1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020 ARM Ltd.
4 */
5
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
20
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/mte.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
26
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28
29 #ifdef CONFIG_KASAN_HW_TAGS
30 /*
31 * The asynchronous and asymmetric MTE modes have the same behavior for
32 * store operations. This flag is set when either of these modes is enabled.
33 */
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36 #endif
37
mte_sync_tags(pte_t pte,unsigned int nr_pages)38 void mte_sync_tags(pte_t pte, unsigned int nr_pages)
39 {
40 struct page *page = pte_page(pte);
41 struct folio *folio = page_folio(page);
42 unsigned long i;
43
44 if (folio_test_hugetlb(folio)) {
45 unsigned long nr = folio_nr_pages(folio);
46
47 /* Hugetlb MTE flags are set for head page only */
48 if (folio_try_hugetlb_mte_tagging(folio)) {
49 for (i = 0; i < nr; i++, page++)
50 mte_clear_page_tags(page_address(page));
51 folio_set_hugetlb_mte_tagged(folio);
52 }
53
54 /* ensure the tags are visible before the PTE is set */
55 smp_wmb();
56
57 return;
58 }
59
60 /* if PG_mte_tagged is set, tags have already been initialised */
61 for (i = 0; i < nr_pages; i++, page++) {
62 if (try_page_mte_tagging(page)) {
63 mte_clear_page_tags(page_address(page));
64 set_page_mte_tagged(page);
65 }
66 }
67
68 /* ensure the tags are visible before the PTE is set */
69 smp_wmb();
70 }
71
memcmp_pages(struct page * page1,struct page * page2)72 int memcmp_pages(struct page *page1, struct page *page2)
73 {
74 char *addr1, *addr2;
75 int ret;
76
77 addr1 = page_address(page1);
78 addr2 = page_address(page2);
79 ret = memcmp(addr1, addr2, PAGE_SIZE);
80
81 if (!system_supports_mte() || ret)
82 return ret;
83
84 /*
85 * If the page content is identical but at least one of the pages is
86 * tagged, return non-zero to avoid KSM merging. If only one of the
87 * pages is tagged, __set_ptes() may zero or change the tags of the
88 * other page via mte_sync_tags().
89 */
90 if (page_mte_tagged(page1) || page_mte_tagged(page2))
91 return addr1 != addr2;
92
93 return ret;
94 }
95
__mte_enable_kernel(const char * mode,unsigned long tcf)96 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
97 {
98 /* Enable MTE Sync Mode for EL1. */
99 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
100 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
101 isb();
102
103 pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
104 }
105
106 #ifdef CONFIG_KASAN_HW_TAGS
mte_enable_kernel_sync(void)107 void mte_enable_kernel_sync(void)
108 {
109 /*
110 * Make sure we enter this function when no PE has set
111 * async mode previously.
112 */
113 WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
114 "MTE async mode enabled system wide!");
115
116 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
117 }
118
mte_enable_kernel_async(void)119 void mte_enable_kernel_async(void)
120 {
121 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
122
123 /*
124 * MTE async mode is set system wide by the first PE that
125 * executes this function.
126 *
127 * Note: If in future KASAN acquires a runtime switching
128 * mode in between sync and async, this strategy needs
129 * to be reviewed.
130 */
131 if (!system_uses_mte_async_or_asymm_mode())
132 static_branch_enable(&mte_async_or_asymm_mode);
133 }
134
mte_enable_kernel_asymm(void)135 void mte_enable_kernel_asymm(void)
136 {
137 if (cpus_have_cap(ARM64_MTE_ASYMM)) {
138 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
139
140 /*
141 * MTE asymm mode behaves as async mode for store
142 * operations. The mode is set system wide by the
143 * first PE that executes this function.
144 *
145 * Note: If in future KASAN acquires a runtime switching
146 * mode in between sync and async, this strategy needs
147 * to be reviewed.
