1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h> /* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 #include <asm/setup.h>
35
36 #include "trace.h"
37
38 /*
39 * The "absolute" timestamp in the buffer is only 59 bits.
40 * If a clock has the 5 MSBs set, it needs to be saved and
41 * reinserted.
42 */
43 #define TS_MSB (0xf8ULL << 56)
44 #define ABS_TS_MASK (~TS_MSB)
45
46 static void update_pages_handler(struct work_struct *work);
47
48 #define RING_BUFFER_META_MAGIC 0xBADFEED
49
50 struct ring_buffer_meta {
51 int magic;
52 int struct_sizes;
53 unsigned long total_size;
54 unsigned long buffers_offset;
55 };
56
57 struct ring_buffer_cpu_meta {
58 unsigned long first_buffer;
59 unsigned long head_buffer;
60 unsigned long commit_buffer;
61 __u32 subbuf_size;
62 __u32 nr_subbufs;
63 int buffers[];
64 };
65
66 /*
67 * The ring buffer header is special. We must manually up keep it.
68 */
ring_buffer_print_entry_header(struct trace_seq * s)69 int ring_buffer_print_entry_header(struct trace_seq *s)
70 {
71 trace_seq_puts(s, "# compressed entry header\n");
72 trace_seq_puts(s, "\ttype_len : 5 bits\n");
73 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
74 trace_seq_puts(s, "\tarray : 32 bits\n");
75 trace_seq_putc(s, '\n');
76 trace_seq_printf(s, "\tpadding : type == %d\n",
77 RINGBUF_TYPE_PADDING);
78 trace_seq_printf(s, "\ttime_extend : type == %d\n",
79 RINGBUF_TYPE_TIME_EXTEND);
80 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
81 RINGBUF_TYPE_TIME_STAMP);
82 trace_seq_printf(s, "\tdata max type_len == %d\n",
83 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
84
85 return !trace_seq_has_overflowed(s);
86 }
87
88 /*
89 * The ring buffer is made up of a list of pages. A separate list of pages is
90 * allocated for each CPU. A writer may only write to a buffer that is
91 * associated with the CPU it is currently executing on. A reader may read
92 * from any per cpu buffer.
93 *
94 * The reader is special. For each per cpu buffer, the reader has its own
95 * reader page. When a reader has read the entire reader page, this reader
96 * page is swapped with another page in the ring buffer.
97 *
98 * Now, as long as the writer is off the reader page, the reader can do what
99 * ever it wants with that page. The writer will never write to that page
100 * again (as long as it is out of the ring buffer).
101 *
102 * Here's some silly ASCII art.
103 *
104 * +------+
105 * |reader| RING BUFFER
106 * |page |
107 * +------+ +---+ +---+ +---+
108 * | |-->| |-->| |
109 * +---+ +---+ +---+
110 * ^ |
111 * | |
112 * +---------------+
113 *
114 *
115 * +------+
116 * |reader| RING BUFFER
117 * |page |------------------v
118 * +------+ +---+ +---+ +---+
119 * | |-->| |-->| |
120 * +---+ +---+ +---+
121 * ^ |
122 * | |
123 * +---------------+
124 *
125 *
126 * +------+
127 * |reader| RING BUFFER
128 * |page |------------------v
129 * +------+ +---+ +---+ +---+
130 * ^ | |-->| |-->| |
131 * | +---+ +---+ +---+
132 * | |
133 * | |
134 * +------------------------------+
135 *
136 *
137 * +------+
138 * |buffer| RING BUFFER
139 * |page |------------------v
140 * +------+ +---+ +---+ +---+
141 * ^ | | | |-->| |
142 * | New +---+ +---+ +---+
143 * | Reader------^ |
144 * | page |
145 * +------------------------------+
146 *
147 *
148 * After we make this swap, the reader can hand this page off to the splice
149 * code and be done with it. It can even allocate a new page if it needs to
150 * and swap that into the ring buffer.
151 *
152 * We will be using cmpxchg soon to make all this lockless.
153 *
154 */
155
156 /* Used for individual buffers (after the counter) */
157 #define RB_BUFFER_OFF (1 << 20)
158
159 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160
161 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
162 #define RB_ALIGNMENT 4U
163 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
164 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
165
166 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
167 # define RB_FORCE_8BYTE_ALIGNMENT 0
168 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
169 #else
170 # define RB_FORCE_8BYTE_ALIGNMENT 1
171 # define RB_ARCH_ALIGNMENT 8U
172 #endif
173
174 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
175
176 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
177 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
178
179 enum {
180 RB_LEN_TIME_EXTEND = 8,
181 RB_LEN_TIME_STAMP = 8,
182 };
183
184 #define skip_time_extend(event) \
185 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
186
187 #define extended_time(event) \
188 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
189
rb_null_event(struct ring_buffer_event * event)190 static inline bool rb_null_event(struct ring_buffer_event *event)
191 {
192 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
193 }
194
rb_event_set_padding(struct ring_buffer_event * event)195 static void rb_event_set_padding(struct ring_buffer_event *event)
196 {
197 /* padding has a NULL time_delta */
198 event->type_len = RINGBUF_TYPE_PADDING;
199 event->time_delta = 0;
200 }
201
202 static unsigned
rb_event_data_length(struct ring_buffer_event * event)203 rb_event_data_length(struct ring_buffer_event *event)
204 {
205 unsigned length;
206
207 if (event->type_len)
208 length = event->type_len * RB_ALIGNMENT;
209 else
210 length = event->array[0];
211 return length + RB_EVNT_HDR_SIZE;
212 }
213
214 /*
215 * Return the length of the given event. Will return
216 * the length of the time extend if the event is a
217 * time extend.
218 */
219 static inline unsigned
rb_event_length(struct ring_buffer_event * event)220 rb_event_length(struct ring_buffer_event *event)
221 {
222 switch (event->type_len) {
223 case RINGBUF_TYPE_PADDING:
224 if (rb_null_event(event))
225 /* undefined */
226 return -1;
227 return event->array[0] + RB_EVNT_HDR_SIZE;
228
229 case RINGBUF_TYPE_TIME_EXTEND:
230 return RB_LEN_TIME_EXTEND;
231
232 case RINGBUF_TYPE_TIME_STAMP:
233 return RB_LEN_TIME_STAMP;
234
235 case RINGBUF_TYPE_DATA:
236 return rb_event_data_length(event);
237 default:
238 WARN_ON_ONCE(1);
239 }
240 /* not hit */
241 return 0;
242 }
243
244 /*
245 * Return total length of time extend and data,
246 * or just the event length for all other events.
247 */
248 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)249 rb_event_ts_length(struct ring_buffer_event *event)
250 {
251 unsigned len = 0;
252
253 if (extended_time(event)) {
254 /* time extends include the data event after it */
255 len = RB_LEN_TIME_EXTEND;
256 event = skip_time_extend(event);
257 }
258 return len + rb_event_length(event);
259 }
260
261 /**
262 * ring_buffer_event_length - return the length of the event
263 * @event: the event to get the length of
264 *
265 * Returns the size of the data load of a data event.
266 * If the event is something other than a data event, it
267 * returns the size of the event itself. With the exception
268 * of a TIME EXTEND, where it still returns the size of the
269 * data load of the data event after it.
270 */
ring_buffer_event_length(struct ring_buffer_event * event)271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 unsigned length;
274
275 if (extended_time(event))
276 event = skip_time_extend(event);
277
278 length = rb_event_length(event);
279 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280 return length;
281 length -= RB_EVNT_HDR_SIZE;
282 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283 length -= sizeof(event->array[0]);
284 return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287
288 /* inline for ring buffer fast paths */
289 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)290 rb_event_data(struct ring_buffer_event *event)
291 {
292 if (extended_time(event))
293 event = skip_time_extend(event);
294 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295 /* If length is in len field, then array[0] has the data */
296 if (event->type_len)
297 return (void *)&event->array[0];
298 /* Otherwise length is in array[0] and array[1] has the data */
299 return (void *)&event->array[1];
300 }
301
302 /**
303 * ring_buffer_event_data - return the data of the event
304 * @event: the event to get the data from
305 */
ring_buffer_event_data(struct ring_buffer_event * event)306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308 return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311
312 #define for_each_buffer_cpu(buffer, cpu) \
313 for_each_cpu(cpu, buffer->cpumask)
314
315 #define for_each_online_buffer_cpu(buffer, cpu) \
316 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
317
318 #define TS_SHIFT 27
319 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST (~TS_MASK)
321
rb_event_time_stamp(struct ring_buffer_event * event)322 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
323 {
324 u64 ts;
325
326 ts = event->array[0];
327 ts <<= TS_SHIFT;
328 ts += event->time_delta;
329
330 return ts;
331 }
332
333 /* Flag when events were overwritten */
334 #define RB_MISSED_EVENTS (1 << 31)
335 /* Missed count stored at end */
336 #define RB_MISSED_STORED (1 << 30)
337
338 #define RB_MISSED_MASK (3 << 30)
339
340 struct buffer_data_page {
341 u64 time_stamp; /* page time stamp */
342 local_t commit; /* write committed index */
343 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
344 };
345
346 struct buffer_data_read_page {
347 unsigned order; /* order of the page */
348 struct buffer_data_page *data; /* actual data, stored in this page */
349 };
350
351 /*
352 * Note, the buffer_page list must be first. The buffer pages
353 * are allocated in cache lines, which means that each buffer
354 * page will be at the beginning of a cache line, and thus
355 * the least significant bits will be zero. We use this to
356 * add flags in the list struct pointers, to make the ring buffer
357 * lockless.
358 */
359 struct buffer_page {
360 struct list_head list; /* list of buffer pages */
361 local_t write; /* index for next write */
362 unsigned read; /* index for next read */
363 local_t entries; /* entries on this page */
364 unsigned long real_end; /* real end of data */
365 unsigned order; /* order of the page */
366 u32 id:30; /* ID for external mapping */
367 u32 range:1; /* Mapped via a range */
368 struct buffer_data_page *page; /* Actual data page */
369 };
370
371 /*
372 * The buffer page counters, write and entries, must be reset
373 * atomically when crossing page boundaries. To synchronize this
374 * update, two counters are inserted into the number. One is
375 * the actual counter for the write position or count on the page.
376 *
377 * The other is a counter of updaters. Before an update happens
378 * the update partition of the counter is incremented. This will
379 * allow the updater to update the counter atomically.
380 *
381 * The counter is 20 bits, and the state data is 12.
382 */
383 #define RB_WRITE_MASK 0xfffff
384 #define RB_WRITE_INTCNT (1 << 20)
385
rb_init_page(struct buffer_data_page * bpage)386 static void rb_init_page(struct buffer_data_page *bpage)
387 {
388 local_set(&bpage->commit, 0);
389 }
390
rb_page_commit(struct buffer_page * bpage)391 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
392 {
393 return local_read(&bpage->page->commit);
394 }
395
free_buffer_page(struct buffer_page * bpage)396 static void free_buffer_page(struct buffer_page *bpage)
397 {
398 /* Range pages are not to be freed */
399 if (!bpage->range)
400 free_pages((unsigned long)bpage->page, bpage->order);
401 kfree(bpage);
402 }
403
404 /*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
test_time_stamp(u64 delta)407 static inline bool test_time_stamp(u64 delta)
408 {
409 return !!(delta & TS_DELTA_TEST);
410 }
411
412 struct rb_irq_work {
413 struct irq_work work;
414 wait_queue_head_t waiters;
415 wait_queue_head_t full_waiters;
416 atomic_t seq;
417 bool waiters_pending;
418 bool full_waiters_pending;
419 bool wakeup_full;
420 };
421
422 /*
423 * Structure to hold event state and handle nested events.
424 */
425 struct rb_event_info {
426 u64 ts;
427 u64 delta;
428 u64 before;
429 u64 after;
430 unsigned long length;
431 struct buffer_page *tail_page;
432 int add_timestamp;
433 };
434
435 /*
436 * Used for the add_timestamp
437 * NONE
438 * EXTEND - wants a time extend
439 * ABSOLUTE - the buffer requests all events to have absolute time stamps
440 * FORCE - force a full time stamp.
441 */
442 enum {
443 RB_ADD_STAMP_NONE = 0,
444 RB_ADD_STAMP_EXTEND = BIT(1),
445 RB_ADD_STAMP_ABSOLUTE = BIT(2),
446 RB_ADD_STAMP_FORCE = BIT(3)
447 };
448 /*
449 * Used for which event context the event is in.
450 * TRANSITION = 0
451 * NMI = 1
452 * IRQ = 2
453 * SOFTIRQ = 3
454 * NORMAL = 4
455 *
456 * See trace_recursive_lock() comment below for more details.
457 */
458 enum {
459 RB_CTX_TRANSITION,
460 RB_CTX_NMI,
461 RB_CTX_IRQ,
462 RB_CTX_SOFTIRQ,
463 RB_CTX_NORMAL,
464 RB_CTX_MAX
465 };
466
467 struct rb_time_struct {
468 local64_t time;
469 };
470 typedef struct rb_time_struct rb_time_t;
471
472 #define MAX_NEST 5
473
474 /*
475 * head_page == tail_page && head == tail then buffer is empty.
476 */
477 struct ring_buffer_per_cpu {
478 int cpu;
479 atomic_t record_disabled;
480 atomic_t resize_disabled;
481 struct trace_buffer *buffer;
482 raw_spinlock_t reader_lock; /* serialize readers */
483 arch_spinlock_t lock;
484 struct lock_class_key lock_key;
485 struct buffer_data_page *free_page;
486 unsigned long nr_pages;
487 unsigned int current_context;
488 struct list_head *pages;
489 /* pages generation counter, incremented when the list changes */
490 unsigned long cnt;
491 struct buffer_page *head_page; /* read from head */
492 struct buffer_page *tail_page; /* write to tail */
493 struct buffer_page *commit_page; /* committed pages */
494 struct buffer_page *reader_page;
495 unsigned long lost_events;
496 unsigned long last_overrun;
497 unsigned long nest;
498 local_t entries_bytes;
499 local_t entries;
500 local_t overrun;
501 local_t commit_overrun;
502 local_t dropped_events;
503 local_t committing;
504 local_t commits;
505 local_t pages_touched;
506 local_t pages_lost;
507 local_t pages_read;
508 long last_pages_touch;
509 size_t shortest_full;
510 unsigned long read;
511 unsigned long read_bytes;
512 rb_time_t write_stamp;
513 rb_time_t before_stamp;
514 u64 event_stamp[MAX_NEST];
515 u64 read_stamp;
516 /* pages removed since last reset */
517 unsigned long pages_removed;
518
519 unsigned int mapped;
520 unsigned int user_mapped; /* user space mapping */
521 struct mutex mapping_lock;
522 unsigned long *subbuf_ids; /* ID to subbuf VA */
523 struct trace_buffer_meta *meta_page;
524 struct ring_buffer_cpu_meta *ring_meta;
525
526 /* ring buffer pages to update, > 0 to add, < 0 to remove */
527 long nr_pages_to_update;
528 struct list_head new_pages; /* new pages to add */
529 struct work_struct update_pages_work;
530 struct completion update_done;
531
532 struct rb_irq_work irq_work;
533 };
534
535 struct trace_buffer {
536 unsigned flags;
537 int cpus;
538 atomic_t record_disabled;
539 atomic_t resizing;
540 cpumask_var_t cpumask;
541
542 struct lock_class_key *reader_lock_key;
543
544 struct mutex mutex;
545
546 struct ring_buffer_per_cpu **buffers;
547
548 struct hlist_node node;
549 u64 (*clock)(void);
550
551 struct rb_irq_work irq_work;
552 bool time_stamp_abs;
553
554 unsigned long range_addr_start;
555 unsigned long range_addr_end;
556
557 struct ring_buffer_meta *meta;
558
559 unsigned int subbuf_size;
560 unsigned int subbuf_order;
561 unsigned int max_data_size;
562 };
563
564 struct ring_buffer_iter {
565 struct ring_buffer_per_cpu *cpu_buffer;
566 unsigned long head;
567 unsigned long next_event;
568 struct buffer_page *head_page;
569 struct buffer_page *cache_reader_page;
570 unsigned long cache_read;
571 unsigned long cache_pages_removed;
572 u64 read_stamp;
573 u64 page_stamp;
574 struct ring_buffer_event *event;
575 size_t event_size;
576 int missed_events;
577 };
578
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)579 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
580 {
581 struct buffer_data_page field;
582
583 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
584 "offset:0;\tsize:%u;\tsigned:%u;\n",
585 (unsigned int)sizeof(field.time_stamp),
586 (unsigned int)is_signed_type(u64));
587
588 trace_seq_printf(s, "\tfield: local_t commit;\t"
589 "offset:%u;\tsize:%u;\tsigned:%u;\n",
590 (unsigned int)offsetof(typeof(field), commit),
591 (unsigned int)sizeof(field.commit),
592 (unsigned int)is_signed_type(long));
593
594 trace_seq_printf(s, "\tfield: int overwrite;\t"
595 "offset:%u;\tsize:%u;\tsigned:%u;\n",
596 (unsigned int)offsetof(typeof(field), commit),
597 1,
598 (unsigned int)is_signed_type(long));
599
600 trace_seq_printf(s, "\tfield: char data;\t"
601 "offset:%u;\tsize:%u;\tsigned:%u;\n",
602 (unsigned int)offsetof(typeof(field), data),
603 (unsigned int)buffer->subbuf_size,
604 (unsigned int)is_signed_type(char));
605
606 return !trace_seq_has_overflowed(s);
607 }
608
rb_time_read(rb_time_t * t,u64 * ret)609 static inline void rb_time_read(rb_time_t *t, u64 *ret)
610 {
611 *ret = local64_read(&t->time);
612 }
rb_time_set(rb_time_t * t,u64 val)613 static void rb_time_set(rb_time_t *t, u64 val)
614 {
615 local64_set(&t->time, val);
616 }
617
618 /*
619 * Enable this to make sure that the event passed to
620 * ring_buffer_event_time_stamp() is not committed and also
621 * is on the buffer that it passed in.
622 */
623 //#define RB_VERIFY_EVENT
624 #ifdef RB_VERIFY_EVENT
625 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)626 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
627 void *event)
628 {
629 struct buffer_page *page = cpu_buffer->commit_page;
630 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
631 struct list_head *next;
632 long commit, write;
633 unsigned long addr = (unsigned long)event;
634 bool done = false;
635 int stop = 0;
636
637 /* Make sure the event exists and is not committed yet */
638 do {
639 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
640 done = true;
641 commit = local_read(&page->page->commit);
642 write = local_read(&page->write);
643 if (addr >= (unsigned long)&page->page->data[commit] &&
644 addr < (unsigned long)&page->page->data[write])
645 return;
646
647 next = rb_list_head(page->list.next);
648 page = list_entry(next, struct buffer_page, list);
649 } while (!done);
650 WARN_ON_ONCE(1);
651 }
652 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)653 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
654 void *event)
655 {
656 }
657 #endif
658
659 /*
660 * The absolute time stamp drops the 5 MSBs and some clocks may
661 * require them. The rb_fix_abs_ts() will take a previous full
662 * time stamp, and add the 5 MSB of that time stamp on to the
663 * saved absolute time stamp. Then they are compared in case of
664 * the unlikely event that the latest time stamp incremented
665 * the 5 MSB.
666 */
rb_fix_abs_ts(u64 abs,u64 save_ts)667 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
668 {
669 if (save_ts & TS_MSB) {
670 abs |= save_ts & TS_MSB;
671 /* Check for overflow */
672 if (unlikely(abs < save_ts))
673 abs += 1ULL << 59;
674 }
675 return abs;
676 }
677
678 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
679
680 /**
681 * ring_buffer_event_time_stamp - return the event's current time stamp
682 * @buffer: The buffer that the event is on
683 * @event: the event to get the time stamp of
684 *
685 * Note, this must be called after @event is reserved, and before it is
686 * committed to the ring buffer. And must be called from the same
687 * context where the event was reserved (normal, softirq, irq, etc).
688 *
689 * Returns the time stamp associated with the current event.
690 * If the event has an extended time stamp, then that is used as
691 * the time stamp to return.
692 * In the highly unlikely case that the event was nested more than
693 * the max nesting, then the write_stamp of the buffer is returned,
694 * otherwise current time is returned, but that really neither of
695 * the last two cases should ever happen.
696 */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)697 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
698 struct ring_buffer_event *event)
699 {
700 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
701 unsigned int nest;
702 u64 ts;
703
704 /* If the event includes an absolute time, then just use that */
705 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
706 ts = rb_event_time_stamp(event);
707 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
708 }
709
710 nest = local_read(&cpu_buffer->committing);
711 verify_event(cpu_buffer, event);
712 if (WARN_ON_ONCE(!nest))
713 goto fail;
714
715 /* Read the current saved nesting level time stamp */
716 if (likely(--nest < MAX_NEST))
717 return cpu_buffer->event_stamp[nest];
718
719 /* Shouldn't happen, warn if it does */
720 WARN_ONCE(1, "nest (%d) greater than max", nest);
721
722 fail:
723 rb_time_read(&cpu_buffer->write_stamp, &ts);
724
725 return ts;
726 }
727
728 /**
729 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
730 * @buffer: The ring_buffer to get the number of pages from
731 * @cpu: The cpu of the ring_buffer to get the number of pages from
732 *
733 * Returns the number of pages that have content in the ring buffer.
734 */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)735 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
736 {
737 size_t read;
738 size_t lost;
739 size_t cnt;
740
741 read = local_read(&buffer->buffers[cpu]->pages_read);
742 lost = local_read(&buffer->buffers[cpu]->pages_lost);
743 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
744
745 if (WARN_ON_ONCE(cnt < lost))
746 return 0;
747
748 cnt -= lost;
749
750 /* The reader can read an empty page, but not more than that */
751 if (cnt < read) {
752 WARN_ON_ONCE(read > cnt + 1);
753 return 0;
754 }
755
756 return cnt - read;
757 }
758
full_hit(struct trace_buffer * buffer,int cpu,int full)759 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
760 {
761 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
762 size_t nr_pages;
763 size_t dirty;
764
765 nr_pages = cpu_buffer->nr_pages;
766 if (!nr_pages || !full)
767 return true;
768
769 /*
770 * Add one as dirty will never equal nr_pages, as the sub-buffer
771 * that the writer is on is not counted as dirty.
772 * This is needed if "buffer_percent" is set to 100.
773 */
774 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
775
776 return (dirty * 100) >= (full * nr_pages);
777 }
778
779 /*
780 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
781 *
782 * Schedules a delayed work to wake up any task that is blocked on the
783 * ring buffer waiters queue.
784 */
rb_wake_up_waiters(struct irq_work * work)785 static void rb_wake_up_waiters(struct irq_work *work)
786 {
787 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
788
789 /* For waiters waiting for the first wake up */
790 (void)atomic_fetch_inc_release(&rbwork->seq);
791
792 wake_up_all(&rbwork->waiters);
793 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
794 /* Only cpu_buffer sets the above flags */
795 struct ring_buffer_per_cpu *cpu_buffer =
796 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
797
798 /* Called from interrupt context */
799 raw_spin_lock(&cpu_buffer->reader_lock);
800 rbwork->wakeup_full = false;
801 rbwork->full_waiters_pending = false;
802
803 /* Waking up all waiters, they will reset the shortest full */
804 cpu_buffer->shortest_full = 0;
805 raw_spin_unlock(&cpu_buffer->reader_lock);
806
807 wake_up_all(&rbwork->full_waiters);
808 }
809 }
810
811 /**
812 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
813 * @buffer: The ring buffer to wake waiters on
814 * @cpu: The CPU buffer to wake waiters on
815 *
816 * In the case of a file that represents a ring buffer is closing,
817 * it is prudent to wake up any waiters that are on this.
818 */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)819 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
820 {
821 struct ring_buffer_per_cpu *cpu_buffer;
822 struct rb_irq_work *rbwork;
823
824 if (!buffer)
825 return;
826
827 if (cpu == RING_BUFFER_ALL_CPUS) {
828
829 /* Wake up individual ones too. One level recursion */
830 for_each_buffer_cpu(buffer, cpu)
831 ring_buffer_wake_waiters(buffer, cpu);
832
833 rbwork = &buffer->irq_work;
834 } else {
835 if (WARN_ON_ONCE(!buffer->buffers))
836 return;
837 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
838 return;
839
840 cpu_buffer = buffer->buffers[cpu];
841 /* The CPU buffer may not have been initialized yet */
842 if (!cpu_buffer)
843 return;
844 rbwork = &cpu_buffer->irq_work;
845 }
846
847 /* This can be called in any context */
848 irq_work_queue(&rbwork->work);
849 }
850
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)851 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
852 {
853 struct ring_buffer_per_cpu *cpu_buffer;
854 bool ret = false;
855
856 /* Reads of all CPUs always waits for any data */
857 if (cpu == RING_BUFFER_ALL_CPUS)
858 return !ring_buffer_empty(buffer);
859
860 cpu_buffer = buffer->buffers[cpu];
861
862 if (!ring_buffer_empty_cpu(buffer, cpu)) {
863 unsigned long flags;
864 bool pagebusy;
865
866 if (!full)
867 return true;
868
869 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
870 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
871 ret = !pagebusy && full_hit(buffer, cpu, full);
872
873 if (!ret && (!cpu_buffer->shortest_full ||
874 cpu_buffer->shortest_full > full)) {
875 cpu_buffer->shortest_full = full;
876 }
877 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
878 }
879 return ret;
880 }
881
882 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)883 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
884 int cpu, int full, ring_buffer_cond_fn cond, void *data)
885 {
886 if (rb_watermark_hit(buffer, cpu, full))
887 return true;
888
889 if (cond(data))
890 return true;
891
892 /*
893 * The events can happen in critical sections where
894 * checking a work queue can cause deadlocks.
895 * After adding a task to the queue, this flag is set
896 * only to notify events to try to wake up the queue
897 * using irq_work.
898 *
899 * We don't clear it even if the buffer is no longer
900 * empty. The flag only causes the next event to run
901 * irq_work to do the work queue wake up. The worse
902 * that can happen if we race with !trace_empty() is that
903 * an event will cause an irq_work to try to wake up
904 * an empty queue.
905 *
906 * There's no reason to protect this flag either, as
907 * the work queue and irq_work logic will do the necessary
908 * synchronization for the wake ups. The only thing
909 * that is necessary is that the wake up happens after
910 * a task has been queued. It's OK for spurious wake ups.
911 */
912 if (full)
913 rbwork->full_waiters_pending = true;
914 else
915 rbwork->waiters_pending = true;
916
917 return false;
918 }
919
920 struct rb_wait_data {
921 struct rb_irq_work *irq_work;
922 int seq;
923 };
924
925 /*
926 * The default wait condition for ring_buffer_wait() is to just to exit the
927 * wait loop the first time it is woken up.
928 */
rb_wait_once(void * data)929 static bool rb_wait_once(void *data)
930 {
931 struct rb_wait_data *rdata = data;
932 struct rb_irq_work *rbwork = rdata->irq_work;
933
934 return atomic_read_acquire(&rbwork->seq) != rdata->seq;
935 }
936
937 /**
938 * ring_buffer_wait - wait for input to the ring buffer
939 * @buffer: buffer to wait on
940 * @cpu: the cpu buffer to wait on
941 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
942 * @cond: condition function to break out of wait (NULL to run once)
943 * @data: the data to pass to @cond.
944 *
945 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
946 * as data is added to any of the @buffer's cpu buffers. Otherwise
947 * it will wait for data to be added to a specific cpu buffer.
948 */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)949 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
950 ring_buffer_cond_fn cond, void *data)
951 {
952 struct ring_buffer_per_cpu *cpu_buffer;
953 struct wait_queue_head *waitq;
954 struct rb_irq_work *rbwork;
955 struct rb_wait_data rdata;
956 int ret = 0;
957
958 /*
959 * Depending on what the caller is waiting for, either any
960 * data in any cpu buffer, or a specific buffer, put the
961 * caller on the appropriate wait queue.
962 */
963 if (cpu == RING_BUFFER_ALL_CPUS) {
964 rbwork = &buffer->irq_work;
965 /* Full only makes sense on per cpu reads */
966 full = 0;
967 } else {
968 if (!cpumask_test_cpu(cpu, buffer->cpumask))
969 return -ENODEV;
970 cpu_buffer = buffer->buffers[cpu];
971 rbwork = &cpu_buffer->irq_work;
972 }
973
974 if (full)
975 waitq = &rbwork->full_waiters;
976 else
977 waitq = &rbwork->waiters;
978
979 /* Set up to exit loop as soon as it is woken */
980 if (!cond) {
981 cond = rb_wait_once;
982 rdata.irq_work = rbwork;
983 rdata.seq = atomic_read_acquire(&rbwork->seq);
984 data = &rdata;
985 }
986
987 ret = wait_event_interruptible((*waitq),
988 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
989
990 return ret;
991 }
992
993 /**
994 * ring_buffer_poll_wait - poll on buffer input
995 * @buffer: buffer to wait on
996 * @cpu: the cpu buffer to wait on
997 * @filp: the file descriptor
998 * @poll_table: The poll descriptor
999 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1000 *
1001 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1002 * as data is added to any of the @buffer's cpu buffers. Otherwise
1003 * it will wait for data to be added to a specific cpu buffer.
