5358 	if (curr_commit_page != commit_page ||
5359 	    curr_commit_ts != commit_ts)
5360 		return 0;
5361 
5362 	/* Still racy, as it may return a false positive, but that's OK */
5363 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5364 		(iter->head_page == reader && commit_page == head_page &&
5365 		 head_page->read == commit &&
5366 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5367 }
5368 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5369 
5370 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5371 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5372 		     struct ring_buffer_event *event)
5373 {
5374 	u64 delta;
5375 
5376 	switch (event->type_len) {
5377 	case RINGBUF_TYPE_PADDING:
5378 		return;
5379 
5380 	case RINGBUF_TYPE_TIME_EXTEND:
5381 		delta = rb_event_time_stamp(event);
5382 		cpu_buffer->read_stamp += delta;
5383 		return;
5384 
5385 	case RINGBUF_TYPE_TIME_STAMP:
5386 		delta = rb_event_time_stamp(event);
5387 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5388 		cpu_buffer->read_stamp = delta;
5389 		return;
5390 
5391 	case RINGBUF_TYPE_DATA:
5392 		cpu_buffer->read_stamp += event->time_delta;
5393 		return;
5394 
5395 	default:
5396 		RB_WARN_ON(cpu_buffer, 1);
5397 	}
5398 }
5399 
5400 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5401 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5402 			  struct ring_buffer_event *event)
5403 {
5404 	u64 delta;
5405 
5406 	switch (event->type_len) {
5407 	case RINGBUF_TYPE_PADDING:
5408 		return;
5409 
5410 	case RINGBUF_TYPE_TIME_EXTEND:
5411 		delta = rb_event_time_stamp(event);
5412 		iter->read_stamp += delta;
5413 		return;
5414 
5415 	case RINGBUF_TYPE_TIME_STAMP:
5416 		delta = rb_event_time_stamp(event);
5417 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5418 		iter->read_stamp = delta;
5419 		return;
5420 
5421 	case RINGBUF_TYPE_DATA:
5422 		iter->read_stamp += event->time_delta;
5423 		return;
5424 
5425 	default:
5426 		RB_WARN_ON(iter->cpu_buffer, 1);
5427 	}
5428 }
5429 
5430 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5431 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5432 {
5433 	struct buffer_page *reader = NULL;
5434 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5435 	unsigned long overwrite;
5436 	unsigned long flags;
5437 	int nr_loops = 0;
5438 	bool ret;
5439 
5440 	local_irq_save(flags);
5441 	arch_spin_lock(&cpu_buffer->lock);
5442 
5443  again:
5444 	/*
5445 	 * This should normally only loop twice. But because the
5446 	 * start of the reader inserts an empty page, it causes
5447 	 * a case where we will loop three times. There should be no
5448 	 * reason to loop four times (that I know of).
5449 	 */
5450 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5451 		reader = NULL;
5452 		goto out;
5453 	}
5454 
5455 	reader = cpu_buffer->reader_page;
5456 
5457 	/* If there's more to read, return this page */
5458 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5459 		goto out;
5460 
5461 	/* Never should we have an index greater than the size */
5462 	if (RB_WARN_ON(cpu_buffer,
5463 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5464 		goto out;
5465 
5466 	/* check if we caught up to the tail */
5467 	reader = NULL;
5468 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5469 		goto out;
5470 
5471 	/* Don't bother swapping if the ring buffer is empty */
5472 	if (rb_num_of_entries(cpu_buffer) == 0)
5473 		goto out;
5474 
5475 	/*
5476 	 * Reset the reader page to size zero.
5477 	 */
5478 	local_set(&cpu_buffer->reader_page->write, 0);
5479 	local_set(&cpu_buffer->reader_page->entries, 0);
5480 	cpu_buffer->reader_page->real_end = 0;
5481 
5482  spin:
5483 	/*
5484 	 * Splice the empty reader page into the list around the head.
5485 	 */
5486 	reader = rb_set_head_page(cpu_buffer);
5487 	if (!reader)
5488 		goto out;
5489 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5490 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5491 
5492 	/*
5493 	 * cpu_buffer->pages just needs to point to the buffer, it
5494 	 *  has no specific buffer page to point to. Lets move it out
5495 	 *  of our way so we don't accidentally swap it.
5496 	 */
5497 	cpu_buffer->pages = reader->list.prev;
5498 
5499 	/* The reader page will be pointing to the new head */
5500 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5501 
5502 	/*
5503 	 * We want to make sure we read the overruns after we set up our
5504 	 * pointers to the next object. The writer side does a
5505 	 * cmpxchg to cross pages which acts as the mb on the writer
5506 	 * side. Note, the reader will constantly fail the swap
5507 	 * while the writer is updating the pointers, so this
5508 	 * guarantees that the overwrite recorded here is the one we
5509 	 * want to compare with the last_overrun.
5510 	 */
5511 	smp_mb();
5512 	overwrite = local_read(&(cpu_buffer->overrun));
5513 
5514 	/*
5515 	 * Here's the tricky part.
5516 	 *
5517 	 * We need to move the pointer past the header page.
5518 	 * But we can only do that if a writer is not currently
5519 	 * moving it. The page before the header page has the
5520 	 * flag bit '1' set if it is pointing to the page we want.
5521 	 * but if the writer is in the process of moving it
5522 	 * then it will be '2' or already moved '0'.
5523 	 */
5524 
5525 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5526 
5527 	/*
5528 	 * If we did not convert it, then we must try again.
5529 	 */
5530 	if (!ret)
5531 		goto spin;
5532 
5533 	if (cpu_buffer->ring_meta)
5534 		rb_update_meta_reader(cpu_buffer, reader);
5535 
5536 	/*
5537 	 * Yay! We succeeded in replacing the page.
5538 	 *
5539 	 * Now make the new head point back to the reader page.
5540 	 */
5541 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5542 	rb_inc_page(&cpu_buffer->head_page);
5543 
5544 	cpu_buffer->cnt++;
5545 	local_inc(&cpu_buffer->pages_read);
5546 
5547 	/* Finally update the reader page to the new head */
5548 	cpu_buffer->reader_page = reader;
5549 	cpu_buffer->reader_page->read = 0;
5550 
5551 	if (overwrite != cpu_buffer->last_overrun) {
5552 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5553 		cpu_buffer->last_overrun = overwrite;
5554 	}
5555 
5556 	goto again;
5557 
5558  out:
5559 	/* Update the read_stamp on the first event */
5560 	if (reader && reader->read == 0)
5561 		cpu_buffer->read_stamp = reader->page->time_stamp;
5562 
5563 	arch_spin_unlock(&cpu_buffer->lock);
5564 	local_irq_restore(flags);
5565 
5566 	/*
5567 	 * The writer has preempt disable, wait for it. But not forever
5568 	 * Although, 1 second is pretty much "forever"
5569 	 */
5570 #define USECS_WAIT	1000000
5571         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5572 		/* If the write is past the end of page, a writer is still updating it */
5573 		if (likely(!reader || rb_page_write(reader) <= bsize))
5574 			break;
5575 
5576 		udelay(1);
5577 
5578 		/* Get the latest version of the reader write value */
5579 		smp_rmb();
5580 	}
5581 
5582 	/* The writer is not moving forward? Something is wrong */
5583 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5584 		reader = NULL;
5585 
5586 	/*
5587 	 * Make sure we see any padding after the write update
5588 	 * (see rb_reset_tail()).
5589 	 *
5590 	 * In addition, a writer may be writing on the reader page
5591 	 * if the page has not been fully filled, so the read barrier
5592 	 * is also needed to make sure we see the content of what is
5593 	 * committed by the writer (see rb_set_commit_to_write()).
5594 	 */
5595 	smp_rmb();
5596 
5597 
5598 	return reader;
5599 }
5600 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5601 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5602 {
5603 	struct ring_buffer_event *event;
5604 	struct buffer_page *reader;
5605 	unsigned length;
5606 
5607 	reader = rb_get_reader_page(cpu_buffer);
5608 
5609 	/* This function should not be called when buffer is empty */
5610 	if (RB_WARN_ON(cpu_buffer, !reader))
5611 		return;
5612 
5613 	event = rb_reader_event(cpu_buffer);
5614 
5615 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5616 		cpu_buffer->read++;
5617 
5618 	rb_update_read_stamp(cpu_buffer, event);
5619 
5620 	length = rb_event_length(event);
5621 	cpu_buffer->reader_page->read += length;
5622 	cpu_buffer->read_bytes += length;
5623 }
5624 
rb_advance_iter(struct ring_buffer_iter * iter)5625 static void rb_advance_iter(struct ring_buffer_iter *iter)
5626 {
5627 	struct ring_buffer_per_cpu *cpu_buffer;
5628 
5629 	cpu_buffer = iter->cpu_buffer;
5630 
5631 	/* If head == next_event then we need to jump to the next event */
5632 	if (iter->head == iter->next_event) {
5633 		/* If the event gets overwritten again, there's nothing to do */
5634 		if (rb_iter_head_event(iter) == NULL)
5635 			return;
5636 	}
5637 
5638 	iter->head = iter->next_event;
5639 
5640 	/*
5641 	 * Check if we are at the end of the buffer.
5642 	 */
5643 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5644 		/* discarded commits can make the page empty */
5645 		if (iter->head_page == cpu_buffer->commit_page)
5646 			return;
5647 		rb_inc_iter(iter);
5648 		return;
5649 	}
5650 
5651 	rb_update_iter_read_stamp(iter, iter->event);
5652 }
5653 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5654 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5655 {
5656 	return cpu_buffer->lost_events;
5657 }
5658 
5659 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5660 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5661 	       unsigned long *lost_events)
5662 {
5663 	struct ring_buffer_event *event;
5664 	struct buffer_page *reader;
5665 	int nr_loops = 0;
5666 
5667 	if (ts)
5668 		*ts = 0;
5669  again:
5670 	/*
5671 	 * We repeat when a time extend is encountered.