148 */
149 if (!system_uses_mte_async_or_asymm_mode())
150 static_branch_enable(&mte_async_or_asymm_mode);
151 } else {
152 /*
153 * If the CPU does not support MTE asymmetric mode the
154 * kernel falls back on synchronous mode which is the
155 * default for kasan=on.
156 */
157 mte_enable_kernel_sync();
158 }
159 }
160
mte_enable_kernel_store_only(void)161 int mte_enable_kernel_store_only(void)
162 {
163 /*
164 * If the CPU does not support MTE store only,
165 * the kernel checks all operations.
166 */
167 if (!cpus_have_cap(ARM64_MTE_STORE_ONLY))
168 return -EINVAL;
169
170 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCSO_MASK,
171 SYS_FIELD_PREP(SCTLR_EL1, TCSO, 1));
172 isb();
173
174 pr_info_once("MTE: enabled store only mode at EL1\n");
175
176 return 0;
177 }
178 #endif
179
180 #ifdef CONFIG_KASAN_HW_TAGS
mte_check_tfsr_el1(void)181 void mte_check_tfsr_el1(void)
182 {
183 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
184
185 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
186 /*
187 * Note: isb() is not required after this direct write
188 * because there is no indirect read subsequent to it
189 * (per ARM DDI 0487F.c table D13-1).
190 */
191 write_sysreg_s(0, SYS_TFSR_EL1);
192
193 kasan_report_async();
194 }
195 }
196 #endif
197
198 /*
199 * This is where we actually resolve the system and process MTE mode
200 * configuration into an actual value in SCTLR_EL1 that affects
201 * userspace.
202 */
mte_update_sctlr_user(struct task_struct * task)203 static void mte_update_sctlr_user(struct task_struct *task)
204 {
205 /*
206 * This must be called with preemption disabled and can only be called
207 * on the current or next task since the CPU must match where the thread
208 * is going to run. The caller is responsible for calling
209 * update_sctlr_el1() later in the same preemption disabled block.
210 */
211 unsigned long sctlr = task->thread.sctlr_user;
212 unsigned long mte_ctrl = task->thread.mte_ctrl;
213 unsigned long pref, resolved_mte_tcf;
214
215 pref = __this_cpu_read(mte_tcf_preferred);
216 /*
217 * If there is no overlap between the system preferred and
218 * program requested values go with what was requested.
219 */
220 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
221 sctlr &= ~(SCTLR_EL1_TCF0_MASK | SCTLR_EL1_TCSO0_MASK);
222 /*
223 * Pick an actual setting. The order in which we check for
224 * set bits and map into register values determines our
225 * default order.
226 */
227 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
228 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
229 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
230 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
231 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
232 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
233
234 if (mte_ctrl & MTE_CTRL_STORE_ONLY)
235 sctlr |= SYS_FIELD_PREP(SCTLR_EL1, TCSO0, 1);
236
237 task->thread.sctlr_user = sctlr;
238 }
239
mte_update_gcr_excl(struct task_struct * task)240 static void mte_update_gcr_excl(struct task_struct *task)
241 {
242 /*
243 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
244 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
245 */
246 if (kasan_hw_tags_enabled())
247 return;
248
249 write_sysreg_s(
250 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
251 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
252 SYS_GCR_EL1);
253 }
254
255 #ifdef CONFIG_KASAN_HW_TAGS
256 /* Only called from assembly, silence sparse */
257 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
258 __le32 *updptr, int nr_inst);
259
kasan_hw_tags_enable(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)260 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
261 __le32 *updptr, int nr_inst)
262 {
263 BUG_ON(nr_inst != 1); /* Branch -> NOP */
264
265 if (kasan_hw_tags_enabled())
266 *updptr = cpu_to_le32(aarch64_insn_gen_nop());
267 }
268 #endif
269
mte_thread_init_user(void)270 void mte_thread_init_user(void)
271 {
272 if (!system_supports_mte())
273 return;
274
275 /* clear any pending asynchronous tag fault */
276 dsb(ish);
277 write_sysreg_s(0, SYS_TFSRE0_EL1);
278 clear_thread_flag(TIF_MTE_ASYNC_FAULT);
279 /* disable tag checking and reset tag generation mask */
280 set_mte_ctrl(current, 0);
281 }
282
mte_thread_switch(struct task_struct * next)283 void mte_thread_switch(struct task_struct *next)
284 {
285 if (!system_supports_mte())
286 return;
287
288 mte_update_sctlr_user(next);
289 mte_update_gcr_excl(next);
290
291 /* TCO may not have been disabled on exception entry for the current task. */
292 mte_disable_tco_entry(next);
293
294 /*
295 * Check if an async tag exception occurred at EL1.
