xref: /linux/rust/kernel/revocable.rs (revision 352af6a011d586ff042db4b2d1f7421875eb8a14)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Revocable objects.
4 //!
5 //! The [`Revocable`] type wraps other types and allows access to them to be revoked. The existence
6 //! of a [`RevocableGuard`] ensures that objects remain valid.
7 
8 use pin_init::Wrapper;
9 
10 use crate::{bindings, prelude::*, sync::rcu, types::Opaque};
11 use core::{
12     marker::PhantomData,
13     ops::Deref,
14     ptr::drop_in_place,
15     sync::atomic::{AtomicBool, Ordering},
16 };
17 
18 /// An object that can become inaccessible at runtime.
19 ///
20 /// Once access is revoked and all concurrent users complete (i.e., all existing instances of
21 /// [`RevocableGuard`] are dropped), the wrapped object is also dropped.
22 ///
23 /// # Examples
24 ///
25 /// ```
26 /// # use kernel::revocable::Revocable;
27 ///
28 /// struct Example {
29 ///     a: u32,
30 ///     b: u32,
31 /// }
32 ///
33 /// fn add_two(v: &Revocable<Example>) -> Option<u32> {
34 ///     let guard = v.try_access()?;
35 ///     Some(guard.a + guard.b)
36 /// }
37 ///
38 /// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap();
39 /// assert_eq!(add_two(&v), Some(30));
40 /// v.revoke();
41 /// assert_eq!(add_two(&v), None);
42 /// ```
43 ///
44 /// Sample example as above, but explicitly using the rcu read side lock.
45 ///
46 /// ```
47 /// # use kernel::revocable::Revocable;
48 /// use kernel::sync::rcu;
49 ///
50 /// struct Example {
51 ///     a: u32,
52 ///     b: u32,
53 /// }
54 ///
55 /// fn add_two(v: &Revocable<Example>) -> Option<u32> {
56 ///     let guard = rcu::read_lock();
57 ///     let e = v.try_access_with_guard(&guard)?;
58 ///     Some(e.a + e.b)
59 /// }
60 ///
61 /// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap();
62 /// assert_eq!(add_two(&v), Some(30));
63 /// v.revoke();
64 /// assert_eq!(add_two(&v), None);
65 /// ```
66 #[pin_data(PinnedDrop)]
67 pub struct Revocable<T> {
68     is_available: AtomicBool,
69     #[pin]
70     data: Opaque<T>,
71 }
72 
73 // SAFETY: `Revocable` is `Send` if the wrapped object is also `Send`. This is because while the
74 // functionality exposed by `Revocable` can be accessed from any thread/CPU, it is possible that
75 // this isn't supported by the wrapped object.
76 unsafe impl<T: Send> Send for Revocable<T> {}
77 
78 // SAFETY: `Revocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require `Send`
79 // from the wrapped object as well because  of `Revocable::revoke`, which can trigger the `Drop`
80 // implementation of the wrapped object from an arbitrary thread.
81 unsafe impl<T: Sync + Send> Sync for Revocable<T> {}
82 
83 impl<T> Revocable<T> {
84     /// Creates a new revocable instance of the given data.
new<E>(data: impl PinInit<T, E>) -> impl PinInit<Self, E>85     pub fn new<E>(data: impl PinInit<T, E>) -> impl PinInit<Self, E> {
86         try_pin_init!(Self {
87             is_available: AtomicBool::new(true),
88             data <- Opaque::pin_init(data),
89         }? E)
90     }
91 
92     /// Tries to access the revocable wrapped object.
93     ///
94     /// Returns `None` if the object has been revoked and is therefore no longer accessible.
95     ///
96     /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
97     /// remain accessible while the guard is alive. In such cases, callers are not allowed to sleep
98     /// because another CPU may be waiting to complete the revocation of this object.
try_access(&self) -> Option<RevocableGuard<'_, T>>99     pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> {
100         let guard = rcu::read_lock();
101         if self.is_available.load(Ordering::Relaxed) {
102             // Since `self.is_available` is true, data is initialised and has to remain valid
103             // because the RCU read side lock prevents it from being dropped.
104             Some(RevocableGuard::new(self.data.get(), guard))
105         } else {
106             None
107         }
108     }
109 
110     /// Tries to access the revocable wrapped object.
111     ///
112     /// Returns `None` if the object has been revoked and is therefore no longer accessible.
113     ///
114     /// Returns a shared reference to the object otherwise; the object is guaranteed to
115     /// remain accessible while the rcu read side guard is alive. In such cases, callers are not
116     /// allowed to sleep because another CPU may be waiting to complete the revocation of this
117     /// object.
try_access_with_guard<'a>(&'a self, _guard: &'a rcu::Guard) -> Option<&'a T>118     pub fn try_access_with_guard<'a>(&'a self, _guard: &'a rcu::Guard) -> Option<&'a T> {
119         if self.is_available.load(Ordering::Relaxed) {
120             // SAFETY: Since `self.is_available` is true, data is initialised and has to remain
121             // valid because the RCU read side lock prevents it from being dropped.
122             Some(unsafe { &*self.data.get() })
123         } else {
124             None
125         }
126     }
127 
128     /// Tries to access the wrapped object and run a closure on it while the guard is held.
129     ///
130     /// This is a convenience method to run short non-sleepable code blocks while ensuring the
131     /// guard is dropped afterwards. [`Self::try_access`] carries the risk that the caller will
132     /// forget to explicitly drop that returned guard before calling sleepable code; this method
133     /// adds an extra safety to make sure it doesn't happen.