5672 	 * Since the time extend is always attached to a data event,
5673 	 * we should never loop more than once.
5674 	 * (We never hit the following condition more than twice).
5675 	 */
5676 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5677 		return NULL;
5678 
5679 	reader = rb_get_reader_page(cpu_buffer);
5680 	if (!reader)
5681 		return NULL;
5682 
5683 	event = rb_reader_event(cpu_buffer);
5684 
5685 	switch (event->type_len) {
5686 	case RINGBUF_TYPE_PADDING:
5687 		if (rb_null_event(event))
5688 			RB_WARN_ON(cpu_buffer, 1);
5689 		/*
5690 		 * Because the writer could be discarding every
5691 		 * event it creates (which would probably be bad)
5692 		 * if we were to go back to "again" then we may never
5693 		 * catch up, and will trigger the warn on, or lock
5694 		 * the box. Return the padding, and we will release
5695 		 * the current locks, and try again.
5696 		 */
5697 		return event;
5698 
5699 	case RINGBUF_TYPE_TIME_EXTEND:
5700 		/* Internal data, OK to advance */
5701 		rb_advance_reader(cpu_buffer);
5702 		goto again;
5703 
5704 	case RINGBUF_TYPE_TIME_STAMP:
5705 		if (ts) {
5706 			*ts = rb_event_time_stamp(event);
5707 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5708 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5709 							 cpu_buffer->cpu, ts);
5710 		}
5711 		/* Internal data, OK to advance */
5712 		rb_advance_reader(cpu_buffer);
5713 		goto again;
5714 
5715 	case RINGBUF_TYPE_DATA:
5716 		if (ts && !(*ts)) {
5717 			*ts = cpu_buffer->read_stamp + event->time_delta;
5718 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5719 							 cpu_buffer->cpu, ts);
5720 		}
5721 		if (lost_events)
5722 			*lost_events = rb_lost_events(cpu_buffer);
5723 		return event;
5724 
5725 	default:
5726 		RB_WARN_ON(cpu_buffer, 1);
5727 	}
5728 
5729 	return NULL;
5730 }
5731 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5732 
5733 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5734 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5735 {
5736 	struct trace_buffer *buffer;
5737 	struct ring_buffer_per_cpu *cpu_buffer;
5738 	struct ring_buffer_event *event;
5739 	int nr_loops = 0;
5740 
5741 	if (ts)
5742 		*ts = 0;
5743 
5744 	cpu_buffer = iter->cpu_buffer;
5745 	buffer = cpu_buffer->buffer;
5746 
5747 	/*
5748 	 * Check if someone performed a consuming read to the buffer
5749 	 * or removed some pages from the buffer. In these cases,
5750 	 * iterator was invalidated and we need to reset it.
5751 	 */
5752 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5753 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5754 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5755 		rb_iter_reset(iter);
5756 
5757  again:
5758 	if (ring_buffer_iter_empty(iter))
5759 		return NULL;
5760 
5761 	/*
5762 	 * As the writer can mess with what the iterator is trying
5763 	 * to read, just give up if we fail to get an event after
5764 	 * three tries. The iterator is not as reliable when reading
5765 	 * the ring buffer with an active write as the consumer is.
5766 	 * Do not warn if the three failures is reached.
5767 	 */
5768 	if (++nr_loops > 3)
5769 		return NULL;
5770 
5771 	if (rb_per_cpu_empty(cpu_buffer))
5772 		return NULL;
5773 
5774 	if (iter->head >= rb_page_size(iter->head_page)) {
5775 		rb_inc_iter(iter);
5776 		goto again;
5777 	}
5778 
5779 	event = rb_iter_head_event(iter);
5780 	if (!event)
5781 		goto again;
5782 
5783 	switch (event->type_len) {
5784 	case RINGBUF_TYPE_PADDING:
5785 		if (rb_null_event(event)) {
5786 			rb_inc_iter(iter);
5787 			goto again;
5788 		}
5789 		rb_advance_iter(iter);
5790 		return event;
5791 
5792 	case RINGBUF_TYPE_TIME_EXTEND:
5793 		/* Internal data, OK to advance */
5794 		rb_advance_iter(iter);
5795 		goto again;
5796 
5797 	case RINGBUF_TYPE_TIME_STAMP:
5798 		if (ts) {
5799 			*ts = rb_event_time_stamp(event);
5800 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5801 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5802 							 cpu_buffer->cpu, ts);
5803 		}
5804 		/* Internal data, OK to advance */
5805 		rb_advance_iter(iter);
5806 		goto again;
5807 
5808 	case RINGBUF_TYPE_DATA:
5809 		if (ts && !(*ts)) {
5810 			*ts = iter->read_stamp + event->time_delta;
5811 			ring_buffer_normalize_time_stamp(buffer,
5812 							 cpu_buffer->cpu, ts);
5813 		}
5814 		return event;
5815 
5816 	default:
5817 		RB_WARN_ON(cpu_buffer, 1);
5818 	}
5819 
5820 	return NULL;
5821 }
5822 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5823 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5824 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5825 {
5826 	if (likely(!in_nmi())) {
5827 		raw_spin_lock(&cpu_buffer->reader_lock);
5828 		return true;
5829 	}
5830 
5831 	/*
5832 	 * If an NMI die dumps out the content of the ring buffer
5833 	 * trylock must be used to prevent a deadlock if the NMI
5834 	 * preempted a task that holds the ring buffer locks. If
5835 	 * we get the lock then all is fine, if not, then continue
5836 	 * to do the read, but this can corrupt the ring buffer,
5837 	 * so it must be permanently disabled from future writes.
5838 	 * Reading from NMI is a oneshot deal.
5839 	 */
5840 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5841 		return true;
5842 
5843 	/* Continue without locking, but disable the ring buffer */
5844 	atomic_inc(&cpu_buffer->record_disabled);
5845 	return false;
5846 }
5847 
5848 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5849 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5850 {
5851 	if (likely(locked))
5852 		raw_spin_unlock(&cpu_buffer->reader_lock);
5853 }
5854 
5855 /**
5856  * ring_buffer_peek - peek at the next event to be read
5857  * @buffer: The ring buffer to read
5858  * @cpu: The cpu to peak at
5859  * @ts: The timestamp counter of this event.
5860  * @lost_events: a variable to store if events were lost (may be NULL)
5861  *
5862  * This will return the event that will be read next, but does
5863  * not consume the data.
5864  */
5865 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5866 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5867 		 unsigned long *lost_events)
5868 {
5869 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5870 	struct ring_buffer_event *event;
5871 	unsigned long flags;
5872 	bool dolock;
5873 
5874 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5875 		return NULL;
5876 
5877  again:
5878 	local_irq_save(flags);
5879 	dolock = rb_reader_lock(cpu_buffer);
5880 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5881 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5882 		rb_advance_reader(cpu_buffer);
5883 	rb_reader_unlock(cpu_buffer, dolock);
5884 	local_irq_restore(flags);
5885 
5886 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5887 		goto again;
5888 
5889 	return event;
5890 }
5891 
5892 /** ring_buffer_iter_dropped - report if there are dropped events
5893  * @iter: The ring buffer iterator
5894  *
5895  * Returns true if there was dropped events since the last peek.
5896  */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5897 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5898 {
5899 	bool ret = iter->missed_events != 0;
5900 
5901 	iter->missed_events = 0;
5902 	return ret;
5903 }
5904 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5905 
5906 /**
5907  * ring_buffer_iter_peek - peek at the next event to be read
5908  * @iter: The ring buffer iterator
5909  * @ts: The timestamp counter of this event.
5910  *
5911  * This will return the event that will be read next, but does
5912  * not increment the iterator.
5913  */
5914 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5915 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5916 {
5917 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5918 	struct ring_buffer_event *event;
5919 	unsigned long flags;
5920 
5921  again:
5922 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5923 	event = rb_iter_peek(iter, ts);
5924 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5925 
5926 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5927 		goto again;
5928 
5929 	return event;
5930 }
5931 
5932 /**
5933  * ring_buffer_consume - return an event and consume it
5934  * @buffer: The ring buffer to get the next event from
5935  * @cpu: the cpu to read the buffer from
5936  * @ts: a variable to store the timestamp (may be NULL)
5937  * @lost_events: a variable to store if events were lost (may be NULL)
5938  *
5939  * Returns the next event in the ring buffer, and that event is consumed.
5940  * Meaning, that sequential reads will keep returning a different event,
5941  * and eventually empty the ring buffer if the producer is slower.
5942  */
5943 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5944 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5945 		    unsigned long *lost_events)
5946 {
5947 	struct ring_buffer_per_cpu *cpu_buffer;
5948 	struct ring_buffer_event *event = NULL;
5949 	unsigned long flags;
5950 	bool dolock;
5951 
5952  again:
5953 	/* might be called in atomic */
5954 	preempt_disable();
5955 
5956 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5957 		goto out;
5958 
5959 	cpu_buffer = buffer->buffers[cpu];
5960 	local_irq_save(flags);
5961 	dolock = rb_reader_lock(cpu_buffer);
5962 
5963 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5964 	if (event) {
5965 		cpu_buffer->lost_events = 0;
5966 		rb_advance_reader(cpu_buffer);
5967 	}
5968 
5969 	rb_reader_unlock(cpu_buffer, dolock);
5970 	local_irq_restore(flags);
5971 
5972  out:
5973 	preempt_enable();
5974 
5975 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5976 		goto again;
5977 
5978 	return event;
5979 }
5980 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5981 
5982 /**
5983  * ring_buffer_read_start - start a non consuming read of the buffer
5984  * @buffer: The ring buffer to read from
5985  * @cpu: The cpu buffer to iterate over
5986  * @flags: gfp flags to use for memory allocation
5987  *
5988  * This creates an iterator to allow non-consuming iteration through
5989  * the buffer. If the buffer is disabled for writing, it will produce
5990  * the same information each time, but if the buffer is still writing
5991  * then the first hit of a write will cause the iteration to stop.
