1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Cyrix stuff, June 1998 by: 6 * - Rafael R. Reilova (moved everything from head.S), 7 * <rreilova@ececs.uc.edu> 8 * - Channing Corn (tests & fixes), 9 * - Andrew D. Balsa (code cleanup). 10 */ 11 #include <linux/init.h> 12 #include <linux/cpu.h> 13 #include <linux/module.h> 14 #include <linux/nospec.h> 15 #include <linux/prctl.h> 16 #include <linux/sched/smt.h> 17 #include <linux/pgtable.h> 18 #include <linux/bpf.h> 19 #include <linux/kvm_types.h> 20 21 #include <asm/spec-ctrl.h> 22 #include <asm/cmdline.h> 23 #include <asm/bugs.h> 24 #include <asm/processor.h> 25 #include <asm/processor-flags.h> 26 #include <asm/fpu/api.h> 27 #include <asm/msr.h> 28 #include <asm/vmx.h> 29 #include <asm/cpu_device_id.h> 30 #include <asm/e820/api.h> 31 #include <asm/hypervisor.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cpu.h> 34 35 #include "cpu.h" 36 37 /* 38 * Speculation Vulnerability Handling 39 * 40 * Each vulnerability is handled with the following functions: 41 * <vuln>_select_mitigation() -- Selects a mitigation to use. This should 42 * take into account all relevant command line 43 * options. 44 * <vuln>_update_mitigation() -- This is called after all vulnerabilities have 45 * selected a mitigation, in case the selection 46 * may want to change based on other choices 47 * made. This function is optional. 48 * <vuln>_apply_mitigation() -- Enable the selected mitigation. 49 * 50 * The compile-time mitigation in all cases should be AUTO. An explicit 51 * command-line option can override AUTO. If no such option is 52 * provided, <vuln>_select_mitigation() will override AUTO to the best 53 * mitigation option. 54 */ 55 56 /* The base value of the SPEC_CTRL MSR without task-specific bits set */ 57 u64 x86_spec_ctrl_base; 58 59 /* The current value of the SPEC_CTRL MSR with task-specific bits set */ 60 DEFINE_PER_CPU(u64, x86_spec_ctrl_current); 61 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current); 62 63 /* 64 * Set when the CPU has run a potentially malicious guest. An IBPB will 65 * be needed to before running userspace. That IBPB will flush the branch 66 * predictor content. 67 */ 68 DEFINE_PER_CPU(bool, x86_ibpb_exit_to_user); 69 EXPORT_PER_CPU_SYMBOL_GPL(x86_ibpb_exit_to_user); 70 71 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB; 72 73 static u64 __ro_after_init x86_arch_cap_msr; 74 75 static DEFINE_MUTEX(spec_ctrl_mutex); 76 77 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk; 78 79 static void __init set_return_thunk(void *thunk) 80 { 81 x86_return_thunk = thunk; 82 83 pr_info("active return thunk: %ps\n", thunk); 84 } 85 86 /* Update SPEC_CTRL MSR and its cached copy unconditionally */ 87 static void update_spec_ctrl(u64 val) 88 { 89 this_cpu_write(x86_spec_ctrl_current, val); 90 wrmsrq(MSR_IA32_SPEC_CTRL, val); 91 } 92 93 /* 94 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ 95 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update(). 96 */ 97 void update_spec_ctrl_cond(u64 val) 98 { 99 if (this_cpu_read(x86_spec_ctrl_current) == val) 100 return; 101 102 this_cpu_write(x86_spec_ctrl_current, val); 103 104 /* 105 * When KERNEL_IBRS this MSR is written on return-to-user, unless 106 * forced the update can be delayed until that time. 107 */ 108 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) 109 wrmsrq(MSR_IA32_SPEC_CTRL, val); 110 } 111 112 noinstr u64 spec_ctrl_current(void) 113 { 114 return this_cpu_read(x86_spec_ctrl_current); 115 } 116 EXPORT_SYMBOL_GPL(spec_ctrl_current); 117 118 /* 119 * AMD specific MSR info for Speculative Store Bypass control. 120 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu(). 121 */ 122 u64 __ro_after_init x86_amd_ls_cfg_base; 123 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask; 124 125 /* Control conditional STIBP in switch_to() */ 126 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp); 127 /* Control conditional IBPB in switch_mm() */ 128 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); 129 /* Control unconditional IBPB in switch_mm() */ 130 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); 131 132 /* Control IBPB on vCPU load */ 133 DEFINE_STATIC_KEY_FALSE(switch_vcpu_ibpb); 134 EXPORT_SYMBOL_FOR_KVM(switch_vcpu_ibpb); 135 136 /* Control CPU buffer clear before idling (halt, mwait) */ 137 DEFINE_STATIC_KEY_FALSE(cpu_buf_idle_clear); 138 EXPORT_SYMBOL_GPL(cpu_buf_idle_clear); 139 140 /* 141 * Controls whether l1d flush based mitigations are enabled, 142 * based on hw features and admin setting via boot parameter 143 * defaults to false 144 */ 145 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush); 146 147 #undef pr_fmt 148 #define pr_fmt(fmt) "mitigations: " fmt 149 150 static void __init cpu_print_attack_vectors(void) 151 { 152 pr_info("Enabled attack vectors: "); 153 154 if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL)) 155 pr_cont("user_kernel, "); 156 157 if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER)) 158 pr_cont("user_user, "); 159 160 if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST)) 161 pr_cont("guest_host, "); 162 163 if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) 164 pr_cont("guest_guest, "); 165 166 pr_cont("SMT mitigations: "); 167 168 switch (smt_mitigations) { 169 case SMT_MITIGATIONS_OFF: 170 pr_cont("off\n"); 171 break; 172 case SMT_MITIGATIONS_AUTO: 173 pr_cont("auto\n"); 174 break; 175 case SMT_MITIGATIONS_ON: 176 pr_cont("on\n"); 177 } 178 } 179 180 /* 181 * NOTE: This function is *only* called for SVM, since Intel uses 182 * MSR_IA32_SPEC_CTRL for SSBD. 183 */ 184 void 185 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest) 186 { 187 u64 guestval, hostval; 188 struct thread_info *ti = current_thread_info(); 189 190 /* 191 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update 192 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported. 193 */ 194 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 195 !static_cpu_has(X86_FEATURE_VIRT_SSBD)) 196 return; 197 198 /* 199 * If the host has SSBD mitigation enabled, force it in the host's 200 * virtual MSR value. If its not permanently enabled, evaluate 201 * current's TIF_SSBD thread flag. 202 */ 203 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE)) 204 hostval = SPEC_CTRL_SSBD; 205 else 206 hostval = ssbd_tif_to_spec_ctrl(ti->flags); 207 208 /* Sanitize the guest value */ 209 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD; 210 211 if (hostval != guestval) { 212 unsigned long tif; 213 214 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) : 215 ssbd_spec_ctrl_to_tif(hostval); 216 217 speculation_ctrl_update(tif); 218 } 219 } 220 EXPORT_SYMBOL_FOR_KVM(x86_virt_spec_ctrl); 221 222 static void x86_amd_ssb_disable(void) 223 { 224 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask; 225 226 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD)) 227 wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD); 228 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD)) 229 wrmsrq(MSR_AMD64_LS_CFG, msrval); 230 } 231 232 #undef pr_fmt 233 #define pr_fmt(fmt) "MDS: " fmt 234 235 /* 236 * Returns true if vulnerability should be mitigated based on the 237 * selected attack vector controls. 238 * 239 * See Documentation/admin-guide/hw-vuln/attack_vector_controls.rst 240 */ 241 static bool __init should_mitigate_vuln(unsigned int bug) 242 { 243 switch (bug) { 244 /* 245 * The only runtime-selected spectre_v1 mitigations in the kernel are 246 * related to SWAPGS protection on kernel entry. Therefore, protection 247 * is only required for the user->kernel attack vector. 248 */ 249 case X86_BUG_SPECTRE_V1: 250 return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL); 251 252 case X86_BUG_SPECTRE_V2: 253 case X86_BUG_RETBLEED: 254 case X86_BUG_L1TF: 255 case X86_BUG_ITS: 256 return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) || 257 cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST); 258 259 case X86_BUG_SPECTRE_V2_USER: 260 return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) || 261 cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST); 262 263 /* 264 * All the vulnerabilities below allow potentially leaking data 265 * across address spaces. Therefore, mitigation is required for 266 * any of these 4 attack vectors. 267 */ 268 case X86_BUG_MDS: 269 case X86_BUG_TAA: 270 case X86_BUG_MMIO_STALE_DATA: 271 case X86_BUG_RFDS: 272 case X86_BUG_SRBDS: 273 return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) || 274 cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) || 275 cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) || 276 cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST); 277 278 case X86_BUG_GDS: 279 return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) || 280 cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) || 281 cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) || 282 cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST) || 283 (smt_mitigations != SMT_MITIGATIONS_OFF); 284 285 case X86_BUG_SPEC_STORE_BYPASS: 286 return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER); 287 288 case X86_BUG_VMSCAPE: 289 return cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST); 290 291 default: 292 WARN(1, "Unknown bug %x\n", bug); 293 return false; 294 } 295 } 296 297 /* Default mitigation for MDS-affected CPUs */ 298 static enum mds_mitigations mds_mitigation __ro_after_init = 299 IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_AUTO : MDS_MITIGATION_OFF; 300 static bool mds_nosmt __ro_after_init = false; 301 302 static const char * const mds_strings[] = { 303 [MDS_MITIGATION_OFF] = "Vulnerable", 304 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers", 305 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode", 306 }; 307 308 enum taa_mitigations { 309 TAA_MITIGATION_OFF, 310 TAA_MITIGATION_AUTO, 311 TAA_MITIGATION_UCODE_NEEDED, 312 TAA_MITIGATION_VERW, 313 TAA_MITIGATION_TSX_DISABLED, 314 }; 315 316 /* Default mitigation for TAA-affected CPUs */ 317 static enum taa_mitigations taa_mitigation __ro_after_init = 318 IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_AUTO : TAA_MITIGATION_OFF; 319 320 enum mmio_mitigations { 321 MMIO_MITIGATION_OFF, 322 MMIO_MITIGATION_AUTO, 323 MMIO_MITIGATION_UCODE_NEEDED, 324 MMIO_MITIGATION_VERW, 325 }; 326 327 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */ 328 static enum mmio_mitigations mmio_mitigation __ro_after_init = 329 IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ? MMIO_MITIGATION_AUTO : MMIO_MITIGATION_OFF; 330 331 enum rfds_mitigations { 332 RFDS_MITIGATION_OFF, 333 RFDS_MITIGATION_AUTO, 334 RFDS_MITIGATION_VERW, 335 RFDS_MITIGATION_UCODE_NEEDED, 336 }; 337 338 /* Default mitigation for Register File Data Sampling */ 339 static enum rfds_mitigations rfds_mitigation __ro_after_init = 340 IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_AUTO : RFDS_MITIGATION_OFF; 341 342 /* 343 * Set if any of MDS/TAA/MMIO/RFDS are going to enable VERW clearing on exit to 344 * userspace *and* on entry to KVM guests. 345 */ 346 static bool verw_clear_cpu_buf_mitigation_selected __ro_after_init; 347 348 static void __init mds_select_mitigation(void) 349 { 350 if (!boot_cpu_has_bug(X86_BUG_MDS)) { 351 mds_mitigation = MDS_MITIGATION_OFF; 352 return; 353 } 354 355 if (mds_mitigation == MDS_MITIGATION_AUTO) { 356 if (should_mitigate_vuln(X86_BUG_MDS)) 357 mds_mitigation = MDS_MITIGATION_FULL; 358 else 359 mds_mitigation = MDS_MITIGATION_OFF; 360 } 361 362 if (mds_mitigation == MDS_MITIGATION_OFF) 363 return; 364 365 verw_clear_cpu_buf_mitigation_selected = true; 366 } 367 368 static void __init mds_update_mitigation(void) 369 { 370 if (!boot_cpu_has_bug(X86_BUG_MDS)) 371 return; 372 373 /* If TAA, MMIO, or RFDS are being mitigated, MDS gets mitigated too. */ 374 if (verw_clear_cpu_buf_mitigation_selected) 375 mds_mitigation = MDS_MITIGATION_FULL; 376 377 if (mds_mitigation == MDS_MITIGATION_FULL) { 378 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR)) 379 mds_mitigation = MDS_MITIGATION_VMWERV; 380 } 381 382 pr_info("%s\n", mds_strings[mds_mitigation]); 383 } 384 385 static void __init mds_apply_mitigation(void) 386 { 387 if (mds_mitigation == MDS_MITIGATION_FULL || 388 mds_mitigation == MDS_MITIGATION_VMWERV) { 389 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 390 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM); 391 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) && 392 (mds_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)) 393 cpu_smt_disable(false); 394 } 395 } 396 397 static int __init mds_cmdline(char *str) 398 { 399 if (!boot_cpu_has_bug(X86_BUG_MDS)) 400 return 0; 401 402 if (!str) 403 return -EINVAL; 404 405 if (!strcmp(str, "off")) 406 mds_mitigation = MDS_MITIGATION_OFF; 407 else if (!strcmp(str, "full")) 408 mds_mitigation = MDS_MITIGATION_FULL; 409 else if (!strcmp(str, "full,nosmt")) { 410 mds_mitigation = MDS_MITIGATION_FULL; 411 mds_nosmt = true; 412 } 413 414 return 0; 415 } 416 early_param("mds", mds_cmdline); 417 418 #undef pr_fmt 419 #define pr_fmt(fmt) "TAA: " fmt 420 421 static bool taa_nosmt __ro_after_init; 422 423 static const char * const taa_strings[] = { 424 [TAA_MITIGATION_OFF] = "Vulnerable", 425 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 426 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 427 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled", 428 }; 429 430 static bool __init taa_vulnerable(void) 431 { 432 return boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM); 433 } 434 435 static void __init taa_select_mitigation(void) 436 { 437 if (!boot_cpu_has_bug(X86_BUG_TAA)) { 438 taa_mitigation = TAA_MITIGATION_OFF; 439 return; 440 } 441 442 /* TSX previously disabled by tsx=off */ 443 if (!boot_cpu_has(X86_FEATURE_RTM)) { 444 taa_mitigation = TAA_MITIGATION_TSX_DISABLED; 445 return; 446 } 447 448 /* Microcode will be checked in taa_update_mitigation(). */ 449 if (taa_mitigation == TAA_MITIGATION_AUTO) { 450 if (should_mitigate_vuln(X86_BUG_TAA)) 451 taa_mitigation = TAA_MITIGATION_VERW; 452 else 453 taa_mitigation = TAA_MITIGATION_OFF; 454 } 455 456 if (taa_mitigation != TAA_MITIGATION_OFF) 457 verw_clear_cpu_buf_mitigation_selected = true; 458 } 459 460 static void __init taa_update_mitigation(void) 461 { 462 if (!taa_vulnerable()) 463 return; 464 465 if (verw_clear_cpu_buf_mitigation_selected) 466 taa_mitigation = TAA_MITIGATION_VERW; 467 468 if (taa_mitigation == TAA_MITIGATION_VERW) { 469 /* Check if the requisite ucode is available. */ 470 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR)) 471 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 472 473 /* 474 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1. 475 * A microcode update fixes this behavior to clear CPU buffers. It also 476 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the 477 * ARCH_CAP_TSX_CTRL_MSR bit. 478 * 479 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode 480 * update is required. 