1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023, 2025-2026 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband) 47 { 48 struct ieee80211_rate *bitrates; 49 u32 mandatory_rates = 0; 50 enum ieee80211_rate_flags mandatory_flag; 51 int i; 52 53 if (WARN_ON(!sband)) 54 return 1; 55 56 if (sband->band == NL80211_BAND_2GHZ) 57 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 58 else 59 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 60 61 bitrates = sband->bitrates; 62 for (i = 0; i < sband->n_bitrates; i++) 63 if (bitrates[i].flags & mandatory_flag) 64 mandatory_rates |= BIT(i); 65 return mandatory_rates; 66 } 67 EXPORT_SYMBOL(ieee80211_mandatory_rates); 68 69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 70 { 71 /* see 802.11 17.3.8.3.2 and Annex J 72 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 73 if (chan <= 0) 74 return 0; /* not supported */ 75 switch (band) { 76 case NL80211_BAND_2GHZ: 77 case NL80211_BAND_LC: 78 if (chan == 14) 79 return MHZ_TO_KHZ(2484); 80 else if (chan < 14) 81 return MHZ_TO_KHZ(2407 + chan * 5); 82 break; 83 case NL80211_BAND_5GHZ: 84 if (chan >= 182 && chan <= 196) 85 return MHZ_TO_KHZ(4000 + chan * 5); 86 else 87 return MHZ_TO_KHZ(5000 + chan * 5); 88 break; 89 case NL80211_BAND_6GHZ: 90 /* see 802.11ax D6.1 27.3.23.2 */ 91 if (chan == 2) 92 return MHZ_TO_KHZ(5935); 93 if (chan <= 233) 94 return MHZ_TO_KHZ(5950 + chan * 5); 95 break; 96 case NL80211_BAND_60GHZ: 97 if (chan < 7) 98 return MHZ_TO_KHZ(56160 + chan * 2160); 99 break; 100 case NL80211_BAND_S1GHZ: 101 return 902000 + chan * 500; 102 default: 103 ; 104 } 105 return 0; /* not supported */ 106 } 107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 108 109 int ieee80211_freq_khz_to_channel(u32 freq) 110 { 111 /* TODO: just handle MHz for now */ 112 freq = KHZ_TO_MHZ(freq); 113 114 /* see 802.11 17.3.8.3.2 and Annex J */ 115 if (freq == 2484) 116 return 14; 117 else if (freq < 2484) 118 return (freq - 2407) / 5; 119 else if (freq >= 4910 && freq <= 4980) 120 return (freq - 4000) / 5; 121 else if (freq < 5925) 122 return (freq - 5000) / 5; 123 else if (freq == 5935) 124 return 2; 125 else if (freq <= 45000) /* DMG band lower limit */ 126 /* see 802.11ax D6.1 27.3.22.2 */ 127 return (freq - 5950) / 5; 128 else if (freq >= 58320 && freq <= 70200) 129 return (freq - 56160) / 2160; 130 else 131 return 0; 132 } 133 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 134 135 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 136 u32 freq) 137 { 138 enum nl80211_band band; 139 struct ieee80211_supported_band *sband; 140 int i; 141 142 for (band = 0; band < NUM_NL80211_BANDS; band++) { 143 sband = wiphy->bands[band]; 144 145 if (!sband) 146 continue; 147 148 for (i = 0; i < sband->n_channels; i++) { 149 struct ieee80211_channel *chan = &sband->channels[i]; 150 151 if (ieee80211_channel_to_khz(chan) == freq) 152 return chan; 153 } 154 } 155 156 return NULL; 157 } 158 EXPORT_SYMBOL(ieee80211_get_channel_khz); 159 160 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 161 { 162 int i, want; 163 164 switch (sband->band) { 165 case NL80211_BAND_5GHZ: 166 case NL80211_BAND_6GHZ: 167 want = 3; 168 for (i = 0; i < sband->n_bitrates; i++) { 169 if (sband->bitrates[i].bitrate == 60 || 170 sband->bitrates[i].bitrate == 120 || 171 sband->bitrates[i].bitrate == 240) { 172 sband->bitrates[i].flags |= 173 IEEE80211_RATE_MANDATORY_A; 174 want--; 175 } 176 } 177 WARN_ON(want); 178 break; 179 case NL80211_BAND_2GHZ: 180 case NL80211_BAND_LC: 181 want = 7; 182 for (i = 0; i < sband->n_bitrates; i++) { 183 switch (sband->bitrates[i].bitrate) { 184 case 10: 185 case 20: 186 case 55: 187 case 110: 188 sband->bitrates[i].flags |= 189 IEEE80211_RATE_MANDATORY_B | 190 IEEE80211_RATE_MANDATORY_G; 191 want--; 192 break; 193 case 60: 194 case 120: 195 case 240: 196 sband->bitrates[i].flags |= 197 IEEE80211_RATE_MANDATORY_G; 198 want--; 199 fallthrough; 200 default: 201 sband->bitrates[i].flags |= 202 IEEE80211_RATE_ERP_G; 203 break; 204 } 205 } 206 WARN_ON(want != 0 && want != 3); 207 break; 208 case NL80211_BAND_60GHZ: 209 /* check for mandatory HT MCS 1..4 */ 210 WARN_ON(!sband->ht_cap.ht_supported); 211 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 212 break; 213 case NL80211_BAND_S1GHZ: 214 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 215 * mandatory is ok. 216 */ 217 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 218 break; 219 case NUM_NL80211_BANDS: 220 default: 221 WARN_ON(1); 222 break; 223 } 224 } 225 226 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 227 { 228 enum nl80211_band band; 229 230 for (band = 0; band < NUM_NL80211_BANDS; band++) 231 if (wiphy->bands[band]) 232 set_mandatory_flags_band(wiphy->bands[band]); 233 } 234 235 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 236 { 237 int i; 238 for (i = 0; i < wiphy->n_cipher_suites; i++) 239 if (cipher == wiphy->cipher_suites[i]) 240 return true; 241 return false; 242 } 243 244 static bool 245 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 246 { 247 struct wiphy *wiphy = &rdev->wiphy; 248 int i; 249 250 for (i = 0; i < wiphy->n_cipher_suites; i++) { 251 switch (wiphy->cipher_suites[i]) { 252 case WLAN_CIPHER_SUITE_AES_CMAC: 253 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 254 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 255 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 256 return true; 257 } 258 } 259 260 return false; 261 } 262 263 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 264 int key_idx, bool pairwise) 265 { 266 int max_key_idx; 267 268 if (pairwise) 269 max_key_idx = 3; 270 else if (wiphy_ext_feature_isset(&rdev->wiphy, 271 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 272 wiphy_ext_feature_isset(&rdev->wiphy, 273 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 274 max_key_idx = 7; 275 else if (cfg80211_igtk_cipher_supported(rdev)) 276 max_key_idx = 5; 277 else 278 max_key_idx = 3; 279 280 if (key_idx < 0 || key_idx > max_key_idx) 281 return false; 282 283 return true; 284 } 285 286 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 287 struct key_params *params, int key_idx, 288 bool pairwise, const u8 *mac_addr) 289 { 290 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 291 return -EINVAL; 292 293 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 294 return -EINVAL; 295 296 if (pairwise && !mac_addr) 297 return -EINVAL; 298 299 switch (params->cipher) { 300 case WLAN_CIPHER_SUITE_TKIP: 301 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 302 if ((pairwise && key_idx) || 303 params->mode != NL80211_KEY_RX_TX) 304 return -EINVAL; 305 break; 306 case WLAN_CIPHER_SUITE_CCMP: 307 case WLAN_CIPHER_SUITE_CCMP_256: 308 case WLAN_CIPHER_SUITE_GCMP: 309 case WLAN_CIPHER_SUITE_GCMP_256: 310 /* IEEE802.11-2016 allows only 0 and - when supporting 311 * Extended Key ID - 1 as index for pairwise keys. 312 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 313 * the driver supports Extended Key ID. 314 * @NL80211_KEY_SET_TX can't be set when installing and 315 * validating a key. 316 */ 317 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 318 params->mode == NL80211_KEY_SET_TX) 319 return -EINVAL; 320 if (wiphy_ext_feature_isset(&rdev->wiphy, 321 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 322 if (pairwise && (key_idx < 0 || key_idx > 1)) 323 return -EINVAL; 324 } else if (pairwise && key_idx) { 325 return -EINVAL; 326 } 327 break; 328 case WLAN_CIPHER_SUITE_AES_CMAC: 329 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 330 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 331 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 332 /* Disallow BIP (group-only) cipher as pairwise cipher */ 333 if (pairwise) 334 return -EINVAL; 335 if (key_idx < 4) 336 return -EINVAL; 337 break; 338 case WLAN_CIPHER_SUITE_WEP40: 339 case WLAN_CIPHER_SUITE_WEP104: 340 if (key_idx > 3) 341 return -EINVAL; 342 break; 343 default: 344 break; 345 } 346 347 switch (params->cipher) { 348 case WLAN_CIPHER_SUITE_WEP40: 349 if (params->key_len != WLAN_KEY_LEN_WEP40) 350 return -EINVAL; 351 break; 352 case WLAN_CIPHER_SUITE_TKIP: 353 if (params->key_len != WLAN_KEY_LEN_TKIP) 354 return -EINVAL; 355 break; 356 case WLAN_CIPHER_SUITE_CCMP: 357 if (params->key_len != WLAN_KEY_LEN_CCMP) 358 return -EINVAL; 359 break; 360 case WLAN_CIPHER_SUITE_CCMP_256: 361 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 362 return -EINVAL; 363 break; 364 case WLAN_CIPHER_SUITE_GCMP: 365 if (params->key_len != WLAN_KEY_LEN_GCMP) 366 return -EINVAL; 367 break; 368 case WLAN_CIPHER_SUITE_GCMP_256: 369 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 370 return -EINVAL; 371 break; 372 case WLAN_CIPHER_SUITE_WEP104: 373 if (params->key_len != WLAN_KEY_LEN_WEP104) 374 return -EINVAL; 375 break; 376 case WLAN_CIPHER_SUITE_AES_CMAC: 377 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 378 return -EINVAL; 379 break; 380 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 381 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 382 return -EINVAL; 383 break; 384 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 385 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 386 return -EINVAL; 387 break; 388 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 389 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 390 return -EINVAL; 391 break; 392 default: 393 /* 394 * We don't know anything about this algorithm, 395 * allow using it -- but the driver must check 396 * all parameters! We still check below whether 397 * or not the driver supports this algorithm, 398 * of course. 