1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * BPF JIT compiler for ARM64
4 *
5 * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
6 */
7
8 #define pr_fmt(fmt) "bpf_jit: " fmt
9
10 #include <linux/arm-smccc.h>
11 #include <linux/bitfield.h>
12 #include <linux/bpf.h>
13 #include <linux/filter.h>
14 #include <linux/memory.h>
15 #include <linux/printk.h>
16 #include <linux/slab.h>
17
18 #include <asm/asm-extable.h>
19 #include <asm/byteorder.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cpufeature.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/insn.h>
24 #include <asm/text-patching.h>
25 #include <asm/set_memory.h>
26
27 #include "bpf_jit.h"
28
29 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
30 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
31 #define TCCNT_PTR (MAX_BPF_JIT_REG + 2)
32 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
33 #define ARENA_VM_START (MAX_BPF_JIT_REG + 5)
34
35 #define check_imm(bits, imm) do { \
36 if ((((imm) > 0) && ((imm) >> (bits))) || \
37 (((imm) < 0) && (~(imm) >> (bits)))) { \
38 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
39 i, imm, imm); \
40 return -EINVAL; \
41 } \
42 } while (0)
43 #define check_imm19(imm) check_imm(19, imm)
44 #define check_imm26(imm) check_imm(26, imm)
45
46 /* Map BPF registers to A64 registers */
47 static const int bpf2a64[] = {
48 /* return value from in-kernel function, and exit value from eBPF */
49 [BPF_REG_0] = A64_R(7),
50 /* arguments from eBPF program to in-kernel function */
51 [BPF_REG_1] = A64_R(0),
52 [BPF_REG_2] = A64_R(1),
53 [BPF_REG_3] = A64_R(2),
54 [BPF_REG_4] = A64_R(3),
55 [BPF_REG_5] = A64_R(4),
56 /* callee saved registers that in-kernel function will preserve */
57 [BPF_REG_6] = A64_R(19),
58 [BPF_REG_7] = A64_R(20),
59 [BPF_REG_8] = A64_R(21),
60 [BPF_REG_9] = A64_R(22),
61 /* read-only frame pointer to access stack */
62 [BPF_REG_FP] = A64_R(25),
63 /* temporary registers for BPF JIT */
64 [TMP_REG_1] = A64_R(10),
65 [TMP_REG_2] = A64_R(11),
66 [TMP_REG_3] = A64_R(12),
67 /* tail_call_cnt_ptr */
68 [TCCNT_PTR] = A64_R(26),
69 /* temporary register for blinding constants */
70 [BPF_REG_AX] = A64_R(9),
71 /* callee saved register for kern_vm_start address */
72 [ARENA_VM_START] = A64_R(28),
73 };
74
75 struct jit_ctx {
76 const struct bpf_prog *prog;
77 int idx;
78 int epilogue_offset;
79 int *offset;
80 int exentry_idx;
81 int nr_used_callee_reg;
82 u8 used_callee_reg[8]; /* r6~r9, fp, arena_vm_start */
83 __le32 *image;
84 __le32 *ro_image;
85 u32 stack_size;
86 u64 user_vm_start;
87 u64 arena_vm_start;
88 bool fp_used;
89 bool write;
90 };
91
92 struct bpf_plt {
93 u32 insn_ldr; /* load target */
94 u32 insn_br; /* branch to target */
95 u64 target; /* target value */
96 };
97
98 #define PLT_TARGET_SIZE sizeof_field(struct bpf_plt, target)
99 #define PLT_TARGET_OFFSET offsetof(struct bpf_plt, target)
100
emit(const u32 insn,struct jit_ctx * ctx)101 static inline void emit(const u32 insn, struct jit_ctx *ctx)
102 {
103 if (ctx->image != NULL && ctx->write)
104 ctx->image[ctx->idx] = cpu_to_le32(insn);
105
106 ctx->idx++;
107 }
108
emit_a64_mov_i(const int is64,const int reg,const s32 val,struct jit_ctx * ctx)109 static inline void emit_a64_mov_i(const int is64, const int reg,
110 const s32 val, struct jit_ctx *ctx)
111 {
112 u16 hi = val >> 16;
113 u16 lo = val & 0xffff;
114
115 if (hi & 0x8000) {
116 if (hi == 0xffff) {
117 emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
118 } else {
119 emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
120 if (lo != 0xffff)
121 emit(A64_MOVK(is64, reg, lo, 0), ctx);
122 }
123 } else {
124 emit(A64_MOVZ(is64, reg, lo, 0), ctx);
125 if (hi)
126 emit(A64_MOVK(is64, reg, hi, 16), ctx);
127 }
128 }
129
i64_i16_blocks(const u64 val,bool inverse)130 static int i64_i16_blocks(const u64 val, bool inverse)
131 {
132 return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
133 (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
134 (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
135 (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
136 }
137
emit_a64_mov_i64(const int reg,const u64 val,struct jit_ctx * ctx)138 static inline void emit_a64_mov_i64(const int reg, const u64 val,
139 struct jit_ctx *ctx)
140 {
141 u64 nrm_tmp = val, rev_tmp = ~val;
142 bool inverse;
143 int shift;
144
145 if (!(nrm_tmp >> 32))
146 return emit_a64_mov_i(0, reg, (u32)val, ctx);
147
148 inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
149 shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
150 (fls64(nrm_tmp) - 1)), 16), 0);
151 if (inverse)
152 emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
153 else
154 emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
155 shift -= 16;
156 while (shift >= 0) {
157 if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
158 emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
159 shift -= 16;
160 }
161 }
162
emit_bti(u32 insn,struct jit_ctx * ctx)163 static inline void emit_bti(u32 insn, struct jit_ctx *ctx)
164 {
165 if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
166 emit(insn, ctx);
167 }
168
169 /*
170 * Kernel addresses in the vmalloc space use at most 48 bits, and the
171 * remaining bits are guaranteed to be 0x1. So we can compose the address
172 * with a fixed length movn/movk/movk sequence.
173 */
emit_addr_mov_i64(const int reg,const u64 val,struct jit_ctx * ctx)174 static inline void emit_addr_mov_i64(const int reg, const u64 val,
175 struct jit_ctx *ctx)
176 {
177 u64 tmp = val;
178 int shift = 0;
179
180 emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
181 while (shift < 32) {
182 tmp >>= 16;
183 shift += 16;
184 emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
185 }
186 }
187
should_emit_indirect_call(long target,const struct jit_ctx * ctx)188 static bool should_emit_indirect_call(long target, const struct jit_ctx *ctx)
189 {
190 long offset;
191
192 /* when ctx->ro_image is not allocated or the target is unknown,
193 * emit indirect call
194 */
195 if (!ctx->ro_image || !target)
196 return true;
197
198 offset = target - (long)&ctx->ro_image[ctx->idx];
199 return offset < -SZ_128M || offset >= SZ_128M;
200 }
201
emit_direct_call(u64 target,struct jit_ctx * ctx)202 static void emit_direct_call(u64 target, struct jit_ctx *ctx)
203 {
204 u32 insn;
205 unsigned long pc;
206
207 pc = (unsigned long)&ctx->ro_image[ctx->idx];
208 insn = aarch64_insn_gen_branch_imm(pc, target, AARCH64_INSN_BRANCH_LINK);
209 emit(insn, ctx);
210 }
211
emit_indirect_call(u64 target,struct jit_ctx * ctx)212 static void emit_indirect_call(u64 target, struct jit_ctx *ctx)
213 {
214 u8 tmp;
215
216 tmp = bpf2a64[TMP_REG_1];
217 emit_addr_mov_i64(tmp, target, ctx);
218 emit(A64_BLR(tmp), ctx);
219 }
220
emit_call(u64 target,struct jit_ctx * ctx)221 static void emit_call(u64 target, struct jit_ctx *ctx)
222 {
223 if (should_emit_indirect_call((long)target, ctx))
224 emit_indirect_call(target, ctx);
225 else
226 emit_direct_call(target, ctx);
227 }
228
bpf2a64_offset(int bpf_insn,int off,const struct jit_ctx * ctx)229 static inline int bpf2a64_offset(int bpf_insn, int off,
230 const struct jit_ctx *ctx)
231 {
232 /* BPF JMP offset is relative to the next instruction */
233 bpf_insn++;
234 /*
235 * Whereas arm64 branch instructions encode the offset
236 * from the branch itself, so we must subtract 1 from the
237 * instruction offset.
238 */
239 return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1);
240 }
241
jit_fill_hole(void * area,unsigned int size)242 static void jit_fill_hole(void *area, unsigned int size)
243 {
244 __le32 *ptr;
245 /* We are guaranteed to have aligned memory. */
246 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
247 *ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
248 }
249
bpf_arch_text_invalidate(void * dst,size_t len)250 int bpf_arch_text_invalidate(void *dst, size_t len)
251 {
252 if (!aarch64_insn_set(dst, AARCH64_BREAK_FAULT, len))
253 return -EINVAL;
254
255 return 0;
256 }
257
epilogue_offset(const struct jit_ctx * ctx)258 static inline int epilogue_offset(const struct jit_ctx *ctx)
259 {
260 int to = ctx->epilogue_offset;
261 int from = ctx->idx;
262
263 return to - from;
264 }
265
is_addsub_imm(u32 imm)266 static bool is_addsub_imm(u32 imm)
267 {
268 /* Either imm12 or shifted imm12. */
269 return !(imm & ~0xfff) || !(imm & ~0xfff000);
270 }
271
emit_a64_add_i(const bool is64,const int dst,const int src,const int tmp,const s32 imm,struct jit_ctx * ctx)272 static inline void emit_a64_add_i(const bool is64, const int dst, const int src,
273 const int tmp, const s32 imm, struct jit_ctx *ctx)
274 {
275 if (is_addsub_imm(imm)) {
276 emit(A64_ADD_I(is64, dst, src, imm), ctx);
277 } else if (is_addsub_imm(-(u32)imm)) {
278 emit(A64_SUB_I(is64, dst, src, -imm), ctx);
279 } else {
280 emit_a64_mov_i(is64, tmp, imm, ctx);
281 emit(A64_ADD(is64, dst, src, tmp), ctx);
282 }
283 }
284
285 /*
286 * There are 3 types of AArch64 LDR/STR (immediate) instruction:
287 * Post-index, Pre-index, Unsigned offset.
288 *
289 * For BPF ldr/str, the "unsigned offset" type is sufficient.
290 *
291 * "Unsigned offset" type LDR(immediate) format:
292 *
293 * 3 2 1 0
294 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
295 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
296 * |x x|1 1 1 0 0 1 0 1| imm12 | Rn | Rt |
297 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
298 * scale
299 *
300 * "Unsigned offset" type STR(immediate) format:
301 * 3 2 1 0
302 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
303 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
304 * |x x|1 1 1 0 0 1 0 0| imm12 | Rn | Rt |
305 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
306 * scale
307 *
308 * The offset is calculated from imm12 and scale in the following way:
309 *
310 * offset = (u64)imm12 << scale
311 */
is_lsi_offset(int offset,int scale)312 static bool is_lsi_offset(int offset, int scale)
313 {
314 if (offset < 0)
315 return false;
316
317 if (offset > (0xFFF << scale))
318 return false;
319
320 if (offset & ((1 << scale) - 1))
321 return false;
322
323 return true;
324 }
325
326 /* generated main prog prologue:
327 * bti c // if CONFIG_ARM64_BTI_KERNEL
328 * mov x9, lr
329 * nop // POKE_OFFSET
330 * paciasp // if CONFIG_ARM64_PTR_AUTH_KERNEL
331 * stp x29, lr, [sp, #-16]!
332 * mov x29, sp
333 * stp xzr, x26, [sp, #-16]!
334 * mov x26, sp
335 * // PROLOGUE_OFFSET
336 * // save callee-saved registers
337 */
prepare_bpf_tail_call_cnt(struct jit_ctx * ctx)338 static void prepare_bpf_tail_call_cnt(struct jit_ctx *ctx)
339 {
340 const bool is_main_prog = !bpf_is_subprog(ctx->prog);
341 const u8 ptr = bpf2a64[TCCNT_PTR];
342
343 if (is_main_prog) {
344 /* Initialize tail_call_cnt. */
345 emit(A64_PUSH(A64_ZR, ptr, A64_SP), ctx);
346 emit(A64_MOV(1, ptr, A64_SP), ctx);
347 } else
348 emit(A64_PUSH(ptr, ptr, A64_SP), ctx);
349 }
350
find_used_callee_regs(struct jit_ctx * ctx)351 static void find_used_callee_regs(struct jit_ctx *ctx)
352 {
353 int i;
354 const struct bpf_prog *prog = ctx->prog;
355 const struct bpf_insn *insn = &prog->insnsi[0];
356 int reg_used = 0;
357
358 for (i = 0; i < prog->len; i++, insn++) {
359 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
360 reg_used |= 1;
361
362 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
363 reg_used |= 2;
364
365 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
366 reg_used |= 4;
367
368 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
369 reg_used |= 8;
370
371 if (insn->dst_reg == BPF_REG_FP || insn->src_reg == BPF_REG_FP) {
372 ctx->fp_used = true;
373 reg_used |= 16;
374 }
375 }
376
377 i = 0;
378 if (reg_used & 1)
379 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_6];
380
381 if (reg_used & 2)
382 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_7];
383
384 if (reg_used & 4)
385 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_8];
386
387 if (reg_used & 8)
388 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_9];
389
390 if (reg_used & 16)
391 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_FP];
392
393 if (ctx->arena_vm_start)
394 ctx->used_callee_reg[i++] = bpf2a64[ARENA_VM_START];
395
396 ctx->nr_used_callee_reg = i;
397 }
398
399 /* Save callee-saved registers */
push_callee_regs(struct jit_ctx * ctx)400 static void push_callee_regs(struct jit_ctx *ctx)
401 {
402 int reg1, reg2, i;
403
404 /*
405 * Program acting as exception boundary should save all ARM64
406 * Callee-saved registers as the exception callback needs to recover
407 * all ARM64 Callee-saved registers in its epilogue.