481 */ 482 if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && 483 !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)) 484 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 485 } 486 487 pr_info("%s\n", taa_strings[taa_mitigation]); 488 } 489 490 static void __init taa_apply_mitigation(void) 491 { 492 if (taa_mitigation == TAA_MITIGATION_VERW || 493 taa_mitigation == TAA_MITIGATION_UCODE_NEEDED) { 494 /* 495 * TSX is enabled, select alternate mitigation for TAA which is 496 * the same as MDS. Enable MDS static branch to clear CPU buffers. 497 * 498 * For guests that can't determine whether the correct microcode is 499 * present on host, enable the mitigation for UCODE_NEEDED as well. 500 */ 501 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 502 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM); 503 504 if (taa_nosmt || smt_mitigations == SMT_MITIGATIONS_ON) 505 cpu_smt_disable(false); 506 } 507 } 508 509 static int __init tsx_async_abort_parse_cmdline(char *str) 510 { 511 if (!boot_cpu_has_bug(X86_BUG_TAA)) 512 return 0; 513 514 if (!str) 515 return -EINVAL; 516 517 if (!strcmp(str, "off")) { 518 taa_mitigation = TAA_MITIGATION_OFF; 519 } else if (!strcmp(str, "full")) { 520 taa_mitigation = TAA_MITIGATION_VERW; 521 } else if (!strcmp(str, "full,nosmt")) { 522 taa_mitigation = TAA_MITIGATION_VERW; 523 taa_nosmt = true; 524 } 525 526 return 0; 527 } 528 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); 529 530 #undef pr_fmt 531 #define pr_fmt(fmt) "MMIO Stale Data: " fmt 532 533 static bool mmio_nosmt __ro_after_init = false; 534 535 static const char * const mmio_strings[] = { 536 [MMIO_MITIGATION_OFF] = "Vulnerable", 537 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 538 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 539 }; 540 541 static void __init mmio_select_mitigation(void) 542 { 543 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) { 544 mmio_mitigation = MMIO_MITIGATION_OFF; 545 return; 546 } 547 548 /* Microcode will be checked in mmio_update_mitigation(). */ 549 if (mmio_mitigation == MMIO_MITIGATION_AUTO) { 550 if (should_mitigate_vuln(X86_BUG_MMIO_STALE_DATA)) 551 mmio_mitigation = MMIO_MITIGATION_VERW; 552 else 553 mmio_mitigation = MMIO_MITIGATION_OFF; 554 } 555 556 if (mmio_mitigation == MMIO_MITIGATION_OFF) 557 return; 558 559 /* 560 * Enable CPU buffer clear mitigation for host and VMM, if also affected 561 * by MDS or TAA. 562 */ 563 if (boot_cpu_has_bug(X86_BUG_MDS) || taa_vulnerable()) 564 verw_clear_cpu_buf_mitigation_selected = true; 565 } 566 567 static void __init mmio_update_mitigation(void) 568 { 569 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 570 return; 571 572 if (verw_clear_cpu_buf_mitigation_selected) 573 mmio_mitigation = MMIO_MITIGATION_VERW; 574 575 if (mmio_mitigation == MMIO_MITIGATION_VERW) { 576 /* 577 * Check if the system has the right microcode. 578 * 579 * CPU Fill buffer clear mitigation is enumerated by either an explicit 580 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS 581 * affected systems. 582 */ 583 if (!((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) || 584 (boot_cpu_has(X86_FEATURE_MD_CLEAR) && 585 boot_cpu_has(X86_FEATURE_FLUSH_L1D) && 586 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))) 587 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED; 588 } 589 590 pr_info("%s\n", mmio_strings[mmio_mitigation]); 591 } 592 593 static void __init mmio_apply_mitigation(void) 594 { 595 if (mmio_mitigation == MMIO_MITIGATION_OFF) 596 return; 597 598 /* 599 * Only enable the VMM mitigation if the CPU buffer clear mitigation is 600 * not being used. 601 */ 602 if (verw_clear_cpu_buf_mitigation_selected) { 603 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 604 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM); 605 } else { 606 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM_MMIO); 607 } 608 609 /* 610 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can 611 * be propagated to uncore buffers, clearing the Fill buffers on idle 612 * is required irrespective of SMT state. 613 */ 614 if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) 615 static_branch_enable(&cpu_buf_idle_clear); 616 617 if (mmio_nosmt || smt_mitigations == SMT_MITIGATIONS_ON) 618 cpu_smt_disable(false); 619 } 620 621 static int __init mmio_stale_data_parse_cmdline(char *str) 622 { 623 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 624 return 0; 625 626 if (!str) 627 return -EINVAL; 628 629 if (!strcmp(str, "off")) { 630 mmio_mitigation = MMIO_MITIGATION_OFF; 631 } else if (!strcmp(str, "full")) { 632 mmio_mitigation = MMIO_MITIGATION_VERW; 633 } else if (!strcmp(str, "full,nosmt")) { 634 mmio_mitigation = MMIO_MITIGATION_VERW; 635 mmio_nosmt = true; 636 } 637 638 return 0; 639 } 640 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline); 641 642 #undef pr_fmt 643 #define pr_fmt(fmt) "Register File Data Sampling: " fmt 644 645 static const char * const rfds_strings[] = { 646 [RFDS_MITIGATION_OFF] = "Vulnerable", 647 [RFDS_MITIGATION_VERW] = "Mitigation: Clear Register File", 648 [RFDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 649 }; 650 651 static inline bool __init verw_clears_cpu_reg_file(void) 652 { 653 return (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR); 654 } 655 656 static void __init rfds_select_mitigation(void) 657 { 658 if (!boot_cpu_has_bug(X86_BUG_RFDS)) { 659 rfds_mitigation = RFDS_MITIGATION_OFF; 660 return; 661 } 662 663 if (rfds_mitigation == RFDS_MITIGATION_AUTO) { 664 if (should_mitigate_vuln(X86_BUG_RFDS)) 665 rfds_mitigation = RFDS_MITIGATION_VERW; 666 else 667 rfds_mitigation = RFDS_MITIGATION_OFF; 668 } 669 670 if (rfds_mitigation == RFDS_MITIGATION_OFF) 671 return; 672 673 if (verw_clears_cpu_reg_file()) 674 verw_clear_cpu_buf_mitigation_selected = true; 675 } 676 677 static void __init rfds_update_mitigation(void) 678 { 679 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 680 return; 681 682 if (verw_clear_cpu_buf_mitigation_selected) 683 rfds_mitigation = RFDS_MITIGATION_VERW; 684 685 if (rfds_mitigation == RFDS_MITIGATION_VERW) { 686 if (!verw_clears_cpu_reg_file()) 687 rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED; 688 } 689 690 pr_info("%s\n", rfds_strings[rfds_mitigation]); 691 } 692 693 static void __init rfds_apply_mitigation(void) 694 { 695 if (rfds_mitigation == RFDS_MITIGATION_VERW) { 696 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 697 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM); 698 } 699 } 700 701 static __init int rfds_parse_cmdline(char *str) 702 { 703 if (!str) 704 return -EINVAL; 705 706 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 707 return 0; 708 709 if (!strcmp(str, "off")) 710 rfds_mitigation = RFDS_MITIGATION_OFF; 711 else if (!strcmp(str, "on")) 712 rfds_mitigation = RFDS_MITIGATION_VERW; 713 714 return 0; 715 } 716 early_param("reg_file_data_sampling", rfds_parse_cmdline); 717 718 #undef pr_fmt 719 #define pr_fmt(fmt) "SRBDS: " fmt 720 721 enum srbds_mitigations { 722 SRBDS_MITIGATION_OFF, 723 SRBDS_MITIGATION_AUTO, 724 SRBDS_MITIGATION_UCODE_NEEDED, 725 SRBDS_MITIGATION_FULL, 726 SRBDS_MITIGATION_TSX_OFF, 727 SRBDS_MITIGATION_HYPERVISOR, 728 }; 729 730 static enum srbds_mitigations srbds_mitigation __ro_after_init = 731 IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_AUTO : SRBDS_MITIGATION_OFF; 732 733 static const char * const srbds_strings[] = { 734 [SRBDS_MITIGATION_OFF] = "Vulnerable", 735 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 736 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode", 737 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled", 738 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 739 }; 740 741 static bool srbds_off; 742 743 void update_srbds_msr(void) 744 { 745 u64 mcu_ctrl; 746 747 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 748 return; 749 750 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 751 return; 752 753 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED) 754 return; 755 756 /* 757 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX 758 * being disabled and it hasn't received the SRBDS MSR microcode. 759 */ 760 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 761 return; 762 763 rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 764 765 switch (srbds_mitigation) { 766 case SRBDS_MITIGATION_OFF: 767 case SRBDS_MITIGATION_TSX_OFF: 768 mcu_ctrl |= RNGDS_MITG_DIS; 769 break; 770 case SRBDS_MITIGATION_FULL: 771 mcu_ctrl &= ~RNGDS_MITG_DIS; 772 break; 773 default: 774 break; 775 } 776 777 wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 778 } 779 780 static void __init srbds_select_mitigation(void) 781 { 782 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) { 783 srbds_mitigation = SRBDS_MITIGATION_OFF; 784 return; 785 } 786 787 if (srbds_mitigation == SRBDS_MITIGATION_AUTO) { 788 if (should_mitigate_vuln(X86_BUG_SRBDS)) 789 srbds_mitigation = SRBDS_MITIGATION_FULL; 790 else { 791 srbds_mitigation = SRBDS_MITIGATION_OFF; 792 return; 793 } 794 } 795 796 /* 797 * Check to see if this is one of the MDS_NO systems supporting TSX that 798 * are only exposed to SRBDS when TSX is enabled or when CPU is affected 799 * by Processor MMIO Stale Data vulnerability. 800 */ 801 if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) && 802 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 803 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF; 804 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 805 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR; 806 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 807 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED; 808 else if (srbds_off) 809 srbds_mitigation = SRBDS_MITIGATION_OFF; 810 811 pr_info("%s\n", srbds_strings[srbds_mitigation]); 812 } 813 814 static void __init srbds_apply_mitigation(void) 815 { 816 update_srbds_msr(); 817 } 818 819 static int __init srbds_parse_cmdline(char *str) 820 { 821 if (!str) 822 return -EINVAL; 823 824 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 825 return 0; 826 827 srbds_off = !strcmp(str, "off"); 828 return 0; 829 } 830 early_param("srbds", srbds_parse_cmdline); 831 832 #undef pr_fmt 833 #define pr_fmt(fmt) "L1D Flush : " fmt 834 835 enum l1d_flush_mitigations { 836 L1D_FLUSH_OFF = 0, 837 L1D_FLUSH_ON, 838 }; 839 840 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF; 841 842 static void __init l1d_flush_select_mitigation(void) 843 { 844 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 845 return; 846 847 static_branch_enable(&switch_mm_cond_l1d_flush); 848 pr_info("Conditional flush on switch_mm() enabled\n"); 849 } 850 851 static int __init l1d_flush_parse_cmdline(char *str) 852 { 853 if (!strcmp(str, "on")) 854 l1d_flush_mitigation = L1D_FLUSH_ON; 855 856 return 0; 857 } 858 early_param("l1d_flush", l1d_flush_parse_cmdline); 859 860 #undef pr_fmt 861 #define pr_fmt(fmt) "GDS: " fmt 862 863 enum gds_mitigations { 864 GDS_MITIGATION_OFF, 865 GDS_MITIGATION_AUTO, 866 GDS_MITIGATION_UCODE_NEEDED, 867 GDS_MITIGATION_FORCE, 868 GDS_MITIGATION_FULL, 869 GDS_MITIGATION_FULL_LOCKED, 870 GDS_MITIGATION_HYPERVISOR, 871 }; 872 873 static enum gds_mitigations gds_mitigation __ro_after_init = 874 IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_AUTO : GDS_MITIGATION_OFF; 875 876 static const char * const gds_strings[] = { 877 [GDS_MITIGATION_OFF] = "Vulnerable", 878 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 879 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode", 880 [GDS_MITIGATION_FULL] = "Mitigation: Microcode", 881 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)", 882 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 883 }; 884 885 bool gds_ucode_mitigated(void) 886 { 887 return (gds_mitigation == GDS_MITIGATION_FULL || 888 gds_mitigation == GDS_MITIGATION_FULL_LOCKED); 889 } 890 EXPORT_SYMBOL_FOR_KVM(gds_ucode_mitigated); 891 892 void update_gds_msr(void) 893 { 894 u64 mcu_ctrl_after; 895 u64 mcu_ctrl; 896 897 switch (gds_mitigation) { 898 case GDS_MITIGATION_OFF: 899 rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 900 mcu_ctrl |= GDS_MITG_DIS; 901 break; 902 case GDS_MITIGATION_FULL_LOCKED: 903 /* 904 * The LOCKED state comes from the boot CPU. APs might not have 905 * the same state. Make sure the mitigation is enabled on all 906 * CPUs. 907 */ 908 case GDS_MITIGATION_FULL: 909 rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 910 mcu_ctrl &= ~GDS_MITG_DIS; 911 break; 912 case GDS_MITIGATION_FORCE: 913 case GDS_MITIGATION_UCODE_NEEDED: 914 case GDS_MITIGATION_HYPERVISOR: 915 case GDS_MITIGATION_AUTO: 916 return; 917 } 918 919 wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 920 921 /* 922 * Check to make sure that the WRMSR value was not ignored. Writes to 923 * GDS_MITG_DIS will be ignored if this processor is locked but the boot 924 * processor was not. 925 */ 926 rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after); 927 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after); 928 } 929 930 static void __init gds_select_mitigation(void) 931 { 932 u64 mcu_ctrl; 933 934 if (!boot_cpu_has_bug(X86_BUG_GDS)) 935 return; 936 937 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 938 gds_mitigation = GDS_MITIGATION_HYPERVISOR; 939 return; 940 } 941 942 /* Will verify below that mitigation _can_ be disabled */ 943 if (gds_mitigation == GDS_MITIGATION_AUTO) { 944 if (should_mitigate_vuln(X86_BUG_GDS)) 945 gds_mitigation = GDS_MITIGATION_FULL; 946 else 947 gds_mitigation = GDS_MITIGATION_OFF; 948 } 949 950 /* No microcode */ 951 if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) { 952 if (gds_mitigation != GDS_MITIGATION_FORCE) 953 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED; 954 return; 955 } 956 957 /* Microcode has mitigation, use it */ 958 if (gds_mitigation == GDS_MITIGATION_FORCE) 959 gds_mitigation = GDS_MITIGATION_FULL; 960 961 rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 962 if (mcu_ctrl & GDS_MITG_LOCKED) { 963 if (gds_mitigation == GDS_MITIGATION_OFF) 964 pr_warn("Mitigation locked. Disable failed.\n"); 965 966 /* 967 * The mitigation is selected from the boot CPU. All other CPUs 968 * _should_ have the same state. If the boot CPU isn't locked 969 * but others are then update_gds_msr() will WARN() of the state 970 * mismatch. If the boot CPU is locked update_gds_msr() will 971 * ensure the other CPUs have the mitigation enabled. 