399 */ 400 break; 401 } 402 403 if (params->seq) { 404 switch (params->cipher) { 405 case WLAN_CIPHER_SUITE_WEP40: 406 case WLAN_CIPHER_SUITE_WEP104: 407 /* These ciphers do not use key sequence */ 408 return -EINVAL; 409 case WLAN_CIPHER_SUITE_TKIP: 410 case WLAN_CIPHER_SUITE_CCMP: 411 case WLAN_CIPHER_SUITE_CCMP_256: 412 case WLAN_CIPHER_SUITE_GCMP: 413 case WLAN_CIPHER_SUITE_GCMP_256: 414 case WLAN_CIPHER_SUITE_AES_CMAC: 415 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 416 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 417 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 418 if (params->seq_len != 6) 419 return -EINVAL; 420 break; 421 } 422 } 423 424 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 425 return -EINVAL; 426 427 return 0; 428 } 429 430 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 431 { 432 unsigned int hdrlen = 24; 433 434 if (ieee80211_is_ext(fc)) { 435 hdrlen = 4; 436 goto out; 437 } 438 439 if (ieee80211_is_data(fc)) { 440 if (ieee80211_has_a4(fc)) 441 hdrlen = 30; 442 if (ieee80211_is_data_qos(fc)) { 443 hdrlen += IEEE80211_QOS_CTL_LEN; 444 if (ieee80211_has_order(fc)) 445 hdrlen += IEEE80211_HT_CTL_LEN; 446 } 447 goto out; 448 } 449 450 if (ieee80211_is_mgmt(fc)) { 451 if (ieee80211_has_order(fc)) 452 hdrlen += IEEE80211_HT_CTL_LEN; 453 goto out; 454 } 455 456 if (ieee80211_is_ctl(fc)) { 457 /* 458 * ACK and CTS are 10 bytes, all others 16. To see how 459 * to get this condition consider 460 * subtype mask: 0b0000000011110000 (0x00F0) 461 * ACK subtype: 0b0000000011010000 (0x00D0) 462 * CTS subtype: 0b0000000011000000 (0x00C0) 463 * bits that matter: ^^^ (0x00E0) 464 * value of those: 0b0000000011000000 (0x00C0) 465 */ 466 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 467 hdrlen = 10; 468 else 469 hdrlen = 16; 470 } 471 out: 472 return hdrlen; 473 } 474 EXPORT_SYMBOL(ieee80211_hdrlen); 475 476 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 477 { 478 const struct ieee80211_hdr *hdr = 479 (const struct ieee80211_hdr *)skb->data; 480 unsigned int hdrlen; 481 482 if (unlikely(skb->len < 10)) 483 return 0; 484 hdrlen = ieee80211_hdrlen(hdr->frame_control); 485 if (unlikely(hdrlen > skb->len)) 486 return 0; 487 return hdrlen; 488 } 489 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 490 491 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 492 { 493 int ae = flags & MESH_FLAGS_AE; 494 /* 802.11-2012, 8.2.4.7.3 */ 495 switch (ae) { 496 default: 497 case 0: 498 return 6; 499 case MESH_FLAGS_AE_A4: 500 return 12; 501 case MESH_FLAGS_AE_A5_A6: 502 return 18; 503 } 504 } 505 506 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 507 { 508 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 509 } 510 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 511 512 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) 513 { 514 const __be16 *hdr_proto = hdr + ETH_ALEN; 515 516 if (!(ether_addr_equal(hdr, rfc1042_header) && 517 *hdr_proto != htons(ETH_P_AARP) && 518 *hdr_proto != htons(ETH_P_IPX)) && 519 !ether_addr_equal(hdr, bridge_tunnel_header)) 520 return false; 521 522 *proto = *hdr_proto; 523 524 return true; 525 } 526 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); 527 528 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) 529 { 530 const void *mesh_addr; 531 struct { 532 struct ethhdr eth; 533 u8 flags; 534 } payload; 535 int hdrlen; 536 int ret; 537 538 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); 539 if (ret) 540 return ret; 541 542 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); 543 544 if (likely(pskb_may_pull(skb, hdrlen + 8) && 545 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 546 &payload.eth.h_proto))) 547 hdrlen += ETH_ALEN + 2; 548 else if (!pskb_may_pull(skb, hdrlen)) 549 return -EINVAL; 550 else 551 payload.eth.h_proto = htons(skb->len - hdrlen); 552 553 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; 554 switch (payload.flags & MESH_FLAGS_AE) { 555 case MESH_FLAGS_AE_A4: 556 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); 557 break; 558 case MESH_FLAGS_AE_A5_A6: 559 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); 560 break; 561 default: 562 break; 563 } 564 565 pskb_pull(skb, hdrlen - sizeof(payload.eth)); 566 memcpy(skb->data, &payload.eth, sizeof(payload.eth)); 567 568 return 0; 569 } 570 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); 571 572 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 573 const u8 *addr, enum nl80211_iftype iftype, 574 u8 data_offset, bool is_amsdu) 575 { 576 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 577 struct { 578 u8 hdr[ETH_ALEN] __aligned(2); 579 __be16 proto; 580 } payload; 581 struct ethhdr tmp; 582 u16 hdrlen; 583 584 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 585 return -1; 586 587 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 588 if (skb->len < hdrlen) 589 return -1; 590 591 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 592 * header 593 * IEEE 802.11 address fields: 594 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 595 * 0 0 DA SA BSSID n/a 596 * 0 1 DA BSSID SA n/a 597 * 1 0 BSSID SA DA n/a 598 * 1 1 RA TA DA SA 599 */ 600 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 601 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 602 603 switch (hdr->frame_control & 604 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 605 case cpu_to_le16(IEEE80211_FCTL_TODS): 606 if (unlikely(iftype != NL80211_IFTYPE_AP && 607 iftype != NL80211_IFTYPE_AP_VLAN && 608 iftype != NL80211_IFTYPE_P2P_GO)) 609 return -1; 610 break; 611 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 612 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 613 iftype != NL80211_IFTYPE_AP_VLAN && 614 iftype != NL80211_IFTYPE_STATION)) 615 return -1; 616 break; 617 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 618 if ((iftype != NL80211_IFTYPE_STATION && 619 iftype != NL80211_IFTYPE_P2P_CLIENT && 620 iftype != NL80211_IFTYPE_MESH_POINT) || 621 (is_multicast_ether_addr(tmp.h_dest) && 622 ether_addr_equal(tmp.h_source, addr))) 623 return -1; 624 break; 625 case cpu_to_le16(0): 626 if (iftype != NL80211_IFTYPE_ADHOC && 627 iftype != NL80211_IFTYPE_STATION && 628 iftype != NL80211_IFTYPE_OCB) 629 return -1; 630 break; 631 } 632 633 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && 634 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && 635 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { 636 /* remove RFC1042 or Bridge-Tunnel encapsulation */ 637 hdrlen += ETH_ALEN + 2; 638 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 639 } else { 640 tmp.h_proto = htons(skb->len - hdrlen); 641 } 642 643 pskb_pull(skb, hdrlen); 644 645 if (!ehdr) 646 ehdr = skb_push(skb, sizeof(struct ethhdr)); 647 memcpy(ehdr, &tmp, sizeof(tmp)); 648 649 return 0; 650 } 651 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 652 653 static void 654 __frame_add_frag(struct sk_buff *skb, struct page *page, 655 void *ptr, int len, int size) 656 { 657 struct skb_shared_info *sh = skb_shinfo(skb); 658 int page_offset; 659 660 get_page(page); 661 page_offset = ptr - page_address(page); 662 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 663 } 664 665 static void 666 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 667 int offset, int len) 668 { 669 struct skb_shared_info *sh = skb_shinfo(skb); 670 const skb_frag_t *frag = &sh->frags[0]; 671 struct page *frag_page; 672 void *frag_ptr; 673 int frag_len, frag_size; 674 int head_size = skb->len - skb->data_len; 675 int cur_len; 676 677 frag_page = virt_to_head_page(skb->head); 678 frag_ptr = skb->data; 679 frag_size = head_size; 680 681 while (offset >= frag_size) { 682 offset -= frag_size; 683 frag_page = skb_frag_page(frag); 684 frag_ptr = skb_frag_address(frag); 685 frag_size = skb_frag_size(frag); 686 frag++; 687 } 688 689 frag_ptr += offset; 690 frag_len = frag_size - offset; 691 692 cur_len = min(len, frag_len); 693 694 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 695 len -= cur_len; 696 697 while (len > 0) { 698 frag_len = skb_frag_size(frag); 699 cur_len = min(len, frag_len); 700 __frame_add_frag(frame, skb_frag_page(frag), 701 skb_frag_address(frag), cur_len, frag_len); 702 len -= cur_len; 703 frag++; 704 } 705 } 706 707 static struct sk_buff * 708 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 709 int offset, int len, bool reuse_frag, 710 int min_len) 711 { 712 struct sk_buff *frame; 713 int cur_len = len; 714 715 if (skb->len - offset < len) 716 return NULL; 717 718 /* 719 * When reusing fragments, copy some data to the head to simplify 720 * ethernet header handling and speed up protocol header processing 721 * in the stack later. 722 */ 723 if (reuse_frag) 724 cur_len = min_t(int, len, min_len); 725 726 /* 727 * Allocate and reserve two bytes more for payload 728 * alignment since sizeof(struct ethhdr) is 14. 729 */ 730 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 731 if (!frame) 732 return NULL; 733 734 frame->priority = skb->priority; 735 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 736 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 737 738 len -= cur_len; 739 if (!len) 740 return frame; 741 742 offset += cur_len; 743 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 744 745 return frame; 746 } 747 748 static u16 749 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type) 750 { 751 __le16 *field_le = field; 752 __be16 *field_be = field; 753 u16 len; 754 755 if (hdr_type >= 2) 756 len = le16_to_cpu(*field_le); 757 else 758 len = be16_to_cpu(*field_be); 759 if (hdr_type) 760 len += __ieee80211_get_mesh_hdrlen(mesh_flags); 761 762 return len; 763 } 764 765 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr) 766 { 767 int offset = 0, subframe_len, padding; 768 769 for (offset = 0; offset < skb->len; offset += subframe_len + padding) { 770 int remaining = skb->len - offset; 771 struct { 772 __be16 len; 773 u8 mesh_flags; 774 } hdr; 775 u16 len; 776 777 if (sizeof(hdr) > remaining) 778 return false; 779 780 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) 781 return false; 782 783 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags, 784 mesh_hdr); 785 subframe_len = sizeof(struct ethhdr) + len; 786 padding = (4 - subframe_len) & 0x3; 787 788 if (subframe_len > remaining) 789 return false; 790 } 791 792 return true; 793 } 794 EXPORT_SYMBOL(ieee80211_is_valid_amsdu); 795 796 797 /* 798 * Detects if an MSDU frame was maliciously converted into an A-MSDU 799 * frame by an adversary. This is done by parsing the received frame 800 * as if it were a regular MSDU, even though the A-MSDU flag is set. 801 * 802 * For non-mesh interfaces, detection involves checking whether the 803 * payload, when interpreted as an MSDU, begins with a valid RFC1042 804 * header. This is done by comparing the A-MSDU subheader's destination 805 * address to the start of the RFC1042 header. 