5992  *
5993  * Must be paired with ring_buffer_read_finish.
5994  */
5995 struct ring_buffer_iter *
ring_buffer_read_start(struct trace_buffer * buffer,int cpu,gfp_t flags)5996 ring_buffer_read_start(struct trace_buffer *buffer, int cpu, gfp_t flags)
5997 {
5998 	struct ring_buffer_per_cpu *cpu_buffer;
5999 	struct ring_buffer_iter *iter;
6000 
6001 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6002 		return NULL;
6003 
6004 	iter = kzalloc_obj(*iter, flags);
6005 	if (!iter)
6006 		return NULL;
6007 
6008 	/* Holds the entire event: data and meta data */
6009 	iter->event_size = buffer->subbuf_size;
6010 	iter->event = kmalloc(iter->event_size, flags);
6011 	if (!iter->event) {
6012 		kfree(iter);
6013 		return NULL;
6014 	}
6015 
6016 	cpu_buffer = buffer->buffers[cpu];
6017 
6018 	iter->cpu_buffer = cpu_buffer;
6019 
6020 	atomic_inc(&cpu_buffer->resize_disabled);
6021 
6022 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6023 	arch_spin_lock(&cpu_buffer->lock);
6024 	rb_iter_reset(iter);
6025 	arch_spin_unlock(&cpu_buffer->lock);
6026 
6027 	return iter;
6028 }
6029 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
6030 
6031 /**
6032  * ring_buffer_read_finish - finish reading the iterator of the buffer
6033  * @iter: The iterator retrieved by ring_buffer_start
6034  *
6035  * This re-enables resizing of the buffer, and frees the iterator.
6036  */
6037 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)6038 ring_buffer_read_finish(struct ring_buffer_iter *iter)
6039 {
6040 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
6041 
6042 	/* Use this opportunity to check the integrity of the ring buffer. */
6043 	rb_check_pages(cpu_buffer);
6044 
6045 	atomic_dec(&cpu_buffer->resize_disabled);
6046 	kfree(iter->event);
6047 	kfree(iter);
6048 }
6049 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
6050 
6051 /**
6052  * ring_buffer_iter_advance - advance the iterator to the next location
6053  * @iter: The ring buffer iterator
6054  *
6055  * Move the location of the iterator such that the next read will
6056  * be the next location of the iterator.
6057  */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)6058 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
6059 {
6060 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
6061 	unsigned long flags;
6062 
6063 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6064 
6065 	rb_advance_iter(iter);
6066 
6067 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6068 }
6069 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
6070 
6071 /**
6072  * ring_buffer_size - return the size of the ring buffer (in bytes)
6073  * @buffer: The ring buffer.
6074  * @cpu: The CPU to get ring buffer size from.
6075  */
ring_buffer_size(struct trace_buffer * buffer,int cpu)6076 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
6077 {
6078 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6079 		return 0;
6080 
6081 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
6082 }
6083 EXPORT_SYMBOL_GPL(ring_buffer_size);
6084 
6085 /**
6086  * ring_buffer_max_event_size - return the max data size of an event
6087  * @buffer: The ring buffer.
6088  *
6089  * Returns the maximum size an event can be.
6090  */
ring_buffer_max_event_size(struct trace_buffer * buffer)6091 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
6092 {
6093 	/* If abs timestamp is requested, events have a timestamp too */
6094 	if (ring_buffer_time_stamp_abs(buffer))
6095 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
6096 	return buffer->max_data_size;
6097 }
6098 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
6099 
rb_clear_buffer_page(struct buffer_page * page)6100 static void rb_clear_buffer_page(struct buffer_page *page)
6101 {
6102 	local_set(&page->write, 0);
6103 	local_set(&page->entries, 0);
6104 	rb_init_page(page->page);
6105 	page->read = 0;
6106 }
6107 
6108 /*
6109  * When the buffer is memory mapped to user space, each sub buffer
6110  * has a unique id that is used by the meta data to tell the user
6111  * where the current reader page is.
6112  *
6113  * For a normal allocated ring buffer, the id is saved in the buffer page
6114  * id field, and updated via this function.
6115  *
6116  * But for a fixed memory mapped buffer, the id is already assigned for
6117  * fixed memory ordering in the memory layout and can not be used. Instead
6118  * the index of where the page lies in the memory layout is used.
6119  *
6120  * For the normal pages, set the buffer page id with the passed in @id
6121  * value and return that.
6122  *
6123  * For fixed memory mapped pages, get the page index in the memory layout
6124  * and return that as the id.
6125  */
rb_page_id(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage,int id)6126 static int rb_page_id(struct ring_buffer_per_cpu *cpu_buffer,
6127 		      struct buffer_page *bpage, int id)
6128 {
6129 	/*
6130 	 * For boot buffers, the id is the index,
6131 	 * otherwise, set the buffer page with this id
6132 	 */
6133 	if (cpu_buffer->ring_meta)
6134 		id = rb_meta_subbuf_idx(cpu_buffer->ring_meta, bpage->page);
6135 	else
6136 		bpage->id = id;
6137 
6138 	return id;
6139 }
6140 
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6141 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6142 {
6143 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6144 
6145 	if (!meta)
6146 		return;
6147 
6148 	meta->reader.read = cpu_buffer->reader_page->read;
6149 	meta->reader.id = rb_page_id(cpu_buffer, cpu_buffer->reader_page,
6150 				     cpu_buffer->reader_page->id);
6151 
6152 	meta->reader.lost_events = cpu_buffer->lost_events;
6153 
6154 	meta->entries = local_read(&cpu_buffer->entries);
6155 	meta->overrun = local_read(&cpu_buffer->overrun);
6156 	meta->read = cpu_buffer->read;
6157 
6158 	/* Some archs do not have data cache coherency between kernel and user-space */
6159 	flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE);
6160 }
6161 
6162 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)6163 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6164 {
6165 	struct buffer_page *page;
6166 
6167 	rb_head_page_deactivate(cpu_buffer);
6168 
6169 	cpu_buffer->head_page
6170 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
6171 	rb_clear_buffer_page(cpu_buffer->head_page);
6172 	list_for_each_entry(page, cpu_buffer->pages, list) {
6173 		rb_clear_buffer_page(page);
6174 	}
6175 
6176 	cpu_buffer->tail_page = cpu_buffer->head_page;
6177 	cpu_buffer->commit_page = cpu_buffer->head_page;
6178 
6179 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6180 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
6181 	rb_clear_buffer_page(cpu_buffer->reader_page);
6182 
6183 	local_set(&cpu_buffer->entries_bytes, 0);
6184 	local_set(&cpu_buffer->overrun, 0);
6185 	local_set(&cpu_buffer->commit_overrun, 0);
6186 	local_set(&cpu_buffer->dropped_events, 0);
6187 	local_set(&cpu_buffer->entries, 0);
6188 	local_set(&cpu_buffer->committing, 0);
6189 	local_set(&cpu_buffer->commits, 0);
6190 	local_set(&cpu_buffer->pages_touched, 0);
6191 	local_set(&cpu_buffer->pages_lost, 0);
6192 	local_set(&cpu_buffer->pages_read, 0);
6193 	cpu_buffer->last_pages_touch = 0;
6194 	cpu_buffer->shortest_full = 0;
6195 	cpu_buffer->read = 0;
6196 	cpu_buffer->read_bytes = 0;
6197 
6198 	rb_time_set(&cpu_buffer->write_stamp, 0);
6199 	rb_time_set(&cpu_buffer->before_stamp, 0);
6200 
6201 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6202 
6203 	cpu_buffer->lost_events = 0;
6204 	cpu_buffer->last_overrun = 0;
6205 
6206 	rb_head_page_activate(cpu_buffer);
6207 	cpu_buffer->pages_removed = 0;
6208 
6209 	if (cpu_buffer->mapped) {
6210 		rb_update_meta_page(cpu_buffer);
6211 		if (cpu_buffer->ring_meta) {
6212 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
6213 			meta->commit_buffer = meta->head_buffer;
6214 		}
6215 	}
6216 }
6217 
6218 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6219 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6220 {
6221 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6222 
6223 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6224 		return;
6225 
6226 	arch_spin_lock(&cpu_buffer->lock);
6227 
6228 	rb_reset_cpu(cpu_buffer);
6229 
6230 	arch_spin_unlock(&cpu_buffer->lock);
6231 }
6232 
6233 /**
6234  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6235  * @buffer: The ring buffer to reset a per cpu buffer of
6236  * @cpu: The CPU buffer to be reset
6237  */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6238 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6239 {
6240 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6241 
6242 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6243 		return;
6244 
6245 	/* prevent another thread from changing buffer sizes */
6246 	mutex_lock(&buffer->mutex);
6247 
6248 	atomic_inc(&cpu_buffer->resize_disabled);
6249 	atomic_inc(&cpu_buffer->record_disabled);
6250 
6251 	/* Make sure all commits have finished */
6252 	synchronize_rcu();
6253 
6254 	reset_disabled_cpu_buffer(cpu_buffer);
6255 
6256 	atomic_dec(&cpu_buffer->record_disabled);
6257 	atomic_dec(&cpu_buffer->resize_disabled);
6258 
6259 	mutex_unlock(&buffer->mutex);
6260 }
6261 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6262 
6263 /* Flag to ensure proper resetting of atomic variables */
6264 #define RESET_BIT	(1 << 30)
6265 
6266 /**
6267  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6268  * @buffer: The ring buffer to reset a per cpu buffer of
6269  */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6270 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6271 {
6272 	struct ring_buffer_per_cpu *cpu_buffer;
6273 	int cpu;
6274 
6275 	/* prevent another thread from changing buffer sizes */
6276 	mutex_lock(&buffer->mutex);
6277 
6278 	for_each_online_buffer_cpu(buffer, cpu) {
6279 		cpu_buffer = buffer->buffers[cpu];
6280 
6281 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6282 		atomic_inc(&cpu_buffer->record_disabled);
6283 	}
6284 
6285 	/* Make sure all commits have finished */
6286 	synchronize_rcu();
6287 
6288 	for_each_buffer_cpu(buffer, cpu) {
6289 		cpu_buffer = buffer->buffers[cpu];
6290 
6291 		/*
6292 		 * If a CPU came online during the synchronize_rcu(), then
6293 		 * ignore it.