972 */ 973 gds_mitigation = GDS_MITIGATION_FULL_LOCKED; 974 } 975 } 976 977 static void __init gds_apply_mitigation(void) 978 { 979 if (!boot_cpu_has_bug(X86_BUG_GDS)) 980 return; 981 982 /* Microcode is present */ 983 if (x86_arch_cap_msr & ARCH_CAP_GDS_CTRL) 984 update_gds_msr(); 985 else if (gds_mitigation == GDS_MITIGATION_FORCE) { 986 /* 987 * This only needs to be done on the boot CPU so do it 988 * here rather than in update_gds_msr() 989 */ 990 setup_clear_cpu_cap(X86_FEATURE_AVX); 991 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n"); 992 } 993 994 pr_info("%s\n", gds_strings[gds_mitigation]); 995 } 996 997 static int __init gds_parse_cmdline(char *str) 998 { 999 if (!str) 1000 return -EINVAL; 1001 1002 if (!boot_cpu_has_bug(X86_BUG_GDS)) 1003 return 0; 1004 1005 if (!strcmp(str, "off")) 1006 gds_mitigation = GDS_MITIGATION_OFF; 1007 else if (!strcmp(str, "force")) 1008 gds_mitigation = GDS_MITIGATION_FORCE; 1009 1010 return 0; 1011 } 1012 early_param("gather_data_sampling", gds_parse_cmdline); 1013 1014 #undef pr_fmt 1015 #define pr_fmt(fmt) "Spectre V1 : " fmt 1016 1017 enum spectre_v1_mitigation { 1018 SPECTRE_V1_MITIGATION_NONE, 1019 SPECTRE_V1_MITIGATION_AUTO, 1020 }; 1021 1022 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init = 1023 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ? 1024 SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE; 1025 1026 static const char * const spectre_v1_strings[] = { 1027 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers", 1028 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization", 1029 }; 1030 1031 /* 1032 * Does SMAP provide full mitigation against speculative kernel access to 1033 * userspace? 1034 */ 1035 static bool smap_works_speculatively(void) 1036 { 1037 if (!boot_cpu_has(X86_FEATURE_SMAP)) 1038 return false; 1039 1040 /* 1041 * On CPUs which are vulnerable to Meltdown, SMAP does not 1042 * prevent speculative access to user data in the L1 cache. 1043 * Consider SMAP to be non-functional as a mitigation on these 1044 * CPUs. 1045 */ 1046 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN)) 1047 return false; 1048 1049 return true; 1050 } 1051 1052 static void __init spectre_v1_select_mitigation(void) 1053 { 1054 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1)) 1055 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 1056 1057 if (!should_mitigate_vuln(X86_BUG_SPECTRE_V1)) 1058 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 1059 } 1060 1061 static void __init spectre_v1_apply_mitigation(void) 1062 { 1063 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1)) 1064 return; 1065 1066 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) { 1067 /* 1068 * With Spectre v1, a user can speculatively control either 1069 * path of a conditional swapgs with a user-controlled GS 1070 * value. The mitigation is to add lfences to both code paths. 1071 * 1072 * If FSGSBASE is enabled, the user can put a kernel address in 1073 * GS, in which case SMAP provides no protection. 1074 * 1075 * If FSGSBASE is disabled, the user can only put a user space 1076 * address in GS. That makes an attack harder, but still 1077 * possible if there's no SMAP protection. 1078 */ 1079 if (boot_cpu_has(X86_FEATURE_FSGSBASE) || 1080 !smap_works_speculatively()) { 1081 /* 1082 * Mitigation can be provided from SWAPGS itself or 1083 * PTI as the CR3 write in the Meltdown mitigation 1084 * is serializing. 1085 * 1086 * If neither is there, mitigate with an LFENCE to 1087 * stop speculation through swapgs. 1088 */ 1089 if (boot_cpu_has_bug(X86_BUG_SWAPGS) && 1090 !boot_cpu_has(X86_FEATURE_PTI)) 1091 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER); 1092 1093 /* 1094 * Enable lfences in the kernel entry (non-swapgs) 1095 * paths, to prevent user entry from speculatively 1096 * skipping swapgs. 1097 */ 1098 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL); 1099 } 1100 } 1101 1102 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]); 1103 } 1104 1105 static int __init nospectre_v1_cmdline(char *str) 1106 { 1107 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 1108 return 0; 1109 } 1110 early_param("nospectre_v1", nospectre_v1_cmdline); 1111 1112 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE; 1113 1114 /* Depends on spectre_v2 mitigation selected already */ 1115 static inline bool cdt_possible(enum spectre_v2_mitigation mode) 1116 { 1117 if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) || 1118 !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) 1119 return false; 1120 1121 if (mode == SPECTRE_V2_RETPOLINE || 1122 mode == SPECTRE_V2_EIBRS_RETPOLINE) 1123 return true; 1124 1125 return false; 1126 } 1127 1128 #undef pr_fmt 1129 #define pr_fmt(fmt) "RETBleed: " fmt 1130 1131 enum its_mitigation { 1132 ITS_MITIGATION_OFF, 1133 ITS_MITIGATION_AUTO, 1134 ITS_MITIGATION_VMEXIT_ONLY, 1135 ITS_MITIGATION_ALIGNED_THUNKS, 1136 ITS_MITIGATION_RETPOLINE_STUFF, 1137 }; 1138 1139 static enum its_mitigation its_mitigation __ro_after_init = 1140 IS_ENABLED(CONFIG_MITIGATION_ITS) ? ITS_MITIGATION_AUTO : ITS_MITIGATION_OFF; 1141 1142 enum retbleed_mitigation { 1143 RETBLEED_MITIGATION_NONE, 1144 RETBLEED_MITIGATION_AUTO, 1145 RETBLEED_MITIGATION_UNRET, 1146 RETBLEED_MITIGATION_IBPB, 1147 RETBLEED_MITIGATION_IBRS, 1148 RETBLEED_MITIGATION_EIBRS, 1149 RETBLEED_MITIGATION_STUFF, 1150 }; 1151 1152 static const char * const retbleed_strings[] = { 1153 [RETBLEED_MITIGATION_NONE] = "Vulnerable", 1154 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk", 1155 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB", 1156 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS", 1157 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS", 1158 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing", 1159 }; 1160 1161 static enum retbleed_mitigation retbleed_mitigation __ro_after_init = 1162 IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_MITIGATION_AUTO : RETBLEED_MITIGATION_NONE; 1163 1164 static int __ro_after_init retbleed_nosmt = false; 1165 1166 enum srso_mitigation { 1167 SRSO_MITIGATION_NONE, 1168 SRSO_MITIGATION_AUTO, 1169 SRSO_MITIGATION_UCODE_NEEDED, 1170 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED, 1171 SRSO_MITIGATION_MICROCODE, 1172 SRSO_MITIGATION_NOSMT, 1173 SRSO_MITIGATION_SAFE_RET, 1174 SRSO_MITIGATION_IBPB, 1175 SRSO_MITIGATION_IBPB_ON_VMEXIT, 1176 SRSO_MITIGATION_BP_SPEC_REDUCE, 1177 }; 1178 1179 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_AUTO; 1180 1181 static int __init retbleed_parse_cmdline(char *str) 1182 { 1183 if (!str) 1184 return -EINVAL; 1185 1186 while (str) { 1187 char *next = strchr(str, ','); 1188 if (next) { 1189 *next = 0; 1190 next++; 1191 } 1192 1193 if (!strcmp(str, "off")) { 1194 retbleed_mitigation = RETBLEED_MITIGATION_NONE; 1195 } else if (!strcmp(str, "auto")) { 1196 retbleed_mitigation = RETBLEED_MITIGATION_AUTO; 1197 } else if (!strcmp(str, "unret")) { 1198 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 1199 } else if (!strcmp(str, "ibpb")) { 1200 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1201 } else if (!strcmp(str, "stuff")) { 1202 retbleed_mitigation = RETBLEED_MITIGATION_STUFF; 1203 } else if (!strcmp(str, "nosmt")) { 1204 retbleed_nosmt = true; 1205 } else if (!strcmp(str, "force")) { 1206 setup_force_cpu_bug(X86_BUG_RETBLEED); 1207 } else { 1208 pr_err("Ignoring unknown retbleed option (%s).", str); 1209 } 1210 1211 str = next; 1212 } 1213 1214 return 0; 1215 } 1216 early_param("retbleed", retbleed_parse_cmdline); 1217 1218 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n" 1219 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n" 1220 1221 static void __init retbleed_select_mitigation(void) 1222 { 1223 if (!boot_cpu_has_bug(X86_BUG_RETBLEED)) { 1224 retbleed_mitigation = RETBLEED_MITIGATION_NONE; 1225 return; 1226 } 1227 1228 switch (retbleed_mitigation) { 1229 case RETBLEED_MITIGATION_UNRET: 1230 if (!IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) { 1231 retbleed_mitigation = RETBLEED_MITIGATION_AUTO; 1232 pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n"); 1233 } 1234 break; 1235 case RETBLEED_MITIGATION_IBPB: 1236 if (!boot_cpu_has(X86_FEATURE_IBPB)) { 1237 pr_err("WARNING: CPU does not support IBPB.\n"); 1238 retbleed_mitigation = RETBLEED_MITIGATION_AUTO; 1239 } else if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) { 1240 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n"); 1241 retbleed_mitigation = RETBLEED_MITIGATION_AUTO; 1242 } 1243 break; 1244 case RETBLEED_MITIGATION_STUFF: 1245 if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) { 1246 pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n"); 1247 retbleed_mitigation = RETBLEED_MITIGATION_AUTO; 1248 } else if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1249 pr_err("WARNING: retbleed=stuff only supported for Intel CPUs.\n"); 1250 retbleed_mitigation = RETBLEED_MITIGATION_AUTO; 1251 } 1252 break; 1253 default: 1254 break; 1255 } 1256 1257 if (retbleed_mitigation != RETBLEED_MITIGATION_AUTO) 1258 return; 1259 1260 if (!should_mitigate_vuln(X86_BUG_RETBLEED)) { 1261 retbleed_mitigation = RETBLEED_MITIGATION_NONE; 1262 return; 1263 } 1264 1265 /* Intel mitigation selected in retbleed_update_mitigation() */ 1266 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1267 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { 1268 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) 1269 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 1270 else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) && 1271 boot_cpu_has(X86_FEATURE_IBPB)) 1272 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1273 else 1274 retbleed_mitigation = RETBLEED_MITIGATION_NONE; 1275 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1276 /* Final mitigation depends on spectre-v2 selection */ 1277 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) 1278 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS; 1279 else if (boot_cpu_has(X86_FEATURE_IBRS)) 1280 retbleed_mitigation = RETBLEED_MITIGATION_IBRS; 1281 else 1282 retbleed_mitigation = RETBLEED_MITIGATION_NONE; 1283 } 1284 } 1285 1286 static void __init retbleed_update_mitigation(void) 1287 { 1288 if (!boot_cpu_has_bug(X86_BUG_RETBLEED)) 1289 return; 1290 1291 /* ITS can also enable stuffing */ 1292 if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF) 1293 retbleed_mitigation = RETBLEED_MITIGATION_STUFF; 1294 1295 /* If SRSO is using IBPB, that works for retbleed too */ 1296 if (srso_mitigation == SRSO_MITIGATION_IBPB) 1297 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1298 1299 if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF && 1300 !cdt_possible(spectre_v2_enabled)) { 1301 pr_err("WARNING: retbleed=stuff depends on retpoline\n"); 1302 retbleed_mitigation = RETBLEED_MITIGATION_NONE; 1303 } 1304 1305 /* 1306 * Let IBRS trump all on Intel without affecting the effects of the 1307 * retbleed= cmdline option except for call depth based stuffing 1308 */ 1309 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1310 switch (spectre_v2_enabled) { 1311 case SPECTRE_V2_IBRS: 1312 retbleed_mitigation = RETBLEED_MITIGATION_IBRS; 1313 break; 1314 case SPECTRE_V2_EIBRS: 1315 case SPECTRE_V2_EIBRS_RETPOLINE: 1316 case SPECTRE_V2_EIBRS_LFENCE: 1317 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS; 1318 break; 1319 default: 1320 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF) { 1321 if (retbleed_mitigation != RETBLEED_MITIGATION_NONE) 1322 pr_err(RETBLEED_INTEL_MSG); 1323 1324 retbleed_mitigation = RETBLEED_MITIGATION_NONE; 1325 } 1326 } 1327 } 1328 1329 pr_info("%s\n", retbleed_strings[retbleed_mitigation]); 1330 } 1331 1332 static void __init retbleed_apply_mitigation(void) 1333 { 1334 bool mitigate_smt = false; 1335 1336 switch (retbleed_mitigation) { 1337 case RETBLEED_MITIGATION_NONE: 1338 return; 1339 1340 case RETBLEED_MITIGATION_UNRET: 1341 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1342 setup_force_cpu_cap(X86_FEATURE_UNRET); 1343 1344 set_return_thunk(retbleed_return_thunk); 1345 1346 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 1347 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 1348 pr_err(RETBLEED_UNTRAIN_MSG); 1349 1350 mitigate_smt = true; 1351 break; 1352 1353 case RETBLEED_MITIGATION_IBPB: 1354 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 1355 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 1356 mitigate_smt = true; 1357 1358 /* 1359 * IBPB on entry already obviates the need for 1360 * software-based untraining so clear those in case some 1361 * other mitigation like SRSO has selected them. 1362 */ 1363 setup_clear_cpu_cap(X86_FEATURE_UNRET); 1364 setup_clear_cpu_cap(X86_FEATURE_RETHUNK); 1365 1366 /* 1367 * There is no need for RSB filling: write_ibpb() ensures 1368 * all predictions, including the RSB, are invalidated, 1369 * regardless of IBPB implementation. 1370 */ 1371 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT); 1372 1373 break; 1374 1375 case RETBLEED_MITIGATION_STUFF: 1376 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1377 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH); 1378 1379 set_return_thunk(call_depth_return_thunk); 1380 break; 1381 1382 default: 1383 break; 1384 } 1385 1386 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) && 1387 (retbleed_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)) 1388 cpu_smt_disable(false); 1389 } 1390 1391 #undef pr_fmt 1392 #define pr_fmt(fmt) "ITS: " fmt 1393 1394 static const char * const its_strings[] = { 1395 [ITS_MITIGATION_OFF] = "Vulnerable", 1396 [ITS_MITIGATION_VMEXIT_ONLY] = "Mitigation: Vulnerable, KVM: Not affected", 1397 [ITS_MITIGATION_ALIGNED_THUNKS] = "Mitigation: Aligned branch/return thunks", 1398 [ITS_MITIGATION_RETPOLINE_STUFF] = "Mitigation: Retpolines, Stuffing RSB", 1399 }; 1400 1401 static int __init its_parse_cmdline(char *str) 1402 { 1403 if (!str) 1404 return -EINVAL; 1405 1406 if (!IS_ENABLED(CONFIG_MITIGATION_ITS)) { 1407 pr_err("Mitigation disabled at compile time, ignoring option (%s)", str); 1408 return 0; 1409 } 1410 1411 if (!strcmp(str, "off")) { 1412 its_mitigation = ITS_MITIGATION_OFF; 1413 } else if (!strcmp(str, "on")) { 1414 its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS; 1415 } else if (!strcmp(str, "force")) { 1416 its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS; 1417 setup_force_cpu_bug(X86_BUG_ITS); 1418 } else if (!strcmp(str, "vmexit")) { 1419 its_mitigation = ITS_MITIGATION_VMEXIT_ONLY; 1420 } else if (!strcmp(str, "stuff")) { 1421 its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF; 1422 } else { 1423 pr_err("Ignoring unknown indirect_target_selection option (%s).", str); 1424 } 1425 1426 return 0; 1427 } 1428 early_param("indirect_target_selection", its_parse_cmdline); 1429 1430 static void __init its_select_mitigation(void) 1431 { 1432 if (!boot_cpu_has_bug(X86_BUG_ITS)) { 1433 its_mitigation = ITS_MITIGATION_OFF; 1434 return; 1435 } 1436 1437 if (its_mitigation == ITS_MITIGATION_AUTO) { 1438 if (should_mitigate_vuln(X86_BUG_ITS)) 1439 its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS; 1440 else 1441 its_mitigation = ITS_MITIGATION_OFF; 1442 } 1443 1444 if (its_mitigation == ITS_MITIGATION_OFF) 1445 return; 1446 1447 if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || 1448 !IS_ENABLED(CONFIG_MITIGATION_RETHUNK)) { 1449 pr_err("WARNING: ITS mitigation depends