1004 *
1005 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1006 * zero otherwise.
1007 */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1008 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1009 struct file *filp, poll_table *poll_table, int full)
1010 {
1011 struct ring_buffer_per_cpu *cpu_buffer;
1012 struct rb_irq_work *rbwork;
1013
1014 if (cpu == RING_BUFFER_ALL_CPUS) {
1015 rbwork = &buffer->irq_work;
1016 full = 0;
1017 } else {
1018 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1019 return EPOLLERR;
1020
1021 cpu_buffer = buffer->buffers[cpu];
1022 rbwork = &cpu_buffer->irq_work;
1023 }
1024
1025 if (full) {
1026 poll_wait(filp, &rbwork->full_waiters, poll_table);
1027
1028 if (rb_watermark_hit(buffer, cpu, full))
1029 return EPOLLIN | EPOLLRDNORM;
1030 /*
1031 * Only allow full_waiters_pending update to be seen after
1032 * the shortest_full is set (in rb_watermark_hit). If the
1033 * writer sees the full_waiters_pending flag set, it will
1034 * compare the amount in the ring buffer to shortest_full.
1035 * If the amount in the ring buffer is greater than the
1036 * shortest_full percent, it will call the irq_work handler
1037 * to wake up this list. The irq_handler will reset shortest_full
1038 * back to zero. That's done under the reader_lock, but
1039 * the below smp_mb() makes sure that the update to
1040 * full_waiters_pending doesn't leak up into the above.
1041 */
1042 smp_mb();
1043 rbwork->full_waiters_pending = true;
1044 return 0;
1045 }
1046
1047 poll_wait(filp, &rbwork->waiters, poll_table);
1048 rbwork->waiters_pending = true;
1049
1050 /*
1051 * There's a tight race between setting the waiters_pending and
1052 * checking if the ring buffer is empty. Once the waiters_pending bit
1053 * is set, the next event will wake the task up, but we can get stuck
1054 * if there's only a single event in.
1055 *
1056 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1057 * but adding a memory barrier to all events will cause too much of a
1058 * performance hit in the fast path. We only need a memory barrier when
1059 * the buffer goes from empty to having content. But as this race is
1060 * extremely small, and it's not a problem if another event comes in, we
1061 * will fix it later.
1062 */
1063 smp_mb();
1064
1065 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1066 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1067 return EPOLLIN | EPOLLRDNORM;
1068 return 0;
1069 }
1070
1071 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1072 #define RB_WARN_ON(b, cond) \
1073 ({ \
1074 int _____ret = unlikely(cond); \
1075 if (_____ret) { \
1076 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1077 struct ring_buffer_per_cpu *__b = \
1078 (void *)b; \
1079 atomic_inc(&__b->buffer->record_disabled); \
1080 } else \
1081 atomic_inc(&b->record_disabled); \
1082 WARN_ON(1); \
1083 } \
1084 _____ret; \
1085 })
1086
1087 /* Up this if you want to test the TIME_EXTENTS and normalization */
1088 #define DEBUG_SHIFT 0
1089
rb_time_stamp(struct trace_buffer * buffer)1090 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1091 {
1092 u64 ts;
1093
1094 /* Skip retpolines :-( */
1095 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1096 ts = trace_clock_local();
1097 else
1098 ts = buffer->clock();
1099
1100 /* shift to debug/test normalization and TIME_EXTENTS */
1101 return ts << DEBUG_SHIFT;
1102 }
1103
ring_buffer_time_stamp(struct trace_buffer * buffer)1104 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1105 {
1106 u64 time;
1107
1108 preempt_disable_notrace();
1109 time = rb_time_stamp(buffer);
1110 preempt_enable_notrace();
1111
1112 return time;
1113 }
1114 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1115
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1116 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1117 int cpu, u64 *ts)
1118 {
1119 /* Just stupid testing the normalize function and deltas */
1120 *ts >>= DEBUG_SHIFT;
1121 }
1122 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1123
1124 /*
1125 * Making the ring buffer lockless makes things tricky.
1126 * Although writes only happen on the CPU that they are on,
1127 * and they only need to worry about interrupts. Reads can
1128 * happen on any CPU.
1129 *
1130 * The reader page is always off the ring buffer, but when the
1131 * reader finishes with a page, it needs to swap its page with
1132 * a new one from the buffer. The reader needs to take from
1133 * the head (writes go to the tail). But if a writer is in overwrite
1134 * mode and wraps, it must push the head page forward.
1135 *
1136 * Here lies the problem.
1137 *
1138 * The reader must be careful to replace only the head page, and
1139 * not another one. As described at the top of the file in the
1140 * ASCII art, the reader sets its old page to point to the next
1141 * page after head. It then sets the page after head to point to
1142 * the old reader page. But if the writer moves the head page
1143 * during this operation, the reader could end up with the tail.
1144 *
1145 * We use cmpxchg to help prevent this race. We also do something
1146 * special with the page before head. We set the LSB to 1.
1147 *
1148 * When the writer must push the page forward, it will clear the
1149 * bit that points to the head page, move the head, and then set
1150 * the bit that points to the new head page.
1151 *
1152 * We also don't want an interrupt coming in and moving the head
1153 * page on another writer. Thus we use the second LSB to catch
1154 * that too. Thus:
1155 *
1156 * head->list->prev->next bit 1 bit 0
1157 * ------- -------
1158 * Normal page 0 0
1159 * Points to head page 0 1
1160 * New head page 1 0
1161 *
1162 * Note we can not trust the prev pointer of the head page, because:
1163 *
1164 * +----+ +-----+ +-----+
1165 * | |------>| T |---X--->| N |
1166 * | |<------| | | |
1167 * +----+ +-----+ +-----+
1168 * ^ ^ |
1169 * | +-----+ | |
1170 * +----------| R |----------+ |
1171 * | |<-----------+
1172 * +-----+
1173 *
1174 * Key: ---X--> HEAD flag set in pointer
1175 * T Tail page
1176 * R Reader page
1177 * N Next page
1178 *
1179 * (see __rb_reserve_next() to see where this happens)
1180 *
1181 * What the above shows is that the reader just swapped out
1182 * the reader page with a page in the buffer, but before it
1183 * could make the new header point back to the new page added
1184 * it was preempted by a writer. The writer moved forward onto
1185 * the new page added by the reader and is about to move forward
1186 * again.
1187 *
1188 * You can see, it is legitimate for the previous pointer of
1189 * the head (or any page) not to point back to itself. But only
1190 * temporarily.
1191 */
1192
1193 #define RB_PAGE_NORMAL 0UL
1194 #define RB_PAGE_HEAD 1UL
1195 #define RB_PAGE_UPDATE 2UL
1196
1197
1198 #define RB_FLAG_MASK 3UL
1199
1200 /* PAGE_MOVED is not part of the mask */
1201 #define RB_PAGE_MOVED 4UL
1202
1203 /*
1204 * rb_list_head - remove any bit
1205 */
rb_list_head(struct list_head * list)1206 static struct list_head *rb_list_head(struct list_head *list)
1207 {
1208 unsigned long val = (unsigned long)list;
1209
1210 return (struct list_head *)(val & ~RB_FLAG_MASK);
1211 }
1212
1213 /*
1214 * rb_is_head_page - test if the given page is the head page
1215 *
1216 * Because the reader may move the head_page pointer, we can
1217 * not trust what the head page is (it may be pointing to
1218 * the reader page). But if the next page is a header page,
1219 * its flags will be non zero.
1220 */
1221 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1222 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1223 {
1224 unsigned long val;
1225
1226 val = (unsigned long)list->next;
1227
1228 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1229 return RB_PAGE_MOVED;
1230
1231 return val & RB_FLAG_MASK;
1232 }
1233
1234 /*
1235 * rb_is_reader_page
1236 *
1237 * The unique thing about the reader page, is that, if the
1238 * writer is ever on it, the previous pointer never points
1239 * back to the reader page.
1240 */
rb_is_reader_page(struct buffer_page * page)1241 static bool rb_is_reader_page(struct buffer_page *page)
1242 {
1243 struct list_head *list = page->list.prev;
1244
1245 return rb_list_head(list->next) != &page->list;
1246 }
1247
1248 /*
1249 * rb_set_list_to_head - set a list_head to be pointing to head.
1250 */
rb_set_list_to_head(struct list_head * list)1251 static void rb_set_list_to_head(struct list_head *list)
1252 {
1253 unsigned long *ptr;
1254
1255 ptr = (unsigned long *)&list->next;
1256 *ptr |= RB_PAGE_HEAD;
1257 *ptr &= ~RB_PAGE_UPDATE;
1258 }
1259
1260 /*
1261 * rb_head_page_activate - sets up head page
1262 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1263 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1264 {
1265 struct buffer_page *head;
1266
1267 head = cpu_buffer->head_page;
1268 if (!head)
1269 return;
1270
1271 /*
1272 * Set the previous list pointer to have the HEAD flag.
1273 */
1274 rb_set_list_to_head(head->list.prev);
1275
1276 if (cpu_buffer->ring_meta) {
1277 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1278 meta->head_buffer = (unsigned long)head->page;
1279 }
1280 }
1281
rb_list_head_clear(struct list_head * list)1282 static void rb_list_head_clear(struct list_head *list)
1283 {
1284 unsigned long *ptr = (unsigned long *)&list->next;
1285
1286 *ptr &= ~RB_FLAG_MASK;
1287 }
1288
1289 /*
1290 * rb_head_page_deactivate - clears head page ptr (for free list)
1291 */
1292 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1293 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1294 {
1295 struct list_head *hd;
1296
1297 /* Go through the whole list and clear any pointers found. */
1298 rb_list_head_clear(cpu_buffer->pages);
1299
1300 list_for_each(hd, cpu_buffer->pages)
1301 rb_list_head_clear(hd);
1302 }
1303
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1304 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1305 struct buffer_page *head,
1306 struct buffer_page *prev,
1307 int old_flag, int new_flag)
1308 {
1309 struct list_head *list;
1310 unsigned long val = (unsigned long)&head->list;
1311 unsigned long ret;
1312
1313 list = &prev->list;
1314
1315 val &= ~RB_FLAG_MASK;
1316
1317 ret = cmpxchg((unsigned long *)&list->next,
1318 val | old_flag, val | new_flag);
1319
1320 /* check if the reader took the page */
1321 if ((ret & ~RB_FLAG_MASK) != val)
1322 return RB_PAGE_MOVED;
1323
1324 return ret & RB_FLAG_MASK;
1325 }
1326
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1327 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1328 struct buffer_page *head,
1329 struct buffer_page *prev,
1330 int old_flag)
1331 {
1332 return rb_head_page_set(cpu_buffer, head, prev,
1333 old_flag, RB_PAGE_UPDATE);
1334 }
1335
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1336 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1337 struct buffer_page *head,
1338 struct buffer_page *prev,
1339 int old_flag)
1340 {
1341 return rb_head_page_set(cpu_buffer, head, prev,
1342 old_flag, RB_PAGE_HEAD);
1343 }
1344
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1345 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1346 struct buffer_page *head,
1347 struct buffer_page *prev,
1348 int old_flag)
1349 {
1350 return rb_head_page_set(cpu_buffer, head, prev,
1351 old_flag, RB_PAGE_NORMAL);
1352 }
1353
rb_inc_page(struct buffer_page ** bpage)1354 static inline void rb_inc_page(struct buffer_page **bpage)
1355 {
1356 struct list_head *p = rb_list_head((*bpage)->list.next);
1357
1358 *bpage = list_entry(p, struct buffer_page, list);
1359 }
1360
1361 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1362 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1363 {
1364 struct buffer_page *head;
1365 struct buffer_page *page;
1366 struct list_head *list;
1367 int i;
1368
1369 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1370 return NULL;
1371
1372 /* sanity check */
1373 list = cpu_buffer->pages;
1374 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1375 return NULL;
1376
1377 page = head = cpu_buffer->head_page;
1378 /*
1379 * It is possible that the writer moves the header behind
1380 * where we started, and we miss in one loop.
1381 * A second loop should grab the header, but we'll do
1382 * three loops just because I'm paranoid.
1383 */
1384 for (i = 0; i < 3; i++) {
1385 do {
1386 if (rb_is_head_page(page, page->list.prev)) {
1387 cpu_buffer->head_page = page;
1388 return page;
1389 }
1390 rb_inc_page(&page);
1391 } while (page != head);
1392 }
1393
1394 RB_WARN_ON(cpu_buffer, 1);
1395
1396 return NULL;
1397 }
1398
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1399 static bool rb_head_page_replace(struct buffer_page *old,
1400 struct buffer_page *new)
1401 {
1402 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1403 unsigned long val;
1404
1405 val = *ptr & ~RB_FLAG_MASK;
1406 val |= RB_PAGE_HEAD;
1407
1408 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1409 }
1410
1411 /*
1412 * rb_tail_page_update - move the tail page forward
1413 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1414 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1415 struct buffer_page *tail_page,
1416 struct buffer_page *next_page)
1417 {
1418 unsigned long old_entries;
1419 unsigned long old_write;
1420
1421 /*
1422 * The tail page now needs to be moved forward.
1423 *
1424 * We need to reset the tail page, but without messing
1425 * with possible erasing of data brought in by interrupts
1426 * that have moved the tail page and are currently on it.
1427 *
1428 * We add a counter to the write field to denote this.
1429 */
1430 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1431 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1432
1433 /*
1434 * Just make sure we have seen our old_write and synchronize
1435 * with any interrupts that come in.
1436 */
1437 barrier();
1438
1439 /*
1440 * If the tail page is still the same as what we think
1441 * it is, then it is up to us to update the tail
1442 * pointer.
1443 */
1444 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1445 /* Zero the write counter */
1446 unsigned long val = old_write & ~RB_WRITE_MASK;
1447 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1448
1449 /*
1450 * This will only succeed if an interrupt did
1451 * not come in and change it. In which case, we
1452 * do not want to modify it.
1453 *
1454 * We add (void) to let the compiler know that we do not care
1455 * about the return value of these functions. We use the
1456 * cmpxchg to only update if an interrupt did not already
1457 * do it for us. If the cmpxchg fails, we don't care.
1458 */
1459 (void)local_cmpxchg(&next_page->write, old_write, val);
1460 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1461
1462 /*
1463 * No need to worry about races with clearing out the commit.
1464 * it only can increment when a commit takes place. But that
1465 * only happens in the outer most nested commit.
1466 */
1467 local_set(&next_page->page->commit, 0);
1468
1469 /* Either we update tail_page or an interrupt does */
1470 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1471 local_inc(&cpu_buffer->pages_touched);
1472 }
1473 }
1474
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1475 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1476 struct buffer_page *bpage)
1477 {
1478 unsigned long val = (unsigned long)bpage;
1479
1480 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1481 }
1482
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1483 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1484 struct list_head *list)
1485 {
1486 if (RB_WARN_ON(cpu_buffer,
1487 rb_list_head(rb_list_head(list->next)->prev) != list))
1488 return false;
1489
1490 if (RB_WARN_ON(cpu_buffer,
1491 rb_list_head(rb_list_head(list->prev)->next) != list))
1492 return false;
1493
1494 return true;
1495 }
1496
1497 /**
1498 * rb_check_pages - integrity check of buffer pages
1499 * @cpu_buffer: CPU buffer with pages to test
1500 *
1501 * As a safety measure we check to make sure the data pages have not
1502 * been corrupted.
1503 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1504 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1505 {
1506 struct list_head *head, *tmp;
1507 unsigned long buffer_cnt;
1508 unsigned long flags;
1509 int nr_loops = 0;
1510
1511 /*
1512 * Walk the linked list underpinning the ring buffer and validate all
1513 * its next and prev links.
1514 *
1515 * The check acquires the reader_lock to avoid concurrent processing
1516 * with code that could be modifying the list. However, the lock cannot
1517 * be held for the entire duration of the walk, as this would make the
1518 * time when interrupts are disabled non-deterministic, dependent on the
1519 * ring buffer size. Therefore, the code releases and re-acquires the
1520 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1521 * is then used to detect if the list was modified while the lock was
1522 * not held, in which case the check needs to be restarted.
1523 *
1524 * The code attempts to perform the check at most three times before
1525 * giving up. This is acceptable because this is only a self-validation
1526 * to detect problems early on. In practice, the list modification
1527 * operations are fairly spaced, and so this check typically succeeds at
1528 * most on the second try.
1529 */
1530 again:
1531 if (++nr_loops > 3)
1532 return;
1533
1534 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1535 head = rb_list_head(cpu_buffer->pages);
1536 if (!rb_check_links(cpu_buffer, head))
1537 goto out_locked;
1538 buffer_cnt = cpu_buffer->cnt;
1539 tmp = head;
1540 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1541
1542 while (true) {
1543 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1544
1545 if (buffer_cnt != cpu_buffer->cnt) {
1546 /* The list was updated, try again. */
1547 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1548 goto again;
1549 }
1550
1551 tmp = rb_list_head(tmp->next);
1552 if (tmp == head)
1553 /* The iteration circled back, all is done. */
1554 goto out_locked;
1555
1556 if (!rb_check_links(cpu_buffer, tmp))
1557 goto out_locked;
1558
1559 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1560 }
1561
1562 out_locked:
1563 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1564 }
1565
1566 /*
1567 * Take an address, add the meta data size as well as the array of
1568 * array subbuffer indexes, then align it to a subbuffer size.
1569 *
1570 * This is used to help find the next per cpu subbuffer within a mapped range.
1571 */
1572 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1573 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1574 {
1575 addr += sizeof(struct ring_buffer_cpu_meta) +
1576 sizeof(int) * nr_subbufs;
1577 return ALIGN(addr, subbuf_size);
1578 }
1579
1580 /*
1581 * Return the ring_buffer_meta for a given @cpu.
1582 */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1583 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1584 {
1585 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1586 struct ring_buffer_cpu_meta *meta;
1587 struct ring_buffer_meta *bmeta;
1588 unsigned long ptr;
1589 int nr_subbufs;
1590
1591 bmeta = buffer->meta;
1592 if (!bmeta)
1593 return NULL;
1594
1595 ptr = (unsigned long)bmeta + bmeta->buffers_offset;
1596 meta = (struct ring_buffer_cpu_meta *)ptr;
1597
1598 /* When nr_pages passed in is zero, the first meta has already been initialized */
1599 if (!nr_pages) {
1600 nr_subbufs = meta->nr_subbufs;
1601 } else {
1602 /* Include the reader page */
1603 nr_subbufs = nr_pages + 1;
1604 }
1605
1606 /*
1607 * The first chunk may not be subbuffer aligned, where as
1608 * the rest of the chunks are.
1609 */
1610 if (cpu) {
1611 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1612 ptr += subbuf_size * nr_subbufs;
1613
1614 /* We can use multiplication to find chunks greater than 1 */
1615 if (cpu > 1) {
1616 unsigned long size;
1617 unsigned long p;
1618
1619 /* Save the beginning of this CPU chunk */
1620 p = ptr;
1621 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1622 ptr += subbuf_size * nr_subbufs;
1623
1624 /* Now all chunks after this are the same size */
1625 size = ptr - p;
1626 ptr += size * (cpu - 2);
1627 }
1628 }
1629 return (void *)ptr;
1630 }
1631
1632 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_cpu_meta * meta)1633 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta)
1634 {
1635 int subbuf_size = meta->subbuf_size;
1636 unsigned long ptr;
1637
1638 ptr = (unsigned long)meta;
1639 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1640
1641 return (void *)ptr;
1642 }
1643
1644 /*
1645 * Return a specific sub-buffer for a given @cpu defined by @idx.
1646 */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1647 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1648 {
1649 struct ring_buffer_cpu_meta *meta;
1650 unsigned long ptr;
1651 int subbuf_size;
1652
1653 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1654 if (!meta)
1655 return NULL;
1656
1657 if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1658 return NULL;
1659
1660 subbuf_size = meta->subbuf_size;
1661
1662 /* Map this buffer to the order that's in meta->buffers[] */
1663 idx = meta->buffers[idx];
1664
1665 ptr = (unsigned long)rb_subbufs_from_meta(meta);
1666
1667 ptr += subbuf_size * idx;
1668 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1669 return NULL;
1670
1671 return (void *)ptr;
1672 }
1673
1674 /*
1675 * See if the existing memory contains a valid meta section.
1676 * if so, use that, otherwise initialize it.
1677 */
rb_meta_init(struct trace_buffer * buffer,int scratch_size)1678 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size)
1679 {
1680 unsigned long ptr = buffer->range_addr_start;
1681 struct ring_buffer_meta *bmeta;
1682 unsigned long total_size;
1683 int struct_sizes;
1684
1685 bmeta = (struct ring_buffer_meta *)ptr;
1686 buffer->meta = bmeta;
1687
1688 total_size = buffer->range_addr_end - buffer->range_addr_start;
1689
1690 struct_sizes = sizeof(struct ring_buffer_cpu_meta);
1691 struct_sizes |= sizeof(*bmeta) << 16;
1692
1693 /* The first buffer will start word size after the meta page */
1694 ptr += sizeof(*bmeta);
1695 ptr = ALIGN(ptr, sizeof(long));
1696 ptr += scratch_size;
1697
1698 if (bmeta->magic != RING_BUFFER_META_MAGIC) {
1699 pr_info("Ring buffer boot meta mismatch of magic\n");
1700 goto init;
1701 }
1702
1703 if (bmeta->struct_sizes != struct_sizes) {
1704 pr_info("Ring buffer boot meta mismatch of struct size\n");
1705 goto init;
1706 }
1707
1708 if (bmeta->total_size != total_size) {
1709 pr_info("Ring buffer boot meta mismatch of total size\n");
1710 goto init;
1711 }
1712
1713 if (bmeta->buffers_offset > bmeta->total_size) {
1714 pr_info("Ring buffer boot meta mismatch of offset outside of total size\n");
1715 goto init;
1716 }
1717
1718 if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) {
1719 pr_info("Ring buffer boot meta mismatch of first buffer offset\n");
1720 goto init;
1721 }
1722
1723 return true;
1724
1725 init:
1726 bmeta->magic = RING_BUFFER_META_MAGIC;
1727 bmeta->struct_sizes = struct_sizes;
1728 bmeta->total_size = total_size;
1729 bmeta->buffers_offset = (void *)ptr - (void *)bmeta;
1730
1731 /* Zero out the scatch pad */
1732 memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta));
1733
1734 return false;
1735 }
1736
1737 /*
1738 * See if the existing memory contains valid ring buffer data.
1739 * As the previous kernel must be the same as this kernel, all
1740 * the calculations (size of buffers and number of buffers)
1741 * must be the same.
1742 */
rb_cpu_meta_valid(struct ring_buffer_cpu_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1743 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu,
1744 struct trace_buffer *buffer, int nr_pages,
1745 unsigned long *subbuf_mask)
1746 {
1747 int subbuf_size = PAGE_SIZE;
1748 struct buffer_data_page *subbuf;
1749 unsigned long buffers_start;
1750 unsigned long buffers_end;
1751 int i;
1752
1753 if (!subbuf_mask)
1754 return false;
1755
1756 buffers_start = meta->first_buffer;
1757 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1758
1759 /* Is the head and commit buffers within the range of buffers? */
1760 if (meta->head_buffer < buffers_start ||
1761 meta->head_buffer >= buffers_end) {
1762 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1763 return false;
1764 }
1765
1766 if (meta->commit_buffer < buffers_start ||
1767 meta->commit_buffer >= buffers_end) {
1768 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1769 return false;
1770 }
1771
1772 subbuf = rb_subbufs_from_meta(meta);
1773
1774 bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1775
1776 /* Is the meta buffers and the subbufs themselves have correct data? */
1777 for (i = 0; i < meta->nr_subbufs; i++) {
1778 if (meta->buffers[i] < 0 ||
1779 meta->buffers[i] >= meta->nr_subbufs) {
1780 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1781 return false;
1782 }
1783
1784 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1785 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1786 return false;
1787 }
1788
1789 if (test_bit(meta->buffers[i], subbuf_mask)) {
1790 pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1791 return false;
1792 }
1793
1794 set_bit(meta->buffers[i], subbuf_mask);
1795 subbuf = (void *)subbuf + subbuf_size;
1796 }
1797
1798 return true;
1799 }
1800
1801 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf);
1802
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1803 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1804 unsigned long long *timestamp, u64 *delta_ptr)
1805 {
1806 struct ring_buffer_event *event;
1807 u64 ts, delta;
1808 int events = 0;
1809 int e;
1810
1811 *delta_ptr = 0;
1812 *timestamp = 0;
1813
1814 ts = dpage->time_stamp;
1815
1816 for (e = 0; e < tail; e += rb_event_length(event)) {
1817
1818 event = (struct ring_buffer_event *)(dpage->data + e);
1819
1820 switch (event->type_len) {
1821
1822 case RINGBUF_TYPE_TIME_EXTEND:
1823 delta = rb_event_time_stamp(event);
1824 ts += delta;
1825 break;
1826
1827 case RINGBUF_TYPE_TIME_STAMP:
1828 delta = rb_event_time_stamp(event);
1829 delta = rb_fix_abs_ts(delta, ts);
1830 if (delta < ts) {
1831 *delta_ptr = delta;
1832 *timestamp = ts;
1833 return -1;
1834 }
1835 ts = delta;
1836 break;
1837
1838 case RINGBUF_TYPE_PADDING:
1839 if (event->time_delta == 1)
1840 break;
1841 fallthrough;
1842 case RINGBUF_TYPE_DATA:
1843 events++;
1844 ts += event->time_delta;
1845 break;
1846
1847 default:
1848 return -1;
1849 }
1850 }
1851 *timestamp = ts;
1852 return events;
1853 }
1854
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1855 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1856 {
1857 unsigned long long ts;
1858 u64 delta;
1859 int tail;
1860
1861 tail = local_read(&dpage->commit);
1862 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1863 }
1864
1865 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1866 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1867 {
1868 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1869 struct buffer_page *head_page;
1870 unsigned long entry_bytes = 0;
1871 unsigned long entries = 0;
1872 int ret;
1873 int i;
1874
1875 if (!meta || !meta->head_buffer)
1876 return;
1877
1878 /* Do the reader page first */
1879 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1880 if (ret < 0) {
1881 pr_info("Ring buffer reader page is invalid\n");
1882 goto invalid;
1883 }
1884 entries += ret;
1885 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1886 local_set(&cpu_buffer->reader_page->entries, ret);
1887
1888 head_page = cpu_buffer->head_page;
1889
1890 /* If the commit_buffer is the reader page, update the commit page */
1891 if (meta->commit_buffer == (unsigned long)cpu_buffer->reader_page->page) {
1892 cpu_buffer->commit_page = cpu_buffer->reader_page;
1893 /* Nothing more to do, the only page is the reader page */
1894 goto done;
1895 }
1896
1897 /* Iterate until finding the commit page */
1898 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1899
1900 /* Reader page has already been done */
1901 if (head_page == cpu_buffer->reader_page)
1902 continue;
1903
1904 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1905 if (ret < 0) {
1906 pr_info("Ring buffer meta [%d] invalid buffer page\n",
1907 cpu_buffer->cpu);
1908 goto invalid;
1909 }
1910
1911 /* If the buffer has content, update pages_touched */
1912 if (ret)
1913 local_inc(&cpu_buffer->pages_touched);
1914
1915 entries += ret;
1916 entry_bytes += local_read(&head_page->page->commit);
1917 local_set(&cpu_buffer->head_page->entries, ret);
1918
1919 if (head_page == cpu_buffer->commit_page)
1920 break;
1921 }
1922
1923 if (head_page != cpu_buffer->commit_page) {
1924 pr_info("Ring buffer meta [%d] commit page not found\n",
1925 cpu_buffer->cpu);
1926 goto invalid;
1927 }
1928 done:
1929 local_set(&cpu_buffer->entries, entries);
1930 local_set(&cpu_buffer->entries_bytes, entry_bytes);
1931
1932 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1933 return;
1934
1935 invalid:
1936 /* The content of the buffers are invalid, reset the meta data */
1937 meta->head_buffer = 0;
1938 meta->commit_buffer = 0;
1939
1940 /* Reset the reader page */
1941 local_set(&cpu_buffer->reader_page->entries, 0);
1942 local_set(&cpu_buffer->reader_page->page->commit, 0);
1943
1944 /* Reset all the subbuffers */
1945 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1946 local_set(&head_page->entries, 0);
1947 local_set(&head_page->page->commit, 0);
1948 }
1949 }
1950
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages,int scratch_size)1951 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size)
1952 {
1953 struct ring_buffer_cpu_meta *meta;
1954 unsigned long *subbuf_mask;
1955 unsigned long delta;
1956 void *subbuf;
1957 bool valid = false;
1958 int cpu;
1959 int i;
1960
1961 /* Create a mask to test the subbuf array */
1962 subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1963 /* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1964
1965 if (rb_meta_init(buffer, scratch_size))
1966 valid = true;
1967
1968 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1969 void *next_meta;
1970
1971 meta = rb_range_meta(buffer, nr_pages, cpu);
1972
1973 if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1974 /* Make the mappings match the current address */
1975 subbuf = rb_subbufs_from_meta(meta);
1976 delta = (unsigned long)subbuf - meta->first_buffer;
1977 meta->first_buffer += delta;
1978 meta->head_buffer += delta;
1979 meta->commit_buffer += delta;
1980 continue;
1981 }
1982
1983 if (cpu < nr_cpu_ids - 1)
1984 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1985 else
1986 next_meta = (void *)buffer->range_addr_end;
1987
1988 memset(meta, 0, next_meta - (void *)meta);
1989
1990 meta->nr_subbufs = nr_pages + 1;
1991 meta->subbuf_size = PAGE_SIZE;
1992
1993 subbuf = rb_subbufs_from_meta(meta);
1994
1995 meta->first_buffer = (unsigned long)subbuf;
1996
1997 /*
1998 * The buffers[] array holds the order of the sub-buffers
1999 * that are after the meta data. The sub-buffers may
2000 * be swapped out when read and inserted into a different
2001 * location of the ring buffer. Although their addresses
2002 * remain the same, the buffers[] array contains the
2003 * index into the sub-buffers holding their actual order.