6294 		 */
6295 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6296 			continue;
6297 
6298 		reset_disabled_cpu_buffer(cpu_buffer);
6299 
6300 		atomic_dec(&cpu_buffer->record_disabled);
6301 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6302 	}
6303 
6304 	mutex_unlock(&buffer->mutex);
6305 }
6306 
6307 /**
6308  * ring_buffer_reset - reset a ring buffer
6309  * @buffer: The ring buffer to reset all cpu buffers
6310  */
ring_buffer_reset(struct trace_buffer * buffer)6311 void ring_buffer_reset(struct trace_buffer *buffer)
6312 {
6313 	struct ring_buffer_per_cpu *cpu_buffer;
6314 	int cpu;
6315 
6316 	/* prevent another thread from changing buffer sizes */
6317 	mutex_lock(&buffer->mutex);
6318 
6319 	for_each_buffer_cpu(buffer, cpu) {
6320 		cpu_buffer = buffer->buffers[cpu];
6321 
6322 		atomic_inc(&cpu_buffer->resize_disabled);
6323 		atomic_inc(&cpu_buffer->record_disabled);
6324 	}
6325 
6326 	/* Make sure all commits have finished */
6327 	synchronize_rcu();
6328 
6329 	for_each_buffer_cpu(buffer, cpu) {
6330 		cpu_buffer = buffer->buffers[cpu];
6331 
6332 		reset_disabled_cpu_buffer(cpu_buffer);
6333 
6334 		atomic_dec(&cpu_buffer->record_disabled);
6335 		atomic_dec(&cpu_buffer->resize_disabled);
6336 	}
6337 
6338 	mutex_unlock(&buffer->mutex);
6339 }
6340 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6341 
6342 /**
6343  * ring_buffer_empty - is the ring buffer empty?
6344  * @buffer: The ring buffer to test
6345  */
ring_buffer_empty(struct trace_buffer * buffer)6346 bool ring_buffer_empty(struct trace_buffer *buffer)
6347 {
6348 	struct ring_buffer_per_cpu *cpu_buffer;
6349 	unsigned long flags;
6350 	bool dolock;
6351 	bool ret;
6352 	int cpu;
6353 
6354 	/* yes this is racy, but if you don't like the race, lock the buffer */
6355 	for_each_buffer_cpu(buffer, cpu) {
6356 		cpu_buffer = buffer->buffers[cpu];
6357 		local_irq_save(flags);
6358 		dolock = rb_reader_lock(cpu_buffer);
6359 		ret = rb_per_cpu_empty(cpu_buffer);
6360 		rb_reader_unlock(cpu_buffer, dolock);
6361 		local_irq_restore(flags);
6362 
6363 		if (!ret)
6364 			return false;
6365 	}
6366 
6367 	return true;
6368 }
6369 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6370 
6371 /**
6372  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6373  * @buffer: The ring buffer
6374  * @cpu: The CPU buffer to test
6375  */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6376 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6377 {
6378 	struct ring_buffer_per_cpu *cpu_buffer;
6379 	unsigned long flags;
6380 	bool dolock;
6381 	bool ret;
6382 
6383 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6384 		return true;
6385 
6386 	cpu_buffer = buffer->buffers[cpu];
6387 	local_irq_save(flags);
6388 	dolock = rb_reader_lock(cpu_buffer);
6389 	ret = rb_per_cpu_empty(cpu_buffer);
6390 	rb_reader_unlock(cpu_buffer, dolock);
6391 	local_irq_restore(flags);
6392 
6393 	return ret;
6394 }
6395 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6396 
6397 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6398 /**
6399  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6400  * @buffer_a: One buffer to swap with
6401  * @buffer_b: The other buffer to swap with
6402  * @cpu: the CPU of the buffers to swap
6403  *
6404  * This function is useful for tracers that want to take a "snapshot"
6405  * of a CPU buffer and has another back up buffer lying around.
6406  * it is expected that the tracer handles the cpu buffer not being
6407  * used at the moment.
6408  */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6409 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6410 			 struct trace_buffer *buffer_b, int cpu)
6411 {
6412 	struct ring_buffer_per_cpu *cpu_buffer_a;
6413 	struct ring_buffer_per_cpu *cpu_buffer_b;
6414 	int ret = -EINVAL;
6415 
6416 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6417 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6418 		return -EINVAL;
6419 
6420 	cpu_buffer_a = buffer_a->buffers[cpu];
6421 	cpu_buffer_b = buffer_b->buffers[cpu];
6422 
6423 	/* It's up to the callers to not try to swap mapped buffers */
6424 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped))
6425 		return -EBUSY;
6426 
6427 	/* At least make sure the two buffers are somewhat the same */
6428 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6429 		return -EINVAL;
6430 
6431 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6432 		return -EINVAL;
6433 
6434 	if (atomic_read(&buffer_a->record_disabled))
6435 		return -EAGAIN;
6436 
6437 	if (atomic_read(&buffer_b->record_disabled))
6438 		return -EAGAIN;
6439 
6440 	if (atomic_read(&cpu_buffer_a->record_disabled))
6441 		return -EAGAIN;
6442 
6443 	if (atomic_read(&cpu_buffer_b->record_disabled))
6444 		return -EAGAIN;
6445 
6446 	/*
6447 	 * We can't do a synchronize_rcu here because this
6448 	 * function can be called in atomic context.
6449 	 * Normally this will be called from the same CPU as cpu.
6450 	 * If not it's up to the caller to protect this.
6451 	 */
6452 	atomic_inc(&cpu_buffer_a->record_disabled);
6453 	atomic_inc(&cpu_buffer_b->record_disabled);
6454 
6455 	ret = -EBUSY;
6456 	if (local_read(&cpu_buffer_a->committing))
6457 		goto out_dec;
6458 	if (local_read(&cpu_buffer_b->committing))
6459 		goto out_dec;
6460 
6461 	/*
6462 	 * When resize is in progress, we cannot swap it because
6463 	 * it will mess the state of the cpu buffer.
6464 	 */
6465 	if (atomic_read(&buffer_a->resizing))
6466 		goto out_dec;
6467 	if (atomic_read(&buffer_b->resizing))
6468 		goto out_dec;
6469 
6470 	buffer_a->buffers[cpu] = cpu_buffer_b;
6471 	buffer_b->buffers[cpu] = cpu_buffer_a;
6472 
6473 	cpu_buffer_b->buffer = buffer_a;
6474 	cpu_buffer_a->buffer = buffer_b;
6475 
6476 	ret = 0;
6477 
6478 out_dec:
6479 	atomic_dec(&cpu_buffer_a->record_disabled);
6480 	atomic_dec(&cpu_buffer_b->record_disabled);
6481 	return ret;
6482 }
6483 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6484 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6485 
6486 /**
6487  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6488  * @buffer: the buffer to allocate for.
6489  * @cpu: the cpu buffer to allocate.
6490  *
6491  * This function is used in conjunction with ring_buffer_read_page.
6492  * When reading a full page from the ring buffer, these functions
6493  * can be used to speed up the process. The calling function should
6494  * allocate a few pages first with this function. Then when it
6495  * needs to get pages from the ring buffer, it passes the result
6496  * of this function into ring_buffer_read_page, which will swap
6497  * the page that was allocated, with the read page of the buffer.
6498  *
6499  * Returns:
6500  *  The page allocated, or ERR_PTR
6501  */
6502 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6503 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6504 {
6505 	struct ring_buffer_per_cpu *cpu_buffer;
6506 	struct buffer_data_read_page *bpage = NULL;
6507 	unsigned long flags;
6508 
6509 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6510 		return ERR_PTR(-ENODEV);
6511 
6512 	bpage = kzalloc_obj(*bpage, GFP_KERNEL);
6513 	if (!bpage)
6514 		return ERR_PTR(-ENOMEM);
6515 
6516 	bpage->order = buffer->subbuf_order;
6517 	cpu_buffer = buffer->buffers[cpu];
6518 	local_irq_save(flags);
6519 	arch_spin_lock(&cpu_buffer->lock);
6520 
6521 	if (cpu_buffer->free_page) {
6522 		bpage->data = cpu_buffer->free_page;
6523 		cpu_buffer->free_page = NULL;
6524 	}
6525 
6526 	arch_spin_unlock(&cpu_buffer->lock);
6527 	local_irq_restore(flags);
6528 
6529 	if (bpage->data) {
6530 		rb_init_page(bpage->data);
6531 	} else {
6532 		bpage->data = alloc_cpu_data(cpu, cpu_buffer->buffer->subbuf_order);
6533 		if (!bpage->data) {
6534 			kfree(bpage);
6535 			return ERR_PTR(-ENOMEM);
6536 		}
6537 	}
6538 
6539 	return bpage;
6540 }
6541 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6542 
6543 /**
6544  * ring_buffer_free_read_page - free an allocated read page
6545  * @buffer: the buffer the page was allocate for
6546  * @cpu: the cpu buffer the page came from
6547  * @data_page: the page to free
6548  *
6549  * Free a page allocated from ring_buffer_alloc_read_page.