on retpoline and rethunk support\n"); 1450 its_mitigation = ITS_MITIGATION_OFF; 1451 return; 1452 } 1453 1454 if (IS_ENABLED(CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B)) { 1455 pr_err("WARNING: ITS mitigation is not compatible with CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B\n"); 1456 its_mitigation = ITS_MITIGATION_OFF; 1457 return; 1458 } 1459 1460 if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF && 1461 !IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) { 1462 pr_err("RSB stuff mitigation not supported, using default\n"); 1463 its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS; 1464 } 1465 1466 if (its_mitigation == ITS_MITIGATION_VMEXIT_ONLY && 1467 !boot_cpu_has_bug(X86_BUG_ITS_NATIVE_ONLY)) 1468 its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS; 1469 } 1470 1471 static void __init its_update_mitigation(void) 1472 { 1473 if (!boot_cpu_has_bug(X86_BUG_ITS)) 1474 return; 1475 1476 switch (spectre_v2_enabled) { 1477 case SPECTRE_V2_NONE: 1478 if (its_mitigation != ITS_MITIGATION_OFF) 1479 pr_err("WARNING: Spectre-v2 mitigation is off, disabling ITS\n"); 1480 its_mitigation = ITS_MITIGATION_OFF; 1481 break; 1482 case SPECTRE_V2_RETPOLINE: 1483 case SPECTRE_V2_EIBRS_RETPOLINE: 1484 /* Retpoline+CDT mitigates ITS */ 1485 if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF) 1486 its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF; 1487 break; 1488 case SPECTRE_V2_LFENCE: 1489 case SPECTRE_V2_EIBRS_LFENCE: 1490 pr_err("WARNING: ITS mitigation is not compatible with lfence mitigation\n"); 1491 its_mitigation = ITS_MITIGATION_OFF; 1492 break; 1493 default: 1494 break; 1495 } 1496 1497 if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF && 1498 !cdt_possible(spectre_v2_enabled)) 1499 its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS; 1500 1501 pr_info("%s\n", its_strings[its_mitigation]); 1502 } 1503 1504 static void __init its_apply_mitigation(void) 1505 { 1506 switch (its_mitigation) { 1507 case ITS_MITIGATION_OFF: 1508 case ITS_MITIGATION_AUTO: 1509 case ITS_MITIGATION_VMEXIT_ONLY: 1510 break; 1511 case ITS_MITIGATION_ALIGNED_THUNKS: 1512 if (!boot_cpu_has(X86_FEATURE_RETPOLINE)) 1513 setup_force_cpu_cap(X86_FEATURE_INDIRECT_THUNK_ITS); 1514 1515 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1516 set_return_thunk(its_return_thunk); 1517 break; 1518 case ITS_MITIGATION_RETPOLINE_STUFF: 1519 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1520 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH); 1521 set_return_thunk(call_depth_return_thunk); 1522 break; 1523 } 1524 } 1525 1526 #undef pr_fmt 1527 #define pr_fmt(fmt) "Transient Scheduler Attacks: " fmt 1528 1529 enum tsa_mitigations { 1530 TSA_MITIGATION_NONE, 1531 TSA_MITIGATION_AUTO, 1532 TSA_MITIGATION_UCODE_NEEDED, 1533 TSA_MITIGATION_USER_KERNEL, 1534 TSA_MITIGATION_VM, 1535 TSA_MITIGATION_FULL, 1536 }; 1537 1538 static const char * const tsa_strings[] = { 1539 [TSA_MITIGATION_NONE] = "Vulnerable", 1540 [TSA_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 1541 [TSA_MITIGATION_USER_KERNEL] = "Mitigation: Clear CPU buffers: user/kernel boundary", 1542 [TSA_MITIGATION_VM] = "Mitigation: Clear CPU buffers: VM", 1543 [TSA_MITIGATION_FULL] = "Mitigation: Clear CPU buffers", 1544 }; 1545 1546 static enum tsa_mitigations tsa_mitigation __ro_after_init = 1547 IS_ENABLED(CONFIG_MITIGATION_TSA) ? TSA_MITIGATION_AUTO : TSA_MITIGATION_NONE; 1548 1549 static int __init tsa_parse_cmdline(char *str) 1550 { 1551 if (!str) 1552 return -EINVAL; 1553 1554 if (!strcmp(str, "off")) 1555 tsa_mitigation = TSA_MITIGATION_NONE; 1556 else if (!strcmp(str, "on")) 1557 tsa_mitigation = TSA_MITIGATION_FULL; 1558 else if (!strcmp(str, "user")) 1559 tsa_mitigation = TSA_MITIGATION_USER_KERNEL; 1560 else if (!strcmp(str, "vm")) 1561 tsa_mitigation = TSA_MITIGATION_VM; 1562 else 1563 pr_err("Ignoring unknown tsa=%s option.\n", str); 1564 1565 return 0; 1566 } 1567 early_param("tsa", tsa_parse_cmdline); 1568 1569 static void __init tsa_select_mitigation(void) 1570 { 1571 if (!boot_cpu_has_bug(X86_BUG_TSA)) { 1572 tsa_mitigation = TSA_MITIGATION_NONE; 1573 return; 1574 } 1575 1576 if (tsa_mitigation == TSA_MITIGATION_AUTO) { 1577 bool vm = false, uk = false; 1578 1579 tsa_mitigation = TSA_MITIGATION_NONE; 1580 1581 if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) || 1582 cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER)) { 1583 tsa_mitigation = TSA_MITIGATION_USER_KERNEL; 1584 uk = true; 1585 } 1586 1587 if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) || 1588 cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) { 1589 tsa_mitigation = TSA_MITIGATION_VM; 1590 vm = true; 1591 } 1592 1593 if (uk && vm) 1594 tsa_mitigation = TSA_MITIGATION_FULL; 1595 } 1596 1597 if (tsa_mitigation == TSA_MITIGATION_NONE) 1598 return; 1599 1600 if (!boot_cpu_has(X86_FEATURE_VERW_CLEAR)) 1601 tsa_mitigation = TSA_MITIGATION_UCODE_NEEDED; 1602 1603 /* 1604 * No need to set verw_clear_cpu_buf_mitigation_selected - it 1605 * doesn't fit all cases here and it is not needed because this 1606 * is the only VERW-based mitigation on AMD. 1607 */ 1608 pr_info("%s\n", tsa_strings[tsa_mitigation]); 1609 } 1610 1611 static void __init tsa_apply_mitigation(void) 1612 { 1613 switch (tsa_mitigation) { 1614 case TSA_MITIGATION_USER_KERNEL: 1615 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 1616 break; 1617 case TSA_MITIGATION_VM: 1618 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM); 1619 break; 1620 case TSA_MITIGATION_FULL: 1621 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 1622 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM); 1623 break; 1624 default: 1625 break; 1626 } 1627 } 1628 1629 #undef pr_fmt 1630 #define pr_fmt(fmt) "Spectre V2 : " fmt 1631 1632 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init = 1633 SPECTRE_V2_USER_NONE; 1634 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init = 1635 SPECTRE_V2_USER_NONE; 1636 1637 #ifdef CONFIG_MITIGATION_RETPOLINE 1638 static bool spectre_v2_bad_module; 1639 1640 bool retpoline_module_ok(bool has_retpoline) 1641 { 1642 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline) 1643 return true; 1644 1645 pr_err("System may be vulnerable to spectre v2\n"); 1646 spectre_v2_bad_module = true; 1647 return false; 1648 } 1649 1650 static inline const char *spectre_v2_module_string(void) 1651 { 1652 return spectre_v2_bad_module ? " - vulnerable module loaded" : ""; 1653 } 1654 #else 1655 static inline const char *spectre_v2_module_string(void) { return ""; } 1656 #endif 1657 1658 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n" 1659 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n" 1660 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n" 1661 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n" 1662 1663 #ifdef CONFIG_BPF_SYSCALL 1664 void unpriv_ebpf_notify(int new_state) 1665 { 1666 if (new_state) 1667 return; 1668 1669 /* Unprivileged eBPF is enabled */ 1670 1671 switch (spectre_v2_enabled) { 1672 case SPECTRE_V2_EIBRS: 1673 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 1674 break; 1675 case SPECTRE_V2_EIBRS_LFENCE: 1676 if (sched_smt_active()) 1677 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 1678 break; 1679 default: 1680 break; 1681 } 1682 } 1683 #endif 1684 1685 /* The kernel command line selection for spectre v2 */ 1686 enum spectre_v2_mitigation_cmd { 1687 SPECTRE_V2_CMD_NONE, 1688 SPECTRE_V2_CMD_AUTO, 1689 SPECTRE_V2_CMD_FORCE, 1690 SPECTRE_V2_CMD_RETPOLINE, 1691 SPECTRE_V2_CMD_RETPOLINE_GENERIC, 1692 SPECTRE_V2_CMD_RETPOLINE_LFENCE, 1693 SPECTRE_V2_CMD_EIBRS, 1694 SPECTRE_V2_CMD_EIBRS_RETPOLINE, 1695 SPECTRE_V2_CMD_EIBRS_LFENCE, 1696 SPECTRE_V2_CMD_IBRS, 1697 }; 1698 1699 static enum spectre_v2_mitigation_cmd spectre_v2_cmd __ro_after_init = 1700 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ? SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE; 1701 1702 enum spectre_v2_user_mitigation_cmd { 1703 SPECTRE_V2_USER_CMD_NONE, 1704 SPECTRE_V2_USER_CMD_AUTO, 1705 SPECTRE_V2_USER_CMD_FORCE, 1706 SPECTRE_V2_USER_CMD_PRCTL, 1707 SPECTRE_V2_USER_CMD_PRCTL_IBPB, 1708 SPECTRE_V2_USER_CMD_SECCOMP, 1709 SPECTRE_V2_USER_CMD_SECCOMP_IBPB, 1710 }; 1711 1712 static enum spectre_v2_user_mitigation_cmd spectre_v2_user_cmd __ro_after_init = 1713 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ? SPECTRE_V2_USER_CMD_AUTO : SPECTRE_V2_USER_CMD_NONE; 1714 1715 static const char * const spectre_v2_user_strings[] = { 1716 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable", 1717 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection", 1718 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection", 1719 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl", 1720 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl", 1721 }; 1722 1723 static int __init spectre_v2_user_parse_cmdline(char *str) 1724 { 1725 if (!str) 1726 return -EINVAL; 1727 1728 if (!strcmp(str, "auto")) 1729 spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_AUTO; 1730 else if (!strcmp(str, "off")) 1731 spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_NONE; 1732 else if (!strcmp(str, "on")) 1733 spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_FORCE; 1734 else if (!strcmp(str, "prctl")) 1735 spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_PRCTL; 1736 else if (!strcmp(str, "prctl,ibpb")) 1737 spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_PRCTL_IBPB; 1738 else if (!strcmp(str, "seccomp")) 1739 spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_SECCOMP; 1740 else if (!strcmp(str, "seccomp,ibpb")) 1741 spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_SECCOMP_IBPB; 1742 else 1743 pr_err("Ignoring unknown spectre_v2_user option (%s).", str); 1744 1745 return 0; 1746 } 1747 early_param("spectre_v2_user", spectre_v2_user_parse_cmdline); 1748 1749 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode) 1750 { 1751 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS; 1752 } 1753 1754 static void __init spectre_v2_user_select_mitigation(void) 1755 { 1756 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP)) 1757 return; 1758 1759 switch (spectre_v2_user_cmd) { 1760 case SPECTRE_V2_USER_CMD_NONE: 1761 return; 1762 case SPECTRE_V2_USER_CMD_FORCE: 1763 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; 1764 spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT; 1765 break; 1766 case SPECTRE_V2_USER_CMD_AUTO: 1767 if (!should_mitigate_vuln(X86_BUG_SPECTRE_V2_USER)) 1768 break; 1769 spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL; 1770 if (smt_mitigations == SMT_MITIGATIONS_OFF) 1771 break; 1772 spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL; 1773 break; 1774 case SPECTRE_V2_USER_CMD_PRCTL: 1775 spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL; 1776 spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL; 1777 break; 1778 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1779 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; 1780 spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL; 1781 break; 1782 case SPECTRE_V2_USER_CMD_SECCOMP: 1783 if (IS_ENABLED(CONFIG_SECCOMP)) 1784 spectre_v2_user_ibpb = SPECTRE_V2_USER_SECCOMP; 1785 else 1786 spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL; 1787 spectre_v2_user_stibp = spectre_v2_user_ibpb; 1788 break; 1789 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1790 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; 1791 if (IS_ENABLED(CONFIG_SECCOMP)) 1792 spectre_v2_user_stibp = SPECTRE_V2_USER_SECCOMP; 1793 else 1794 spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL; 1795 break; 1796 } 1797 1798 /* 1799 * At this point, an STIBP mode other than "off" has been set. 1800 * If STIBP support is not being forced, check if STIBP always-on 1801 * is preferred. 1802 */ 1803 if ((spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL || 1804 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) && 1805 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON)) 1806 spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED; 1807 1808 if (!boot_cpu_has(X86_FEATURE_IBPB)) 1809 spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE; 1810 1811 if (!boot_cpu_has(X86_FEATURE_STIBP)) 1812 spectre_v2_user_stibp = SPECTRE_V2_USER_NONE; 1813 } 1814 1815 static void __init spectre_v2_user_update_mitigation(void) 1816 { 1817 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP)) 1818 return; 1819 1820 /* The spectre_v2 cmd line can override spectre_v2_user options */ 1821 if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE) { 1822 spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE; 1823 spectre_v2_user_stibp = SPECTRE_V2_USER_NONE; 1824 } else if (spectre_v2_cmd == SPECTRE_V2_CMD_FORCE) { 1825 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; 1826 spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT; 1827 } 1828 1829 /* 1830 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP 1831 * is not required. 1832 * 1833 * Intel's Enhanced IBRS also protects against cross-thread branch target 1834 * injection in user-mode as the IBRS bit remains always set which 1835 * implicitly enables cross-thread protections. However, in legacy IBRS 1836 * mode, the IBRS bit is set only on kernel entry and cleared on return 1837 * to userspace. AMD Automatic IBRS also does not protect userspace. 1838 * These modes therefore disable the implicit cross-thread protection, 1839 * so allow for STIBP to be selected in those cases. 1840 */ 1841 if (!boot_cpu_has(X86_FEATURE_STIBP) || 1842 !cpu_smt_possible() || 1843 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 1844 !boot_cpu_has(X86_FEATURE_AUTOIBRS))) { 1845 spectre_v2_user_stibp = SPECTRE_V2_USER_NONE; 1846 return; 1847 } 1848 1849 if (spectre_v2_user_stibp != SPECTRE_V2_USER_NONE && 1850 (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 1851 retbleed_mitigation == RETBLEED_MITIGATION_IBPB)) { 1852 if (spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT && 1853 spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT_PREFERRED) 1854 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n"); 1855 spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED; 1856 } 1857 pr_info("%s\n", spectre_v2_user_strings[spectre_v2_user_stibp]); 1858 } 1859 1860 static void __init spectre_v2_user_apply_mitigation(void) 1861 { 1862 /* Initialize Indirect Branch Prediction Barrier */ 1863 if (spectre_v2_user_ibpb != SPECTRE_V2_USER_NONE) { 1864 static_branch_enable(&switch_vcpu_ibpb); 1865 1866 switch (spectre_v2_user_ibpb) { 1867 case SPECTRE_V2_USER_STRICT: 1868 static_branch_enable(&switch_mm_always_ibpb); 1869 break; 1870 case SPECTRE_V2_USER_PRCTL: 1871 case SPECTRE_V2_USER_SECCOMP: 1872 static_branch_enable(&switch_mm_cond_ibpb); 1873 break; 1874 default: 1875 break; 1876 } 1877 1878 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n", 1879 static_key_enabled(&switch_mm_always_ibpb) ? 