2004 */
2005 for (i = 0; i < meta->nr_subbufs; i++) {
2006 meta->buffers[i] = i;
2007 rb_init_page(subbuf);
2008 subbuf += meta->subbuf_size;
2009 }
2010 }
2011 bitmap_free(subbuf_mask);
2012 }
2013
rbm_start(struct seq_file * m,loff_t * pos)2014 static void *rbm_start(struct seq_file *m, loff_t *pos)
2015 {
2016 struct ring_buffer_per_cpu *cpu_buffer = m->private;
2017 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2018 unsigned long val;
2019
2020 if (!meta)
2021 return NULL;
2022
2023 if (*pos > meta->nr_subbufs)
2024 return NULL;
2025
2026 val = *pos;
2027 val++;
2028
2029 return (void *)val;
2030 }
2031
rbm_next(struct seq_file * m,void * v,loff_t * pos)2032 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
2033 {
2034 (*pos)++;
2035
2036 return rbm_start(m, pos);
2037 }
2038
rbm_show(struct seq_file * m,void * v)2039 static int rbm_show(struct seq_file *m, void *v)
2040 {
2041 struct ring_buffer_per_cpu *cpu_buffer = m->private;
2042 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2043 unsigned long val = (unsigned long)v;
2044
2045 if (val == 1) {
2046 seq_printf(m, "head_buffer: %d\n",
2047 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2048 seq_printf(m, "commit_buffer: %d\n",
2049 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2050 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size);
2051 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs);
2052 return 0;
2053 }
2054
2055 val -= 2;
2056 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]);
2057
2058 return 0;
2059 }
2060
rbm_stop(struct seq_file * m,void * p)2061 static void rbm_stop(struct seq_file *m, void *p)
2062 {
2063 }
2064
2065 static const struct seq_operations rb_meta_seq_ops = {
2066 .start = rbm_start,
2067 .next = rbm_next,
2068 .show = rbm_show,
2069 .stop = rbm_stop,
2070 };
2071
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2072 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2073 {
2074 struct seq_file *m;
2075 int ret;
2076
2077 ret = seq_open(file, &rb_meta_seq_ops);
2078 if (ret)
2079 return ret;
2080
2081 m = file->private_data;
2082 m->private = buffer->buffers[cpu];
2083
2084 return 0;
2085 }
2086
2087 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2088 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2089 struct buffer_page *bpage)
2090 {
2091 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2092
2093 if (meta->head_buffer == (unsigned long)bpage->page)
2094 cpu_buffer->head_page = bpage;
2095
2096 if (meta->commit_buffer == (unsigned long)bpage->page) {
2097 cpu_buffer->commit_page = bpage;
2098 cpu_buffer->tail_page = bpage;
2099 }
2100 }
2101
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2102 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2103 long nr_pages, struct list_head *pages)
2104 {
2105 struct trace_buffer *buffer = cpu_buffer->buffer;
2106 struct ring_buffer_cpu_meta *meta = NULL;
2107 struct buffer_page *bpage, *tmp;
2108 bool user_thread = current->mm != NULL;
2109 gfp_t mflags;
2110 long i;
2111
2112 /*
2113 * Check if the available memory is there first.
2114 * Note, si_mem_available() only gives us a rough estimate of available
2115 * memory. It may not be accurate. But we don't care, we just want
2116 * to prevent doing any allocation when it is obvious that it is
2117 * not going to succeed.
2118 */
2119 i = si_mem_available();
2120 if (i < nr_pages)
2121 return -ENOMEM;
2122
2123 /*
2124 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2125 * gracefully without invoking oom-killer and the system is not
2126 * destabilized.
2127 */
2128 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2129
2130 /*
2131 * If a user thread allocates too much, and si_mem_available()
2132 * reports there's enough memory, even though there is not.
2133 * Make sure the OOM killer kills this thread. This can happen
2134 * even with RETRY_MAYFAIL because another task may be doing
2135 * an allocation after this task has taken all memory.
2136 * This is the task the OOM killer needs to take out during this
2137 * loop, even if it was triggered by an allocation somewhere else.
2138 */
2139 if (user_thread)
2140 set_current_oom_origin();
2141
2142 if (buffer->range_addr_start)
2143 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2144
2145 for (i = 0; i < nr_pages; i++) {
2146 struct page *page;
2147
2148 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2149 mflags, cpu_to_node(cpu_buffer->cpu));
2150 if (!bpage)
2151 goto free_pages;
2152
2153 rb_check_bpage(cpu_buffer, bpage);
2154
2155 /*
2156 * Append the pages as for mapped buffers we want to keep
2157 * the order
2158 */
2159 list_add_tail(&bpage->list, pages);
2160
2161 if (meta) {
2162 /* A range was given. Use that for the buffer page */
2163 bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2164 if (!bpage->page)
2165 goto free_pages;
2166 /* If this is valid from a previous boot */
2167 if (meta->head_buffer)
2168 rb_meta_buffer_update(cpu_buffer, bpage);
2169 bpage->range = 1;
2170 bpage->id = i + 1;
2171 } else {
2172 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2173 mflags | __GFP_COMP | __GFP_ZERO,
2174 cpu_buffer->buffer->subbuf_order);
2175 if (!page)
2176 goto free_pages;
2177 bpage->page = page_address(page);
2178 rb_init_page(bpage->page);
2179 }
2180 bpage->order = cpu_buffer->buffer->subbuf_order;
2181
2182 if (user_thread && fatal_signal_pending(current))
2183 goto free_pages;
2184 }
2185 if (user_thread)
2186 clear_current_oom_origin();
2187
2188 return 0;
2189
2190 free_pages:
2191 list_for_each_entry_safe(bpage, tmp, pages, list) {
2192 list_del_init(&bpage->list);
2193 free_buffer_page(bpage);
2194 }
2195 if (user_thread)
2196 clear_current_oom_origin();
2197
2198 return -ENOMEM;
2199 }
2200
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2201 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2202 unsigned long nr_pages)
2203 {
2204 LIST_HEAD(pages);
2205
2206 WARN_ON(!nr_pages);
2207
2208 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2209 return -ENOMEM;
2210
2211 /*
2212 * The ring buffer page list is a circular list that does not
2213 * start and end with a list head. All page list items point to
2214 * other pages.
2215 */
2216 cpu_buffer->pages = pages.next;
2217 list_del(&pages);
2218
2219 cpu_buffer->nr_pages = nr_pages;
2220
2221 rb_check_pages(cpu_buffer);
2222
2223 return 0;
2224 }
2225
2226 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2227 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2228 {
2229 struct ring_buffer_per_cpu *cpu_buffer __free(kfree) = NULL;
2230 struct ring_buffer_cpu_meta *meta;
2231 struct buffer_page *bpage;
2232 struct page *page;
2233 int ret;
2234
2235 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2236 GFP_KERNEL, cpu_to_node(cpu));
2237 if (!cpu_buffer)
2238 return NULL;
2239
2240 cpu_buffer->cpu = cpu;
2241 cpu_buffer->buffer = buffer;
2242 raw_spin_lock_init(&cpu_buffer->reader_lock);
2243 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2244 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2245 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2246 init_completion(&cpu_buffer->update_done);
2247 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2248 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2249 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2250 mutex_init(&cpu_buffer->mapping_lock);
2251
2252 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2253 GFP_KERNEL, cpu_to_node(cpu));
2254 if (!bpage)
2255 return NULL;
2256
2257 rb_check_bpage(cpu_buffer, bpage);
2258
2259 cpu_buffer->reader_page = bpage;
2260
2261 if (buffer->range_addr_start) {
2262 /*
2263 * Range mapped buffers have the same restrictions as memory
2264 * mapped ones do.
2265 */
2266 cpu_buffer->mapped = 1;
2267 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2268 bpage->page = rb_range_buffer(cpu_buffer, 0);
2269 if (!bpage->page)
2270 goto fail_free_reader;
2271 if (cpu_buffer->ring_meta->head_buffer)
2272 rb_meta_buffer_update(cpu_buffer, bpage);
2273 bpage->range = 1;
2274 } else {
2275 page = alloc_pages_node(cpu_to_node(cpu),
2276 GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2277 cpu_buffer->buffer->subbuf_order);
2278 if (!page)
2279 goto fail_free_reader;
2280 bpage->page = page_address(page);
2281 rb_init_page(bpage->page);
2282 }
2283
2284 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2285 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2286
2287 ret = rb_allocate_pages(cpu_buffer, nr_pages);
2288 if (ret < 0)
2289 goto fail_free_reader;
2290
2291 rb_meta_validate_events(cpu_buffer);
2292
2293 /* If the boot meta was valid then this has already been updated */
2294 meta = cpu_buffer->ring_meta;
2295 if (!meta || !meta->head_buffer ||
2296 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2297 if (meta && meta->head_buffer &&
2298 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2299 pr_warn("Ring buffer meta buffers not all mapped\n");
2300 if (!cpu_buffer->head_page)
2301 pr_warn(" Missing head_page\n");
2302 if (!cpu_buffer->commit_page)
2303 pr_warn(" Missing commit_page\n");
2304 if (!cpu_buffer->tail_page)
2305 pr_warn(" Missing tail_page\n");
2306 }
2307
2308 cpu_buffer->head_page
2309 = list_entry(cpu_buffer->pages, struct buffer_page, list);
2310 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2311
2312 rb_head_page_activate(cpu_buffer);
2313
2314 if (cpu_buffer->ring_meta)
2315 meta->commit_buffer = meta->head_buffer;
2316 } else {
2317 /* The valid meta buffer still needs to activate the head page */
2318 rb_head_page_activate(cpu_buffer);
2319 }
2320
2321 return_ptr(cpu_buffer);
2322
2323 fail_free_reader:
2324 free_buffer_page(cpu_buffer->reader_page);
2325
2326 return NULL;
2327 }
2328
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2329 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2330 {
2331 struct list_head *head = cpu_buffer->pages;
2332 struct buffer_page *bpage, *tmp;
2333
2334 irq_work_sync(&cpu_buffer->irq_work.work);
2335
2336 free_buffer_page(cpu_buffer->reader_page);
2337
2338 if (head) {
2339 rb_head_page_deactivate(cpu_buffer);
2340
2341 list_for_each_entry_safe(bpage, tmp, head, list) {
2342 list_del_init(&bpage->list);
2343 free_buffer_page(bpage);
2344 }
2345 bpage = list_entry(head, struct buffer_page, list);
2346 free_buffer_page(bpage);
2347 }
2348
2349 free_page((unsigned long)cpu_buffer->free_page);
2350
2351 kfree(cpu_buffer);
2352 }
2353
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,unsigned long scratch_size,struct lock_class_key * key)2354 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2355 int order, unsigned long start,
2356 unsigned long end,
2357 unsigned long scratch_size,
2358 struct lock_class_key *key)
2359 {
2360 struct trace_buffer *buffer __free(kfree) = NULL;
2361 long nr_pages;
2362 int subbuf_size;
2363 int bsize;
2364 int cpu;
2365 int ret;
2366
2367 /* keep it in its own cache line */
2368 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2369 GFP_KERNEL);
2370 if (!buffer)
2371 return NULL;
2372
2373 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2374 return NULL;
2375
2376 buffer->subbuf_order = order;
2377 subbuf_size = (PAGE_SIZE << order);
2378 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2379
2380 /* Max payload is buffer page size - header (8bytes) */
2381 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2382
2383 buffer->flags = flags;
2384 buffer->clock = trace_clock_local;
2385 buffer->reader_lock_key = key;
2386
2387 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2388 init_waitqueue_head(&buffer->irq_work.waiters);
2389
2390 buffer->cpus = nr_cpu_ids;
2391
2392 bsize = sizeof(void *) * nr_cpu_ids;
2393 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2394 GFP_KERNEL);
2395 if (!buffer->buffers)
2396 goto fail_free_cpumask;
2397
2398 /* If start/end are specified, then that overrides size */
2399 if (start && end) {
2400 unsigned long buffers_start;
2401 unsigned long ptr;
2402 int n;
2403
2404 /* Make sure that start is word aligned */
2405 start = ALIGN(start, sizeof(long));
2406
2407 /* scratch_size needs to be aligned too */
2408 scratch_size = ALIGN(scratch_size, sizeof(long));
2409
2410 /* Subtract the buffer meta data and word aligned */
2411 buffers_start = start + sizeof(struct ring_buffer_cpu_meta);
2412 buffers_start = ALIGN(buffers_start, sizeof(long));
2413 buffers_start += scratch_size;
2414
2415 /* Calculate the size for the per CPU data */
2416 size = end - buffers_start;
2417 size = size / nr_cpu_ids;
2418
2419 /*
2420 * The number of sub-buffers (nr_pages) is determined by the
2421 * total size allocated minus the meta data size.
2422 * Then that is divided by the number of per CPU buffers
2423 * needed, plus account for the integer array index that
2424 * will be appended to the meta data.
2425 */
2426 nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) /
2427 (subbuf_size + sizeof(int));
2428 /* Need at least two pages plus the reader page */
2429 if (nr_pages < 3)
2430 goto fail_free_buffers;
2431
2432 again:
2433 /* Make sure that the size fits aligned */
2434 for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) {
2435 ptr += sizeof(struct ring_buffer_cpu_meta) +
2436 sizeof(int) * nr_pages;
2437 ptr = ALIGN(ptr, subbuf_size);
2438 ptr += subbuf_size * nr_pages;
2439 }
2440 if (ptr > end) {
2441 if (nr_pages <= 3)
2442 goto fail_free_buffers;
2443 nr_pages--;
2444 goto again;
2445 }
2446
2447 /* nr_pages should not count the reader page */
2448 nr_pages--;
2449 buffer->range_addr_start = start;
2450 buffer->range_addr_end = end;
2451
2452 rb_range_meta_init(buffer, nr_pages, scratch_size);
2453 } else {
2454
2455 /* need at least two pages */
2456 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2457 if (nr_pages < 2)
2458 nr_pages = 2;
2459 }
2460
2461 cpu = raw_smp_processor_id();
2462 cpumask_set_cpu(cpu, buffer->cpumask);
2463 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2464 if (!buffer->buffers[cpu])
2465 goto fail_free_buffers;
2466
2467 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2468 if (ret < 0)
2469 goto fail_free_buffers;
2470
2471 mutex_init(&buffer->mutex);
2472
2473 return_ptr(buffer);
2474
2475 fail_free_buffers:
2476 for_each_buffer_cpu(buffer, cpu) {
2477 if (buffer->buffers[cpu])
2478 rb_free_cpu_buffer(buffer->buffers[cpu]);
2479 }
2480 kfree(buffer->buffers);
2481
2482 fail_free_cpumask:
2483 free_cpumask_var(buffer->cpumask);
2484
2485 return NULL;
2486 }
2487
2488 /**
2489 * __ring_buffer_alloc - allocate a new ring_buffer
2490 * @size: the size in bytes per cpu that is needed.
2491 * @flags: attributes to set for the ring buffer.
2492 * @key: ring buffer reader_lock_key.
2493 *
2494 * Currently the only flag that is available is the RB_FL_OVERWRITE
2495 * flag. This flag means that the buffer will overwrite old data
2496 * when the buffer wraps. If this flag is not set, the buffer will
2497 * drop data when the tail hits the head.
2498 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2499 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2500 struct lock_class_key *key)
2501 {
2502 /* Default buffer page size - one system page */
2503 return alloc_buffer(size, flags, 0, 0, 0, 0, key);
2504
2505 }
2506 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2507
2508 /**
2509 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2510 * @size: the size in bytes per cpu that is needed.
2511 * @flags: attributes to set for the ring buffer.
2512 * @order: sub-buffer order
2513 * @start: start of allocated range
2514 * @range_size: size of allocated range
2515 * @scratch_size: size of scratch area (for preallocated memory buffers)
2516 * @key: ring buffer reader_lock_key.
2517 *
2518 * Currently the only flag that is available is the RB_FL_OVERWRITE
2519 * flag. This flag means that the buffer will overwrite old data
2520 * when the buffer wraps. If this flag is not set, the buffer will
2521 * drop data when the tail hits the head.
2522 */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,unsigned long scratch_size,struct lock_class_key * key)2523 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2524 int order, unsigned long start,
2525 unsigned long range_size,
2526 unsigned long scratch_size,
2527 struct lock_class_key *key)
2528 {
2529 return alloc_buffer(size, flags, order, start, start + range_size,
2530 scratch_size, key);
2531 }
2532
ring_buffer_meta_scratch(struct trace_buffer * buffer,unsigned int * size)2533 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size)
2534 {
2535 struct ring_buffer_meta *meta;
2536 void *ptr;
2537
2538 if (!buffer || !buffer->meta)
2539 return NULL;
2540
2541 meta = buffer->meta;
2542
2543 ptr = (void *)ALIGN((unsigned long)meta + sizeof(*meta), sizeof(long));
2544
2545 if (size)
2546 *size = (void *)meta + meta->buffers_offset - ptr;
2547
2548 return ptr;
2549 }
2550
2551 /**
2552 * ring_buffer_free - free a ring buffer.
2553 * @buffer: the buffer to free.
2554 */
2555 void
ring_buffer_free(struct trace_buffer * buffer)2556 ring_buffer_free(struct trace_buffer *buffer)
2557 {
2558 int cpu;
2559
2560 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2561
2562 irq_work_sync(&buffer->irq_work.work);
2563
2564 for_each_buffer_cpu(buffer, cpu)
2565 rb_free_cpu_buffer(buffer->buffers[cpu]);
2566
2567 kfree(buffer->buffers);
2568 free_cpumask_var(buffer->cpumask);
2569
2570 kfree(buffer);
2571 }
2572 EXPORT_SYMBOL_GPL(ring_buffer_free);
2573
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2574 void ring_buffer_set_clock(struct trace_buffer *buffer,
2575 u64 (*clock)(void))
2576 {
2577 buffer->clock = clock;
2578 }
2579
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2580 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2581 {
2582 buffer->time_stamp_abs = abs;
2583 }
2584
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2585 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2586 {
2587 return buffer->time_stamp_abs;
2588 }
2589
rb_page_entries(struct buffer_page * bpage)2590 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2591 {
2592 return local_read(&bpage->entries) & RB_WRITE_MASK;
2593 }
2594
rb_page_write(struct buffer_page * bpage)2595 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2596 {
2597 return local_read(&bpage->write) & RB_WRITE_MASK;
2598 }
2599
2600 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2601 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2602 {
2603 struct list_head *tail_page, *to_remove, *next_page;
2604 struct buffer_page *to_remove_page, *tmp_iter_page;
2605 struct buffer_page *last_page, *first_page;
2606 unsigned long nr_removed;
2607 unsigned long head_bit;
2608 int page_entries;
2609
2610 head_bit = 0;
2611
2612 raw_spin_lock_irq(&cpu_buffer->reader_lock);
2613 atomic_inc(&cpu_buffer->record_disabled);
2614 /*
2615 * We don't race with the readers since we have acquired the reader
2616 * lock. We also don't race with writers after disabling recording.
2617 * This makes it easy to figure out the first and the last page to be
2618 * removed from the list. We unlink all the pages in between including
2619 * the first and last pages. This is done in a busy loop so that we
2620 * lose the least number of traces.
2621 * The pages are freed after we restart recording and unlock readers.
2622 */
2623 tail_page = &cpu_buffer->tail_page->list;
2624
2625 /*
2626 * tail page might be on reader page, we remove the next page
2627 * from the ring buffer
2628 */
2629 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2630 tail_page = rb_list_head(tail_page->next);
2631 to_remove = tail_page;
2632
2633 /* start of pages to remove */
2634 first_page = list_entry(rb_list_head(to_remove->next),
2635 struct buffer_page, list);
2636
2637 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2638 to_remove = rb_list_head(to_remove)->next;
2639 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2640 }
2641 /* Read iterators need to reset themselves when some pages removed */
2642 cpu_buffer->pages_removed += nr_removed;
2643
2644 next_page = rb_list_head(to_remove)->next;
2645
2646 /*
2647 * Now we remove all pages between tail_page and next_page.
2648 * Make sure that we have head_bit value preserved for the
2649 * next page
2650 */
2651 tail_page->next = (struct list_head *)((unsigned long)next_page |
2652 head_bit);
2653 next_page = rb_list_head(next_page);
2654 next_page->prev = tail_page;
2655
2656 /* make sure pages points to a valid page in the ring buffer */
2657 cpu_buffer->pages = next_page;
2658 cpu_buffer->cnt++;
2659
2660 /* update head page */
2661 if (head_bit)
2662 cpu_buffer->head_page = list_entry(next_page,
2663 struct buffer_page, list);
2664
2665 /* pages are removed, resume tracing and then free the pages */
2666 atomic_dec(&cpu_buffer->record_disabled);
2667 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2668
2669 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2670
2671 /* last buffer page to remove */
2672 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2673 list);
2674 tmp_iter_page = first_page;
2675
2676 do {
2677 cond_resched();
2678
2679 to_remove_page = tmp_iter_page;
2680 rb_inc_page(&tmp_iter_page);
2681
2682 /* update the counters */
2683 page_entries = rb_page_entries(to_remove_page);
2684 if (page_entries) {
2685 /*
2686 * If something was added to this page, it was full
2687 * since it is not the tail page. So we deduct the
2688 * bytes consumed in ring buffer from here.
2689 * Increment overrun to account for the lost events.
2690 */
2691 local_add(page_entries, &cpu_buffer->overrun);
2692 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2693 local_inc(&cpu_buffer->pages_lost);
2694 }
2695
2696 /*
2697 * We have already removed references to this list item, just
2698 * free up the buffer_page and its page
2699 */
2700 free_buffer_page(to_remove_page);
2701 nr_removed--;
2702
2703 } while (to_remove_page != last_page);
2704
2705 RB_WARN_ON(cpu_buffer, nr_removed);
2706
2707 return nr_removed == 0;
2708 }
2709
2710 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2711 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2712 {
2713 struct list_head *pages = &cpu_buffer->new_pages;
2714 unsigned long flags;
2715 bool success;
2716 int retries;
2717
2718 /* Can be called at early boot up, where interrupts must not been enabled */
2719 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2720 /*
2721 * We are holding the reader lock, so the reader page won't be swapped
2722 * in the ring buffer. Now we are racing with the writer trying to
2723 * move head page and the tail page.
2724 * We are going to adapt the reader page update process where:
2725 * 1. We first splice the start and end of list of new pages between
2726 * the head page and its previous page.
2727 * 2. We cmpxchg the prev_page->next to point from head page to the
2728 * start of new pages list.
2729 * 3. Finally, we update the head->prev to the end of new list.
2730 *
2731 * We will try this process 10 times, to make sure that we don't keep
2732 * spinning.
2733 */
2734 retries = 10;
2735 success = false;
2736 while (retries--) {
2737 struct list_head *head_page, *prev_page;
2738 struct list_head *last_page, *first_page;
2739 struct list_head *head_page_with_bit;
2740 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2741
2742 if (!hpage)
2743 break;
2744 head_page = &hpage->list;
2745 prev_page = head_page->prev;
2746
2747 first_page = pages->next;
2748 last_page = pages->prev;
2749
2750 head_page_with_bit = (struct list_head *)
2751 ((unsigned long)head_page | RB_PAGE_HEAD);
2752
2753 last_page->next = head_page_with_bit;
2754 first_page->prev = prev_page;
2755
2756 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2757 if (try_cmpxchg(&prev_page->next,
2758 &head_page_with_bit, first_page)) {
2759 /*
2760 * yay, we replaced the page pointer to our new list,
2761 * now, we just have to update to head page's prev
2762 * pointer to point to end of list
2763 */
2764 head_page->prev = last_page;
2765 cpu_buffer->cnt++;
2766 success = true;
2767 break;
2768 }
2769 }
2770
2771 if (success)
2772 INIT_LIST_HEAD(pages);
2773 /*
2774 * If we weren't successful in adding in new pages, warn and stop
2775 * tracing
2776 */
2777 RB_WARN_ON(cpu_buffer, !success);
2778 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2779
2780 /* free pages if they weren't inserted */
2781 if (!success) {
2782 struct buffer_page *bpage, *tmp;
2783 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2784 list) {
2785 list_del_init(&bpage->list);
2786 free_buffer_page(bpage);
2787 }
2788 }
2789 return success;
2790 }
2791
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2792 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2793 {
2794 bool success;
2795
2796 if (cpu_buffer->nr_pages_to_update > 0)
2797 success = rb_insert_pages(cpu_buffer);
2798 else
2799 success = rb_remove_pages(cpu_buffer,
2800 -cpu_buffer->nr_pages_to_update);
2801
2802 if (success)
2803 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2804 }
2805
update_pages_handler(struct work_struct * work)2806 static void update_pages_handler(struct work_struct *work)
2807 {
2808 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2809 struct ring_buffer_per_cpu, update_pages_work);
2810 rb_update_pages(cpu_buffer);
2811 complete(&cpu_buffer->update_done);
2812 }
2813
2814 /**
2815 * ring_buffer_resize - resize the ring buffer
2816 * @buffer: the buffer to resize.
2817 * @size: the new size.
2818 * @cpu_id: the cpu buffer to resize
2819 *
2820 * Minimum size is 2 * buffer->subbuf_size.
2821 *
2822 * Returns 0 on success and < 0 on failure.
2823 */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2824 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2825 int cpu_id)
2826 {
2827 struct ring_buffer_per_cpu *cpu_buffer;
2828 unsigned long nr_pages;
2829 int cpu, err;
2830
2831 /*
2832 * Always succeed at resizing a non-existent buffer:
2833 */
2834 if (!buffer)
2835 return 0;
2836
2837 /* Make sure the requested buffer exists */
2838 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2839 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2840 return 0;
2841
2842 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2843
2844 /* we need a minimum of two pages */
2845 if (nr_pages < 2)
2846 nr_pages = 2;
2847
2848 /*
2849 * Keep CPUs from coming online while resizing to synchronize
2850 * with new per CPU buffers being created.
2851 */
2852 guard(cpus_read_lock)();
2853
2854 /* prevent another thread from changing buffer sizes */
2855 mutex_lock(&buffer->mutex);
2856 atomic_inc(&buffer->resizing);
2857
2858 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2859 /*
2860 * Don't succeed if resizing is disabled, as a reader might be
2861 * manipulating the ring buffer and is expecting a sane state while
2862 * this is true.
2863 */
2864 for_each_buffer_cpu(buffer, cpu) {
2865 cpu_buffer = buffer->buffers[cpu];
2866 if (atomic_read(&cpu_buffer->resize_disabled)) {
2867 err = -EBUSY;
2868 goto out_err_unlock;
2869 }
2870 }
2871
2872 /* calculate the pages to update */
2873 for_each_buffer_cpu(buffer, cpu) {
2874 cpu_buffer = buffer->buffers[cpu];
2875
2876 cpu_buffer->nr_pages_to_update = nr_pages -
2877 cpu_buffer->nr_pages;
2878 /*
2879 * nothing more to do for removing pages or no update
2880 */
2881 if (cpu_buffer->nr_pages_to_update <= 0)
2882 continue;
2883 /*
2884 * to add pages, make sure all new pages can be
2885 * allocated without receiving ENOMEM
2886 */
2887 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2888 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2889 &cpu_buffer->new_pages)) {
2890 /* not enough memory for new pages */
2891 err = -ENOMEM;
2892 goto out_err;
2893 }
2894
2895 cond_resched();
2896 }
2897
2898 /*
2899 * Fire off all the required work handlers
2900 * We can't schedule on offline CPUs, but it's not necessary
2901 * since we can change their buffer sizes without any race.
