1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24
25 #ifdef CONFIG_BTRFS_DEBUG
btrfs_should_fragment_free_space(const struct btrfs_block_group * block_group)26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group)
27 {
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36
37 /*
38 * Return target flags in extended format or 0 if restripe for this chunk_type
39 * is not in progress
40 *
41 * Should be called with balance_lock held
42 */
get_restripe_target(const struct btrfs_fs_info * fs_info,u64 flags)43 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 const struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 u64 target = 0;
47
48 if (!bctl)
49 return 0;
50
51 if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 }
61
62 return target;
63 }
64
65 /*
66 * @flags: available profiles in extended format (see ctree.h)
67 *
68 * Return reduced profile in chunk format. If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
71 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 u64 num_devices = fs_info->fs_devices->rw_devices;
75 u64 target;
76 u64 raid_type;
77 u64 allowed = 0;
78
79 /*
80 * See if restripe for this chunk_type is in progress, if so try to
81 * reduce to the target profile
82 */
83 spin_lock(&fs_info->balance_lock);
84 target = get_restripe_target(fs_info, flags);
85 if (target) {
86 spin_unlock(&fs_info->balance_lock);
87 return extended_to_chunk(target);
88 }
89 spin_unlock(&fs_info->balance_lock);
90
91 /* First, mask out the RAID levels which aren't possible */
92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 allowed |= btrfs_raid_array[raid_type].bg_flag;
95 }
96 allowed &= flags;
97
98 /* Select the highest-redundancy RAID level. */
99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 allowed = BTRFS_BLOCK_GROUP_RAID6;
103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 allowed = BTRFS_BLOCK_GROUP_RAID5;
107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 allowed = BTRFS_BLOCK_GROUP_RAID10;
109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 allowed = BTRFS_BLOCK_GROUP_RAID1;
111 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 allowed = BTRFS_BLOCK_GROUP_DUP;
113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 allowed = BTRFS_BLOCK_GROUP_RAID0;
115
116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117
118 return extended_to_chunk(flags | allowed);
119 }
120
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 unsigned seq;
124 u64 flags;
125
126 do {
127 flags = orig_flags;
128 seq = read_seqbegin(&fs_info->profiles_lock);
129
130 if (flags & BTRFS_BLOCK_GROUP_DATA)
131 flags |= fs_info->avail_data_alloc_bits;
132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 flags |= fs_info->avail_system_alloc_bits;
134 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 flags |= fs_info->avail_metadata_alloc_bits;
136 } while (read_seqretry(&fs_info->profiles_lock, seq));
137
138 return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140
btrfs_get_block_group(struct btrfs_block_group * cache)141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 refcount_inc(&cache->refs);
144 }
145
btrfs_put_block_group(struct btrfs_block_group * cache)146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 if (refcount_dec_and_test(&cache->refs)) {
149 WARN_ON(cache->pinned > 0);
150 /*
151 * If there was a failure to cleanup a log tree, very likely due
152 * to an IO failure on a writeback attempt of one or more of its
153 * extent buffers, we could not do proper (and cheap) unaccounting
154 * of their reserved space, so don't warn on reserved > 0 in that
155 * case.
156 */
157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 WARN_ON(cache->reserved > 0);
160
161 /*
162 * A block_group shouldn't be on the discard_list anymore.
163 * Remove the block_group from the discard_list to prevent us
164 * from causing a panic due to NULL pointer dereference.
165 */
166 if (WARN_ON(!list_empty(&cache->discard_list)))
167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 cache);
169
170 kfree(cache->free_space_ctl);
171 btrfs_free_chunk_map(cache->physical_map);
172 kfree(cache);
173 }
174 }
175
btrfs_bg_start_cmp(const struct rb_node * new,const struct rb_node * exist)176 static int btrfs_bg_start_cmp(const struct rb_node *new,
177 const struct rb_node *exist)
178 {
179 const struct btrfs_block_group *new_bg =
180 rb_entry(new, struct btrfs_block_group, cache_node);
181 const struct btrfs_block_group *exist_bg =
182 rb_entry(exist, struct btrfs_block_group, cache_node);
183
184 if (new_bg->start < exist_bg->start)
185 return -1;
186 if (new_bg->start > exist_bg->start)
187 return 1;
188 return 0;
189 }
190
191 /*
192 * This adds the block group to the fs_info rb tree for the block group cache
193 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)194 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
195 struct btrfs_block_group *block_group)
196 {
197 struct rb_node *exist;
198 int ret = 0;
199
200 ASSERT(block_group->length != 0);
201
202 write_lock(&info->block_group_cache_lock);
203
204 exist = rb_find_add_cached(&block_group->cache_node,
205 &info->block_group_cache_tree, btrfs_bg_start_cmp);
206 if (exist)
207 ret = -EEXIST;
208 write_unlock(&info->block_group_cache_lock);
209
210 return ret;
211 }
212
213 /*
214 * This will return the block group at or after bytenr if contains is 0, else
215 * it will return the block group that contains the bytenr
216 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)217 static struct btrfs_block_group *block_group_cache_tree_search(
218 struct btrfs_fs_info *info, u64 bytenr, int contains)
219 {
220 struct btrfs_block_group *cache, *ret = NULL;
221 struct rb_node *n;
222 u64 end, start;
223
224 read_lock(&info->block_group_cache_lock);
225 n = info->block_group_cache_tree.rb_root.rb_node;
226
227 while (n) {
228 cache = rb_entry(n, struct btrfs_block_group, cache_node);
229 end = cache->start + cache->length - 1;
230 start = cache->start;
231
232 if (bytenr < start) {
233 if (!contains && (!ret || start < ret->start))
234 ret = cache;
235 n = n->rb_left;
236 } else if (bytenr > start) {
237 if (contains && bytenr <= end) {
238 ret = cache;
239 break;
240 }
241 n = n->rb_right;
242 } else {
243 ret = cache;
244 break;
245 }
246 }
247 if (ret)
248 btrfs_get_block_group(ret);
249 read_unlock(&info->block_group_cache_lock);
250
251 return ret;
252 }
253
254 /*
255 * Return the block group that starts at or after bytenr
256 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)257 struct btrfs_block_group *btrfs_lookup_first_block_group(
258 struct btrfs_fs_info *info, u64 bytenr)
259 {
260 return block_group_cache_tree_search(info, bytenr, 0);
261 }
262
263 /*
264 * Return the block group that contains the given bytenr
265 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)266 struct btrfs_block_group *btrfs_lookup_block_group(
267 struct btrfs_fs_info *info, u64 bytenr)
268 {
269 return block_group_cache_tree_search(info, bytenr, 1);
270 }
271
btrfs_next_block_group(struct btrfs_block_group * cache)272 struct btrfs_block_group *btrfs_next_block_group(
273 struct btrfs_block_group *cache)
274 {
275 struct btrfs_fs_info *fs_info = cache->fs_info;
276 struct rb_node *node;
277
278 read_lock(&fs_info->block_group_cache_lock);
279
280 /* If our block group was removed, we need a full search. */
281 if (RB_EMPTY_NODE(&cache->cache_node)) {
282 const u64 next_bytenr = cache->start + cache->length;
283
284 read_unlock(&fs_info->block_group_cache_lock);
285 btrfs_put_block_group(cache);
286 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
287 }
288 node = rb_next(&cache->cache_node);
289 btrfs_put_block_group(cache);
290 if (node) {
291 cache = rb_entry(node, struct btrfs_block_group, cache_node);
292 btrfs_get_block_group(cache);
293 } else
294 cache = NULL;
295 read_unlock(&fs_info->block_group_cache_lock);
296 return cache;
297 }
298
299 /*
300 * Check if we can do a NOCOW write for a given extent.
301 *
302 * @fs_info: The filesystem information object.
303 * @bytenr: Logical start address of the extent.
304 *
305 * Check if we can do a NOCOW write for the given extent, and increments the
306 * number of NOCOW writers in the block group that contains the extent, as long
307 * as the block group exists and it's currently not in read-only mode.
308 *
309 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
310 * is responsible for calling btrfs_dec_nocow_writers() later.
311 *
312 * Or NULL if we can not do a NOCOW write
313 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)314 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
315 u64 bytenr)
316 {
317 struct btrfs_block_group *bg;
318 bool can_nocow = true;
319
320 bg = btrfs_lookup_block_group(fs_info, bytenr);
321 if (!bg)
322 return NULL;
323
324 spin_lock(&bg->lock);
325 if (bg->ro)
326 can_nocow = false;
327 else
328 atomic_inc(&bg->nocow_writers);
329 spin_unlock(&bg->lock);
330
331 if (!can_nocow) {
332 btrfs_put_block_group(bg);
333 return NULL;
334 }
335
336 /* No put on block group, done by btrfs_dec_nocow_writers(). */
337 return bg;
338 }
339
340 /*
341 * Decrement the number of NOCOW writers in a block group.
342 *
343 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
344 * and on the block group returned by that call. Typically this is called after
345 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
346 * relocation.
347 *
348 * After this call, the caller should not use the block group anymore. It it wants
349 * to use it, then it should get a reference on it before calling this function.
350 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)351 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
352 {
353 if (atomic_dec_and_test(&bg->nocow_writers))
354 wake_up_var(&bg->nocow_writers);
355
356 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
357 btrfs_put_block_group(bg);
358 }
359
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)360 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
361 {
362 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
363 }
364
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)365 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
366 const u64 start)
367 {
368 struct btrfs_block_group *bg;
369
370 bg = btrfs_lookup_block_group(fs_info, start);
371 ASSERT(bg);
372 if (atomic_dec_and_test(&bg->reservations))
373 wake_up_var(&bg->reservations);
374 btrfs_put_block_group(bg);
375 }
376
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)377 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
378 {
379 struct btrfs_space_info *space_info = bg->space_info;
380
381 ASSERT(bg->ro);
382
383 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
384 return;
385
386 /*
387 * Our block group is read only but before we set it to read only,
388 * some task might have had allocated an extent from it already, but it
389 * has not yet created a respective ordered extent (and added it to a
390 * root's list of ordered extents).
391 * Therefore wait for any task currently allocating extents, since the
392 * block group's reservations counter is incremented while a read lock
393 * on the groups' semaphore is held and decremented after releasing
394 * the read access on that semaphore and creating the ordered extent.
395 */
396 down_write(&space_info->groups_sem);
397 up_write(&space_info->groups_sem);
398
399 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
400 }
401
btrfs_get_caching_control(struct btrfs_block_group * cache)402 struct btrfs_caching_control *btrfs_get_caching_control(
403 struct btrfs_block_group *cache)
404 {
405 struct btrfs_caching_control *ctl;
406
407 spin_lock(&cache->lock);
408 if (!cache->caching_ctl) {
409 spin_unlock(&cache->lock);
410 return NULL;
411 }
412
413 ctl = cache->caching_ctl;
414 refcount_inc(&ctl->count);
415 spin_unlock(&cache->lock);
416 return ctl;
417 }
418
btrfs_put_caching_control(struct btrfs_caching_control * ctl)419 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
420 {
421 if (refcount_dec_and_test(&ctl->count))
422 kfree(ctl);
423 }
424
425 /*
426 * When we wait for progress in the block group caching, its because our
427 * allocation attempt failed at least once. So, we must sleep and let some
428 * progress happen before we try again.
429 *
430 * This function will sleep at least once waiting for new free space to show
431 * up, and then it will check the block group free space numbers for our min
432 * num_bytes. Another option is to have it go ahead and look in the rbtree for
433 * a free extent of a given size, but this is a good start.
434 *
435 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
436 * any of the information in this block group.
437 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)438 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
439 u64 num_bytes)
440 {
441 struct btrfs_caching_control *caching_ctl;
442 int progress;
443
444 caching_ctl = btrfs_get_caching_control(cache);
445 if (!caching_ctl)
446 return;
447
448 /*
449 * We've already failed to allocate from this block group, so even if
450 * there's enough space in the block group it isn't contiguous enough to
451 * allow for an allocation, so wait for at least the next wakeup tick,
452 * or for the thing to be done.
453 */
454 progress = atomic_read(&caching_ctl->progress);
455
456 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
457 (progress != atomic_read(&caching_ctl->progress) &&
458 (cache->free_space_ctl->free_space >= num_bytes)));
459
460 btrfs_put_caching_control(caching_ctl);
461 }
462
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)463 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
464 struct btrfs_caching_control *caching_ctl)
465 {
466 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
467 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
468 }
469
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)470 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
471 {
472 struct btrfs_caching_control *caching_ctl;
473 int ret;
474
475 caching_ctl = btrfs_get_caching_control(cache);
476 if (!caching_ctl)
477 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
478 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
479 btrfs_put_caching_control(caching_ctl);
480 return ret;
481 }
482
483 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)484 static void fragment_free_space(struct btrfs_block_group *block_group)
485 {
486 struct btrfs_fs_info *fs_info = block_group->fs_info;
487 u64 start = block_group->start;
488 u64 len = block_group->length;
489 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
490 fs_info->nodesize : fs_info->sectorsize;
491 u64 step = chunk << 1;
492
493 while (len > chunk) {
494 btrfs_remove_free_space(block_group, start, chunk);
495 start += step;
496 if (len < step)
497 len = 0;
498 else
499 len -= step;
500 }
501 }
502 #endif
503
504 /*
505 * Add a free space range to the in memory free space cache of a block group.
506 * This checks if the range contains super block locations and any such
507 * locations are not added to the free space cache.
508 *
509 * @block_group: The target block group.
510 * @start: Start offset of the range.
511 * @end: End offset of the range (exclusive).
512 * @total_added_ret: Optional pointer to return the total amount of space
513 * added to the block group's free space cache.
514 *
515 * Returns 0 on success or < 0 on error.