6550  */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6551 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6552 				struct buffer_data_read_page *data_page)
6553 {
6554 	struct ring_buffer_per_cpu *cpu_buffer;
6555 	struct buffer_data_page *bpage = data_page->data;
6556 	struct page *page = virt_to_page(bpage);
6557 	unsigned long flags;
6558 
6559 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6560 		return;
6561 
6562 	cpu_buffer = buffer->buffers[cpu];
6563 
6564 	/*
6565 	 * If the page is still in use someplace else, or order of the page
6566 	 * is different from the subbuffer order of the buffer -
6567 	 * we can't reuse it
6568 	 */
6569 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6570 		goto out;
6571 
6572 	local_irq_save(flags);
6573 	arch_spin_lock(&cpu_buffer->lock);
6574 
6575 	if (!cpu_buffer->free_page) {
6576 		cpu_buffer->free_page = bpage;
6577 		bpage = NULL;
6578 	}
6579 
6580 	arch_spin_unlock(&cpu_buffer->lock);
6581 	local_irq_restore(flags);
6582 
6583  out:
6584 	free_pages((unsigned long)bpage, data_page->order);
6585 	kfree(data_page);
6586 }
6587 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6588 
6589 /**
6590  * ring_buffer_read_page - extract a page from the ring buffer
6591  * @buffer: buffer to extract from
6592  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6593  * @len: amount to extract
6594  * @cpu: the cpu of the buffer to extract
6595  * @full: should the extraction only happen when the page is full.
6596  *
6597  * This function will pull out a page from the ring buffer and consume it.
6598  * @data_page must be the address of the variable that was returned
6599  * from ring_buffer_alloc_read_page. This is because the page might be used
6600  * to swap with a page in the ring buffer.
6601  *
6602  * for example:
6603  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6604  *	if (IS_ERR(rpage))
6605  *		return PTR_ERR(rpage);
6606  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6607  *	if (ret >= 0)
6608  *		process_page(ring_buffer_read_page_data(rpage), ret);
6609  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6610  *
6611  * When @full is set, the function will not return true unless
6612  * the writer is off the reader page.
6613  *
6614  * Note: it is up to the calling functions to handle sleeps and wakeups.
6615  *  The ring buffer can be used anywhere in the kernel and can not
6616  *  blindly call wake_up. The layer that uses the ring buffer must be
6617  *  responsible for that.
6618  *
6619  * Returns:
6620  *  >=0 if data has been transferred, returns the offset of consumed data.
6621  *  <0 if no data has been transferred.
6622  */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6623 int ring_buffer_read_page(struct trace_buffer *buffer,
6624 			  struct buffer_data_read_page *data_page,
6625 			  size_t len, int cpu, int full)
6626 {
6627 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6628 	struct ring_buffer_event *event;
6629 	struct buffer_data_page *bpage;
6630 	struct buffer_page *reader;
6631 	unsigned long missed_events;
6632 	unsigned int commit;
6633 	unsigned int read;
6634 	u64 save_timestamp;
6635 
6636 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6637 		return -1;
6638 
6639 	/*
6640 	 * If len is not big enough to hold the page header, then
6641 	 * we can not copy anything.
6642 	 */
6643 	if (len <= BUF_PAGE_HDR_SIZE)
6644 		return -1;
6645 
6646 	len -= BUF_PAGE_HDR_SIZE;
6647 
6648 	if (!data_page || !data_page->data)
6649 		return -1;
6650 
6651 	if (data_page->order != buffer->subbuf_order)
6652 		return -1;
6653 
6654 	bpage = data_page->data;
6655 	if (!bpage)
6656 		return -1;
6657 
6658 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6659 
6660 	reader = rb_get_reader_page(cpu_buffer);
6661 	if (!reader)
6662 		return -1;
6663 
6664 	event = rb_reader_event(cpu_buffer);
6665 
6666 	read = reader->read;
6667 	commit = rb_page_size(reader);
6668 
6669 	/* Check if any events were dropped */
6670 	missed_events = cpu_buffer->lost_events;
6671 
6672 	/*
6673 	 * If this page has been partially read or
6674 	 * if len is not big enough to read the rest of the page or
6675 	 * a writer is still on the page, then
6676 	 * we must copy the data from the page to the buffer.
6677 	 * Otherwise, we can simply swap the page with the one passed in.
6678 	 */
6679 	if (read || (len < (commit - read)) ||
6680 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6681 	    cpu_buffer->mapped) {
6682 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6683 		unsigned int rpos = read;
6684 		unsigned int pos = 0;
6685 		unsigned int size;
6686 
6687 		/*
6688 		 * If a full page is expected, this can still be returned
6689 		 * if there's been a previous partial read and the
6690 		 * rest of the page can be read and the commit page is off
6691 		 * the reader page.
6692 		 */
6693 		if (full &&
6694 		    (!read || (len < (commit - read)) ||
6695 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6696 			return -1;
6697 
6698 		if (len > (commit - read))
6699 			len = (commit - read);
6700 
6701 		/* Always keep the time extend and data together */
6702 		size = rb_event_ts_length(event);
6703 
6704 		if (len < size)
6705 			return -1;
6706 
6707 		/* save the current timestamp, since the user will need it */
6708 		save_timestamp = cpu_buffer->read_stamp;
6709 
6710 		/* Need to copy one event at a time */
6711 		do {
6712 			/* We need the size of one event, because
6713 			 * rb_advance_reader only advances by one event,
6714 			 * whereas rb_event_ts_length may include the size of
6715 			 * one or two events.
6716 			 * We have already ensured there's enough space if this
6717 			 * is a time extend. */
6718 			size = rb_event_length(event);
6719 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6720 
6721 			len -= size;
6722 
6723 			rb_advance_reader(cpu_buffer);
6724 			rpos = reader->read;
6725 			pos += size;
6726 
6727 			if (rpos >= commit)
6728 				break;
6729 
6730 			event = rb_reader_event(cpu_buffer);
6731 			/* Always keep the time extend and data together */
6732 			size = rb_event_ts_length(event);
6733 		} while (len >= size);
6734 
6735 		/* update bpage */
6736 		local_set(&bpage->commit, pos);
6737 		bpage->time_stamp = save_timestamp;
6738 
6739 		/* we copied everything to the beginning */
6740 		read = 0;
6741 	} else {
6742 		/* update the entry counter */
6743 		cpu_buffer->read += rb_page_entries(reader);
6744 		cpu_buffer->read_bytes += rb_page_size(reader);
6745 
6746 		/* swap the pages */
6747 		rb_init_page(bpage);
6748 		bpage = reader->page;
6749 		reader->page = data_page->data;
6750 		local_set(&reader->write, 0);
6751 		local_set(&reader->entries, 0);
6752 		reader->read = 0;
6753 		data_page->data = bpage;
6754 
6755 		/*
6756 		 * Use the real_end for the data size,
6757 		 * This gives us a chance to store the lost events
6758 		 * on the page.
6759 		 */
6760 		if (reader->real_end)
6761 			local_set(&bpage->commit, reader->real_end);
6762 	}
6763 
6764 	cpu_buffer->lost_events = 0;
6765 
6766 	commit = local_read(&bpage->commit);
6767 	/*
6768 	 * Set a flag in the commit field if we lost events
6769 	 */
6770 	if (missed_events) {
6771 		/* If there is room at the end of the page to save the
6772 		 * missed events, then record it there.
6773 		 */
6774 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6775 			memcpy(&bpage->data[commit], &missed_events,
6776 			       sizeof(missed_events));
6777 			local_add(RB_MISSED_STORED, &bpage->commit);
6778 			commit += sizeof(missed_events);
6779 		}
6780 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6781 	}
6782 
6783 	/*
6784 	 * This page may be off to user land. Zero it out here.
6785 	 */
6786 	if (commit < buffer->subbuf_size)
6787 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6788 
6789 	return read;
6790 }
6791 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6792 
6793 /**
6794  * ring_buffer_read_page_data - get pointer to the data in the page.
6795  * @page:  the page to get the data from
6796  *
6797  * Returns pointer to the actual data in this page.
6798  */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6799 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6800 {
6801 	return page->data;
6802 }
6803 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6804 
6805 /**
6806  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6807  * @buffer: the buffer to get the sub buffer size from
6808  *
6809  * Returns size of the sub buffer, in bytes.
6810  */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6811 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6812 {
6813 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6814 }
6815 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6816 
6817 /**
6818  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6819  * @buffer: The ring_buffer to get the system sub page order from
6820  *
6821  * By default, one ring buffer sub page equals to one system page. This parameter
6822  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6823  * extended, but must be an order of system page size.
6824  *
6825  * Returns the order of buffer sub page size, in system pages:
6826  * 0 means the sub buffer size is 1 system page and so forth.
6827  * In case of an error < 0 is returned.
6828  */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6829 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6830 {
6831 	if (!buffer)
6832 		return -EINVAL;
6833 
6834 	return buffer->subbuf_order;
6835 }
6836 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6837 
6838 /**
6839  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6840  * @buffer: The ring_buffer to set the new page size.
6841  * @order: Order of the system pages in one sub buffer page
6842  *
6843  * By default, one ring buffer pages equals to one system page. This API can be
6844  * used to set new size of the ring buffer page. The size must be order of
6845  * system page size, that's why the input parameter @order is the order of
6846  * system pages that are allocated for one ring buffer page:
6847  *  0 - 1 system page
6848  *  1 - 2 system pages
6849  *  3 - 4 system pages
6850  *  ...
6851  *
6852  * Returns 0 on success or < 0 in case of an error.