296 *
297 * Note: On the context switch path we rely on the dsb() present
298 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
299 * are synchronized before this point.
300 */
301 isb();
302 mte_check_tfsr_el1();
303 }
304
mte_cpu_setup(void)305 void mte_cpu_setup(void)
306 {
307 u64 rgsr;
308
309 /*
310 * CnP must be enabled only after the MAIR_EL1 register has been set
311 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
312 * lead to the wrong memory type being used for a brief window during
313 * CPU power-up.
314 *
315 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
316 * make sure that is the case.
317 */
318 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
319 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
320
321 /* Normal Tagged memory type at the corresponding MAIR index */
322 sysreg_clear_set(mair_el1,
323 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
324 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
325 MT_NORMAL_TAGGED));
326
327 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
328
329 /*
330 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
331 * RGSR_EL1.SEED must be non-zero for IRG to produce
332 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
333 * must initialize it.
334 */
335 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
336 SYS_RGSR_EL1_SEED_SHIFT;
337 if (rgsr == 0)
338 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
339 write_sysreg_s(rgsr, SYS_RGSR_EL1);
340
341 /* clear any pending tag check faults in TFSR*_EL1 */
342 write_sysreg_s(0, SYS_TFSR_EL1);
343 write_sysreg_s(0, SYS_TFSRE0_EL1);
344
345 local_flush_tlb_all();
346 }
347
mte_suspend_enter(void)348 void mte_suspend_enter(void)
349 {
350 if (!system_supports_mte())
351 return;
352
353 /*
354 * The barriers are required to guarantee that the indirect writes
355 * to TFSR_EL1 are synchronized before we report the state.
356 */
357 dsb(nsh);
358 isb();
359
360 /* Report SYS_TFSR_EL1 before suspend entry */
361 mte_check_tfsr_el1();
362 }
363
mte_suspend_exit(void)364 void mte_suspend_exit(void)
365 {
366 if (!system_supports_mte())
367 return;
368
369 mte_cpu_setup();
370 }
371
set_mte_ctrl(struct task_struct * task,unsigned long arg)372 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
373 {
374 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
375 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
376
377 if (!system_supports_mte())
378 return 0;
379
380 if (arg & PR_MTE_TCF_ASYNC)
381 mte_ctrl |= MTE_CTRL_TCF_ASYNC;
382 if (arg & PR_MTE_TCF_SYNC)
383 mte_ctrl |= MTE_CTRL_TCF_SYNC;
384
385 /*
386 * If the system supports it and both sync and async modes are
387 * specified then implicitly enable asymmetric mode.
388 * Userspace could see a mix of both sync and async anyway due
389 * to differing or changing defaults on CPUs.