516 */
btrfs_add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end,u64 * total_added_ret)517 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
518 u64 end, u64 *total_added_ret)
519 {
520 struct btrfs_fs_info *info = block_group->fs_info;
521 u64 extent_start, extent_end, size;
522 int ret;
523
524 if (total_added_ret)
525 *total_added_ret = 0;
526
527 while (start < end) {
528 if (!find_first_extent_bit(&info->excluded_extents, start,
529 &extent_start, &extent_end,
530 EXTENT_DIRTY | EXTENT_UPTODATE,
531 NULL))
532 break;
533
534 if (extent_start <= start) {
535 start = extent_end + 1;
536 } else if (extent_start > start && extent_start < end) {
537 size = extent_start - start;
538 ret = btrfs_add_free_space_async_trimmed(block_group,
539 start, size);
540 if (ret)
541 return ret;
542 if (total_added_ret)
543 *total_added_ret += size;
544 start = extent_end + 1;
545 } else {
546 break;
547 }
548 }
549
550 if (start < end) {
551 size = end - start;
552 ret = btrfs_add_free_space_async_trimmed(block_group, start,
553 size);
554 if (ret)
555 return ret;
556 if (total_added_ret)
557 *total_added_ret += size;
558 }
559
560 return 0;
561 }
562
563 /*
564 * Get an arbitrary extent item index / max_index through the block group
565 *
566 * @block_group the block group to sample from
567 * @index: the integral step through the block group to grab from
568 * @max_index: the granularity of the sampling
569 * @key: return value parameter for the item we find
570 *
571 * Pre-conditions on indices:
572 * 0 <= index <= max_index
573 * 0 < max_index
574 *
575 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
576 * error code on error.
577 */
sample_block_group_extent_item(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group,int index,int max_index,struct btrfs_key * found_key)578 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
579 struct btrfs_block_group *block_group,
580 int index, int max_index,
581 struct btrfs_key *found_key)
582 {
583 struct btrfs_fs_info *fs_info = block_group->fs_info;
584 struct btrfs_root *extent_root;
585 u64 search_offset;
586 u64 search_end = block_group->start + block_group->length;
587 struct btrfs_path *path;
588 struct btrfs_key search_key;
589 int ret = 0;
590
591 ASSERT(index >= 0);
592 ASSERT(index <= max_index);
593 ASSERT(max_index > 0);
594 lockdep_assert_held(&caching_ctl->mutex);
595 lockdep_assert_held_read(&fs_info->commit_root_sem);
596
597 path = btrfs_alloc_path();
598 if (!path)
599 return -ENOMEM;
600
601 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
602 BTRFS_SUPER_INFO_OFFSET));
603
604 path->skip_locking = 1;
605 path->search_commit_root = 1;
606 path->reada = READA_FORWARD;
607
608 search_offset = index * div_u64(block_group->length, max_index);
609 search_key.objectid = block_group->start + search_offset;
610 search_key.type = BTRFS_EXTENT_ITEM_KEY;
611 search_key.offset = 0;
612
613 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
614 /* Success; sampled an extent item in the block group */
615 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
616 found_key->objectid >= block_group->start &&
617 found_key->objectid + found_key->offset <= search_end)
618 break;
619
620 /* We can't possibly find a valid extent item anymore */
621 if (found_key->objectid >= search_end) {
622 ret = 1;
623 break;
624 }
625 }
626
627 lockdep_assert_held(&caching_ctl->mutex);
628 lockdep_assert_held_read(&fs_info->commit_root_sem);
629 btrfs_free_path(path);
630 return ret;
631 }
632
633 /*
634 * Best effort attempt to compute a block group's size class while caching it.
635 *
636 * @block_group: the block group we are caching
637 *
638 * We cannot infer the size class while adding free space extents, because that
639 * logic doesn't care about contiguous file extents (it doesn't differentiate
640 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
641 * file extent items. Reading all of them is quite wasteful, because usually
642 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
643 * them at even steps through the block group and pick the smallest size class
644 * we see. Since size class is best effort, and not guaranteed in general,
645 * inaccuracy is acceptable.
646 *
647 * To be more explicit about why this algorithm makes sense:
648 *
649 * If we are caching in a block group from disk, then there are three major cases
650 * to consider:
651 * 1. the block group is well behaved and all extents in it are the same size
652 * class.
653 * 2. the block group is mostly one size class with rare exceptions for last
654 * ditch allocations
655 * 3. the block group was populated before size classes and can have a totally
656 * arbitrary mix of size classes.
657 *
658 * In case 1, looking at any extent in the block group will yield the correct
659 * result. For the mixed cases, taking the minimum size class seems like a good
660 * approximation, since gaps from frees will be usable to the size class. For
661 * 2., a small handful of file extents is likely to yield the right answer. For
662 * 3, we can either read every file extent, or admit that this is best effort
663 * anyway and try to stay fast.
664 *
665 * Returns: 0 on success, negative error code on error.
666 */
load_block_group_size_class(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group)667 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
668 struct btrfs_block_group *block_group)
669 {
670 struct btrfs_fs_info *fs_info = block_group->fs_info;
671 struct btrfs_key key;
672 int i;
673 u64 min_size = block_group->length;
674 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
675 int ret;
676
677 if (!btrfs_block_group_should_use_size_class(block_group))
678 return 0;
679
680 lockdep_assert_held(&caching_ctl->mutex);
681 lockdep_assert_held_read(&fs_info->commit_root_sem);
682 for (i = 0; i < 5; ++i) {
683 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
684 if (ret < 0)
685 goto out;
686 if (ret > 0)
687 continue;
688 min_size = min_t(u64, min_size, key.offset);
689 size_class = btrfs_calc_block_group_size_class(min_size);
690 }
691 if (size_class != BTRFS_BG_SZ_NONE) {
692 spin_lock(&block_group->lock);
693 block_group->size_class = size_class;
694 spin_unlock(&block_group->lock);
695 }
696 out:
697 return ret;
698 }
699
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)700 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
701 {
702 struct btrfs_block_group *block_group = caching_ctl->block_group;
703 struct btrfs_fs_info *fs_info = block_group->fs_info;
704 struct btrfs_root *extent_root;
705 struct btrfs_path *path;
706 struct extent_buffer *leaf;
707 struct btrfs_key key;
708 u64 total_found = 0;
709 u64 last = 0;
710 u32 nritems;
711 int ret;
712 bool wakeup = true;
713
714 path = btrfs_alloc_path();
715 if (!path)
716 return -ENOMEM;
717
718 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
719 extent_root = btrfs_extent_root(fs_info, last);
720
721 #ifdef CONFIG_BTRFS_DEBUG
722 /*
723 * If we're fragmenting we don't want to make anybody think we can
724 * allocate from this block group until we've had a chance to fragment
725 * the free space.
726 */
727 if (btrfs_should_fragment_free_space(block_group))
728 wakeup = false;
729 #endif
730 /*
731 * We don't want to deadlock with somebody trying to allocate a new
732 * extent for the extent root while also trying to search the extent
733 * root to add free space. So we skip locking and search the commit
734 * root, since its read-only
735 */
736 path->skip_locking = 1;
737 path->search_commit_root = 1;
738 path->reada = READA_FORWARD;
739
740 key.objectid = last;
741 key.offset = 0;
742 key.type = BTRFS_EXTENT_ITEM_KEY;
743
744 next:
745 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
746 if (ret < 0)
747 goto out;
748
749 leaf = path->nodes[0];
750 nritems = btrfs_header_nritems(leaf);
751
752 while (1) {
753 if (btrfs_fs_closing(fs_info) > 1) {
754 last = (u64)-1;
755 break;
756 }
757
758 if (path->slots[0] < nritems) {
759 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
760 } else {
761 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
762 if (ret)
763 break;
764
765 if (need_resched() ||
766 rwsem_is_contended(&fs_info->commit_root_sem)) {
767 btrfs_release_path(path);
768 up_read(&fs_info->commit_root_sem);
769 mutex_unlock(&caching_ctl->mutex);
770 cond_resched();
771 mutex_lock(&caching_ctl->mutex);
772 down_read(&fs_info->commit_root_sem);
773 goto next;
774 }
775
776 ret = btrfs_next_leaf(extent_root, path);
777 if (ret < 0)
778 goto out;
779 if (ret)
780 break;
781 leaf = path->nodes[0];
782 nritems = btrfs_header_nritems(leaf);
783 continue;
784 }
785
786 if (key.objectid < last) {
787 key.objectid = last;
788 key.offset = 0;
789 key.type = BTRFS_EXTENT_ITEM_KEY;
790 btrfs_release_path(path);
791 goto next;
792 }
793
794 if (key.objectid < block_group->start) {
795 path->slots[0]++;
796 continue;
797 }
798
799 if (key.objectid >= block_group->start + block_group->length)
800 break;
801
802 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
803 key.type == BTRFS_METADATA_ITEM_KEY) {
804 u64 space_added;
805
806 ret = btrfs_add_new_free_space(block_group, last,
807 key.objectid, &space_added);
808 if (ret)
809 goto out;
810 total_found += space_added;
811 if (key.type == BTRFS_METADATA_ITEM_KEY)
812 last = key.objectid +
813 fs_info->nodesize;
814 else
815 last = key.objectid + key.offset;
816
817 if (total_found > CACHING_CTL_WAKE_UP) {
818 total_found = 0;
819 if (wakeup) {
820 atomic_inc(&caching_ctl->progress);
821 wake_up(&caching_ctl->wait);
822 }
823 }
824 }
825 path->slots[0]++;
826 }
827
828 ret = btrfs_add_new_free_space(block_group, last,
829 block_group->start + block_group->length,
830 NULL);
831 out:
832 btrfs_free_path(path);
833 return ret;
834 }
835
btrfs_free_excluded_extents(const struct btrfs_block_group * bg)836 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
837 {
838 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
839 bg->start + bg->length - 1, EXTENT_UPTODATE);
840 }
841
caching_thread(struct btrfs_work * work)842 static noinline void caching_thread(struct btrfs_work *work)
843 {
844 struct btrfs_block_group *block_group;
845 struct btrfs_fs_info *fs_info;
846 struct btrfs_caching_control *caching_ctl;
847 int ret;
848
849 caching_ctl = container_of(work, struct btrfs_caching_control, work);
850 block_group = caching_ctl->block_group;
851 fs_info = block_group->fs_info;
852
853 mutex_lock(&caching_ctl->mutex);
854 down_read(&fs_info->commit_root_sem);
855
856 load_block_group_size_class(caching_ctl, block_group);
857 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
858 ret = load_free_space_cache(block_group);
859 if (ret == 1) {
860 ret = 0;
861 goto done;
862 }
863
864 /*
865 * We failed to load the space cache, set ourselves to
866 * CACHE_STARTED and carry on.
867 */
868 spin_lock(&block_group->lock);
869 block_group->cached = BTRFS_CACHE_STARTED;
870 spin_unlock(&block_group->lock);
871 wake_up(&caching_ctl->wait);
872 }
873
874 /*
875 * If we are in the transaction that populated the free space tree we
876 * can't actually cache from the free space tree as our commit root and
877 * real root are the same, so we could change the contents of the blocks
878 * while caching. Instead do the slow caching in this case, and after
879 * the transaction has committed we will be safe.