408 */
409 if (ctx->prog->aux->exception_boundary) {
410 emit(A64_PUSH(A64_R(19), A64_R(20), A64_SP), ctx);
411 emit(A64_PUSH(A64_R(21), A64_R(22), A64_SP), ctx);
412 emit(A64_PUSH(A64_R(23), A64_R(24), A64_SP), ctx);
413 emit(A64_PUSH(A64_R(25), A64_R(26), A64_SP), ctx);
414 emit(A64_PUSH(A64_R(27), A64_R(28), A64_SP), ctx);
415 } else {
416 find_used_callee_regs(ctx);
417 for (i = 0; i + 1 < ctx->nr_used_callee_reg; i += 2) {
418 reg1 = ctx->used_callee_reg[i];
419 reg2 = ctx->used_callee_reg[i + 1];
420 emit(A64_PUSH(reg1, reg2, A64_SP), ctx);
421 }
422 if (i < ctx->nr_used_callee_reg) {
423 reg1 = ctx->used_callee_reg[i];
424 /* keep SP 16-byte aligned */
425 emit(A64_PUSH(reg1, A64_ZR, A64_SP), ctx);
426 }
427 }
428 }
429
430 /* Restore callee-saved registers */
pop_callee_regs(struct jit_ctx * ctx)431 static void pop_callee_regs(struct jit_ctx *ctx)
432 {
433 struct bpf_prog_aux *aux = ctx->prog->aux;
434 int reg1, reg2, i;
435
436 /*
437 * Program acting as exception boundary pushes R23 and R24 in addition
438 * to BPF callee-saved registers. Exception callback uses the boundary
439 * program's stack frame, so recover these extra registers in the above
440 * two cases.
441 */
442 if (aux->exception_boundary || aux->exception_cb) {
443 emit(A64_POP(A64_R(27), A64_R(28), A64_SP), ctx);
444 emit(A64_POP(A64_R(25), A64_R(26), A64_SP), ctx);
445 emit(A64_POP(A64_R(23), A64_R(24), A64_SP), ctx);
446 emit(A64_POP(A64_R(21), A64_R(22), A64_SP), ctx);
447 emit(A64_POP(A64_R(19), A64_R(20), A64_SP), ctx);
448 } else {
449 i = ctx->nr_used_callee_reg - 1;
450 if (ctx->nr_used_callee_reg % 2 != 0) {
451 reg1 = ctx->used_callee_reg[i];
452 emit(A64_POP(reg1, A64_ZR, A64_SP), ctx);
453 i--;
454 }
455 while (i > 0) {
456 reg1 = ctx->used_callee_reg[i - 1];
457 reg2 = ctx->used_callee_reg[i];
458 emit(A64_POP(reg1, reg2, A64_SP), ctx);
459 i -= 2;
460 }
461 }
462 }
463
464 #define BTI_INSNS (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) ? 1 : 0)
465 #define PAC_INSNS (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) ? 1 : 0)
466
467 /* Offset of nop instruction in bpf prog entry to be poked */
468 #define POKE_OFFSET (BTI_INSNS + 1)
469
470 /* Tail call offset to jump into */
471 #define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 4)
472
build_prologue(struct jit_ctx * ctx,bool ebpf_from_cbpf)473 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
474 {
475 const struct bpf_prog *prog = ctx->prog;
476 const bool is_main_prog = !bpf_is_subprog(prog);
477 const u8 fp = bpf2a64[BPF_REG_FP];
478 const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
479 const int idx0 = ctx->idx;
480 int cur_offset;
481
482 /*
483 * BPF prog stack layout
484 *
485 * high
486 * original A64_SP => 0:+-----+ BPF prologue
487 * |FP/LR|
488 * current A64_FP => -16:+-----+
489 * | ... | callee saved registers
490 * BPF fp register => -64:+-----+ <= (BPF_FP)
491 * | |
492 * | ... | BPF prog stack
493 * | |
494 * +-----+ <= (BPF_FP - prog->aux->stack_depth)
495 * |RSVD | padding
496 * current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size)
497 * | |
498 * | ... | Function call stack
499 * | |
500 * +-----+
501 * low
502 *
503 */
504
505 /* bpf function may be invoked by 3 instruction types:
506 * 1. bl, attached via freplace to bpf prog via short jump
507 * 2. br, attached via freplace to bpf prog via long jump
508 * 3. blr, working as a function pointer, used by emit_call.
509 * So BTI_JC should used here to support both br and blr.
510 */
511 emit_bti(A64_BTI_JC, ctx);
512
513 emit(A64_MOV(1, A64_R(9), A64_LR), ctx);
514 emit(A64_NOP, ctx);
515
516 if (!prog->aux->exception_cb) {
517 /* Sign lr */
518 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
519 emit(A64_PACIASP, ctx);
520
521 /* Save FP and LR registers to stay align with ARM64 AAPCS */
522 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
523 emit(A64_MOV(1, A64_FP, A64_SP), ctx);
524
525 prepare_bpf_tail_call_cnt(ctx);
526
527 if (!ebpf_from_cbpf && is_main_prog) {
528 cur_offset = ctx->idx - idx0;
529 if (cur_offset != PROLOGUE_OFFSET) {
530 pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
531 cur_offset, PROLOGUE_OFFSET);
532 return -1;
533 }
534 /* BTI landing pad for the tail call, done with a BR */
535 emit_bti(A64_BTI_J, ctx);
536 }
537 push_callee_regs(ctx);
538 } else {
539 /*
540 * Exception callback receives FP of Main Program as third
541 * parameter
542 */
543 emit(A64_MOV(1, A64_FP, A64_R(2)), ctx);
544 /*
545 * Main Program already pushed the frame record and the
546 * callee-saved registers. The exception callback will not push
547 * anything and re-use the main program's stack.
548 *
549 * 12 registers are on the stack
550 */
551 emit(A64_SUB_I(1, A64_SP, A64_FP, 96), ctx);
552 }
553
554 if (ctx->fp_used)
555 /* Set up BPF prog stack base register */
556 emit(A64_MOV(1, fp, A64_SP), ctx);
557
558 /* Stack must be multiples of 16B */
559 ctx->stack_size = round_up(prog->aux->stack_depth, 16);
560
561 /* Set up function call stack */
562 if (ctx->stack_size)
563 emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
564
565 if (ctx->arena_vm_start)
566 emit_a64_mov_i64(arena_vm_base, ctx->arena_vm_start, ctx);
567
568 return 0;
569 }
570
emit_bpf_tail_call(struct jit_ctx * ctx)571 static int emit_bpf_tail_call(struct jit_ctx *ctx)
572 {
573 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
574 const u8 r2 = bpf2a64[BPF_REG_2];
575 const u8 r3 = bpf2a64[BPF_REG_3];
576
577 const u8 tmp = bpf2a64[TMP_REG_1];
578 const u8 prg = bpf2a64[TMP_REG_2];
579 const u8 tcc = bpf2a64[TMP_REG_3];
580 const u8 ptr = bpf2a64[TCCNT_PTR];
581 size_t off;
582 __le32 *branch1 = NULL;
583 __le32 *branch2 = NULL;
584 __le32 *branch3 = NULL;
585
586 /* if (index >= array->map.max_entries)
587 * goto out;
588 */
589 off = offsetof(struct bpf_array, map.max_entries);
590 emit_a64_mov_i64(tmp, off, ctx);
591 emit(A64_LDR32(tmp, r2, tmp), ctx);
592 emit(A64_MOV(0, r3, r3), ctx);
593 emit(A64_CMP(0, r3, tmp), ctx);
594 branch1 = ctx->image + ctx->idx;
595 emit(A64_NOP, ctx);
596
597 /*
598 * if ((*tail_call_cnt_ptr) >= MAX_TAIL_CALL_CNT)
599 * goto out;
600 */
601 emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
602 emit(A64_LDR64I(tcc, ptr, 0), ctx);
603 emit(A64_CMP(1, tcc, tmp), ctx);
604 branch2 = ctx->image + ctx->idx;
605 emit(A64_NOP, ctx);
606
607 /* (*tail_call_cnt_ptr)++; */
608 emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
609
610 /* prog = array->ptrs[index];
611 * if (prog == NULL)
612 * goto out;
613 */
614 off = offsetof(struct bpf_array, ptrs);
615 emit_a64_mov_i64(tmp, off, ctx);
616 emit(A64_ADD(1, tmp, r2, tmp), ctx);
617 emit(A64_LSL(1, prg, r3, 3), ctx);
618 emit(A64_LDR64(prg, tmp, prg), ctx);
619 branch3 = ctx->image + ctx->idx;
620 emit(A64_NOP, ctx);
621
622 /* Update tail_call_cnt if the slot is populated. */
623 emit(A64_STR64I(tcc, ptr, 0), ctx);
624
625 /* restore SP */
626 if (ctx->stack_size)
627 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
628
629 pop_callee_regs(ctx);
630
631 /* goto *(prog->bpf_func + prologue_offset); */
632 off = offsetof(struct bpf_prog, bpf_func);
633 emit_a64_mov_i64(tmp, off, ctx);
634 emit(A64_LDR64(tmp, prg, tmp), ctx);
635 emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
636 emit(A64_BR(tmp), ctx);
637
638 if (ctx->image) {
639 off = &ctx->image[ctx->idx] - branch1;
640 *branch1 = cpu_to_le32(A64_B_(A64_COND_CS, off));
641
642 off = &ctx->image[ctx->idx] - branch2;
643 *branch2 = cpu_to_le32(A64_B_(A64_COND_CS, off));
644
645 off = &ctx->image[ctx->idx] - branch3;
646 *branch3 = cpu_to_le32(A64_CBZ(1, prg, off));
647 }
648
649 return 0;
650 }
651
emit_atomic_ld_st(const struct bpf_insn * insn,struct jit_ctx * ctx)652 static int emit_atomic_ld_st(const struct bpf_insn *insn, struct jit_ctx *ctx)
653 {
654 const s32 imm = insn->imm;
655 const s16 off = insn->off;
656 const u8 code = insn->code;
657 const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC;
658 const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
659 const u8 dst = bpf2a64[insn->dst_reg];
660 const u8 src = bpf2a64[insn->src_reg];
661 const u8 tmp = bpf2a64[TMP_REG_1];
662 u8 reg;
663
664 switch (imm) {
665 case BPF_LOAD_ACQ:
666 reg = src;
667 break;
668 case BPF_STORE_REL:
669 reg = dst;
670 break;
671 default:
672 pr_err_once("unknown atomic load/store op code %02x\n", imm);
673 return -EINVAL;
674 }
675
676 if (off) {
677 emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
678 reg = tmp;
679 }
680 if (arena) {
681 emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx);
682 reg = tmp;
683 }
684
685 switch (imm) {
686 case BPF_LOAD_ACQ:
687 switch (BPF_SIZE(code)) {
688 case BPF_B:
689 emit(A64_LDARB(dst, reg), ctx);
690 break;
691 case BPF_H:
692 emit(A64_LDARH(dst, reg), ctx);
693 break;
694 case BPF_W:
695 emit(A64_LDAR32(dst, reg), ctx);
696 break;
697 case BPF_DW:
698 emit(A64_LDAR64(dst, reg), ctx);
699 break;
700 }
701 break;
702 case BPF_STORE_REL:
703 switch (BPF_SIZE(code)) {
704 case BPF_B:
705 emit(A64_STLRB(src, reg), ctx);
706 break;
707 case BPF_H:
708 emit(A64_STLRH(src, reg), ctx);
709 break;
710 case BPF_W:
711 emit(A64_STLR32(src, reg), ctx);
712 break;
713 case BPF_DW:
714 emit(A64_STLR64(src, reg), ctx);
715 break;
716 }
717 break;
718 default:
719 pr_err_once("unexpected atomic load/store op code %02x\n",
720 imm);
721 return -EINVAL;
722 }
723
724 return 0;
725 }
726
727 #ifdef CONFIG_ARM64_LSE_ATOMICS
emit_lse_atomic(const struct bpf_insn * insn,struct jit_ctx * ctx)728 static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
729 {
730 const u8 code = insn->code;
731 const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
732 const u8 dst = bpf2a64[insn->dst_reg];
733 const u8 src = bpf2a64[insn->src_reg];
734 const u8 tmp = bpf2a64[TMP_REG_1];
735 const u8 tmp2 = bpf2a64[TMP_REG_2];
736 const bool isdw = BPF_SIZE(code) == BPF_DW;
737 const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC;
738 const s16 off = insn->off;
739 u8 reg = dst;
740
741 if (off) {
742 emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
743 reg = tmp;
744 }
745 if (arena) {
746 emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx);
747 reg = tmp;
748 }
749
750 switch (insn->imm) {
751 /* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
752 case BPF_ADD:
753 emit(A64_STADD(isdw, reg, src), ctx);
754 break;
755 case BPF_AND:
756 emit(A64_MVN(isdw, tmp2, src), ctx);
757 emit(A64_STCLR(isdw, reg, tmp2), ctx);
758 break;
759 case BPF_OR:
760 emit(A64_STSET(isdw, reg, src), ctx);
761 break;
762 case BPF_XOR:
763 emit(A64_STEOR(isdw, reg, src), ctx);
764 break;
765 /* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
766 case BPF_ADD | BPF_FETCH:
767 emit(A64_LDADDAL(isdw, src, reg, src), ctx);
768 break;
769 case BPF_AND | BPF_FETCH:
770 emit(A64_MVN(isdw, tmp2, src), ctx);
771 emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx);
772 break;
773 case BPF_OR | BPF_FETCH:
774 emit(A64_LDSETAL(isdw, src, reg, src), ctx);
775 break;
776 case BPF_XOR | BPF_FETCH:
777 emit(A64_LDEORAL(isdw, src, reg, src), ctx);
778 break;