806 * 807 * For mesh interfaces, the MSDU includes a 6-byte Mesh Control field 808 * and an optional variable-length Mesh Address Extension field before 809 * the RFC1042 header. The position of the RFC1042 header must therefore 810 * be calculated based on the mesh header length. 811 * 812 * Since this function intentionally parses an A-MSDU frame as an MSDU, 813 * it only assumes that the A-MSDU subframe header is present, and 814 * beyond this it performs its own bounds checks under the assumption 815 * that the frame is instead parsed as a non-aggregated MSDU. 816 */ 817 static bool 818 is_amsdu_aggregation_attack(struct ethhdr *eth, struct sk_buff *skb, 819 enum nl80211_iftype iftype) 820 { 821 int offset; 822 823 /* Non-mesh case can be directly compared */ 824 if (iftype != NL80211_IFTYPE_MESH_POINT) 825 return ether_addr_equal(eth->h_dest, rfc1042_header); 826 827 offset = __ieee80211_get_mesh_hdrlen(eth->h_dest[0]); 828 if (offset == 6) { 829 /* Mesh case with empty address extension field */ 830 return ether_addr_equal(eth->h_source, rfc1042_header); 831 } else if (offset + ETH_ALEN <= skb->len) { 832 /* Mesh case with non-empty address extension field */ 833 u8 temp[ETH_ALEN]; 834 835 skb_copy_bits(skb, offset, temp, ETH_ALEN); 836 return ether_addr_equal(temp, rfc1042_header); 837 } 838 839 return false; 840 } 841 842 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 843 const u8 *addr, enum nl80211_iftype iftype, 844 const unsigned int extra_headroom, 845 const u8 *check_da, const u8 *check_sa, 846 u8 mesh_control) 847 { 848 unsigned int hlen = ALIGN(extra_headroom, 4); 849 struct sk_buff *frame = NULL; 850 int offset = 0; 851 struct { 852 struct ethhdr eth; 853 uint8_t flags; 854 } hdr; 855 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 856 bool reuse_skb = false; 857 bool last = false; 858 int copy_len = sizeof(hdr.eth); 859 860 if (iftype == NL80211_IFTYPE_MESH_POINT) 861 copy_len = sizeof(hdr); 862 863 while (!last) { 864 int remaining = skb->len - offset; 865 unsigned int subframe_len; 866 int len, mesh_len = 0; 867 u8 padding; 868 869 if (copy_len > remaining) 870 goto purge; 871 872 skb_copy_bits(skb, offset, &hdr, copy_len); 873 if (iftype == NL80211_IFTYPE_MESH_POINT) 874 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); 875 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags, 876 mesh_control); 877 subframe_len = sizeof(struct ethhdr) + len; 878 padding = (4 - subframe_len) & 0x3; 879 880 /* the last MSDU has no padding */ 881 if (subframe_len > remaining) 882 goto purge; 883 /* mitigate A-MSDU aggregation injection attacks, to be 884 * checked when processing first subframe (offset == 0). 885 */ 886 if (offset == 0 && is_amsdu_aggregation_attack(&hdr.eth, skb, iftype)) 887 goto purge; 888 889 offset += sizeof(struct ethhdr); 890 last = remaining <= subframe_len + padding; 891 892 /* FIXME: should we really accept multicast DA? */ 893 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && 894 !ether_addr_equal(check_da, hdr.eth.h_dest)) || 895 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { 896 offset += len + padding; 897 continue; 898 } 899 900 /* reuse skb for the last subframe */ 901 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 902 skb_pull(skb, offset); 903 frame = skb; 904 reuse_skb = true; 905 } else { 906 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 907 reuse_frag, 32 + mesh_len); 908 if (!frame) 909 goto purge; 910 911 offset += len + padding; 912 } 913 914 skb_reset_network_header(frame); 915 frame->dev = skb->dev; 916 frame->priority = skb->priority; 917 918 if (likely(iftype != NL80211_IFTYPE_MESH_POINT && 919 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) 920 skb_pull(frame, ETH_ALEN + 2); 921 922 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); 923 __skb_queue_tail(list, frame); 924 } 925 926 if (!reuse_skb) 927 dev_kfree_skb(skb); 928 929 return; 930 931 purge: 932 __skb_queue_purge(list); 933 dev_kfree_skb(skb); 934 } 935 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 936 937 /* Given a data frame determine the 802.1p/1d tag to use. */ 938 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 939 struct cfg80211_qos_map *qos_map) 940 { 941 unsigned int dscp; 942 unsigned char vlan_priority; 943 unsigned int ret; 944 945 /* skb->priority values from 256->263 are magic values to 946 * directly indicate a specific 802.1d priority. This is used 947 * to allow 802.1d priority to be passed directly in from VLAN 948 * tags, etc. 949 */ 950 if (skb->priority >= 256 && skb->priority <= 263) { 951 ret = skb->priority - 256; 952 goto out; 953 } 954 955 if (skb_vlan_tag_present(skb)) { 956 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 957 >> VLAN_PRIO_SHIFT; 958 if (vlan_priority > 0) { 959 ret = vlan_priority; 960 goto out; 961 } 962 } 963 964 switch (skb->protocol) { 965 case htons(ETH_P_IP): 966 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 967 break; 968 case htons(ETH_P_IPV6): 969 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 970 break; 971 case htons(ETH_P_MPLS_UC): 972 case htons(ETH_P_MPLS_MC): { 973 struct mpls_label mpls_tmp, *mpls; 974 975 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 976 sizeof(*mpls), &mpls_tmp); 977 if (!mpls) 978 return 0; 979 980 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 981 >> MPLS_LS_TC_SHIFT; 982 goto out; 983 } 984 case htons(ETH_P_80221): 985 /* 802.21 is always network control traffic */ 986 return 7; 987 default: 988 return 0; 989 } 990 991 if (qos_map) { 992 unsigned int i, tmp_dscp = dscp >> 2; 993 994 for (i = 0; i < qos_map->num_des; i++) { 995 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 996 ret = qos_map->dscp_exception[i].up; 997 goto out; 998 } 999 } 1000 1001 for (i = 0; i < 8; i++) { 1002 if (tmp_dscp >= qos_map->up[i].low && 1003 tmp_dscp <= qos_map->up[i].high) { 1004 ret = i; 1005 goto out; 1006 } 1007 } 1008 } 1009 1010 /* The default mapping as defined Section 2.3 in RFC8325: The three 1011 * Most Significant Bits (MSBs) of the DSCP are used as the 1012 * corresponding L2 markings. 1013 */ 1014 ret = dscp >> 5; 1015 1016 /* Handle specific DSCP values for which the default mapping (as 1017 * described above) doesn't adhere to the intended usage of the DSCP 1018 * value. See section 4 in RFC8325. Specifically, for the following 1019 * Diffserv Service Classes no update is needed: 1020 * - Standard: DF 1021 * - Low Priority Data: CS1 1022 * - Multimedia Conferencing: AF41, AF42, AF43 1023 * - Network Control Traffic: CS7 1024 * - Real-Time Interactive: CS4 1025 * - Signaling: CS5 1026 */ 1027 switch (dscp >> 2) { 1028 case 10: 1029 case 12: 1030 case 14: 1031 /* High throughput data: AF11, AF12, AF13 */ 1032 ret = 0; 1033 break; 1034 case 16: 1035 /* Operations, Administration, and Maintenance and Provisioning: 1036 * CS2 1037 */ 1038 ret = 0; 1039 break; 1040 case 18: 1041 case 20: 1042 case 22: 1043 /* Low latency data: AF21, AF22, AF23 */ 1044 ret = 3; 1045 break; 1046 case 24: 1047 /* Broadcasting video: CS3 */ 1048 ret = 4; 1049 break; 1050 case 26: 1051 case 28: 1052 case 30: 1053 /* Multimedia Streaming: AF31, AF32, AF33 */ 1054 ret = 4; 1055 break; 1056 case 44: 1057 /* Voice Admit: VA */ 1058 ret = 6; 1059 break; 1060 case 46: 1061 /* Telephony traffic: EF */ 1062 ret = 6; 1063 break; 1064 case 48: 1065 /* Network Control Traffic: CS6 */ 1066 ret = 7; 1067 break; 1068 } 1069 out: 1070 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 1071 } 1072 EXPORT_SYMBOL(cfg80211_classify8021d); 1073 1074 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 1075 { 1076 const struct cfg80211_bss_ies *ies; 1077 1078 ies = rcu_dereference(bss->ies); 1079 if (!ies) 1080 return NULL; 1081 1082 return cfg80211_find_elem(id, ies->data, ies->len); 1083 } 1084 EXPORT_SYMBOL(ieee80211_bss_get_elem); 1085 1086 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 1087 { 1088 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 1089 struct net_device *dev = wdev->netdev; 1090 int i; 1091 1092 if (!wdev->connect_keys) 1093 return; 1094 1095 for (i = 0; i < 4; i++) { 1096 if (!wdev->connect_keys->params[i].cipher) 1097 continue; 1098 if (rdev_add_key(rdev, dev, -1, i, false, NULL, 1099 &wdev->connect_keys->params[i])) { 1100 netdev_err(dev, "failed to set key %d\n", i); 1101 continue; 1102 } 1103 if (wdev->connect_keys->def == i && 1104 rdev_set_default_key(rdev, dev, -1, i, true, true)) { 1105 netdev_err(dev, "failed to set defkey %d\n", i); 1106 continue; 1107 } 1108 } 1109 1110 kfree_sensitive(wdev->connect_keys); 1111 wdev->connect_keys = NULL; 1112 } 1113 1114 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 1115 { 1116 struct cfg80211_event *ev; 1117 unsigned long flags; 1118 1119 spin_lock_irqsave(&wdev->event_lock, flags); 1120 while (!list_empty(&wdev->event_list)) { 1121 ev = list_first_entry(&wdev->event_list, 1122 struct cfg80211_event, list); 1123 list_del(&ev->list); 1124 spin_unlock_irqrestore(&wdev->event_lock, flags); 1125 1126 switch (ev->type) { 1127 case EVENT_CONNECT_RESULT: 1128 __cfg80211_connect_result( 1129 wdev->netdev, 1130 &ev->cr, 1131 ev->cr.status == WLAN_STATUS_SUCCESS); 1132 break; 1133 case EVENT_ROAMED: 1134 __cfg80211_roamed(wdev, &ev->rm); 1135 break; 1136 case EVENT_DISCONNECTED: 1137 __cfg80211_disconnected(wdev->netdev, 1138 ev->dc.ie, ev->dc.ie_len, 1139 ev->dc.reason, 1140 !ev->dc.locally_generated); 1141 break; 1142 case EVENT_IBSS_JOINED: 1143 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 1144 ev->ij.channel); 1145 break; 1146 case EVENT_STOPPED: 1147 cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev, 1148 ev->link_id); 1149 break; 1150 case EVENT_PORT_AUTHORIZED: 1151 __cfg80211_port_authorized(wdev, ev->pa.peer_addr, 1152 ev->pa.td_bitmap, 1153 ev->pa.td_bitmap_len); 1154 break; 1155 } 1156 1157 kfree(ev); 1158 1159 spin_lock_irqsave(&wdev->event_lock, flags); 1160 } 1161 spin_unlock_irqrestore(&wdev->event_lock, flags); 1162 } 1163 1164 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1165 { 1166 struct wireless_dev *wdev; 1167 1168 lockdep_assert_held(&rdev->wiphy.mtx); 1169 1170 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1171 cfg80211_process_wdev_events(wdev); 1172 } 1173 1174 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1175 struct net_device *dev, enum nl80211_iftype ntype, 1176 struct vif_params *params) 1177 { 1178 int err; 1179 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1180 1181 lockdep_assert_held(&rdev->wiphy.mtx); 1182 1183 /* don't support changing VLANs, you just re-create them */ 1184 if (otype == NL80211_IFTYPE_AP_VLAN) 1185 return -EOPNOTSUPP; 1186 1187 /* cannot change into P2P device or NAN */ 1188 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1189 ntype == NL80211_IFTYPE_NAN) 1190 return -EOPNOTSUPP; 1191 1192 if (!rdev->ops->change_virtual_intf || 1193 !