390 */
391 if (cpus_have_cap(ARM64_MTE_ASYMM) &&
392 (arg & PR_MTE_TCF_ASYNC) &&
393 (arg & PR_MTE_TCF_SYNC))
394 mte_ctrl |= MTE_CTRL_TCF_ASYMM;
395
396 if (arg & PR_MTE_STORE_ONLY)
397 mte_ctrl |= MTE_CTRL_STORE_ONLY;
398
399 task->thread.mte_ctrl = mte_ctrl;
400 if (task == current) {
401 preempt_disable();
402 mte_update_sctlr_user(task);
403 mte_update_gcr_excl(task);
404 update_sctlr_el1(task->thread.sctlr_user);
405 preempt_enable();
406 }
407
408 return 0;
409 }
410
get_mte_ctrl(struct task_struct * task)411 long get_mte_ctrl(struct task_struct *task)
412 {
413 unsigned long ret;
414 u64 mte_ctrl = task->thread.mte_ctrl;
415 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
416 SYS_GCR_EL1_EXCL_MASK;
417
418 if (!system_supports_mte())
419 return 0;
420
421 ret = incl << PR_MTE_TAG_SHIFT;
422 if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
423 ret |= PR_MTE_TCF_ASYNC;
424 if (mte_ctrl & MTE_CTRL_TCF_SYNC)
425 ret |= PR_MTE_TCF_SYNC;
426 if (mte_ctrl & MTE_CTRL_STORE_ONLY)
427 ret |= PR_MTE_STORE_ONLY;
428
429 return ret;
430 }
431
432 /*
433 * Access MTE tags in another process' address space as given in mm. Update
434 * the number of tags copied. Return 0 if any tags copied, error otherwise.
435 * Inspired by __access_remote_vm().
436 */
__access_remote_tags(struct mm_struct * mm,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)437 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
438 struct iovec *kiov, unsigned int gup_flags)
439 {
440 void __user *buf = kiov->iov_base;
441 size_t len = kiov->iov_len;
442 int err = 0;
443 int write = gup_flags & FOLL_WRITE;
444
445 if (!access_ok(buf, len))
446 return -EFAULT;
447
448 if (mmap_read_lock_killable(mm))
449 return -EIO;
450
451 while (len) {
452 struct vm_area_struct *vma;
453 unsigned long tags, offset;
454 void *maddr;
455 struct page *page = get_user_page_vma_remote(mm, addr,
456 gup_flags, &vma);
457 struct folio *folio;
458
459 if (IS_ERR(page)) {
460 err = PTR_ERR(page);
461 break;
462 }
463
464 /*
465 * Only copy tags if the page has been mapped as PROT_MTE
466 * (PG_mte_tagged set). Otherwise the tags are not valid and
467 * not accessible to user. Moreover, an mprotect(PROT_MTE)
468 * would cause the existing tags to be cleared if the page
469 * was never mapped with PROT_MTE.
470 */
471 if (!(vma->vm_flags & VM_MTE)) {
472 err = -EOPNOTSUPP;
473 put_page(page);
474 break;
475 }
476
477 folio = page_folio(page);
478 if (folio_test_hugetlb(folio))
479 WARN_ON_ONCE(!folio_test_hugetlb_mte_tagged(folio));
480 else
481 WARN_ON_ONCE(!page_mte_tagged(page));
482
483 /* limit access to the end of the page */
484 offset = offset_in_page(addr);
485 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
486
487 maddr = page_address(page);
488 if (write) {
489 tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
490 set_page_dirty_lock(page);
491 } else {
492 tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
493 }
494 put_page(page);
495
496 /* error accessing the tracer's buffer */
497 if (!tags)
498 break;
499
500 len -= tags;
501 buf += tags;
502 addr += tags * MTE_GRANULE_SIZE;
503 }
504 mmap_read_unlock(mm);
505
506 /* return an error if no tags copied */
507 kiov->iov_len = buf - kiov->iov_base;
508 if (!kiov->iov_len) {
509 /* check for error accessing the tracee's address space */
510 if (err)
511 return -EIO;
512 else
513 return -EFAULT;
514 }
515
516 return 0;
517 }
518
519 /*
520 * Copy MTE tags in another process' address space at 'addr' to/from tracer's
521 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
522 */