2902 */
2903 for_each_buffer_cpu(buffer, cpu) {
2904 cpu_buffer = buffer->buffers[cpu];
2905 if (!cpu_buffer->nr_pages_to_update)
2906 continue;
2907
2908 /* Can't run something on an offline CPU. */
2909 if (!cpu_online(cpu)) {
2910 rb_update_pages(cpu_buffer);
2911 cpu_buffer->nr_pages_to_update = 0;
2912 } else {
2913 /* Run directly if possible. */
2914 migrate_disable();
2915 if (cpu != smp_processor_id()) {
2916 migrate_enable();
2917 schedule_work_on(cpu,
2918 &cpu_buffer->update_pages_work);
2919 } else {
2920 update_pages_handler(&cpu_buffer->update_pages_work);
2921 migrate_enable();
2922 }
2923 }
2924 }
2925
2926 /* wait for all the updates to complete */
2927 for_each_buffer_cpu(buffer, cpu) {
2928 cpu_buffer = buffer->buffers[cpu];
2929 if (!cpu_buffer->nr_pages_to_update)
2930 continue;
2931
2932 if (cpu_online(cpu))
2933 wait_for_completion(&cpu_buffer->update_done);
2934 cpu_buffer->nr_pages_to_update = 0;
2935 }
2936
2937 } else {
2938 cpu_buffer = buffer->buffers[cpu_id];
2939
2940 if (nr_pages == cpu_buffer->nr_pages)
2941 goto out;
2942
2943 /*
2944 * Don't succeed if resizing is disabled, as a reader might be
2945 * manipulating the ring buffer and is expecting a sane state while
2946 * this is true.
2947 */
2948 if (atomic_read(&cpu_buffer->resize_disabled)) {
2949 err = -EBUSY;
2950 goto out_err_unlock;
2951 }
2952
2953 cpu_buffer->nr_pages_to_update = nr_pages -
2954 cpu_buffer->nr_pages;
2955
2956 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2957 if (cpu_buffer->nr_pages_to_update > 0 &&
2958 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2959 &cpu_buffer->new_pages)) {
2960 err = -ENOMEM;
2961 goto out_err;
2962 }
2963
2964 /* Can't run something on an offline CPU. */
2965 if (!cpu_online(cpu_id))
2966 rb_update_pages(cpu_buffer);
2967 else {
2968 /* Run directly if possible. */
2969 migrate_disable();
2970 if (cpu_id == smp_processor_id()) {
2971 rb_update_pages(cpu_buffer);
2972 migrate_enable();
2973 } else {
2974 migrate_enable();
2975 schedule_work_on(cpu_id,
2976 &cpu_buffer->update_pages_work);
2977 wait_for_completion(&cpu_buffer->update_done);
2978 }
2979 }
2980
2981 cpu_buffer->nr_pages_to_update = 0;
2982 }
2983
2984 out:
2985 /*
2986 * The ring buffer resize can happen with the ring buffer
2987 * enabled, so that the update disturbs the tracing as little
2988 * as possible. But if the buffer is disabled, we do not need
2989 * to worry about that, and we can take the time to verify
2990 * that the buffer is not corrupt.
2991 */
2992 if (atomic_read(&buffer->record_disabled)) {
2993 atomic_inc(&buffer->record_disabled);
2994 /*
2995 * Even though the buffer was disabled, we must make sure
2996 * that it is truly disabled before calling rb_check_pages.
2997 * There could have been a race between checking
2998 * record_disable and incrementing it.
2999 */
3000 synchronize_rcu();
3001 for_each_buffer_cpu(buffer, cpu) {
3002 cpu_buffer = buffer->buffers[cpu];
3003 rb_check_pages(cpu_buffer);
3004 }
3005 atomic_dec(&buffer->record_disabled);
3006 }
3007
3008 atomic_dec(&buffer->resizing);
3009 mutex_unlock(&buffer->mutex);
3010 return 0;
3011
3012 out_err:
3013 for_each_buffer_cpu(buffer, cpu) {
3014 struct buffer_page *bpage, *tmp;
3015
3016 cpu_buffer = buffer->buffers[cpu];
3017 cpu_buffer->nr_pages_to_update = 0;
3018
3019 if (list_empty(&cpu_buffer->new_pages))
3020 continue;
3021
3022 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3023 list) {
3024 list_del_init(&bpage->list);
3025 free_buffer_page(bpage);
3026 }
3027 }
3028 out_err_unlock:
3029 atomic_dec(&buffer->resizing);
3030 mutex_unlock(&buffer->mutex);
3031 return err;
3032 }
3033 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3034
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)3035 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3036 {
3037 mutex_lock(&buffer->mutex);
3038 if (val)
3039 buffer->flags |= RB_FL_OVERWRITE;
3040 else
3041 buffer->flags &= ~RB_FL_OVERWRITE;
3042 mutex_unlock(&buffer->mutex);
3043 }
3044 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3045
__rb_page_index(struct buffer_page * bpage,unsigned index)3046 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3047 {
3048 return bpage->page->data + index;
3049 }
3050
3051 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3052 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3053 {
3054 return __rb_page_index(cpu_buffer->reader_page,
3055 cpu_buffer->reader_page->read);
3056 }
3057
3058 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)3059 rb_iter_head_event(struct ring_buffer_iter *iter)
3060 {
3061 struct ring_buffer_event *event;
3062 struct buffer_page *iter_head_page = iter->head_page;
3063 unsigned long commit;
3064 unsigned length;
3065
3066 if (iter->head != iter->next_event)
3067 return iter->event;
3068
3069 /*
3070 * When the writer goes across pages, it issues a cmpxchg which
3071 * is a mb(), which will synchronize with the rmb here.
3072 * (see rb_tail_page_update() and __rb_reserve_next())
3073 */
3074 commit = rb_page_commit(iter_head_page);
3075 smp_rmb();
3076
3077 /* An event needs to be at least 8 bytes in size */
3078 if (iter->head > commit - 8)
3079 goto reset;
3080
3081 event = __rb_page_index(iter_head_page, iter->head);
3082 length = rb_event_length(event);
3083
3084 /*
3085 * READ_ONCE() doesn't work on functions and we don't want the
3086 * compiler doing any crazy optimizations with length.
3087 */
3088 barrier();
3089
3090 if ((iter->head + length) > commit || length > iter->event_size)
3091 /* Writer corrupted the read? */
3092 goto reset;
3093
3094 memcpy(iter->event, event, length);
3095 /*
3096 * If the page stamp is still the same after this rmb() then the
3097 * event was safely copied without the writer entering the page.
3098 */
3099 smp_rmb();
3100
3101 /* Make sure the page didn't change since we read this */
3102 if (iter->page_stamp != iter_head_page->page->time_stamp ||
3103 commit > rb_page_commit(iter_head_page))
3104 goto reset;
3105
3106 iter->next_event = iter->head + length;
3107 return iter->event;
3108 reset:
3109 /* Reset to the beginning */
3110 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3111 iter->head = 0;
3112 iter->next_event = 0;
3113 iter->missed_events = 1;
3114 return NULL;
3115 }
3116
3117 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3118 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3119 {
3120 return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3121 }
3122
3123 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3124 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3125 {
3126 return rb_page_commit(cpu_buffer->commit_page);
3127 }
3128
3129 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3130 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3131 {
3132 unsigned long addr = (unsigned long)event;
3133
3134 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3135
3136 return addr - BUF_PAGE_HDR_SIZE;
3137 }
3138
rb_inc_iter(struct ring_buffer_iter * iter)3139 static void rb_inc_iter(struct ring_buffer_iter *iter)
3140 {
3141 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3142
3143 /*
3144 * The iterator could be on the reader page (it starts there).
3145 * But the head could have moved, since the reader was
3146 * found. Check for this case and assign the iterator
3147 * to the head page instead of next.
3148 */
3149 if (iter->head_page == cpu_buffer->reader_page)
3150 iter->head_page = rb_set_head_page(cpu_buffer);
3151 else
3152 rb_inc_page(&iter->head_page);
3153
3154 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3155 iter->head = 0;
3156 iter->next_event = 0;
3157 }
3158
3159 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_cpu_meta * meta,void * subbuf)3160 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf)
3161 {
3162 void *subbuf_array;
3163
3164 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3165 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3166 return (subbuf - subbuf_array) / meta->subbuf_size;
3167 }
3168
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3169 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3170 struct buffer_page *next_page)
3171 {
3172 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3173 unsigned long old_head = (unsigned long)next_page->page;
3174 unsigned long new_head;
3175
3176 rb_inc_page(&next_page);
3177 new_head = (unsigned long)next_page->page;
3178
3179 /*
3180 * Only move it forward once, if something else came in and
3181 * moved it forward, then we don't want to touch it.
3182 */
3183 (void)cmpxchg(&meta->head_buffer, old_head, new_head);
3184 }
3185
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3186 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3187 struct buffer_page *reader)
3188 {
3189 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3190 void *old_reader = cpu_buffer->reader_page->page;
3191 void *new_reader = reader->page;
3192 int id;
3193
3194 id = reader->id;
3195 cpu_buffer->reader_page->id = id;
3196 reader->id = 0;
3197
3198 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3199 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3200
3201 /* The head pointer is the one after the reader */
3202 rb_update_meta_head(cpu_buffer, reader);
3203 }
3204
3205 /*
3206 * rb_handle_head_page - writer hit the head page
3207 *
3208 * Returns: +1 to retry page
3209 * 0 to continue
3210 * -1 on error
3211 */
3212 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3213 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3214 struct buffer_page *tail_page,
3215 struct buffer_page *next_page)
3216 {
3217 struct buffer_page *new_head;
3218 int entries;
3219 int type;
3220 int ret;
3221
3222 entries = rb_page_entries(next_page);
3223
3224 /*
3225 * The hard part is here. We need to move the head
3226 * forward, and protect against both readers on
3227 * other CPUs and writers coming in via interrupts.
3228 */
3229 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3230 RB_PAGE_HEAD);
3231
3232 /*
3233 * type can be one of four:
3234 * NORMAL - an interrupt already moved it for us
3235 * HEAD - we are the first to get here.
3236 * UPDATE - we are the interrupt interrupting
3237 * a current move.
3238 * MOVED - a reader on another CPU moved the next
3239 * pointer to its reader page. Give up
3240 * and try again.
3241 */
3242
3243 switch (type) {
3244 case RB_PAGE_HEAD:
3245 /*
3246 * We changed the head to UPDATE, thus
3247 * it is our responsibility to update
3248 * the counters.
3249 */
3250 local_add(entries, &cpu_buffer->overrun);
3251 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3252 local_inc(&cpu_buffer->pages_lost);
3253
3254 if (cpu_buffer->ring_meta)
3255 rb_update_meta_head(cpu_buffer, next_page);
3256 /*
3257 * The entries will be zeroed out when we move the
3258 * tail page.
3259 */
3260
3261 /* still more to do */
3262 break;
3263
3264 case RB_PAGE_UPDATE:
3265 /*
3266 * This is an interrupt that interrupt the
3267 * previous update. Still more to do.
3268 */
3269 break;
3270 case RB_PAGE_NORMAL:
3271 /*
3272 * An interrupt came in before the update
3273 * and processed this for us.
3274 * Nothing left to do.
3275 */
3276 return 1;
3277 case RB_PAGE_MOVED:
3278 /*
3279 * The reader is on another CPU and just did
3280 * a swap with our next_page.
3281 * Try again.
3282 */
3283 return 1;
3284 default:
3285 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3286 return -1;
3287 }
3288
3289 /*
3290 * Now that we are here, the old head pointer is
3291 * set to UPDATE. This will keep the reader from
3292 * swapping the head page with the reader page.
3293 * The reader (on another CPU) will spin till
3294 * we are finished.
3295 *
3296 * We just need to protect against interrupts
3297 * doing the job. We will set the next pointer
3298 * to HEAD. After that, we set the old pointer
3299 * to NORMAL, but only if it was HEAD before.
3300 * otherwise we are an interrupt, and only
3301 * want the outer most commit to reset it.
3302 */
3303 new_head = next_page;
3304 rb_inc_page(&new_head);
3305
3306 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3307 RB_PAGE_NORMAL);
3308
3309 /*
3310 * Valid returns are:
3311 * HEAD - an interrupt came in and already set it.
3312 * NORMAL - One of two things:
3313 * 1) We really set it.
3314 * 2) A bunch of interrupts came in and moved
3315 * the page forward again.
3316 */
3317 switch (ret) {
3318 case RB_PAGE_HEAD:
3319 case RB_PAGE_NORMAL:
3320 /* OK */
3321 break;
3322 default:
3323 RB_WARN_ON(cpu_buffer, 1);
3324 return -1;
3325 }
3326
3327 /*
3328 * It is possible that an interrupt came in,
3329 * set the head up, then more interrupts came in
3330 * and moved it again. When we get back here,
3331 * the page would have been set to NORMAL but we
3332 * just set it back to HEAD.
3333 *
3334 * How do you detect this? Well, if that happened
3335 * the tail page would have moved.
3336 */
3337 if (ret == RB_PAGE_NORMAL) {
3338 struct buffer_page *buffer_tail_page;
3339
3340 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3341 /*
3342 * If the tail had moved passed next, then we need
3343 * to reset the pointer.
3344 */
3345 if (buffer_tail_page != tail_page &&
3346 buffer_tail_page != next_page)
3347 rb_head_page_set_normal(cpu_buffer, new_head,
3348 next_page,
3349 RB_PAGE_HEAD);
3350 }
3351
3352 /*
3353 * If this was the outer most commit (the one that
3354 * changed the original pointer from HEAD to UPDATE),
3355 * then it is up to us to reset it to NORMAL.
3356 */
3357 if (type == RB_PAGE_HEAD) {
3358 ret = rb_head_page_set_normal(cpu_buffer, next_page,
3359 tail_page,
3360 RB_PAGE_UPDATE);
3361 if (RB_WARN_ON(cpu_buffer,
3362 ret != RB_PAGE_UPDATE))
3363 return -1;
3364 }
3365
3366 return 0;
3367 }
3368
3369 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3370 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3371 unsigned long tail, struct rb_event_info *info)
3372 {
3373 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3374 struct buffer_page *tail_page = info->tail_page;
3375 struct ring_buffer_event *event;
3376 unsigned long length = info->length;
3377
3378 /*
3379 * Only the event that crossed the page boundary
3380 * must fill the old tail_page with padding.
3381 */
3382 if (tail >= bsize) {
3383 /*
3384 * If the page was filled, then we still need
3385 * to update the real_end. Reset it to zero
3386 * and the reader will ignore it.
3387 */
3388 if (tail == bsize)
3389 tail_page->real_end = 0;
3390
3391 local_sub(length, &tail_page->write);
3392 return;
3393 }
3394
3395 event = __rb_page_index(tail_page, tail);
3396
3397 /*
3398 * Save the original length to the meta data.
3399 * This will be used by the reader to add lost event
3400 * counter.
3401 */
3402 tail_page->real_end = tail;
3403
3404 /*
3405 * If this event is bigger than the minimum size, then
3406 * we need to be careful that we don't subtract the
3407 * write counter enough to allow another writer to slip
3408 * in on this page.
3409 * We put in a discarded commit instead, to make sure
3410 * that this space is not used again, and this space will
3411 * not be accounted into 'entries_bytes'.
3412 *
3413 * If we are less than the minimum size, we don't need to
3414 * worry about it.
3415 */
3416 if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3417 /* No room for any events */
3418
3419 /* Mark the rest of the page with padding */
3420 rb_event_set_padding(event);
3421
3422 /* Make sure the padding is visible before the write update */
3423 smp_wmb();
3424
3425 /* Set the write back to the previous setting */
3426 local_sub(length, &tail_page->write);
3427 return;
3428 }
3429
3430 /* Put in a discarded event */
3431 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3432 event->type_len = RINGBUF_TYPE_PADDING;
3433 /* time delta must be non zero */
3434 event->time_delta = 1;
3435
3436 /* account for padding bytes */
3437 local_add(bsize - tail, &cpu_buffer->entries_bytes);
3438
3439 /* Make sure the padding is visible before the tail_page->write update */
3440 smp_wmb();
3441
3442 /* Set write to end of buffer */
3443 length = (tail + length) - bsize;
3444 local_sub(length, &tail_page->write);
3445 }
3446
3447 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3448
3449 /*
3450 * This is the slow path, force gcc not to inline it.
3451 */
3452 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3453 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3454 unsigned long tail, struct rb_event_info *info)
3455 {
3456 struct buffer_page *tail_page = info->tail_page;
3457 struct buffer_page *commit_page = cpu_buffer->commit_page;
3458 struct trace_buffer *buffer = cpu_buffer->buffer;
3459 struct buffer_page *next_page;
3460 int ret;
3461
3462 next_page = tail_page;
3463
3464 rb_inc_page(&next_page);
3465
3466 /*
3467 * If for some reason, we had an interrupt storm that made
3468 * it all the way around the buffer, bail, and warn
3469 * about it.
3470 */
3471 if (unlikely(next_page == commit_page)) {
3472 local_inc(&cpu_buffer->commit_overrun);
3473 goto out_reset;
3474 }
3475
3476 /*
3477 * This is where the fun begins!
3478 *
3479 * We are fighting against races between a reader that
3480 * could be on another CPU trying to swap its reader
3481 * page with the buffer head.
3482 *
3483 * We are also fighting against interrupts coming in and
3484 * moving the head or tail on us as well.
3485 *
3486 * If the next page is the head page then we have filled
3487 * the buffer, unless the commit page is still on the
3488 * reader page.
3489 */
3490 if (rb_is_head_page(next_page, &tail_page->list)) {
3491
3492 /*
3493 * If the commit is not on the reader page, then
3494 * move the header page.
3495 */
3496 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3497 /*
3498 * If we are not in overwrite mode,
3499 * this is easy, just stop here.
3500 */
3501 if (!(buffer->flags & RB_FL_OVERWRITE)) {
3502 local_inc(&cpu_buffer->dropped_events);
3503 goto out_reset;
3504 }
3505
3506 ret = rb_handle_head_page(cpu_buffer,
3507 tail_page,
3508 next_page);
3509 if (ret < 0)
3510 goto out_reset;
3511 if (ret)
3512 goto out_again;
3513 } else {
3514 /*
3515 * We need to be careful here too. The
3516 * commit page could still be on the reader
3517 * page. We could have a small buffer, and
3518 * have filled up the buffer with events
3519 * from interrupts and such, and wrapped.
3520 *
3521 * Note, if the tail page is also on the
3522 * reader_page, we let it move out.
3523 */
3524 if (unlikely((cpu_buffer->commit_page !=
3525 cpu_buffer->tail_page) &&
3526 (cpu_buffer->commit_page ==
3527 cpu_buffer->reader_page))) {
3528 local_inc(&cpu_buffer->commit_overrun);
3529 goto out_reset;
3530 }
3531 }
3532 }
3533
3534 rb_tail_page_update(cpu_buffer, tail_page, next_page);
3535
3536 out_again:
3537
3538 rb_reset_tail(cpu_buffer, tail, info);
3539
3540 /* Commit what we have for now. */
3541 rb_end_commit(cpu_buffer);
3542 /* rb_end_commit() decs committing */
3543 local_inc(&cpu_buffer->committing);
3544
3545 /* fail and let the caller try again */
3546 return ERR_PTR(-EAGAIN);
3547
3548 out_reset:
3549 /* reset write */
3550 rb_reset_tail(cpu_buffer, tail, info);
3551
3552 return NULL;
3553 }
3554
3555 /* Slow path */
3556 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3557 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3558 struct ring_buffer_event *event, u64 delta, bool abs)
3559 {
3560 if (abs)
3561 event->type_len = RINGBUF_TYPE_TIME_STAMP;
3562 else
3563 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3564
3565 /* Not the first event on the page, or not delta? */
3566 if (abs || rb_event_index(cpu_buffer, event)) {
3567 event->time_delta = delta & TS_MASK;
3568 event->array[0] = delta >> TS_SHIFT;
3569 } else {
3570 /* nope, just zero it */
3571 event->time_delta = 0;
3572 event->array[0] = 0;
3573 }
3574
3575 return skip_time_extend(event);
3576 }
3577
3578 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3579 static inline bool sched_clock_stable(void)
3580 {
3581 return true;
3582 }
3583 #endif
3584
3585 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3586 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3587 struct rb_event_info *info)
3588 {
3589 u64 write_stamp;
3590
3591 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3592 (unsigned long long)info->delta,
3593 (unsigned long long)info->ts,
3594 (unsigned long long)info->before,
3595 (unsigned long long)info->after,
3596 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3597 sched_clock_stable() ? "" :
3598 "If you just came from a suspend/resume,\n"
3599 "please switch to the trace global clock:\n"
3600 " echo global > /sys/kernel/tracing/trace_clock\n"
3601 "or add trace_clock=global to the kernel command line\n");
3602 }
3603
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3604 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3605 struct ring_buffer_event **event,
3606 struct rb_event_info *info,
3607 u64 *delta,
3608 unsigned int *length)
3609 {
3610 bool abs = info->add_timestamp &
3611 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3612
3613 if (unlikely(info->delta > (1ULL << 59))) {
3614 /*
3615 * Some timers can use more than 59 bits, and when a timestamp
3616 * is added to the buffer, it will lose those bits.
3617 */
3618 if (abs && (info->ts & TS_MSB)) {
3619 info->delta &= ABS_TS_MASK;
3620
3621 /* did the clock go backwards */
3622 } else if (info->before == info->after && info->before > info->ts) {
3623 /* not interrupted */
3624 static int once;
3625
3626 /*
3627 * This is possible with a recalibrating of the TSC.
3628 * Do not produce a call stack, but just report it.
3629 */
3630 if (!once) {
3631 once++;
3632 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3633 info->before, info->ts);
3634 }
3635 } else
3636 rb_check_timestamp(cpu_buffer, info);
3637 if (!abs)
3638 info->delta = 0;
3639 }
3640 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3641 *length -= RB_LEN_TIME_EXTEND;
3642 *delta = 0;
3643 }
3644
3645 /**
3646 * rb_update_event - update event type and data
3647 * @cpu_buffer: The per cpu buffer of the @event
3648 * @event: the event to update
3649 * @info: The info to update the @event with (contains length and delta)
3650 *
3651 * Update the type and data fields of the @event. The length
3652 * is the actual size that is written to the ring buffer,
3653 * and with this, we can determine what to place into the
3654 * data field.
3655 */
3656 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3657 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3658 struct ring_buffer_event *event,
3659 struct rb_event_info *info)
3660 {
3661 unsigned length = info->length;
3662 u64 delta = info->delta;
3663 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3664
3665 if (!WARN_ON_ONCE(nest >= MAX_NEST))
3666 cpu_buffer->event_stamp[nest] = info->ts;
3667
3668 /*
3669 * If we need to add a timestamp, then we
3670 * add it to the start of the reserved space.
3671 */
3672 if (unlikely(info->add_timestamp))
3673 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3674
3675 event->time_delta = delta;
3676 length -= RB_EVNT_HDR_SIZE;
3677 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3678 event->type_len = 0;
3679 event->array[0] = length;
3680 } else
3681 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3682 }
3683
rb_calculate_event_length(unsigned length)3684 static unsigned rb_calculate_event_length(unsigned length)
3685 {
3686 struct ring_buffer_event event; /* Used only for sizeof array */
3687
3688 /* zero length can cause confusions */
3689 if (!length)
3690 length++;
3691
3692 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3693 length += sizeof(event.array[0]);
3694
3695 length += RB_EVNT_HDR_SIZE;
3696 length = ALIGN(length, RB_ARCH_ALIGNMENT);
3697
3698 /*
3699 * In case the time delta is larger than the 27 bits for it
3700 * in the header, we need to add a timestamp. If another
3701 * event comes in when trying to discard this one to increase
3702 * the length, then the timestamp will be added in the allocated
3703 * space of this event. If length is bigger than the size needed
3704 * for the TIME_EXTEND, then padding has to be used. The events
3705 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3706 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3707 * As length is a multiple of 4, we only need to worry if it
3708 * is 12 (RB_LEN_TIME_EXTEND + 4).
3709 */
3710 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3711 length += RB_ALIGNMENT;
3712
3713 return length;
3714 }
3715
3716 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3717 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3718 struct ring_buffer_event *event)
3719 {
3720 unsigned long new_index, old_index;
3721 struct buffer_page *bpage;
3722 unsigned long addr;
3723
3724 new_index = rb_event_index(cpu_buffer, event);
3725 old_index = new_index + rb_event_ts_length(event);
3726 addr = (unsigned long)event;
3727 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3728
3729 bpage = READ_ONCE(cpu_buffer->tail_page);
3730
3731 /*
3732 * Make sure the tail_page is still the same and
3733 * the next write location is the end of this event
3734 */
3735 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3736 unsigned long write_mask =
3737 local_read(&bpage->write) & ~RB_WRITE_MASK;
3738 unsigned long event_length = rb_event_length(event);
3739
3740 /*
3741 * For the before_stamp to be different than the write_stamp
3742 * to make sure that the next event adds an absolute
3743 * value and does not rely on the saved write stamp, which
3744 * is now going to be bogus.
3745 *
3746 * By setting the before_stamp to zero, the next event
3747 * is not going to use the write_stamp and will instead
3748 * create an absolute timestamp. This means there's no
3749 * reason to update the wirte_stamp!
3750 */
3751 rb_time_set(&cpu_buffer->before_stamp, 0);
3752
3753 /*
3754 * If an event were to come in now, it would see that the
3755 * write_stamp and the before_stamp are different, and assume
3756 * that this event just added itself before updating
3757 * the write stamp. The interrupting event will fix the
3758 * write stamp for us, and use an absolute timestamp.
3759 */
3760
3761 /*
3762 * This is on the tail page. It is possible that
3763 * a write could come in and move the tail page
3764 * and write to the next page. That is fine
3765 * because we just shorten what is on this page.
3766 */
3767 old_index += write_mask;
3768 new_index += write_mask;
3769
3770 /* caution: old_index gets updated on cmpxchg failure */
3771 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3772 /* update counters */
3773 local_sub(event_length, &cpu_buffer->entries_bytes);
3774 return true;
3775 }
3776 }
3777
3778 /* could not discard */
3779 return false;
3780 }
3781
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3782 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3783 {
3784 local_inc(&cpu_buffer->committing);
3785 local_inc(&cpu_buffer->commits);
3786 }
3787
3788 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3789 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3790 {
3791 unsigned long max_count;
3792
3793 /*
3794 * We only race with interrupts and NMIs on this CPU.
3795 * If we own the commit event, then we can commit
3796 * all others that interrupted us, since the interruptions
3797 * are in stack format (they finish before they come
3798 * back to us). This allows us to do a simple loop to
3799 * assign the commit to the tail.
3800 */
3801 again:
3802 max_count = cpu_buffer->nr_pages * 100;
3803
3804 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3805 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3806 return;
3807 if (RB_WARN_ON(cpu_buffer,
3808 rb_is_reader_page(cpu_buffer->tail_page)))
3809 return;
3810 /*
3811 * No need for a memory barrier here, as the update
3812 * of the tail_page did it for this page.
3813 */
3814 local_set(&cpu_buffer->commit_page->page->commit,
3815 rb_page_write(cpu_buffer->commit_page));
3816 rb_inc_page(&cpu_buffer->commit_page);
3817 if (cpu_buffer->ring_meta) {
3818 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3819 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3820 }
3821 /* add barrier to keep gcc from optimizing too much */
3822 barrier();
3823 }
3824 while (rb_commit_index(cpu_buffer) !=
3825 rb_page_write(cpu_buffer->commit_page)) {
3826
3827 /* Make sure the readers see the content of what is committed. */
3828 smp_wmb();
3829 local_set(&cpu_buffer->commit_page->page->commit,
3830 rb_page_write(cpu_buffer->commit_page));
3831 RB_WARN_ON(cpu_buffer,
3832 local_read(&cpu_buffer->commit_page->page->commit) &
3833 ~RB_WRITE_MASK);
3834 barrier();
3835 }
3836
3837 /* again, keep gcc from optimizing */
3838 barrier();
3839
3840 /*
3841 * If an interrupt came in just after the first while loop
3842 * and pushed the tail page forward, we will be left with
3843 * a dangling commit that will never go forward.
3844 */
3845 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3846 goto again;
3847 }
3848
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3849 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3850 {
3851 unsigned long commits;
3852
3853 if (RB_WARN_ON(cpu_buffer,
3854 !local_read(&cpu_buffer->committing)))
3855 return;
3856
3857 again:
3858 commits = local_read(&cpu_buffer->commits);
3859 /* synchronize with interrupts */
3860 barrier();
3861 if (local_read(&cpu_buffer->committing) == 1)
3862 rb_set_commit_to_write(cpu_buffer);
3863
3864 local_dec(&cpu_buffer->committing);
3865
3866 /* synchronize with interrupts */
3867 barrier();
3868
3869 /*
3870 * Need to account for interrupts coming in between the
3871 * updating of the commit page and the clearing of the
3872 * committing counter.