134     ///
135     /// Returns [`None`] if the object has been revoked and is therefore no longer accessible, or
136     /// the result of the closure wrapped in [`Some`]. If the closure returns a [`Result`] then the
137     /// return type becomes `Option<Result<>>`, which can be inconvenient. Users are encouraged to
138     /// define their own macro that turns the [`Option`] into a proper error code and flattens the
139     /// inner result into it if it makes sense within their subsystem.
try_access_with<R, F: FnOnce(&T) -> R>(&self, f: F) -> Option<R>140     pub fn try_access_with<R, F: FnOnce(&T) -> R>(&self, f: F) -> Option<R> {
141         self.try_access().map(|t| f(&*t))
142     }
143 
144     /// Directly access the revocable wrapped object.
145     ///
146     /// # Safety
147     ///
148     /// The caller must ensure this [`Revocable`] instance hasn't been revoked and won't be revoked
149     /// as long as the returned `&T` lives.
access(&self) -> &T150     pub unsafe fn access(&self) -> &T {
151         // SAFETY: By the safety requirement of this function it is guaranteed that
152         // `self.data.get()` is a valid pointer to an instance of `T`.
153         unsafe { &*self.data.get() }
154     }
155 
156     /// # Safety
157     ///
158     /// Callers must ensure that there are no more concurrent users of the revocable object.
revoke_internal<const SYNC: bool>(&self) -> bool159     unsafe fn revoke_internal<const SYNC: bool>(&self) -> bool {
160         let revoke = self.is_available.swap(false, Ordering::Relaxed);
161 
162         if revoke {
163             if SYNC {
164                 // SAFETY: Just an FFI call, there are no further requirements.
165                 unsafe { bindings::synchronize_rcu() };
166             }
167 
168             // SAFETY: We know `self.data` is valid because only one CPU can succeed the
169             // `compare_exchange` above that takes `is_available` from `true` to `false`.
170             unsafe { drop_in_place(self.data.get()) };
171         }
172 
173         revoke
174     }
175 
176     /// Revokes access to and drops the wrapped object.
177     ///
178     /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`],
179     /// expecting that there are no concurrent users of the object.
180     ///
181     /// Returns `true` if `&self` has been revoked with this call, `false` if it was revoked
182     /// already.
183     ///
184     /// # Safety
185     ///
186     /// Callers must ensure that there are no more concurrent users of the revocable object.
revoke_nosync(&self) -> bool187     pub unsafe fn revoke_nosync(&self) -> bool {
188         // SAFETY: By the safety requirement of this function, the caller ensures that nobody is
189         // accessing the data anymore and hence we don't have to wait for the grace period to
190         // finish.
191         unsafe { self.revoke_internal::<false>() }
192     }
193 
194     /// Revokes access to and drops the wrapped object.
195     ///
196     /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`].
197     ///
198     /// If there are concurrent users of the object (i.e., ones that called
199     /// [`Revocable::try_access`] beforehand and still haven't dropped the returned guard), this
200     /// function waits for the concurrent access to complete before dropping the wrapped object.
201     ///
202     /// Returns `true` if `&self` has been revoked with this call, `false` if it was revoked
203     /// already.
revoke(&self) -> bool204     pub fn revoke(&self) -> bool {
205         // SAFETY: By passing `true` we ask `revoke_internal` to wait for the grace period to
206         // finish.
207         unsafe { self.revoke_internal::<true>() }
208     }
209 }
210 
211 #[pinned_drop]
212 impl<T> PinnedDrop for Revocable<T> {
drop(self: Pin<&mut Self>)213     fn drop(self: Pin<&mut Self>) {
214         // Drop only if the data hasn't been revoked yet (in which case it has already been
215         // dropped).
216         // SAFETY: We are not moving out of `p`, only dropping in place
217         let p = unsafe { self.get_unchecked_mut() };
218         if *p.is_available.get_mut() {
219             // SAFETY: We know `self.data` is valid because no other CPU has changed
220             // `is_available` to `false` yet, and no other CPU can do it anymore because this CPU
221             // holds the only reference (mutable) to `self` now.
222             unsafe { drop_in_place(p.data.get()) };
223         }
224     }
225 }
226 
227 /// A guard that allows access to a revocable object and keeps it alive.
228 ///
229 /// CPUs may not sleep while holding on to [`RevocableGuard`] because it's in atomic context
230 /// holding the RCU read-side lock.
231 ///
232 /// # Invariants
233 ///
234 /// The RCU read-side lock is held while the guard is alive.
235 pub struct RevocableGuard<'a, T> {
236     // This can't use the `&'a T` type because references that appear in function arguments must
237     // not become dangling during the execution of the function, which can happen if the
238     // `RevocableGuard` is passed as a function argument and then dropped during execution of the
239     // function.
240     data_ref: *const T,
241     _rcu_guard: rcu::Guard,
242     _p: PhantomData<&'a ()>,
243 }
244 
245 impl<T> RevocableGuard<'_, T> {
new(data_ref: *const T, rcu_guard: rcu::Guard) -> Self246     fn new(data_ref: *const T, rcu_guard: rcu::Guard) -> Self {
247         Self {
248             data_ref,
249             _rcu_guard: rcu_guard,
250             _p: PhantomData,
251         }
252     }
253 }
254 
255 impl<T> Deref for RevocableGuard<'_, T> {
256     type Target = T;
257 
deref(&self) -> &Self::Target258     fn deref(&self) -> &Self::Target {
259         // SAFETY: By the type invariants, we hold the rcu read-side lock, so the object is
260         // guaranteed to remain valid.
261         unsafe { &*self.data_ref }
262     }
263 }
264