(rdev->wiphy.interface_modes & (1 << ntype))) 1194 return -EOPNOTSUPP; 1195 1196 if (ntype != otype) { 1197 /* if it's part of a bridge, reject changing type to station/ibss */ 1198 if (netif_is_bridge_port(dev) && 1199 (ntype == NL80211_IFTYPE_ADHOC || 1200 ntype == NL80211_IFTYPE_STATION || 1201 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1202 return -EBUSY; 1203 1204 dev->ieee80211_ptr->use_4addr = false; 1205 rdev_set_qos_map(rdev, dev, NULL); 1206 1207 cfg80211_leave(rdev, dev->ieee80211_ptr, -1); 1208 1209 cfg80211_process_rdev_events(rdev); 1210 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1211 1212 memset(&dev->ieee80211_ptr->u, 0, 1213 sizeof(dev->ieee80211_ptr->u)); 1214 memset(&dev->ieee80211_ptr->links, 0, 1215 sizeof(dev->ieee80211_ptr->links)); 1216 } 1217 1218 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1219 1220 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1221 1222 if (!err && params && params->use_4addr != -1) 1223 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1224 1225 if (!err) { 1226 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1227 switch (ntype) { 1228 case NL80211_IFTYPE_STATION: 1229 if (dev->ieee80211_ptr->use_4addr) 1230 break; 1231 fallthrough; 1232 case NL80211_IFTYPE_OCB: 1233 case NL80211_IFTYPE_P2P_CLIENT: 1234 case NL80211_IFTYPE_ADHOC: 1235 dev->priv_flags |= IFF_DONT_BRIDGE; 1236 break; 1237 case NL80211_IFTYPE_P2P_GO: 1238 case NL80211_IFTYPE_AP: 1239 case NL80211_IFTYPE_AP_VLAN: 1240 case NL80211_IFTYPE_MESH_POINT: 1241 /* bridging OK */ 1242 break; 1243 case NL80211_IFTYPE_MONITOR: 1244 /* monitor can't bridge anyway */ 1245 break; 1246 case NL80211_IFTYPE_UNSPECIFIED: 1247 case NUM_NL80211_IFTYPES: 1248 /* not happening */ 1249 break; 1250 case NL80211_IFTYPE_P2P_DEVICE: 1251 case NL80211_IFTYPE_WDS: 1252 case NL80211_IFTYPE_NAN: 1253 WARN_ON(1); 1254 break; 1255 } 1256 } 1257 1258 if (!err && ntype != otype && netif_running(dev)) { 1259 cfg80211_update_iface_num(rdev, ntype, 1); 1260 cfg80211_update_iface_num(rdev, otype, -1); 1261 } 1262 1263 return err; 1264 } 1265 1266 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1267 { 1268 int modulation, streams, bitrate; 1269 1270 /* the formula below does only work for MCS values smaller than 32 */ 1271 if (WARN_ON_ONCE(rate->mcs >= 32)) 1272 return 0; 1273 1274 modulation = rate->mcs & 7; 1275 streams = (rate->mcs >> 3) + 1; 1276 1277 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1278 1279 if (modulation < 4) 1280 bitrate *= (modulation + 1); 1281 else if (modulation == 4) 1282 bitrate *= (modulation + 2); 1283 else 1284 bitrate *= (modulation + 3); 1285 1286 bitrate *= streams; 1287 1288 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1289 bitrate = (bitrate / 9) * 10; 1290 1291 /* do NOT round down here */ 1292 return (bitrate + 50000) / 100000; 1293 } 1294 1295 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1296 { 1297 static const u32 __mcs2bitrate[] = { 1298 /* control PHY */ 1299 [0] = 275, 1300 /* SC PHY */ 1301 [1] = 3850, 1302 [2] = 7700, 1303 [3] = 9625, 1304 [4] = 11550, 1305 [5] = 12512, /* 1251.25 mbps */ 1306 [6] = 15400, 1307 [7] = 19250, 1308 [8] = 23100, 1309 [9] = 25025, 1310 [10] = 30800, 1311 [11] = 38500, 1312 [12] = 46200, 1313 /* OFDM PHY */ 1314 [13] = 6930, 1315 [14] = 8662, /* 866.25 mbps */ 1316 [15] = 13860, 1317 [16] = 17325, 1318 [17] = 20790, 1319 [18] = 27720, 1320 [19] = 34650, 1321 [20] = 41580, 1322 [21] = 45045, 1323 [22] = 51975, 1324 [23] = 62370, 1325 [24] = 67568, /* 6756.75 mbps */ 1326 /* LP-SC PHY */ 1327 [25] = 6260, 1328 [26] = 8340, 1329 [27] = 11120, 1330 [28] = 12510, 1331 [29] = 16680, 1332 [30] = 22240, 1333 [31] = 25030, 1334 }; 1335 1336 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1337 return 0; 1338 1339 return __mcs2bitrate[rate->mcs]; 1340 } 1341 1342 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1343 { 1344 static const u32 __mcs2bitrate[] = { 1345 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1346 [7 - 6] = 50050, /* MCS 12.1 */ 1347 [8 - 6] = 53900, 1348 [9 - 6] = 57750, 1349 [10 - 6] = 63900, 1350 [11 - 6] = 75075, 1351 [12 - 6] = 80850, 1352 }; 1353 1354 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1355 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1356 return 0; 1357 1358 return __mcs2bitrate[rate->mcs - 6]; 1359 } 1360 1361 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1362 { 1363 static const u32 __mcs2bitrate[] = { 1364 /* control PHY */ 1365 [0] = 275, 1366 /* SC PHY */ 1367 [1] = 3850, 1368 [2] = 7700, 1369 [3] = 9625, 1370 [4] = 11550, 1371 [5] = 12512, /* 1251.25 mbps */ 1372 [6] = 13475, 1373 [7] = 15400, 1374 [8] = 19250, 1375 [9] = 23100, 1376 [10] = 25025, 1377 [11] = 26950, 1378 [12] = 30800, 1379 [13] = 38500, 1380 [14] = 46200, 1381 [15] = 50050, 1382 [16] = 53900, 1383 [17] = 57750, 1384 [18] = 69300, 1385 [19] = 75075, 1386 [20] = 80850, 1387 }; 1388 1389 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1390 return 0; 1391 1392 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1393 } 1394 1395 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1396 { 1397 static const u32 base[4][12] = { 1398 { 6500000, 1399 13000000, 1400 19500000, 1401 26000000, 1402 39000000, 1403 52000000, 1404 58500000, 1405 65000000, 1406 78000000, 1407 /* not in the spec, but some devices use this: */ 1408 86700000, 1409 97500000, 1410 108300000, 1411 }, 1412 { 13500000, 1413 27000000, 1414 40500000, 1415 54000000, 1416 81000000, 1417 108000000, 1418 121500000, 1419 135000000, 1420 162000000, 1421 180000000, 1422 202500000, 1423 225000000, 1424 }, 1425 { 29300000, 1426 58500000, 1427 87800000, 1428 117000000, 1429 175500000, 1430 234000000, 1431 263300000, 1432 292500000, 1433 351000000, 1434 390000000, 1435 438800000, 1436 487500000, 1437 }, 1438 { 58500000, 1439 117000000, 1440 175500000, 1441 234000000, 1442 351000000, 1443 468000000, 1444 526500000, 1445 585000000, 1446 702000000, 1447 780000000, 1448 877500000, 1449 975000000, 1450 }, 1451 }; 1452 u32 bitrate; 1453 int idx; 1454 1455 if (rate->mcs > 11) 1456 goto warn; 1457 1458 switch (rate->bw) { 1459 case RATE_INFO_BW_160: 1460 idx = 3; 1461 break; 1462 case RATE_INFO_BW_80: 1463 idx = 2; 1464 break; 1465 case RATE_INFO_BW_40: 1466 idx = 1; 1467 break; 1468 case RATE_INFO_BW_5: 1469 case RATE_INFO_BW_10: 1470 default: 1471 goto warn; 1472 case RATE_INFO_BW_20: 1473 idx = 0; 1474 } 1475 1476 bitrate = base[idx][rate->mcs]; 1477 bitrate *= rate->nss; 1478 1479 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1480 bitrate = (bitrate / 9) * 10; 1481 1482 /* do NOT round down here */ 1483 return (bitrate + 50000) / 100000; 1484 warn: 1485 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1486 rate->bw, rate->mcs, rate->nss); 1487 return 0; 1488 } 1489 1490 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1491 { 1492 #define SCALE 6144 1493 u32 mcs_divisors[14] = { 1494 102399, /* 16.666666... */ 1495 51201, /* 8.333333... */ 1496 34134, /* 5.555555... */ 1497 25599, /* 4.166666... */ 1498 17067, /* 2.777777... */ 1499 12801, /* 2.083333... */ 1500 11377, /* 1.851725... */ 1501 10239, /* 1.666666... */ 1502 8532, /* 1.388888... */ 1503 7680, /* 1.250000... */ 1504 6828, /* 1.111111... */ 1505 6144, /* 1.000000... */ 1506 5690, /* 0.926106... */ 1507 5120, /* 0.833333... */ 1508 }; 1509 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1510 u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1511 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1512 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1513 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1514 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1515 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1516 u64 tmp; 1517 u32 result; 1518 1519 if (WARN_ON_ONCE(rate->mcs > 13)) 1520 return 0; 1521 1522 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1523 return 0; 1524 if (WARN_ON_ONCE(rate->he_ru_alloc > 1525 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1526 return 0; 1527 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1528 return 0; 1529 1530 if (rate->bw == RATE_INFO_BW_160 || 1531 (rate->bw == RATE_INFO_BW_HE_RU && 1532 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1533 result = rates_160M[rate->he_gi]; 1534 else if (rate->bw == RATE_INFO_BW_80 || 1535 (rate->bw == RATE_INFO_BW_HE_RU && 1536 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1537 result = rates_996[rate->he_gi]; 1538 else if (rate->bw == RATE_INFO_BW_40 || 1539 (rate->bw == RATE_INFO_BW_HE_RU && 1540 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1541 result = rates_484[rate->he_gi]; 1542 else if (rate->bw == RATE_INFO_BW_20 || 1543 (rate->bw == RATE_INFO_BW_HE_RU && 1544 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1545 result = rates_242[rate->he_gi]; 1546 else if (rate->bw == RATE_INFO_BW_HE_RU && 1547 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1548 result = rates_106[rate->he_gi]; 1549 else if (rate->bw == RATE_INFO_BW_HE_RU && 1550 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1551 result = rates_52[rate->he_gi]; 1552 else if (rate->bw == RATE_INFO_BW_HE_RU && 1553 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1554 result = rates_26[rate->he_gi]; 1555 else { 1556 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1557 rate->bw, rate->he_ru_alloc); 1558 return 0; 1559 } 1560 1561 /* now scale to the appropriate MCS */ 1562 tmp = result; 1563 tmp *= SCALE; 1564 do_div(tmp, mcs_divisors[rate->mcs]); 1565 1566 /* and take NSS, DCM into account */ 1567 tmp *= rate->nss; 1568 do_div(tmp, 8); 1569 if (rate->he_dcm) 1570 do_div(tmp, 2); 1571 1572 result = tmp; 1573 1574 return result / 10000; 1575 } 1576 1577 static u32 _cfg80211_calculate_bitrate_eht_uhr(struct rate_info *rate) 1578 { 1579 #define SCALE 6144 1580 static const u32 mcs_divisors[] = { 1581 [ 0] = 102399, /* 16.666666... */ 1582 [ 1] = 51201, /* 8.333333... */ 1583 [ 2] = 34134, /* 5.555555... */ 1584 [ 3] = 25599, /* 4.166666... */ 1585 [ 4] = 17067, /* 2.777777... */ 1586 [ 5] = 12801, /* 2.083333... */ 1587 [ 6] = 11377, /* 1.851725... */ 1588 [ 7] = 10239, /* 1.666666... */ 1589 [ 8] = 8532, /* 1.388888... */ 1590 [ 9] = 7680, /* 1.250000... */ 1591 [10] = 6828, /* 1.111111... */ 1592 [11] = 6144, /* 1.000000... */ 1593 [12] = 5690, /* 0.926106... */ 1594 [13] = 5120, /* 0.833333... */ 1595 [14] = 409600, /* 66.666666... */ 1596 [15] = 204800, /* 33.333333... */ 1597 [17] = 38400, /* 6.250180... */ 1598 [19] = 19200, /* 3.125090... */ 1599 [20] = 15360, /* 2.500000... */ 1600 [23] = 9600, /* 1.562545... */ 1601 }; 1602 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1603 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1604 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1605 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1606 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1607 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1608 u64 tmp; 1609 u32 result; 1610 1611 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1612 return 0; 1613 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1614 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1615 return 0; 1616 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1617 return 0; 1618 1619 /* Bandwidth checks for MCS 14 */ 1620 if (rate->mcs == 14) { 1621 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1622 rate->bw != RATE_INFO_BW_80 && 1623 rate->bw != RATE_INFO_BW_160 && 1624 rate->bw != RATE_INFO_BW_320) || 1625 (rate->bw == RATE_INFO_BW_EHT_RU && 1626 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1627 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1628 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1629 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1630 rate->bw, rate->eht_ru_alloc); 1631 return 0; 1632 } 1633 } 1634 1635 if (rate->bw == RATE_INFO_BW_320 || 1636 (rate->bw == RATE_INFO_BW_EHT_RU && 1637 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1638 result = 4 * rates_996[rate->eht_gi]; 1639 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1640 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1641 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1642 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1643 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1644 result = 3 * rates_996[rate->eht_gi]; 1645 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1646 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1647 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1648 else if (rate->bw == RATE_INFO_BW_160 || 1649 (rate->bw == RATE_INFO_BW_EHT_RU && 1650 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1651 result = 2 * rates_996[rate->eht_gi]; 1652 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1653 rate->eht_ru_alloc == 1654 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1655 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1656 + rates_242[rate->eht_gi]; 1657 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1658 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1659 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1660 else if (rate->bw == RATE_INFO_BW_80 || 1661 (rate->bw == RATE_INFO_BW_EHT_RU && 1662 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1663 result = rates_996[rate->eht_gi]; 1664 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1665 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1666 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1667 else if (rate->bw == RATE_INFO_BW_40 || 1668 (rate->bw == RATE_INFO_BW_EHT_RU && 1669 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1670 result = rates_484[rate->eht_gi]; 1671 else if (rate->bw == RATE_INFO_BW_20 || 1672 (rate->bw == RATE_INFO_BW_EHT_RU && 1673 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1674 result = rates_242[rate->eht_gi]; 1675 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1676 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1677 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1678 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1679 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1680 result = rates_106[rate->eht_gi]; 1681 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1682 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1683 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1684 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1685 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1686 result = rates_52[rate->eht_gi]; 1687 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1688 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1689 result = rates_26[rate->eht_gi]; 1690 else { 1691 WARN(1, "invalid EHT or UHR MCS: bw:%d, ru:%d\n", 1692 rate->bw, rate->eht_ru_alloc); 1693 return 0; 1694 } 1695 1696 /* now scale to the appropriate MCS */ 1697 tmp = result; 1698 tmp *= SCALE; 1699 do_div(tmp, mcs_divisors[rate->mcs]); 1700 1701 /* and take NSS */ 1702 tmp *= rate->nss; 1703 do_div(tmp, 8); 1704 1705 /* and handle interference mitigation - 0.9x */ 1706 if (rate->flags & RATE_INFO_FLAGS_UHR_IM) { 1707 if (WARN(rate->nss != 1 || rate->mcs == 15, 1708 "invalid NSS or MCS for UHR IM\n")) 1709 return 0; 1710 tmp *= 9000; 1711 do_div(tmp, 10000); 1712 } 1713 1714 result = tmp; 1715 1716 return result / 10000; 1717 } 1718 1719 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1720 { 1721 if (WARN_ONCE(rate->mcs > 15, "bad EHT MCS %d\n", rate->mcs)) 1722 return 0; 1723 1724 if (WARN_ONCE(rate->flags & (RATE_INFO_FLAGS_UHR_ELR_MCS | 1725 RATE_INFO_FLAGS_UHR_IM), 1726 "bad EHT MCS flags 0x%x\n", rate->flags)) 1727 return 0; 1728 1729 return _cfg80211_calculate_bitrate_eht_uhr(rate); 1730 } 1731 1732 static u32 cfg80211_calculate_bitrate_uhr(struct rate_info *rate) 1733 { 1734 if (rate->flags & RATE_INFO_FLAGS_UHR_ELR_MCS) { 1735 WARN_ONCE(rate->eht_gi != NL80211_RATE_INFO_EHT_GI_1_6, 1736 "bad UHR ELR guard interval %d\n", 1737 rate->eht_gi); 1738 WARN_ONCE(rate->mcs > 1, "bad UHR ELR MCS %d\n", rate->mcs); 1739 WARN_ONCE(rate->nss != 1, "bad UHR ELR NSS %d\n", rate->nss); 1740 WARN_ONCE(rate->bw != RATE_INFO_BW_20, 1741 "bad UHR ELR bandwidth %d\n", 1742 rate->bw); 1743 WARN_ONCE(rate->flags & RATE_INFO_FLAGS_UHR_IM, 1744 "bad UHR MCS flags 0x%x\n", rate->flags); 1745 if (rate->mcs == 0) 1746 return 17; 1747 return 33; 1748 } 1749 1750 switch (rate->mcs) { 1751 case 0 ... 15: 1752 case 17: 1753 case 19: 1754 case 20: 1755 case 23: 1756 return _cfg80211_calculate_bitrate_eht_uhr(rate); 1757 } 1758 1759 WARN_ONCE(1, "bad UHR MCS %d\n", rate->mcs); 1760 return 0; 1761 } 1762 1763 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate) 1764 { 1765 /* For 1, 2, 4, 8 and 16 MHz channels */ 1766 static const u32 base[5][11] = { 1767 { 300000, 1768 600000, 1769 900000, 1770 1200000, 1771 1800000, 1772 2400000, 1773 2700000, 1774 3000000, 1775 3600000, 1776 4000000, 1777 /* MCS 10 supported in 1 MHz only */ 1778 150000, 1779 }, 1780 { 650000, 1781 1300000, 1782 1950000, 1783 2600000, 1784 3900000, 1785 5200000, 1786 5850000, 1787 6500000, 1788 7800000, 1789 /* MCS 9 not valid */ 1790 }, 1791 { 1350000, 1792 2700000, 1793 4050000, 1794 5400000, 1795 8100000, 1796 10800000, 1797 12150000, 1798 13500000, 1799 16200000, 1800 18000000, 1801 }, 1802 { 2925000, 1803 5850000, 1804 8775000, 1805 11700000, 1806 17550000, 1807 23400000, 1808 26325000, 1809 29250000, 1810 35100000, 1811 39000000, 1812 }, 1813 { 8580000, 1814 11700000, 1815 17550000, 1816 23400000, 1817 35100000, 1818 46800000, 1819 52650000, 1820 58500000, 1821 70200000, 1822 78000000, 1823 }, 1824 }; 1825 u32 bitrate; 1826 /* default is 1 MHz index */ 1827 int idx = 0; 1828 1829 if (rate->mcs >= 11) 1830 goto warn; 1831 1832 switch (rate->bw) { 1833 case RATE_INFO_BW_16: 1834 idx = 4; 1835 break; 1836 case RATE_INFO_BW_8: 1837 idx = 3; 1838 break; 1839 case RATE_INFO_BW_4: 1840 idx = 2; 1841 break; 1842 case RATE_INFO_BW_2: 1843 idx = 1; 1844 break; 1845 case RATE_INFO_BW_1: 1846 idx = 0; 1847 break; 1848 case RATE_INFO_BW_5: 1849 case RATE_INFO_BW_10: 1850 case RATE_INFO_BW_20: 1851 case RATE_INFO_BW_40: 1852 case RATE_INFO_BW_80: 1853 case RATE_INFO_BW_160: 1854 default: 1855 goto warn; 1856 } 1857 1858 bitrate = base[idx][rate->mcs]; 1859 bitrate *= rate->nss; 1860 1861 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1862 bitrate = (bitrate / 9) * 10; 1863 /* do NOT round down here */ 1864 return (bitrate + 50000) / 100000; 1865 warn: 1866 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1867 rate->bw, rate->mcs, rate->nss); 1868 return 0; 1869 } 1870 1871 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1872 { 1873 if (rate->flags & RATE_INFO_FLAGS_MCS) 1874 return cfg80211_calculate_bitrate_ht(rate); 1875 if (rate->flags & RATE_INFO_FLAGS_DMG) 1876 return cfg80211_calculate_bitrate_dmg(rate); 1877 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1878 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1879 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1880 return cfg80211_calculate_bitrate_edmg(rate); 1881 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1882 return cfg80211_calculate_bitrate_vht(rate); 1883 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1884 return cfg80211_calculate_bitrate_he(rate); 1885 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1886 return cfg80211_calculate_bitrate_eht(rate); 1887 if (rate->flags & RATE_INFO_FLAGS_UHR_MCS) 1888 return cfg80211_calculate_bitrate_uhr(rate); 1889 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS) 1890 return cfg80211_calculate_bitrate_s1g(rate); 1891 1892 return rate->legacy; 1893 } 1894 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1895 1896 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1897 enum ieee80211_p2p_attr_id attr, 1898 u8 *buf, unsigned int bufsize) 1899 { 1900 u8 *out = buf; 1901 u16 attr_remaining = 0; 1902 bool desired_attr = false; 1903 u16 desired_len = 0; 1904 1905 while (len > 0) { 1906 unsigned int iedatalen; 1907 unsigned