1880 "always-on" : "conditional"); 1881 } 1882 } 1883 1884 static const char * const spectre_v2_strings[] = { 1885 [SPECTRE_V2_NONE] = "Vulnerable", 1886 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines", 1887 [SPECTRE_V2_LFENCE] = "Vulnerable: LFENCE", 1888 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS", 1889 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE", 1890 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines", 1891 [SPECTRE_V2_IBRS] = "Mitigation: IBRS", 1892 }; 1893 1894 static bool nospectre_v2 __ro_after_init; 1895 1896 static int __init nospectre_v2_parse_cmdline(char *str) 1897 { 1898 nospectre_v2 = true; 1899 spectre_v2_cmd = SPECTRE_V2_CMD_NONE; 1900 return 0; 1901 } 1902 early_param("nospectre_v2", nospectre_v2_parse_cmdline); 1903 1904 static int __init spectre_v2_parse_cmdline(char *str) 1905 { 1906 if (!str) 1907 return -EINVAL; 1908 1909 if (nospectre_v2) 1910 return 0; 1911 1912 if (!strcmp(str, "off")) { 1913 spectre_v2_cmd = SPECTRE_V2_CMD_NONE; 1914 } else if (!strcmp(str, "on")) { 1915 spectre_v2_cmd = SPECTRE_V2_CMD_FORCE; 1916 setup_force_cpu_bug(X86_BUG_SPECTRE_V2); 1917 setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER); 1918 } else if (!strcmp(str, "retpoline")) { 1919 spectre_v2_cmd = SPECTRE_V2_CMD_RETPOLINE; 1920 } else if (!strcmp(str, "retpoline,amd") || 1921 !strcmp(str, "retpoline,lfence")) { 1922 spectre_v2_cmd = SPECTRE_V2_CMD_RETPOLINE_LFENCE; 1923 } else if (!strcmp(str, "retpoline,generic")) { 1924 spectre_v2_cmd = SPECTRE_V2_CMD_RETPOLINE_GENERIC; 1925 } else if (!strcmp(str, "eibrs")) { 1926 spectre_v2_cmd = SPECTRE_V2_CMD_EIBRS; 1927 } else if (!strcmp(str, "eibrs,lfence")) { 1928 spectre_v2_cmd = SPECTRE_V2_CMD_EIBRS_LFENCE; 1929 } else if (!strcmp(str, "eibrs,retpoline")) { 1930 spectre_v2_cmd = SPECTRE_V2_CMD_EIBRS_RETPOLINE; 1931 } else if (!strcmp(str, "auto")) { 1932 spectre_v2_cmd = SPECTRE_V2_CMD_AUTO; 1933 } else if (!strcmp(str, "ibrs")) { 1934 spectre_v2_cmd = SPECTRE_V2_CMD_IBRS; 1935 } else { 1936 pr_err("Ignoring unknown spectre_v2 option (%s).", str); 1937 } 1938 1939 return 0; 1940 } 1941 early_param("spectre_v2", spectre_v2_parse_cmdline); 1942 1943 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void) 1944 { 1945 if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) { 1946 pr_err("Kernel not compiled with retpoline; no mitigation available!"); 1947 return SPECTRE_V2_NONE; 1948 } 1949 1950 return SPECTRE_V2_RETPOLINE; 1951 } 1952 1953 static bool __ro_after_init rrsba_disabled; 1954 1955 /* Disable in-kernel use of non-RSB RET predictors */ 1956 static void __init spec_ctrl_disable_kernel_rrsba(void) 1957 { 1958 if (rrsba_disabled) 1959 return; 1960 1961 if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) { 1962 rrsba_disabled = true; 1963 return; 1964 } 1965 1966 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL)) 1967 return; 1968 1969 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S; 1970 update_spec_ctrl(x86_spec_ctrl_base); 1971 rrsba_disabled = true; 1972 } 1973 1974 static void __init spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode) 1975 { 1976 /* 1977 * WARNING! There are many subtleties to consider when changing *any* 1978 * code related to RSB-related mitigations. Before doing so, carefully 1979 * read the following document, and update if necessary: 1980 * 1981 * Documentation/admin-guide/hw-vuln/rsb.rst 1982 * 1983 * In an overly simplified nutshell: 1984 * 1985 * - User->user RSB attacks are conditionally mitigated during 1986 * context switches by cond_mitigation -> write_ibpb(). 1987 * 1988 * - User->kernel and guest->host attacks are mitigated by eIBRS or 1989 * RSB filling. 1990 * 1991 * Though, depending on config, note that other alternative 1992 * mitigations may end up getting used instead, e.g., IBPB on 1993 * entry/vmexit, call depth tracking, or return thunks. 1994 */ 1995 1996 switch (mode) { 1997 case SPECTRE_V2_NONE: 1998 break; 1999 2000 case SPECTRE_V2_EIBRS: 2001 case SPECTRE_V2_EIBRS_LFENCE: 2002 case SPECTRE_V2_EIBRS_RETPOLINE: 2003 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 2004 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n"); 2005 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE); 2006 } 2007 break; 2008 2009 case SPECTRE_V2_RETPOLINE: 2010 case SPECTRE_V2_LFENCE: 2011 case SPECTRE_V2_IBRS: 2012 pr_info("Spectre v2 / SpectreRSB: Filling RSB on context switch and VMEXIT\n"); 2013 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW); 2014 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT); 2015 break; 2016 2017 default: 2018 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation\n"); 2019 dump_stack(); 2020 break; 2021 } 2022 } 2023 2024 /* 2025 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by 2026 * branch history in userspace. Not needed if BHI_NO is set. 2027 */ 2028 static bool __init spec_ctrl_bhi_dis(void) 2029 { 2030 if (!boot_cpu_has(X86_FEATURE_BHI_CTRL)) 2031 return false; 2032 2033 x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S; 2034 update_spec_ctrl(x86_spec_ctrl_base); 2035 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW); 2036 2037 return true; 2038 } 2039 2040 enum bhi_mitigations { 2041 BHI_MITIGATION_OFF, 2042 BHI_MITIGATION_AUTO, 2043 BHI_MITIGATION_ON, 2044 BHI_MITIGATION_VMEXIT_ONLY, 2045 }; 2046 2047 static enum bhi_mitigations bhi_mitigation __ro_after_init = 2048 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_AUTO : BHI_MITIGATION_OFF; 2049 2050 static int __init spectre_bhi_parse_cmdline(char *str) 2051 { 2052 if (!str) 2053 return -EINVAL; 2054 2055 if (!strcmp(str, "off")) 2056 bhi_mitigation = BHI_MITIGATION_OFF; 2057 else if (!strcmp(str, "on")) 2058 bhi_mitigation = BHI_MITIGATION_ON; 2059 else if (!strcmp(str, "vmexit")) 2060 bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY; 2061 else 2062 pr_err("Ignoring unknown spectre_bhi option (%s)", str); 2063 2064 return 0; 2065 } 2066 early_param("spectre_bhi", spectre_bhi_parse_cmdline); 2067 2068 static void __init bhi_select_mitigation(void) 2069 { 2070 if (!boot_cpu_has(X86_BUG_BHI)) 2071 bhi_mitigation = BHI_MITIGATION_OFF; 2072 2073 if (bhi_mitigation != BHI_MITIGATION_AUTO) 2074 return; 2075 2076 if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST)) { 2077 if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL)) 2078 bhi_mitigation = BHI_MITIGATION_ON; 2079 else 2080 bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY; 2081 } else { 2082 bhi_mitigation = BHI_MITIGATION_OFF; 2083 } 2084 } 2085 2086 static void __init bhi_update_mitigation(void) 2087 { 2088 if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE) 2089 bhi_mitigation = BHI_MITIGATION_OFF; 2090 } 2091 2092 static void __init bhi_apply_mitigation(void) 2093 { 2094 if (bhi_mitigation == BHI_MITIGATION_OFF) 2095 return; 2096 2097 /* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */ 2098 if (boot_cpu_has(X86_FEATURE_RETPOLINE) && 2099 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) { 2100 spec_ctrl_disable_kernel_rrsba(); 2101 if (rrsba_disabled) 2102 return; 2103 } 2104 2105 if (!IS_ENABLED(CONFIG_X86_64)) 2106 return; 2107 2108 /* Mitigate in hardware if supported */ 2109 if (spec_ctrl_bhi_dis()) 2110 return; 2111 2112 if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) { 2113 pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n"); 2114 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT); 2115 return; 2116 } 2117 2118 pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n"); 2119 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP); 2120 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT); 2121 } 2122 2123 static void __init spectre_v2_select_mitigation(void) 2124 { 2125 if ((spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE || 2126 spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 2127 spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC || 2128 spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 2129 spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 2130 !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) { 2131 pr_err("RETPOLINE selected but not compiled in. Switching to AUTO select\n"); 2132 spectre_v2_cmd = SPECTRE_V2_CMD_AUTO; 2133 } 2134 2135 if ((spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS || 2136 spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 2137 spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 2138 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 2139 pr_err("EIBRS selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n"); 2140 spectre_v2_cmd = SPECTRE_V2_CMD_AUTO; 2141 } 2142 2143 if ((spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 2144 spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) && 2145 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) { 2146 pr_err("LFENCE selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n"); 2147 spectre_v2_cmd = SPECTRE_V2_CMD_AUTO; 2148 } 2149 2150 if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) { 2151 pr_err("IBRS selected but not compiled in. Switching to AUTO select\n"); 2152 spectre_v2_cmd = SPECTRE_V2_CMD_AUTO; 2153 } 2154 2155 if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 2156 pr_err("IBRS selected but not Intel CPU. Switching to AUTO select\n"); 2157 spectre_v2_cmd = SPECTRE_V2_CMD_AUTO; 2158 } 2159 2160 if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) { 2161 pr_err("IBRS selected but CPU doesn't have IBRS. Switching to AUTO select\n"); 2162 spectre_v2_cmd = SPECTRE_V2_CMD_AUTO; 2163 } 2164 2165 if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) { 2166 pr_err("IBRS selected but running as XenPV guest. Switching to AUTO select\n"); 2167 spectre_v2_cmd = SPECTRE_V2_CMD_AUTO; 2168 } 2169 2170 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) { 2171 spectre_v2_cmd = SPECTRE_V2_CMD_NONE; 2172 return; 2173 } 2174 2175 switch (spectre_v2_cmd) { 2176 case SPECTRE_V2_CMD_NONE: 2177 return; 2178 2179 case SPECTRE_V2_CMD_AUTO: 2180 if (!should_mitigate_vuln(X86_BUG_SPECTRE_V2)) 2181 break; 2182 fallthrough; 2183 case SPECTRE_V2_CMD_FORCE: 2184 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 2185 spectre_v2_enabled = SPECTRE_V2_EIBRS; 2186 break; 2187 } 2188 2189 spectre_v2_enabled = spectre_v2_select_retpoline(); 2190 break; 2191 2192 case SPECTRE_V2_CMD_RETPOLINE_LFENCE: 2193 pr_err(SPECTRE_V2_LFENCE_MSG); 2194 spectre_v2_enabled = SPECTRE_V2_LFENCE; 2195 break; 2196 2197 case SPECTRE_V2_CMD_RETPOLINE_GENERIC: 2198 spectre_v2_enabled = SPECTRE_V2_RETPOLINE; 2199 break; 2200 2201 case SPECTRE_V2_CMD_RETPOLINE: 2202 spectre_v2_enabled = spectre_v2_select_retpoline(); 2203 break; 2204 2205 case SPECTRE_V2_CMD_IBRS: 2206 spectre_v2_enabled = SPECTRE_V2_IBRS; 2207 break; 2208 2209 case SPECTRE_V2_CMD_EIBRS: 2210 spectre_v2_enabled = SPECTRE_V2_EIBRS; 2211 break; 2212 2213 case SPECTRE_V2_CMD_EIBRS_LFENCE: 2214 spectre_v2_enabled = SPECTRE_V2_EIBRS_LFENCE; 2215 break; 2216 2217 case SPECTRE_V2_CMD_EIBRS_RETPOLINE: 2218 spectre_v2_enabled = SPECTRE_V2_EIBRS_RETPOLINE; 2219 break; 2220 } 2221 } 2222 2223 static void __init spectre_v2_update_mitigation(void) 2224 { 2225 if (spectre_v2_cmd == SPECTRE_V2_CMD_AUTO && 2226 !spectre_v2_in_eibrs_mode(spectre_v2_enabled)) { 2227 if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) && 2228 boot_cpu_has_bug(X86_BUG_RETBLEED) && 2229 retbleed_mitigation != RETBLEED_MITIGATION_NONE && 2230 retbleed_mitigation != RETBLEED_MITIGATION_STUFF && 2231 boot_cpu_has(X86_FEATURE_IBRS) && 2232 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 2233 spectre_v2_enabled = SPECTRE_V2_IBRS; 2234 } 2235 } 2236 2237 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) 2238 pr_info("%s\n", spectre_v2_strings[spectre_v2_enabled]); 2239 } 2240 2241 static void __init spectre_v2_apply_mitigation(void) 2242 { 2243 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 2244 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 2245 2246 if (spectre_v2_in_ibrs_mode(spectre_v2_enabled)) { 2247 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) { 2248 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS); 2249 } else { 2250 x86_spec_ctrl_base |= SPEC_CTRL_IBRS; 2251 update_spec_ctrl(x86_spec_ctrl_base); 2252 } 2253 } 2254 2255 switch (spectre_v2_enabled) { 2256 case SPECTRE_V2_NONE: 2257 return; 2258 2259 case SPECTRE_V2_EIBRS: 2260 break; 2261 2262 case SPECTRE_V2_IBRS: 2263 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS); 2264 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) 2265 pr_warn(SPECTRE_V2_IBRS_PERF_MSG); 2266 break; 2267 2268 case SPECTRE_V2_LFENCE: 2269 case SPECTRE_V2_EIBRS_LFENCE: 2270 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE); 2271 fallthrough; 2272 2273 case SPECTRE_V2_RETPOLINE: 2274 case SPECTRE_V2_EIBRS_RETPOLINE: 2275 setup_force_cpu_cap(X86_FEATURE_RETPOLINE); 2276 break; 2277 } 2278 2279 /* 2280 * Disable alternate RSB predictions in kernel when indirect CALLs and 2281 * JMPs gets protection against BHI and Intramode-BTI, but RET 2282 * prediction from a non-RSB predictor is still a risk. 2283 */ 2284 if (spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE || 2285 spectre_v2_enabled == SPECTRE_V2_EIBRS_RETPOLINE || 2286 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) 2287 spec_ctrl_disable_kernel_rrsba(); 2288 2289 spectre_v2_select_rsb_mitigation(spectre_v2_enabled); 2290 2291 /* 2292 * Retpoline protects the kernel, but doesn't protect firmware. IBRS 2293 * and Enhanced IBRS protect firmware too, so enable IBRS around 2294 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't 2295 * otherwise enabled. 2296 * 2297 * Use "spectre_v2_enabled" to check Enhanced IBRS instead of 2298 * boot_cpu_has(), because the user might select retpoline on the kernel 2299 * command line and if the CPU supports Enhanced IBRS, kernel might 2300 * un-intentionally not enable IBRS around firmware calls. 2301 */ 2302 if (boot_cpu_has_bug(X86_BUG_RETBLEED) && 2303 boot_cpu_has(X86_FEATURE_IBPB) && 2304 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2305 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) { 2306 2307 if (retbleed_mitigation != RETBLEED_MITIGATION_IBPB) { 2308 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW); 2309 pr_info("Enabling Speculation Barrier for firmware calls\n"); 2310 } 2311 2312 } else if (boot_cpu_has(X86_FEATURE_IBRS) && 2313 !spectre_v2_in_ibrs_mode(spectre_v2_enabled)) { 2314 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW); 2315 pr_info("Enabling Restricted Speculation for firmware calls\n"); 2316 } 2317 } 2318 2319 static void update_stibp_msr(void * __unused) 2320 { 2321 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP); 2322 update_spec_ctrl(val); 2323 } 2324 2325 /* Update x86_spec_ctrl_base in case SMT state changed. */ 2326 static void update_stibp_strict(void) 2327 { 2328 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP; 2329 2330 if (sched_smt_active()) 2331 mask |= SPEC_CTRL_STIBP; 2332 2333 if (mask == x86_spec_ctrl_base) 2334 return; 2335 2336 pr_info("Update user space SMT mitigation: STIBP %s\n", 2337 mask & SPEC_CTRL_STIBP ? "always-on" : "off"); 2338 x86_spec_ctrl_base = mask; 2339 on_each_cpu(update_stibp_msr, NULL, 1); 2340 } 2341 2342 /* Update the static key controlling the evaluation of TIF_SPEC_IB */ 2343 static void update_indir_branch_cond(void) 2344 { 2345 if (sched_smt_active()) 2346 static_branch_enable(&switch_to_cond_stibp); 2347 else 2348 static_branch_disable(&switch_to_cond_stibp); 2349 } 2350 2351 #undef pr_fmt 2352 #define pr_fmt(fmt) fmt 2353 2354 /* Update the static key controlling the MDS CPU buffer clear in idle */ 2355 static void update_mds_branch_idle(void) 2356 { 2357 /* 2358 * Enable the idle clearing if SMT is active on CPUs which are 2359 * affected only by MSBDS and not any other MDS variant. 