880 */
881 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
882 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
883 ret = load_free_space_tree(caching_ctl);
884 else
885 ret = load_extent_tree_free(caching_ctl);
886 done:
887 spin_lock(&block_group->lock);
888 block_group->caching_ctl = NULL;
889 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
890 spin_unlock(&block_group->lock);
891
892 #ifdef CONFIG_BTRFS_DEBUG
893 if (btrfs_should_fragment_free_space(block_group)) {
894 u64 bytes_used;
895
896 spin_lock(&block_group->space_info->lock);
897 spin_lock(&block_group->lock);
898 bytes_used = block_group->length - block_group->used;
899 block_group->space_info->bytes_used += bytes_used >> 1;
900 spin_unlock(&block_group->lock);
901 spin_unlock(&block_group->space_info->lock);
902 fragment_free_space(block_group);
903 }
904 #endif
905
906 up_read(&fs_info->commit_root_sem);
907 btrfs_free_excluded_extents(block_group);
908 mutex_unlock(&caching_ctl->mutex);
909
910 wake_up(&caching_ctl->wait);
911
912 btrfs_put_caching_control(caching_ctl);
913 btrfs_put_block_group(block_group);
914 }
915
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)916 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
917 {
918 struct btrfs_fs_info *fs_info = cache->fs_info;
919 struct btrfs_caching_control *caching_ctl = NULL;
920 int ret = 0;
921
922 /* Allocator for zoned filesystems does not use the cache at all */
923 if (btrfs_is_zoned(fs_info))
924 return 0;
925
926 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
927 if (!caching_ctl)
928 return -ENOMEM;
929
930 INIT_LIST_HEAD(&caching_ctl->list);
931 mutex_init(&caching_ctl->mutex);
932 init_waitqueue_head(&caching_ctl->wait);
933 caching_ctl->block_group = cache;
934 refcount_set(&caching_ctl->count, 2);
935 atomic_set(&caching_ctl->progress, 0);
936 btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
937
938 spin_lock(&cache->lock);
939 if (cache->cached != BTRFS_CACHE_NO) {
940 kfree(caching_ctl);
941
942 caching_ctl = cache->caching_ctl;
943 if (caching_ctl)
944 refcount_inc(&caching_ctl->count);
945 spin_unlock(&cache->lock);
946 goto out;
947 }
948 WARN_ON(cache->caching_ctl);
949 cache->caching_ctl = caching_ctl;
950 cache->cached = BTRFS_CACHE_STARTED;
951 spin_unlock(&cache->lock);
952
953 write_lock(&fs_info->block_group_cache_lock);
954 refcount_inc(&caching_ctl->count);
955 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
956 write_unlock(&fs_info->block_group_cache_lock);
957
958 btrfs_get_block_group(cache);
959
960 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
961 out:
962 if (wait && caching_ctl)
963 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
964 if (caching_ctl)
965 btrfs_put_caching_control(caching_ctl);
966
967 return ret;
968 }
969
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)970 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
971 {
972 u64 extra_flags = chunk_to_extended(flags) &
973 BTRFS_EXTENDED_PROFILE_MASK;
974
975 write_seqlock(&fs_info->profiles_lock);
976 if (flags & BTRFS_BLOCK_GROUP_DATA)
977 fs_info->avail_data_alloc_bits &= ~extra_flags;
978 if (flags & BTRFS_BLOCK_GROUP_METADATA)
979 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
980 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
981 fs_info->avail_system_alloc_bits &= ~extra_flags;
982 write_sequnlock(&fs_info->profiles_lock);
983 }
984
985 /*
986 * Clear incompat bits for the following feature(s):
987 *
988 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
989 * in the whole filesystem
990 *
991 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
992 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)993 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
994 {
995 bool found_raid56 = false;
996 bool found_raid1c34 = false;
997
998 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
999 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1000 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1001 struct list_head *head = &fs_info->space_info;
1002 struct btrfs_space_info *sinfo;
1003
1004 list_for_each_entry_rcu(sinfo, head, list) {
1005 down_read(&sinfo->groups_sem);
1006 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1007 found_raid56 = true;
1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1009 found_raid56 = true;
1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1011 found_raid1c34 = true;
1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1013 found_raid1c34 = true;
1014 up_read(&sinfo->groups_sem);
1015 }
1016 if (!found_raid56)
1017 btrfs_clear_fs_incompat(fs_info, RAID56);
1018 if (!found_raid1c34)
1019 btrfs_clear_fs_incompat(fs_info, RAID1C34);
1020 }
1021 }
1022
btrfs_block_group_root(struct btrfs_fs_info * fs_info)1023 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1024 {
1025 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1026 return fs_info->block_group_root;
1027 return btrfs_extent_root(fs_info, 0);
1028 }
1029
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)1030 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1031 struct btrfs_path *path,
1032 struct btrfs_block_group *block_group)
1033 {
1034 struct btrfs_fs_info *fs_info = trans->fs_info;
1035 struct btrfs_root *root;
1036 struct btrfs_key key;
1037 int ret;
1038
1039 root = btrfs_block_group_root(fs_info);
1040 key.objectid = block_group->start;
1041 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1042 key.offset = block_group->length;
1043
1044 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1045 if (ret > 0)
1046 ret = -ENOENT;
1047 if (ret < 0)
1048 return ret;
1049
1050 ret = btrfs_del_item(trans, root, path);
1051 return ret;
1052 }
1053
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map)1054 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1055 struct btrfs_chunk_map *map)
1056 {
1057 struct btrfs_fs_info *fs_info = trans->fs_info;
1058 struct btrfs_path *path;
1059 struct btrfs_block_group *block_group;
1060 struct btrfs_free_cluster *cluster;
1061 struct inode *inode;
1062 struct kobject *kobj = NULL;
1063 int ret;
1064 int index;
1065 int factor;
1066 struct btrfs_caching_control *caching_ctl = NULL;
1067 bool remove_map;
1068 bool remove_rsv = false;
1069
1070 block_group = btrfs_lookup_block_group(fs_info, map->start);
1071 if (!block_group)
1072 return -ENOENT;
1073
1074 BUG_ON(!block_group->ro);
1075
1076 trace_btrfs_remove_block_group(block_group);
1077 /*
1078 * Free the reserved super bytes from this block group before
1079 * remove it.
1080 */
1081 btrfs_free_excluded_extents(block_group);
1082 btrfs_free_ref_tree_range(fs_info, block_group->start,
1083 block_group->length);
1084
1085 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1086 factor = btrfs_bg_type_to_factor(block_group->flags);
1087
1088 /* make sure this block group isn't part of an allocation cluster */
1089 cluster = &fs_info->data_alloc_cluster;
1090 spin_lock(&cluster->refill_lock);
1091 btrfs_return_cluster_to_free_space(block_group, cluster);
1092 spin_unlock(&cluster->refill_lock);
1093
1094 /*
1095 * make sure this block group isn't part of a metadata
1096 * allocation cluster
1097 */
1098 cluster = &fs_info->meta_alloc_cluster;
1099 spin_lock(&cluster->refill_lock);
1100 btrfs_return_cluster_to_free_space(block_group, cluster);
1101 spin_unlock(&cluster->refill_lock);
1102
1103 btrfs_clear_treelog_bg(block_group);
1104 btrfs_clear_data_reloc_bg(block_group);
1105
1106 path = btrfs_alloc_path();
1107 if (!path) {
1108 ret = -ENOMEM;
1109 goto out;
1110 }
1111
1112 /*
1113 * get the inode first so any iput calls done for the io_list
1114 * aren't the final iput (no unlinks allowed now)
1115 */
1116 inode = lookup_free_space_inode(block_group, path);
1117
1118 mutex_lock(&trans->transaction->cache_write_mutex);
1119 /*
1120 * Make sure our free space cache IO is done before removing the
1121 * free space inode
1122 */
1123 spin_lock(&trans->transaction->dirty_bgs_lock);
1124 if (!list_empty(&block_group->io_list)) {
1125 list_del_init(&block_group->io_list);
1126
1127 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1128
1129 spin_unlock(&trans->transaction->dirty_bgs_lock);
1130 btrfs_wait_cache_io(trans, block_group, path);
1131 btrfs_put_block_group(block_group);
1132 spin_lock(&trans->transaction->dirty_bgs_lock);
1133 }
1134
1135 if (!list_empty(&block_group->dirty_list)) {
1136 list_del_init(&block_group->dirty_list);
1137 remove_rsv = true;
1138 btrfs_put_block_group(block_group);
1139 }
1140 spin_unlock(&trans->transaction->dirty_bgs_lock);
1141 mutex_unlock(&trans->transaction->cache_write_mutex);
1142
1143 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1144 if (ret)
1145 goto out;
1146
1147 write_lock(&fs_info->block_group_cache_lock);
1148 rb_erase_cached(&block_group->cache_node,
1149 &fs_info->block_group_cache_tree);
1150 RB_CLEAR_NODE(&block_group->cache_node);
1151
1152 /* Once for the block groups rbtree */
1153 btrfs_put_block_group(block_group);
1154
1155 write_unlock(&fs_info->block_group_cache_lock);
1156
1157 down_write(&block_group->space_info->groups_sem);
1158 /*
1159 * we must use list_del_init so people can check to see if they
1160 * are still on the list after taking the semaphore
1161 */
1162 list_del_init(&block_group->list);
1163 if (list_empty(&block_group->space_info->block_groups[index])) {
1164 kobj = block_group->space_info->block_group_kobjs[index];
1165 block_group->space_info->block_group_kobjs[index] = NULL;
1166 clear_avail_alloc_bits(fs_info, block_group->flags);
1167 }
1168 up_write(&block_group->space_info->groups_sem);
1169 clear_incompat_bg_bits(fs_info, block_group->flags);
1170 if (kobj) {
1171 kobject_del(kobj);
1172 kobject_put(kobj);
1173 }
1174
1175 if (block_group->cached == BTRFS_CACHE_STARTED)
1176 btrfs_wait_block_group_cache_done(block_group);
1177
1178 write_lock(&fs_info->block_group_cache_lock);
1179 caching_ctl = btrfs_get_caching_control(block_group);
1180 if (!caching_ctl) {
1181 struct btrfs_caching_control *ctl;
1182
1183 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1184 if (ctl->block_group == block_group) {
1185 caching_ctl = ctl;
1186 refcount_inc(&caching_ctl->count);
1187 break;
1188 }
1189 }
1190 }
1191 if (caching_ctl)
1192 list_del_init(&caching_ctl->list);
1193 write_unlock(&fs_info->block_group_cache_lock);
1194
1195 if (caching_ctl) {
1196 /* Once for the caching bgs list and once for us. */
1197 btrfs_put_caching_control(caching_ctl);
1198 btrfs_put_caching_control(caching_ctl);
1199 }
1200
1201 spin_lock(&trans->transaction->dirty_bgs_lock);
1202 WARN_ON(!list_empty(&block_group->dirty_list));
1203 WARN_ON(!list_empty(&block_group->io_list));
1204 spin_unlock(&trans->transaction->dirty_bgs_lock);
1205
1206 btrfs_remove_free_space_cache(block_group);
1207
1208 spin_lock(&block_group->space_info->lock);
1209 list_del_init(&block_group->ro_list);
1210
1211 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1212 WARN_ON(block_group->space_info->total_bytes
1213 < block_group->length);
1214 WARN_ON(block_group->space_info->bytes_readonly
1215 < block_group->length - block_group->zone_unusable);
1216 WARN_ON(block_group->space_info->bytes_zone_unusable
1217 < block_group->zone_unusable);
1218 WARN_ON(block_group->space_info->disk_total
1219 < block_group->length * factor);
1220 }
1221 block_group->space_info->total_bytes -= block_group->length;
1222 block_group->space_info->bytes_readonly -=
1223 (block_group->length - block_group->zone_unusable);
1224 btrfs_space_info_update_bytes_zone_unusable(block_group->space_info,
1225 -block_group->zone_unusable);
1226 block_group->space_info->disk_total -= block_group->length * factor;
1227
1228 spin_unlock(&block_group->space_info->lock);
1229
1230 /*
1231 * Remove the free space for the block group from the free space tree
1232 * and the block group's item from the extent tree before marking the
1233 * block group as removed. This is to prevent races with tasks that
1234 * freeze and unfreeze a block group, this task and another task
1235 * allocating a new block group - the unfreeze task ends up removing
1236 * the block group's extent map before the task calling this function
1237 * deletes the block group item from the extent tree, allowing for
1238 * another task to attempt to create another block group with the same
1239 * item key (and failing with -EEXIST and a transaction abort).
1240 */
1241 ret = remove_block_group_free_space(trans, block_group);
1242 if (ret)
1243 goto out;
1244
1245 ret = remove_block_group_item(trans, path, block_group);
1246 if (ret < 0)
1247 goto out;
1248
1249 spin_lock(&block_group->lock);
1250 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1251
1252 /*
1253 * At this point trimming or scrub can't start on this block group,
1254 * because we removed the block group from the rbtree
1255 * fs_info->block_group_cache_tree so no one can't find it anymore and
1256 * even if someone already got this block group before we removed it
1257 * from the rbtree, they have already incremented block_group->frozen -
1258 * if they didn't, for the trimming case they won't find any free space
1259 * entries because we already removed them all when we called
1260 * btrfs_remove_free_space_cache().
1261 *
1262 * And we must not remove the chunk map from the fs_info->mapping_tree
1263 * to prevent the same logical address range and physical device space
1264 * ranges from being reused for a new block group. This is needed to
1265 * avoid races with trimming and scrub.
1266 *
1267 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1268 * completely transactionless, so while it is trimming a range the
1269 * currently running transaction might finish and a new one start,
1270 * allowing for new block groups to be created that can reuse the same
1271 * physical device locations unless we take this special care.
1272 *
1273 * There may also be an implicit trim operation if the file system
1274 * is mounted with -odiscard. The same protections must remain
1275 * in place until the extents have been discarded completely when
1276 * the transaction commit has completed.
1277 */
1278 remove_map = (atomic_read(&block_group->frozen) == 0);
1279 spin_unlock(&block_group->lock);
1280
1281 if (remove_map)
1282 btrfs_remove_chunk_map(fs_info, map);
1283
1284 out:
1285 /* Once for the lookup reference */
1286 btrfs_put_block_group(block_group);
1287 if (remove_rsv)
1288 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1289 btrfs_free_path(path);
1290 return ret;
1291 }
1292
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1293 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1294 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1295 {
1296 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1297 struct btrfs_chunk_map *map;
1298 unsigned int num_items;
1299
1300 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1301 ASSERT(map != NULL);
1302 ASSERT(map->start == chunk_offset);
1303
1304 /*
1305 * We need to reserve 3 + N units from the metadata space info in order
1306 * to remove a block group (done at btrfs_remove_chunk() and at
1307 * btrfs_remove_block_group()), which are used for:
1308 *
1309 * 1 unit for adding the free space inode's orphan (located in the tree
1310 * of tree roots).
1311 * 1 unit for deleting the block group item (located in the extent
1312 * tree).
1313 * 1 unit for deleting the free space item (located in tree of tree
1314 * roots).
1315 * N units for deleting N device extent items corresponding to each
1316 * stripe (located in the device tree).
1317 *
1318 * In order to remove a block group we also need to reserve units in the
1319 * system space info in order to update the chunk tree (update one or
1320 * more device items and remove one chunk item), but this is done at
1321 * btrfs_remove_chunk() through a call to check_system_chunk().
1322 */
1323 num_items = 3 + map->num_stripes;
1324 btrfs_free_chunk_map(map);
1325
1326 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1327 }
1328
1329 /*
1330 * Mark block group @cache read-only, so later write won't happen to block
1331 * group @cache.
1332 *
1333 * If @force is not set, this function will only mark the block group readonly
1334 * if we have enough free space (1M) in other metadata/system block groups.
1335 * If @force is not set, this function will mark the block group readonly
1336 * without checking free space.
1337 *
1338 * NOTE: This function doesn't care if other block groups can contain all the
1339 * data in this block group. That check should be done by relocation routine,
1340 * not this function.