3873 */
3874 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3875 !local_read(&cpu_buffer->committing)) {
3876 local_inc(&cpu_buffer->committing);
3877 goto again;
3878 }
3879 }
3880
rb_event_discard(struct ring_buffer_event * event)3881 static inline void rb_event_discard(struct ring_buffer_event *event)
3882 {
3883 if (extended_time(event))
3884 event = skip_time_extend(event);
3885
3886 /* array[0] holds the actual length for the discarded event */
3887 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3888 event->type_len = RINGBUF_TYPE_PADDING;
3889 /* time delta must be non zero */
3890 if (!event->time_delta)
3891 event->time_delta = 1;
3892 }
3893
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3894 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3895 {
3896 local_inc(&cpu_buffer->entries);
3897 rb_end_commit(cpu_buffer);
3898 }
3899
3900 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3901 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3902 {
3903 if (buffer->irq_work.waiters_pending) {
3904 buffer->irq_work.waiters_pending = false;
3905 /* irq_work_queue() supplies it's own memory barriers */
3906 irq_work_queue(&buffer->irq_work.work);
3907 }
3908
3909 if (cpu_buffer->irq_work.waiters_pending) {
3910 cpu_buffer->irq_work.waiters_pending = false;
3911 /* irq_work_queue() supplies it's own memory barriers */
3912 irq_work_queue(&cpu_buffer->irq_work.work);
3913 }
3914
3915 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3916 return;
3917
3918 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3919 return;
3920
3921 if (!cpu_buffer->irq_work.full_waiters_pending)
3922 return;
3923
3924 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3925
3926 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3927 return;
3928
3929 cpu_buffer->irq_work.wakeup_full = true;
3930 cpu_buffer->irq_work.full_waiters_pending = false;
3931 /* irq_work_queue() supplies it's own memory barriers */
3932 irq_work_queue(&cpu_buffer->irq_work.work);
3933 }
3934
3935 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3936 # define do_ring_buffer_record_recursion() \
3937 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3938 #else
3939 # define do_ring_buffer_record_recursion() do { } while (0)
3940 #endif
3941
3942 /*
3943 * The lock and unlock are done within a preempt disable section.
3944 * The current_context per_cpu variable can only be modified
3945 * by the current task between lock and unlock. But it can
3946 * be modified more than once via an interrupt. To pass this
3947 * information from the lock to the unlock without having to
3948 * access the 'in_interrupt()' functions again (which do show
3949 * a bit of overhead in something as critical as function tracing,
3950 * we use a bitmask trick.
3951 *
3952 * bit 1 = NMI context
3953 * bit 2 = IRQ context
3954 * bit 3 = SoftIRQ context
3955 * bit 4 = normal context.
3956 *
3957 * This works because this is the order of contexts that can
3958 * preempt other contexts. A SoftIRQ never preempts an IRQ
3959 * context.
3960 *
3961 * When the context is determined, the corresponding bit is
3962 * checked and set (if it was set, then a recursion of that context
3963 * happened).
3964 *
3965 * On unlock, we need to clear this bit. To do so, just subtract
3966 * 1 from the current_context and AND it to itself.
3967 *
3968 * (binary)
3969 * 101 - 1 = 100
3970 * 101 & 100 = 100 (clearing bit zero)
3971 *
3972 * 1010 - 1 = 1001
3973 * 1010 & 1001 = 1000 (clearing bit 1)
3974 *
3975 * The least significant bit can be cleared this way, and it
3976 * just so happens that it is the same bit corresponding to
3977 * the current context.
3978 *
3979 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3980 * is set when a recursion is detected at the current context, and if
3981 * the TRANSITION bit is already set, it will fail the recursion.
3982 * This is needed because there's a lag between the changing of
3983 * interrupt context and updating the preempt count. In this case,
3984 * a false positive will be found. To handle this, one extra recursion
3985 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3986 * bit is already set, then it is considered a recursion and the function
3987 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3988 *
3989 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3990 * to be cleared. Even if it wasn't the context that set it. That is,
3991 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3992 * is called before preempt_count() is updated, since the check will
3993 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3994 * NMI then comes in, it will set the NMI bit, but when the NMI code
3995 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3996 * and leave the NMI bit set. But this is fine, because the interrupt
3997 * code that set the TRANSITION bit will then clear the NMI bit when it
3998 * calls trace_recursive_unlock(). If another NMI comes in, it will
3999 * set the TRANSITION bit and continue.
4000 *
4001 * Note: The TRANSITION bit only handles a single transition between context.
4002 */
4003
4004 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)4005 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
4006 {
4007 unsigned int val = cpu_buffer->current_context;
4008 int bit = interrupt_context_level();
4009
4010 bit = RB_CTX_NORMAL - bit;
4011
4012 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
4013 /*
4014 * It is possible that this was called by transitioning
4015 * between interrupt context, and preempt_count() has not
4016 * been updated yet. In this case, use the TRANSITION bit.
4017 */
4018 bit = RB_CTX_TRANSITION;
4019 if (val & (1 << (bit + cpu_buffer->nest))) {
4020 do_ring_buffer_record_recursion();
4021 return true;
4022 }
4023 }
4024
4025 val |= (1 << (bit + cpu_buffer->nest));
4026 cpu_buffer->current_context = val;
4027
4028 return false;
4029 }
4030
4031 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)4032 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4033 {
4034 cpu_buffer->current_context &=
4035 cpu_buffer->current_context - (1 << cpu_buffer->nest);
4036 }
4037
4038 /* The recursive locking above uses 5 bits */
4039 #define NESTED_BITS 5
4040
4041 /**
4042 * ring_buffer_nest_start - Allow to trace while nested
4043 * @buffer: The ring buffer to modify
4044 *
4045 * The ring buffer has a safety mechanism to prevent recursion.
4046 * But there may be a case where a trace needs to be done while
4047 * tracing something else. In this case, calling this function
4048 * will allow this function to nest within a currently active
4049 * ring_buffer_lock_reserve().
4050 *
4051 * Call this function before calling another ring_buffer_lock_reserve() and
4052 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4053 */
ring_buffer_nest_start(struct trace_buffer * buffer)4054 void ring_buffer_nest_start(struct trace_buffer *buffer)
4055 {
4056 struct ring_buffer_per_cpu *cpu_buffer;
4057 int cpu;
4058
4059 /* Enabled by ring_buffer_nest_end() */
4060 preempt_disable_notrace();
4061 cpu = raw_smp_processor_id();
4062 cpu_buffer = buffer->buffers[cpu];
4063 /* This is the shift value for the above recursive locking */
4064 cpu_buffer->nest += NESTED_BITS;
4065 }
4066
4067 /**
4068 * ring_buffer_nest_end - Allow to trace while nested
4069 * @buffer: The ring buffer to modify
4070 *
4071 * Must be called after ring_buffer_nest_start() and after the
4072 * ring_buffer_unlock_commit().
4073 */
ring_buffer_nest_end(struct trace_buffer * buffer)4074 void ring_buffer_nest_end(struct trace_buffer *buffer)
4075 {
4076 struct ring_buffer_per_cpu *cpu_buffer;
4077 int cpu;
4078
4079 /* disabled by ring_buffer_nest_start() */
4080 cpu = raw_smp_processor_id();
4081 cpu_buffer = buffer->buffers[cpu];
4082 /* This is the shift value for the above recursive locking */
4083 cpu_buffer->nest -= NESTED_BITS;
4084 preempt_enable_notrace();
4085 }
4086
4087 /**
4088 * ring_buffer_unlock_commit - commit a reserved
4089 * @buffer: The buffer to commit to
4090 *
4091 * This commits the data to the ring buffer, and releases any locks held.
4092 *
4093 * Must be paired with ring_buffer_lock_reserve.
4094 */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4095 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4096 {
4097 struct ring_buffer_per_cpu *cpu_buffer;
4098 int cpu = raw_smp_processor_id();
4099
4100 cpu_buffer = buffer->buffers[cpu];
4101
4102 rb_commit(cpu_buffer);
4103
4104 rb_wakeups(buffer, cpu_buffer);
4105
4106 trace_recursive_unlock(cpu_buffer);
4107
4108 preempt_enable_notrace();
4109
4110 return 0;
4111 }
4112 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4113
4114 /* Special value to validate all deltas on a page. */
4115 #define CHECK_FULL_PAGE 1L
4116
4117 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4118
show_irq_str(int bits)4119 static const char *show_irq_str(int bits)
4120 {
4121 const char *type[] = {
4122 ".", // 0
4123 "s", // 1
4124 "h", // 2
4125 "Hs", // 3
4126 "n", // 4
4127 "Ns", // 5
4128 "Nh", // 6
4129 "NHs", // 7
4130 };
4131
4132 return type[bits];
4133 }
4134
4135 /* Assume this is a trace event */
show_flags(struct ring_buffer_event * event)4136 static const char *show_flags(struct ring_buffer_event *event)
4137 {
4138 struct trace_entry *entry;
4139 int bits = 0;
4140
4141 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4142 return "X";
4143
4144 entry = ring_buffer_event_data(event);
4145
4146 if (entry->flags & TRACE_FLAG_SOFTIRQ)
4147 bits |= 1;
4148
4149 if (entry->flags & TRACE_FLAG_HARDIRQ)
4150 bits |= 2;
4151
4152 if (entry->flags & TRACE_FLAG_NMI)
4153 bits |= 4;
4154
4155 return show_irq_str(bits);
4156 }
4157
show_irq(struct ring_buffer_event * event)4158 static const char *show_irq(struct ring_buffer_event *event)
4159 {
4160 struct trace_entry *entry;
4161
4162 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4163 return "";
4164
4165 entry = ring_buffer_event_data(event);
4166 if (entry->flags & TRACE_FLAG_IRQS_OFF)
4167 return "d";
4168 return "";
4169 }
4170
show_interrupt_level(void)4171 static const char *show_interrupt_level(void)
4172 {
4173 unsigned long pc = preempt_count();
4174 unsigned char level = 0;
4175
4176 if (pc & SOFTIRQ_OFFSET)
4177 level |= 1;
4178
4179 if (pc & HARDIRQ_MASK)
4180 level |= 2;
4181
4182 if (pc & NMI_MASK)
4183 level |= 4;
4184
4185 return show_irq_str(level);
4186 }
4187
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4188 static void dump_buffer_page(struct buffer_data_page *bpage,
4189 struct rb_event_info *info,
4190 unsigned long tail)
4191 {
4192 struct ring_buffer_event *event;
4193 u64 ts, delta;
4194 int e;
4195
4196 ts = bpage->time_stamp;
4197 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
4198
4199 for (e = 0; e < tail; e += rb_event_length(event)) {
4200
4201 event = (struct ring_buffer_event *)(bpage->data + e);
4202
4203 switch (event->type_len) {
4204
4205 case RINGBUF_TYPE_TIME_EXTEND:
4206 delta = rb_event_time_stamp(event);
4207 ts += delta;
4208 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4209 e, ts, delta);
4210 break;
4211
4212 case RINGBUF_TYPE_TIME_STAMP:
4213 delta = rb_event_time_stamp(event);
4214 ts = rb_fix_abs_ts(delta, ts);
4215 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
4216 e, ts, delta);
4217 break;
4218
4219 case RINGBUF_TYPE_PADDING:
4220 ts += event->time_delta;
4221 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
4222 e, ts, event->time_delta);
4223 break;
4224
4225 case RINGBUF_TYPE_DATA:
4226 ts += event->time_delta;
4227 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
4228 e, ts, event->time_delta,
4229 show_flags(event), show_irq(event));
4230 break;
4231
4232 default:
4233 break;
4234 }
4235 }
4236 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4237 }
4238
4239 static DEFINE_PER_CPU(atomic_t, checking);
4240 static atomic_t ts_dump;
4241
4242 #define buffer_warn_return(fmt, ...) \
4243 do { \
4244 /* If another report is happening, ignore this one */ \
4245 if (atomic_inc_return(&ts_dump) != 1) { \
4246 atomic_dec(&ts_dump); \
4247 goto out; \
4248 } \
4249 atomic_inc(&cpu_buffer->record_disabled); \
4250 pr_warn(fmt, ##__VA_ARGS__); \
4251 dump_buffer_page(bpage, info, tail); \
4252 atomic_dec(&ts_dump); \
4253 /* There's some cases in boot up that this can happen */ \
4254 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
4255 /* Do not re-enable checking */ \
4256 return; \
4257 } while (0)
4258
4259 /*
4260 * Check if the current event time stamp matches the deltas on
4261 * the buffer page.
4262 */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4263 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4264 struct rb_event_info *info,
4265 unsigned long tail)
4266 {
4267 struct buffer_data_page *bpage;
4268 u64 ts, delta;
4269 bool full = false;
4270 int ret;
4271
4272 bpage = info->tail_page->page;
4273
4274 if (tail == CHECK_FULL_PAGE) {
4275 full = true;
4276 tail = local_read(&bpage->commit);
4277 } else if (info->add_timestamp &
4278 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4279 /* Ignore events with absolute time stamps */
4280 return;
4281 }
4282
4283 /*
4284 * Do not check the first event (skip possible extends too).
4285 * Also do not check if previous events have not been committed.
4286 */
4287 if (tail <= 8 || tail > local_read(&bpage->commit))
4288 return;
4289
4290 /*
4291 * If this interrupted another event,
4292 */
4293 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4294 goto out;
4295
4296 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4297 if (ret < 0) {
4298 if (delta < ts) {
4299 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4300 cpu_buffer->cpu, ts, delta);
4301 goto out;
4302 }
4303 }
4304 if ((full && ts > info->ts) ||
4305 (!full && ts + info->delta != info->ts)) {
4306 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4307 cpu_buffer->cpu,
4308 ts + info->delta, info->ts, info->delta,
4309 info->before, info->after,
4310 full ? " (full)" : "", show_interrupt_level());
4311 }
4312 out:
4313 atomic_dec(this_cpu_ptr(&checking));
4314 }
4315 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4316 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4317 struct rb_event_info *info,
4318 unsigned long tail)
4319 {
4320 }
4321 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4322
4323 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4324 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4325 struct rb_event_info *info)
4326 {
4327 struct ring_buffer_event *event;
4328 struct buffer_page *tail_page;
4329 unsigned long tail, write, w;
4330
4331 /* Don't let the compiler play games with cpu_buffer->tail_page */
4332 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4333
4334 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
4335 barrier();
4336 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4337 rb_time_read(&cpu_buffer->write_stamp, &info->after);
4338 barrier();
4339 info->ts = rb_time_stamp(cpu_buffer->buffer);
4340
4341 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4342 info->delta = info->ts;
4343 } else {
4344 /*
4345 * If interrupting an event time update, we may need an
4346 * absolute timestamp.
4347 * Don't bother if this is the start of a new page (w == 0).
4348 */
4349 if (!w) {
4350 /* Use the sub-buffer timestamp */
4351 info->delta = 0;
4352 } else if (unlikely(info->before != info->after)) {
4353 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4354 info->length += RB_LEN_TIME_EXTEND;
4355 } else {
4356 info->delta = info->ts - info->after;
4357 if (unlikely(test_time_stamp(info->delta))) {
4358 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4359 info->length += RB_LEN_TIME_EXTEND;
4360 }
4361 }
4362 }
4363
4364 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
4365
4366 /*C*/ write = local_add_return(info->length, &tail_page->write);
4367
4368 /* set write to only the index of the write */
4369 write &= RB_WRITE_MASK;
4370
4371 tail = write - info->length;
4372
4373 /* See if we shot pass the end of this buffer page */
4374 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4375 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4376 return rb_move_tail(cpu_buffer, tail, info);
4377 }
4378
4379 if (likely(tail == w)) {
4380 /* Nothing interrupted us between A and C */
4381 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
4382 /*
4383 * If something came in between C and D, the write stamp
4384 * may now not be in sync. But that's fine as the before_stamp
4385 * will be different and then next event will just be forced
4386 * to use an absolute timestamp.
4387 */
4388 if (likely(!(info->add_timestamp &
4389 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4390 /* This did not interrupt any time update */
4391 info->delta = info->ts - info->after;
4392 else
4393 /* Just use full timestamp for interrupting event */
4394 info->delta = info->ts;
4395 check_buffer(cpu_buffer, info, tail);
4396 } else {
4397 u64 ts;
4398 /* SLOW PATH - Interrupted between A and C */
4399
4400 /* Save the old before_stamp */
4401 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4402
4403 /*
4404 * Read a new timestamp and update the before_stamp to make
4405 * the next event after this one force using an absolute
4406 * timestamp. This is in case an interrupt were to come in
4407 * between E and F.
4408 */
4409 ts = rb_time_stamp(cpu_buffer->buffer);
4410 rb_time_set(&cpu_buffer->before_stamp, ts);
4411
4412 barrier();
4413 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after);
4414 barrier();
4415 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4416 info->after == info->before && info->after < ts) {
4417 /*
4418 * Nothing came after this event between C and F, it is
4419 * safe to use info->after for the delta as it
4420 * matched info->before and is still valid.
4421 */
4422 info->delta = ts - info->after;
4423 } else {
4424 /*
4425 * Interrupted between C and F:
4426 * Lost the previous events time stamp. Just set the
4427 * delta to zero, and this will be the same time as
4428 * the event this event interrupted. And the events that
4429 * came after this will still be correct (as they would
4430 * have built their delta on the previous event.
4431 */
4432 info->delta = 0;
4433 }
4434 info->ts = ts;
4435 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4436 }
4437
4438 /*
4439 * If this is the first commit on the page, then it has the same
4440 * timestamp as the page itself.
4441 */
4442 if (unlikely(!tail && !(info->add_timestamp &
4443 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4444 info->delta = 0;
4445
4446 /* We reserved something on the buffer */
4447
4448 event = __rb_page_index(tail_page, tail);
4449 rb_update_event(cpu_buffer, event, info);
4450
4451 local_inc(&tail_page->entries);
4452
4453 /*
4454 * If this is the first commit on the page, then update
4455 * its timestamp.
4456 */
4457 if (unlikely(!tail))
4458 tail_page->page->time_stamp = info->ts;
4459
4460 /* account for these added bytes */
4461 local_add(info->length, &cpu_buffer->entries_bytes);
4462
4463 return event;
4464 }
4465
4466 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4467 rb_reserve_next_event(struct trace_buffer *buffer,
4468 struct ring_buffer_per_cpu *cpu_buffer,
4469 unsigned long length)
4470 {
4471 struct ring_buffer_event *event;
4472 struct rb_event_info info;
4473 int nr_loops = 0;
4474 int add_ts_default;
4475
4476 /*
4477 * ring buffer does cmpxchg as well as atomic64 operations
4478 * (which some archs use locking for atomic64), make sure this
4479 * is safe in NMI context
4480 */
4481 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4482 IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4483 (unlikely(in_nmi()))) {
4484 return NULL;
4485 }
4486
4487 rb_start_commit(cpu_buffer);
4488 /* The commit page can not change after this */
4489
4490 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4491 /*
4492 * Due to the ability to swap a cpu buffer from a buffer
4493 * it is possible it was swapped before we committed.
4494 * (committing stops a swap). We check for it here and
4495 * if it happened, we have to fail the write.
4496 */
4497 barrier();
4498 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4499 local_dec(&cpu_buffer->committing);
4500 local_dec(&cpu_buffer->commits);
4501 return NULL;
4502 }
4503 #endif
4504
4505 info.length = rb_calculate_event_length(length);
4506
4507 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4508 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4509 info.length += RB_LEN_TIME_EXTEND;
4510 if (info.length > cpu_buffer->buffer->max_data_size)
4511 goto out_fail;
4512 } else {
4513 add_ts_default = RB_ADD_STAMP_NONE;
4514 }
4515
4516 again:
4517 info.add_timestamp = add_ts_default;
4518 info.delta = 0;
4519
4520 /*
4521 * We allow for interrupts to reenter here and do a trace.
4522 * If one does, it will cause this original code to loop
4523 * back here. Even with heavy interrupts happening, this
4524 * should only happen a few times in a row. If this happens
4525 * 1000 times in a row, there must be either an interrupt
4526 * storm or we have something buggy.
4527 * Bail!
4528 */
4529 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4530 goto out_fail;
4531
4532 event = __rb_reserve_next(cpu_buffer, &info);
4533
4534 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4535 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4536 info.length -= RB_LEN_TIME_EXTEND;
4537 goto again;
4538 }
4539
4540 if (likely(event))
4541 return event;
4542 out_fail:
4543 rb_end_commit(cpu_buffer);
4544 return NULL;
4545 }
4546
4547 /**
4548 * ring_buffer_lock_reserve - reserve a part of the buffer
4549 * @buffer: the ring buffer to reserve from
4550 * @length: the length of the data to reserve (excluding event header)
4551 *
4552 * Returns a reserved event on the ring buffer to copy directly to.
4553 * The user of this interface will need to get the body to write into
4554 * and can use the ring_buffer_event_data() interface.
4555 *
4556 * The length is the length of the data needed, not the event length
4557 * which also includes the event header.
4558 *
4559 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4560 * If NULL is returned, then nothing has been allocated or locked.
4561 */
4562 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4563 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4564 {
4565 struct ring_buffer_per_cpu *cpu_buffer;
4566 struct ring_buffer_event *event;
4567 int cpu;
4568
4569 /* If we are tracing schedule, we don't want to recurse */
4570 preempt_disable_notrace();
4571
4572 if (unlikely(atomic_read(&buffer->record_disabled)))
4573 goto out;
4574
4575 cpu = raw_smp_processor_id();
4576
4577 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4578 goto out;
4579
4580 cpu_buffer = buffer->buffers[cpu];
4581
4582 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4583 goto out;
4584
4585 if (unlikely(length > buffer->max_data_size))
4586 goto out;
4587
4588 if (unlikely(trace_recursive_lock(cpu_buffer)))
4589 goto out;
4590
4591 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4592 if (!event)
4593 goto out_unlock;
4594
4595 return event;
4596
4597 out_unlock:
4598 trace_recursive_unlock(cpu_buffer);
4599 out:
4600 preempt_enable_notrace();
4601 return NULL;
4602 }
4603 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4604
4605 /*
4606 * Decrement the entries to the page that an event is on.
4607 * The event does not even need to exist, only the pointer
4608 * to the page it is on. This may only be called before the commit
4609 * takes place.
4610 */
4611 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4612 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4613 struct ring_buffer_event *event)
4614 {
4615 unsigned long addr = (unsigned long)event;
4616 struct buffer_page *bpage = cpu_buffer->commit_page;
4617 struct buffer_page *start;
4618
4619 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4620
4621 /* Do the likely case first */
4622 if (likely(bpage->page == (void *)addr)) {
4623 local_dec(&bpage->entries);
4624 return;
4625 }
4626
4627 /*
4628 * Because the commit page may be on the reader page we
4629 * start with the next page and check the end loop there.
4630 */
4631 rb_inc_page(&bpage);
4632 start = bpage;
4633 do {
4634 if (bpage->page == (void *)addr) {
4635 local_dec(&bpage->entries);
4636 return;
4637 }
4638 rb_inc_page(&bpage);
4639 } while (bpage != start);
4640
4641 /* commit not part of this buffer?? */
4642 RB_WARN_ON(cpu_buffer, 1);
4643 }
4644
4645 /**
4646 * ring_buffer_discard_commit - discard an event that has not been committed
4647 * @buffer: the ring buffer
4648 * @event: non committed event to discard
4649 *
4650 * Sometimes an event that is in the ring buffer needs to be ignored.
4651 * This function lets the user discard an event in the ring buffer
4652 * and then that event will not be read later.
4653 *
4654 * This function only works if it is called before the item has been
4655 * committed. It will try to free the event from the ring buffer
4656 * if another event has not been added behind it.
4657 *
4658 * If another event has been added behind it, it will set the event
4659 * up as discarded, and perform the commit.
4660 *
4661 * If this function is called, do not call ring_buffer_unlock_commit on
4662 * the event.
4663 */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4664 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4665 struct ring_buffer_event *event)
4666 {
4667 struct ring_buffer_per_cpu *cpu_buffer;
4668 int cpu;
4669
4670 /* The event is discarded regardless */
4671 rb_event_discard(event);
4672
4673 cpu = smp_processor_id();
4674 cpu_buffer = buffer->buffers[cpu];
4675
4676 /*
4677 * This must only be called if the event has not been
4678 * committed yet. Thus we can assume that preemption
4679 * is still disabled.
4680 */
4681 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4682
4683 rb_decrement_entry(cpu_buffer, event);
4684 rb_try_to_discard(cpu_buffer, event);
4685 rb_end_commit(cpu_buffer);
4686
4687 trace_recursive_unlock(cpu_buffer);
4688
4689 preempt_enable_notrace();
4690
4691 }
4692 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4693
4694 /**
4695 * ring_buffer_write - write data to the buffer without reserving
4696 * @buffer: The ring buffer to write to.
4697 * @length: The length of the data being written (excluding the event header)
4698 * @data: The data to write to the buffer.
4699 *
4700 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4701 * one function. If you already have the data to write to the buffer, it
4702 * may be easier to simply call this function.
4703 *
4704 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4705 * and not the length of the event which would hold the header.
4706 */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4707 int ring_buffer_write(struct trace_buffer *buffer,
4708 unsigned long length,
4709 void *data)
4710 {
4711 struct ring_buffer_per_cpu *cpu_buffer;
4712 struct ring_buffer_event *event;
4713 void *body;
4714 int ret = -EBUSY;
4715 int cpu;
4716
4717 preempt_disable_notrace();
4718
4719 if (atomic_read(&buffer->record_disabled))
4720 goto out;
4721
4722 cpu = raw_smp_processor_id();
4723
4724 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4725 goto out;
4726
4727 cpu_buffer = buffer->buffers[cpu];
4728
4729 if (atomic_read(&cpu_buffer->record_disabled))
4730 goto out;
4731
4732 if (length > buffer->max_data_size)
4733 goto out;
4734
4735 if (unlikely(trace_recursive_lock(cpu_buffer)))
4736 goto out;
4737
4738 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4739 if (!event)
4740 goto out_unlock;
4741
4742 body = rb_event_data(event);
4743
4744 memcpy(body, data, length);
4745
4746 rb_commit(cpu_buffer);
4747
4748 rb_wakeups(buffer, cpu_buffer);
4749
4750 ret = 0;
4751
4752 out_unlock:
4753 trace_recursive_unlock(cpu_buffer);
4754
4755 out:
4756 preempt_enable_notrace();
4757
4758 return ret;
4759 }
4760 EXPORT_SYMBOL_GPL(ring_buffer_write);
4761
4762 /*
4763 * The total entries in the ring buffer is the running counter
4764 * of entries entered into the ring buffer, minus the sum of
4765 * the entries read from the ring buffer and the number of
4766 * entries that were overwritten.
4767 */
4768 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4769 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4770 {
4771 return local_read(&cpu_buffer->entries) -
4772 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4773 }
4774
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4775 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4776 {
4777 return !rb_num_of_entries(cpu_buffer);
4778 }
4779
4780 /**
4781 * ring_buffer_record_disable - stop all writes into the buffer
4782 * @buffer: The ring buffer to stop writes to.
4783 *
4784 * This prevents all writes to the buffer. Any attempt to write
4785 * to the buffer after this will fail and return NULL.
4786 *
4787 * The caller should call synchronize_rcu() after this.
4788 */
ring_buffer_record_disable(struct trace_buffer * buffer)4789 void ring_buffer_record_disable(struct trace_buffer *buffer)
4790 {
4791 atomic_inc(&buffer->record_disabled);
4792 }
4793 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4794
4795 /**
4796 * ring_buffer_record_enable - enable writes to the buffer
4797 * @buffer: The ring buffer to enable writes
4798 *
4799 * Note, multiple disables will need the same number of enables
4800 * to truly enable the writing (much like preempt_disable).
4801 */
ring_buffer_record_enable(struct trace_buffer * buffer)4802 void ring_buffer_record_enable(struct trace_buffer *buffer)
4803 {
4804 atomic_dec(&buffer->record_disabled);
4805 }
4806 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4807
4808 /**
4809 * ring_buffer_record_off - stop all writes into the buffer
4810 * @buffer: The ring buffer to stop writes to.
4811 *
4812 * This prevents all writes to the buffer. Any attempt to write
4813 * to the buffer after this will fail and return NULL.
4814 *
4815 * This is different than ring_buffer_record_disable() as
4816 * it works like an on/off switch, where as the disable() version
4817 * must be paired with a enable().
4818 */
ring_buffer_record_off(struct trace_buffer * buffer)4819 void ring_buffer_record_off(struct trace_buffer *buffer)
4820 {
4821 unsigned int rd;
4822 unsigned int new_rd;
4823
4824 rd = atomic_read(&buffer->record_disabled);
4825 do {
4826 new_rd = rd | RB_BUFFER_OFF;
4827 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4828 }
4829 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4830
4831 /**
4832 * ring_buffer_record_on - restart writes into the buffer
4833 * @buffer: The ring buffer to start writes to.
4834 *
4835 * This enables all writes to the buffer that was disabled by
4836 * ring_buffer_record_off().
4837 *
4838 * This is different than ring_buffer_record_enable() as
4839 * it works like an on/off switch, where as the enable() version
4840 * must be paired with a disable().