6853  */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6854 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6855 {
6856 	struct ring_buffer_per_cpu *cpu_buffer;
6857 	struct buffer_page *bpage, *tmp;
6858 	int old_order, old_size;
6859 	int nr_pages;
6860 	int psize;
6861 	int err;
6862 	int cpu;
6863 
6864 	if (!buffer || order < 0)
6865 		return -EINVAL;
6866 
6867 	if (buffer->subbuf_order == order)
6868 		return 0;
6869 
6870 	psize = (1 << order) * PAGE_SIZE;
6871 	if (psize <= BUF_PAGE_HDR_SIZE)
6872 		return -EINVAL;
6873 
6874 	/* Size of a subbuf cannot be greater than the write counter */
6875 	if (psize > RB_WRITE_MASK + 1)
6876 		return -EINVAL;
6877 
6878 	old_order = buffer->subbuf_order;
6879 	old_size = buffer->subbuf_size;
6880 
6881 	/* prevent another thread from changing buffer sizes */
6882 	guard(mutex)(&buffer->mutex);
6883 	atomic_inc(&buffer->record_disabled);
6884 
6885 	/* Make sure all commits have finished */
6886 	synchronize_rcu();
6887 
6888 	buffer->subbuf_order = order;
6889 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6890 
6891 	/* Make sure all new buffers are allocated, before deleting the old ones */
6892 	for_each_buffer_cpu(buffer, cpu) {
6893 
6894 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6895 			continue;
6896 
6897 		cpu_buffer = buffer->buffers[cpu];
6898 
6899 		if (cpu_buffer->mapped) {
6900 			err = -EBUSY;
6901 			goto error;
6902 		}
6903 
6904 		/* Update the number of pages to match the new size */
6905 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6906 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6907 
6908 		/* we need a minimum of two pages */
6909 		if (nr_pages < 2)
6910 			nr_pages = 2;
6911 
6912 		cpu_buffer->nr_pages_to_update = nr_pages;
6913 
6914 		/* Include the reader page */
6915 		nr_pages++;
6916 
6917 		/* Allocate the new size buffer */
6918 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6919 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6920 					&cpu_buffer->new_pages)) {
6921 			/* not enough memory for new pages */
6922 			err = -ENOMEM;
6923 			goto error;
6924 		}
6925 	}
6926 
6927 	for_each_buffer_cpu(buffer, cpu) {
6928 		struct buffer_data_page *old_free_data_page;
6929 		struct list_head old_pages;
6930 		unsigned long flags;
6931 
6932 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6933 			continue;
6934 
6935 		cpu_buffer = buffer->buffers[cpu];
6936 
6937 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6938 
6939 		/* Clear the head bit to make the link list normal to read */
6940 		rb_head_page_deactivate(cpu_buffer);
6941 
6942 		/*
6943 		 * Collect buffers from the cpu_buffer pages list and the
6944 		 * reader_page on old_pages, so they can be freed later when not
6945 		 * under a spinlock. The pages list is a linked list with no
6946 		 * head, adding old_pages turns it into a regular list with
6947 		 * old_pages being the head.
6948 		 */
6949 		list_add(&old_pages, cpu_buffer->pages);
6950 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6951 
6952 		/* One page was allocated for the reader page */
6953 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6954 						     struct buffer_page, list);
6955 		list_del_init(&cpu_buffer->reader_page->list);
6956 
6957 		/* Install the new pages, remove the head from the list */
6958 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6959 		list_del_init(&cpu_buffer->new_pages);
6960 		cpu_buffer->cnt++;
6961 
6962 		cpu_buffer->head_page
6963 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6964 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6965 
6966 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6967 		cpu_buffer->nr_pages_to_update = 0;
6968 
6969 		old_free_data_page = cpu_buffer->free_page;
6970 		cpu_buffer->free_page = NULL;
6971 
6972 		rb_head_page_activate(cpu_buffer);
6973 
6974 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6975 
6976 		/* Free old sub buffers */
6977 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6978 			list_del_init(&bpage->list);
6979 			free_buffer_page(bpage);
6980 		}
6981 		free_pages((unsigned long)old_free_data_page, old_order);
6982 
6983 		rb_check_pages(cpu_buffer);
6984 	}
6985 
6986 	atomic_dec(&buffer->record_disabled);
6987 
6988 	return 0;
6989 
6990 error:
6991 	buffer->subbuf_order = old_order;
6992 	buffer->subbuf_size = old_size;
6993 
6994 	atomic_dec(&buffer->record_disabled);
6995 
6996 	for_each_buffer_cpu(buffer, cpu) {
6997 		cpu_buffer = buffer->buffers[cpu];
6998 
6999 		if (!cpu_buffer->nr_pages_to_update)
7000 			continue;
7001 
7002 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
7003 			list_del_init(&bpage->list);
7004 			free_buffer_page(bpage);
7005 		}
7006 	}
7007 
7008 	return err;
7009 }
7010 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
7011 
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)7012 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
7013 {
7014 	struct page *page;
7015 
7016 	if (cpu_buffer->meta_page)
7017 		return 0;
7018 
7019 	page = alloc_page(GFP_USER | __GFP_ZERO);
7020 	if (!page)
7021 		return -ENOMEM;
7022 
7023 	cpu_buffer->meta_page = page_to_virt(page);
7024 
7025 	return 0;
7026 }
7027 
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)7028 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
7029 {
7030 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
7031 
7032 	free_page(addr);
7033 	cpu_buffer->meta_page = NULL;
7034 }
7035 
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)7036 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
7037 				   unsigned long *subbuf_ids)
7038 {
7039 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
7040 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
7041 	struct buffer_page *first_subbuf, *subbuf;
7042 	int cnt = 0;
7043 	int id = 0;
7044 
7045 	id = rb_page_id(cpu_buffer, cpu_buffer->reader_page, id);
7046 	subbuf_ids[id++] = (unsigned long)cpu_buffer->reader_page->page;
7047 	cnt++;
7048 
7049 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
7050 	do {
7051 		id = rb_page_id(cpu_buffer, subbuf, id);
7052 
7053 		if (WARN_ON(id >= nr_subbufs))
7054 			break;
7055 
7056 		subbuf_ids[id] = (unsigned long)subbuf->page;
7057 
7058 		rb_inc_page(&subbuf);
7059 		id++;
7060 		cnt++;
7061 	} while (subbuf != first_subbuf);
7062 
7063 	WARN_ON(cnt != nr_subbufs);
7064 
7065 	/* install subbuf ID to kern VA translation */
7066 	cpu_buffer->subbuf_ids = subbuf_ids;
7067 
7068 	meta->meta_struct_len = sizeof(*meta);
7069 	meta->nr_subbufs = nr_subbufs;
7070 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
7071 	meta->meta_page_size = meta->subbuf_size;
7072 
7073 	rb_update_meta_page(cpu_buffer);
7074 }
7075 
7076 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)7077 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
7078 {
7079 	struct ring_buffer_per_cpu *cpu_buffer;
7080 
7081 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7082 		return ERR_PTR(-EINVAL);
7083 
7084 	cpu_buffer = buffer->buffers[cpu];
7085 
7086 	mutex_lock(&cpu_buffer->mapping_lock);
7087 
7088 	if (!cpu_buffer->user_mapped) {
7089 		mutex_unlock(&cpu_buffer->mapping_lock);
7090 		return ERR_PTR(-ENODEV);
7091 	}
7092 
7093 	return cpu_buffer;
7094 }
7095 
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)7096 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
7097 {
7098 	mutex_unlock(&cpu_buffer->mapping_lock);
7099 }
7100 
7101 /*
7102  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
7103  * to be set-up or torn-down.
7104  */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)7105 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
7106 			       bool inc)
7107 {
7108 	unsigned long flags;
7109 
7110 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7111 
7112 	/* mapped is always greater or equal to user_mapped */
7113 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
7114 		return -EINVAL;
7115 
7116 	if (inc && cpu_buffer->mapped == UINT_MAX)
7117 		return -EBUSY;
7118 
7119 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7120 		return -EINVAL;
7121 
7122 	mutex_lock(&cpu_buffer->buffer->mutex);
7123 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7124 
7125 	if (inc) {
7126 		cpu_buffer->user_mapped++;
7127 		cpu_buffer->mapped++;
7128 	} else {
7129 		cpu_buffer->user_mapped--;
7130 		cpu_buffer->mapped--;
7131 	}
7132 
7133 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7134 	mutex_unlock(&cpu_buffer->buffer->mutex);
7135 
7136 	return 0;
7137 }
7138 
7139 /*
7140  *   +--------------+  pgoff == 0
7141  *   |   meta page  |
7142  *   +--------------+  pgoff == 1
7143  *   | subbuffer 0  |
7144  *   |              |
7145  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
7146  *   | subbuffer 1  |
7147  *   |              |
7148  *         ...
7149  */
7150 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7151 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7152 			struct vm_area_struct *vma)
7153 {
7154 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7155 	unsigned int subbuf_pages, subbuf_order;
7156 	struct page **pages __free(kfree) = NULL;
7157 	int p = 0, s = 0;
7158 	int err;
7159 
7160 	/* Refuse MP_PRIVATE or writable mappings */
7161 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7162 	    !(vma->vm_flags & VM_MAYSHARE))
7163 		return -EPERM;
7164 
7165 	subbuf_order = cpu_buffer->buffer->subbuf_order;
7166 	subbuf_pages = 1 << subbuf_order;
7167 
7168 	if (subbuf_order && pgoff % subbuf_pages)
7169 		return -EINVAL;
7170 
7171 	/*
7172 	 * Make sure the mapping cannot become writable later. Also tell the VM
7173 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7174 	 */
7175 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7176 		     VM_MAYWRITE);
7177 
7178 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7179 
7180 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7181 	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7182 	if (nr_pages <= pgoff)
7183 		return -EINVAL;
7184 
7185 	nr_pages -= pgoff;
7186 
7187 	nr_vma_pages = vma_pages(vma);
7188 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7189 		return -EINVAL;
7190 
7191 	nr_pages = nr_vma_pages;
7192 
7193 	pages = kzalloc_objs(*pages, nr_pages, GFP_KERNEL);
7194 	if (!pages)
7195 		return -ENOMEM;
7196 
7197 	if (!pgoff) {
7198 		unsigned long meta_page_padding;
7199 
7200 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7201 
7202 		/*
7203 		 * Pad with the zero-page to align the meta-page with the
7204 		 * sub-buffers.