779 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
780 case BPF_XCHG:
781 emit(A64_SWPAL(isdw, src, reg, src), ctx);
782 break;
783 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
784 case BPF_CMPXCHG:
785 emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx);
786 break;
787 default:
788 pr_err_once("unknown atomic op code %02x\n", insn->imm);
789 return -EINVAL;
790 }
791
792 return 0;
793 }
794 #else
emit_lse_atomic(const struct bpf_insn * insn,struct jit_ctx * ctx)795 static inline int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
796 {
797 return -EINVAL;
798 }
799 #endif
800
emit_ll_sc_atomic(const struct bpf_insn * insn,struct jit_ctx * ctx)801 static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
802 {
803 const u8 code = insn->code;
804 const u8 dst = bpf2a64[insn->dst_reg];
805 const u8 src = bpf2a64[insn->src_reg];
806 const u8 tmp = bpf2a64[TMP_REG_1];
807 const u8 tmp2 = bpf2a64[TMP_REG_2];
808 const u8 tmp3 = bpf2a64[TMP_REG_3];
809 const int i = insn - ctx->prog->insnsi;
810 const s32 imm = insn->imm;
811 const s16 off = insn->off;
812 const bool isdw = BPF_SIZE(code) == BPF_DW;
813 u8 reg = dst;
814 s32 jmp_offset;
815
816 if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
817 /* ll_sc based atomics don't support unsafe pointers yet. */
818 pr_err_once("unknown atomic opcode %02x\n", code);
819 return -EINVAL;
820 }
821
822 if (off) {
823 emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
824 reg = tmp;
825 }
826
827 if (imm == BPF_ADD || imm == BPF_AND ||
828 imm == BPF_OR || imm == BPF_XOR) {
829 /* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
830 emit(A64_LDXR(isdw, tmp2, reg), ctx);
831 if (imm == BPF_ADD)
832 emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
833 else if (imm == BPF_AND)
834 emit(A64_AND(isdw, tmp2, tmp2, src), ctx);
835 else if (imm == BPF_OR)
836 emit(A64_ORR(isdw, tmp2, tmp2, src), ctx);
837 else
838 emit(A64_EOR(isdw, tmp2, tmp2, src), ctx);
839 emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
840 jmp_offset = -3;
841 check_imm19(jmp_offset);
842 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
843 } else if (imm == (BPF_ADD | BPF_FETCH) ||
844 imm == (BPF_AND | BPF_FETCH) ||
845 imm == (BPF_OR | BPF_FETCH) ||
846 imm == (BPF_XOR | BPF_FETCH)) {
847 /* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
848 const u8 ax = bpf2a64[BPF_REG_AX];
849
850 emit(A64_MOV(isdw, ax, src), ctx);
851 emit(A64_LDXR(isdw, src, reg), ctx);
852 if (imm == (BPF_ADD | BPF_FETCH))
853 emit(A64_ADD(isdw, tmp2, src, ax), ctx);
854 else if (imm == (BPF_AND | BPF_FETCH))
855 emit(A64_AND(isdw, tmp2, src, ax), ctx);
856 else if (imm == (BPF_OR | BPF_FETCH))
857 emit(A64_ORR(isdw, tmp2, src, ax), ctx);
858 else
859 emit(A64_EOR(isdw, tmp2, src, ax), ctx);
860 emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
861 jmp_offset = -3;
862 check_imm19(jmp_offset);
863 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
864 emit(A64_DMB_ISH, ctx);
865 } else if (imm == BPF_XCHG) {
866 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
867 emit(A64_MOV(isdw, tmp2, src), ctx);
868 emit(A64_LDXR(isdw, src, reg), ctx);
869 emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
870 jmp_offset = -2;
871 check_imm19(jmp_offset);
872 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
873 emit(A64_DMB_ISH, ctx);
874 } else if (imm == BPF_CMPXCHG) {
875 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
876 const u8 r0 = bpf2a64[BPF_REG_0];
877
878 emit(A64_MOV(isdw, tmp2, r0), ctx);
879 emit(A64_LDXR(isdw, r0, reg), ctx);
880 emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx);
881 jmp_offset = 4;
882 check_imm19(jmp_offset);
883 emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx);
884 emit(A64_STLXR(isdw, src, reg, tmp3), ctx);
885 jmp_offset = -4;
886 check_imm19(jmp_offset);
887 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
888 emit(A64_DMB_ISH, ctx);
889 } else {
890 pr_err_once("unknown atomic op code %02x\n", imm);
891 return -EINVAL;
892 }
893
894 return 0;
895 }
896
897 void dummy_tramp(void);
898
899 asm (
900 " .pushsection .text, \"ax\", @progbits\n"
901 " .global dummy_tramp\n"
902 " .type dummy_tramp, %function\n"
903 "dummy_tramp:"
904 #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)
905 " bti j\n" /* dummy_tramp is called via "br x10" */
906 #endif
907 " mov x10, x30\n"
908 " mov x30, x9\n"
909 " ret x10\n"
910 " .size dummy_tramp, .-dummy_tramp\n"
911 " .popsection\n"
912 );
913
914 /* build a plt initialized like this:
915 *
916 * plt:
917 * ldr tmp, target
918 * br tmp
919 * target:
920 * .quad dummy_tramp
921 *
922 * when a long jump trampoline is attached, target is filled with the
923 * trampoline address, and when the trampoline is removed, target is
924 * restored to dummy_tramp address.
925 */
build_plt(struct jit_ctx * ctx)926 static void build_plt(struct jit_ctx *ctx)
927 {
928 const u8 tmp = bpf2a64[TMP_REG_1];
929 struct bpf_plt *plt = NULL;
930
931 /* make sure target is 64-bit aligned */
932 if ((ctx->idx + PLT_TARGET_OFFSET / AARCH64_INSN_SIZE) % 2)
933 emit(A64_NOP, ctx);
934
935 plt = (struct bpf_plt *)(ctx->image + ctx->idx);
936 /* plt is called via bl, no BTI needed here */
937 emit(A64_LDR64LIT(tmp, 2 * AARCH64_INSN_SIZE), ctx);
938 emit(A64_BR(tmp), ctx);
939
940 if (ctx->image)
941 plt->target = (u64)&dummy_tramp;
942 }
943
944 /* Clobbers BPF registers 1-4, aka x0-x3 */
build_bhb_mitigation(struct jit_ctx * ctx)945 static void __maybe_unused build_bhb_mitigation(struct jit_ctx *ctx)
946 {
947 const u8 r1 = bpf2a64[BPF_REG_1]; /* aka x0 */
948 u8 k = get_spectre_bhb_loop_value();
949
950 if (!IS_ENABLED(CONFIG_MITIGATE_SPECTRE_BRANCH_HISTORY) ||
951 cpu_mitigations_off() || __nospectre_bhb ||
952 arm64_get_spectre_v2_state() == SPECTRE_VULNERABLE)
953 return;
954
955 if (capable(CAP_SYS_ADMIN))
956 return;
957
958 if (supports_clearbhb(SCOPE_SYSTEM)) {
959 emit(aarch64_insn_gen_hint(AARCH64_INSN_HINT_CLEARBHB), ctx);
960 return;
961 }
962
963 if (k) {
964 emit_a64_mov_i64(r1, k, ctx);
965 emit(A64_B(1), ctx);
966 emit(A64_SUBS_I(true, r1, r1, 1), ctx);
967 emit(A64_B_(A64_COND_NE, -2), ctx);
968 emit(aarch64_insn_gen_dsb(AARCH64_INSN_MB_ISH), ctx);
969 emit(aarch64_insn_get_isb_value(), ctx);
970 }
971
972 if (is_spectre_bhb_fw_mitigated()) {
973 emit(A64_ORR_I(false, r1, AARCH64_INSN_REG_ZR,
974 ARM_SMCCC_ARCH_WORKAROUND_3), ctx);
975 switch (arm_smccc_1_1_get_conduit()) {
976 case SMCCC_CONDUIT_HVC:
977 emit(aarch64_insn_get_hvc_value(), ctx);
978 break;
979 case SMCCC_CONDUIT_SMC:
980 emit(aarch64_insn_get_smc_value(), ctx);
981 break;
982 default:
983 pr_err_once("Firmware mitigation enabled with unknown conduit\n");
984 }
985 }
986 }
987
build_epilogue(struct jit_ctx * ctx,bool was_classic)988 static void build_epilogue(struct jit_ctx *ctx, bool was_classic)
989 {
990 const u8 r0 = bpf2a64[BPF_REG_0];
991 const u8 ptr = bpf2a64[TCCNT_PTR];
992
993 /* We're done with BPF stack */
994 if (ctx->stack_size)
995 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
996
997 pop_callee_regs(ctx);
998
999 emit(A64_POP(A64_ZR, ptr, A64_SP), ctx);
1000
1001 if (was_classic)
1002 build_bhb_mitigation(ctx);
1003
1004 /* Restore FP/LR registers */
1005 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
1006
1007 /* Move the return value from bpf:r0 (aka x7) to x0 */
1008 emit(A64_MOV(1, A64_R(0), r0), ctx);
1009
1010 /* Authenticate lr */
1011 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
1012 emit(A64_AUTIASP, ctx);
1013
1014 emit(A64_RET(A64_LR), ctx);
1015 }
1016
1017 #define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0)
1018 #define BPF_FIXUP_REG_MASK GENMASK(31, 27)
1019 #define DONT_CLEAR 5 /* Unused ARM64 register from BPF's POV */
1020
ex_handler_bpf(const struct exception_table_entry * ex,struct pt_regs * regs)1021 bool ex_handler_bpf(const struct exception_table_entry *ex,
1022 struct pt_regs *regs)
1023 {
1024 off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
1025 int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
1026
1027 if (dst_reg != DONT_CLEAR)
1028 regs->regs[dst_reg] = 0;
1029 regs->pc = (unsigned long)&ex->fixup - offset;
1030 return true;
1031 }
1032
1033 /* For accesses to BTF pointers, add an entry to the exception table */
add_exception_handler(const struct bpf_insn * insn,struct jit_ctx * ctx,int dst_reg)1034 static int add_exception_handler(const struct bpf_insn *insn,
1035 struct jit_ctx *ctx,
1036 int dst_reg)
1037 {
1038 off_t ins_offset;
1039 off_t fixup_offset;
1040 unsigned long pc;
1041 struct exception_table_entry *ex;
1042
1043 if (!ctx->image)
1044 /* First pass */
1045 return 0;
1046
1047 if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
1048 BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
1049 BPF_MODE(insn->code) != BPF_PROBE_MEM32 &&
1050 BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
1051 return 0;
1052
1053 if (!ctx->prog->aux->extable ||
1054 WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries))
1055 return -EINVAL;
1056
1057 ex = &ctx->prog->aux->extable[ctx->exentry_idx];
1058 pc = (unsigned long)&ctx->ro_image[ctx->idx - 1];
1059
1060 /*
1061 * This is the relative offset of the instruction that may fault from
1062 * the exception table itself. This will be written to the exception
1063 * table and if this instruction faults, the destination register will
1064 * be set to '0' and the execution will jump to the next instruction.
1065 */
1066 ins_offset = pc - (long)&ex->insn;
1067 if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
1068 return -ERANGE;
1069
1070 /*
1071 * Since the extable follows the program, the fixup offset is always
1072 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
1073 * to keep things simple, and put the destination register in the upper
1074 * bits. We don't need to worry about buildtime or runtime sort
1075 * modifying the upper bits because the table is already sorted, and
1076 * isn't part of the main exception table.
1077 *
1078 * The fixup_offset is set to the next instruction from the instruction
1079 * that may fault. The execution will jump to this after handling the
1080 * fault.
1081 */
1082 fixup_offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE);
1083 if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
1084 return -ERANGE;
1085
1086 /*
1087 * The offsets above have been calculated using the RO buffer but we
1088 * need to use the R/W buffer for writes.
1089 * switch ex to rw buffer for writing.
1090 */
1091 ex = (void *)ctx->image + ((void *)ex - (void *)ctx->ro_image);
1092
1093 ex->insn = ins_offset;
1094
1095 if (BPF_CLASS(insn->code) != BPF_LDX)
1096 dst_reg = DONT_CLEAR;
1097
1098 ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
1099 FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
1100
1101 ex->type = EX_TYPE_BPF;
1102
1103 ctx->exentry_idx++;
1104 return 0;
1105 }
1106
1107 /* JITs an eBPF instruction.
1108 * Returns:
1109 * 0 - successfully JITed an 8-byte eBPF instruction.
1110 * >0 - successfully JITed a 16-byte eBPF instruction.
1111 * <0 - failed to JIT.