4841 */
ring_buffer_record_on(struct trace_buffer * buffer)4842 void ring_buffer_record_on(struct trace_buffer *buffer)
4843 {
4844 unsigned int rd;
4845 unsigned int new_rd;
4846
4847 rd = atomic_read(&buffer->record_disabled);
4848 do {
4849 new_rd = rd & ~RB_BUFFER_OFF;
4850 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4851 }
4852 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4853
4854 /**
4855 * ring_buffer_record_is_on - return true if the ring buffer can write
4856 * @buffer: The ring buffer to see if write is enabled
4857 *
4858 * Returns true if the ring buffer is in a state that it accepts writes.
4859 */
ring_buffer_record_is_on(struct trace_buffer * buffer)4860 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4861 {
4862 return !atomic_read(&buffer->record_disabled);
4863 }
4864
4865 /**
4866 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4867 * @buffer: The ring buffer to see if write is set enabled
4868 *
4869 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4870 * Note that this does NOT mean it is in a writable state.
4871 *
4872 * It may return true when the ring buffer has been disabled by
4873 * ring_buffer_record_disable(), as that is a temporary disabling of
4874 * the ring buffer.
4875 */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4876 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4877 {
4878 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4879 }
4880
4881 /**
4882 * ring_buffer_record_is_on_cpu - return true if the ring buffer can write
4883 * @buffer: The ring buffer to see if write is enabled
4884 * @cpu: The CPU to test if the ring buffer can write too
4885 *
4886 * Returns true if the ring buffer is in a state that it accepts writes
4887 * for a particular CPU.
4888 */
ring_buffer_record_is_on_cpu(struct trace_buffer * buffer,int cpu)4889 bool ring_buffer_record_is_on_cpu(struct trace_buffer *buffer, int cpu)
4890 {
4891 struct ring_buffer_per_cpu *cpu_buffer;
4892
4893 cpu_buffer = buffer->buffers[cpu];
4894
4895 return ring_buffer_record_is_set_on(buffer) &&
4896 !atomic_read(&cpu_buffer->record_disabled);
4897 }
4898
4899 /**
4900 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4901 * @buffer: The ring buffer to stop writes to.
4902 * @cpu: The CPU buffer to stop
4903 *
4904 * This prevents all writes to the buffer. Any attempt to write
4905 * to the buffer after this will fail and return NULL.
4906 *
4907 * The caller should call synchronize_rcu() after this.
4908 */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)4909 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4910 {
4911 struct ring_buffer_per_cpu *cpu_buffer;
4912
4913 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4914 return;
4915
4916 cpu_buffer = buffer->buffers[cpu];
4917 atomic_inc(&cpu_buffer->record_disabled);
4918 }
4919 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4920
4921 /**
4922 * ring_buffer_record_enable_cpu - enable writes to the buffer
4923 * @buffer: The ring buffer to enable writes
4924 * @cpu: The CPU to enable.
4925 *
4926 * Note, multiple disables will need the same number of enables
4927 * to truly enable the writing (much like preempt_disable).
4928 */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)4929 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4930 {
4931 struct ring_buffer_per_cpu *cpu_buffer;
4932
4933 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4934 return;
4935
4936 cpu_buffer = buffer->buffers[cpu];
4937 atomic_dec(&cpu_buffer->record_disabled);
4938 }
4939 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4940
4941 /**
4942 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4943 * @buffer: The ring buffer
4944 * @cpu: The per CPU buffer to read from.
4945 */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)4946 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4947 {
4948 unsigned long flags;
4949 struct ring_buffer_per_cpu *cpu_buffer;
4950 struct buffer_page *bpage;
4951 u64 ret = 0;
4952
4953 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4954 return 0;
4955
4956 cpu_buffer = buffer->buffers[cpu];
4957 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4958 /*
4959 * if the tail is on reader_page, oldest time stamp is on the reader
4960 * page
4961 */
4962 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4963 bpage = cpu_buffer->reader_page;
4964 else
4965 bpage = rb_set_head_page(cpu_buffer);
4966 if (bpage)
4967 ret = bpage->page->time_stamp;
4968 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4969
4970 return ret;
4971 }
4972 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4973
4974 /**
4975 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4976 * @buffer: The ring buffer
4977 * @cpu: The per CPU buffer to read from.
4978 */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)4979 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4980 {
4981 struct ring_buffer_per_cpu *cpu_buffer;
4982 unsigned long ret;
4983
4984 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4985 return 0;
4986
4987 cpu_buffer = buffer->buffers[cpu];
4988 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4989
4990 return ret;
4991 }
4992 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4993
4994 /**
4995 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4996 * @buffer: The ring buffer
4997 * @cpu: The per CPU buffer to get the entries from.
4998 */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)4999 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
5000 {
5001 struct ring_buffer_per_cpu *cpu_buffer;
5002
5003 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5004 return 0;
5005
5006 cpu_buffer = buffer->buffers[cpu];
5007
5008 return rb_num_of_entries(cpu_buffer);
5009 }
5010 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
5011
5012 /**
5013 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
5014 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
5015 * @buffer: The ring buffer
5016 * @cpu: The per CPU buffer to get the number of overruns from
5017 */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)5018 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
5019 {
5020 struct ring_buffer_per_cpu *cpu_buffer;
5021 unsigned long ret;
5022
5023 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5024 return 0;
5025
5026 cpu_buffer = buffer->buffers[cpu];
5027 ret = local_read(&cpu_buffer->overrun);
5028
5029 return ret;
5030 }
5031 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
5032
5033 /**
5034 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5035 * commits failing due to the buffer wrapping around while there are uncommitted
5036 * events, such as during an interrupt storm.
5037 * @buffer: The ring buffer
5038 * @cpu: The per CPU buffer to get the number of overruns from
5039 */
5040 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)5041 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5042 {
5043 struct ring_buffer_per_cpu *cpu_buffer;
5044 unsigned long ret;
5045
5046 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5047 return 0;
5048
5049 cpu_buffer = buffer->buffers[cpu];
5050 ret = local_read(&cpu_buffer->commit_overrun);
5051
5052 return ret;
5053 }
5054 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5055
5056 /**
5057 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5058 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5059 * @buffer: The ring buffer
5060 * @cpu: The per CPU buffer to get the number of overruns from
5061 */
5062 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)5063 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5064 {
5065 struct ring_buffer_per_cpu *cpu_buffer;
5066 unsigned long ret;
5067
5068 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5069 return 0;
5070
5071 cpu_buffer = buffer->buffers[cpu];
5072 ret = local_read(&cpu_buffer->dropped_events);
5073
5074 return ret;
5075 }
5076 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5077
5078 /**
5079 * ring_buffer_read_events_cpu - get the number of events successfully read
5080 * @buffer: The ring buffer
5081 * @cpu: The per CPU buffer to get the number of events read
5082 */
5083 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5084 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5085 {
5086 struct ring_buffer_per_cpu *cpu_buffer;
5087
5088 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5089 return 0;
5090
5091 cpu_buffer = buffer->buffers[cpu];
5092 return cpu_buffer->read;
5093 }
5094 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5095
5096 /**
5097 * ring_buffer_entries - get the number of entries in a buffer
5098 * @buffer: The ring buffer
5099 *
5100 * Returns the total number of entries in the ring buffer
5101 * (all CPU entries)
5102 */
ring_buffer_entries(struct trace_buffer * buffer)5103 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5104 {
5105 struct ring_buffer_per_cpu *cpu_buffer;
5106 unsigned long entries = 0;
5107 int cpu;
5108
5109 /* if you care about this being correct, lock the buffer */
5110 for_each_buffer_cpu(buffer, cpu) {
5111 cpu_buffer = buffer->buffers[cpu];
5112 entries += rb_num_of_entries(cpu_buffer);
5113 }
5114
5115 return entries;
5116 }
5117 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5118
5119 /**
5120 * ring_buffer_overruns - get the number of overruns in buffer
5121 * @buffer: The ring buffer
5122 *
5123 * Returns the total number of overruns in the ring buffer
5124 * (all CPU entries)
5125 */
ring_buffer_overruns(struct trace_buffer * buffer)5126 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5127 {
5128 struct ring_buffer_per_cpu *cpu_buffer;
5129 unsigned long overruns = 0;
5130 int cpu;
5131
5132 /* if you care about this being correct, lock the buffer */
5133 for_each_buffer_cpu(buffer, cpu) {
5134 cpu_buffer = buffer->buffers[cpu];
5135 overruns += local_read(&cpu_buffer->overrun);
5136 }
5137
5138 return overruns;
5139 }
5140 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5141
rb_iter_reset(struct ring_buffer_iter * iter)5142 static void rb_iter_reset(struct ring_buffer_iter *iter)
5143 {
5144 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5145
5146 /* Iterator usage is expected to have record disabled */
5147 iter->head_page = cpu_buffer->reader_page;
5148 iter->head = cpu_buffer->reader_page->read;
5149 iter->next_event = iter->head;
5150
5151 iter->cache_reader_page = iter->head_page;
5152 iter->cache_read = cpu_buffer->read;
5153 iter->cache_pages_removed = cpu_buffer->pages_removed;
5154
5155 if (iter->head) {
5156 iter->read_stamp = cpu_buffer->read_stamp;
5157 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5158 } else {
5159 iter->read_stamp = iter->head_page->page->time_stamp;
5160 iter->page_stamp = iter->read_stamp;
5161 }
5162 }
5163
5164 /**
5165 * ring_buffer_iter_reset - reset an iterator
5166 * @iter: The iterator to reset
5167 *
5168 * Resets the iterator, so that it will start from the beginning
5169 * again.
5170 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5171 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5172 {
5173 struct ring_buffer_per_cpu *cpu_buffer;
5174 unsigned long flags;
5175
5176 if (!iter)
5177 return;
5178
5179 cpu_buffer = iter->cpu_buffer;
5180
5181 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5182 rb_iter_reset(iter);
5183 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5184 }
5185 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5186
5187 /**
5188 * ring_buffer_iter_empty - check if an iterator has no more to read
5189 * @iter: The iterator to check
5190 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5191 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5192 {
5193 struct ring_buffer_per_cpu *cpu_buffer;
5194 struct buffer_page *reader;
5195 struct buffer_page *head_page;
5196 struct buffer_page *commit_page;
5197 struct buffer_page *curr_commit_page;
5198 unsigned commit;
5199 u64 curr_commit_ts;
5200 u64 commit_ts;
5201
5202 cpu_buffer = iter->cpu_buffer;
5203 reader = cpu_buffer->reader_page;
5204 head_page = cpu_buffer->head_page;
5205 commit_page = READ_ONCE(cpu_buffer->commit_page);
5206 commit_ts = commit_page->page->time_stamp;
5207
5208 /*
5209 * When the writer goes across pages, it issues a cmpxchg which
5210 * is a mb(), which will synchronize with the rmb here.
5211 * (see rb_tail_page_update())
5212 */
5213 smp_rmb();
5214 commit = rb_page_commit(commit_page);
5215 /* We want to make sure that the commit page doesn't change */
5216 smp_rmb();
5217
5218 /* Make sure commit page didn't change */
5219 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5220 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5221
5222 /* If the commit page changed, then there's more data */
5223 if (curr_commit_page != commit_page ||
5224 curr_commit_ts != commit_ts)
5225 return 0;
5226
5227 /* Still racy, as it may return a false positive, but that's OK */
5228 return ((iter->head_page == commit_page && iter->head >= commit) ||
5229 (iter->head_page == reader && commit_page == head_page &&
5230 head_page->read == commit &&
5231 iter->head == rb_page_size(cpu_buffer->reader_page)));
5232 }
5233 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5234
5235 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5236 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5237 struct ring_buffer_event *event)
5238 {
5239 u64 delta;
5240
5241 switch (event->type_len) {
5242 case RINGBUF_TYPE_PADDING:
5243 return;
5244
5245 case RINGBUF_TYPE_TIME_EXTEND:
5246 delta = rb_event_time_stamp(event);
5247 cpu_buffer->read_stamp += delta;
5248 return;
5249
5250 case RINGBUF_TYPE_TIME_STAMP:
5251 delta = rb_event_time_stamp(event);
5252 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5253 cpu_buffer->read_stamp = delta;
5254 return;
5255
5256 case RINGBUF_TYPE_DATA:
5257 cpu_buffer->read_stamp += event->time_delta;
5258 return;
5259
5260 default:
5261 RB_WARN_ON(cpu_buffer, 1);
5262 }
5263 }
5264
5265 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5266 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5267 struct ring_buffer_event *event)
5268 {
5269 u64 delta;
5270
5271 switch (event->type_len) {
5272 case RINGBUF_TYPE_PADDING:
5273 return;
5274
5275 case RINGBUF_TYPE_TIME_EXTEND:
5276 delta = rb_event_time_stamp(event);
5277 iter->read_stamp += delta;
5278 return;
5279
5280 case RINGBUF_TYPE_TIME_STAMP:
5281 delta = rb_event_time_stamp(event);
5282 delta = rb_fix_abs_ts(delta, iter->read_stamp);
5283 iter->read_stamp = delta;
5284 return;
5285
5286 case RINGBUF_TYPE_DATA:
5287 iter->read_stamp += event->time_delta;
5288 return;
5289
5290 default:
5291 RB_WARN_ON(iter->cpu_buffer, 1);
5292 }
5293 }
5294
5295 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5296 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5297 {
5298 struct buffer_page *reader = NULL;
5299 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5300 unsigned long overwrite;
5301 unsigned long flags;
5302 int nr_loops = 0;
5303 bool ret;
5304
5305 local_irq_save(flags);
5306 arch_spin_lock(&cpu_buffer->lock);
5307
5308 again:
5309 /*
5310 * This should normally only loop twice. But because the
5311 * start of the reader inserts an empty page, it causes
5312 * a case where we will loop three times. There should be no
5313 * reason to loop four times (that I know of).
5314 */
5315 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5316 reader = NULL;
5317 goto out;
5318 }
5319
5320 reader = cpu_buffer->reader_page;
5321
5322 /* If there's more to read, return this page */
5323 if (cpu_buffer->reader_page->read < rb_page_size(reader))
5324 goto out;
5325
5326 /* Never should we have an index greater than the size */
5327 if (RB_WARN_ON(cpu_buffer,
5328 cpu_buffer->reader_page->read > rb_page_size(reader)))
5329 goto out;
5330
5331 /* check if we caught up to the tail */
5332 reader = NULL;
5333 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5334 goto out;
5335
5336 /* Don't bother swapping if the ring buffer is empty */
5337 if (rb_num_of_entries(cpu_buffer) == 0)
5338 goto out;
5339
5340 /*
5341 * Reset the reader page to size zero.
5342 */
5343 local_set(&cpu_buffer->reader_page->write, 0);
5344 local_set(&cpu_buffer->reader_page->entries, 0);
5345 local_set(&cpu_buffer->reader_page->page->commit, 0);
5346 cpu_buffer->reader_page->real_end = 0;
5347
5348 spin:
5349 /*
5350 * Splice the empty reader page into the list around the head.
5351 */
5352 reader = rb_set_head_page(cpu_buffer);
5353 if (!reader)
5354 goto out;
5355 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5356 cpu_buffer->reader_page->list.prev = reader->list.prev;
5357
5358 /*
5359 * cpu_buffer->pages just needs to point to the buffer, it
5360 * has no specific buffer page to point to. Lets move it out
5361 * of our way so we don't accidentally swap it.
5362 */
5363 cpu_buffer->pages = reader->list.prev;
5364
5365 /* The reader page will be pointing to the new head */
5366 rb_set_list_to_head(&cpu_buffer->reader_page->list);
5367
5368 /*
5369 * We want to make sure we read the overruns after we set up our
5370 * pointers to the next object. The writer side does a
5371 * cmpxchg to cross pages which acts as the mb on the writer
5372 * side. Note, the reader will constantly fail the swap
5373 * while the writer is updating the pointers, so this
5374 * guarantees that the overwrite recorded here is the one we
5375 * want to compare with the last_overrun.
5376 */
5377 smp_mb();
5378 overwrite = local_read(&(cpu_buffer->overrun));
5379
5380 /*
5381 * Here's the tricky part.
5382 *
5383 * We need to move the pointer past the header page.
5384 * But we can only do that if a writer is not currently
5385 * moving it. The page before the header page has the
5386 * flag bit '1' set if it is pointing to the page we want.
5387 * but if the writer is in the process of moving it
5388 * then it will be '2' or already moved '0'.
5389 */
5390
5391 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5392
5393 /*
5394 * If we did not convert it, then we must try again.
5395 */
5396 if (!ret)
5397 goto spin;
5398
5399 if (cpu_buffer->ring_meta)
5400 rb_update_meta_reader(cpu_buffer, reader);
5401
5402 /*
5403 * Yay! We succeeded in replacing the page.
5404 *
5405 * Now make the new head point back to the reader page.
5406 */
5407 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5408 rb_inc_page(&cpu_buffer->head_page);
5409
5410 cpu_buffer->cnt++;
5411 local_inc(&cpu_buffer->pages_read);
5412
5413 /* Finally update the reader page to the new head */
5414 cpu_buffer->reader_page = reader;
5415 cpu_buffer->reader_page->read = 0;
5416
5417 if (overwrite != cpu_buffer->last_overrun) {
5418 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5419 cpu_buffer->last_overrun = overwrite;
5420 }
5421
5422 goto again;
5423
5424 out:
5425 /* Update the read_stamp on the first event */
5426 if (reader && reader->read == 0)
5427 cpu_buffer->read_stamp = reader->page->time_stamp;
5428
5429 arch_spin_unlock(&cpu_buffer->lock);
5430 local_irq_restore(flags);
5431
5432 /*
5433 * The writer has preempt disable, wait for it. But not forever
5434 * Although, 1 second is pretty much "forever"
5435 */
5436 #define USECS_WAIT 1000000
5437 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5438 /* If the write is past the end of page, a writer is still updating it */
5439 if (likely(!reader || rb_page_write(reader) <= bsize))
5440 break;
5441
5442 udelay(1);
5443
5444 /* Get the latest version of the reader write value */
5445 smp_rmb();
5446 }
5447
5448 /* The writer is not moving forward? Something is wrong */
5449 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5450 reader = NULL;
5451
5452 /*
5453 * Make sure we see any padding after the write update
5454 * (see rb_reset_tail()).
5455 *
5456 * In addition, a writer may be writing on the reader page
5457 * if the page has not been fully filled, so the read barrier
5458 * is also needed to make sure we see the content of what is
5459 * committed by the writer (see rb_set_commit_to_write()).
5460 */
5461 smp_rmb();
5462
5463
5464 return reader;
5465 }
5466
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5467 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5468 {
5469 struct ring_buffer_event *event;
5470 struct buffer_page *reader;
5471 unsigned length;
5472
5473 reader = rb_get_reader_page(cpu_buffer);
5474
5475 /* This function should not be called when buffer is empty */
5476 if (RB_WARN_ON(cpu_buffer, !reader))
5477 return;
5478
5479 event = rb_reader_event(cpu_buffer);
5480
5481 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5482 cpu_buffer->read++;
5483
5484 rb_update_read_stamp(cpu_buffer, event);
5485
5486 length = rb_event_length(event);
5487 cpu_buffer->reader_page->read += length;
5488 cpu_buffer->read_bytes += length;
5489 }
5490
rb_advance_iter(struct ring_buffer_iter * iter)5491 static void rb_advance_iter(struct ring_buffer_iter *iter)
5492 {
5493 struct ring_buffer_per_cpu *cpu_buffer;
5494
5495 cpu_buffer = iter->cpu_buffer;
5496
5497 /* If head == next_event then we need to jump to the next event */
5498 if (iter->head == iter->next_event) {
5499 /* If the event gets overwritten again, there's nothing to do */
5500 if (rb_iter_head_event(iter) == NULL)
5501 return;
5502 }
5503
5504 iter->head = iter->next_event;
5505
5506 /*
5507 * Check if we are at the end of the buffer.
5508 */
5509 if (iter->next_event >= rb_page_size(iter->head_page)) {
5510 /* discarded commits can make the page empty */
5511 if (iter->head_page == cpu_buffer->commit_page)
5512 return;
5513 rb_inc_iter(iter);
5514 return;
5515 }
5516
5517 rb_update_iter_read_stamp(iter, iter->event);
5518 }
5519
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5520 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5521 {
5522 return cpu_buffer->lost_events;
5523 }
5524
5525 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5526 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5527 unsigned long *lost_events)
5528 {
5529 struct ring_buffer_event *event;
5530 struct buffer_page *reader;
5531 int nr_loops = 0;
5532
5533 if (ts)
5534 *ts = 0;
5535 again:
5536 /*
5537 * We repeat when a time extend is encountered.
5538 * Since the time extend is always attached to a data event,
5539 * we should never loop more than once.
5540 * (We never hit the following condition more than twice).
5541 */
5542 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5543 return NULL;
5544
5545 reader = rb_get_reader_page(cpu_buffer);
5546 if (!reader)
5547 return NULL;
5548
5549 event = rb_reader_event(cpu_buffer);
5550
5551 switch (event->type_len) {
5552 case RINGBUF_TYPE_PADDING:
5553 if (rb_null_event(event))
5554 RB_WARN_ON(cpu_buffer, 1);
5555 /*
5556 * Because the writer could be discarding every
5557 * event it creates (which would probably be bad)
5558 * if we were to go back to "again" then we may never
5559 * catch up, and will trigger the warn on, or lock
5560 * the box. Return the padding, and we will release
5561 * the current locks, and try again.
5562 */
5563 return event;
5564
5565 case RINGBUF_TYPE_TIME_EXTEND:
5566 /* Internal data, OK to advance */
5567 rb_advance_reader(cpu_buffer);
5568 goto again;
5569
5570 case RINGBUF_TYPE_TIME_STAMP:
5571 if (ts) {
5572 *ts = rb_event_time_stamp(event);
5573 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5574 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5575 cpu_buffer->cpu, ts);
5576 }
5577 /* Internal data, OK to advance */
5578 rb_advance_reader(cpu_buffer);
5579 goto again;
5580
5581 case RINGBUF_TYPE_DATA:
5582 if (ts && !(*ts)) {
5583 *ts = cpu_buffer->read_stamp + event->time_delta;
5584 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5585 cpu_buffer->cpu, ts);
5586 }
5587 if (lost_events)
5588 *lost_events = rb_lost_events(cpu_buffer);
5589 return event;
5590
5591 default:
5592 RB_WARN_ON(cpu_buffer, 1);
5593 }
5594
5595 return NULL;
5596 }
5597 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5598
5599 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5600 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5601 {
5602 struct trace_buffer *buffer;
5603 struct ring_buffer_per_cpu *cpu_buffer;
5604 struct ring_buffer_event *event;
5605 int nr_loops = 0;
5606
5607 if (ts)
5608 *ts = 0;
5609
5610 cpu_buffer = iter->cpu_buffer;
5611 buffer = cpu_buffer->buffer;
5612
5613 /*
5614 * Check if someone performed a consuming read to the buffer
5615 * or removed some pages from the buffer. In these cases,
5616 * iterator was invalidated and we need to reset it.
5617 */
5618 if (unlikely(iter->cache_read != cpu_buffer->read ||
5619 iter->cache_reader_page != cpu_buffer->reader_page ||
5620 iter->cache_pages_removed != cpu_buffer->pages_removed))
5621 rb_iter_reset(iter);
5622
5623 again:
5624 if (ring_buffer_iter_empty(iter))
5625 return NULL;
5626
5627 /*
5628 * As the writer can mess with what the iterator is trying
5629 * to read, just give up if we fail to get an event after
5630 * three tries. The iterator is not as reliable when reading
5631 * the ring buffer with an active write as the consumer is.
5632 * Do not warn if the three failures is reached.
5633 */
5634 if (++nr_loops > 3)
5635 return NULL;
5636
5637 if (rb_per_cpu_empty(cpu_buffer))
5638 return NULL;
5639
5640 if (iter->head >= rb_page_size(iter->head_page)) {
5641 rb_inc_iter(iter);
5642 goto again;
5643 }
5644
5645 event = rb_iter_head_event(iter);
5646 if (!event)
5647 goto again;
5648
5649 switch (event->type_len) {
5650 case RINGBUF_TYPE_PADDING:
5651 if (rb_null_event(event)) {
5652 rb_inc_iter(iter);
5653 goto again;
5654 }
5655 rb_advance_iter(iter);
5656 return event;
5657
5658 case RINGBUF_TYPE_TIME_EXTEND:
5659 /* Internal data, OK to advance */
5660 rb_advance_iter(iter);
5661 goto again;
5662
5663 case RINGBUF_TYPE_TIME_STAMP:
5664 if (ts) {
5665 *ts = rb_event_time_stamp(event);
5666 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5667 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5668 cpu_buffer->cpu, ts);
5669 }
5670 /* Internal data, OK to advance */
5671 rb_advance_iter(iter);
5672 goto again;
5673
5674 case RINGBUF_TYPE_DATA:
5675 if (ts && !(*ts)) {
5676 *ts = iter->read_stamp + event->time_delta;
5677 ring_buffer_normalize_time_stamp(buffer,
5678 cpu_buffer->cpu, ts);
5679 }
5680 return event;
5681
5682 default:
5683 RB_WARN_ON(cpu_buffer, 1);
5684 }
5685
5686 return NULL;
5687 }
5688 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5689
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5690 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5691 {
5692 if (likely(!in_nmi())) {
5693 raw_spin_lock(&cpu_buffer->reader_lock);
5694 return true;
5695 }
5696
5697 /*
5698 * If an NMI die dumps out the content of the ring buffer
5699 * trylock must be used to prevent a deadlock if the NMI
5700 * preempted a task that holds the ring buffer locks. If
5701 * we get the lock then all is fine, if not, then continue
5702 * to do the read, but this can corrupt the ring buffer,
5703 * so it must be permanently disabled from future writes.
5704 * Reading from NMI is a oneshot deal.
5705 */
5706 if (raw_spin_trylock(&cpu_buffer->reader_lock))
5707 return true;
5708
5709 /* Continue without locking, but disable the ring buffer */
5710 atomic_inc(&cpu_buffer->record_disabled);
5711 return false;
5712 }
5713
5714 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5715 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5716 {
5717 if (likely(locked))
5718 raw_spin_unlock(&cpu_buffer->reader_lock);
5719 }
5720
5721 /**
5722 * ring_buffer_peek - peek at the next event to be read
5723 * @buffer: The ring buffer to read
5724 * @cpu: The cpu to peak at
5725 * @ts: The timestamp counter of this event.
5726 * @lost_events: a variable to store if events were lost (may be NULL)
5727 *
5728 * This will return the event that will be read next, but does
5729 * not consume the data.
5730 */
5731 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5732 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5733 unsigned long *lost_events)
5734 {
5735 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5736 struct ring_buffer_event *event;
5737 unsigned long flags;
5738 bool dolock;
5739
5740 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5741 return NULL;
5742
5743 again:
5744 local_irq_save(flags);
5745 dolock = rb_reader_lock(cpu_buffer);
5746 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5747 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5748 rb_advance_reader(cpu_buffer);
5749 rb_reader_unlock(cpu_buffer, dolock);
5750 local_irq_restore(flags);
5751
5752 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5753 goto again;
5754
5755 return event;
5756 }
5757
5758 /** ring_buffer_iter_dropped - report if there are dropped events
5759 * @iter: The ring buffer iterator
5760 *
5761 * Returns true if there was dropped events since the last peek.
5762 */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5763 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5764 {
5765 bool ret = iter->missed_events != 0;
5766
5767 iter->missed_events = 0;
5768 return ret;
5769 }
5770 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5771
5772 /**
5773 * ring_buffer_iter_peek - peek at the next event to be read
5774 * @iter: The ring buffer iterator
5775 * @ts: The timestamp counter of this event.
5776 *
5777 * This will return the event that will be read next, but does
5778 * not increment the iterator.
5779 */
5780 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5781 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5782 {
5783 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5784 struct ring_buffer_event *event;
5785 unsigned long flags;
5786
5787 again:
5788 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5789 event = rb_iter_peek(iter, ts);
5790 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5791
5792 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5793 goto again;
5794
5795 return event;
5796 }
5797
5798 /**
5799 * ring_buffer_consume - return an event and consume it
5800 * @buffer: The ring buffer to get the next event from
5801 * @cpu: the cpu to read the buffer from
5802 * @ts: a variable to store the timestamp (may be NULL)
5803 * @lost_events: a variable to store if events were lost (may be NULL)
5804 *
5805 * Returns the next event in the ring buffer, and that event is consumed.
5806 * Meaning, that sequential reads will keep returning a different event,
5807 * and eventually empty the ring buffer if the producer is slower.