access_remote_tags(struct task_struct * tsk,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)523 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
524 struct iovec *kiov, unsigned int gup_flags)
525 {
526 struct mm_struct *mm;
527 int ret;
528
529 mm = get_task_mm(tsk);
530 if (!mm)
531 return -EPERM;
532
533 if (!tsk->ptrace || (current != tsk->parent) ||
534 ((get_dumpable(mm) != SUID_DUMP_USER) &&
535 !ptracer_capable(tsk, mm->user_ns))) {
536 mmput(mm);
537 return -EPERM;
538 }
539
540 ret = __access_remote_tags(mm, addr, kiov, gup_flags);
541 mmput(mm);
542
543 return ret;
544 }
545
mte_ptrace_copy_tags(struct task_struct * child,long request,unsigned long addr,unsigned long data)546 int mte_ptrace_copy_tags(struct task_struct *child, long request,
547 unsigned long addr, unsigned long data)
548 {
549 int ret;
550 struct iovec kiov;
551 struct iovec __user *uiov = (void __user *)data;
552 unsigned int gup_flags = FOLL_FORCE;
553
554 if (!system_supports_mte())
555 return -EIO;
556
557 if (get_user(kiov.iov_base, &uiov->iov_base) ||
558 get_user(kiov.iov_len, &uiov->iov_len))
559 return -EFAULT;
560
561 if (request == PTRACE_POKEMTETAGS)
562 gup_flags |= FOLL_WRITE;
563
564 /* align addr to the MTE tag granule */
565 addr &= MTE_GRANULE_MASK;
566
567 ret = access_remote_tags(child, addr, &kiov, gup_flags);
568 if (!ret)
569 ret = put_user(kiov.iov_len, &uiov->iov_len);
570
571 return ret;
572 }
573
mte_tcf_preferred_show(struct device * dev,struct device_attribute * attr,char * buf)574 static ssize_t mte_tcf_preferred_show(struct device *dev,
575 struct device_attribute *attr, char *buf)
576 {
577 switch (per_cpu(mte_tcf_preferred, dev->id)) {
578 case MTE_CTRL_TCF_ASYNC:
579 return sysfs_emit(buf, "async\n");
580 case MTE_CTRL_TCF_SYNC:
581 return sysfs_emit(buf, "sync\n");
582 case MTE_CTRL_TCF_ASYMM:
583 return sysfs_emit(buf, "asymm\n");
584 default:
585 return sysfs_emit(buf, "???\n");
586 }
587 }
588
mte_tcf_preferred_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)589 static ssize_t mte_tcf_preferred_store(struct device *dev,
590 struct device_attribute *attr,
591 const char *buf, size_t count)
592 {
593 u64 tcf;
594
595 if (sysfs_streq(buf, "async"))
596 tcf = MTE_CTRL_TCF_ASYNC;
597 else if (sysfs_streq(buf, "sync"))
598 tcf = MTE_CTRL_TCF_SYNC;
599 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
600 tcf = MTE_CTRL_TCF_ASYMM;
601 else
602 return -EINVAL;
603
604 device_lock(dev);
605 per_cpu(mte_tcf_preferred, dev->id) = tcf;
606 device_unlock(dev);
607
608 return count;
609 }
610 static DEVICE_ATTR_RW(mte_tcf_preferred);
611
register_mte_tcf_preferred_sysctl(void)612 static int register_mte_tcf_preferred_sysctl(void)
613 {
614 unsigned int cpu;
615
616 if (!system_supports_mte())
617 return 0;
618
619 for_each_possible_cpu(cpu) {
620 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
621 device_create_file(get_cpu_device(cpu),
622 &dev_attr_mte_tcf_preferred);
623 }
624
625 return 0;
626 }
627 subsys_initcall(register_mte_tcf_preferred_sysctl);
628
629 /*
630 * Return 0 on success, the number of bytes not probed otherwise.
631 */
mte_probe_user_range(const char __user * uaddr,size_t size)632 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
633 {
634 const char __user *end = uaddr + size;
635 char val;
636
637 __raw_get_user(val, uaddr, efault);
638
639 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
640 while (uaddr < end) {
641 /*
642 * A read is sufficient for mte, the caller should have probed
643 * for the pte write permission if required.
644 */
645 __raw_get_user(val, uaddr, efault);
646 uaddr += MTE_GRANULE_SIZE;
647 }
648 (void)val;
649
650 return 0;
651
652 efault:
653 return end - uaddr;
654 }
655