1341 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1342 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1343 {
1344 struct btrfs_space_info *sinfo = cache->space_info;
1345 u64 num_bytes;
1346 int ret = -ENOSPC;
1347
1348 spin_lock(&sinfo->lock);
1349 spin_lock(&cache->lock);
1350
1351 if (cache->swap_extents) {
1352 ret = -ETXTBSY;
1353 goto out;
1354 }
1355
1356 if (cache->ro) {
1357 cache->ro++;
1358 ret = 0;
1359 goto out;
1360 }
1361
1362 num_bytes = cache->length - cache->reserved - cache->pinned -
1363 cache->bytes_super - cache->zone_unusable - cache->used;
1364
1365 /*
1366 * Data never overcommits, even in mixed mode, so do just the straight
1367 * check of left over space in how much we have allocated.
1368 */
1369 if (force) {
1370 ret = 0;
1371 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1372 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1373
1374 /*
1375 * Here we make sure if we mark this bg RO, we still have enough
1376 * free space as buffer.
1377 */
1378 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1379 ret = 0;
1380 } else {
1381 /*
1382 * We overcommit metadata, so we need to do the
1383 * btrfs_can_overcommit check here, and we need to pass in
1384 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1385 * leeway to allow us to mark this block group as read only.
1386 */
1387 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1388 BTRFS_RESERVE_NO_FLUSH))
1389 ret = 0;
1390 }
1391
1392 if (!ret) {
1393 sinfo->bytes_readonly += num_bytes;
1394 if (btrfs_is_zoned(cache->fs_info)) {
1395 /* Migrate zone_unusable bytes to readonly */
1396 sinfo->bytes_readonly += cache->zone_unusable;
1397 btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable);
1398 cache->zone_unusable = 0;
1399 }
1400 cache->ro++;
1401 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1402 }
1403 out:
1404 spin_unlock(&cache->lock);
1405 spin_unlock(&sinfo->lock);
1406 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1407 btrfs_info(cache->fs_info,
1408 "unable to make block group %llu ro", cache->start);
1409 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1410 }
1411 return ret;
1412 }
1413
clean_pinned_extents(struct btrfs_trans_handle * trans,const struct btrfs_block_group * bg)1414 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1415 const struct btrfs_block_group *bg)
1416 {
1417 struct btrfs_fs_info *fs_info = trans->fs_info;
1418 struct btrfs_transaction *prev_trans = NULL;
1419 const u64 start = bg->start;
1420 const u64 end = start + bg->length - 1;
1421 int ret;
1422
1423 spin_lock(&fs_info->trans_lock);
1424 if (trans->transaction->list.prev != &fs_info->trans_list) {
1425 prev_trans = list_last_entry(&trans->transaction->list,
1426 struct btrfs_transaction, list);
1427 refcount_inc(&prev_trans->use_count);
1428 }
1429 spin_unlock(&fs_info->trans_lock);
1430
1431 /*
1432 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1433 * btrfs_finish_extent_commit(). If we are at transaction N, another
1434 * task might be running finish_extent_commit() for the previous
1435 * transaction N - 1, and have seen a range belonging to the block
1436 * group in pinned_extents before we were able to clear the whole block
1437 * group range from pinned_extents. This means that task can lookup for
1438 * the block group after we unpinned it from pinned_extents and removed
1439 * it, leading to an error at unpin_extent_range().
1440 */
1441 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1442 if (prev_trans) {
1443 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1444 EXTENT_DIRTY);
1445 if (ret)
1446 goto out;
1447 }
1448
1449 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1450 EXTENT_DIRTY);
1451 out:
1452 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1453 if (prev_trans)
1454 btrfs_put_transaction(prev_trans);
1455
1456 return ret == 0;
1457 }
1458
1459 /*
1460 * Process the unused_bgs list and remove any that don't have any allocated
1461 * space inside of them.
1462 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1463 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1464 {
1465 LIST_HEAD(retry_list);
1466 struct btrfs_block_group *block_group;
1467 struct btrfs_space_info *space_info;
1468 struct btrfs_trans_handle *trans;
1469 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1470 int ret = 0;
1471
1472 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1473 return;
1474
1475 if (btrfs_fs_closing(fs_info))
1476 return;
1477
1478 /*
1479 * Long running balances can keep us blocked here for eternity, so
1480 * simply skip deletion if we're unable to get the mutex.
1481 */
1482 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1483 return;
1484
1485 spin_lock(&fs_info->unused_bgs_lock);
1486 while (!list_empty(&fs_info->unused_bgs)) {
1487 u64 used;
1488 int trimming;
1489
1490 block_group = list_first_entry(&fs_info->unused_bgs,
1491 struct btrfs_block_group,
1492 bg_list);
1493 list_del_init(&block_group->bg_list);
1494
1495 space_info = block_group->space_info;
1496
1497 if (ret || btrfs_mixed_space_info(space_info)) {
1498 btrfs_put_block_group(block_group);
1499 continue;
1500 }
1501 spin_unlock(&fs_info->unused_bgs_lock);
1502
1503 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1504
1505 /* Don't want to race with allocators so take the groups_sem */
1506 down_write(&space_info->groups_sem);
1507
1508 /*
1509 * Async discard moves the final block group discard to be prior
1510 * to the unused_bgs code path. Therefore, if it's not fully
1511 * trimmed, punt it back to the async discard lists.
1512 */
1513 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1514 !btrfs_is_free_space_trimmed(block_group)) {
1515 trace_btrfs_skip_unused_block_group(block_group);
1516 up_write(&space_info->groups_sem);
1517 /* Requeue if we failed because of async discard */
1518 btrfs_discard_queue_work(&fs_info->discard_ctl,
1519 block_group);
1520 goto next;
1521 }
1522
1523 spin_lock(&space_info->lock);
1524 spin_lock(&block_group->lock);
1525 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1526 list_is_singular(&block_group->list)) {
1527 /*
1528 * We want to bail if we made new allocations or have
1529 * outstanding allocations in this block group. We do
1530 * the ro check in case balance is currently acting on
1531 * this block group.
1532 *
1533 * Also bail out if this is the only block group for its
1534 * type, because otherwise we would lose profile
1535 * information from fs_info->avail_*_alloc_bits and the
1536 * next block group of this type would be created with a
1537 * "single" profile (even if we're in a raid fs) because
1538 * fs_info->avail_*_alloc_bits would be 0.
1539 */
1540 trace_btrfs_skip_unused_block_group(block_group);
1541 spin_unlock(&block_group->lock);
1542 spin_unlock(&space_info->lock);
1543 up_write(&space_info->groups_sem);
1544 goto next;
1545 }
1546
1547 /*
1548 * The block group may be unused but there may be space reserved
1549 * accounting with the existence of that block group, that is,
1550 * space_info->bytes_may_use was incremented by a task but no
1551 * space was yet allocated from the block group by the task.
1552 * That space may or may not be allocated, as we are generally
1553 * pessimistic about space reservation for metadata as well as
1554 * for data when using compression (as we reserve space based on
1555 * the worst case, when data can't be compressed, and before
1556 * actually attempting compression, before starting writeback).
1557 *
1558 * So check if the total space of the space_info minus the size
1559 * of this block group is less than the used space of the
1560 * space_info - if that's the case, then it means we have tasks
1561 * that might be relying on the block group in order to allocate
1562 * extents, and add back the block group to the unused list when
1563 * we finish, so that we retry later in case no tasks ended up
1564 * needing to allocate extents from the block group.
1565 */
1566 used = btrfs_space_info_used(space_info, true);
1567 if (space_info->total_bytes - block_group->length < used &&
1568 block_group->zone_unusable < block_group->length) {
1569 /*
1570 * Add a reference for the list, compensate for the ref
1571 * drop under the "next" label for the
1572 * fs_info->unused_bgs list.
1573 */
1574 btrfs_get_block_group(block_group);
1575 list_add_tail(&block_group->bg_list, &retry_list);
1576
1577 trace_btrfs_skip_unused_block_group(block_group);
1578 spin_unlock(&block_group->lock);
1579 spin_unlock(&space_info->lock);
1580 up_write(&space_info->groups_sem);
1581 goto next;
1582 }
1583
1584 spin_unlock(&block_group->lock);
1585 spin_unlock(&space_info->lock);
1586
1587 /* We don't want to force the issue, only flip if it's ok. */
1588 ret = inc_block_group_ro(block_group, 0);
1589 up_write(&space_info->groups_sem);
1590 if (ret < 0) {
1591 ret = 0;
1592 goto next;
1593 }
1594
1595 ret = btrfs_zone_finish(block_group);
1596 if (ret < 0) {
1597 btrfs_dec_block_group_ro(block_group);
1598 if (ret == -EAGAIN)
1599 ret = 0;
1600 goto next;
1601 }
1602
1603 /*
1604 * Want to do this before we do anything else so we can recover
1605 * properly if we fail to join the transaction.
1606 */
1607 trans = btrfs_start_trans_remove_block_group(fs_info,
1608 block_group->start);
1609 if (IS_ERR(trans)) {
1610 btrfs_dec_block_group_ro(block_group);
1611 ret = PTR_ERR(trans);
1612 goto next;
1613 }
1614
1615 /*
1616 * We could have pending pinned extents for this block group,
1617 * just delete them, we don't care about them anymore.
1618 */
1619 if (!clean_pinned_extents(trans, block_group)) {
1620 btrfs_dec_block_group_ro(block_group);
1621 goto end_trans;
1622 }
1623
1624 /*
1625 * At this point, the block_group is read only and should fail
1626 * new allocations. However, btrfs_finish_extent_commit() can
1627 * cause this block_group to be placed back on the discard
1628 * lists because now the block_group isn't fully discarded.
1629 * Bail here and try again later after discarding everything.
1630 */
1631 spin_lock(&fs_info->discard_ctl.lock);
1632 if (!list_empty(&block_group->discard_list)) {
1633 spin_unlock(&fs_info->discard_ctl.lock);
1634 btrfs_dec_block_group_ro(block_group);
1635 btrfs_discard_queue_work(&fs_info->discard_ctl,
1636 block_group);
1637 goto end_trans;
1638 }
1639 spin_unlock(&fs_info->discard_ctl.lock);
1640
1641 /* Reset pinned so btrfs_put_block_group doesn't complain */
1642 spin_lock(&space_info->lock);
1643 spin_lock(&block_group->lock);
1644
1645 btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned);
1646 space_info->bytes_readonly += block_group->pinned;
1647 block_group->pinned = 0;
1648
1649 spin_unlock(&block_group->lock);
1650 spin_unlock(&space_info->lock);
1651
1652 /*
1653 * The normal path here is an unused block group is passed here,
1654 * then trimming is handled in the transaction commit path.
1655 * Async discard interposes before this to do the trimming
1656 * before coming down the unused block group path as trimming
1657 * will no longer be done later in the transaction commit path.
1658 */
1659 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1660 goto flip_async;
1661
1662 /*
1663 * DISCARD can flip during remount. On zoned filesystems, we
1664 * need to reset sequential-required zones.
1665 */
1666 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1667 btrfs_is_zoned(fs_info);
1668
1669 /* Implicit trim during transaction commit. */
1670 if (trimming)
1671 btrfs_freeze_block_group(block_group);
1672
1673 /*
1674 * Btrfs_remove_chunk will abort the transaction if things go
1675 * horribly wrong.
1676 */
1677 ret = btrfs_remove_chunk(trans, block_group->start);
1678
1679 if (ret) {
1680 if (trimming)
1681 btrfs_unfreeze_block_group(block_group);
1682 goto end_trans;
1683 }
1684
1685 /*
1686 * If we're not mounted with -odiscard, we can just forget
1687 * about this block group. Otherwise we'll need to wait
1688 * until transaction commit to do the actual discard.
1689 */
1690 if (trimming) {
1691 spin_lock(&fs_info->unused_bgs_lock);
1692 /*
1693 * A concurrent scrub might have added us to the list
1694 * fs_info->unused_bgs, so use a list_move operation
1695 * to add the block group to the deleted_bgs list.
1696 */
1697 list_move(&block_group->bg_list,
1698 &trans->transaction->deleted_bgs);
1699 spin_unlock(&fs_info->unused_bgs_lock);
1700 btrfs_get_block_group(block_group);
1701 }
1702 end_trans:
1703 btrfs_end_transaction(trans);
1704 next:
1705 btrfs_put_block_group(block_group);
1706 spin_lock(&fs_info->unused_bgs_lock);
1707 }
1708 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1709 spin_unlock(&fs_info->unused_bgs_lock);
1710 mutex_unlock(&fs_info->reclaim_bgs_lock);
1711 return;
1712
1713 flip_async:
1714 btrfs_end_transaction(trans);
1715 spin_lock(&fs_info->unused_bgs_lock);
1716 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1717 spin_unlock(&fs_info->unused_bgs_lock);
1718 mutex_unlock(&fs_info->reclaim_bgs_lock);
1719 btrfs_put_block_group(block_group);
1720 btrfs_discard_punt_unused_bgs_list(fs_info);
1721 }
1722
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1723 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1724 {
1725 struct btrfs_fs_info *fs_info = bg->fs_info;
1726
1727 spin_lock(&fs_info->unused_bgs_lock);
1728 if (list_empty(&bg->bg_list)) {
1729 btrfs_get_block_group(bg);
1730 trace_btrfs_add_unused_block_group(bg);
1731 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1732 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1733 /* Pull out the block group from the reclaim_bgs list. */
1734 trace_btrfs_add_unused_block_group(bg);
1735 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1736 }
1737 spin_unlock(&fs_info->unused_bgs_lock);
1738 }
1739
1740 /*
1741 * We want block groups with a low number of used bytes to be in the beginning
1742 * of the list, so they will get reclaimed first.