5808 */
5809 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5810 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5811 unsigned long *lost_events)
5812 {
5813 struct ring_buffer_per_cpu *cpu_buffer;
5814 struct ring_buffer_event *event = NULL;
5815 unsigned long flags;
5816 bool dolock;
5817
5818 again:
5819 /* might be called in atomic */
5820 preempt_disable();
5821
5822 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5823 goto out;
5824
5825 cpu_buffer = buffer->buffers[cpu];
5826 local_irq_save(flags);
5827 dolock = rb_reader_lock(cpu_buffer);
5828
5829 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5830 if (event) {
5831 cpu_buffer->lost_events = 0;
5832 rb_advance_reader(cpu_buffer);
5833 }
5834
5835 rb_reader_unlock(cpu_buffer, dolock);
5836 local_irq_restore(flags);
5837
5838 out:
5839 preempt_enable();
5840
5841 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5842 goto again;
5843
5844 return event;
5845 }
5846 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5847
5848 /**
5849 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5850 * @buffer: The ring buffer to read from
5851 * @cpu: The cpu buffer to iterate over
5852 * @flags: gfp flags to use for memory allocation
5853 *
5854 * This performs the initial preparations necessary to iterate
5855 * through the buffer. Memory is allocated, buffer resizing
5856 * is disabled, and the iterator pointer is returned to the caller.
5857 *
5858 * After a sequence of ring_buffer_read_prepare calls, the user is
5859 * expected to make at least one call to ring_buffer_read_prepare_sync.
5860 * Afterwards, ring_buffer_read_start is invoked to get things going
5861 * for real.
5862 *
5863 * This overall must be paired with ring_buffer_read_finish.
5864 */
5865 struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)5866 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5867 {
5868 struct ring_buffer_per_cpu *cpu_buffer;
5869 struct ring_buffer_iter *iter;
5870
5871 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5872 return NULL;
5873
5874 iter = kzalloc(sizeof(*iter), flags);
5875 if (!iter)
5876 return NULL;
5877
5878 /* Holds the entire event: data and meta data */
5879 iter->event_size = buffer->subbuf_size;
5880 iter->event = kmalloc(iter->event_size, flags);
5881 if (!iter->event) {
5882 kfree(iter);
5883 return NULL;
5884 }
5885
5886 cpu_buffer = buffer->buffers[cpu];
5887
5888 iter->cpu_buffer = cpu_buffer;
5889
5890 atomic_inc(&cpu_buffer->resize_disabled);
5891
5892 return iter;
5893 }
5894 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5895
5896 /**
5897 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5898 *
5899 * All previously invoked ring_buffer_read_prepare calls to prepare
5900 * iterators will be synchronized. Afterwards, read_buffer_read_start
5901 * calls on those iterators are allowed.
5902 */
5903 void
ring_buffer_read_prepare_sync(void)5904 ring_buffer_read_prepare_sync(void)
5905 {
5906 synchronize_rcu();
5907 }
5908 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5909
5910 /**
5911 * ring_buffer_read_start - start a non consuming read of the buffer
5912 * @iter: The iterator returned by ring_buffer_read_prepare
5913 *
5914 * This finalizes the startup of an iteration through the buffer.
5915 * The iterator comes from a call to ring_buffer_read_prepare and
5916 * an intervening ring_buffer_read_prepare_sync must have been
5917 * performed.
5918 *
5919 * Must be paired with ring_buffer_read_finish.
5920 */
5921 void
ring_buffer_read_start(struct ring_buffer_iter * iter)5922 ring_buffer_read_start(struct ring_buffer_iter *iter)
5923 {
5924 struct ring_buffer_per_cpu *cpu_buffer;
5925 unsigned long flags;
5926
5927 if (!iter)
5928 return;
5929
5930 cpu_buffer = iter->cpu_buffer;
5931
5932 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5933 arch_spin_lock(&cpu_buffer->lock);
5934 rb_iter_reset(iter);
5935 arch_spin_unlock(&cpu_buffer->lock);
5936 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5937 }
5938 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5939
5940 /**
5941 * ring_buffer_read_finish - finish reading the iterator of the buffer
5942 * @iter: The iterator retrieved by ring_buffer_start
5943 *
5944 * This re-enables resizing of the buffer, and frees the iterator.
5945 */
5946 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)5947 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5948 {
5949 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5950
5951 /* Use this opportunity to check the integrity of the ring buffer. */
5952 rb_check_pages(cpu_buffer);
5953
5954 atomic_dec(&cpu_buffer->resize_disabled);
5955 kfree(iter->event);
5956 kfree(iter);
5957 }
5958 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5959
5960 /**
5961 * ring_buffer_iter_advance - advance the iterator to the next location
5962 * @iter: The ring buffer iterator
5963 *
5964 * Move the location of the iterator such that the next read will
5965 * be the next location of the iterator.
5966 */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)5967 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5968 {
5969 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5970 unsigned long flags;
5971
5972 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5973
5974 rb_advance_iter(iter);
5975
5976 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5977 }
5978 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5979
5980 /**
5981 * ring_buffer_size - return the size of the ring buffer (in bytes)
5982 * @buffer: The ring buffer.
5983 * @cpu: The CPU to get ring buffer size from.
5984 */
ring_buffer_size(struct trace_buffer * buffer,int cpu)5985 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5986 {
5987 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5988 return 0;
5989
5990 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5991 }
5992 EXPORT_SYMBOL_GPL(ring_buffer_size);
5993
5994 /**
5995 * ring_buffer_max_event_size - return the max data size of an event
5996 * @buffer: The ring buffer.
5997 *
5998 * Returns the maximum size an event can be.
5999 */
ring_buffer_max_event_size(struct trace_buffer * buffer)6000 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
6001 {
6002 /* If abs timestamp is requested, events have a timestamp too */
6003 if (ring_buffer_time_stamp_abs(buffer))
6004 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
6005 return buffer->max_data_size;
6006 }
6007 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
6008
rb_clear_buffer_page(struct buffer_page * page)6009 static void rb_clear_buffer_page(struct buffer_page *page)
6010 {
6011 local_set(&page->write, 0);
6012 local_set(&page->entries, 0);
6013 rb_init_page(page->page);
6014 page->read = 0;
6015 }
6016
6017 /*
6018 * When the buffer is memory mapped to user space, each sub buffer
6019 * has a unique id that is used by the meta data to tell the user
6020 * where the current reader page is.
6021 *
6022 * For a normal allocated ring buffer, the id is saved in the buffer page
6023 * id field, and updated via this function.
6024 *
6025 * But for a fixed memory mapped buffer, the id is already assigned for
6026 * fixed memory ording in the memory layout and can not be used. Instead
6027 * the index of where the page lies in the memory layout is used.
6028 *
6029 * For the normal pages, set the buffer page id with the passed in @id
6030 * value and return that.
6031 *
6032 * For fixed memory mapped pages, get the page index in the memory layout
6033 * and return that as the id.
6034 */
rb_page_id(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage,int id)6035 static int rb_page_id(struct ring_buffer_per_cpu *cpu_buffer,
6036 struct buffer_page *bpage, int id)
6037 {
6038 /*
6039 * For boot buffers, the id is the index,
6040 * otherwise, set the buffer page with this id
6041 */
6042 if (cpu_buffer->ring_meta)
6043 id = rb_meta_subbuf_idx(cpu_buffer->ring_meta, bpage->page);
6044 else
6045 bpage->id = id;
6046
6047 return id;
6048 }
6049
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6050 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6051 {
6052 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6053
6054 if (!meta)
6055 return;
6056
6057 meta->reader.read = cpu_buffer->reader_page->read;
6058 meta->reader.id = rb_page_id(cpu_buffer, cpu_buffer->reader_page,
6059 cpu_buffer->reader_page->id);
6060
6061 meta->reader.lost_events = cpu_buffer->lost_events;
6062
6063 meta->entries = local_read(&cpu_buffer->entries);
6064 meta->overrun = local_read(&cpu_buffer->overrun);
6065 meta->read = cpu_buffer->read;
6066
6067 /* Some archs do not have data cache coherency between kernel and user-space */
6068 flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE);
6069 }
6070
6071 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)6072 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6073 {
6074 struct buffer_page *page;
6075
6076 rb_head_page_deactivate(cpu_buffer);
6077
6078 cpu_buffer->head_page
6079 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6080 rb_clear_buffer_page(cpu_buffer->head_page);
6081 list_for_each_entry(page, cpu_buffer->pages, list) {
6082 rb_clear_buffer_page(page);
6083 }
6084
6085 cpu_buffer->tail_page = cpu_buffer->head_page;
6086 cpu_buffer->commit_page = cpu_buffer->head_page;
6087
6088 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6089 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6090 rb_clear_buffer_page(cpu_buffer->reader_page);
6091
6092 local_set(&cpu_buffer->entries_bytes, 0);
6093 local_set(&cpu_buffer->overrun, 0);
6094 local_set(&cpu_buffer->commit_overrun, 0);
6095 local_set(&cpu_buffer->dropped_events, 0);
6096 local_set(&cpu_buffer->entries, 0);
6097 local_set(&cpu_buffer->committing, 0);
6098 local_set(&cpu_buffer->commits, 0);
6099 local_set(&cpu_buffer->pages_touched, 0);
6100 local_set(&cpu_buffer->pages_lost, 0);
6101 local_set(&cpu_buffer->pages_read, 0);
6102 cpu_buffer->last_pages_touch = 0;
6103 cpu_buffer->shortest_full = 0;
6104 cpu_buffer->read = 0;
6105 cpu_buffer->read_bytes = 0;
6106
6107 rb_time_set(&cpu_buffer->write_stamp, 0);
6108 rb_time_set(&cpu_buffer->before_stamp, 0);
6109
6110 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6111
6112 cpu_buffer->lost_events = 0;
6113 cpu_buffer->last_overrun = 0;
6114
6115 rb_head_page_activate(cpu_buffer);
6116 cpu_buffer->pages_removed = 0;
6117
6118 if (cpu_buffer->mapped) {
6119 rb_update_meta_page(cpu_buffer);
6120 if (cpu_buffer->ring_meta) {
6121 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
6122 meta->commit_buffer = meta->head_buffer;
6123 }
6124 }
6125 }
6126
6127 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6128 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6129 {
6130 guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6131
6132 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6133 return;
6134
6135 arch_spin_lock(&cpu_buffer->lock);
6136
6137 rb_reset_cpu(cpu_buffer);
6138
6139 arch_spin_unlock(&cpu_buffer->lock);
6140 }
6141
6142 /**
6143 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6144 * @buffer: The ring buffer to reset a per cpu buffer of
6145 * @cpu: The CPU buffer to be reset
6146 */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6147 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6148 {
6149 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6150
6151 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6152 return;
6153
6154 /* prevent another thread from changing buffer sizes */
6155 mutex_lock(&buffer->mutex);
6156
6157 atomic_inc(&cpu_buffer->resize_disabled);
6158 atomic_inc(&cpu_buffer->record_disabled);
6159
6160 /* Make sure all commits have finished */
6161 synchronize_rcu();
6162
6163 reset_disabled_cpu_buffer(cpu_buffer);
6164
6165 atomic_dec(&cpu_buffer->record_disabled);
6166 atomic_dec(&cpu_buffer->resize_disabled);
6167
6168 mutex_unlock(&buffer->mutex);
6169 }
6170 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6171
6172 /* Flag to ensure proper resetting of atomic variables */
6173 #define RESET_BIT (1 << 30)
6174
6175 /**
6176 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6177 * @buffer: The ring buffer to reset a per cpu buffer of
6178 */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6179 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6180 {
6181 struct ring_buffer_per_cpu *cpu_buffer;
6182 int cpu;
6183
6184 /* prevent another thread from changing buffer sizes */
6185 mutex_lock(&buffer->mutex);
6186
6187 for_each_online_buffer_cpu(buffer, cpu) {
6188 cpu_buffer = buffer->buffers[cpu];
6189
6190 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6191 atomic_inc(&cpu_buffer->record_disabled);
6192 }
6193
6194 /* Make sure all commits have finished */
6195 synchronize_rcu();
6196
6197 for_each_buffer_cpu(buffer, cpu) {
6198 cpu_buffer = buffer->buffers[cpu];
6199
6200 /*
6201 * If a CPU came online during the synchronize_rcu(), then
6202 * ignore it.
6203 */
6204 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6205 continue;
6206
6207 reset_disabled_cpu_buffer(cpu_buffer);
6208
6209 atomic_dec(&cpu_buffer->record_disabled);
6210 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6211 }
6212
6213 mutex_unlock(&buffer->mutex);
6214 }
6215
6216 /**
6217 * ring_buffer_reset - reset a ring buffer
6218 * @buffer: The ring buffer to reset all cpu buffers
6219 */
ring_buffer_reset(struct trace_buffer * buffer)6220 void ring_buffer_reset(struct trace_buffer *buffer)
6221 {
6222 struct ring_buffer_per_cpu *cpu_buffer;
6223 int cpu;
6224
6225 /* prevent another thread from changing buffer sizes */
6226 mutex_lock(&buffer->mutex);
6227
6228 for_each_buffer_cpu(buffer, cpu) {
6229 cpu_buffer = buffer->buffers[cpu];
6230
6231 atomic_inc(&cpu_buffer->resize_disabled);
6232 atomic_inc(&cpu_buffer->record_disabled);
6233 }
6234
6235 /* Make sure all commits have finished */
6236 synchronize_rcu();
6237
6238 for_each_buffer_cpu(buffer, cpu) {
6239 cpu_buffer = buffer->buffers[cpu];
6240
6241 reset_disabled_cpu_buffer(cpu_buffer);
6242
6243 atomic_dec(&cpu_buffer->record_disabled);
6244 atomic_dec(&cpu_buffer->resize_disabled);
6245 }
6246
6247 mutex_unlock(&buffer->mutex);
6248 }
6249 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6250
6251 /**
6252 * ring_buffer_empty - is the ring buffer empty?
6253 * @buffer: The ring buffer to test
6254 */
ring_buffer_empty(struct trace_buffer * buffer)6255 bool ring_buffer_empty(struct trace_buffer *buffer)
6256 {
6257 struct ring_buffer_per_cpu *cpu_buffer;
6258 unsigned long flags;
6259 bool dolock;
6260 bool ret;
6261 int cpu;
6262
6263 /* yes this is racy, but if you don't like the race, lock the buffer */
6264 for_each_buffer_cpu(buffer, cpu) {
6265 cpu_buffer = buffer->buffers[cpu];
6266 local_irq_save(flags);
6267 dolock = rb_reader_lock(cpu_buffer);
6268 ret = rb_per_cpu_empty(cpu_buffer);
6269 rb_reader_unlock(cpu_buffer, dolock);
6270 local_irq_restore(flags);
6271
6272 if (!ret)
6273 return false;
6274 }
6275
6276 return true;
6277 }
6278 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6279
6280 /**
6281 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6282 * @buffer: The ring buffer
6283 * @cpu: The CPU buffer to test
6284 */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6285 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6286 {
6287 struct ring_buffer_per_cpu *cpu_buffer;
6288 unsigned long flags;
6289 bool dolock;
6290 bool ret;
6291
6292 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6293 return true;
6294
6295 cpu_buffer = buffer->buffers[cpu];
6296 local_irq_save(flags);
6297 dolock = rb_reader_lock(cpu_buffer);
6298 ret = rb_per_cpu_empty(cpu_buffer);
6299 rb_reader_unlock(cpu_buffer, dolock);
6300 local_irq_restore(flags);
6301
6302 return ret;
6303 }
6304 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6305
6306 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6307 /**
6308 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6309 * @buffer_a: One buffer to swap with
6310 * @buffer_b: The other buffer to swap with
6311 * @cpu: the CPU of the buffers to swap
6312 *
6313 * This function is useful for tracers that want to take a "snapshot"
6314 * of a CPU buffer and has another back up buffer lying around.
6315 * it is expected that the tracer handles the cpu buffer not being
6316 * used at the moment.
6317 */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6318 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6319 struct trace_buffer *buffer_b, int cpu)
6320 {
6321 struct ring_buffer_per_cpu *cpu_buffer_a;
6322 struct ring_buffer_per_cpu *cpu_buffer_b;
6323 int ret = -EINVAL;
6324
6325 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6326 !cpumask_test_cpu(cpu, buffer_b->cpumask))
6327 return -EINVAL;
6328
6329 cpu_buffer_a = buffer_a->buffers[cpu];
6330 cpu_buffer_b = buffer_b->buffers[cpu];
6331
6332 /* It's up to the callers to not try to swap mapped buffers */
6333 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped))
6334 return -EBUSY;
6335
6336 /* At least make sure the two buffers are somewhat the same */
6337 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6338 return -EINVAL;
6339
6340 if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6341 return -EINVAL;
6342
6343 if (atomic_read(&buffer_a->record_disabled))
6344 return -EAGAIN;
6345
6346 if (atomic_read(&buffer_b->record_disabled))
6347 return -EAGAIN;
6348
6349 if (atomic_read(&cpu_buffer_a->record_disabled))
6350 return -EAGAIN;
6351
6352 if (atomic_read(&cpu_buffer_b->record_disabled))
6353 return -EAGAIN;
6354
6355 /*
6356 * We can't do a synchronize_rcu here because this
6357 * function can be called in atomic context.
6358 * Normally this will be called from the same CPU as cpu.
6359 * If not it's up to the caller to protect this.
6360 */
6361 atomic_inc(&cpu_buffer_a->record_disabled);
6362 atomic_inc(&cpu_buffer_b->record_disabled);
6363
6364 ret = -EBUSY;
6365 if (local_read(&cpu_buffer_a->committing))
6366 goto out_dec;
6367 if (local_read(&cpu_buffer_b->committing))
6368 goto out_dec;
6369
6370 /*
6371 * When resize is in progress, we cannot swap it because
6372 * it will mess the state of the cpu buffer.
6373 */
6374 if (atomic_read(&buffer_a->resizing))
6375 goto out_dec;
6376 if (atomic_read(&buffer_b->resizing))
6377 goto out_dec;
6378
6379 buffer_a->buffers[cpu] = cpu_buffer_b;
6380 buffer_b->buffers[cpu] = cpu_buffer_a;
6381
6382 cpu_buffer_b->buffer = buffer_a;
6383 cpu_buffer_a->buffer = buffer_b;
6384
6385 ret = 0;
6386
6387 out_dec:
6388 atomic_dec(&cpu_buffer_a->record_disabled);
6389 atomic_dec(&cpu_buffer_b->record_disabled);
6390 return ret;
6391 }
6392 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6393 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6394
6395 /**
6396 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6397 * @buffer: the buffer to allocate for.
6398 * @cpu: the cpu buffer to allocate.
6399 *
6400 * This function is used in conjunction with ring_buffer_read_page.
6401 * When reading a full page from the ring buffer, these functions
6402 * can be used to speed up the process. The calling function should
6403 * allocate a few pages first with this function. Then when it
6404 * needs to get pages from the ring buffer, it passes the result
6405 * of this function into ring_buffer_read_page, which will swap
6406 * the page that was allocated, with the read page of the buffer.
6407 *
6408 * Returns:
6409 * The page allocated, or ERR_PTR
6410 */
6411 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6412 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6413 {
6414 struct ring_buffer_per_cpu *cpu_buffer;
6415 struct buffer_data_read_page *bpage = NULL;
6416 unsigned long flags;
6417 struct page *page;
6418
6419 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6420 return ERR_PTR(-ENODEV);
6421
6422 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6423 if (!bpage)
6424 return ERR_PTR(-ENOMEM);
6425
6426 bpage->order = buffer->subbuf_order;
6427 cpu_buffer = buffer->buffers[cpu];
6428 local_irq_save(flags);
6429 arch_spin_lock(&cpu_buffer->lock);
6430
6431 if (cpu_buffer->free_page) {
6432 bpage->data = cpu_buffer->free_page;
6433 cpu_buffer->free_page = NULL;
6434 }
6435
6436 arch_spin_unlock(&cpu_buffer->lock);
6437 local_irq_restore(flags);
6438
6439 if (bpage->data)
6440 goto out;
6441
6442 page = alloc_pages_node(cpu_to_node(cpu),
6443 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6444 cpu_buffer->buffer->subbuf_order);
6445 if (!page) {
6446 kfree(bpage);
6447 return ERR_PTR(-ENOMEM);
6448 }
6449
6450 bpage->data = page_address(page);
6451
6452 out:
6453 rb_init_page(bpage->data);
6454
6455 return bpage;
6456 }
6457 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6458
6459 /**
6460 * ring_buffer_free_read_page - free an allocated read page
6461 * @buffer: the buffer the page was allocate for
6462 * @cpu: the cpu buffer the page came from
6463 * @data_page: the page to free
6464 *
6465 * Free a page allocated from ring_buffer_alloc_read_page.
6466 */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6467 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6468 struct buffer_data_read_page *data_page)
6469 {
6470 struct ring_buffer_per_cpu *cpu_buffer;
6471 struct buffer_data_page *bpage = data_page->data;
6472 struct page *page = virt_to_page(bpage);
6473 unsigned long flags;
6474
6475 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6476 return;
6477
6478 cpu_buffer = buffer->buffers[cpu];
6479
6480 /*
6481 * If the page is still in use someplace else, or order of the page
6482 * is different from the subbuffer order of the buffer -
6483 * we can't reuse it
6484 */
6485 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6486 goto out;
6487
6488 local_irq_save(flags);
6489 arch_spin_lock(&cpu_buffer->lock);
6490
6491 if (!cpu_buffer->free_page) {
6492 cpu_buffer->free_page = bpage;
6493 bpage = NULL;
6494 }
6495
6496 arch_spin_unlock(&cpu_buffer->lock);
6497 local_irq_restore(flags);
6498
6499 out:
6500 free_pages((unsigned long)bpage, data_page->order);
6501 kfree(data_page);
6502 }
6503 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6504
6505 /**
6506 * ring_buffer_read_page - extract a page from the ring buffer
6507 * @buffer: buffer to extract from
6508 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6509 * @len: amount to extract
6510 * @cpu: the cpu of the buffer to extract
6511 * @full: should the extraction only happen when the page is full.
6512 *
6513 * This function will pull out a page from the ring buffer and consume it.
6514 * @data_page must be the address of the variable that was returned
6515 * from ring_buffer_alloc_read_page. This is because the page might be used
6516 * to swap with a page in the ring buffer.
6517 *
6518 * for example:
6519 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
6520 * if (IS_ERR(rpage))
6521 * return PTR_ERR(rpage);
6522 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6523 * if (ret >= 0)
6524 * process_page(ring_buffer_read_page_data(rpage), ret);
6525 * ring_buffer_free_read_page(buffer, cpu, rpage);
6526 *
6527 * When @full is set, the function will not return true unless
6528 * the writer is off the reader page.
6529 *
6530 * Note: it is up to the calling functions to handle sleeps and wakeups.
6531 * The ring buffer can be used anywhere in the kernel and can not
6532 * blindly call wake_up. The layer that uses the ring buffer must be
6533 * responsible for that.
6534 *
6535 * Returns:
6536 * >=0 if data has been transferred, returns the offset of consumed data.
6537 * <0 if no data has been transferred.
6538 */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6539 int ring_buffer_read_page(struct trace_buffer *buffer,
6540 struct buffer_data_read_page *data_page,
6541 size_t len, int cpu, int full)
6542 {
6543 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6544 struct ring_buffer_event *event;
6545 struct buffer_data_page *bpage;
6546 struct buffer_page *reader;
6547 unsigned long missed_events;
6548 unsigned int commit;
6549 unsigned int read;
6550 u64 save_timestamp;
6551
6552 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6553 return -1;
6554
6555 /*
6556 * If len is not big enough to hold the page header, then
6557 * we can not copy anything.
6558 */
6559 if (len <= BUF_PAGE_HDR_SIZE)
6560 return -1;
6561
6562 len -= BUF_PAGE_HDR_SIZE;
6563
6564 if (!data_page || !data_page->data)
6565 return -1;
6566
6567 if (data_page->order != buffer->subbuf_order)
6568 return -1;
6569
6570 bpage = data_page->data;
6571 if (!bpage)
6572 return -1;
6573
6574 guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6575
6576 reader = rb_get_reader_page(cpu_buffer);
6577 if (!reader)
6578 return -1;
6579
6580 event = rb_reader_event(cpu_buffer);
6581
6582 read = reader->read;
6583 commit = rb_page_size(reader);
6584
6585 /* Check if any events were dropped */
6586 missed_events = cpu_buffer->lost_events;
6587
6588 /*
6589 * If this page has been partially read or
6590 * if len is not big enough to read the rest of the page or
6591 * a writer is still on the page, then
6592 * we must copy the data from the page to the buffer.
6593 * Otherwise, we can simply swap the page with the one passed in.
6594 */
6595 if (read || (len < (commit - read)) ||
6596 cpu_buffer->reader_page == cpu_buffer->commit_page ||
6597 cpu_buffer->mapped) {
6598 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6599 unsigned int rpos = read;
6600 unsigned int pos = 0;
6601 unsigned int size;
6602
6603 /*
6604 * If a full page is expected, this can still be returned
6605 * if there's been a previous partial read and the
6606 * rest of the page can be read and the commit page is off
6607 * the reader page.
6608 */
6609 if (full &&
6610 (!read || (len < (commit - read)) ||
6611 cpu_buffer->reader_page == cpu_buffer->commit_page))
6612 return -1;
6613
6614 if (len > (commit - read))
6615 len = (commit - read);
6616
6617 /* Always keep the time extend and data together */
6618 size = rb_event_ts_length(event);
6619
6620 if (len < size)
6621 return -1;
6622
6623 /* save the current timestamp, since the user will need it */
6624 save_timestamp = cpu_buffer->read_stamp;
6625
6626 /* Need to copy one event at a time */
6627 do {
6628 /* We need the size of one event, because
6629 * rb_advance_reader only advances by one event,
6630 * whereas rb_event_ts_length may include the size of
6631 * one or two events.
6632 * We have already ensured there's enough space if this
6633 * is a time extend. */
6634 size = rb_event_length(event);
6635 memcpy(bpage->data + pos, rpage->data + rpos, size);
6636
6637 len -= size;
6638
6639 rb_advance_reader(cpu_buffer);
6640 rpos = reader->read;
6641 pos += size;
6642
6643 if (rpos >= commit)
6644 break;
6645
6646 event = rb_reader_event(cpu_buffer);
6647 /* Always keep the time extend and data together */
6648 size = rb_event_ts_length(event);
6649 } while (len >= size);
6650
6651 /* update bpage */
6652 local_set(&bpage->commit, pos);
6653 bpage->time_stamp = save_timestamp;
6654
6655 /* we copied everything to the beginning */
6656 read = 0;
6657 } else {
6658 /* update the entry counter */
6659 cpu_buffer->read += rb_page_entries(reader);
6660 cpu_buffer->read_bytes += rb_page_size(reader);
6661
6662 /* swap the pages */
6663 rb_init_page(bpage);
6664 bpage = reader->page;
6665 reader->page = data_page->data;
6666 local_set(&reader->write, 0);
6667 local_set(&reader->entries, 0);
6668 reader->read = 0;
6669 data_page->data = bpage;
6670
6671 /*
6672 * Use the real_end for the data size,
6673 * This gives us a chance to store the lost events
6674 * on the page.
6675 */
6676 if (reader->real_end)
6677 local_set(&bpage->commit, reader->real_end);
6678 }
6679
6680 cpu_buffer->lost_events = 0;
6681
6682 commit = local_read(&bpage->commit);
6683 /*
6684 * Set a flag in the commit field if we lost events
6685 */
6686 if (missed_events) {
6687 /* If there is room at the end of the page to save the
6688 * missed events, then record it there.
6689 */
6690 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6691 memcpy(&bpage->data[commit], &missed_events,
6692 sizeof(missed_events));
6693 local_add(RB_MISSED_STORED, &bpage->commit);
6694 commit += sizeof(missed_events);
6695 }
6696 local_add(RB_MISSED_EVENTS, &bpage->commit);
6697 }
6698
6699 /*
6700 * This page may be off to user land. Zero it out here.
6701 */
6702 if (commit < buffer->subbuf_size)
6703 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6704
6705 return read;
6706 }
6707 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6708
6709 /**
6710 * ring_buffer_read_page_data - get pointer to the data in the page.
6711 * @page: the page to get the data from
6712 *
6713 * Returns pointer to the actual data in this page.
6714 */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6715 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6716 {
6717 return page->data;
6718 }
6719 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6720
6721 /**
6722 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6723 * @buffer: the buffer to get the sub buffer size from
6724 *
6725 * Returns size of the sub buffer, in bytes.
6726 */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6727 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6728 {
6729 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6730 }
6731 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6732
6733 /**
6734 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6735 * @buffer: The ring_buffer to get the system sub page order from
6736 *
6737 * By default, one ring buffer sub page equals to one system page. This parameter
6738 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6739 * extended, but must be an order of system page size.
6740 *
6741 * Returns the order of buffer sub page size, in system pages:
6742 * 0 means the sub buffer size is 1 system page and so forth.
6743 * In case of an error < 0 is returned.
6744 */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6745 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6746 {
6747 if (!buffer)
6748 return -EINVAL;
6749
6750 return buffer->subbuf_order;
6751 }
6752 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6753
6754 /**
6755 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6756 * @buffer: The ring_buffer to set the new page size.