7205 		 */
7206 		meta_page_padding = subbuf_pages - 1;
7207 		while (meta_page_padding-- && p < nr_pages) {
7208 			unsigned long __maybe_unused zero_addr =
7209 				vma->vm_start + (PAGE_SIZE * p);
7210 
7211 			pages[p++] = ZERO_PAGE(zero_addr);
7212 		}
7213 	} else {
7214 		/* Skip the meta-page */
7215 		pgoff -= subbuf_pages;
7216 
7217 		s += pgoff / subbuf_pages;
7218 	}
7219 
7220 	while (p < nr_pages) {
7221 		struct page *page;
7222 		int off = 0;
7223 
7224 		if (WARN_ON_ONCE(s >= nr_subbufs))
7225 			return -EINVAL;
7226 
7227 		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7228 
7229 		for (; off < (1 << (subbuf_order)); off++, page++) {
7230 			if (p >= nr_pages)
7231 				break;
7232 
7233 			pages[p++] = page;
7234 		}
7235 		s++;
7236 	}
7237 
7238 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7239 
7240 	return err;
7241 }
7242 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7243 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7244 			struct vm_area_struct *vma)
7245 {
7246 	return -EOPNOTSUPP;
7247 }
7248 #endif
7249 
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7250 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7251 		    struct vm_area_struct *vma)
7252 {
7253 	struct ring_buffer_per_cpu *cpu_buffer;
7254 	unsigned long flags, *subbuf_ids;
7255 	int err;
7256 
7257 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7258 		return -EINVAL;
7259 
7260 	cpu_buffer = buffer->buffers[cpu];
7261 
7262 	guard(mutex)(&cpu_buffer->mapping_lock);
7263 
7264 	if (cpu_buffer->user_mapped) {
7265 		err = __rb_map_vma(cpu_buffer, vma);
7266 		if (!err)
7267 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7268 		return err;
7269 	}
7270 
7271 	/* prevent another thread from changing buffer/sub-buffer sizes */
7272 	guard(mutex)(&buffer->mutex);
7273 
7274 	err = rb_alloc_meta_page(cpu_buffer);
7275 	if (err)
7276 		return err;
7277 
7278 	/* subbuf_ids include the reader while nr_pages does not */
7279 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7280 	if (!subbuf_ids) {
7281 		rb_free_meta_page(cpu_buffer);
7282 		return -ENOMEM;
7283 	}
7284 
7285 	atomic_inc(&cpu_buffer->resize_disabled);
7286 
7287 	/*
7288 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7289 	 * assigned.
7290 	 */
7291 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7292 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7293 
7294 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7295 
7296 	err = __rb_map_vma(cpu_buffer, vma);
7297 	if (!err) {
7298 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7299 		/* This is the first time it is mapped by user */
7300 		cpu_buffer->mapped++;
7301 		cpu_buffer->user_mapped = 1;
7302 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7303 	} else {
7304 		kfree(cpu_buffer->subbuf_ids);
7305 		cpu_buffer->subbuf_ids = NULL;
7306 		rb_free_meta_page(cpu_buffer);
7307 		atomic_dec(&cpu_buffer->resize_disabled);
7308 	}
7309 
7310 	return err;
7311 }
7312 
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7313 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7314 {
7315 	struct ring_buffer_per_cpu *cpu_buffer;
7316 	unsigned long flags;
7317 
7318 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7319 		return -EINVAL;
7320 
7321 	cpu_buffer = buffer->buffers[cpu];
7322 
7323 	guard(mutex)(&cpu_buffer->mapping_lock);
7324 
7325 	if (!cpu_buffer->user_mapped) {
7326 		return -ENODEV;
7327 	} else if (cpu_buffer->user_mapped > 1) {
7328 		__rb_inc_dec_mapped(cpu_buffer, false);
7329 		return 0;
7330 	}
7331 
7332 	guard(mutex)(&buffer->mutex);
7333 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7334 
7335 	/* This is the last user space mapping */
7336 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7337 		cpu_buffer->mapped--;
7338 	cpu_buffer->user_mapped = 0;
7339 
7340 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7341 
7342 	kfree(cpu_buffer->subbuf_ids);
7343 	cpu_buffer->subbuf_ids = NULL;
7344 	rb_free_meta_page(cpu_buffer);
7345 	atomic_dec(&cpu_buffer->resize_disabled);
7346 
7347 	return 0;
7348 }
7349 
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7350 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7351 {
7352 	struct ring_buffer_per_cpu *cpu_buffer;
7353 	struct buffer_page *reader;
7354 	unsigned long missed_events;
7355 	unsigned long reader_size;
7356 	unsigned long flags;
7357 
7358 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7359 	if (IS_ERR(cpu_buffer))
7360 		return (int)PTR_ERR(cpu_buffer);
7361 
7362 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7363 
7364 consume:
7365 	if (rb_per_cpu_empty(cpu_buffer))
7366 		goto out;
7367 
7368 	reader_size = rb_page_size(cpu_buffer->reader_page);
7369 
7370 	/*
7371 	 * There are data to be read on the current reader page, we can
7372 	 * return to the caller. But before that, we assume the latter will read
7373 	 * everything. Let's update the kernel reader accordingly.
7374 	 */
7375 	if (cpu_buffer->reader_page->read < reader_size) {
7376 		while (cpu_buffer->reader_page->read < reader_size)
7377 			rb_advance_reader(cpu_buffer);
7378 		goto out;
7379 	}
7380 
7381 	/* Did the reader catch up with the writer? */
7382 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
7383 		goto out;
7384 
7385 	reader = rb_get_reader_page(cpu_buffer);
7386 	if (WARN_ON(!reader))
7387 		goto out;
7388 
7389 	/* Check if any events were dropped */
7390 	missed_events = cpu_buffer->lost_events;
7391 
7392 	if (missed_events) {
7393 		if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7394 			struct buffer_data_page *bpage = reader->page;
7395 			unsigned int commit;
7396 			/*
7397 			 * Use the real_end for the data size,
7398 			 * This gives us a chance to store the lost events
7399 			 * on the page.
7400 			 */
7401 			if (reader->real_end)
7402 				local_set(&bpage->commit, reader->real_end);
7403 			/*
7404 			 * If there is room at the end of the page to save the
7405 			 * missed events, then record it there.
7406 			 */
7407 			commit = rb_page_size(reader);
7408 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7409 				memcpy(&bpage->data[commit], &missed_events,
7410 				       sizeof(missed_events));
7411 				local_add(RB_MISSED_STORED, &bpage->commit);
7412 			}
7413 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7414 		} else if (!WARN_ONCE(cpu_buffer->reader_page == cpu_buffer->tail_page,
7415 				      "Reader on commit with %ld missed events",
7416 				      missed_events)) {
7417 			/*
7418 			 * There shouldn't be any missed events if the tail_page
7419 			 * is on the reader page. But if the tail page is not on the
7420 			 * reader page and the commit_page is, that would mean that
7421 			 * there's a commit_overrun (an interrupt preempted an
7422 			 * addition of an event and then filled the buffer
7423 			 * with new events). In this case it's not an
7424 			 * error, but it should still be reported.
7425 			 *
7426 			 * TODO: Add missed events to the page for user space to know.
7427 			 */
7428 			pr_info("Ring buffer [%d] commit overrun lost %ld events at timestamp:%lld\n",
7429 				cpu, missed_events, cpu_buffer->reader_page->page->time_stamp);
7430 		}
7431 	}
7432 
7433 	cpu_buffer->lost_events = 0;
7434 
7435 	goto consume;
7436 
7437 out:
7438 	/* Some archs do not have data cache coherency between kernel and user-space */
7439 	flush_kernel_vmap_range(cpu_buffer->reader_page->page,
7440 				buffer->subbuf_size + BUF_PAGE_HDR_SIZE);
7441 
7442 	rb_update_meta_page(cpu_buffer);
7443 
7444 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7445 	rb_put_mapped_buffer(cpu_buffer);
7446 
7447 	return 0;
7448 }
7449 
7450 /*
7451  * We only allocate new buffers, never free them if the CPU goes down.
7452  * If we were to free the buffer, then the user would lose any trace that was in
7453  * the buffer.
7454  */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7455 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7456 {
7457 	struct trace_buffer *buffer;
7458 	long nr_pages_same;
7459 	int cpu_i;
7460 	unsigned long nr_pages;
7461 
7462 	buffer = container_of(node, struct trace_buffer, node);
7463 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7464 		return 0;
7465 
7466 	nr_pages = 0;
7467 	nr_pages_same = 1;
7468 	/* check if all cpu sizes are same */
7469 	for_each_buffer_cpu(buffer, cpu_i) {
7470 		/* fill in the size from first enabled cpu */
7471 		if (nr_pages == 0)
7472 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7473 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7474 			nr_pages_same = 0;
7475 			break;
7476 		}
7477 	}
7478 	/* allocate minimum pages, user can later expand it */
7479 	if (!nr_pages_same)
7480 		nr_pages = 2;
7481 	buffer->buffers[cpu] =
7482 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7483 	if (!buffer->buffers[cpu]) {
7484 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7485 		     cpu);
7486 		return -ENOMEM;
7487 	}
7488 	smp_wmb();
7489 	cpumask_set_cpu(cpu, buffer->cpumask);
7490 	return 0;
7491 }
7492 
7493 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7494 /*
7495  * This is a basic integrity check of the ring buffer.
7496  * Late in the boot cycle this test will run when configured in.
7497  * It will kick off a thread per CPU that will go into a loop
7498  * writing to the per cpu ring buffer various sizes of data.
7499  * Some of the data will be large items, some small.
7500  *
7501  * Another thread is created that goes into a spin, sending out
7502  * IPIs to the other CPUs to also write into the ring buffer.
7503  * this is to test the nesting ability of the buffer.
7504  *
7505  * Basic stats are recorded and reported. If something in the
7506  * ring buffer should happen that's not expected, a big warning
7507  * is displayed and all ring buffers are disabled.