1743 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1744 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1745 const struct list_head *b)
1746 {
1747 const struct btrfs_block_group *bg1, *bg2;
1748
1749 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1750 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1751
1752 return bg1->used > bg2->used;
1753 }
1754
btrfs_should_reclaim(const struct btrfs_fs_info * fs_info)1755 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info)
1756 {
1757 if (btrfs_is_zoned(fs_info))
1758 return btrfs_zoned_should_reclaim(fs_info);
1759 return true;
1760 }
1761
should_reclaim_block_group(const struct btrfs_block_group * bg,u64 bytes_freed)1762 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed)
1763 {
1764 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1765 u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1766 const u64 new_val = bg->used;
1767 const u64 old_val = new_val + bytes_freed;
1768
1769 if (thresh_bytes == 0)
1770 return false;
1771
1772 /*
1773 * If we were below the threshold before don't reclaim, we are likely a
1774 * brand new block group and we don't want to relocate new block groups.
1775 */
1776 if (old_val < thresh_bytes)
1777 return false;
1778 if (new_val >= thresh_bytes)
1779 return false;
1780 return true;
1781 }
1782
btrfs_reclaim_bgs_work(struct work_struct * work)1783 void btrfs_reclaim_bgs_work(struct work_struct *work)
1784 {
1785 struct btrfs_fs_info *fs_info =
1786 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1787 struct btrfs_block_group *bg;
1788 struct btrfs_space_info *space_info;
1789 LIST_HEAD(retry_list);
1790
1791 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1792 return;
1793
1794 if (btrfs_fs_closing(fs_info))
1795 return;
1796
1797 if (!btrfs_should_reclaim(fs_info))
1798 return;
1799
1800 sb_start_write(fs_info->sb);
1801
1802 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1803 sb_end_write(fs_info->sb);
1804 return;
1805 }
1806
1807 /*
1808 * Long running balances can keep us blocked here for eternity, so
1809 * simply skip reclaim if we're unable to get the mutex.
1810 */
1811 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1812 btrfs_exclop_finish(fs_info);
1813 sb_end_write(fs_info->sb);
1814 return;
1815 }
1816
1817 spin_lock(&fs_info->unused_bgs_lock);
1818 /*
1819 * Sort happens under lock because we can't simply splice it and sort.
1820 * The block groups might still be in use and reachable via bg_list,
1821 * and their presence in the reclaim_bgs list must be preserved.
1822 */
1823 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1824 while (!list_empty(&fs_info->reclaim_bgs)) {
1825 u64 zone_unusable;
1826 u64 reclaimed;
1827 int ret = 0;
1828
1829 bg = list_first_entry(&fs_info->reclaim_bgs,
1830 struct btrfs_block_group,
1831 bg_list);
1832 list_del_init(&bg->bg_list);
1833
1834 space_info = bg->space_info;
1835 spin_unlock(&fs_info->unused_bgs_lock);
1836
1837 /* Don't race with allocators so take the groups_sem */
1838 down_write(&space_info->groups_sem);
1839
1840 spin_lock(&space_info->lock);
1841 spin_lock(&bg->lock);
1842 if (bg->reserved || bg->pinned || bg->ro) {
1843 /*
1844 * We want to bail if we made new allocations or have
1845 * outstanding allocations in this block group. We do
1846 * the ro check in case balance is currently acting on
1847 * this block group.
1848 */
1849 spin_unlock(&bg->lock);
1850 spin_unlock(&space_info->lock);
1851 up_write(&space_info->groups_sem);
1852 goto next;
1853 }
1854 if (bg->used == 0) {
1855 /*
1856 * It is possible that we trigger relocation on a block
1857 * group as its extents are deleted and it first goes
1858 * below the threshold, then shortly after goes empty.
1859 *
1860 * In this case, relocating it does delete it, but has
1861 * some overhead in relocation specific metadata, looking
1862 * for the non-existent extents and running some extra
1863 * transactions, which we can avoid by using one of the
1864 * other mechanisms for dealing with empty block groups.
1865 */
1866 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1867 btrfs_mark_bg_unused(bg);
1868 spin_unlock(&bg->lock);
1869 spin_unlock(&space_info->lock);
1870 up_write(&space_info->groups_sem);
1871 goto next;
1872
1873 }
1874 /*
1875 * The block group might no longer meet the reclaim condition by
1876 * the time we get around to reclaiming it, so to avoid
1877 * reclaiming overly full block_groups, skip reclaiming them.
1878 *
1879 * Since the decision making process also depends on the amount
1880 * being freed, pass in a fake giant value to skip that extra
1881 * check, which is more meaningful when adding to the list in
1882 * the first place.
1883 */
1884 if (!should_reclaim_block_group(bg, bg->length)) {
1885 spin_unlock(&bg->lock);
1886 spin_unlock(&space_info->lock);
1887 up_write(&space_info->groups_sem);
1888 goto next;
1889 }
1890 spin_unlock(&bg->lock);
1891 spin_unlock(&space_info->lock);
1892
1893 /*
1894 * Get out fast, in case we're read-only or unmounting the
1895 * filesystem. It is OK to drop block groups from the list even
1896 * for the read-only case. As we did sb_start_write(),
1897 * "mount -o remount,ro" won't happen and read-only filesystem
1898 * means it is forced read-only due to a fatal error. So, it
1899 * never gets back to read-write to let us reclaim again.
1900 */
1901 if (btrfs_need_cleaner_sleep(fs_info)) {
1902 up_write(&space_info->groups_sem);
1903 goto next;
1904 }
1905
1906 /*
1907 * Cache the zone_unusable value before turning the block group
1908 * to read only. As soon as the blog group is read only it's
1909 * zone_unusable value gets moved to the block group's read-only
1910 * bytes and isn't available for calculations anymore.
1911 */
1912 zone_unusable = bg->zone_unusable;
1913 ret = inc_block_group_ro(bg, 0);
1914 up_write(&space_info->groups_sem);
1915 if (ret < 0)
1916 goto next;
1917
1918 btrfs_info(fs_info,
1919 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1920 bg->start,
1921 div64_u64(bg->used * 100, bg->length),
1922 div64_u64(zone_unusable * 100, bg->length));
1923 trace_btrfs_reclaim_block_group(bg);
1924 reclaimed = bg->used;
1925 ret = btrfs_relocate_chunk(fs_info, bg->start);
1926 if (ret) {
1927 btrfs_dec_block_group_ro(bg);
1928 btrfs_err(fs_info, "error relocating chunk %llu",
1929 bg->start);
1930 reclaimed = 0;
1931 spin_lock(&space_info->lock);
1932 space_info->reclaim_errors++;
1933 if (READ_ONCE(space_info->periodic_reclaim))
1934 space_info->periodic_reclaim_ready = false;
1935 spin_unlock(&space_info->lock);
1936 }
1937 spin_lock(&space_info->lock);
1938 space_info->reclaim_count++;
1939 space_info->reclaim_bytes += reclaimed;
1940 spin_unlock(&space_info->lock);
1941
1942 next:
1943 if (ret && !READ_ONCE(space_info->periodic_reclaim)) {
1944 /* Refcount held by the reclaim_bgs list after splice. */
1945 spin_lock(&fs_info->unused_bgs_lock);
1946 /*
1947 * This block group might be added to the unused list
1948 * during the above process. Move it back to the
1949 * reclaim list otherwise.
1950 */
1951 if (list_empty(&bg->bg_list)) {
1952 btrfs_get_block_group(bg);
1953 list_add_tail(&bg->bg_list, &retry_list);
1954 }
1955 spin_unlock(&fs_info->unused_bgs_lock);
1956 }
1957 btrfs_put_block_group(bg);
1958
1959 mutex_unlock(&fs_info->reclaim_bgs_lock);
1960 /*
1961 * Reclaiming all the block groups in the list can take really
1962 * long. Prioritize cleaning up unused block groups.
1963 */
1964 btrfs_delete_unused_bgs(fs_info);
1965 /*
1966 * If we are interrupted by a balance, we can just bail out. The
1967 * cleaner thread restart again if necessary.
1968 */
1969 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1970 goto end;
1971 spin_lock(&fs_info->unused_bgs_lock);
1972 }
1973 spin_unlock(&fs_info->unused_bgs_lock);
1974 mutex_unlock(&fs_info->reclaim_bgs_lock);
1975 end:
1976 spin_lock(&fs_info->unused_bgs_lock);
1977 list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
1978 spin_unlock(&fs_info->unused_bgs_lock);
1979 btrfs_exclop_finish(fs_info);
1980 sb_end_write(fs_info->sb);
1981 }
1982
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)1983 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1984 {
1985 btrfs_reclaim_sweep(fs_info);
1986 spin_lock(&fs_info->unused_bgs_lock);
1987 if (!list_empty(&fs_info->reclaim_bgs))
1988 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1989 spin_unlock(&fs_info->unused_bgs_lock);
1990 }
1991
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)1992 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1993 {
1994 struct btrfs_fs_info *fs_info = bg->fs_info;
1995
1996 spin_lock(&fs_info->unused_bgs_lock);
1997 if (list_empty(&bg->bg_list)) {
1998 btrfs_get_block_group(bg);
1999 trace_btrfs_add_reclaim_block_group(bg);
2000 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
2001 }
2002 spin_unlock(&fs_info->unused_bgs_lock);
2003 }
2004
read_bg_from_eb(struct btrfs_fs_info * fs_info,const struct btrfs_key * key,const struct btrfs_path * path)2005 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key,
2006 const struct btrfs_path *path)
2007 {
2008 struct btrfs_chunk_map *map;
2009 struct btrfs_block_group_item bg;
2010 struct extent_buffer *leaf;
2011 int slot;
2012 u64 flags;
2013 int ret = 0;
2014
2015 slot = path->slots[0];
2016 leaf = path->nodes[0];
2017
2018 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2019 if (!map) {
2020 btrfs_err(fs_info,
2021 "logical %llu len %llu found bg but no related chunk",
2022 key->objectid, key->offset);
2023 return -ENOENT;
2024 }
2025
2026 if (map->start != key->objectid || map->chunk_len != key->offset) {
2027 btrfs_err(fs_info,
2028 "block group %llu len %llu mismatch with chunk %llu len %llu",
2029 key->objectid, key->offset, map->start, map->chunk_len);
2030 ret = -EUCLEAN;
2031 goto out_free_map;
2032 }
2033
2034 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2035 sizeof(bg));
2036 flags = btrfs_stack_block_group_flags(&bg) &
2037 BTRFS_BLOCK_GROUP_TYPE_MASK;
2038
2039 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2040 btrfs_err(fs_info,
2041 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2042 key->objectid, key->offset, flags,
2043 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2044 ret = -EUCLEAN;
2045 }
2046
2047 out_free_map:
2048 btrfs_free_chunk_map(map);
2049 return ret;
2050 }
2051
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * key)2052 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2053 struct btrfs_path *path,
2054 const struct btrfs_key *key)
2055 {
2056 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2057 int ret;
2058 struct btrfs_key found_key;
2059
2060 btrfs_for_each_slot(root, key, &found_key, path, ret) {
2061 if (found_key.objectid >= key->objectid &&
2062 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2063 return read_bg_from_eb(fs_info, &found_key, path);
2064 }
2065 }
2066 return ret;
2067 }
2068
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)2069 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2070 {
2071 u64 extra_flags = chunk_to_extended(flags) &
2072 BTRFS_EXTENDED_PROFILE_MASK;
2073
2074 write_seqlock(&fs_info->profiles_lock);
2075 if (flags & BTRFS_BLOCK_GROUP_DATA)
2076 fs_info->avail_data_alloc_bits |= extra_flags;
2077 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2078 fs_info->avail_metadata_alloc_bits |= extra_flags;
2079 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2080 fs_info->avail_system_alloc_bits |= extra_flags;
2081 write_sequnlock(&fs_info->profiles_lock);
2082 }
2083
2084 /*
2085 * Map a physical disk address to a list of logical addresses.
2086 *
2087 * @fs_info: the filesystem
2088 * @chunk_start: logical address of block group
2089 * @physical: physical address to map to logical addresses
2090 * @logical: return array of logical addresses which map to @physical
2091 * @naddrs: length of @logical
2092 * @stripe_len: size of IO stripe for the given block group
2093 *
2094 * Maps a particular @physical disk address to a list of @logical addresses.
2095 * Used primarily to exclude those portions of a block group that contain super
2096 * block copies.