6757 * @order: Order of the system pages in one sub buffer page
6758 *
6759 * By default, one ring buffer pages equals to one system page. This API can be
6760 * used to set new size of the ring buffer page. The size must be order of
6761 * system page size, that's why the input parameter @order is the order of
6762 * system pages that are allocated for one ring buffer page:
6763 * 0 - 1 system page
6764 * 1 - 2 system pages
6765 * 3 - 4 system pages
6766 * ...
6767 *
6768 * Returns 0 on success or < 0 in case of an error.
6769 */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6770 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6771 {
6772 struct ring_buffer_per_cpu *cpu_buffer;
6773 struct buffer_page *bpage, *tmp;
6774 int old_order, old_size;
6775 int nr_pages;
6776 int psize;
6777 int err;
6778 int cpu;
6779
6780 if (!buffer || order < 0)
6781 return -EINVAL;
6782
6783 if (buffer->subbuf_order == order)
6784 return 0;
6785
6786 psize = (1 << order) * PAGE_SIZE;
6787 if (psize <= BUF_PAGE_HDR_SIZE)
6788 return -EINVAL;
6789
6790 /* Size of a subbuf cannot be greater than the write counter */
6791 if (psize > RB_WRITE_MASK + 1)
6792 return -EINVAL;
6793
6794 old_order = buffer->subbuf_order;
6795 old_size = buffer->subbuf_size;
6796
6797 /* prevent another thread from changing buffer sizes */
6798 guard(mutex)(&buffer->mutex);
6799 atomic_inc(&buffer->record_disabled);
6800
6801 /* Make sure all commits have finished */
6802 synchronize_rcu();
6803
6804 buffer->subbuf_order = order;
6805 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6806
6807 /* Make sure all new buffers are allocated, before deleting the old ones */
6808 for_each_buffer_cpu(buffer, cpu) {
6809
6810 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6811 continue;
6812
6813 cpu_buffer = buffer->buffers[cpu];
6814
6815 if (cpu_buffer->mapped) {
6816 err = -EBUSY;
6817 goto error;
6818 }
6819
6820 /* Update the number of pages to match the new size */
6821 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6822 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6823
6824 /* we need a minimum of two pages */
6825 if (nr_pages < 2)
6826 nr_pages = 2;
6827
6828 cpu_buffer->nr_pages_to_update = nr_pages;
6829
6830 /* Include the reader page */
6831 nr_pages++;
6832
6833 /* Allocate the new size buffer */
6834 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6835 if (__rb_allocate_pages(cpu_buffer, nr_pages,
6836 &cpu_buffer->new_pages)) {
6837 /* not enough memory for new pages */
6838 err = -ENOMEM;
6839 goto error;
6840 }
6841 }
6842
6843 for_each_buffer_cpu(buffer, cpu) {
6844 struct buffer_data_page *old_free_data_page;
6845 struct list_head old_pages;
6846 unsigned long flags;
6847
6848 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6849 continue;
6850
6851 cpu_buffer = buffer->buffers[cpu];
6852
6853 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6854
6855 /* Clear the head bit to make the link list normal to read */
6856 rb_head_page_deactivate(cpu_buffer);
6857
6858 /*
6859 * Collect buffers from the cpu_buffer pages list and the
6860 * reader_page on old_pages, so they can be freed later when not
6861 * under a spinlock. The pages list is a linked list with no
6862 * head, adding old_pages turns it into a regular list with
6863 * old_pages being the head.
6864 */
6865 list_add(&old_pages, cpu_buffer->pages);
6866 list_add(&cpu_buffer->reader_page->list, &old_pages);
6867
6868 /* One page was allocated for the reader page */
6869 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6870 struct buffer_page, list);
6871 list_del_init(&cpu_buffer->reader_page->list);
6872
6873 /* Install the new pages, remove the head from the list */
6874 cpu_buffer->pages = cpu_buffer->new_pages.next;
6875 list_del_init(&cpu_buffer->new_pages);
6876 cpu_buffer->cnt++;
6877
6878 cpu_buffer->head_page
6879 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6880 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6881
6882 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6883 cpu_buffer->nr_pages_to_update = 0;
6884
6885 old_free_data_page = cpu_buffer->free_page;
6886 cpu_buffer->free_page = NULL;
6887
6888 rb_head_page_activate(cpu_buffer);
6889
6890 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6891
6892 /* Free old sub buffers */
6893 list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6894 list_del_init(&bpage->list);
6895 free_buffer_page(bpage);
6896 }
6897 free_pages((unsigned long)old_free_data_page, old_order);
6898
6899 rb_check_pages(cpu_buffer);
6900 }
6901
6902 atomic_dec(&buffer->record_disabled);
6903
6904 return 0;
6905
6906 error:
6907 buffer->subbuf_order = old_order;
6908 buffer->subbuf_size = old_size;
6909
6910 atomic_dec(&buffer->record_disabled);
6911
6912 for_each_buffer_cpu(buffer, cpu) {
6913 cpu_buffer = buffer->buffers[cpu];
6914
6915 if (!cpu_buffer->nr_pages_to_update)
6916 continue;
6917
6918 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6919 list_del_init(&bpage->list);
6920 free_buffer_page(bpage);
6921 }
6922 }
6923
6924 return err;
6925 }
6926 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6927
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6928 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6929 {
6930 struct page *page;
6931
6932 if (cpu_buffer->meta_page)
6933 return 0;
6934
6935 page = alloc_page(GFP_USER | __GFP_ZERO);
6936 if (!page)
6937 return -ENOMEM;
6938
6939 cpu_buffer->meta_page = page_to_virt(page);
6940
6941 return 0;
6942 }
6943
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6944 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6945 {
6946 unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6947
6948 free_page(addr);
6949 cpu_buffer->meta_page = NULL;
6950 }
6951
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)6952 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6953 unsigned long *subbuf_ids)
6954 {
6955 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6956 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6957 struct buffer_page *first_subbuf, *subbuf;
6958 int cnt = 0;
6959 int id = 0;
6960
6961 id = rb_page_id(cpu_buffer, cpu_buffer->reader_page, id);
6962 subbuf_ids[id++] = (unsigned long)cpu_buffer->reader_page->page;
6963 cnt++;
6964
6965 first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6966 do {
6967 id = rb_page_id(cpu_buffer, subbuf, id);
6968
6969 if (WARN_ON(id >= nr_subbufs))
6970 break;
6971
6972 subbuf_ids[id] = (unsigned long)subbuf->page;
6973
6974 rb_inc_page(&subbuf);
6975 id++;
6976 cnt++;
6977 } while (subbuf != first_subbuf);
6978
6979 WARN_ON(cnt != nr_subbufs);
6980
6981 /* install subbuf ID to kern VA translation */
6982 cpu_buffer->subbuf_ids = subbuf_ids;
6983
6984 meta->meta_struct_len = sizeof(*meta);
6985 meta->nr_subbufs = nr_subbufs;
6986 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6987 meta->meta_page_size = meta->subbuf_size;
6988
6989 rb_update_meta_page(cpu_buffer);
6990 }
6991
6992 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)6993 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6994 {
6995 struct ring_buffer_per_cpu *cpu_buffer;
6996
6997 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6998 return ERR_PTR(-EINVAL);
6999
7000 cpu_buffer = buffer->buffers[cpu];
7001
7002 mutex_lock(&cpu_buffer->mapping_lock);
7003
7004 if (!cpu_buffer->user_mapped) {
7005 mutex_unlock(&cpu_buffer->mapping_lock);
7006 return ERR_PTR(-ENODEV);
7007 }
7008
7009 return cpu_buffer;
7010 }
7011
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)7012 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
7013 {
7014 mutex_unlock(&cpu_buffer->mapping_lock);
7015 }
7016
7017 /*
7018 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
7019 * to be set-up or torn-down.
7020 */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)7021 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
7022 bool inc)
7023 {
7024 unsigned long flags;
7025
7026 lockdep_assert_held(&cpu_buffer->mapping_lock);
7027
7028 /* mapped is always greater or equal to user_mapped */
7029 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
7030 return -EINVAL;
7031
7032 if (inc && cpu_buffer->mapped == UINT_MAX)
7033 return -EBUSY;
7034
7035 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7036 return -EINVAL;
7037
7038 mutex_lock(&cpu_buffer->buffer->mutex);
7039 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7040
7041 if (inc) {
7042 cpu_buffer->user_mapped++;
7043 cpu_buffer->mapped++;
7044 } else {
7045 cpu_buffer->user_mapped--;
7046 cpu_buffer->mapped--;
7047 }
7048
7049 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7050 mutex_unlock(&cpu_buffer->buffer->mutex);
7051
7052 return 0;
7053 }
7054
7055 /*
7056 * +--------------+ pgoff == 0
7057 * | meta page |
7058 * +--------------+ pgoff == 1
7059 * | subbuffer 0 |
7060 * | |
7061 * +--------------+ pgoff == (1 + (1 << subbuf_order))
7062 * | subbuffer 1 |
7063 * | |
7064 * ...
7065 */
7066 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7067 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7068 struct vm_area_struct *vma)
7069 {
7070 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7071 unsigned int subbuf_pages, subbuf_order;
7072 struct page **pages __free(kfree) = NULL;
7073 int p = 0, s = 0;
7074 int err;
7075
7076 /* Refuse MP_PRIVATE or writable mappings */
7077 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7078 !(vma->vm_flags & VM_MAYSHARE))
7079 return -EPERM;
7080
7081 subbuf_order = cpu_buffer->buffer->subbuf_order;
7082 subbuf_pages = 1 << subbuf_order;
7083
7084 if (subbuf_order && pgoff % subbuf_pages)
7085 return -EINVAL;
7086
7087 /*
7088 * Make sure the mapping cannot become writable later. Also tell the VM
7089 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7090 */
7091 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7092 VM_MAYWRITE);
7093
7094 lockdep_assert_held(&cpu_buffer->mapping_lock);
7095
7096 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7097 nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7098 if (nr_pages <= pgoff)
7099 return -EINVAL;
7100
7101 nr_pages -= pgoff;
7102
7103 nr_vma_pages = vma_pages(vma);
7104 if (!nr_vma_pages || nr_vma_pages > nr_pages)
7105 return -EINVAL;
7106
7107 nr_pages = nr_vma_pages;
7108
7109 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7110 if (!pages)
7111 return -ENOMEM;
7112
7113 if (!pgoff) {
7114 unsigned long meta_page_padding;
7115
7116 pages[p++] = virt_to_page(cpu_buffer->meta_page);
7117
7118 /*
7119 * Pad with the zero-page to align the meta-page with the
7120 * sub-buffers.
7121 */
7122 meta_page_padding = subbuf_pages - 1;
7123 while (meta_page_padding-- && p < nr_pages) {
7124 unsigned long __maybe_unused zero_addr =
7125 vma->vm_start + (PAGE_SIZE * p);
7126
7127 pages[p++] = ZERO_PAGE(zero_addr);
7128 }
7129 } else {
7130 /* Skip the meta-page */
7131 pgoff -= subbuf_pages;
7132
7133 s += pgoff / subbuf_pages;
7134 }
7135
7136 while (p < nr_pages) {
7137 struct page *page;
7138 int off = 0;
7139
7140 if (WARN_ON_ONCE(s >= nr_subbufs))
7141 return -EINVAL;
7142
7143 page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7144
7145 for (; off < (1 << (subbuf_order)); off++, page++) {
7146 if (p >= nr_pages)
7147 break;
7148
7149 pages[p++] = page;
7150 }
7151 s++;
7152 }
7153
7154 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7155
7156 return err;
7157 }
7158 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7159 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7160 struct vm_area_struct *vma)
7161 {
7162 return -EOPNOTSUPP;
7163 }
7164 #endif
7165
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7166 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7167 struct vm_area_struct *vma)
7168 {
7169 struct ring_buffer_per_cpu *cpu_buffer;
7170 unsigned long flags, *subbuf_ids;
7171 int err;
7172
7173 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7174 return -EINVAL;
7175
7176 cpu_buffer = buffer->buffers[cpu];
7177
7178 guard(mutex)(&cpu_buffer->mapping_lock);
7179
7180 if (cpu_buffer->user_mapped) {
7181 err = __rb_map_vma(cpu_buffer, vma);
7182 if (!err)
7183 err = __rb_inc_dec_mapped(cpu_buffer, true);
7184 return err;
7185 }
7186
7187 /* prevent another thread from changing buffer/sub-buffer sizes */
7188 guard(mutex)(&buffer->mutex);
7189
7190 err = rb_alloc_meta_page(cpu_buffer);
7191 if (err)
7192 return err;
7193
7194 /* subbuf_ids include the reader while nr_pages does not */
7195 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7196 if (!subbuf_ids) {
7197 rb_free_meta_page(cpu_buffer);
7198 return -ENOMEM;
7199 }
7200
7201 atomic_inc(&cpu_buffer->resize_disabled);
7202
7203 /*
7204 * Lock all readers to block any subbuf swap until the subbuf IDs are
7205 * assigned.
7206 */
7207 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7208 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7209
7210 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7211
7212 err = __rb_map_vma(cpu_buffer, vma);
7213 if (!err) {
7214 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7215 /* This is the first time it is mapped by user */
7216 cpu_buffer->mapped++;
7217 cpu_buffer->user_mapped = 1;
7218 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7219 } else {
7220 kfree(cpu_buffer->subbuf_ids);
7221 cpu_buffer->subbuf_ids = NULL;
7222 rb_free_meta_page(cpu_buffer);
7223 atomic_dec(&cpu_buffer->resize_disabled);
7224 }
7225
7226 return 0;
7227 }
7228
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7229 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7230 {
7231 struct ring_buffer_per_cpu *cpu_buffer;
7232 unsigned long flags;
7233
7234 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7235 return -EINVAL;
7236
7237 cpu_buffer = buffer->buffers[cpu];
7238
7239 guard(mutex)(&cpu_buffer->mapping_lock);
7240
7241 if (!cpu_buffer->user_mapped) {
7242 return -ENODEV;
7243 } else if (cpu_buffer->user_mapped > 1) {
7244 __rb_inc_dec_mapped(cpu_buffer, false);
7245 return 0;
7246 }
7247
7248 guard(mutex)(&buffer->mutex);
7249 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7250
7251 /* This is the last user space mapping */
7252 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7253 cpu_buffer->mapped--;
7254 cpu_buffer->user_mapped = 0;
7255
7256 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7257
7258 kfree(cpu_buffer->subbuf_ids);
7259 cpu_buffer->subbuf_ids = NULL;
7260 rb_free_meta_page(cpu_buffer);
7261 atomic_dec(&cpu_buffer->resize_disabled);
7262
7263 return 0;
7264 }
7265
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7266 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7267 {
7268 struct ring_buffer_per_cpu *cpu_buffer;
7269 struct buffer_page *reader;
7270 unsigned long missed_events;
7271 unsigned long reader_size;
7272 unsigned long flags;
7273
7274 cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7275 if (IS_ERR(cpu_buffer))
7276 return (int)PTR_ERR(cpu_buffer);
7277
7278 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7279
7280 consume:
7281 if (rb_per_cpu_empty(cpu_buffer))
7282 goto out;
7283
7284 reader_size = rb_page_size(cpu_buffer->reader_page);
7285
7286 /*
7287 * There are data to be read on the current reader page, we can
7288 * return to the caller. But before that, we assume the latter will read
7289 * everything. Let's update the kernel reader accordingly.
7290 */
7291 if (cpu_buffer->reader_page->read < reader_size) {
7292 while (cpu_buffer->reader_page->read < reader_size)
7293 rb_advance_reader(cpu_buffer);
7294 goto out;
7295 }
7296
7297 reader = rb_get_reader_page(cpu_buffer);
7298 if (WARN_ON(!reader))
7299 goto out;
7300
7301 /* Check if any events were dropped */
7302 missed_events = cpu_buffer->lost_events;
7303
7304 if (missed_events) {
7305 if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7306 struct buffer_data_page *bpage = reader->page;
7307 unsigned int commit;
7308 /*
7309 * Use the real_end for the data size,
7310 * This gives us a chance to store the lost events
7311 * on the page.
7312 */
7313 if (reader->real_end)
7314 local_set(&bpage->commit, reader->real_end);
7315 /*
7316 * If there is room at the end of the page to save the
7317 * missed events, then record it there.
7318 */
7319 commit = rb_page_size(reader);
7320 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7321 memcpy(&bpage->data[commit], &missed_events,
7322 sizeof(missed_events));
7323 local_add(RB_MISSED_STORED, &bpage->commit);
7324 }
7325 local_add(RB_MISSED_EVENTS, &bpage->commit);
7326 } else if (!WARN_ONCE(cpu_buffer->reader_page == cpu_buffer->tail_page,
7327 "Reader on commit with %ld missed events",
7328 missed_events)) {
7329 /*
7330 * There shouldn't be any missed events if the tail_page
7331 * is on the reader page. But if the tail page is not on the
7332 * reader page and the commit_page is, that would mean that
7333 * there's a commit_overrun (an interrupt preempted an
7334 * addition of an event and then filled the buffer
7335 * with new events). In this case it's not an
7336 * error, but it should still be reported.
7337 *
7338 * TODO: Add missed events to the page for user space to know.
7339 */
7340 pr_info("Ring buffer [%d] commit overrun lost %ld events at timestamp:%lld\n",
7341 cpu, missed_events, cpu_buffer->reader_page->page->time_stamp);
7342 }
7343 }
7344
7345 cpu_buffer->lost_events = 0;
7346
7347 goto consume;
7348
7349 out:
7350 /* Some archs do not have data cache coherency between kernel and user-space */
7351 flush_kernel_vmap_range(cpu_buffer->reader_page->page,
7352 buffer->subbuf_size + BUF_PAGE_HDR_SIZE);
7353
7354 rb_update_meta_page(cpu_buffer);
7355
7356 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7357 rb_put_mapped_buffer(cpu_buffer);
7358
7359 return 0;
7360 }
7361
7362 /*
7363 * We only allocate new buffers, never free them if the CPU goes down.
7364 * If we were to free the buffer, then the user would lose any trace that was in
7365 * the buffer.
7366 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7367 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7368 {
7369 struct trace_buffer *buffer;
7370 long nr_pages_same;
7371 int cpu_i;
7372 unsigned long nr_pages;
7373
7374 buffer = container_of(node, struct trace_buffer, node);
7375 if (cpumask_test_cpu(cpu, buffer->cpumask))
7376 return 0;
7377
7378 nr_pages = 0;
7379 nr_pages_same = 1;
7380 /* check if all cpu sizes are same */
7381 for_each_buffer_cpu(buffer, cpu_i) {
7382 /* fill in the size from first enabled cpu */
7383 if (nr_pages == 0)
7384 nr_pages = buffer->buffers[cpu_i]->nr_pages;
7385 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7386 nr_pages_same = 0;
7387 break;
7388 }
7389 }
7390 /* allocate minimum pages, user can later expand it */
7391 if (!nr_pages_same)
7392 nr_pages = 2;
7393 buffer->buffers[cpu] =
7394 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7395 if (!buffer->buffers[cpu]) {
7396 WARN(1, "failed to allocate ring buffer on CPU %u\n",
7397 cpu);
7398 return -ENOMEM;
7399 }
7400 smp_wmb();
7401 cpumask_set_cpu(cpu, buffer->cpumask);
7402 return 0;
7403 }
7404
7405 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7406 /*
7407 * This is a basic integrity check of the ring buffer.
7408 * Late in the boot cycle this test will run when configured in.
7409 * It will kick off a thread per CPU that will go into a loop
7410 * writing to the per cpu ring buffer various sizes of data.
7411 * Some of the data will be large items, some small.
7412 *
7413 * Another thread is created that goes into a spin, sending out
7414 * IPIs to the other CPUs to also write into the ring buffer.
7415 * this is to test the nesting ability of the buffer.
7416 *
7417 * Basic stats are recorded and reported. If something in the
7418 * ring buffer should happen that's not expected, a big warning
7419 * is displayed and all ring buffers are disabled.
7420 */
7421 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7422
7423 struct rb_test_data {
7424 struct trace_buffer *buffer;
7425 unsigned long events;
7426 unsigned long bytes_written;
7427 unsigned long bytes_alloc;
7428 unsigned long bytes_dropped;
7429 unsigned long events_nested;
7430 unsigned long bytes_written_nested;
7431 unsigned long bytes_alloc_nested;
7432 unsigned long bytes_dropped_nested;
7433 int min_size_nested;
7434 int max_size_nested;
7435 int max_size;
7436 int min_size;
7437 int cpu;
7438 int cnt;
7439 };
7440
7441 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7442
7443 /* 1 meg per cpu */
7444 #define RB_TEST_BUFFER_SIZE 1048576
7445
7446 static char rb_string[] __initdata =
7447 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7448 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7449 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7450
7451 static bool rb_test_started __initdata;
7452
7453 struct rb_item {
7454 int size;
7455 char str[];
7456 };
7457
rb_write_something(struct rb_test_data * data,bool nested)7458 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7459 {
7460 struct ring_buffer_event *event;
7461 struct rb_item *item;
7462 bool started;
7463 int event_len;
7464 int size;
7465 int len;
7466 int cnt;
7467
7468 /* Have nested writes different that what is written */
7469 cnt = data->cnt + (nested ? 27 : 0);
7470
7471 /* Multiply cnt by ~e, to make some unique increment */
7472 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7473
7474 len = size + sizeof(struct rb_item);
7475
7476 started = rb_test_started;
7477 /* read rb_test_started before checking buffer enabled */
7478 smp_rmb();
7479
7480 event = ring_buffer_lock_reserve(data->buffer, len);
7481 if (!event) {
7482 /* Ignore dropped events before test starts. */
7483 if (started) {
7484 if (nested)
7485 data->bytes_dropped_nested += len;
7486 else
7487 data->bytes_dropped += len;
7488 }
7489 return len;
7490 }
7491
7492 event_len = ring_buffer_event_length(event);
7493
7494 if (RB_WARN_ON(data->buffer, event_len < len))
7495 goto out;
7496
7497 item = ring_buffer_event_data(event);
7498 item->size = size;
7499 memcpy(item->str, rb_string, size);
7500
7501 if (nested) {
7502 data->bytes_alloc_nested += event_len;
7503 data->bytes_written_nested += len;
7504 data->events_nested++;
7505 if (!data->min_size_nested || len < data->min_size_nested)
7506 data->min_size_nested = len;
7507 if (len > data->max_size_nested)
7508 data->max_size_nested = len;
7509 } else {
7510 data->bytes_alloc += event_len;
7511 data->bytes_written += len;
7512 data->events++;
7513 if (!data->min_size || len < data->min_size)
7514 data->max_size = len;
7515 if (len > data->max_size)
7516 data->max_size = len;
7517 }
7518
7519 out:
7520 ring_buffer_unlock_commit(data->buffer);
7521
7522 return 0;
7523 }
7524
rb_test(void * arg)7525 static __init int rb_test(void *arg)
7526 {
7527 struct rb_test_data *data = arg;
7528
7529 while (!kthread_should_stop()) {
7530 rb_write_something(data, false);
7531 data->cnt++;
7532
7533 set_current_state(TASK_INTERRUPTIBLE);
7534 /* Now sleep between a min of 100-300us and a max of 1ms */
7535 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7536 }
7537
7538 return 0;
7539 }
7540
rb_ipi(void * ignore)7541 static __init void rb_ipi(void *ignore)
7542 {
7543 struct rb_test_data *data;
7544 int cpu = smp_processor_id();
7545
7546 data = &rb_data[cpu];
7547 rb_write_something(data, true);
7548 }
7549
rb_hammer_test(void * arg)7550 static __init int rb_hammer_test(void *arg)
7551 {
7552 while (!kthread_should_stop()) {
7553
7554 /* Send an IPI to all cpus to write data! */
7555 smp_call_function(rb_ipi, NULL, 1);
7556 /* No sleep, but for non preempt, let others run */
7557 schedule();
7558 }
7559
7560 return 0;
7561 }
7562
test_ringbuffer(void)7563 static __init int test_ringbuffer(void)
7564 {
7565 struct task_struct *rb_hammer;
7566 struct trace_buffer *buffer;
7567 int cpu;
7568 int ret = 0;
7569
7570 if (security_locked_down(LOCKDOWN_TRACEFS)) {
7571 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7572 return 0;
7573 }
7574
7575 pr_info("Running ring buffer tests...\n");
7576
7577 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7578 if (WARN_ON(!buffer))
7579 return 0;
7580
7581 /* Disable buffer so that threads can't write to it yet */
7582 ring_buffer_record_off(buffer);
7583
7584 for_each_online_cpu(cpu) {
7585 rb_data[cpu].buffer = buffer;
7586 rb_data[cpu].cpu = cpu;
7587 rb_data[cpu].cnt = cpu;
7588 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7589 cpu, "rbtester/%u");
7590 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7591 pr_cont("FAILED\n");
7592 ret = PTR_ERR(rb_threads[cpu]);
7593 goto out_free;
7594 }
7595 }
7596
7597 /* Now create the rb hammer! */
7598 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7599 if (WARN_ON(IS_ERR(rb_hammer))) {
7600 pr_cont("FAILED\n");
7601 ret = PTR_ERR(rb_hammer);
7602 goto out_free;
7603 }
7604
7605 ring_buffer_record_on(buffer);
7606 /*
7607 * Show buffer is enabled before setting rb_test_started.
7608 * Yes there's a small race window where events could be
7609 * dropped and the thread wont catch it. But when a ring
7610 * buffer gets enabled, there will always be some kind of
7611 * delay before other CPUs see it. Thus, we don't care about
7612 * those dropped events. We care about events dropped after
7613 * the threads see that the buffer is active.
7614 */
7615 smp_wmb();
7616 rb_test_started = true;
7617
7618 set_current_state(TASK_INTERRUPTIBLE);
7619 /* Just run for 10 seconds */;
7620 schedule_timeout(10 * HZ);
7621
7622 kthread_stop(rb_hammer);
7623
7624 out_free:
7625 for_each_online_cpu(cpu) {
7626 if (!rb_threads[cpu])
7627 break;
7628 kthread_stop(rb_threads[cpu]);
7629 }
7630 if (ret) {
7631 ring_buffer_free(buffer);
7632 return ret;
7633 }
7634
7635 /* Report! */
7636 pr_info("finished\n");
7637 for_each_online_cpu(cpu) {
7638 struct ring_buffer_event *event;
7639 struct rb_test_data *data = &rb_data[cpu];
7640 struct rb_item *item;
7641 unsigned long total_events;
7642 unsigned long total_dropped;
7643 unsigned long total_written;
7644 unsigned long total_alloc;
7645 unsigned long total_read = 0;
7646 unsigned long total_size = 0;
7647 unsigned long total_len = 0;
7648 unsigned long total_lost = 0;
7649 unsigned long lost;
7650 int big_event_size;
7651 int small_event_size;
7652
7653 ret = -1;
7654
7655 total_events = data->events + data->events_nested;
7656 total_written = data->bytes_written + data->bytes_written_nested;
7657 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7658 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7659
7660 big_event_size = data->max_size + data->max_size_nested;
7661 small_event_size = data->min_size + data->min_size_nested;
7662
7663 pr_info("CPU %d:\n", cpu);
7664 pr_info(" events: %ld\n", total_events);
7665 pr_info(" dropped bytes: %ld\n", total_dropped);
7666 pr_info(" alloced bytes: %ld\n", total_alloc);
7667 pr_info(" written bytes: %ld\n", total_written);
7668 pr_info(" biggest event: %d\n", big_event_size);
7669 pr_info(" smallest event: %d\n", small_event_size);
7670
7671 if (RB_WARN_ON(buffer, total_dropped))
7672 break;
7673
7674 ret = 0;
7675
7676 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7677 total_lost += lost;
7678 item = ring_buffer_event_data(event);
7679 total_len += ring_buffer_event_length(event);
7680 total_size += item->size + sizeof(struct rb_item);
7681 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7682 pr_info("FAILED!\n");
7683 pr_info("buffer had: %.*s\n", item->size, item->str);
7684 pr_info("expected: %.*s\n", item->size, rb_string);
7685 RB_WARN_ON(buffer, 1);
7686 ret = -1;
7687 break;
7688 }
7689 total_read++;
7690 }
7691 if (ret)
7692 break;
7693
7694 ret = -1;
7695
7696 pr_info(" read events: %ld\n", total_read);
7697 pr_info(" lost events: %ld\n", total_lost);
7698 pr_info(" total events: %ld\n", total_lost + total_read);
7699 pr_info(" recorded len bytes: %ld\n", total_len);
7700 pr_info(" recorded size bytes: %ld\n", total_size);
7701 if (total_lost) {
7702 pr_info(" With dropped events, record len and size may not match\n"
7703 " alloced and written from above\n");
7704 } else {
7705 if (RB_WARN_ON(buffer, total_len != total_alloc ||
7706 total_size != total_written))
7707 break;
7708 }
7709 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7710 break;
7711
7712 ret = 0;
7713 }
7714 if (!ret)
7715 pr_info("Ring buffer PASSED!\n");
7716
7717 ring_buffer_free(buffer);
7718 return 0;
7719 }
7720
7721 late_initcall(test_ringbuffer);
7722 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7723