1112 */
build_insn(const struct bpf_insn * insn,struct jit_ctx * ctx,bool extra_pass)1113 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
1114 bool extra_pass)
1115 {
1116 const u8 code = insn->code;
1117 u8 dst = bpf2a64[insn->dst_reg];
1118 u8 src = bpf2a64[insn->src_reg];
1119 const u8 tmp = bpf2a64[TMP_REG_1];
1120 const u8 tmp2 = bpf2a64[TMP_REG_2];
1121 const u8 fp = bpf2a64[BPF_REG_FP];
1122 const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
1123 const s16 off = insn->off;
1124 const s32 imm = insn->imm;
1125 const int i = insn - ctx->prog->insnsi;
1126 const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
1127 BPF_CLASS(code) == BPF_JMP;
1128 u8 jmp_cond;
1129 s32 jmp_offset;
1130 u32 a64_insn;
1131 u8 src_adj;
1132 u8 dst_adj;
1133 int off_adj;
1134 int ret;
1135 bool sign_extend;
1136
1137 switch (code) {
1138 /* dst = src */
1139 case BPF_ALU | BPF_MOV | BPF_X:
1140 case BPF_ALU64 | BPF_MOV | BPF_X:
1141 if (insn_is_cast_user(insn)) {
1142 emit(A64_MOV(0, tmp, src), ctx); // 32-bit mov clears the upper 32 bits
1143 emit_a64_mov_i(0, dst, ctx->user_vm_start >> 32, ctx);
1144 emit(A64_LSL(1, dst, dst, 32), ctx);
1145 emit(A64_CBZ(1, tmp, 2), ctx);
1146 emit(A64_ORR(1, tmp, dst, tmp), ctx);
1147 emit(A64_MOV(1, dst, tmp), ctx);
1148 break;
1149 } else if (insn_is_mov_percpu_addr(insn)) {
1150 if (dst != src)
1151 emit(A64_MOV(1, dst, src), ctx);
1152 if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
1153 emit(A64_MRS_TPIDR_EL2(tmp), ctx);
1154 else
1155 emit(A64_MRS_TPIDR_EL1(tmp), ctx);
1156 emit(A64_ADD(1, dst, dst, tmp), ctx);
1157 break;
1158 }
1159 switch (insn->off) {
1160 case 0:
1161 emit(A64_MOV(is64, dst, src), ctx);
1162 break;
1163 case 8:
1164 emit(A64_SXTB(is64, dst, src), ctx);
1165 break;
1166 case 16:
1167 emit(A64_SXTH(is64, dst, src), ctx);
1168 break;
1169 case 32:
1170 emit(A64_SXTW(is64, dst, src), ctx);
1171 break;
1172 }
1173 break;
1174 /* dst = dst OP src */
1175 case BPF_ALU | BPF_ADD | BPF_X:
1176 case BPF_ALU64 | BPF_ADD | BPF_X:
1177 emit(A64_ADD(is64, dst, dst, src), ctx);
1178 break;
1179 case BPF_ALU | BPF_SUB | BPF_X:
1180 case BPF_ALU64 | BPF_SUB | BPF_X:
1181 emit(A64_SUB(is64, dst, dst, src), ctx);
1182 break;
1183 case BPF_ALU | BPF_AND | BPF_X:
1184 case BPF_ALU64 | BPF_AND | BPF_X:
1185 emit(A64_AND(is64, dst, dst, src), ctx);
1186 break;
1187 case BPF_ALU | BPF_OR | BPF_X:
1188 case BPF_ALU64 | BPF_OR | BPF_X:
1189 emit(A64_ORR(is64, dst, dst, src), ctx);
1190 break;
1191 case BPF_ALU | BPF_XOR | BPF_X:
1192 case BPF_ALU64 | BPF_XOR | BPF_X:
1193 emit(A64_EOR(is64, dst, dst, src), ctx);
1194 break;
1195 case BPF_ALU | BPF_MUL | BPF_X:
1196 case BPF_ALU64 | BPF_MUL | BPF_X:
1197 emit(A64_MUL(is64, dst, dst, src), ctx);
1198 break;
1199 case BPF_ALU | BPF_DIV | BPF_X:
1200 case BPF_ALU64 | BPF_DIV | BPF_X:
1201 if (!off)
1202 emit(A64_UDIV(is64, dst, dst, src), ctx);
1203 else
1204 emit(A64_SDIV(is64, dst, dst, src), ctx);
1205 break;
1206 case BPF_ALU | BPF_MOD | BPF_X:
1207 case BPF_ALU64 | BPF_MOD | BPF_X:
1208 if (!off)
1209 emit(A64_UDIV(is64, tmp, dst, src), ctx);
1210 else
1211 emit(A64_SDIV(is64, tmp, dst, src), ctx);
1212 emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
1213 break;
1214 case BPF_ALU | BPF_LSH | BPF_X:
1215 case BPF_ALU64 | BPF_LSH | BPF_X:
1216 emit(A64_LSLV(is64, dst, dst, src), ctx);
1217 break;
1218 case BPF_ALU | BPF_RSH | BPF_X:
1219 case BPF_ALU64 | BPF_RSH | BPF_X:
1220 emit(A64_LSRV(is64, dst, dst, src), ctx);
1221 break;
1222 case BPF_ALU | BPF_ARSH | BPF_X:
1223 case BPF_ALU64 | BPF_ARSH | BPF_X:
1224 emit(A64_ASRV(is64, dst, dst, src), ctx);
1225 break;
1226 /* dst = -dst */
1227 case BPF_ALU | BPF_NEG:
1228 case BPF_ALU64 | BPF_NEG:
1229 emit(A64_NEG(is64, dst, dst), ctx);
1230 break;
1231 /* dst = BSWAP##imm(dst) */
1232 case BPF_ALU | BPF_END | BPF_FROM_LE:
1233 case BPF_ALU | BPF_END | BPF_FROM_BE:
1234 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1235 #ifdef CONFIG_CPU_BIG_ENDIAN
1236 if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_BE)
1237 goto emit_bswap_uxt;
1238 #else /* !CONFIG_CPU_BIG_ENDIAN */
1239 if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_LE)
1240 goto emit_bswap_uxt;
1241 #endif
1242 switch (imm) {
1243 case 16:
1244 emit(A64_REV16(is64, dst, dst), ctx);
1245 /* zero-extend 16 bits into 64 bits */
1246 emit(A64_UXTH(is64, dst, dst), ctx);
1247 break;
1248 case 32:
1249 emit(A64_REV32(0, dst, dst), ctx);
1250 /* upper 32 bits already cleared */
1251 break;
1252 case 64:
1253 emit(A64_REV64(dst, dst), ctx);
1254 break;
1255 }
1256 break;
1257 emit_bswap_uxt:
1258 switch (imm) {
1259 case 16:
1260 /* zero-extend 16 bits into 64 bits */
1261 emit(A64_UXTH(is64, dst, dst), ctx);
1262 break;
1263 case 32:
1264 /* zero-extend 32 bits into 64 bits */
1265 emit(A64_UXTW(is64, dst, dst), ctx);
1266 break;
1267 case 64:
1268 /* nop */
1269 break;
1270 }
1271 break;
1272 /* dst = imm */
1273 case BPF_ALU | BPF_MOV | BPF_K:
1274 case BPF_ALU64 | BPF_MOV | BPF_K:
1275 emit_a64_mov_i(is64, dst, imm, ctx);
1276 break;
1277 /* dst = dst OP imm */
1278 case BPF_ALU | BPF_ADD | BPF_K:
1279 case BPF_ALU64 | BPF_ADD | BPF_K:
1280 emit_a64_add_i(is64, dst, dst, tmp, imm, ctx);
1281 break;
1282 case BPF_ALU | BPF_SUB | BPF_K:
1283 case BPF_ALU64 | BPF_SUB | BPF_K:
1284 if (is_addsub_imm(imm)) {
1285 emit(A64_SUB_I(is64, dst, dst, imm), ctx);
1286 } else if (is_addsub_imm(-(u32)imm)) {
1287 emit(A64_ADD_I(is64, dst, dst, -imm), ctx);
1288 } else {
1289 emit_a64_mov_i(is64, tmp, imm, ctx);
1290 emit(A64_SUB(is64, dst, dst, tmp), ctx);
1291 }
1292 break;
1293 case BPF_ALU | BPF_AND | BPF_K:
1294 case BPF_ALU64 | BPF_AND | BPF_K:
1295 a64_insn = A64_AND_I(is64, dst, dst, imm);
1296 if (a64_insn != AARCH64_BREAK_FAULT) {
1297 emit(a64_insn, ctx);
1298 } else {
1299 emit_a64_mov_i(is64, tmp, imm, ctx);
1300 emit(A64_AND(is64, dst, dst, tmp), ctx);
1301 }
1302 break;
1303 case BPF_ALU | BPF_OR | BPF_K:
1304 case BPF_ALU64 | BPF_OR | BPF_K:
1305 a64_insn = A64_ORR_I(is64, dst, dst, imm);
1306 if (a64_insn != AARCH64_BREAK_FAULT) {
1307 emit(a64_insn, ctx);
1308 } else {
1309 emit_a64_mov_i(is64, tmp, imm, ctx);
1310 emit(A64_ORR(is64, dst, dst, tmp), ctx);
1311 }
1312 break;
1313 case BPF_ALU | BPF_XOR | BPF_K:
1314 case BPF_ALU64 | BPF_XOR | BPF_K:
1315 a64_insn = A64_EOR_I(is64, dst, dst, imm);
1316 if (a64_insn != AARCH64_BREAK_FAULT) {
1317 emit(a64_insn, ctx);
1318 } else {
1319 emit_a64_mov_i(is64, tmp, imm, ctx);
1320 emit(A64_EOR(is64, dst, dst, tmp), ctx);
1321 }
1322 break;
1323 case BPF_ALU | BPF_MUL | BPF_K:
1324 case BPF_ALU64 | BPF_MUL | BPF_K:
1325 emit_a64_mov_i(is64, tmp, imm, ctx);
1326 emit(A64_MUL(is64, dst, dst, tmp), ctx);
1327 break;
1328 case BPF_ALU | BPF_DIV | BPF_K:
1329 case BPF_ALU64 | BPF_DIV | BPF_K:
1330 emit_a64_mov_i(is64, tmp, imm, ctx);
1331 if (!off)
1332 emit(A64_UDIV(is64, dst, dst, tmp), ctx);
1333 else
1334 emit(A64_SDIV(is64, dst, dst, tmp), ctx);
1335 break;
1336 case BPF_ALU | BPF_MOD | BPF_K:
1337 case BPF_ALU64 | BPF_MOD | BPF_K:
1338 emit_a64_mov_i(is64, tmp2, imm, ctx);
1339 if (!off)
1340 emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
1341 else
1342 emit(A64_SDIV(is64, tmp, dst, tmp2), ctx);
1343 emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
1344 break;
1345 case BPF_ALU | BPF_LSH | BPF_K:
1346 case BPF_ALU64 | BPF_LSH | BPF_K:
1347 emit(A64_LSL(is64, dst, dst, imm), ctx);
1348 break;
1349 case BPF_ALU | BPF_RSH | BPF_K:
1350 case BPF_ALU64 | BPF_RSH | BPF_K:
1351 emit(A64_LSR(is64, dst, dst, imm), ctx);
1352 break;
1353 case BPF_ALU | BPF_ARSH | BPF_K:
1354 case BPF_ALU64 | BPF_ARSH | BPF_K:
1355 emit(A64_ASR(is64, dst, dst, imm), ctx);
1356 break;
1357
1358 /* JUMP off */
1359 case BPF_JMP | BPF_JA:
1360 case BPF_JMP32 | BPF_JA:
1361 if (BPF_CLASS(code) == BPF_JMP)
1362 jmp_offset = bpf2a64_offset(i, off, ctx);
1363 else
1364 jmp_offset = bpf2a64_offset(i, imm, ctx);
1365 check_imm26(jmp_offset);
1366 emit(A64_B(jmp_offset), ctx);
1367 break;
1368 /* IF (dst COND src) JUMP off */
1369 case BPF_JMP | BPF_JEQ | BPF_X:
1370 case BPF_JMP | BPF_JGT | BPF_X:
1371 case BPF_JMP | BPF_JLT | BPF_X:
1372 case BPF_JMP | BPF_JGE | BPF_X:
1373 case BPF_JMP | BPF_JLE | BPF_X:
1374 case BPF_JMP | BPF_JNE | BPF_X:
1375 case BPF_JMP | BPF_JSGT | BPF_X:
1376 case BPF_JMP | BPF_JSLT | BPF_X:
1377 case BPF_JMP | BPF_JSGE | BPF_X:
1378 case BPF_JMP | BPF_JSLE | BPF_X:
1379 case BPF_JMP32 | BPF_JEQ | BPF_X:
1380 case BPF_JMP32 | BPF_JGT | BPF_X:
1381 case BPF_JMP32 | BPF_JLT | BPF_X:
1382 case BPF_JMP32 | BPF_JGE | BPF_X:
1383 case BPF_JMP32 | BPF_JLE | BPF_X:
1384 case BPF_JMP32 | BPF_JNE | BPF_X:
1385 case BPF_JMP32 | BPF_JSGT | BPF_X:
1386 case BPF_JMP32 | BPF_JSLT | BPF_X:
1387 case BPF_JMP32 | BPF_JSGE | BPF_X:
1388 case BPF_JMP32 | BPF_JSLE | BPF_X:
1389 emit(A64_CMP(is64, dst, src), ctx);
1390 emit_cond_jmp:
1391 jmp_offset = bpf2a64_offset(i, off, ctx);
1392 check_imm19(jmp_offset);
1393 switch (BPF_OP(code)) {
1394 case BPF_JEQ:
1395 jmp_cond = A64_COND_EQ;
1396 break;
1397 case BPF_JGT:
1398 jmp_cond = A64_COND_HI;
1399 break;
1400 case BPF_JLT:
1401 jmp_cond = A64_COND_CC;
1402 break;
1403 case BPF_JGE:
1404 jmp_cond = A64_COND_CS;
1405 break;
1406 case BPF_JLE:
1407 jmp_cond = A64_COND_LS;
1408 break;
1409 case BPF_JSET:
1410 case BPF_JNE:
1411 jmp_cond = A64_COND_NE;
1412 break;
1413 case BPF_JSGT:
1414 jmp_cond = A64_COND_GT;
1415 break;
1416 case BPF_JSLT:
1417 jmp_cond = A64_COND_LT;
1418 break;
1419 case BPF_JSGE:
1420 jmp_cond = A64_COND_GE;
1421 break;
1422 case BPF_JSLE:
1423 jmp_cond = A64_COND_LE;
1424 break;
1425 default:
1426 return -EFAULT;
1427 }
1428 emit(A64_B_(jmp_cond, jmp_offset), ctx);
1429 break;
1430 case BPF_JMP | BPF_JSET | BPF_X:
1431 case BPF_JMP32 | BPF_JSET | BPF_X:
1432 emit(A64_TST(is64, dst, src), ctx);
1433 goto emit_cond_jmp;
1434 /* IF (dst COND imm) JUMP off */
1435 case BPF_JMP | BPF_JEQ | BPF_K:
1436 case BPF_JMP | BPF_JGT | BPF_K:
1437 case BPF_JMP | BPF_JLT | BPF_K:
1438 case BPF_JMP | BPF_JGE | BPF_K:
1439 case BPF_JMP | BPF_JLE | BPF_K:
1440 case BPF_JMP | BPF_JNE | BPF_K:
1441 case BPF_JMP | BPF_JSGT | BPF_K:
1442 case BPF_JMP | BPF_JSLT | BPF_K:
1443 case BPF_JMP | BPF_JSGE | BPF_K:
1444 case BPF_JMP | BPF_JSLE | BPF_K:
1445 case BPF_JMP32 | BPF_JEQ | BPF_K:
1446 case BPF_JMP32 | BPF_JGT | BPF_K:
1447 case BPF_JMP32 | BPF_JLT | BPF_K:
1448 case BPF_JMP32 | BPF_JGE | BPF_K:
1449 case BPF_JMP32 | BPF_JLE | BPF_K:
1450 case BPF_JMP32 | BPF_JNE | BPF_K:
1451 case BPF_JMP32 | BPF_JSGT | BPF_K:
1452 case BPF_JMP32 | BPF_JSLT | BPF_K:
1453 case BPF_JMP32 | BPF_JSGE | BPF_K:
1454 case BPF_JMP32 | BPF_JSLE | BPF_K:
1455 if (is_addsub_imm(imm)) {
1456 emit(A64_CMP_I(is64, dst, imm), ctx);
1457 } else if (is_addsub_imm(-(u32)imm)) {
1458 emit(A64_CMN_I(is64, dst, -imm), ctx);
1459 } else {
1460 emit_a64_mov_i(is64, tmp, imm, ctx);
1461 emit(A64_CMP(is64, dst, tmp), ctx);
1462 }
1463 goto emit_cond_jmp;
1464 case BPF_JMP | BPF_JSET | BPF_K:
1465 case BPF_JMP32 | BPF_JSET | BPF_K:
1466 a64_insn = A64_TST_I(is64, dst, imm);
1467 if (a64_insn != AARCH64_BREAK_FAULT) {
1468 emit(a64_insn, ctx);
1469 } else {
1470 emit_a64_mov_i(is64, tmp, imm, ctx);
1471 emit(A64_TST(is64, dst, tmp), ctx);
1472 }
1473 goto emit_cond_jmp;
1474 /* function call */
1475 case BPF_JMP | BPF_CALL:
1476 {
1477 const u8 r0 = bpf2a64[BPF_REG_0];
1478 bool func_addr_fixed;
1479 u64 func_addr;
1480 u32 cpu_offset;
1481
1482 /* Implement helper call to bpf_get_smp_processor_id() inline */
1483 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1484 cpu_offset = offsetof(struct thread_info, cpu);
1485
1486 emit(A64_MRS_SP_EL0(tmp), ctx);
1487 if (is_lsi_offset(cpu_offset, 2)) {
1488 emit(A64_LDR32I(r0, tmp, cpu_offset), ctx);
1489 } else {
1490 emit_a64_mov_i(1, tmp2, cpu_offset, ctx);
1491 emit(A64_LDR32(r0, tmp, tmp2), ctx);
1492 }
1493 break;
1494 }
1495
1496 /* Implement helper call to bpf_get_current_task/_btf() inline */
1497 if (insn->src_reg == 0 && (insn->imm == BPF_FUNC_get_current_task ||
1498 insn->imm == BPF_FUNC_get_current_task_btf)) {
1499 emit(A64_MRS_SP_EL0(r0), ctx);
1500 break;
1501 }
1502
1503 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1504 &func_addr, &func_addr_fixed);
1505 if (ret < 0)
1506 return ret;
1507 emit_call(func_addr, ctx);
1508 emit(A64_MOV(1, r0, A64_R(0)), ctx);
1509 break;
1510 }
1511 /* tail call */
1512 case BPF_JMP | BPF_TAIL_CALL:
1513 if (emit_bpf_tail_call(ctx))
1514 return -EFAULT;
1515 break;
1516 /* function return */
1517 case BPF_JMP | BPF_EXIT:
1518 /* Optimization: when last instruction is EXIT,
1519 simply fallthrough to epilogue. */
1520 if (i == ctx->prog->len - 1)
1521 break;
1522 jmp_offset = epilogue_offset(ctx);
1523 check_imm26(jmp_offset);
1524 emit(A64_B(jmp_offset), ctx);
1525 break;
1526
1527 /* dst = imm64 */
1528 case BPF_LD | BPF_IMM | BPF_DW:
1529 {
1530 const struct bpf_insn insn1 = insn[1];
1531 u64 imm64;
1532
1533 imm64 = (u64)insn1.imm << 32 | (u32)imm;
1534 if (bpf_pseudo_func(insn))
1535 emit_addr_mov_i64(dst, imm64, ctx);
1536 else
1537 emit_a64_mov_i64(dst, imm64, ctx);
1538
1539 return 1;
1540 }
1541
1542 /* LDX: dst = (u64)*(unsigned size *)(src + off) */
1543 case BPF_LDX | BPF_MEM | BPF_W:
1544 case BPF_LDX | BPF_MEM | BPF_H:
1545 case BPF_LDX | BPF_MEM | BPF_B:
1546 case BPF_LDX | BPF_MEM | BPF_DW:
1547 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1548 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1549 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1550 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1551 /* LDXS: dst_reg = (s64)*(signed size *)(src_reg + off) */
1552 case BPF_LDX | BPF_MEMSX | BPF_B:
1553 case BPF_LDX | BPF_MEMSX | BPF_H:
1554 case BPF_LDX | BPF_MEMSX | BPF_W:
1555 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1556 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1557 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1558 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1559 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1560 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1561 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1562 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1563 emit(A64_ADD(1, tmp2, src, arena_vm_base), ctx);
1564 src = tmp2;
1565 }
1566 if (src == fp) {
1567 src_adj = A64_SP;
1568 off_adj = off + ctx->stack_size;
1569 } else {
1570 src_adj = src;
1571 off_adj = off;
1572 }
1573 sign_extend = (BPF_MODE(insn->code) == BPF_MEMSX ||
1574 BPF_MODE(insn->code) == BPF_PROBE_MEMSX);
1575 switch (BPF_SIZE(code)) {
1576 case BPF_W:
1577 if (is_lsi_offset(off_adj, 2)) {
1578 if (sign_extend)
1579 emit(A64_LDRSWI(dst, src_adj, off_adj), ctx);
1580 else
1581 emit(A64_LDR32I(dst, src_adj, off_adj), ctx);
1582 } else {
1583 emit_a64_mov_i(1, tmp, off, ctx);
1584 if (sign_extend)
1585 emit(A64_LDRSW(dst, src, tmp), ctx);
1586 else
1587 emit(A64_LDR32(dst, src, tmp), ctx);
1588 }
1589 break;
1590 case BPF_H:
1591 if (is_lsi_offset(off_adj, 1)) {
1592 if (sign_extend)
1593 emit(A64_LDRSHI(dst, src_adj, off_adj), ctx);
1594 else
1595 emit(A64_LDRHI(dst, src_adj, off_adj), ctx);
1596 } else {
1597 emit_a64_mov_i(1, tmp, off, ctx);
1598 if (sign_extend)
1599 emit(A64_LDRSH(dst, src, tmp), ctx);
1600 else
1601 emit(A64_LDRH(dst, src, tmp), ctx);
1602 }
1603 break;
1604 case BPF_B:
1605 if (is_lsi_offset(off_adj, 0)) {
1606 if (sign_extend)
1607 emit(A64_LDRSBI(dst, src_adj, off_adj), ctx);
1608 else
1609 emit(A64_LDRBI(dst, src_adj, off_adj), ctx);
1610 } else {
1611 emit_a64_mov_i(1, tmp, off, ctx);
1612 if (sign_extend)
1613 emit(A64_LDRSB(dst, src, tmp), ctx);
1614 else
1615 emit(A64_LDRB(dst, src, tmp), ctx);
1616 }
1617 break;
1618 case BPF_DW:
1619 if (is_lsi_offset(off_adj, 3)) {
1620 emit(A64_LDR64I(dst, src_adj, off_adj), ctx);
1621 } else {
1622 emit_a64_mov_i(1, tmp, off, ctx);
1623 emit(A64_LDR64(dst, src, tmp), ctx);
1624 }
1625 break;
1626 }
1627
1628 ret = add_exception_handler(insn, ctx, dst);
1629 if (ret)
1630 return ret;
1631 break;
1632
1633 /* speculation barrier */
1634 case BPF_ST | BPF_NOSPEC:
1635 /*
1636 * Nothing required here.
1637 *
1638 * In case of arm64, we rely on the firmware mitigation of
1639 * Speculative Store Bypass as controlled via the ssbd kernel
1640 * parameter. Whenever the mitigation is enabled, it works
1641 * for all of the kernel code with no need to provide any
1642 * additional instructions.
1643 */
1644 break;
1645
1646 /* ST: *(size *)(dst + off) = imm */
1647 case BPF_ST | BPF_MEM | BPF_W:
1648 case BPF_ST | BPF_MEM | BPF_H:
1649 case BPF_ST | BPF_MEM | BPF_B:
1650 case BPF_ST | BPF_MEM | BPF_DW:
1651 case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1652 case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1653 case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1654 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1655 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1656 emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx);
1657 dst = tmp2;
1658 }
1659 if (dst == fp) {
1660 dst_adj = A64_SP;
1661 off_adj = off + ctx->stack_size;
1662 } else {
1663 dst_adj = dst;
1664 off_adj = off;
1665 }
1666 /* Load imm to a register then store it */
1667 emit_a64_mov_i(1, tmp, imm, ctx);
1668 switch (BPF_SIZE(code)) {
1669 case BPF_W:
1670 if (is_lsi_offset(off_adj, 2)) {
1671 emit(A64_STR32I(tmp, dst_adj, off_adj), ctx);
1672 } else {
1673 emit_a64_mov_i(1, tmp2, off, ctx);
1674 emit(A64_STR32(tmp, dst, tmp2), ctx);
1675 }
1676 break;
1677 case BPF_H:
1678 if (is_lsi_offset(off_adj, 1)) {
1679 emit(A64_STRHI(tmp, dst_adj, off_adj), ctx);
1680 } else {
1681 emit_a64_mov_i(1, tmp2, off, ctx);
1682 emit(A64_STRH(tmp, dst, tmp2), ctx);
1683 }
1684 break;
1685 case BPF_B:
1686 if (is_lsi_offset(off_adj, 0)) {
1687 emit(A64_STRBI(tmp, dst_adj, off_adj), ctx);
1688 } else {
1689 emit_a64_mov_i(1, tmp2, off, ctx);
1690 emit(A64_STRB(tmp, dst, tmp2), ctx);
1691 }
1692 break;
1693 case BPF_DW:
1694 if (is_lsi_offset(off_adj, 3)) {
1695 emit(A64_STR64I(tmp, dst_adj, off_adj), ctx);
1696 } else {
1697 emit_a64_mov_i(1, tmp2, off, ctx);
1698 emit(A64_STR64(tmp, dst, tmp2), ctx);
1699 }
1700 break;
1701 }
1702
1703 ret = add_exception_handler(insn, ctx, dst);
1704 if (ret)
1705 return ret;
1706 break;
1707
1708 /* STX: *(size *)(dst + off) = src */
1709 case BPF_STX | BPF_MEM | BPF_W:
1710 case BPF_STX | BPF_MEM | BPF_H:
1711 case BPF_STX | BPF_MEM | BPF_B:
1712 case BPF_STX | BPF_MEM | BPF_DW:
1713 case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1714 case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1715 case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1716 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1717 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1718 emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx);
1719 dst = tmp2;
1720 }
1721 if (dst == fp) {
1722 dst_adj = A64_SP;
1723 off_adj = off + ctx->stack_size;
1724 } else {
1725 dst_adj = dst;
1726 off_adj = off;
1727 }
1728 switch (BPF_SIZE(code)) {
1729 case BPF_W:
1730 if (is_lsi_offset(off_adj, 2)) {
1731 emit(A64_STR32I(src, dst_adj, off_adj), ctx);
1732 } else {
1733 emit_a64_mov_i(1, tmp, off, ctx);
1734 emit(A64_STR32(src, dst, tmp), ctx);
1735 }
1736 break;
1737 case BPF_H:
1738 if (is_lsi_offset(off_adj, 1)) {
1739 emit(A64_STRHI(src, dst_adj, off_adj), ctx);
1740 } else {
1741 emit_a64_mov_i(1, tmp, off, ctx);
1742 emit(A64_STRH(src, dst, tmp), ctx);
1743 }
1744 break;
1745 case BPF_B:
1746 if (is_lsi_offset(off_adj, 0)) {
1747 emit(A64_STRBI(src, dst_adj, off_adj), ctx);
1748 } else {
1749 emit_a64_mov_i(1, tmp, off, ctx);
1750 emit(A64_STRB(src, dst, tmp), ctx);
1751 }
1752 break;
1753 case BPF_DW:
1754 if (is_lsi_offset(off_adj, 3)) {
1755 emit(A64_STR64I(src, dst_adj, off_adj), ctx);
1756 } else {
1757 emit_a64_mov_i(1, tmp, off, ctx);
1758 emit(A64_STR64(src, dst, tmp), ctx);
1759 }
1760 break;
1761 }
1762
1763 ret = add_exception_handler(insn, ctx, dst);
1764 if (ret)
1765 return ret;
1766 break;
1767
1768 case BPF_STX | BPF_ATOMIC | BPF_B:
1769 case BPF_STX | BPF_ATOMIC | BPF_H:
1770 case BPF_STX | BPF_ATOMIC | BPF_W:
1771 case BPF_STX | BPF_ATOMIC | BPF_DW:
1772 case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
1773 case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
1774 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1775 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1776 if (bpf_atomic_is_load_store(insn))
1777 ret = emit_atomic_ld_st(insn, ctx);
1778 else if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
1779 ret = emit_lse_atomic(insn, ctx);
1780 else
1781 ret = emit_ll_sc_atomic(insn, ctx);
1782 if (ret)
1783 return ret;
1784
1785 ret = add_exception_handler(insn, ctx, dst);
1786 if (ret)
1787 return ret;
1788 break;
1789
1790 default:
1791 pr_err_once("unknown opcode %02x\n", code);
1792 return -EINVAL;
1793 }
1794
1795 return 0;
1796 }
1797
build_body(struct jit_ctx * ctx,bool extra_pass)1798 static int build_body(struct jit_ctx *ctx, bool extra_pass)
1799 {
1800 const struct bpf_prog *prog = ctx->prog;
1801 int i;
1802
1803 /*
1804 * - offset[0] offset of the end of prologue,
1805 * start of the 1st instruction.
1806 * - offset[1] - offset of the end of 1st instruction,
1807 * start of the 2nd instruction
1808 * [....]