2097 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)2098 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2099 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2100 {
2101 struct btrfs_chunk_map *map;
2102 u64 *buf;
2103 u64 bytenr;
2104 u64 data_stripe_length;
2105 u64 io_stripe_size;
2106 int i, nr = 0;
2107 int ret = 0;
2108
2109 map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2110 if (IS_ERR(map))
2111 return -EIO;
2112
2113 data_stripe_length = map->stripe_size;
2114 io_stripe_size = BTRFS_STRIPE_LEN;
2115 chunk_start = map->start;
2116
2117 /* For RAID5/6 adjust to a full IO stripe length */
2118 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2119 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2120
2121 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2122 if (!buf) {
2123 ret = -ENOMEM;
2124 goto out;
2125 }
2126
2127 for (i = 0; i < map->num_stripes; i++) {
2128 bool already_inserted = false;
2129 u32 stripe_nr;
2130 u32 offset;
2131 int j;
2132
2133 if (!in_range(physical, map->stripes[i].physical,
2134 data_stripe_length))
2135 continue;
2136
2137 stripe_nr = (physical - map->stripes[i].physical) >>
2138 BTRFS_STRIPE_LEN_SHIFT;
2139 offset = (physical - map->stripes[i].physical) &
2140 BTRFS_STRIPE_LEN_MASK;
2141
2142 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2143 BTRFS_BLOCK_GROUP_RAID10))
2144 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2145 map->sub_stripes);
2146 /*
2147 * The remaining case would be for RAID56, multiply by
2148 * nr_data_stripes(). Alternatively, just use rmap_len below
2149 * instead of map->stripe_len
2150 */
2151 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2152
2153 /* Ensure we don't add duplicate addresses */
2154 for (j = 0; j < nr; j++) {
2155 if (buf[j] == bytenr) {
2156 already_inserted = true;
2157 break;
2158 }
2159 }
2160
2161 if (!already_inserted)
2162 buf[nr++] = bytenr;
2163 }
2164
2165 *logical = buf;
2166 *naddrs = nr;
2167 *stripe_len = io_stripe_size;
2168 out:
2169 btrfs_free_chunk_map(map);
2170 return ret;
2171 }
2172
exclude_super_stripes(struct btrfs_block_group * cache)2173 static int exclude_super_stripes(struct btrfs_block_group *cache)
2174 {
2175 struct btrfs_fs_info *fs_info = cache->fs_info;
2176 const bool zoned = btrfs_is_zoned(fs_info);
2177 u64 bytenr;
2178 u64 *logical;
2179 int stripe_len;
2180 int i, nr, ret;
2181
2182 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2183 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2184 cache->bytes_super += stripe_len;
2185 ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2186 cache->start + stripe_len - 1,
2187 EXTENT_UPTODATE, NULL);
2188 if (ret)
2189 return ret;
2190 }
2191
2192 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2193 bytenr = btrfs_sb_offset(i);
2194 ret = btrfs_rmap_block(fs_info, cache->start,
2195 bytenr, &logical, &nr, &stripe_len);
2196 if (ret)
2197 return ret;
2198
2199 /* Shouldn't have super stripes in sequential zones */
2200 if (zoned && nr) {
2201 kfree(logical);
2202 btrfs_err(fs_info,
2203 "zoned: block group %llu must not contain super block",
2204 cache->start);
2205 return -EUCLEAN;
2206 }
2207
2208 while (nr--) {
2209 u64 len = min_t(u64, stripe_len,
2210 cache->start + cache->length - logical[nr]);
2211
2212 cache->bytes_super += len;
2213 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2214 logical[nr] + len - 1,
2215 EXTENT_UPTODATE, NULL);
2216 if (ret) {
2217 kfree(logical);
2218 return ret;
2219 }
2220 }
2221
2222 kfree(logical);
2223 }
2224 return 0;
2225 }
2226
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)2227 static struct btrfs_block_group *btrfs_create_block_group_cache(
2228 struct btrfs_fs_info *fs_info, u64 start)
2229 {
2230 struct btrfs_block_group *cache;
2231
2232 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2233 if (!cache)
2234 return NULL;
2235
2236 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2237 GFP_NOFS);
2238 if (!cache->free_space_ctl) {
2239 kfree(cache);
2240 return NULL;
2241 }
2242
2243 cache->start = start;
2244
2245 cache->fs_info = fs_info;
2246 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2247
2248 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2249
2250 refcount_set(&cache->refs, 1);
2251 spin_lock_init(&cache->lock);
2252 init_rwsem(&cache->data_rwsem);
2253 INIT_LIST_HEAD(&cache->list);
2254 INIT_LIST_HEAD(&cache->cluster_list);
2255 INIT_LIST_HEAD(&cache->bg_list);
2256 INIT_LIST_HEAD(&cache->ro_list);
2257 INIT_LIST_HEAD(&cache->discard_list);
2258 INIT_LIST_HEAD(&cache->dirty_list);
2259 INIT_LIST_HEAD(&cache->io_list);
2260 INIT_LIST_HEAD(&cache->active_bg_list);
2261 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2262 atomic_set(&cache->frozen, 0);
2263 mutex_init(&cache->free_space_lock);
2264
2265 return cache;
2266 }
2267
2268 /*
2269 * Iterate all chunks and verify that each of them has the corresponding block
2270 * group
2271 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)2272 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2273 {
2274 u64 start = 0;
2275 int ret = 0;
2276
2277 while (1) {
2278 struct btrfs_chunk_map *map;
2279 struct btrfs_block_group *bg;
2280
2281 /*
2282 * btrfs_find_chunk_map() will return the first chunk map
2283 * intersecting the range, so setting @length to 1 is enough to
2284 * get the first chunk.
2285 */
2286 map = btrfs_find_chunk_map(fs_info, start, 1);
2287 if (!map)
2288 break;
2289
2290 bg = btrfs_lookup_block_group(fs_info, map->start);
2291 if (!bg) {
2292 btrfs_err(fs_info,
2293 "chunk start=%llu len=%llu doesn't have corresponding block group",
2294 map->start, map->chunk_len);
2295 ret = -EUCLEAN;
2296 btrfs_free_chunk_map(map);
2297 break;
2298 }
2299 if (bg->start != map->start || bg->length != map->chunk_len ||
2300 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2301 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2302 btrfs_err(fs_info,
2303 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2304 map->start, map->chunk_len,
2305 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2306 bg->start, bg->length,
2307 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2308 ret = -EUCLEAN;
2309 btrfs_free_chunk_map(map);
2310 btrfs_put_block_group(bg);
2311 break;
2312 }
2313 start = map->start + map->chunk_len;
2314 btrfs_free_chunk_map(map);
2315 btrfs_put_block_group(bg);
2316 }
2317 return ret;
2318 }
2319
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2320 static int read_one_block_group(struct btrfs_fs_info *info,
2321 struct btrfs_block_group_item *bgi,
2322 const struct btrfs_key *key,
2323 int need_clear)
2324 {
2325 struct btrfs_block_group *cache;
2326 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2327 int ret;
2328
2329 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2330
2331 cache = btrfs_create_block_group_cache(info, key->objectid);
2332 if (!cache)
2333 return -ENOMEM;
2334
2335 cache->length = key->offset;
2336 cache->used = btrfs_stack_block_group_used(bgi);
2337 cache->commit_used = cache->used;
2338 cache->flags = btrfs_stack_block_group_flags(bgi);
2339 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2340
2341 set_free_space_tree_thresholds(cache);
2342
2343 if (need_clear) {
2344 /*
2345 * When we mount with old space cache, we need to
2346 * set BTRFS_DC_CLEAR and set dirty flag.
2347 *
2348 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2349 * truncate the old free space cache inode and
2350 * setup a new one.
2351 * b) Setting 'dirty flag' makes sure that we flush
2352 * the new space cache info onto disk.
2353 */
2354 if (btrfs_test_opt(info, SPACE_CACHE))
2355 cache->disk_cache_state = BTRFS_DC_CLEAR;
2356 }
2357 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2358 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2359 btrfs_err(info,
2360 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2361 cache->start);
2362 ret = -EINVAL;
2363 goto error;
2364 }
2365
2366 ret = btrfs_load_block_group_zone_info(cache, false);
2367 if (ret) {
2368 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2369 cache->start);
2370 goto error;
2371 }
2372
2373 /*
2374 * We need to exclude the super stripes now so that the space info has
2375 * super bytes accounted for, otherwise we'll think we have more space
2376 * than we actually do.
2377 */
2378 ret = exclude_super_stripes(cache);
2379 if (ret) {
2380 /* We may have excluded something, so call this just in case. */
2381 btrfs_free_excluded_extents(cache);
2382 goto error;
2383 }
2384
2385 /*
2386 * For zoned filesystem, space after the allocation offset is the only
2387 * free space for a block group. So, we don't need any caching work.
2388 * btrfs_calc_zone_unusable() will set the amount of free space and
2389 * zone_unusable space.
2390 *
2391 * For regular filesystem, check for two cases, either we are full, and
2392 * therefore don't need to bother with the caching work since we won't
2393 * find any space, or we are empty, and we can just add all the space
2394 * in and be done with it. This saves us _a_lot_ of time, particularly
2395 * in the full case.
2396 */
2397 if (btrfs_is_zoned(info)) {
2398 btrfs_calc_zone_unusable(cache);
2399 /* Should not have any excluded extents. Just in case, though. */
2400 btrfs_free_excluded_extents(cache);
2401 } else if (cache->length == cache->used) {
2402 cache->cached = BTRFS_CACHE_FINISHED;
2403 btrfs_free_excluded_extents(cache);
2404 } else if (cache->used == 0) {
2405 cache->cached = BTRFS_CACHE_FINISHED;
2406 ret = btrfs_add_new_free_space(cache, cache->start,
2407 cache->start + cache->length, NULL);
2408 btrfs_free_excluded_extents(cache);
2409 if (ret)
2410 goto error;
2411 }
2412
2413 ret = btrfs_add_block_group_cache(info, cache);
2414 if (ret) {
2415 btrfs_remove_free_space_cache(cache);
2416 goto error;
2417 }
2418 trace_btrfs_add_block_group(info, cache, 0);
2419 btrfs_add_bg_to_space_info(info, cache);
2420
2421 set_avail_alloc_bits(info, cache->flags);
2422 if (btrfs_chunk_writeable(info, cache->start)) {
2423 if (cache->used == 0) {
2424 ASSERT(list_empty(&cache->bg_list));
2425 if (btrfs_test_opt(info, DISCARD_ASYNC))
2426 btrfs_discard_queue_work(&info->discard_ctl, cache);
2427 else
2428 btrfs_mark_bg_unused(cache);
2429 }
2430 } else {
2431 inc_block_group_ro(cache, 1);
2432 }
2433
2434 return 0;
2435 error:
2436 btrfs_put_block_group(cache);
2437 return ret;
2438 }
2439
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2440 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2441 {
2442 struct rb_node *node;
2443 int ret = 0;
2444
2445 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2446 struct btrfs_chunk_map *map;
2447 struct btrfs_block_group *bg;
2448
2449 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2450 bg = btrfs_create_block_group_cache(fs_info, map->start);
2451 if (!bg) {
2452 ret = -ENOMEM;
2453 break;
2454 }
2455
2456 /* Fill dummy cache as FULL */
2457 bg->length = map->chunk_len;
2458 bg->flags = map->type;
2459 bg->cached = BTRFS_CACHE_FINISHED;
2460 bg->used = map->chunk_len;
2461 bg->flags = map->type;
2462 ret = btrfs_add_block_group_cache(fs_info, bg);
2463 /*
2464 * We may have some valid block group cache added already, in
2465 * that case we skip to the next one.
2466 */
2467 if (ret == -EEXIST) {
2468 ret = 0;
2469 btrfs_put_block_group(bg);
2470 continue;
2471 }
2472
2473 if (ret) {
2474 btrfs_remove_free_space_cache(bg);
2475 btrfs_put_block_group(bg);
2476 break;
2477 }
2478
2479 btrfs_add_bg_to_space_info(fs_info, bg);
2480
2481 set_avail_alloc_bits(fs_info, bg->flags);
2482 }
2483 if (!ret)
2484 btrfs_init_global_block_rsv(fs_info);
2485 return ret;
2486 }
2487
btrfs_read_block_groups(struct btrfs_fs_info * info)2488 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2489 {
2490 struct btrfs_root *root = btrfs_block_group_root(info);
2491 struct btrfs_path *path;
2492 int ret;
2493 struct btrfs_block_group *cache;
2494 struct btrfs_space_info *space_info;
2495 struct btrfs_key key;
2496 int need_clear = 0;
2497 u64 cache_gen;
2498
2499 /*
2500 * Either no extent root (with ibadroots rescue option) or we have
2501 * unsupported RO options. The fs can never be mounted read-write, so no
2502 * need to waste time searching block group items.
2503 *
2504 * This also allows new extent tree related changes to be RO compat,
2505 * no need for a full incompat flag.
2506 */
2507 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2508 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2509 return fill_dummy_bgs(info);
2510
2511 key.objectid = 0;
2512 key.offset = 0;
2513 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2514 path = btrfs_alloc_path();
2515 if (!path)
2516 return -ENOMEM;
2517
2518 cache_gen = btrfs_super_cache_generation(info->super_copy);
2519 if (btrfs_test_opt(info, SPACE_CACHE) &&
2520 btrfs_super_generation(info->super_copy) != cache_gen)
2521 need_clear = 1;
2522 if (btrfs_test_opt(info, CLEAR_CACHE))
2523 need_clear = 1;
2524
2525 while (1) {
2526 struct btrfs_block_group_item bgi;
2527 struct extent_buffer *leaf;
2528 int slot;
2529
2530 ret = find_first_block_group(info, path, &key);
2531 if (ret > 0)
2532 break;
2533 if (ret != 0)
2534 goto error;
2535
2536 leaf = path->nodes[0];
2537 slot = path->slots[0];
2538
2539 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2540 sizeof(bgi));
2541
2542 btrfs_item_key_to_cpu(leaf, &key, slot);
2543 btrfs_release_path(path);
2544 ret = read_one_block_group(info, &bgi, &key, need_clear);
2545 if (ret < 0)
2546 goto error;
2547 key.objectid += key.offset;
2548 key.offset = 0;
2549 }
2550 btrfs_release_path(path);
2551
2552 list_for_each_entry(space_info, &info->space_info, list) {
2553 int i;
2554
2555 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2556 if (list_empty(&space_info->block_groups[i]))
2557 continue;
2558 cache = list_first_entry(&space_info->block_groups[i],
2559 struct btrfs_block_group,
2560 list);
2561 btrfs_sysfs_add_block_group_type(cache);
2562 }
2563
2564 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2565 (BTRFS_BLOCK_GROUP_RAID10 |
2566 BTRFS_BLOCK_GROUP_RAID1_MASK |
2567 BTRFS_BLOCK_GROUP_RAID56_MASK |
2568 BTRFS_BLOCK_GROUP_DUP)))
2569 continue;
2570 /*
2571 * Avoid allocating from un-mirrored block group if there are
2572 * mirrored block groups.
2573 */
2574 list_for_each_entry(cache,
2575 &space_info->block_groups[BTRFS_RAID_RAID0],
2576 list)
2577 inc_block_group_ro(cache, 1);
2578 list_for_each_entry(cache,
2579 &space_info->block_groups[BTRFS_RAID_SINGLE],
2580 list)
2581 inc_block_group_ro(cache, 1);
2582 }
2583
2584 btrfs_init_global_block_rsv(info);
2585 ret = check_chunk_block_group_mappings(info);
2586 error:
2587 btrfs_free_path(path);
2588 /*
2589 * We've hit some error while reading the extent tree, and have
2590 * rescue=ibadroots mount option.