int copy; 1908 const u8 *iedata; 1909 1910 if (len < 2) 1911 return -EILSEQ; 1912 iedatalen = ies[1]; 1913 if (iedatalen + 2 > len) 1914 return -EILSEQ; 1915 1916 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1917 goto cont; 1918 1919 if (iedatalen < 4) 1920 goto cont; 1921 1922 iedata = ies + 2; 1923 1924 /* check WFA OUI, P2P subtype */ 1925 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1926 iedata[2] != 0x9a || iedata[3] != 0x09) 1927 goto cont; 1928 1929 iedatalen -= 4; 1930 iedata += 4; 1931 1932 /* check attribute continuation into this IE */ 1933 copy = min_t(unsigned int, attr_remaining, iedatalen); 1934 if (copy && desired_attr) { 1935 desired_len += copy; 1936 if (out) { 1937 memcpy(out, iedata, min(bufsize, copy)); 1938 out += min(bufsize, copy); 1939 bufsize -= min(bufsize, copy); 1940 } 1941 1942 1943 if (copy == attr_remaining) 1944 return desired_len; 1945 } 1946 1947 attr_remaining -= copy; 1948 if (attr_remaining) 1949 goto cont; 1950 1951 iedatalen -= copy; 1952 iedata += copy; 1953 1954 while (iedatalen > 0) { 1955 u16 attr_len; 1956 1957 /* P2P attribute ID & size must fit */ 1958 if (iedatalen < 3) 1959 return -EILSEQ; 1960 desired_attr = iedata[0] == attr; 1961 attr_len = get_unaligned_le16(iedata + 1); 1962 iedatalen -= 3; 1963 iedata += 3; 1964 1965 copy = min_t(unsigned int, attr_len, iedatalen); 1966 1967 if (desired_attr) { 1968 desired_len += copy; 1969 if (out) { 1970 memcpy(out, iedata, min(bufsize, copy)); 1971 out += min(bufsize, copy); 1972 bufsize -= min(bufsize, copy); 1973 } 1974 1975 if (copy == attr_len) 1976 return desired_len; 1977 } 1978 1979 iedata += copy; 1980 iedatalen -= copy; 1981 attr_remaining = attr_len - copy; 1982 } 1983 1984 cont: 1985 len -= ies[1] + 2; 1986 ies += ies[1] + 2; 1987 } 1988 1989 if (attr_remaining && desired_attr) 1990 return -EILSEQ; 1991 1992 return -ENOENT; 1993 } 1994 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1995 1996 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1997 { 1998 int i; 1999 2000 /* Make sure array values are legal */ 2001 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 2002 return false; 2003 2004 i = 0; 2005 while (i < n_ids) { 2006 if (ids[i] == WLAN_EID_EXTENSION) { 2007 if (id_ext && (ids[i + 1] == id)) 2008 return true; 2009 2010 i += 2; 2011 continue; 2012 } 2013 2014 if (ids[i] == id && !id_ext) 2015 return true; 2016 2017 i++; 2018 } 2019 return false; 2020 } 2021 2022 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 2023 { 2024 /* we assume a validly formed IEs buffer */ 2025 u8 len = ies[pos + 1]; 2026 2027 pos += 2 + len; 2028 2029 /* the IE itself must have 255 bytes for fragments to follow */ 2030 if (len < 255) 2031 return pos; 2032 2033 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 2034 len = ies[pos + 1]; 2035 pos += 2 + len; 2036 } 2037 2038 return pos; 2039 } 2040 2041 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 2042 const u8 *ids, int n_ids, 2043 const u8 *after_ric, int n_after_ric, 2044 size_t offset) 2045 { 2046 size_t pos = offset; 2047 2048 while (pos < ielen) { 2049 u8 ext = 0; 2050 2051 if (ies[pos] == WLAN_EID_EXTENSION) 2052 ext = 2; 2053 if ((pos + ext) >= ielen) 2054 break; 2055 2056 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 2057 ies[pos] == WLAN_EID_EXTENSION)) 2058 break; 2059 2060 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 2061 pos = skip_ie(ies, ielen, pos); 2062 2063 while (pos < ielen) { 2064 if (ies[pos] == WLAN_EID_EXTENSION) 2065 ext = 2; 2066 else 2067 ext = 0; 2068 2069 if ((pos + ext) >= ielen) 2070 break; 2071 2072 if (!ieee80211_id_in_list(after_ric, 2073 n_after_ric, 2074 ies[pos + ext], 2075 ext == 2)) 2076 pos = skip_ie(ies, ielen, pos); 2077 else 2078 break; 2079 } 2080 } else { 2081 pos = skip_ie(ies, ielen, pos); 2082 } 2083 } 2084 2085 return pos; 2086 } 2087 EXPORT_SYMBOL(ieee80211_ie_split_ric); 2088 2089 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) 2090 { 2091 unsigned int elem_len; 2092 2093 if (!len_pos) 2094 return; 2095 2096 elem_len = skb->data + skb->len - len_pos - 1; 2097 2098 while (elem_len > 255) { 2099 /* this one is 255 */ 2100 *len_pos = 255; 2101 /* remaining data gets smaller */ 2102 elem_len -= 255; 2103 /* make space for the fragment ID/len in SKB */ 2104 skb_put(skb, 2); 2105 /* shift back the remaining data to place fragment ID/len */ 2106 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 2107 /* place the fragment ID */ 2108 len_pos += 255 + 1; 2109 *len_pos = frag_id; 2110 /* and point to fragment length to update later */ 2111 len_pos++; 2112 } 2113 2114 *len_pos = elem_len; 2115 } 2116 EXPORT_SYMBOL(ieee80211_fragment_element); 2117 2118 bool ieee80211_operating_class_to_band(u8 operating_class, 2119 enum nl80211_band *band) 2120 { 2121 switch (operating_class) { 2122 case 112: 2123 case 115 ... 127: 2124 case 128 ... 130: 2125 *band = NL80211_BAND_5GHZ; 2126 return true; 2127 case 131 ... 135: 2128 case 137: 2129 *band = NL80211_BAND_6GHZ; 2130 return true; 2131 case 81: 2132 case 82: 2133 case 83: 2134 case 84: 2135 *band = NL80211_BAND_2GHZ; 2136 return true; 2137 case 180: 2138 *band = NL80211_BAND_60GHZ; 2139 return true; 2140 } 2141 2142 return false; 2143 } 2144 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 2145 2146 bool ieee80211_operating_class_to_chandef(u8 operating_class, 2147 struct ieee80211_channel *chan, 2148 struct cfg80211_chan_def *chandef) 2149 { 2150 u32 control_freq, offset = 0; 2151 enum nl80211_band band; 2152 2153 if (!ieee80211_operating_class_to_band(operating_class, &band) || 2154 !chan || band != chan->band) 2155 return false; 2156 2157 control_freq = chan->center_freq; 2158 chandef->chan = chan; 2159 2160 if (control_freq >= 5955) 2161 offset = control_freq - 5955; 2162 else if (control_freq >= 5745) 2163 offset = control_freq - 5745; 2164 else if (control_freq >= 5180) 2165 offset = control_freq - 5180; 2166 offset /= 20; 2167 2168 switch (operating_class) { 2169 case 81: /* 2 GHz band; 20 MHz; channels 1..13 */ 2170 case 82: /* 2 GHz band; 20 MHz; channel 14 */ 2171 case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */ 2172 case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */ 2173 case 121: /* 5 GHz band; 20 MHz; channels 100..144 */ 2174 case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */ 2175 case 125: /* 5 GHz band; 20 MHz; channels 149..177 */ 2176 case 131: /* 6 GHz band; 20 MHz; channels 1..233*/ 2177 case 136: /* 6 GHz band; 20 MHz; channel 2 */ 2178 chandef->center_freq1 = control_freq; 2179 chandef->width = NL80211_CHAN_WIDTH_20; 2180 return true; 2181 case 83: /* 2 GHz band; 40 MHz; channels 1..9 */ 2182 case 116: /* 5 GHz band; 40 MHz; channels 36,44 */ 2183 case 119: /* 5 GHz band; 40 MHz; channels 52,60 */ 2184 case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */ 2185 case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */ 2186 chandef->center_freq1 = control_freq + 10; 2187 chandef->width = NL80211_CHAN_WIDTH_40; 2188 return true; 2189 case 84: /* 2 GHz band; 40 MHz; channels 5..13 */ 2190 case 117: /* 5 GHz band; 40 MHz; channels 40,48 */ 2191 case 120: /* 5 GHz band; 40 MHz; channels 56,64 */ 2192 case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */ 2193 case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */ 2194 chandef->center_freq1 = control_freq - 10; 2195 chandef->width = NL80211_CHAN_WIDTH_40; 2196 return true; 2197 case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/ 2198 chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20; 2199 chandef->width = NL80211_CHAN_WIDTH_40; 2200 return true; 2201 case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */ 2202 case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */ 2203 chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20; 2204 chandef->width = NL80211_CHAN_WIDTH_80; 2205 return true; 2206 case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */ 2207 case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */ 2208 chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20; 2209 chandef->width = NL80211_CHAN_WIDTH_160; 2210 return true; 2211 case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */ 2212 case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */ 2213 /* The center_freq2 of 80+80 MHz is unknown */ 2214 case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */ 2215 /* 320-1 or 320-2 channelization is unknown */ 2216 default: 2217 return false; 2218 } 2219 } 2220 EXPORT_SYMBOL(ieee80211_operating_class_to_chandef); 2221 2222 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 2223 u8 *op_class) 2224 { 2225 u8 vht_opclass; 2226 u32 freq = chandef->center_freq1; 2227 2228 if (freq >= 2412 && freq <= 2472) { 2229 if (chandef->width > NL80211_CHAN_WIDTH_40) 2230 return false; 2231 2232 /* 2.407 GHz, channels 1..13 */ 2233 if (chandef->width == NL80211_CHAN_WIDTH_40) { 2234 if (freq > chandef->chan->center_freq) 2235 *op_class = 83; /* HT40+ */ 2236 else 2237 *op_class = 84; /* HT40- */ 2238 } else { 2239 *op_class = 81; 2240 } 2241 2242 return true; 2243 } 2244 2245 if (freq == 2484) { 2246 /* channel 14 is only for IEEE 802.11b */ 2247 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 2248 return false; 2249 2250 *op_class = 82; /* channel 14 */ 2251 return true; 2252 } 2253 2254 switch (chandef->width) { 2255 case NL80211_CHAN_WIDTH_80: 2256 vht_opclass = 128; 2257 break; 2258 case NL80211_CHAN_WIDTH_160: 2259 vht_opclass = 129; 2260 break; 2261 case NL80211_CHAN_WIDTH_80P80: 2262 vht_opclass = 130; 2263 break; 2264 case NL80211_CHAN_WIDTH_10: 2265 case NL80211_CHAN_WIDTH_5: 2266 return false; /* unsupported for now */ 2267 default: 2268 vht_opclass = 0; 2269 break; 2270 } 2271 2272 /* 5 GHz, channels 36..48 */ 2273 if (freq >= 5180 && freq <= 5240) { 2274 if (vht_opclass) { 2275 *op_class = vht_opclass; 2276 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2277 if (freq > chandef->chan->center_freq) 2278 *op_class = 116; 2279 else 2280 *op_class = 117; 2281 } else { 2282 *op_class = 115; 2283 } 2284 2285 return true; 2286 } 2287 2288 /* 5 GHz, channels 52..64 */ 2289 if (freq >= 5260 && freq <= 5320) { 2290 if (vht_opclass) { 2291 *op_class = vht_opclass; 2292 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2293 if (freq > chandef->chan->center_freq) 2294 *op_class = 119; 2295 else 2296 *op_class = 120; 2297 } else { 2298 *op_class = 118; 2299 } 2300 2301 return true; 2302 } 2303 2304 /* 5 GHz, channels 100..144 */ 2305 if (freq >= 5500 && freq <= 5720) { 2306 if (vht_opclass) { 2307 *op_class = vht_opclass; 2308 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2309 if (freq > chandef->chan->center_freq) 2310 *op_class = 122; 2311 else 2312 *op_class = 123; 2313 } else { 2314 *op_class = 121; 2315 } 2316 2317 return true; 2318 } 2319 2320 /* 5 GHz, channels 149..169 */ 2321 if (freq >= 5745 && freq <= 5845) { 2322 if (vht_opclass) { 2323 *op_class = vht_opclass; 2324 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2325 if (freq > chandef->chan->center_freq) 2326 *op_class = 126; 2327 else 2328 *op_class = 127; 2329 } else if (freq <= 5805) { 2330 *op_class = 124; 2331 } else { 2332 *op_class = 125; 2333 } 2334 2335 return true; 2336 } 2337 2338 /* 56.16 GHz, channel 1..4 */ 2339 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 2340 if (chandef->width >= NL80211_CHAN_WIDTH_40) 2341 return false; 2342 2343 *op_class = 180; 2344 return true; 2345 } 2346 2347 /* not supported yet */ 2348 return false; 2349 } 2350 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 2351 2352 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 2353 { 2354 switch (wdev->iftype) { 2355 case NL80211_IFTYPE_AP: 2356 case NL80211_IFTYPE_P2P_GO: 2357 WARN_ON(wdev->valid_links); 2358 return wdev->links[0].ap.beacon_interval; 2359 case NL80211_IFTYPE_MESH_POINT: 2360 return wdev->u.mesh.beacon_interval; 2361 case NL80211_IFTYPE_ADHOC: 2362 return wdev->u.ibss.beacon_interval; 2363 default: 2364 break; 2365 } 2366 2367 return 0; 2368 } 2369 2370 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 2371 u32 *beacon_int_gcd, 2372 bool *beacon_int_different, 2373 int radio_idx) 2374 { 2375 struct cfg80211_registered_device *rdev; 2376 struct wireless_dev *wdev; 2377 2378 *beacon_int_gcd = 0; 2379 *beacon_int_different = false; 2380 2381 rdev = wiphy_to_rdev(wiphy); 2382 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 2383 int wdev_bi; 2384 2385 /* this feature isn't supported with MLO */ 2386 if (wdev->valid_links) 2387 continue; 2388 2389 /* skip wdevs not active on the given wiphy radio */ 2390 if (radio_idx >= 0 && 2391 !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx))) 2392 continue; 2393 2394 wdev_bi = cfg80211_wdev_bi(wdev); 2395 2396 if (!wdev_bi) 2397 continue; 2398 2399 if (!*beacon_int_gcd) { 2400 *beacon_int_gcd = wdev_bi; 2401 continue; 2402 } 2403 2404 if (wdev_bi == *beacon_int_gcd) 2405 continue; 2406 2407 *beacon_int_different = true; 2408 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 2409 } 2410 2411 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 2412 if (*beacon_int_gcd) 2413 *beacon_int_different = true; 2414 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 2415 } 2416 } 2417 2418 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 2419 enum nl80211_iftype iftype, u32 beacon_int) 2420 { 2421 /* 2422 * This is just a basic pre-condition check; if interface combinations 2423 * are possible the driver must already be checking those with a call 2424 * to cfg80211_check_combinations(), in which case we'll validate more 2425 * through the cfg80211_calculate_bi_data() call and code in 2426 * cfg80211_iter_combinations(). 2427 */ 2428 2429 if (beacon_int < 10 || beacon_int > 10000) 2430 return -EINVAL; 2431 2432 return 0; 2433 } 2434 2435 int cfg80211_iter_combinations(struct wiphy *wiphy, 2436 struct iface_combination_params *params, 2437 void (*iter)(const struct ieee80211_iface_combination *c, 2438 void *data), 2439 void *data) 2440 { 2441 const struct wiphy_radio *radio = NULL; 2442 const struct ieee80211_iface_combination *c, *cs; 2443 const struct ieee80211_regdomain *regdom; 2444 enum nl80211_dfs_regions region = 0; 2445 int i, j, n, iftype; 2446 int num_interfaces = 0; 2447 u32 used_iftypes = 0; 2448 u32 beacon_int_gcd; 2449 bool beacon_int_different; 2450 2451 if (params->radio_idx >= 0) 2452 radio = &wiphy->radio[params->radio_idx]; 2453 2454 /* 2455 * This is a bit strange, since the iteration used to rely only on 2456 * the data given by the driver, but here it now relies on context, 2457 * in form of the currently operating interfaces. 2458 * This is OK for all current users, and saves us from having to 2459 * push the GCD calculations into all the drivers. 2460 * In the future, this should probably rely more on data that's in 2461 * cfg80211 already - the only thing not would appear to be any new 2462 * interfaces (while being brought up) and channel/radar data. 2463 */ 2464 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2465 &beacon_int_gcd, &beacon_int_different, 2466 params->radio_idx); 2467 2468 if (params->radar_detect) { 2469 rcu_read_lock(); 2470 regdom = rcu_dereference(cfg80211_regdomain); 2471 if (regdom) 2472 region = regdom->dfs_region; 2473 rcu_read_unlock(); 2474 } 2475 2476 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2477 num_interfaces += params->iftype_num[iftype]; 2478 if (params->iftype_num[iftype] > 0 && 2479 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2480 used_iftypes |= BIT(iftype); 2481 } 2482 2483 if (radio) { 2484 cs = radio->iface_combinations; 2485 n = radio->n_iface_combinations; 2486 } else { 2487 cs = wiphy->iface_combinations; 2488 n = wiphy->n_iface_combinations; 2489 } 2490 for (i = 0; i < n; i++) { 2491 struct ieee80211_iface_limit *limits; 2492 u32 all_iftypes = 0; 2493 2494 c = &cs[i]; 2495 if (num_interfaces > c->max_interfaces) 2496 continue; 2497 if (params->num_different_channels > c->num_different_channels) 2498 continue; 2499 2500 limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits), 2501 GFP_KERNEL); 2502 if (!limits) 2503 return -ENOMEM; 2504 2505 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2506 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2507 continue; 2508 for (j = 0; j < c->n_limits; j++) { 2509 all_iftypes |= limits[j].types; 2510 if (!(limits[j].types & BIT(iftype))) 2511 continue; 2512 if (limits[j].max < params->iftype_num[iftype]) 2513 goto cont; 2514 limits[j].max -= params->iftype_num[iftype]; 2515 } 2516 } 2517 2518 if (params->radar_detect != 2519 (c->radar_detect_widths & params->radar_detect)) 2520 goto cont; 2521 2522 if (params->radar_detect && c->radar_detect_regions && 2523 !(c->radar_detect_regions & BIT(region))) 2524 goto cont; 2525 2526 /* Finally check that all iftypes that we're currently 2527 * using are actually part of this combination. If they 2528 * aren't then we can't use this combination and have 2529 * to continue to the next. 2530 */ 2531 if ((all_iftypes & used_iftypes) != used_iftypes) 2532 goto cont; 2533 2534 if (beacon_int_gcd) { 2535 if (c->beacon_int_min_gcd && 2536 beacon_int_gcd < c->beacon_int_min_gcd) 2537 goto cont; 2538 if (!c->beacon_int_min_gcd && beacon_int_different) 2539 goto cont; 2540 } 2541 2542 /* This combination covered all interface types and 2543 * supported the requested numbers, so we're good. 2544 */ 2545 2546 (*iter)(c, data); 2547 cont: 2548 kfree(limits); 2549 } 2550 2551 return 0; 2552 } 2553 EXPORT_SYMBOL(cfg80211_iter_combinations); 2554 2555 static void 2556 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2557 void *data) 2558 { 2559 int *num = data; 2560 (*num)++; 2561 } 2562 2563 int cfg80211_check_combinations(struct wiphy *wiphy, 2564 struct iface_combination_params *params) 2565 { 2566 int err, num = 0; 2567 2568 err = cfg80211_iter_combinations(wiphy, params, 2569 cfg80211_iter_sum_ifcombs, &num); 2570 if (err) 2571 return err; 2572 if (num == 0) 2573 return -EBUSY; 2574 2575 return 0; 2576 } 2577 EXPORT_SYMBOL(cfg80211_check_combinations); 2578 2579 int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy, 2580 const struct ieee80211_channel *chan) 2581 { 2582 const struct wiphy_radio *radio; 2583 int i, j; 2584 u32 freq; 2585 2586 if (!chan) 2587 return -EINVAL; 2588 2589 freq = ieee80211_channel_to_khz(chan); 2590 for (i = 0; i < wiphy->n_radio; i++) { 2591 radio = &wiphy->radio[i]; 2592 for (j = 0; j < radio->n_freq_range; j++) { 2593 if (freq >= radio->freq_range[j].start_freq && 2594 freq < radio->freq_range[j].end_freq) 2595 return i; 2596 } 2597 } 2598 2599 return -EINVAL; 2600 } 2601 EXPORT_SYMBOL(cfg80211_get_radio_idx_by_chan); 2602 2603 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2604 const u8 *rates, unsigned int n_rates, 2605 u32 *mask) 2606 { 2607 int i, j; 2608 2609 if (!sband) 2610 return -EINVAL; 2611 2612 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2613 return -EINVAL; 2614 2615 *mask = 0; 2616 2617 for (i = 0; i < n_rates; i++) { 2618 int rate = (rates[i] & 0x7f) * 5; 2619 bool found = false; 2620 2621 for (j = 0; j < sband->n_bitrates; j++) { 2622 if (sband->bitrates[j].bitrate == rate) { 2623 found = true; 2624 *mask |= BIT(j); 2625 break; 2626 } 2627 } 2628 if (!found) 2629 return -EINVAL; 2630 } 2631 2632 /* 2633 * mask must have at least one bit set here since we 2634 * didn't accept a 0-length rates array nor allowed 2635 * entries in the array that didn't exist 2636 */ 2637 2638 return 0; 2639 } 2640 2641 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2642 { 2643 enum nl80211_band band; 2644 unsigned int n_channels = 0; 2645 2646 for (band = 0; band < NUM_NL80211_BANDS; band++) 2647 if (wiphy->bands[band]) 2648 n_channels += wiphy->bands[band]->n_channels; 2649 2650 return n_channels; 2651 } 2652 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2653 2654 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2655 struct station_info *sinfo) 2656 { 2657 struct cfg80211_registered_device *rdev; 2658 struct wireless_dev *wdev; 2659 2660 wdev = dev->ieee80211_ptr; 2661 if (!wdev) 2662 return -EOPNOTSUPP; 2663 2664 rdev = wiphy_to_rdev(wdev->wiphy); 2665 if (!rdev->ops->get_station) 2666 return -EOPNOTSUPP; 2667 2668 memset(sinfo, 0, sizeof(*sinfo)); 2669 2670 guard(wiphy)(&rdev->wiphy); 2671 2672 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2673 } 2674 EXPORT_SYMBOL(cfg80211_get_station); 2675 2676 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2677 { 2678 int i; 2679 2680 if (!f) 2681 return; 2682 2683 kfree(f->serv_spec_info); 2684 