1809 * - offset[3] - offset of the end of 3rd instruction,
1810 * start of 4th instruction
1811 */
1812 for (i = 0; i < prog->len; i++) {
1813 const struct bpf_insn *insn = &prog->insnsi[i];
1814 int ret;
1815
1816 ctx->offset[i] = ctx->idx;
1817 ret = build_insn(insn, ctx, extra_pass);
1818 if (ret > 0) {
1819 i++;
1820 ctx->offset[i] = ctx->idx;
1821 continue;
1822 }
1823 if (ret)
1824 return ret;
1825 }
1826 /*
1827 * offset is allocated with prog->len + 1 so fill in
1828 * the last element with the offset after the last
1829 * instruction (end of program)
1830 */
1831 ctx->offset[i] = ctx->idx;
1832
1833 return 0;
1834 }
1835
validate_code(struct jit_ctx * ctx)1836 static int validate_code(struct jit_ctx *ctx)
1837 {
1838 int i;
1839
1840 for (i = 0; i < ctx->idx; i++) {
1841 u32 a64_insn = le32_to_cpu(ctx->image[i]);
1842
1843 if (a64_insn == AARCH64_BREAK_FAULT)
1844 return -1;
1845 }
1846 return 0;
1847 }
1848
validate_ctx(struct jit_ctx * ctx)1849 static int validate_ctx(struct jit_ctx *ctx)
1850 {
1851 if (validate_code(ctx))
1852 return -1;
1853
1854 if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries))
1855 return -1;
1856
1857 return 0;
1858 }
1859
bpf_flush_icache(void * start,void * end)1860 static inline void bpf_flush_icache(void *start, void *end)
1861 {
1862 flush_icache_range((unsigned long)start, (unsigned long)end);
1863 }
1864
1865 struct arm64_jit_data {
1866 struct bpf_binary_header *header;
1867 u8 *ro_image;
1868 struct bpf_binary_header *ro_header;
1869 struct jit_ctx ctx;
1870 };
1871
bpf_int_jit_compile(struct bpf_prog * prog)1872 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1873 {
1874 int image_size, prog_size, extable_size, extable_align, extable_offset;
1875 struct bpf_prog *tmp, *orig_prog = prog;
1876 struct bpf_binary_header *header;
1877 struct bpf_binary_header *ro_header;
1878 struct arm64_jit_data *jit_data;
1879 bool was_classic = bpf_prog_was_classic(prog);
1880 bool tmp_blinded = false;
1881 bool extra_pass = false;
1882 struct jit_ctx ctx;
1883 u8 *image_ptr;
1884 u8 *ro_image_ptr;
1885 int body_idx;
1886 int exentry_idx;
1887
1888 if (!prog->jit_requested)
1889 return orig_prog;
1890
1891 tmp = bpf_jit_blind_constants(prog);
1892 /* If blinding was requested and we failed during blinding,
1893 * we must fall back to the interpreter.
1894 */
1895 if (IS_ERR(tmp))
1896 return orig_prog;
1897 if (tmp != prog) {
1898 tmp_blinded = true;
1899 prog = tmp;
1900 }
1901
1902 jit_data = prog->aux->jit_data;
1903 if (!jit_data) {
1904 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1905 if (!jit_data) {
1906 prog = orig_prog;
1907 goto out;
1908 }
1909 prog->aux->jit_data = jit_data;
1910 }
1911 if (jit_data->ctx.offset) {
1912 ctx = jit_data->ctx;
1913 ro_image_ptr = jit_data->ro_image;
1914 ro_header = jit_data->ro_header;
1915 header = jit_data->header;
1916 image_ptr = (void *)header + ((void *)ro_image_ptr
1917 - (void *)ro_header);
1918 extra_pass = true;
1919 prog_size = sizeof(u32) * ctx.idx;
1920 goto skip_init_ctx;
1921 }
1922 memset(&ctx, 0, sizeof(ctx));
1923 ctx.prog = prog;
1924
1925 ctx.offset = kvcalloc(prog->len + 1, sizeof(int), GFP_KERNEL);
1926 if (ctx.offset == NULL) {
1927 prog = orig_prog;
1928 goto out_off;
1929 }
1930
1931 ctx.user_vm_start = bpf_arena_get_user_vm_start(prog->aux->arena);
1932 ctx.arena_vm_start = bpf_arena_get_kern_vm_start(prog->aux->arena);
1933
1934 /* Pass 1: Estimate the maximum image size.
1935 *
1936 * BPF line info needs ctx->offset[i] to be the offset of
1937 * instruction[i] in jited image, so build prologue first.
1938 */
1939 if (build_prologue(&ctx, was_classic)) {
1940 prog = orig_prog;
1941 goto out_off;
1942 }
1943
1944 if (build_body(&ctx, extra_pass)) {
1945 prog = orig_prog;
1946 goto out_off;
1947 }
1948
1949 ctx.epilogue_offset = ctx.idx;
1950 build_epilogue(&ctx, was_classic);
1951 build_plt(&ctx);
1952
1953 extable_align = __alignof__(struct exception_table_entry);
1954 extable_size = prog->aux->num_exentries *
1955 sizeof(struct exception_table_entry);
1956
1957 /* Now we know the maximum image size. */
1958 prog_size = sizeof(u32) * ctx.idx;
1959 /* also allocate space for plt target */
1960 extable_offset = round_up(prog_size + PLT_TARGET_SIZE, extable_align);
1961 image_size = extable_offset + extable_size;
1962 ro_header = bpf_jit_binary_pack_alloc(image_size, &ro_image_ptr,
1963 sizeof(u32), &header, &image_ptr,
1964 jit_fill_hole);
1965 if (!ro_header) {
1966 prog = orig_prog;
1967 goto out_off;
1968 }
1969
1970 /* Pass 2: Determine jited position and result for each instruction */
1971
1972 /*
1973 * Use the image(RW) for writing the JITed instructions. But also save
1974 * the ro_image(RX) for calculating the offsets in the image. The RW
1975 * image will be later copied to the RX image from where the program
1976 * will run. The bpf_jit_binary_pack_finalize() will do this copy in the
1977 * final step.
1978 */
1979 ctx.image = (__le32 *)image_ptr;
1980 ctx.ro_image = (__le32 *)ro_image_ptr;
1981 if (extable_size)
1982 prog->aux->extable = (void *)ro_image_ptr + extable_offset;
1983 skip_init_ctx:
1984 ctx.idx = 0;
1985 ctx.exentry_idx = 0;
1986 ctx.write = true;
1987
1988 build_prologue(&ctx, was_classic);
1989
1990 /* Record exentry_idx and body_idx before first build_body */
1991 exentry_idx = ctx.exentry_idx;
1992 body_idx = ctx.idx;
1993 /* Dont write body instructions to memory for now */
1994 ctx.write = false;
1995
1996 if (build_body(&ctx, extra_pass)) {
1997 prog = orig_prog;
1998 goto out_free_hdr;
1999 }
2000
2001 ctx.epilogue_offset = ctx.idx;
2002 ctx.exentry_idx = exentry_idx;
2003 ctx.idx = body_idx;
2004 ctx.write = true;
2005
2006 /* Pass 3: Adjust jump offset and write final image */
2007 if (build_body(&ctx, extra_pass) ||
2008 WARN_ON_ONCE(ctx.idx != ctx.epilogue_offset)) {
2009 prog = orig_prog;
2010 goto out_free_hdr;
2011 }
2012
2013 build_epilogue(&ctx, was_classic);
2014 build_plt(&ctx);
2015
2016 /* Extra pass to validate JITed code. */
2017 if (validate_ctx(&ctx)) {
2018 prog = orig_prog;
2019 goto out_free_hdr;
2020 }
2021
2022 /* update the real prog size */
2023 prog_size = sizeof(u32) * ctx.idx;
2024
2025 /* And we're done. */
2026 if (bpf_jit_enable > 1)
2027 bpf_jit_dump(prog->len, prog_size, 2, ctx.image);
2028
2029 if (!prog->is_func || extra_pass) {
2030 /* The jited image may shrink since the jited result for
2031 * BPF_CALL to subprog may be changed from indirect call
2032 * to direct call.
2033 */
2034 if (extra_pass && ctx.idx > jit_data->ctx.idx) {
2035 pr_err_once("multi-func JIT bug %d > %d\n",
2036 ctx.idx, jit_data->ctx.idx);
2037 prog->bpf_func = NULL;
2038 prog->jited = 0;
2039 prog->jited_len = 0;
2040 goto out_free_hdr;
2041 }
2042 if (WARN_ON(bpf_jit_binary_pack_finalize(ro_header, header))) {
2043 /* ro_header has been freed */
2044 ro_header = NULL;
2045 prog = orig_prog;
2046 goto out_off;
2047 }
2048 /*
2049 * The instructions have now been copied to the ROX region from
2050 * where they will execute. Now the data cache has to be cleaned to
2051 * the PoU and the I-cache has to be invalidated for the VAs.
2052 */
2053 bpf_flush_icache(ro_header, ctx.ro_image + ctx.idx);
2054 } else {
2055 jit_data->ctx = ctx;
2056 jit_data->ro_image = ro_image_ptr;
2057 jit_data->header = header;
2058 jit_data->ro_header = ro_header;
2059 }
2060
2061 prog->bpf_func = (void *)ctx.ro_image;
2062 prog->jited = 1;
2063 prog->jited_len = prog_size;
2064
2065 if (!prog->is_func || extra_pass) {
2066 int i;
2067
2068 /* offset[prog->len] is the size of program */
2069 for (i = 0; i <= prog->len; i++)
2070 ctx.offset[i] *= AARCH64_INSN_SIZE;
2071 bpf_prog_fill_jited_linfo(prog, ctx.offset + 1);
2072 out_off:
2073 kvfree(ctx.offset);
2074 kfree(jit_data);
2075 prog->aux->jit_data = NULL;
2076 }
2077 out:
2078 if (tmp_blinded)
2079 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2080 tmp : orig_prog);
2081 return prog;
2082
2083 out_free_hdr:
2084 if (header) {
2085 bpf_arch_text_copy(&ro_header->size, &header->size,
2086 sizeof(header->size));
2087 bpf_jit_binary_pack_free(ro_header, header);
2088 }
2089 goto out_off;
2090 }
2091
bpf_jit_supports_kfunc_call(void)2092 bool bpf_jit_supports_kfunc_call(void)
2093 {
2094 return true;
2095 }
2096
bpf_arch_text_copy(void * dst,void * src,size_t len)2097 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2098 {
2099 if (!aarch64_insn_copy(dst, src, len))
2100 return ERR_PTR(-EINVAL);
2101 return dst;
2102 }
2103
bpf_jit_alloc_exec_limit(void)2104 u64 bpf_jit_alloc_exec_limit(void)
2105 {
2106 return VMALLOC_END - VMALLOC_START;
2107 }
2108
2109 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)2110 bool bpf_jit_supports_subprog_tailcalls(void)
2111 {
2112 return true;
2113 }
2114
invoke_bpf_prog(struct jit_ctx * ctx,struct bpf_tramp_link * l,int bargs_off,int retval_off,int run_ctx_off,bool save_ret)2115 static void invoke_bpf_prog(struct jit_ctx *ctx, struct bpf_tramp_link *l,
2116 int bargs_off, int retval_off, int run_ctx_off,
2117 bool save_ret)
2118 {
2119 __le32 *branch;
2120 u64 enter_prog;
2121 u64 exit_prog;
2122 struct bpf_prog *p = l->link.prog;
2123 int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2124
2125 enter_prog = (u64)bpf_trampoline_enter(p);
2126 exit_prog = (u64)bpf_trampoline_exit(p);
2127
2128 if (l->cookie == 0) {
2129 /* if cookie is zero, one instruction is enough to store it */
2130 emit(A64_STR64I(A64_ZR, A64_SP, run_ctx_off + cookie_off), ctx);
2131 } else {
2132 emit_a64_mov_i64(A64_R(10), l->cookie, ctx);
2133 emit(A64_STR64I(A64_R(10), A64_SP, run_ctx_off + cookie_off),
2134 ctx);
2135 }
2136
2137 /* save p to callee saved register x19 to avoid loading p with mov_i64
2138 * each time.
2139 */
2140 emit_addr_mov_i64(A64_R(19), (const u64)p, ctx);
2141
2142 /* arg1: prog */
2143 emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
2144 /* arg2: &run_ctx */
2145 emit(A64_ADD_I(1, A64_R(1), A64_SP, run_ctx_off), ctx);
2146
2147 emit_call(enter_prog, ctx);
2148
2149 /* save return value to callee saved register x20 */
2150 emit(A64_MOV(1, A64_R(20), A64_R(0)), ctx);
2151
2152 /* if (__bpf_prog_enter(prog) == 0)
2153 * goto skip_exec_of_prog;
2154 */
2155 branch = ctx->image + ctx->idx;
2156 emit(A64_NOP, ctx);
2157
2158 emit(A64_ADD_I(1, A64_R(0), A64_SP, bargs_off), ctx);
2159 if (!p->jited)
2160 emit_addr_mov_i64(A64_R(1), (const u64)p->insnsi, ctx);
2161
2162 emit_call((const u64)p->bpf_func, ctx);
2163
2164 if (save_ret)
2165 emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
2166
2167 if (ctx->image) {
2168 int offset = &ctx->image[ctx->idx] - branch;
2169 *branch = cpu_to_le32(A64_CBZ(1, A64_R(0), offset));
2170 }
2171
2172 /* arg1: prog */
2173 emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
2174 /* arg2: start time */
2175 emit(A64_MOV(1, A64_R(1), A64_R(20)), ctx);
2176 /* arg3: &run_ctx */
2177 emit(A64_ADD_I(1, A64_R(2), A64_SP, run_ctx_off), ctx);
2178
2179 emit_call(exit_prog, ctx);
2180 }
2181
invoke_bpf_mod_ret(struct jit_ctx * ctx,struct bpf_tramp_links * tl,int bargs_off,int retval_off,int run_ctx_off,__le32 ** branches)2182 static void invoke_bpf_mod_ret(struct jit_ctx *ctx, struct bpf_tramp_links *tl,
2183 int bargs_off, int retval_off, int run_ctx_off,
2184 __le32 **branches)
2185 {
2186 int i;
2187
2188 /* The first fmod_ret program will receive a garbage return value.
2189 * Set this to 0 to avoid confusing the program.
2190 */
2191 emit(A64_STR64I(A64_ZR, A64_SP, retval_off), ctx);
2192 for (i = 0; i < tl->nr_links; i++) {
2193 invoke_bpf_prog(ctx, tl->links[i], bargs_off, retval_off,
2194 run_ctx_off, true);
2195 /* if (*(u64 *)(sp + retval_off) != 0)
2196 * goto do_fexit;
2197 */
2198 emit(A64_LDR64I(A64_R(10), A64_SP, retval_off), ctx);
2199 /* Save the location of branch, and generate a nop.