2591 * Try to fill the tree using dummy block groups so that the user can
2592 * continue to mount and grab their data.
2593 */
2594 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2595 ret = fill_dummy_bgs(info);
2596 return ret;
2597 }
2598
2599 /*
2600 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2601 * allocation.
2602 *
2603 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2604 * phases.
2605 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2606 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2607 struct btrfs_block_group *block_group)
2608 {
2609 struct btrfs_fs_info *fs_info = trans->fs_info;
2610 struct btrfs_block_group_item bgi;
2611 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2612 struct btrfs_key key;
2613 u64 old_commit_used;
2614 int ret;
2615
2616 spin_lock(&block_group->lock);
2617 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2618 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2619 block_group->global_root_id);
2620 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2621 old_commit_used = block_group->commit_used;
2622 block_group->commit_used = block_group->used;
2623 key.objectid = block_group->start;
2624 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2625 key.offset = block_group->length;
2626 spin_unlock(&block_group->lock);
2627
2628 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2629 if (ret < 0) {
2630 spin_lock(&block_group->lock);
2631 block_group->commit_used = old_commit_used;
2632 spin_unlock(&block_group->lock);
2633 }
2634
2635 return ret;
2636 }
2637
insert_dev_extent(struct btrfs_trans_handle * trans,const struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2638 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2639 const struct btrfs_device *device, u64 chunk_offset,
2640 u64 start, u64 num_bytes)
2641 {
2642 struct btrfs_fs_info *fs_info = device->fs_info;
2643 struct btrfs_root *root = fs_info->dev_root;
2644 struct btrfs_path *path;
2645 struct btrfs_dev_extent *extent;
2646 struct extent_buffer *leaf;
2647 struct btrfs_key key;
2648 int ret;
2649
2650 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2651 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2652 path = btrfs_alloc_path();
2653 if (!path)
2654 return -ENOMEM;
2655
2656 key.objectid = device->devid;
2657 key.type = BTRFS_DEV_EXTENT_KEY;
2658 key.offset = start;
2659 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2660 if (ret)
2661 goto out;
2662
2663 leaf = path->nodes[0];
2664 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2665 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2666 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2667 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2668 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2669
2670 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2671 out:
2672 btrfs_free_path(path);
2673 return ret;
2674 }
2675
2676 /*
2677 * This function belongs to phase 2.
2678 *
2679 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2680 * phases.
2681 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2682 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2683 u64 chunk_offset, u64 chunk_size)
2684 {
2685 struct btrfs_fs_info *fs_info = trans->fs_info;
2686 struct btrfs_device *device;
2687 struct btrfs_chunk_map *map;
2688 u64 dev_offset;
2689 int i;
2690 int ret = 0;
2691
2692 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2693 if (IS_ERR(map))
2694 return PTR_ERR(map);
2695
2696 /*
2697 * Take the device list mutex to prevent races with the final phase of
2698 * a device replace operation that replaces the device object associated
2699 * with the map's stripes, because the device object's id can change
2700 * at any time during that final phase of the device replace operation
2701 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2702 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2703 * resulting in persisting a device extent item with such ID.
2704 */
2705 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2706 for (i = 0; i < map->num_stripes; i++) {
2707 device = map->stripes[i].dev;
2708 dev_offset = map->stripes[i].physical;
2709
2710 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2711 map->stripe_size);
2712 if (ret)
2713 break;
2714 }
2715 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2716
2717 btrfs_free_chunk_map(map);
2718 return ret;
2719 }
2720
2721 /*
2722 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2723 * chunk allocation.
2724 *
2725 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2726 * phases.
2727 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2728 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2729 {
2730 struct btrfs_fs_info *fs_info = trans->fs_info;
2731 struct btrfs_block_group *block_group;
2732 int ret = 0;
2733
2734 while (!list_empty(&trans->new_bgs)) {
2735 int index;
2736
2737 block_group = list_first_entry(&trans->new_bgs,
2738 struct btrfs_block_group,
2739 bg_list);
2740 if (ret)
2741 goto next;
2742
2743 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2744
2745 ret = insert_block_group_item(trans, block_group);
2746 if (ret)
2747 btrfs_abort_transaction(trans, ret);
2748 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2749 &block_group->runtime_flags)) {
2750 mutex_lock(&fs_info->chunk_mutex);
2751 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2752 mutex_unlock(&fs_info->chunk_mutex);
2753 if (ret)
2754 btrfs_abort_transaction(trans, ret);
2755 }
2756 ret = insert_dev_extents(trans, block_group->start,
2757 block_group->length);
2758 if (ret)
2759 btrfs_abort_transaction(trans, ret);
2760 add_block_group_free_space(trans, block_group);
2761
2762 /*
2763 * If we restriped during balance, we may have added a new raid
2764 * type, so now add the sysfs entries when it is safe to do so.
2765 * We don't have to worry about locking here as it's handled in
2766 * btrfs_sysfs_add_block_group_type.
2767 */
2768 if (block_group->space_info->block_group_kobjs[index] == NULL)
2769 btrfs_sysfs_add_block_group_type(block_group);
2770
2771 /* Already aborted the transaction if it failed. */
2772 next:
2773 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2774 list_del_init(&block_group->bg_list);
2775 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2776
2777 /*
2778 * If the block group is still unused, add it to the list of
2779 * unused block groups. The block group may have been created in
2780 * order to satisfy a space reservation, in which case the
2781 * extent allocation only happens later. But often we don't
2782 * actually need to allocate space that we previously reserved,
2783 * so the block group may become unused for a long time. For
2784 * example for metadata we generally reserve space for a worst
2785 * possible scenario, but then don't end up allocating all that
2786 * space or none at all (due to no need to COW, extent buffers
2787 * were already COWed in the current transaction and still
2788 * unwritten, tree heights lower than the maximum possible
2789 * height, etc). For data we generally reserve the axact amount
2790 * of space we are going to allocate later, the exception is
2791 * when using compression, as we must reserve space based on the
2792 * uncompressed data size, because the compression is only done
2793 * when writeback triggered and we don't know how much space we
2794 * are actually going to need, so we reserve the uncompressed
2795 * size because the data may be incompressible in the worst case.
2796 */
2797 if (ret == 0) {
2798 bool used;
2799
2800 spin_lock(&block_group->lock);
2801 used = btrfs_is_block_group_used(block_group);
2802 spin_unlock(&block_group->lock);
2803
2804 if (!used)
2805 btrfs_mark_bg_unused(block_group);
2806 }
2807 }
2808 btrfs_trans_release_chunk_metadata(trans);
2809 }
2810
2811 /*
2812 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2813 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2814 */
calculate_global_root_id(const struct btrfs_fs_info * fs_info,u64 offset)2815 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset)
2816 {
2817 u64 div = SZ_1G;
2818 u64 index;
2819
2820 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2821 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2822
2823 /* If we have a smaller fs index based on 128MiB. */
2824 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2825 div = SZ_128M;
2826
2827 offset = div64_u64(offset, div);
2828 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2829 return index;
2830 }
2831
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 type,u64 chunk_offset,u64 size)2832 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2833 u64 type,
2834 u64 chunk_offset, u64 size)
2835 {
2836 struct btrfs_fs_info *fs_info = trans->fs_info;
2837 struct btrfs_block_group *cache;
2838 int ret;
2839
2840 btrfs_set_log_full_commit(trans);
2841
2842 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2843 if (!cache)
2844 return ERR_PTR(-ENOMEM);
2845
2846 /*
2847 * Mark it as new before adding it to the rbtree of block groups or any
2848 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2849 * before the new flag is set.
2850 */
2851 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2852
2853 cache->length = size;
2854 set_free_space_tree_thresholds(cache);
2855 cache->flags = type;
2856 cache->cached = BTRFS_CACHE_FINISHED;
2857 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2858
2859 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2860 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2861
2862 ret = btrfs_load_block_group_zone_info(cache, true);
2863 if (ret) {
2864 btrfs_put_block_group(cache);
2865 return ERR_PTR(ret);
2866 }
2867
2868 ret = exclude_super_stripes(cache);
2869 if (ret) {
2870 /* We may have excluded something, so call this just in case */
2871 btrfs_free_excluded_extents(cache);
2872 btrfs_put_block_group(cache);
2873 return ERR_PTR(ret);
2874 }
2875
2876 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2877 btrfs_free_excluded_extents(cache);
2878 if (ret) {
2879 btrfs_put_block_group(cache);
2880 return ERR_PTR(ret);
2881 }
2882
2883 /*
2884 * Ensure the corresponding space_info object is created and
2885 * assigned to our block group. We want our bg to be added to the rbtree
2886 * with its ->space_info set.
2887 */
2888 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2889 ASSERT(cache->space_info);
2890
2891 ret = btrfs_add_block_group_cache(fs_info, cache);
2892 if (ret) {
2893 btrfs_remove_free_space_cache(cache);
2894 btrfs_put_block_group(cache);
2895 return ERR_PTR(ret);
2896 }
2897
2898 /*
2899 * Now that our block group has its ->space_info set and is inserted in
2900 * the rbtree, update the space info's counters.
2901 */
2902 trace_btrfs_add_block_group(fs_info, cache, 1);
2903 btrfs_add_bg_to_space_info(fs_info, cache);
2904 btrfs_update_global_block_rsv(fs_info);
2905
2906 #ifdef CONFIG_BTRFS_DEBUG
2907 if (btrfs_should_fragment_free_space(cache)) {
2908 cache->space_info->bytes_used += size >> 1;
2909 fragment_free_space(cache);
2910 }
2911 #endif
2912
2913 list_add_tail(&cache->bg_list, &trans->new_bgs);
2914 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2915
2916 set_avail_alloc_bits(fs_info, type);
2917 return cache;
2918 }
2919
2920 /*
2921 * Mark one block group RO, can be called several times for the same block
2922 * group.
2923 *
2924 * @cache: the destination block group
2925 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2926 * ensure we still have some free space after marking this
2927 * block group RO.
2928 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2929 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2930 bool do_chunk_alloc)
2931 {
2932 struct btrfs_fs_info *fs_info = cache->fs_info;
2933 struct btrfs_trans_handle *trans;
2934 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2935 u64 alloc_flags;
2936 int ret;
2937 bool dirty_bg_running;
2938
2939 /*
2940 * This can only happen when we are doing read-only scrub on read-only
2941 * mount.
2942 * In that case we should not start a new transaction on read-only fs.
2943 * Thus here we skip all chunk allocations.
2944 */
2945 if (sb_rdonly(fs_info->sb)) {
2946 mutex_lock(&fs_info->ro_block_group_mutex);
2947 ret = inc_block_group_ro(cache, 0);
2948 mutex_unlock(&fs_info->ro_block_group_mutex);
2949 return ret;
2950 }
2951
2952 do {
2953 trans = btrfs_join_transaction(root);
2954 if (IS_ERR(trans))
2955 return PTR_ERR(trans);
2956
2957 dirty_bg_running = false;
2958
2959 /*
2960 * We're not allowed to set block groups readonly after the dirty
2961 * block group cache has started writing. If it already started,
2962 * back off and let this transaction commit.
2963 */
2964 mutex_lock(&fs_info->ro_block_group_mutex);
2965 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2966 u64 transid = trans->transid;
2967
2968 mutex_unlock(&fs_info->ro_block_group_mutex);
2969 btrfs_end_transaction(trans);
2970
2971 ret = btrfs_wait_for_commit(fs_info, transid);
2972 if (ret)
2973 return ret;
2974 dirty_bg_running = true;
2975 }
2976 } while (dirty_bg_running);
2977
2978 if (do_chunk_alloc) {
2979 /*
2980 * If we are changing raid levels, try to allocate a
2981 * corresponding block group with the new raid level.
2982 */
2983 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2984 if (alloc_flags != cache->flags) {
2985 ret = btrfs_chunk_alloc(trans, alloc_flags,
2986 CHUNK_ALLOC_FORCE);
2987 /*
2988 * ENOSPC is allowed here, we may have enough space
2989 * already allocated at the new raid level to carry on
2990 */
2991 if (ret == -ENOSPC)
2992 ret = 0;
2993 if (ret < 0)
2994 goto out;
2995 }
2996 }
2997
2998 ret = inc_block_group_ro(cache, 0);
2999 if (!ret)
3000 goto out;
3001 if (ret == -ETXTBSY)
3002 goto unlock_out;
3003
3004 /*
3005 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3006 * chunk allocation storm to exhaust the system chunk array. Otherwise
3007 * we still want to try our best to mark the block group read-only.
3008 */
3009 if (!do_chunk_alloc && ret == -ENOSPC &&
3010 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3011 goto unlock_out;
3012
3013 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
3014 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3015 if (ret < 0)
3016 goto out;
3017 /*
3018 * We have allocated a new chunk. We also need to activate that chunk to
3019 * grant metadata tickets for zoned filesystem.