2360 * 2361 * The other variants cannot be mitigated when SMT is enabled, so 2362 * clearing the buffers on idle just to prevent the Store Buffer 2363 * repartitioning leak would be a window dressing exercise. 2364 */ 2365 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY)) 2366 return; 2367 2368 if (sched_smt_active()) { 2369 static_branch_enable(&cpu_buf_idle_clear); 2370 } else if (mmio_mitigation == MMIO_MITIGATION_OFF || 2371 (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) { 2372 static_branch_disable(&cpu_buf_idle_clear); 2373 } 2374 } 2375 2376 #undef pr_fmt 2377 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt 2378 2379 static enum ssb_mitigation ssb_mode __ro_after_init = 2380 IS_ENABLED(CONFIG_MITIGATION_SSB) ? SPEC_STORE_BYPASS_AUTO : SPEC_STORE_BYPASS_NONE; 2381 2382 static const char * const ssb_strings[] = { 2383 [SPEC_STORE_BYPASS_NONE] = "Vulnerable", 2384 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled", 2385 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl", 2386 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp", 2387 }; 2388 2389 static bool nossb __ro_after_init; 2390 2391 static int __init nossb_parse_cmdline(char *str) 2392 { 2393 nossb = true; 2394 ssb_mode = SPEC_STORE_BYPASS_NONE; 2395 return 0; 2396 } 2397 early_param("nospec_store_bypass_disable", nossb_parse_cmdline); 2398 2399 static int __init ssb_parse_cmdline(char *str) 2400 { 2401 if (!str) 2402 return -EINVAL; 2403 2404 if (nossb) 2405 return 0; 2406 2407 if (!strcmp(str, "auto")) 2408 ssb_mode = SPEC_STORE_BYPASS_AUTO; 2409 else if (!strcmp(str, "on")) 2410 ssb_mode = SPEC_STORE_BYPASS_DISABLE; 2411 else if (!strcmp(str, "off")) 2412 ssb_mode = SPEC_STORE_BYPASS_NONE; 2413 else if (!strcmp(str, "prctl")) 2414 ssb_mode = SPEC_STORE_BYPASS_PRCTL; 2415 else if (!strcmp(str, "seccomp")) 2416 ssb_mode = IS_ENABLED(CONFIG_SECCOMP) ? 2417 SPEC_STORE_BYPASS_SECCOMP : SPEC_STORE_BYPASS_PRCTL; 2418 else 2419 pr_err("Ignoring unknown spec_store_bypass_disable option (%s).\n", 2420 str); 2421 2422 return 0; 2423 } 2424 early_param("spec_store_bypass_disable", ssb_parse_cmdline); 2425 2426 static void __init ssb_select_mitigation(void) 2427 { 2428 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) { 2429 ssb_mode = SPEC_STORE_BYPASS_NONE; 2430 return; 2431 } 2432 2433 if (ssb_mode == SPEC_STORE_BYPASS_AUTO) { 2434 if (should_mitigate_vuln(X86_BUG_SPEC_STORE_BYPASS)) 2435 ssb_mode = SPEC_STORE_BYPASS_PRCTL; 2436 else 2437 ssb_mode = SPEC_STORE_BYPASS_NONE; 2438 } 2439 2440 if (!boot_cpu_has(X86_FEATURE_SSBD)) 2441 ssb_mode = SPEC_STORE_BYPASS_NONE; 2442 2443 pr_info("%s\n", ssb_strings[ssb_mode]); 2444 } 2445 2446 static void __init ssb_apply_mitigation(void) 2447 { 2448 /* 2449 * We have three CPU feature flags that are in play here: 2450 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible. 2451 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass 2452 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation 2453 */ 2454 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) { 2455 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE); 2456 /* 2457 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may 2458 * use a completely different MSR and bit dependent on family. 2459 */ 2460 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 2461 !static_cpu_has(X86_FEATURE_AMD_SSBD)) { 2462 x86_amd_ssb_disable(); 2463 } else { 2464 x86_spec_ctrl_base |= SPEC_CTRL_SSBD; 2465 update_spec_ctrl(x86_spec_ctrl_base); 2466 } 2467 } 2468 } 2469 2470 #undef pr_fmt 2471 #define pr_fmt(fmt) "Speculation prctl: " fmt 2472 2473 static void task_update_spec_tif(struct task_struct *tsk) 2474 { 2475 /* Force the update of the real TIF bits */ 2476 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE); 2477 2478 /* 2479 * Immediately update the speculation control MSRs for the current 2480 * task, but for a non-current task delay setting the CPU 2481 * mitigation until it is scheduled next. 2482 * 2483 * This can only happen for SECCOMP mitigation. For PRCTL it's 2484 * always the current task. 2485 */ 2486 if (tsk == current) 2487 speculation_ctrl_update_current(); 2488 } 2489 2490 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl) 2491 { 2492 2493 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 2494 return -EPERM; 2495 2496 switch (ctrl) { 2497 case PR_SPEC_ENABLE: 2498 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 2499 return 0; 2500 case PR_SPEC_DISABLE: 2501 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 2502 return 0; 2503 default: 2504 return -ERANGE; 2505 } 2506 } 2507 2508 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) 2509 { 2510 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL && 2511 ssb_mode != SPEC_STORE_BYPASS_SECCOMP) 2512 return -ENXIO; 2513 2514 switch (ctrl) { 2515 case PR_SPEC_ENABLE: 2516 /* If speculation is force disabled, enable is not allowed */ 2517 if (task_spec_ssb_force_disable(task)) 2518 return -EPERM; 2519 task_clear_spec_ssb_disable(task); 2520 task_clear_spec_ssb_noexec(task); 2521 task_update_spec_tif(task); 2522 break; 2523 case PR_SPEC_DISABLE: 2524 task_set_spec_ssb_disable(task); 2525 task_clear_spec_ssb_noexec(task); 2526 task_update_spec_tif(task); 2527 break; 2528 case PR_SPEC_FORCE_DISABLE: 2529 task_set_spec_ssb_disable(task); 2530 task_set_spec_ssb_force_disable(task); 2531 task_clear_spec_ssb_noexec(task); 2532 task_update_spec_tif(task); 2533 break; 2534 case PR_SPEC_DISABLE_NOEXEC: 2535 if (task_spec_ssb_force_disable(task)) 2536 return -EPERM; 2537 task_set_spec_ssb_disable(task); 2538 task_set_spec_ssb_noexec(task); 2539 task_update_spec_tif(task); 2540 break; 2541 default: 2542 return -ERANGE; 2543 } 2544 return 0; 2545 } 2546 2547 static bool is_spec_ib_user_controlled(void) 2548 { 2549 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL || 2550 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 2551 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL || 2552 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP; 2553 } 2554 2555 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl) 2556 { 2557 switch (ctrl) { 2558 case PR_SPEC_ENABLE: 2559 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2560 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2561 return 0; 2562 2563 /* 2564 * With strict mode for both IBPB and STIBP, the instruction 2565 * code paths avoid checking this task flag and instead, 2566 * unconditionally run the instruction. However, STIBP and IBPB 2567 * are independent and either can be set to conditionally 2568 * enabled regardless of the mode of the other. 2569 * 2570 * If either is set to conditional, allow the task flag to be 2571 * updated, unless it was force-disabled by a previous prctl 2572 * call. Currently, this is possible on an AMD CPU which has the 2573 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the 2574 * kernel is booted with 'spectre_v2_user=seccomp', then 2575 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and 2576 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED. 2577 */ 2578 if (!is_spec_ib_user_controlled() || 2579 task_spec_ib_force_disable(task)) 2580 return -EPERM; 2581 2582 task_clear_spec_ib_disable(task); 2583 task_update_spec_tif(task); 2584 break; 2585 case PR_SPEC_DISABLE: 2586 case PR_SPEC_FORCE_DISABLE: 2587 /* 2588 * Indirect branch speculation is always allowed when 2589 * mitigation is force disabled. 2590 */ 2591 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2592 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2593 return -EPERM; 2594 2595 if (!is_spec_ib_user_controlled()) 2596 return 0; 2597 2598 task_set_spec_ib_disable(task); 2599 if (ctrl == PR_SPEC_FORCE_DISABLE) 2600 task_set_spec_ib_force_disable(task); 2601 task_update_spec_tif(task); 2602 if (task == current) 2603 indirect_branch_prediction_barrier(); 2604 break; 2605 default: 2606 return -ERANGE; 2607 } 2608 return 0; 2609 } 2610 2611 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which, 2612 unsigned long ctrl) 2613 { 2614 switch (which) { 2615 case PR_SPEC_STORE_BYPASS: 2616 return ssb_prctl_set(task, ctrl); 2617 case PR_SPEC_INDIRECT_BRANCH: 2618 return ib_prctl_set(task, ctrl); 2619 case PR_SPEC_L1D_FLUSH: 2620 return l1d_flush_prctl_set(task, ctrl); 2621 default: 2622 return -ENODEV; 2623 } 2624 } 2625 2626 #ifdef CONFIG_SECCOMP 2627 void arch_seccomp_spec_mitigate(struct task_struct *task) 2628 { 2629 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP) 2630 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE); 2631 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 2632 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) 2633 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE); 2634 } 2635 #endif 2636 2637 static int l1d_flush_prctl_get(struct task_struct *task) 2638 { 2639 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 2640 return PR_SPEC_FORCE_DISABLE; 2641 2642 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH)) 2643 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2644 else 2645 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2646 } 2647 2648 static int ssb_prctl_get(struct task_struct *task) 2649 { 2650 switch (ssb_mode) { 2651 case SPEC_STORE_BYPASS_NONE: 2652 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 2653 return PR_SPEC_ENABLE; 2654 return PR_SPEC_NOT_AFFECTED; 2655 case SPEC_STORE_BYPASS_DISABLE: 2656 return PR_SPEC_DISABLE; 2657 case SPEC_STORE_BYPASS_SECCOMP: 2658 case SPEC_STORE_BYPASS_PRCTL: 2659 case SPEC_STORE_BYPASS_AUTO: 2660 if (task_spec_ssb_force_disable(task)) 2661 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2662 if (task_spec_ssb_noexec(task)) 2663 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC; 2664 if (task_spec_ssb_disable(task)) 2665 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2666 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2667 } 2668 BUG(); 2669 } 2670 2671 static int ib_prctl_get(struct task_struct *task) 2672 { 2673 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) 2674 return PR_SPEC_NOT_AFFECTED; 2675 2676 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2677 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2678 return PR_SPEC_ENABLE; 2679 else if (is_spec_ib_user_controlled()) { 2680 if (task_spec_ib_force_disable(task)) 2681 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2682 if (task_spec_ib_disable(task)) 2683 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2684 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2685 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT || 2686 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 2687 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED) 2688 return PR_SPEC_DISABLE; 2689 else 2690 return PR_SPEC_NOT_AFFECTED; 2691 } 2692 2693 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which) 2694 { 2695 switch (which) { 2696 case PR_SPEC_STORE_BYPASS: 2697 return ssb_prctl_get(task); 2698 case PR_SPEC_INDIRECT_BRANCH: 2699 return ib_prctl_get(task); 2700 case PR_SPEC_L1D_FLUSH: 2701 return l1d_flush_prctl_get(task); 2702 default: 2703 return -ENODEV; 2704 } 2705 } 2706 2707 void x86_spec_ctrl_setup_ap(void) 2708 { 2709 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) 2710 update_spec_ctrl(x86_spec_ctrl_base); 2711 2712 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) 2713 x86_amd_ssb_disable(); 2714 } 2715 2716 bool itlb_multihit_kvm_mitigation; 2717 EXPORT_SYMBOL_FOR_KVM(itlb_multihit_kvm_mitigation); 2718 2719 #undef pr_fmt 2720 #define pr_fmt(fmt) "L1TF: " fmt 2721 2722 /* Default mitigation for L1TF-affected CPUs */ 2723 enum l1tf_mitigations l1tf_mitigation __ro_after_init = 2724 IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_AUTO : L1TF_MITIGATION_OFF; 2725 EXPORT_SYMBOL_FOR_KVM(l1tf_mitigation); 2726 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 2727 EXPORT_SYMBOL_FOR_KVM(l1tf_vmx_mitigation); 2728 2729 /* 2730 * These CPUs all support 44bits physical address space internally in the 2731 * cache but CPUID can report a smaller number of physical address bits. 2732 * 2733 * The L1TF mitigation uses the top most address bit for the inversion of 2734 * non present PTEs. When the installed memory reaches into the top most 2735 * address bit due to memory holes, which has been observed on machines 2736 * which report 36bits physical address bits and have 32G RAM installed, 2737 * then the mitigation range check in l1tf_select_mitigation() triggers. 2738 * This is a false positive because the mitigation is still possible due to 2739 * the fact that the cache uses 44bit internally. Use the cache bits 2740 * instead of the reported physical bits and adjust them on the affected 2741 * machines to 44bit if the reported bits are less than 44. 2742 */ 2743 static void override_cache_bits(struct cpuinfo_x86 *c) 2744 { 2745 if (c->x86 != 6) 2746 return; 2747 2748 switch (c->x86_vfm) { 2749 case INTEL_NEHALEM: 2750 case INTEL_WESTMERE: 2751 case INTEL_SANDYBRIDGE: 2752 case INTEL_IVYBRIDGE: 2753 case INTEL_HASWELL: 2754 case INTEL_HASWELL_L: 2755 case INTEL_HASWELL_G: 2756 case INTEL_BROADWELL: 2757 case INTEL_BROADWELL_G: 2758 case INTEL_SKYLAKE_L: 2759 case INTEL_SKYLAKE: 2760 case INTEL_KABYLAKE_L: 2761 case INTEL_KABYLAKE: 2762 if (c->x86_cache_bits < 44) 2763 c->x86_cache_bits = 44; 2764 break; 2765 } 2766 } 2767 2768 static void __init l1tf_select_mitigation(void) 2769 { 2770 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 2771 l1tf_mitigation = L1TF_MITIGATION_OFF; 2772 return; 2773 } 2774 2775 if (l1tf_mitigation != L1TF_MITIGATION_AUTO) 2776 return; 2777 2778 if (!should_mitigate_vuln(X86_BUG_L1TF)) { 2779 l1tf_mitigation = L1TF_MITIGATION_OFF; 2780 return; 2781 } 2782 2783 if (smt_mitigations == SMT_MITIGATIONS_ON) 2784 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2785 else 2786 l1tf_mitigation = L1TF_MITIGATION_FLUSH; 2787 } 2788 2789 static void __init l1tf_apply_mitigation(void) 2790 { 2791 u64 half_pa; 2792 2793 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2794 return; 2795 2796 override_cache_bits(&boot_cpu_data); 2797 2798 switch (l1tf_mitigation) { 2799 case L1TF_MITIGATION_OFF: 2800 case L1TF_MITIGATION_FLUSH_NOWARN: 2801 case L1TF_MITIGATION_FLUSH: 2802 case L1TF_MITIGATION_AUTO: 2803 break; 2804 case L1TF_MITIGATION_FLUSH_NOSMT: 2805 case L1TF_MITIGATION_FULL: 2806 cpu_smt_disable(false); 2807 break; 2808 case L1TF_MITIGATION_FULL_FORCE: 2809 cpu_smt_disable(true); 2810 break; 2811 } 2812 2813 #if CONFIG_PGTABLE_LEVELS == 2 2814 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n"); 2815 return; 2816 #endif 2817 2818 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT; 2819 if (l1tf_mitigation != L1TF_MITIGATION_OFF && 2820 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) { 2821 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n"); 2822 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n", 2823 half_pa); 2824 pr_info("However, doing so will make a part of your RAM unusable.