2200 * This nop will be replaced with a cbnz later.
2201 */
2202 branches[i] = ctx->image + ctx->idx;
2203 emit(A64_NOP, ctx);
2204 }
2205 }
2206
2207 struct arg_aux {
2208 /* how many args are passed through registers, the rest of the args are
2209 * passed through stack
2210 */
2211 int args_in_regs;
2212 /* how many registers are used to pass arguments */
2213 int regs_for_args;
2214 /* how much stack is used for additional args passed to bpf program
2215 * that did not fit in original function registers
2216 */
2217 int bstack_for_args;
2218 /* home much stack is used for additional args passed to the
2219 * original function when called from trampoline (this one needs
2220 * arguments to be properly aligned)
2221 */
2222 int ostack_for_args;
2223 };
2224
calc_arg_aux(const struct btf_func_model * m,struct arg_aux * a)2225 static int calc_arg_aux(const struct btf_func_model *m,
2226 struct arg_aux *a)
2227 {
2228 int stack_slots, nregs, slots, i;
2229
2230 /* verifier ensures m->nr_args <= MAX_BPF_FUNC_ARGS */
2231 for (i = 0, nregs = 0; i < m->nr_args; i++) {
2232 slots = (m->arg_size[i] + 7) / 8;
2233 if (nregs + slots <= 8) /* passed through register ? */
2234 nregs += slots;
2235 else
2236 break;
2237 }
2238
2239 a->args_in_regs = i;
2240 a->regs_for_args = nregs;
2241 a->ostack_for_args = 0;
2242 a->bstack_for_args = 0;
2243
2244 /* the rest arguments are passed through stack */
2245 for (; i < m->nr_args; i++) {
2246 /* We can not know for sure about exact alignment needs for
2247 * struct passed on stack, so deny those
2248 */
2249 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2250 return -ENOTSUPP;
2251 stack_slots = (m->arg_size[i] + 7) / 8;
2252 a->bstack_for_args += stack_slots * 8;
2253 a->ostack_for_args = a->ostack_for_args + stack_slots * 8;
2254 }
2255
2256 return 0;
2257 }
2258
clear_garbage(struct jit_ctx * ctx,int reg,int effective_bytes)2259 static void clear_garbage(struct jit_ctx *ctx, int reg, int effective_bytes)
2260 {
2261 if (effective_bytes) {
2262 int garbage_bits = 64 - 8 * effective_bytes;
2263 #ifdef CONFIG_CPU_BIG_ENDIAN
2264 /* garbage bits are at the right end */
2265 emit(A64_LSR(1, reg, reg, garbage_bits), ctx);
2266 emit(A64_LSL(1, reg, reg, garbage_bits), ctx);
2267 #else
2268 /* garbage bits are at the left end */
2269 emit(A64_LSL(1, reg, reg, garbage_bits), ctx);
2270 emit(A64_LSR(1, reg, reg, garbage_bits), ctx);
2271 #endif
2272 }
2273 }
2274
save_args(struct jit_ctx * ctx,int bargs_off,int oargs_off,const struct btf_func_model * m,const struct arg_aux * a,bool for_call_origin)2275 static void save_args(struct jit_ctx *ctx, int bargs_off, int oargs_off,
2276 const struct btf_func_model *m,
2277 const struct arg_aux *a,
2278 bool for_call_origin)
2279 {
2280 int i;
2281 int reg;
2282 int doff;
2283 int soff;
2284 int slots;
2285 u8 tmp = bpf2a64[TMP_REG_1];
2286
2287 /* store arguments to the stack for the bpf program, or restore
2288 * arguments from stack for the original function
2289 */
2290 for (reg = 0; reg < a->regs_for_args; reg++) {
2291 emit(for_call_origin ?
2292 A64_LDR64I(reg, A64_SP, bargs_off) :
2293 A64_STR64I(reg, A64_SP, bargs_off),
2294 ctx);
2295 bargs_off += 8;
2296 }
2297
2298 soff = 32; /* on stack arguments start from FP + 32 */
2299 doff = (for_call_origin ? oargs_off : bargs_off);
2300
2301 /* save on stack arguments */
2302 for (i = a->args_in_regs; i < m->nr_args; i++) {
2303 slots = (m->arg_size[i] + 7) / 8;
2304 /* verifier ensures arg_size <= 16, so slots equals 1 or 2 */
2305 while (slots-- > 0) {
2306 emit(A64_LDR64I(tmp, A64_FP, soff), ctx);
2307 /* if there is unused space in the last slot, clear
2308 * the garbage contained in the space.
2309 */
2310 if (slots == 0 && !for_call_origin)
2311 clear_garbage(ctx, tmp, m->arg_size[i] % 8);
2312 emit(A64_STR64I(tmp, A64_SP, doff), ctx);
2313 soff += 8;
2314 doff += 8;
2315 }
2316 }
2317 }
2318
restore_args(struct jit_ctx * ctx,int bargs_off,int nregs)2319 static void restore_args(struct jit_ctx *ctx, int bargs_off, int nregs)
2320 {
2321 int reg;
2322
2323 for (reg = 0; reg < nregs; reg++) {
2324 emit(A64_LDR64I(reg, A64_SP, bargs_off), ctx);
2325 bargs_off += 8;
2326 }
2327 }
2328
is_struct_ops_tramp(const struct bpf_tramp_links * fentry_links)2329 static bool is_struct_ops_tramp(const struct bpf_tramp_links *fentry_links)
2330 {
2331 return fentry_links->nr_links == 1 &&
2332 fentry_links->links[0]->link.type == BPF_LINK_TYPE_STRUCT_OPS;
2333 }
2334
2335 /* Based on the x86's implementation of arch_prepare_bpf_trampoline().
2336 *
2337 * bpf prog and function entry before bpf trampoline hooked:
2338 * mov x9, lr
2339 * nop
2340 *
2341 * bpf prog and function entry after bpf trampoline hooked:
2342 * mov x9, lr
2343 * bl <bpf_trampoline or plt>
2344 *
2345 */
prepare_trampoline(struct jit_ctx * ctx,struct bpf_tramp_image * im,struct bpf_tramp_links * tlinks,void * func_addr,const struct btf_func_model * m,const struct arg_aux * a,u32 flags)2346 static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im,
2347 struct bpf_tramp_links *tlinks, void *func_addr,
2348 const struct btf_func_model *m,
2349 const struct arg_aux *a,
2350 u32 flags)
2351 {
2352 int i;
2353 int stack_size;
2354 int retaddr_off;
2355 int regs_off;
2356 int retval_off;
2357 int bargs_off;
2358 int nfuncargs_off;
2359 int ip_off;
2360 int run_ctx_off;
2361 int oargs_off;
2362 int nfuncargs;
2363 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2364 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2365 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2366 bool save_ret;
2367 __le32 **branches = NULL;
2368 bool is_struct_ops = is_struct_ops_tramp(fentry);
2369
2370 /* trampoline stack layout:
2371 * [ parent ip ]
2372 * [ FP ]
2373 * SP + retaddr_off [ self ip ]
2374 * [ FP ]
2375 *
2376 * [ padding ] align SP to multiples of 16
2377 *
2378 * [ x20 ] callee saved reg x20
2379 * SP + regs_off [ x19 ] callee saved reg x19
2380 *
2381 * SP + retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or
2382 * BPF_TRAMP_F_RET_FENTRY_RET
2383 * [ arg reg N ]
2384 * [ ... ]
2385 * SP + bargs_off [ arg reg 1 ] for bpf
2386 *
2387 * SP + nfuncargs_off [ arg regs count ]
2388 *
2389 * SP + ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2390 *
2391 * SP + run_ctx_off [ bpf_tramp_run_ctx ]
2392 *
2393 * [ stack arg N ]
2394 * [ ... ]
2395 * SP + oargs_off [ stack arg 1 ] for original func
2396 */
2397
2398 stack_size = 0;
2399 oargs_off = stack_size;
2400 if (flags & BPF_TRAMP_F_CALL_ORIG)
2401 stack_size += a->ostack_for_args;
2402
2403 run_ctx_off = stack_size;
2404 /* room for bpf_tramp_run_ctx */
2405 stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
2406
2407 ip_off = stack_size;
2408 /* room for IP address argument */
2409 if (flags & BPF_TRAMP_F_IP_ARG)
2410 stack_size += 8;
2411
2412 nfuncargs_off = stack_size;
2413 /* room for args count */
2414 stack_size += 8;
2415
2416 bargs_off = stack_size;
2417 /* room for args */
2418 nfuncargs = a->regs_for_args + a->bstack_for_args / 8;
2419 stack_size += 8 * nfuncargs;
2420
2421 /* room for return value */
2422 retval_off = stack_size;
2423 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2424 if (save_ret)
2425 stack_size += 8;
2426
2427 /* room for callee saved registers, currently x19 and x20 are used */
2428 regs_off = stack_size;
2429 stack_size += 16;
2430
2431 /* round up to multiples of 16 to avoid SPAlignmentFault */
2432 stack_size = round_up(stack_size, 16);
2433
2434 /* return address locates above FP */
2435 retaddr_off = stack_size + 8;
2436
2437 /* bpf trampoline may be invoked by 3 instruction types:
2438 * 1. bl, attached to bpf prog or kernel function via short jump
2439 * 2. br, attached to bpf prog or kernel function via long jump
2440 * 3. blr, working as a function pointer, used by struct_ops.
2441 * So BTI_JC should used here to support both br and blr.
2442 */
2443 emit_bti(A64_BTI_JC, ctx);
2444
2445 /* x9 is not set for struct_ops */
2446 if (!is_struct_ops) {
2447 /* frame for parent function */
2448 emit(A64_PUSH(A64_FP, A64_R(9), A64_SP), ctx);
2449 emit(A64_MOV(1, A64_FP, A64_SP), ctx);
2450 }
2451
2452 /* frame for patched function for tracing, or caller for struct_ops */
2453 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
2454 emit(A64_MOV(1, A64_FP, A64_SP), ctx);
2455
2456 /* allocate stack space */
2457 emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx);
2458
2459 if (flags & BPF_TRAMP_F_IP_ARG) {
2460 /* save ip address of the traced function */
2461 emit_addr_mov_i64(A64_R(10), (const u64)func_addr, ctx);
2462 emit(A64_STR64I(A64_R(10), A64_SP, ip_off), ctx);
2463 }
2464
2465 /* save arg regs count*/
2466 emit(A64_MOVZ(1, A64_R(10), nfuncargs, 0), ctx);
2467 emit(A64_STR64I(A64_R(10), A64_SP, nfuncargs_off), ctx);
2468
2469 /* save args for bpf */
2470 save_args(ctx, bargs_off, oargs_off, m, a, false);
2471
2472 /* save callee saved registers */
2473 emit(A64_STR64I(A64_R(19), A64_SP, regs_off), ctx);
2474 emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
2475
2476 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2477 /* for the first pass, assume the worst case */
2478 if (!ctx->image)
2479 ctx->idx += 4;
2480 else
2481 emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
2482 emit_call((const u64)__bpf_tramp_enter, ctx);
2483 }
2484
2485 for (i = 0; i < fentry->nr_links; i++)
2486 invoke_bpf_prog(ctx, fentry->links[i], bargs_off,
2487 retval_off, run_ctx_off,
2488 flags & BPF_TRAMP_F_RET_FENTRY_RET);
2489
2490 if (fmod_ret->nr_links) {
2491 branches = kcalloc(fmod_ret->nr_links, sizeof(__le32 *),
2492 GFP_KERNEL);
2493 if (!branches)
2494 return -ENOMEM;
2495
2496 invoke_bpf_mod_ret(ctx, fmod_ret, bargs_off, retval_off,
2497 run_ctx_off, branches);
2498 }
2499
2500 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2501 /* save args for original func */
2502 save_args(ctx, bargs_off, oargs_off, m, a, true);
2503 /* call original func */
2504 emit(A64_LDR64I(A64_R(10), A64_SP, retaddr_off), ctx);
2505 emit(A64_ADR(A64_LR, AARCH64_INSN_SIZE * 2), ctx);
2506 emit(A64_RET(A64_R(10)), ctx);
2507 /* store return value */
2508 emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
2509 /* reserve a nop for bpf_tramp_image_put */
2510 im->ip_after_call = ctx->ro_image + ctx->idx;
2511 emit(A64_NOP, ctx);
2512 }
2513
2514 /* update the branches saved in invoke_bpf_mod_ret with cbnz */
2515 for (i = 0; i < fmod_ret->nr_links && ctx->image != NULL; i++) {
2516 int offset = &ctx->image[ctx->idx] - branches[i];
2517 *branches[i] = cpu_to_le32(A64_CBNZ(1, A64_R(10), offset));
2518 }
2519
2520 for (i = 0; i < fexit->nr_links; i++)
2521 invoke_bpf_prog(ctx, fexit->links[i], bargs_off, retval_off,
2522 run_ctx_off, false);
2523
2524 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2525 im->ip_epilogue = ctx->ro_image + ctx->idx;
2526 /* for the first pass, assume the worst case */
2527 if (!ctx->image)
2528 ctx->idx += 4;
2529 else
2530 emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
2531 emit_call((const u64)__bpf_tramp_exit, ctx);
2532 }
2533
2534 if (flags & BPF_TRAMP_F_RESTORE_REGS)
2535 restore_args(ctx, bargs_off, a->regs_for_args);
2536
2537 /* restore callee saved register x19 and x20 */
2538 emit(A64_LDR64I(A64_R(19), A64_SP, regs_off), ctx);
2539 emit(A64_LDR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
2540
2541 if (save_ret)
2542 emit(A64_LDR64I(A64_R(0), A64_SP, retval_off), ctx);
2543
2544 /* reset SP */
2545 emit(A64_MOV(1, A64_SP, A64_FP), ctx);
2546
2547 if (is_struct_ops) {
2548 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
2549 emit(A64_RET(A64_LR), ctx);
2550 } else {
2551 /* pop frames */
2552 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
2553 emit(A64_POP(A64_FP, A64_R(9), A64_SP), ctx);
2554
2555 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2556 /* skip patched function, return to parent */
2557 emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
2558 emit(A64_RET(A64_R(9)), ctx);
2559 } else {
2560 /* return to patched function */
2561 emit(A64_MOV(1, A64_R(10), A64_LR), ctx);
2562 emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
2563 emit(A64_RET(A64_R(10)), ctx);
2564 }
2565 }
2566
2567 kfree(branches);
2568
2569 return ctx->idx;
2570 }
2571
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2572 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2573 struct bpf_tramp_links *tlinks, void *func_addr)
2574 {
2575 struct jit_ctx ctx = {
2576 .image = NULL,
2577 .idx = 0,
2578 };
2579 struct bpf_tramp_image im;
2580 struct arg_aux aaux;
2581 int ret;
2582
2583 ret = calc_arg_aux(m, &aaux);
2584 if (ret < 0)
2585 return ret;
2586
2587 ret = prepare_trampoline(&ctx, &im, tlinks, func_addr, m, &aaux, flags);
2588 if (ret < 0)
2589 return ret;
2590
2591 return ret < 0 ? ret : ret * AARCH64_INSN_SIZE;
2592 }
2593
arch_alloc_bpf_trampoline(unsigned int size)2594 void *arch_alloc_bpf_trampoline(unsigned int size)
2595 {
2596 return bpf_prog_pack_alloc(size, jit_fill_hole);
2597 }
2598
arch_free_bpf_trampoline(void * image,unsigned int size)2599 void arch_free_bpf_trampoline(void *image, unsigned int size)
2600 {
2601 bpf_prog_pack_free(image, size);
2602 }
2603
arch_protect_bpf_trampoline(void * image,unsigned int size)2604 int arch_protect_bpf_trampoline(void *image, unsigned int size)
2605 {
2606 return 0;
2607 }
2608
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * ro_image,void * ro_image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2609 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image,
2610 void *ro_image_end, const struct btf_func_model *m,
2611 u32 flags, struct bpf_tramp_links *tlinks,
2612 void *func_addr)
2613 {
2614 u32 size = ro_image_end - ro_image;
2615 struct arg_aux aaux;
2616 void *image, *tmp;
2617 int ret;
2618
2619 /* image doesn't need to be in module memory range, so we can
2620 * use kvmalloc.