7508  */
7509 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7510 
7511 struct rb_test_data {
7512 	struct trace_buffer *buffer;
7513 	unsigned long		events;
7514 	unsigned long		bytes_written;
7515 	unsigned long		bytes_alloc;
7516 	unsigned long		bytes_dropped;
7517 	unsigned long		events_nested;
7518 	unsigned long		bytes_written_nested;
7519 	unsigned long		bytes_alloc_nested;
7520 	unsigned long		bytes_dropped_nested;
7521 	int			min_size_nested;
7522 	int			max_size_nested;
7523 	int			max_size;
7524 	int			min_size;
7525 	int			cpu;
7526 	int			cnt;
7527 };
7528 
7529 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7530 
7531 /* 1 meg per cpu */
7532 #define RB_TEST_BUFFER_SIZE	1048576
7533 
7534 static char rb_string[] __initdata =
7535 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7536 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7537 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7538 
7539 static bool rb_test_started __initdata;
7540 
7541 struct rb_item {
7542 	int size;
7543 	char str[];
7544 };
7545 
rb_write_something(struct rb_test_data * data,bool nested)7546 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7547 {
7548 	struct ring_buffer_event *event;
7549 	struct rb_item *item;
7550 	bool started;
7551 	int event_len;
7552 	int size;
7553 	int len;
7554 	int cnt;
7555 
7556 	/* Have nested writes different that what is written */
7557 	cnt = data->cnt + (nested ? 27 : 0);
7558 
7559 	/* Multiply cnt by ~e, to make some unique increment */
7560 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7561 
7562 	len = size + sizeof(struct rb_item);
7563 
7564 	started = rb_test_started;
7565 	/* read rb_test_started before checking buffer enabled */
7566 	smp_rmb();
7567 
7568 	event = ring_buffer_lock_reserve(data->buffer, len);
7569 	if (!event) {
7570 		/* Ignore dropped events before test starts. */
7571 		if (started) {
7572 			if (nested)
7573 				data->bytes_dropped_nested += len;
7574 			else
7575 				data->bytes_dropped += len;
7576 		}
7577 		return len;
7578 	}
7579 
7580 	event_len = ring_buffer_event_length(event);
7581 
7582 	if (RB_WARN_ON(data->buffer, event_len < len))
7583 		goto out;
7584 
7585 	item = ring_buffer_event_data(event);
7586 	item->size = size;
7587 	memcpy(item->str, rb_string, size);
7588 
7589 	if (nested) {
7590 		data->bytes_alloc_nested += event_len;
7591 		data->bytes_written_nested += len;
7592 		data->events_nested++;
7593 		if (!data->min_size_nested || len < data->min_size_nested)
7594 			data->min_size_nested = len;
7595 		if (len > data->max_size_nested)
7596 			data->max_size_nested = len;
7597 	} else {
7598 		data->bytes_alloc += event_len;
7599 		data->bytes_written += len;
7600 		data->events++;
7601 		if (!data->min_size || len < data->min_size)
7602 			data->max_size = len;
7603 		if (len > data->max_size)
7604 			data->max_size = len;
7605 	}
7606 
7607  out:
7608 	ring_buffer_unlock_commit(data->buffer);
7609 
7610 	return 0;
7611 }
7612 
rb_test(void * arg)7613 static __init int rb_test(void *arg)
7614 {
7615 	struct rb_test_data *data = arg;
7616 
7617 	while (!kthread_should_stop()) {
7618 		rb_write_something(data, false);
7619 		data->cnt++;
7620 
7621 		set_current_state(TASK_INTERRUPTIBLE);
7622 		/* Now sleep between a min of 100-300us and a max of 1ms */
7623 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7624 	}
7625 
7626 	return 0;
7627 }
7628 
rb_ipi(void * ignore)7629 static __init void rb_ipi(void *ignore)
7630 {
7631 	struct rb_test_data *data;
7632 	int cpu = smp_processor_id();
7633 
7634 	data = &rb_data[cpu];
7635 	rb_write_something(data, true);
7636 }
7637 
rb_hammer_test(void * arg)7638 static __init int rb_hammer_test(void *arg)
7639 {
7640 	while (!kthread_should_stop()) {
7641 
7642 		/* Send an IPI to all cpus to write data! */
7643 		smp_call_function(rb_ipi, NULL, 1);
7644 		/* No sleep, but for non preempt, let others run */
7645 		schedule();
7646 	}
7647 
7648 	return 0;
7649 }
7650 
test_ringbuffer(void)7651 static __init int test_ringbuffer(void)
7652 {
7653 	struct task_struct *rb_hammer;
7654 	struct trace_buffer *buffer;
7655 	int cpu;
7656 	int ret = 0;
7657 
7658 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7659 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7660 		return 0;
7661 	}
7662 
7663 	pr_info("Running ring buffer tests...\n");
7664 
7665 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7666 	if (WARN_ON(!buffer))
7667 		return 0;
7668 
7669 	/* Disable buffer so that threads can't write to it yet */
7670 	ring_buffer_record_off(buffer);
7671 
7672 	for_each_online_cpu(cpu) {
7673 		rb_data[cpu].buffer = buffer;
7674 		rb_data[cpu].cpu = cpu;
7675 		rb_data[cpu].cnt = cpu;
7676 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7677 						     cpu, "rbtester/%u");
7678 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7679 			pr_cont("FAILED\n");
7680 			ret = PTR_ERR(rb_threads[cpu]);
7681 			goto out_free;
7682 		}
7683 	}
7684 
7685 	/* Now create the rb hammer! */
7686 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7687 	if (WARN_ON(IS_ERR(rb_hammer))) {
7688 		pr_cont("FAILED\n");
7689 		ret = PTR_ERR(rb_hammer);
7690 		goto out_free;
7691 	}
7692 
7693 	ring_buffer_record_on(buffer);
7694 	/*
7695 	 * Show buffer is enabled before setting rb_test_started.
7696 	 * Yes there's a small race window where events could be
7697 	 * dropped and the thread won't catch it. But when a ring
7698 	 * buffer gets enabled, there will always be some kind of
7699 	 * delay before other CPUs see it. Thus, we don't care about
7700 	 * those dropped events. We care about events dropped after
7701 	 * the threads see that the buffer is active.
7702 	 */
7703 	smp_wmb();
7704 	rb_test_started = true;
7705 
7706 	set_current_state(TASK_INTERRUPTIBLE);
7707 	/* Just run for 10 seconds */
7708 	schedule_timeout(10 * HZ);
7709 
7710 	kthread_stop(rb_hammer);
7711 
7712  out_free:
7713 	for_each_online_cpu(cpu) {
7714 		if (!rb_threads[cpu])
7715 			break;
7716 		kthread_stop(rb_threads[cpu]);
7717 	}
7718 	if (ret) {
7719 		ring_buffer_free(buffer);
7720 		return ret;
7721 	}
7722 
7723 	/* Report! */
7724 	pr_info("finished\n");
7725 	for_each_online_cpu(cpu) {
7726 		struct ring_buffer_event *event;
7727 		struct rb_test_data *data = &rb_data[cpu];
7728 		struct rb_item *item;
7729 		unsigned long total_events;
7730 		unsigned long total_dropped;
7731 		unsigned long total_written;
7732 		unsigned long total_alloc;
7733 		unsigned long total_read = 0;
7734 		unsigned long total_size = 0;
7735 		unsigned long total_len = 0;
7736 		unsigned long total_lost = 0;
7737 		unsigned long lost;
7738 		int big_event_size;
7739 		int small_event_size;
7740 
7741 		ret = -1;
7742 
7743 		total_events = data->events + data->events_nested;
7744 		total_written = data->bytes_written + data->bytes_written_nested;
7745 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7746 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7747 
7748 		big_event_size = data->max_size + data->max_size_nested;
7749 		small_event_size = data->min_size + data->min_size_nested;
7750 
7751 		pr_info("CPU %d:\n", cpu);
7752 		pr_info("              events:    %ld\n", total_events);
7753 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7754 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7755 		pr_info("       written bytes:    %ld\n", total_written);
7756 		pr_info("       biggest event:    %d\n", big_event_size);
7757 		pr_info("      smallest event:    %d\n", small_event_size);
7758 
7759 		if (RB_WARN_ON(buffer, total_dropped))
7760 			break;
7761 
7762 		ret = 0;
7763 
7764 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7765 			total_lost += lost;
7766 			item = ring_buffer_event_data(event);
7767 			total_len += ring_buffer_event_length(event);
7768 			total_size += item->size + sizeof(struct rb_item);
7769 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7770 				pr_info("FAILED!\n");
7771 				pr_info("buffer had: %.*s\n", item->size, item->str);
7772 				pr_info("expected:   %.*s\n", item->size, rb_string);
7773 				RB_WARN_ON(buffer, 1);
7774 				ret = -1;
7775 				break;
7776 			}
7777 			total_read++;
7778 		}
7779 		if (ret)
7780 			break;
7781 
7782 		ret = -1;
7783 
7784 		pr_info("         read events:   %ld\n", total_read);
7785 		pr_info("         lost events:   %ld\n", total_lost);
7786 		pr_info("        total events:   %ld\n", total_lost + total_read);
7787 		pr_info("  recorded len bytes:   %ld\n", total_len);
7788 		pr_info(" recorded size bytes:   %ld\n", total_size);
7789 		if (total_lost) {
7790 			pr_info(" With dropped events, record len and size may not match\n"
7791 				" alloced and written from above\n");
7792 		} else {
7793 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7794 				       total_size != total_written))
7795 				break;
7796 		}
7797 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7798 			break;
7799 
7800 		ret = 0;
7801 	}
7802 	if (!ret)
7803 		pr_info("Ring buffer PASSED!\n");
7804 
7805 	ring_buffer_free(buffer);
7806 	return 0;
7807 }
7808 
7809 late_initcall(test_ringbuffer);
7810 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7811