kfree(f->srf_bf); 2685 kfree(f->srf_macs); 2686 for (i = 0; i < f->num_rx_filters; i++) 2687 kfree(f->rx_filters[i].filter); 2688 2689 for (i = 0; i < f->num_tx_filters; i++) 2690 kfree(f->tx_filters[i].filter); 2691 2692 kfree(f->rx_filters); 2693 kfree(f->tx_filters); 2694 kfree(f); 2695 } 2696 EXPORT_SYMBOL(cfg80211_free_nan_func); 2697 2698 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2699 u32 center_freq_khz, u32 bw_khz) 2700 { 2701 u32 start_freq_khz, end_freq_khz; 2702 2703 start_freq_khz = center_freq_khz - (bw_khz / 2); 2704 end_freq_khz = center_freq_khz + (bw_khz / 2); 2705 2706 if (start_freq_khz >= freq_range->start_freq_khz && 2707 end_freq_khz <= freq_range->end_freq_khz) 2708 return true; 2709 2710 return false; 2711 } 2712 2713 int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo, 2714 gfp_t gfp) 2715 { 2716 link_sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2717 sizeof(*link_sinfo->pertid), gfp); 2718 if (!link_sinfo->pertid) 2719 return -ENOMEM; 2720 2721 return 0; 2722 } 2723 EXPORT_SYMBOL(cfg80211_link_sinfo_alloc_tid_stats); 2724 2725 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2726 { 2727 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2728 sizeof(*(sinfo->pertid)), 2729 gfp); 2730 if (!sinfo->pertid) 2731 return -ENOMEM; 2732 2733 return 0; 2734 } 2735 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2736 2737 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2738 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2739 const unsigned char rfc1042_header[] __aligned(2) = 2740 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2741 EXPORT_SYMBOL(rfc1042_header); 2742 2743 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2744 const unsigned char bridge_tunnel_header[] __aligned(2) = 2745 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2746 EXPORT_SYMBOL(bridge_tunnel_header); 2747 2748 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2749 struct iapp_layer2_update { 2750 u8 da[ETH_ALEN]; /* broadcast */ 2751 u8 sa[ETH_ALEN]; /* STA addr */ 2752 __be16 len; /* 6 */ 2753 u8 dsap; /* 0 */ 2754 u8 ssap; /* 0 */ 2755 u8 control; 2756 u8 xid_info[3]; 2757 } __packed; 2758 2759 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2760 { 2761 struct iapp_layer2_update *msg; 2762 struct sk_buff *skb; 2763 2764 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2765 * bridge devices */ 2766 2767 skb = dev_alloc_skb(sizeof(*msg)); 2768 if (!skb) 2769 return; 2770 msg = skb_put(skb, sizeof(*msg)); 2771 2772 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2773 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2774 2775 eth_broadcast_addr(msg->da); 2776 ether_addr_copy(msg->sa, addr); 2777 msg->len = htons(6); 2778 msg->dsap = 0; 2779 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2780 msg->control = 0xaf; /* XID response lsb.1111F101. 2781 * F=0 (no poll command; unsolicited frame) */ 2782 msg->xid_info[0] = 0x81; /* XID format identifier */ 2783 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2784 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2785 2786 skb->dev = dev; 2787 skb->protocol = eth_type_trans(skb, dev); 2788 memset(skb->cb, 0, sizeof(skb->cb)); 2789 netif_rx(skb); 2790 } 2791 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2792 2793 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2794 enum ieee80211_vht_chanwidth bw, 2795 int mcs, bool ext_nss_bw_capable, 2796 unsigned int max_vht_nss) 2797 { 2798 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2799 int ext_nss_bw; 2800 int supp_width; 2801 int i, mcs_encoding; 2802 2803 if (map == 0xffff) 2804 return 0; 2805 2806 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2807 return 0; 2808 if (mcs <= 7) 2809 mcs_encoding = 0; 2810 else if (mcs == 8) 2811 mcs_encoding = 1; 2812 else 2813 mcs_encoding = 2; 2814 2815 if (!max_vht_nss) { 2816 /* find max_vht_nss for the given MCS */ 2817 for (i = 7; i >= 0; i--) { 2818 int supp = (map >> (2 * i)) & 3; 2819 2820 if (supp == 3) 2821 continue; 2822 2823 if (supp >= mcs_encoding) { 2824 max_vht_nss = i + 1; 2825 break; 2826 } 2827 } 2828 } 2829 2830 if (!(cap->supp_mcs.tx_mcs_map & 2831 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2832 return max_vht_nss; 2833 2834 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2835 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2836 supp_width = le32_get_bits(cap->vht_cap_info, 2837 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2838 2839 /* if not capable, treat ext_nss_bw as 0 */ 2840 if (!ext_nss_bw_capable) 2841 ext_nss_bw = 0; 2842 2843 /* This is invalid */ 2844 if (supp_width == 3) 2845 return 0; 2846 2847 /* This is an invalid combination so pretend nothing is supported */ 2848 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2849 return 0; 2850 2851 /* 2852 * Cover all the special cases according to IEEE 802.11-2016 2853 * Table 9-250. All other cases are either factor of 1 or not 2854 * valid/supported. 2855 */ 2856 switch (bw) { 2857 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2858 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2859 if ((supp_width == 1 || supp_width == 2) && 2860 ext_nss_bw == 3) 2861 return 2 * max_vht_nss; 2862 break; 2863 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2864 if (supp_width == 0 && 2865 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2866 return max_vht_nss / 2; 2867 if (supp_width == 0 && 2868 ext_nss_bw == 3) 2869 return (3 * max_vht_nss) / 4; 2870 if (supp_width == 1 && 2871 ext_nss_bw == 3) 2872 return 2 * max_vht_nss; 2873 break; 2874 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2875 if (supp_width == 0 && ext_nss_bw == 1) 2876 return 0; /* not possible */ 2877 if (supp_width == 0 && 2878 ext_nss_bw == 2) 2879 return max_vht_nss / 2; 2880 if (supp_width == 0 && 2881 ext_nss_bw == 3) 2882 return (3 * max_vht_nss) / 4; 2883 if (supp_width == 1 && 2884 ext_nss_bw == 0) 2885 return 0; /* not possible */ 2886 if (supp_width == 1 && 2887 ext_nss_bw == 1) 2888 return max_vht_nss / 2; 2889 if (supp_width == 1 && 2890 ext_nss_bw == 2) 2891 return (3 * max_vht_nss) / 4; 2892 break; 2893 } 2894 2895 /* not covered or invalid combination received */ 2896 return max_vht_nss; 2897 } 2898 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2899 2900 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2901 bool is_4addr, u8 check_swif) 2902 2903 { 2904 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2905 2906 switch (check_swif) { 2907 case 0: 2908 if (is_vlan && is_4addr) 2909 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2910 return wiphy->interface_modes & BIT(iftype); 2911 case 1: 2912 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2913 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2914 return wiphy->software_iftypes & BIT(iftype); 2915 default: 2916 break; 2917 } 2918 2919 return false; 2920 } 2921 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2922 2923 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2924 { 2925 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2926 2927 lockdep_assert_wiphy(wdev->wiphy); 2928 2929 switch (wdev->iftype) { 2930 case NL80211_IFTYPE_AP: 2931 case NL80211_IFTYPE_P2P_GO: 2932 cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2933 break; 2934 default: 2935 /* per-link not relevant */ 2936 break; 2937 } 2938 2939 rdev_del_intf_link(rdev, wdev, link_id); 2940 2941 wdev->valid_links &= ~BIT(link_id); 2942 eth_zero_addr(wdev->links[link_id].addr); 2943 } 2944 2945 void cfg80211_remove_links(struct wireless_dev *wdev) 2946 { 2947 unsigned int link_id; 2948 2949 /* 2950 * links are controlled by upper layers (userspace/cfg) 2951 * only for AP mode, so only remove them here for AP 2952 */ 2953 if (wdev->iftype != NL80211_IFTYPE_AP) 2954 return; 2955 2956 if (wdev->valid_links) { 2957 for_each_valid_link(wdev, link_id) 2958 cfg80211_remove_link(wdev, link_id); 2959 } 2960 } 2961 2962 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2963 struct wireless_dev *wdev) 2964 { 2965 cfg80211_remove_links(wdev); 2966 2967 return rdev_del_virtual_intf(rdev, wdev); 2968 } 2969 2970 const struct wiphy_iftype_ext_capab * 2971 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2972 { 2973 int i; 2974 2975 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2976 if (wiphy->iftype_ext_capab[i].iftype == type) 2977 return &wiphy->iftype_ext_capab[i]; 2978 } 2979 2980 return NULL; 2981 } 2982 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2983 2984 bool ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio, 2985 u32 freq, u32 width) 2986 { 2987 const struct wiphy_radio_freq_range *r; 2988 int i; 2989 2990 for (i = 0; i < radio->n_freq_range; i++) { 2991 r = &radio->freq_range[i]; 2992 if (freq - width / 2 >= r->start_freq && 2993 freq + width / 2 <= r->end_freq) 2994 return true; 2995 } 2996 2997 return false; 2998 } 2999 EXPORT_SYMBOL(ieee80211_radio_freq_range_valid); 3000 3001 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio, 3002 const struct cfg80211_chan_def *chandef) 3003 { 3004 u32 freq, width; 3005 3006 freq = ieee80211_chandef_to_khz(chandef); 3007 width = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef)); 3008 if (!ieee80211_radio_freq_range_valid(radio, freq, width)) 3009 return false; 3010 3011 freq = MHZ_TO_KHZ(chandef->center_freq2); 3012 if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width)) 3013 return false; 3014 3015 return true; 3016 } 3017 EXPORT_SYMBOL(cfg80211_radio_chandef_valid); 3018 3019 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev, 3020 struct ieee80211_channel *chan) 3021 { 3022 struct wiphy *wiphy = wdev->wiphy; 3023 const struct wiphy_radio *radio; 3024 struct cfg80211_chan_def chandef; 3025 u32 radio_mask; 3026 int i; 3027 3028 radio_mask = wdev->radio_mask; 3029 if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1) 3030 return true; 3031 3032 cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20); 3033 for (i = 0; i < wiphy->n_radio; i++) { 3034 if (!(radio_mask & BIT(i))) 3035 continue; 3036 3037 radio = &wiphy->radio[i]; 3038 if (!cfg80211_radio_chandef_valid(radio, &chandef)) 3039 continue; 3040 3041 return true; 3042 } 3043 3044 return false; 3045 } 3046 EXPORT_SYMBOL(cfg80211_wdev_channel_allowed); 3047