2621 */
2622 image = kvmalloc(size, GFP_KERNEL);
2623 if (!image)
2624 return -ENOMEM;
2625
2626 struct jit_ctx ctx = {
2627 .image = image,
2628 .ro_image = ro_image,
2629 .idx = 0,
2630 .write = true,
2631 };
2632
2633
2634 jit_fill_hole(image, (unsigned int)(ro_image_end - ro_image));
2635 ret = calc_arg_aux(m, &aaux);
2636 if (ret)
2637 goto out;
2638 ret = prepare_trampoline(&ctx, im, tlinks, func_addr, m, &aaux, flags);
2639
2640 if (ret > 0 && validate_code(&ctx) < 0) {
2641 ret = -EINVAL;
2642 goto out;
2643 }
2644
2645 if (ret > 0)
2646 ret *= AARCH64_INSN_SIZE;
2647
2648 tmp = bpf_arch_text_copy(ro_image, image, size);
2649 if (IS_ERR(tmp)) {
2650 ret = PTR_ERR(tmp);
2651 goto out;
2652 }
2653
2654 bpf_flush_icache(ro_image, ro_image + size);
2655 out:
2656 kvfree(image);
2657 return ret;
2658 }
2659
is_long_jump(void * ip,void * target)2660 static bool is_long_jump(void *ip, void *target)
2661 {
2662 long offset;
2663
2664 /* NULL target means this is a NOP */
2665 if (!target)
2666 return false;
2667
2668 offset = (long)target - (long)ip;
2669 return offset < -SZ_128M || offset >= SZ_128M;
2670 }
2671
gen_branch_or_nop(enum aarch64_insn_branch_type type,void * ip,void * addr,void * plt,u32 * insn)2672 static int gen_branch_or_nop(enum aarch64_insn_branch_type type, void *ip,
2673 void *addr, void *plt, u32 *insn)
2674 {
2675 void *target;
2676
2677 if (!addr) {
2678 *insn = aarch64_insn_gen_nop();
2679 return 0;
2680 }
2681
2682 if (is_long_jump(ip, addr))
2683 target = plt;
2684 else
2685 target = addr;
2686
2687 *insn = aarch64_insn_gen_branch_imm((unsigned long)ip,
2688 (unsigned long)target,
2689 type);
2690
2691 return *insn != AARCH64_BREAK_FAULT ? 0 : -EFAULT;
2692 }
2693
2694 /* Replace the branch instruction from @ip to @old_addr in a bpf prog or a bpf
2695 * trampoline with the branch instruction from @ip to @new_addr. If @old_addr
2696 * or @new_addr is NULL, the old or new instruction is NOP.
2697 *
2698 * When @ip is the bpf prog entry, a bpf trampoline is being attached or
2699 * detached. Since bpf trampoline and bpf prog are allocated separately with
2700 * vmalloc, the address distance may exceed 128MB, the maximum branch range.
2701 * So long jump should be handled.
2702 *
2703 * When a bpf prog is constructed, a plt pointing to empty trampoline
2704 * dummy_tramp is placed at the end:
2705 *
2706 * bpf_prog:
2707 * mov x9, lr
2708 * nop // patchsite
2709 * ...
2710 * ret
2711 *
2712 * plt:
2713 * ldr x10, target
2714 * br x10
2715 * target:
2716 * .quad dummy_tramp // plt target
2717 *
2718 * This is also the state when no trampoline is attached.
2719 *
2720 * When a short-jump bpf trampoline is attached, the patchsite is patched
2721 * to a bl instruction to the trampoline directly:
2722 *
2723 * bpf_prog:
2724 * mov x9, lr
2725 * bl <short-jump bpf trampoline address> // patchsite
2726 * ...
2727 * ret
2728 *
2729 * plt:
2730 * ldr x10, target
2731 * br x10
2732 * target:
2733 * .quad dummy_tramp // plt target
2734 *
2735 * When a long-jump bpf trampoline is attached, the plt target is filled with
2736 * the trampoline address and the patchsite is patched to a bl instruction to
2737 * the plt:
2738 *
2739 * bpf_prog:
2740 * mov x9, lr
2741 * bl plt // patchsite
2742 * ...
2743 * ret
2744 *
2745 * plt:
2746 * ldr x10, target
2747 * br x10
2748 * target:
2749 * .quad <long-jump bpf trampoline address> // plt target
2750 *
2751 * The dummy_tramp is used to prevent another CPU from jumping to unknown
2752 * locations during the patching process, making the patching process easier.
2753 */
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type poke_type,void * old_addr,void * new_addr)2754 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
2755 void *old_addr, void *new_addr)
2756 {
2757 int ret;
2758 u32 old_insn;
2759 u32 new_insn;
2760 u32 replaced;
2761 struct bpf_plt *plt = NULL;
2762 unsigned long size = 0UL;
2763 unsigned long offset = ~0UL;
2764 enum aarch64_insn_branch_type branch_type;
2765 char namebuf[KSYM_NAME_LEN];
2766 void *image = NULL;
2767 u64 plt_target = 0ULL;
2768 bool poking_bpf_entry;
2769
2770 if (!__bpf_address_lookup((unsigned long)ip, &size, &offset, namebuf))
2771 /* Only poking bpf text is supported. Since kernel function
2772 * entry is set up by ftrace, we reply on ftrace to poke kernel
2773 * functions.
2774 */
2775 return -ENOTSUPP;
2776
2777 image = ip - offset;
2778 /* zero offset means we're poking bpf prog entry */
2779 poking_bpf_entry = (offset == 0UL);
2780
2781 /* bpf prog entry, find plt and the real patchsite */
2782 if (poking_bpf_entry) {
2783 /* plt locates at the end of bpf prog */
2784 plt = image + size - PLT_TARGET_OFFSET;
2785
2786 /* skip to the nop instruction in bpf prog entry:
2787 * bti c // if BTI enabled
2788 * mov x9, x30
2789 * nop
2790 */
2791 ip = image + POKE_OFFSET * AARCH64_INSN_SIZE;
2792 }
2793
2794 /* long jump is only possible at bpf prog entry */
2795 if (WARN_ON((is_long_jump(ip, new_addr) || is_long_jump(ip, old_addr)) &&
2796 !poking_bpf_entry))
2797 return -EINVAL;
2798
2799 if (poke_type == BPF_MOD_CALL)
2800 branch_type = AARCH64_INSN_BRANCH_LINK;
2801 else
2802 branch_type = AARCH64_INSN_BRANCH_NOLINK;
2803
2804 if (gen_branch_or_nop(branch_type, ip, old_addr, plt, &old_insn) < 0)
2805 return -EFAULT;
2806
2807 if (gen_branch_or_nop(branch_type, ip, new_addr, plt, &new_insn) < 0)
2808 return -EFAULT;
2809
2810 if (is_long_jump(ip, new_addr))
2811 plt_target = (u64)new_addr;
2812 else if (is_long_jump(ip, old_addr))
2813 /* if the old target is a long jump and the new target is not,
2814 * restore the plt target to dummy_tramp, so there is always a
2815 * legal and harmless address stored in plt target, and we'll
2816 * never jump from plt to an unknown place.
2817 */
2818 plt_target = (u64)&dummy_tramp;
2819
2820 if (plt_target) {
2821 /* non-zero plt_target indicates we're patching a bpf prog,
2822 * which is read only.
2823 */
2824 if (set_memory_rw(PAGE_MASK & ((uintptr_t)&plt->target), 1))
2825 return -EFAULT;
2826 WRITE_ONCE(plt->target, plt_target);
2827 set_memory_ro(PAGE_MASK & ((uintptr_t)&plt->target), 1);
2828 /* since plt target points to either the new trampoline
2829 * or dummy_tramp, even if another CPU reads the old plt
2830 * target value before fetching the bl instruction to plt,
2831 * it will be brought back by dummy_tramp, so no barrier is
2832 * required here.
2833 */
2834 }
2835
2836 /* if the old target and the new target are both long jumps, no
2837 * patching is required
2838 */
2839 if (old_insn == new_insn)
2840 return 0;
2841
2842 mutex_lock(&text_mutex);
2843 if (aarch64_insn_read(ip, &replaced)) {
2844 ret = -EFAULT;
2845 goto out;
2846 }
2847
2848 if (replaced != old_insn) {
2849 ret = -EFAULT;
2850 goto out;
2851 }
2852
2853 /* We call aarch64_insn_patch_text_nosync() to replace instruction
2854 * atomically, so no other CPUs will fetch a half-new and half-old
2855 * instruction. But there is chance that another CPU executes the
2856 * old instruction after the patching operation finishes (e.g.,
2857 * pipeline not flushed, or icache not synchronized yet).
2858 *
2859 * 1. when a new trampoline is attached, it is not a problem for
2860 * different CPUs to jump to different trampolines temporarily.
2861 *
2862 * 2. when an old trampoline is freed, we should wait for all other
2863 * CPUs to exit the trampoline and make sure the trampoline is no
2864 * longer reachable, since bpf_tramp_image_put() function already
2865 * uses percpu_ref and task-based rcu to do the sync, no need to call
2866 * the sync version here, see bpf_tramp_image_put() for details.
2867 */
2868 ret = aarch64_insn_patch_text_nosync(ip, new_insn);
2869 out:
2870 mutex_unlock(&text_mutex);
2871
2872 return ret;
2873 }
2874
bpf_jit_supports_ptr_xchg(void)2875 bool bpf_jit_supports_ptr_xchg(void)
2876 {
2877 return true;
2878 }
2879
bpf_jit_supports_exceptions(void)2880 bool bpf_jit_supports_exceptions(void)
2881 {
2882 /* We unwind through both kernel frames starting from within bpf_throw
2883 * call and BPF frames. Therefore we require FP unwinder to be enabled
2884 * to walk kernel frames and reach BPF frames in the stack trace.
2885 * ARM64 kernel is aways compiled with CONFIG_FRAME_POINTER=y
2886 */
2887 return true;
2888 }
2889
bpf_jit_supports_arena(void)2890 bool bpf_jit_supports_arena(void)
2891 {
2892 return true;
2893 }
2894
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)2895 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2896 {
2897 if (!in_arena)
2898 return true;
2899 switch (insn->code) {
2900 case BPF_STX | BPF_ATOMIC | BPF_W:
2901 case BPF_STX | BPF_ATOMIC | BPF_DW:
2902 if (!bpf_atomic_is_load_store(insn) &&
2903 !cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
2904 return false;
2905 }
2906 return true;
2907 }
2908
bpf_jit_supports_percpu_insn(void)2909 bool bpf_jit_supports_percpu_insn(void)
2910 {
2911 return true;
2912 }
2913
bpf_jit_inlines_helper_call(s32 imm)2914 bool bpf_jit_inlines_helper_call(s32 imm)
2915 {
2916 switch (imm) {
2917 case BPF_FUNC_get_smp_processor_id:
2918 case BPF_FUNC_get_current_task:
2919 case BPF_FUNC_get_current_task_btf:
2920 return true;
2921 default:
2922 return false;
2923 }
2924 }
2925
bpf_jit_free(struct bpf_prog * prog)2926 void bpf_jit_free(struct bpf_prog *prog)
2927 {
2928 if (prog->jited) {
2929 struct arm64_jit_data *jit_data = prog->aux->jit_data;
2930 struct bpf_binary_header *hdr;
2931
2932 /*
2933 * If we fail the final pass of JIT (from jit_subprogs),
2934 * the program may not be finalized yet. Call finalize here
2935 * before freeing it.
2936 */
2937 if (jit_data) {
2938 bpf_arch_text_copy(&jit_data->ro_header->size, &jit_data->header->size,
2939 sizeof(jit_data->header->size));
2940 kfree(jit_data);
2941 }
2942 hdr = bpf_jit_binary_pack_hdr(prog);
2943 bpf_jit_binary_pack_free(hdr, NULL);
2944 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2945 }
2946
2947 bpf_prog_unlock_free(prog);
2948 }
2949