\n"); 2825 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n"); 2826 return; 2827 } 2828 2829 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV); 2830 } 2831 2832 static int __init l1tf_cmdline(char *str) 2833 { 2834 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2835 return 0; 2836 2837 if (!str) 2838 return -EINVAL; 2839 2840 if (!strcmp(str, "off")) 2841 l1tf_mitigation = L1TF_MITIGATION_OFF; 2842 else if (!strcmp(str, "flush,nowarn")) 2843 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN; 2844 else if (!strcmp(str, "flush")) 2845 l1tf_mitigation = L1TF_MITIGATION_FLUSH; 2846 else if (!strcmp(str, "flush,nosmt")) 2847 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2848 else if (!strcmp(str, "full")) 2849 l1tf_mitigation = L1TF_MITIGATION_FULL; 2850 else if (!strcmp(str, "full,force")) 2851 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE; 2852 2853 return 0; 2854 } 2855 early_param("l1tf", l1tf_cmdline); 2856 2857 #undef pr_fmt 2858 #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt 2859 2860 static const char * const srso_strings[] = { 2861 [SRSO_MITIGATION_NONE] = "Vulnerable", 2862 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 2863 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode", 2864 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET", 2865 [SRSO_MITIGATION_NOSMT] = "Mitigation: SMT disabled", 2866 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET", 2867 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB", 2868 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only", 2869 [SRSO_MITIGATION_BP_SPEC_REDUCE] = "Mitigation: Reduced Speculation" 2870 }; 2871 2872 static int __init srso_parse_cmdline(char *str) 2873 { 2874 if (!str) 2875 return -EINVAL; 2876 2877 if (!strcmp(str, "off")) 2878 srso_mitigation = SRSO_MITIGATION_NONE; 2879 else if (!strcmp(str, "microcode")) 2880 srso_mitigation = SRSO_MITIGATION_MICROCODE; 2881 else if (!strcmp(str, "safe-ret")) 2882 srso_mitigation = SRSO_MITIGATION_SAFE_RET; 2883 else if (!strcmp(str, "ibpb")) 2884 srso_mitigation = SRSO_MITIGATION_IBPB; 2885 else if (!strcmp(str, "ibpb-vmexit")) 2886 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT; 2887 else 2888 pr_err("Ignoring unknown SRSO option (%s).", str); 2889 2890 return 0; 2891 } 2892 early_param("spec_rstack_overflow", srso_parse_cmdline); 2893 2894 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options." 2895 2896 static void __init srso_select_mitigation(void) 2897 { 2898 if (!boot_cpu_has_bug(X86_BUG_SRSO)) { 2899 srso_mitigation = SRSO_MITIGATION_NONE; 2900 return; 2901 } 2902 2903 if (srso_mitigation == SRSO_MITIGATION_AUTO) { 2904 /* 2905 * Use safe-RET if user->kernel or guest->host protection is 2906 * required. Otherwise the 'microcode' mitigation is sufficient 2907 * to protect the user->user and guest->guest vectors. 2908 */ 2909 if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) || 2910 (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) && 2911 !boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO))) { 2912 srso_mitigation = SRSO_MITIGATION_SAFE_RET; 2913 } else if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) || 2914 cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) { 2915 srso_mitigation = SRSO_MITIGATION_MICROCODE; 2916 } else { 2917 srso_mitigation = SRSO_MITIGATION_NONE; 2918 return; 2919 } 2920 } 2921 2922 /* Zen1/2 with SMT off aren't vulnerable to SRSO. */ 2923 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) { 2924 srso_mitigation = SRSO_MITIGATION_NOSMT; 2925 return; 2926 } 2927 2928 if (!boot_cpu_has(X86_FEATURE_IBPB_BRTYPE)) { 2929 pr_warn("IBPB-extending microcode not applied!\n"); 2930 pr_warn(SRSO_NOTICE); 2931 2932 /* 2933 * Safe-RET provides partial mitigation without microcode, but 2934 * other mitigations require microcode to provide any 2935 * mitigations. 2936 */ 2937 if (srso_mitigation == SRSO_MITIGATION_SAFE_RET) 2938 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED; 2939 else 2940 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED; 2941 } 2942 2943 switch (srso_mitigation) { 2944 case SRSO_MITIGATION_SAFE_RET: 2945 case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED: 2946 if (boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO)) { 2947 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT; 2948 goto ibpb_on_vmexit; 2949 } 2950 2951 if (!IS_ENABLED(CONFIG_MITIGATION_SRSO)) { 2952 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n"); 2953 srso_mitigation = SRSO_MITIGATION_NONE; 2954 } 2955 break; 2956 ibpb_on_vmexit: 2957 case SRSO_MITIGATION_IBPB_ON_VMEXIT: 2958 if (boot_cpu_has(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) { 2959 pr_notice("Reducing speculation to address VM/HV SRSO attack vector.\n"); 2960 srso_mitigation = SRSO_MITIGATION_BP_SPEC_REDUCE; 2961 break; 2962 } 2963 fallthrough; 2964 case SRSO_MITIGATION_IBPB: 2965 if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) { 2966 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n"); 2967 srso_mitigation = SRSO_MITIGATION_NONE; 2968 } 2969 break; 2970 default: 2971 break; 2972 } 2973 } 2974 2975 static void __init srso_update_mitigation(void) 2976 { 2977 if (!boot_cpu_has_bug(X86_BUG_SRSO)) 2978 return; 2979 2980 /* If retbleed is using IBPB, that works for SRSO as well */ 2981 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB && 2982 boot_cpu_has(X86_FEATURE_IBPB_BRTYPE)) 2983 srso_mitigation = SRSO_MITIGATION_IBPB; 2984 2985 pr_info("%s\n", srso_strings[srso_mitigation]); 2986 } 2987 2988 static void __init srso_apply_mitigation(void) 2989 { 2990 /* 2991 * Clear the feature flag if this mitigation is not selected as that 2992 * feature flag controls the BpSpecReduce MSR bit toggling in KVM. 2993 */ 2994 if (srso_mitigation != SRSO_MITIGATION_BP_SPEC_REDUCE) 2995 setup_clear_cpu_cap(X86_FEATURE_SRSO_BP_SPEC_REDUCE); 2996 2997 if (srso_mitigation == SRSO_MITIGATION_NONE) { 2998 if (boot_cpu_has(X86_FEATURE_SBPB)) 2999 x86_pred_cmd = PRED_CMD_SBPB; 3000 return; 3001 } 3002 3003 switch (srso_mitigation) { 3004 case SRSO_MITIGATION_SAFE_RET: 3005 case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED: 3006 /* 3007 * Enable the return thunk for generated code 3008 * like ftrace, static_call, etc. 3009 */ 3010 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 3011 setup_force_cpu_cap(X86_FEATURE_UNRET); 3012 3013 if (boot_cpu_data.x86 == 0x19) { 3014 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS); 3015 set_return_thunk(srso_alias_return_thunk); 3016 } else { 3017 setup_force_cpu_cap(X86_FEATURE_SRSO); 3018 set_return_thunk(srso_return_thunk); 3019 } 3020 break; 3021 case SRSO_MITIGATION_IBPB: 3022 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 3023 /* 3024 * IBPB on entry already obviates the need for 3025 * software-based untraining so clear those in case some 3026 * other mitigation like Retbleed has selected them. 3027 */ 3028 setup_clear_cpu_cap(X86_FEATURE_UNRET); 3029 setup_clear_cpu_cap(X86_FEATURE_RETHUNK); 3030 fallthrough; 3031 case SRSO_MITIGATION_IBPB_ON_VMEXIT: 3032 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 3033 /* 3034 * There is no need for RSB filling: entry_ibpb() ensures 3035 * all predictions, including the RSB, are invalidated, 3036 * regardless of IBPB implementation. 3037 */ 3038 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT); 3039 break; 3040 default: 3041 break; 3042 } 3043 } 3044 3045 #undef pr_fmt 3046 #define pr_fmt(fmt) "VMSCAPE: " fmt 3047 3048 enum vmscape_mitigations { 3049 VMSCAPE_MITIGATION_NONE, 3050 VMSCAPE_MITIGATION_AUTO, 3051 VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER, 3052 VMSCAPE_MITIGATION_IBPB_ON_VMEXIT, 3053 }; 3054 3055 static const char * const vmscape_strings[] = { 3056 [VMSCAPE_MITIGATION_NONE] = "Vulnerable", 3057 /* [VMSCAPE_MITIGATION_AUTO] */ 3058 [VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER] = "Mitigation: IBPB before exit to userspace", 3059 [VMSCAPE_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT", 3060 }; 3061 3062 static enum vmscape_mitigations vmscape_mitigation __ro_after_init = 3063 IS_ENABLED(CONFIG_MITIGATION_VMSCAPE) ? VMSCAPE_MITIGATION_AUTO : VMSCAPE_MITIGATION_NONE; 3064 3065 static int __init vmscape_parse_cmdline(char *str) 3066 { 3067 if (!str) 3068 return -EINVAL; 3069 3070 if (!strcmp(str, "off")) { 3071 vmscape_mitigation = VMSCAPE_MITIGATION_NONE; 3072 } else if (!strcmp(str, "ibpb")) { 3073 vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER; 3074 } else if (!strcmp(str, "force")) { 3075 setup_force_cpu_bug(X86_BUG_VMSCAPE); 3076 vmscape_mitigation = VMSCAPE_MITIGATION_AUTO; 3077 } else { 3078 pr_err("Ignoring unknown vmscape=%s option.\n", str); 3079 } 3080 3081 return 0; 3082 } 3083 early_param("vmscape", vmscape_parse_cmdline); 3084 3085 static void __init vmscape_select_mitigation(void) 3086 { 3087 if (!boot_cpu_has_bug(X86_BUG_VMSCAPE) || 3088 !boot_cpu_has(X86_FEATURE_IBPB)) { 3089 vmscape_mitigation = VMSCAPE_MITIGATION_NONE; 3090 return; 3091 } 3092 3093 if (vmscape_mitigation == VMSCAPE_MITIGATION_AUTO) { 3094 if (should_mitigate_vuln(X86_BUG_VMSCAPE)) 3095 vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER; 3096 else 3097 vmscape_mitigation = VMSCAPE_MITIGATION_NONE; 3098 } 3099 } 3100 3101 static void __init vmscape_update_mitigation(void) 3102 { 3103 if (!boot_cpu_has_bug(X86_BUG_VMSCAPE)) 3104 return; 3105 3106 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB || 3107 srso_mitigation == SRSO_MITIGATION_IBPB_ON_VMEXIT) 3108 vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_ON_VMEXIT; 3109 3110 pr_info("%s\n", vmscape_strings[vmscape_mitigation]); 3111 } 3112 3113 static void __init vmscape_apply_mitigation(void) 3114 { 3115 if (vmscape_mitigation == VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER) 3116 setup_force_cpu_cap(X86_FEATURE_IBPB_EXIT_TO_USER); 3117 } 3118 3119 #undef pr_fmt 3120 #define pr_fmt(fmt) fmt 3121 3122 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n" 3123 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n" 3124 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n" 3125 #define VMSCAPE_MSG_SMT "VMSCAPE: SMT on, STIBP is required for full protection. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/vmscape.html for more details.\n" 3126 3127 void cpu_bugs_smt_update(void) 3128 { 3129 mutex_lock(&spec_ctrl_mutex); 3130 3131 if (sched_smt_active() && unprivileged_ebpf_enabled() && 3132 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 3133 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 3134 3135 switch (spectre_v2_user_stibp) { 3136 case SPECTRE_V2_USER_NONE: 3137 break; 3138 case SPECTRE_V2_USER_STRICT: 3139 case SPECTRE_V2_USER_STRICT_PREFERRED: 3140 update_stibp_strict(); 3141 break; 3142 case SPECTRE_V2_USER_PRCTL: 3143 case SPECTRE_V2_USER_SECCOMP: 3144 update_indir_branch_cond(); 3145 break; 3146 } 3147 3148 switch (mds_mitigation) { 3149 case MDS_MITIGATION_FULL: 3150 case MDS_MITIGATION_AUTO: 3151 case MDS_MITIGATION_VMWERV: 3152 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY)) 3153 pr_warn_once(MDS_MSG_SMT); 3154 update_mds_branch_idle(); 3155 break; 3156 case MDS_MITIGATION_OFF: 3157 break; 3158 } 3159 3160 switch (taa_mitigation) { 3161 case TAA_MITIGATION_VERW: 3162 case TAA_MITIGATION_AUTO: 3163 case TAA_MITIGATION_UCODE_NEEDED: 3164 if (sched_smt_active()) 3165 pr_warn_once(TAA_MSG_SMT); 3166 break; 3167 case TAA_MITIGATION_TSX_DISABLED: 3168 case TAA_MITIGATION_OFF: 3169 break; 3170 } 3171 3172 switch (mmio_mitigation) { 3173 case MMIO_MITIGATION_VERW: 3174 case MMIO_MITIGATION_AUTO: 3175 case MMIO_MITIGATION_UCODE_NEEDED: 3176 if (sched_smt_active()) 3177 pr_warn_once(MMIO_MSG_SMT); 3178 break; 3179 case MMIO_MITIGATION_OFF: 3180 break; 3181 } 3182 3183 switch (tsa_mitigation) { 3184 case TSA_MITIGATION_USER_KERNEL: 3185 case TSA_MITIGATION_VM: 3186 case TSA_MITIGATION_AUTO: 3187 case TSA_MITIGATION_FULL: 3188 /* 3189 * TSA-SQ can potentially lead to info leakage between 3190 * SMT threads. 3191 */ 3192 if (sched_smt_active()) 3193 static_branch_enable(&cpu_buf_idle_clear); 3194 else 3195 static_branch_disable(&cpu_buf_idle_clear); 3196 break; 3197 case TSA_MITIGATION_NONE: 3198 case TSA_MITIGATION_UCODE_NEEDED: 3199 break; 3200 } 3201 3202 switch (vmscape_mitigation) { 3203 case VMSCAPE_MITIGATION_NONE: 3204 case VMSCAPE_MITIGATION_AUTO: 3205 break; 3206 case VMSCAPE_MITIGATION_IBPB_ON_VMEXIT: 3207 case VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER: 3208 /* 3209 * Hypervisors can be attacked across-threads, warn for SMT when 3210 * STIBP is not already enabled system-wide. 3211 * 3212 * Intel eIBRS (!AUTOIBRS) implies STIBP on. 3213 */ 3214 if (!sched_smt_active() || 3215 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 3216 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED || 3217 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 3218 !boot_cpu_has(X86_FEATURE_AUTOIBRS))) 3219 break; 3220 pr_warn_once(VMSCAPE_MSG_SMT); 3221 break; 3222 } 3223 3224 mutex_unlock(&spec_ctrl_mutex); 3225 } 3226 3227 void __init cpu_select_mitigations(void) 3228 { 3229 /* 3230 * Read the SPEC_CTRL MSR to account for reserved bits which may 3231 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD 3232 * init code as it is not enumerated and depends on the family. 3233 */ 3234 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) { 3235 rdmsrq(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base); 3236 3237 /* 3238 * Previously running kernel (kexec), may have some controls 3239 * turned ON. Clear them and let the mitigations setup below 3240 * rediscover them based on configuration. 3241 */ 3242 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK; 3243 } 3244 3245 x86_arch_cap_msr = x86_read_arch_cap_msr(); 3246 3247 cpu_print_attack_vectors(); 3248 3249 /* Select the proper CPU mitigations before patching alternatives: */ 3250 spectre_v1_select_mitigation(); 3251 spectre_v2_select_mitigation(); 3252 retbleed_select_mitigation(); 3253 spectre_v2_user_select_mitigation(); 3254 ssb_select_mitigation(); 3255 l1tf_select_mitigation(); 3256 mds_select_mitigation(); 3257 taa_select_mitigation(); 3258 mmio_select_mitigation(); 3259 rfds_select_mitigation(); 3260 srbds_select_mitigation(); 3261 l1d_flush_select_mitigation(); 3262 srso_select_mitigation(); 3263 gds_select_mitigation(); 3264 its_select_mitigation(); 3265 bhi_select_mitigation(); 3266 tsa_select_mitigation(); 3267 vmscape_select_mitigation(); 3268 3269 /* 3270 * After mitigations are selected, some may need to update their 3271 * choices. 3272 */ 3273 spectre_v2_update_mitigation(); 3274 /* 3275 * retbleed_update_mitigation() relies on the state set by 3276 * spectre_v2_update_mitigation(); specifically it wants to know about 3277 * spectre_v2=ibrs. 3278 */ 3279 retbleed_update_mitigation(); 3280 /* 3281 * its_update_mitigation() depends on spectre_v2_update_mitigation() 3282 * and retbleed_update_mitigation(). 3283 */ 3284 its_update_mitigation(); 3285 3286 /* 3287 * spectre_v2_user_update_mitigation() depends on 3288 * retbleed_update_mitigation(), specifically the STIBP 3289 * selection is forced for UNRET or IBPB. 3290 */ 3291 spectre_v2_user_update_mitigation(); 3292 mds_update_mitigation(); 3293 taa_update_mitigation(); 3294 mmio_update_mitigation(); 3295 rfds_update_mitigation(); 3296 bhi_update_mitigation(); 3297 /* srso_update_mitigation() depends on retbleed_update_mitigation(). */ 3298 srso_update_mitigation(); 3299 vmscape_update_mitigation(); 3300 3301 spectre_v1_apply_mitigation(); 3302 spectre_v2_apply_mitigation(); 3303 retbleed_apply_mitigation(); 3304 spectre_v2_user_apply_mitigation(); 3305 ssb_apply_mitigation(); 3306 l1tf_apply_mitigation(); 3307 mds_apply_mitigation(); 3308 taa_apply_mitigation(); 3309 mmio_apply_mitigation(); 3310 rfds_apply_mitigation(); 3311 srbds_apply_mitigation(); 3312 srso_apply_mitigation(); 3313 gds_apply_mitigation(); 3314 its_apply_mitigation(); 3315 bhi_apply_mitigation(); 3316 tsa_apply_mitigation(); 3317 vmscape_apply_mitigation(); 3318 } 3319 3320 #ifdef CONFIG_SYSFS 3321 3322 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion" 3323 3324 #if IS_ENABLED(CONFIG_KVM_INTEL) 3325 static const char * const l1tf_vmx_states[] = { 3326 [VMENTER_L1D_FLUSH_AUTO] = "auto", 3327 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable", 3328 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes", 3329 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes", 3330 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled", 3331 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary" 3332 }; 3333 3334 static ssize_t l1tf_show_state(char *buf) 3335 { 3336 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) 3337 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); 3338 3339 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED || 3340 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER && 3341 sched_smt_active())) { 3342 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG, 3343 l1tf_vmx_states[l1tf_vmx_mitigation]); 3344 } 3345 3346 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG, 3347 l1tf_vmx_states[l1tf_vmx_mitigation], 3348 sched_smt_active() ? "vulnerable" : "disabled"); 3349 } 3350 3351 static ssize_t itlb_multihit_show_state(char *buf) 3352 { 3353 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 3354 !boot_cpu_has(X86_FEATURE_VMX)) 3355 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n"); 3356 else if (!(cr4_read_shadow() & X86_CR4_VMXE)) 3357 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n"); 3358 else if (itlb_multihit_kvm_mitigation) 3359 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n"); 3360 else 3361 return sysfs_emit(buf, "KVM: Vulnerable\n"); 3362 } 3363 #else 3364 static ssize_t l1tf_show_state(char *buf) 3365 { 3366 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); 3367 } 3368 3369 static ssize_t itlb_multihit_show_state(char *buf) 3370 { 3371 return sysfs_emit(buf, "Processor vulnerable\n"); 3372 } 3373 #endif 3374 3375 static ssize_t mds_show_state(char *buf) 3376 { 3377 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 3378 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 3379 mds_strings[mds_mitigation]); 3380 } 3381 3382 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) { 3383 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 3384 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" : 3385 sched_smt_active() ? "mitigated" : "disabled")); 3386 } 3387 3388 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 3389 sched_smt_active() ? "vulnerable" : "disabled"); 3390 } 3391 3392 static ssize_t tsx_async_abort_show_state(char *buf) 3393 { 3394 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) || 3395 (taa_mitigation == TAA_MITIGATION_OFF)) 3396 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]); 3397 3398 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 3399 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 3400 taa_strings[taa_mitigation]); 3401 } 3402 3403 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation], 3404 sched_smt_active() ? "vulnerable" : "disabled"); 3405 } 3406 3407 static ssize_t mmio_stale_data_show_state(char *buf) 3408 { 3409 if (mmio_mitigation == MMIO_MITIGATION_OFF) 3410 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]); 3411 3412 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 3413 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 3414 mmio_strings[mmio_mitigation]); 3415 } 3416 3417 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation], 3418 sched_smt_active() ? "vulnerable" : "disabled"); 3419 } 3420 3421 static ssize_t rfds_show_state(char *buf) 3422 { 3423 return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]); 3424 } 3425 3426 static ssize_t old_microcode_show_state(char *buf) 3427 { 3428 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 3429 return sysfs_emit(buf, "Unknown: running under hypervisor"); 3430 3431 return sysfs_emit(buf, "Vulnerable\n"); 3432 } 3433 3434 static ssize_t its_show_state(char *buf) 3435 { 3436 return sysfs_emit(buf, "%s\n", its_strings[its_mitigation]); 3437 } 3438 3439 static char *stibp_state(void) 3440 { 3441 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 3442 !boot_cpu_has(X86_FEATURE_AUTOIBRS)) 3443 return ""; 3444 3445 switch (spectre_v2_user_stibp) { 3446 case SPECTRE_V2_USER_NONE: 3447 return "; STIBP: disabled"; 3448 case SPECTRE_V2_USER_STRICT: 3449 return "; STIBP: forced"; 3450 case SPECTRE_V2_USER_STRICT_PREFERRED: 3451 return "; STIBP: always-on"; 3452 case SPECTRE_V2_USER_PRCTL: 3453 case SPECTRE_V2_USER_SECCOMP: 3454 if (static_key_enabled(&switch_to_cond_stibp)) 3455 return "; STIBP: conditional"; 3456 } 3457 return ""; 3458 } 3459 3460 static char *ibpb_state(void) 3461 { 3462 if (boot_cpu_has(X86_FEATURE_IBPB)) { 3463 if (static_key_enabled(&switch_mm_always_ibpb)) 3464 return "; IBPB: always-on"; 3465 if (static_key_enabled(&switch_mm_cond_ibpb)) 3466 return "; IBPB: conditional"; 3467 return "; IBPB: disabled"; 3468 } 3469 return ""; 3470 } 3471 3472 static char *pbrsb_eibrs_state(void) 3473 { 3474 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 3475 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) || 3476 boot_cpu_has(X86_FEATURE_RSB_VMEXIT)) 3477 return "; PBRSB-eIBRS: SW sequence"; 3478 else 3479 return "; PBRSB-eIBRS: Vulnerable"; 3480 } else { 3481 return "; PBRSB-eIBRS: Not affected"; 3482 } 3483 } 3484 3485 static const char *spectre_bhi_state(void) 3486 { 3487 if (!boot_cpu_has_bug(X86_BUG_BHI)) 3488 return "; BHI: Not affected"; 3489 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW)) 3490 return "; BHI: BHI_DIS_S"; 3491 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP)) 3492 return "; BHI: SW loop, KVM: SW loop"; 3493 else if (boot_cpu_has(X86_FEATURE_RETPOLINE) && 3494 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) && 3495 rrsba_disabled) 3496 return "; BHI: Retpoline"; 3497 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_VMEXIT)) 3498 return "; BHI: Vulnerable, KVM: SW loop"; 3499 3500 return "; BHI: Vulnerable"; 3501 } 3502 3503 static ssize_t spectre_v2_show_state(char *buf) 3504 { 3505 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 3506 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n"); 3507 3508 if (sched_smt_active() && unprivileged_ebpf_enabled() && 3509 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 3510 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n"); 3511 3512 return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n", 3513 spectre_v2_strings[spectre_v2_enabled], 3514 ibpb_state(), 3515 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "", 3516 stibp_state(), 3517 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "", 3518 pbrsb_eibrs_state(), 3519 spectre_bhi_state(), 3520 /* this should always be at the end */ 3521 spectre_v2_module_string()); 3522 } 3523 3524 static ssize_t srbds_show_state(char *buf) 3525 { 3526 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]); 3527 } 3528 3529 static ssize_t retbleed_show_state(char *buf) 3530 { 3531 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 3532 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 3533 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 3534 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 3535 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n"); 3536 3537 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation], 3538 !sched_smt_active() ? "disabled" : 3539 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 3540 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ? 3541 "enabled with STIBP protection" : "vulnerable"); 3542 } 3543 3544 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]); 3545 } 3546 3547 static ssize_t srso_show_state(char *buf) 3548 { 3549 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]); 3550 } 3551 3552 static ssize_t gds_show_state(char *buf) 3553 { 3554 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]); 3555 } 3556 3557 static ssize_t tsa_show_state(char *buf) 3558 { 3559 return sysfs_emit(buf, "%s\n", tsa_strings[tsa_mitigation]); 3560 } 3561 3562 static ssize_t vmscape_show_state(char *buf) 3563 { 3564 return sysfs_emit(buf, "%s\n", vmscape_strings[vmscape_mitigation]); 3565 } 3566 3567 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr, 3568 char *buf, unsigned int bug) 3569 { 3570 if (!boot_cpu_has_bug(bug)) 3571 return sysfs_emit(buf, "Not affected\n"); 3572 3573 switch (bug) { 3574 case X86_BUG_CPU_MELTDOWN: 3575 if (boot_cpu_has(X86_FEATURE_PTI)) 3576 return sysfs_emit(buf, "Mitigation: PTI\n"); 3577 3578 if (hypervisor_is_type(X86_HYPER_XEN_PV)) 3579 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n"); 3580 3581 break; 3582 3583 case X86_BUG_SPECTRE_V1: 3584 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]); 3585 3586 case X86_BUG_SPECTRE_V2: 3587 return spectre_v2_show_state(buf); 3588 3589 case X86_BUG_SPEC_STORE_BYPASS: 3590 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]); 3591 3592 case X86_BUG_L1TF: 3593 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV)) 3594 return l1tf_show_state(buf); 3595 break; 3596 3597 case X86_BUG_MDS: 3598 return mds_show_state(buf); 3599 3600 case X86_BUG_TAA: 3601 return tsx_async_abort_show_state(buf); 3602 3603 case X86_BUG_ITLB_MULTIHIT: 3604 return itlb_multihit_show_state(buf); 3605 3606 case X86_BUG_SRBDS: 3607 return srbds_show_state(buf); 3608 3609 case X86_BUG_MMIO_STALE_DATA: 3610 return mmio_stale_data_show_state(buf); 3611 3612 case X86_BUG_RETBLEED: 3613 return retbleed_show_state(buf); 3614 3615 case X86_BUG_SRSO: 3616 return srso_show_state(buf); 3617 3618 case X86_BUG_GDS: 3619 return gds_show_state(buf); 3620 3621 case X86_BUG_RFDS: 3622 return rfds_show_state(buf); 3623 3624 case X86_BUG_OLD_MICROCODE: 3625 return old_microcode_show_state(buf); 3626 3627 case X86_BUG_ITS: 3628 return its_show_state(buf); 3629 3630 case X86_BUG_TSA: 3631 return tsa_show_state(buf); 3632 3633 case X86_BUG_VMSCAPE: 3634 return vmscape_show_state(buf); 3635 3636 default: 3637 break; 3638 } 3639 3640 return sysfs_emit(buf, "Vulnerable\n"); 3641 } 3642 3643 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf) 3644 { 3645 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN); 3646 } 3647 3648 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf) 3649 { 3650 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1); 3651 } 3652 3653 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf) 3654 { 3655 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2); 3656 } 3657 3658 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf) 3659 { 3660 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS); 3661 } 3662 3663 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf) 3664 { 3665 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF); 3666 } 3667 3668 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf) 3669 { 3670 return cpu_show_common(dev, attr, buf, X86_BUG_MDS); 3671 } 3672 3673 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf) 3674 { 3675 return cpu_show_common(dev, attr, buf, X86_BUG_TAA); 3676 } 3677 3678 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf) 3679 { 3680 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT); 3681 } 3682 3683 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf) 3684 { 3685 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); 3686 } 3687 3688 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf) 3689 { 3690 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA); 3691 } 3692 3693 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf) 3694 { 3695 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED); 3696 } 3697 3698 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf) 3699 { 3700 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO); 3701 } 3702 3703 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf) 3704 { 3705 return cpu_show_common(dev, attr, buf, X86_BUG_GDS); 3706 } 3707 3708 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf) 3709 { 3710 return cpu_show_common(dev, attr, buf, X86_BUG_RFDS); 3711 } 3712 3713 ssize_t cpu_show_old_microcode(struct device *dev, struct device_attribute *attr, char *buf) 3714 { 3715 return cpu_show_common(dev, attr, buf, X86_BUG_OLD_MICROCODE); 3716 } 3717 3718 ssize_t cpu_show_indirect_target_selection(struct device *dev, struct device_attribute *attr, char *buf) 3719 { 3720 return cpu_show_common(dev, attr, buf, X86_BUG_ITS); 3721 } 3722 3723 ssize_t cpu_show_tsa(struct device *dev, struct device_attribute *attr, char *buf) 3724 { 3725 return cpu_show_common(dev, attr, buf, X86_BUG_TSA); 3726 } 3727 3728 ssize_t cpu_show_vmscape(struct device *dev, struct device_attribute *attr, char *buf) 3729 { 3730 return cpu_show_common(dev, attr, buf, X86_BUG_VMSCAPE); 3731 } 3732 #endif 3733 3734 void __warn_thunk(void) 3735 { 3736 WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n"); 3737 } 3738