3020 */
3021 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
3022 if (ret < 0)
3023 goto out;
3024
3025 ret = inc_block_group_ro(cache, 0);
3026 if (ret == -ETXTBSY)
3027 goto unlock_out;
3028 out:
3029 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3030 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3031 mutex_lock(&fs_info->chunk_mutex);
3032 check_system_chunk(trans, alloc_flags);
3033 mutex_unlock(&fs_info->chunk_mutex);
3034 }
3035 unlock_out:
3036 mutex_unlock(&fs_info->ro_block_group_mutex);
3037
3038 btrfs_end_transaction(trans);
3039 return ret;
3040 }
3041
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)3042 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3043 {
3044 struct btrfs_space_info *sinfo = cache->space_info;
3045 u64 num_bytes;
3046
3047 BUG_ON(!cache->ro);
3048
3049 spin_lock(&sinfo->lock);
3050 spin_lock(&cache->lock);
3051 if (!--cache->ro) {
3052 if (btrfs_is_zoned(cache->fs_info)) {
3053 /* Migrate zone_unusable bytes back */
3054 cache->zone_unusable =
3055 (cache->alloc_offset - cache->used - cache->pinned -
3056 cache->reserved) +
3057 (cache->length - cache->zone_capacity);
3058 btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable);
3059 sinfo->bytes_readonly -= cache->zone_unusable;
3060 }
3061 num_bytes = cache->length - cache->reserved -
3062 cache->pinned - cache->bytes_super -
3063 cache->zone_unusable - cache->used;
3064 sinfo->bytes_readonly -= num_bytes;
3065 list_del_init(&cache->ro_list);
3066 }
3067 spin_unlock(&cache->lock);
3068 spin_unlock(&sinfo->lock);
3069 }
3070
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)3071 static int update_block_group_item(struct btrfs_trans_handle *trans,
3072 struct btrfs_path *path,
3073 struct btrfs_block_group *cache)
3074 {
3075 struct btrfs_fs_info *fs_info = trans->fs_info;
3076 int ret;
3077 struct btrfs_root *root = btrfs_block_group_root(fs_info);
3078 unsigned long bi;
3079 struct extent_buffer *leaf;
3080 struct btrfs_block_group_item bgi;
3081 struct btrfs_key key;
3082 u64 old_commit_used;
3083 u64 used;
3084
3085 /*
3086 * Block group items update can be triggered out of commit transaction
3087 * critical section, thus we need a consistent view of used bytes.
3088 * We cannot use cache->used directly outside of the spin lock, as it
3089 * may be changed.
3090 */
3091 spin_lock(&cache->lock);
3092 old_commit_used = cache->commit_used;
3093 used = cache->used;
3094 /* No change in used bytes, can safely skip it. */
3095 if (cache->commit_used == used) {
3096 spin_unlock(&cache->lock);
3097 return 0;
3098 }
3099 cache->commit_used = used;
3100 spin_unlock(&cache->lock);
3101
3102 key.objectid = cache->start;
3103 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3104 key.offset = cache->length;
3105
3106 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3107 if (ret) {
3108 if (ret > 0)
3109 ret = -ENOENT;
3110 goto fail;
3111 }
3112
3113 leaf = path->nodes[0];
3114 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3115 btrfs_set_stack_block_group_used(&bgi, used);
3116 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3117 cache->global_root_id);
3118 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3119 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3120 fail:
3121 btrfs_release_path(path);
3122 /*
3123 * We didn't update the block group item, need to revert commit_used
3124 * unless the block group item didn't exist yet - this is to prevent a
3125 * race with a concurrent insertion of the block group item, with
3126 * insert_block_group_item(), that happened just after we attempted to
3127 * update. In that case we would reset commit_used to 0 just after the
3128 * insertion set it to a value greater than 0 - if the block group later
3129 * becomes with 0 used bytes, we would incorrectly skip its update.
3130 */
3131 if (ret < 0 && ret != -ENOENT) {
3132 spin_lock(&cache->lock);
3133 cache->commit_used = old_commit_used;
3134 spin_unlock(&cache->lock);
3135 }
3136 return ret;
3137
3138 }
3139
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3140 static int cache_save_setup(struct btrfs_block_group *block_group,
3141 struct btrfs_trans_handle *trans,
3142 struct btrfs_path *path)
3143 {
3144 struct btrfs_fs_info *fs_info = block_group->fs_info;
3145 struct inode *inode = NULL;
3146 struct extent_changeset *data_reserved = NULL;
3147 u64 alloc_hint = 0;
3148 int dcs = BTRFS_DC_ERROR;
3149 u64 cache_size = 0;
3150 int retries = 0;
3151 int ret = 0;
3152
3153 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3154 return 0;
3155
3156 /*
3157 * If this block group is smaller than 100 megs don't bother caching the
3158 * block group.
3159 */
3160 if (block_group->length < (100 * SZ_1M)) {
3161 spin_lock(&block_group->lock);
3162 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3163 spin_unlock(&block_group->lock);
3164 return 0;
3165 }
3166
3167 if (TRANS_ABORTED(trans))
3168 return 0;
3169 again:
3170 inode = lookup_free_space_inode(block_group, path);
3171 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3172 ret = PTR_ERR(inode);
3173 btrfs_release_path(path);
3174 goto out;
3175 }
3176
3177 if (IS_ERR(inode)) {
3178 BUG_ON(retries);
3179 retries++;
3180
3181 if (block_group->ro)
3182 goto out_free;
3183
3184 ret = create_free_space_inode(trans, block_group, path);
3185 if (ret)
3186 goto out_free;
3187 goto again;
3188 }
3189
3190 /*
3191 * We want to set the generation to 0, that way if anything goes wrong
3192 * from here on out we know not to trust this cache when we load up next
3193 * time.
3194 */
3195 BTRFS_I(inode)->generation = 0;
3196 ret = btrfs_update_inode(trans, BTRFS_I(inode));
3197 if (ret) {
3198 /*
3199 * So theoretically we could recover from this, simply set the
3200 * super cache generation to 0 so we know to invalidate the
3201 * cache, but then we'd have to keep track of the block groups
3202 * that fail this way so we know we _have_ to reset this cache
3203 * before the next commit or risk reading stale cache. So to
3204 * limit our exposure to horrible edge cases lets just abort the
3205 * transaction, this only happens in really bad situations
3206 * anyway.
3207 */
3208 btrfs_abort_transaction(trans, ret);
3209 goto out_put;
3210 }
3211 WARN_ON(ret);
3212
3213 /* We've already setup this transaction, go ahead and exit */
3214 if (block_group->cache_generation == trans->transid &&
3215 i_size_read(inode)) {
3216 dcs = BTRFS_DC_SETUP;
3217 goto out_put;
3218 }
3219
3220 if (i_size_read(inode) > 0) {
3221 ret = btrfs_check_trunc_cache_free_space(fs_info,
3222 &fs_info->global_block_rsv);
3223 if (ret)
3224 goto out_put;
3225
3226 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3227 if (ret)
3228 goto out_put;
3229 }
3230
3231 spin_lock(&block_group->lock);
3232 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3233 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3234 /*
3235 * don't bother trying to write stuff out _if_
3236 * a) we're not cached,
3237 * b) we're with nospace_cache mount option,
3238 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3239 */
3240 dcs = BTRFS_DC_WRITTEN;
3241 spin_unlock(&block_group->lock);
3242 goto out_put;
3243 }
3244 spin_unlock(&block_group->lock);
3245
3246 /*
3247 * We hit an ENOSPC when setting up the cache in this transaction, just
3248 * skip doing the setup, we've already cleared the cache so we're safe.
3249 */
3250 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3251 ret = -ENOSPC;
3252 goto out_put;
3253 }
3254
3255 /*
3256 * Try to preallocate enough space based on how big the block group is.
3257 * Keep in mind this has to include any pinned space which could end up
3258 * taking up quite a bit since it's not folded into the other space
3259 * cache.
3260 */
3261 cache_size = div_u64(block_group->length, SZ_256M);
3262 if (!cache_size)
3263 cache_size = 1;
3264
3265 cache_size *= 16;
3266 cache_size *= fs_info->sectorsize;
3267
3268 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3269 cache_size, false);
3270 if (ret)
3271 goto out_put;
3272
3273 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3274 cache_size, cache_size,
3275 &alloc_hint);
3276 /*
3277 * Our cache requires contiguous chunks so that we don't modify a bunch
3278 * of metadata or split extents when writing the cache out, which means
3279 * we can enospc if we are heavily fragmented in addition to just normal
3280 * out of space conditions. So if we hit this just skip setting up any
3281 * other block groups for this transaction, maybe we'll unpin enough
3282 * space the next time around.
3283 */
3284 if (!ret)
3285 dcs = BTRFS_DC_SETUP;
3286 else if (ret == -ENOSPC)
3287 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3288
3289 out_put:
3290 iput(inode);
3291 out_free:
3292 btrfs_release_path(path);
3293 out:
3294 spin_lock(&block_group->lock);
3295 if (!ret && dcs == BTRFS_DC_SETUP)
3296 block_group->cache_generation = trans->transid;
3297 block_group->disk_cache_state = dcs;
3298 spin_unlock(&block_group->lock);
3299
3300 extent_changeset_free(data_reserved);
3301 return ret;
3302 }
3303
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)3304 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3305 {
3306 struct btrfs_fs_info *fs_info = trans->fs_info;
3307 struct btrfs_block_group *cache, *tmp;
3308 struct btrfs_transaction *cur_trans = trans->transaction;
3309 struct btrfs_path *path;
3310
3311 if (list_empty(&cur_trans->dirty_bgs) ||
3312 !btrfs_test_opt(fs_info, SPACE_CACHE))
3313 return 0;
3314
3315 path = btrfs_alloc_path();
3316 if (!path)
3317 return -ENOMEM;
3318
3319 /* Could add new block groups, use _safe just in case */
3320 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3321 dirty_list) {
3322 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3323 cache_save_setup(cache, trans, path);
3324 }
3325
3326 btrfs_free_path(path);
3327 return 0;
3328 }
3329
3330 /*
3331 * Transaction commit does final block group cache writeback during a critical
3332 * section where nothing is allowed to change the FS. This is required in
3333 * order for the cache to actually match the block group, but can introduce a
3334 * lot of latency into the commit.
3335 *
3336 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3337 * There's a chance we'll have to redo some of it if the block group changes
3338 * again during the commit, but it greatly reduces the commit latency by
3339 * getting rid of the easy block groups while we're still allowing others to
3340 * join the commit.
3341 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3342 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3343 {
3344 struct btrfs_fs_info *fs_info = trans->fs_info;
3345 struct btrfs_block_group *cache;
3346 struct btrfs_transaction *cur_trans = trans->transaction;
3347 int ret = 0;
3348 int should_put;
3349 struct btrfs_path *path = NULL;
3350 LIST_HEAD(dirty);
3351 struct list_head *io = &cur_trans->io_bgs;
3352 int loops = 0;
3353
3354 spin_lock(&cur_trans->dirty_bgs_lock);
3355 if (list_empty(&cur_trans->dirty_bgs)) {
3356 spin_unlock(&cur_trans->dirty_bgs_lock);
3357 return 0;
3358 }
3359 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3360 spin_unlock(&cur_trans->dirty_bgs_lock);
3361
3362 again:
3363 /* Make sure all the block groups on our dirty list actually exist */
3364 btrfs_create_pending_block_groups(trans);
3365
3366 if (!path) {
3367 path = btrfs_alloc_path();
3368 if (!path) {
3369 ret = -ENOMEM;
3370 goto out;
3371 }
3372 }
3373
3374 /*
3375 * cache_write_mutex is here only to save us from balance or automatic
3376 * removal of empty block groups deleting this block group while we are
3377 * writing out the cache
3378 */
3379 mutex_lock(&trans->transaction->cache_write_mutex);
3380 while (!list_empty(&dirty)) {
3381 bool drop_reserve = true;
3382
3383 cache = list_first_entry(&dirty, struct btrfs_block_group,
3384 dirty_list);
3385 /*
3386 * This can happen if something re-dirties a block group that
3387 * is already under IO. Just wait for it to finish and then do
3388 * it all again
3389 */
3390 if (!list_empty(&cache->io_list)) {
3391 list_del_init(&cache->io_list);
3392 btrfs_wait_cache_io(trans, cache, path);
3393 btrfs_put_block_group(cache);
3394 }
3395
3396
3397 /*
3398 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3399 * it should update the cache_state. Don't delete until after
3400 * we wait.
3401 *
3402 * Since we're not running in the commit critical section
3403 * we need the dirty_bgs_lock to protect from update_block_group
3404 */
3405 spin_lock(&cur_trans->dirty_bgs_lock);
3406 list_del_init(&cache->dirty_list);
3407 spin_unlock(&cur_trans->dirty_bgs_lock);
3408
3409 should_put = 1;
3410
3411 cache_save_setup(cache, trans, path);
3412
3413 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3414 cache->io_ctl.inode = NULL;
3415 ret = btrfs_write_out_cache(trans, cache, path);
3416 if (ret == 0 && cache->io_ctl.inode) {
3417 should_put = 0;
3418
3419 /*
3420 * The cache_write_mutex is protecting the
3421 * io_list, also refer to the definition of
3422 * btrfs_transaction::io_bgs for more details
3423 */
3424 list_add_tail(&cache->io_list, io);
3425 } else {
3426 /*
3427 * If we failed to write the cache, the
3428 * generation will be bad and life goes on
3429 */
3430 ret = 0;
3431 }
3432 }
3433 if (!ret) {
3434 ret = update_block_group_item(trans, path, cache);
3435 /*
3436 * Our block group might still be attached to the list
3437 * of new block groups in the transaction handle of some
3438 * other task (struct btrfs_trans_handle->new_bgs). This
3439 * means its block group item isn't yet in the extent
3440 * tree. If this happens ignore the error, as we will
3441 * try again later in the critical section of the
3442 * transaction commit.
3443 */
3444 if (ret == -ENOENT) {
3445 ret = 0;
3446 spin_lock(&cur_trans->dirty_bgs_lock);
3447 if (list_empty(&cache->dirty_list)) {
3448 list_add_tail(&cache->dirty_list,
3449 &cur_trans->dirty_bgs);
3450 btrfs_get_block_group(cache);
3451 drop_reserve = false;
3452 }
3453 spin_unlock(&cur_trans->dirty_bgs_lock);
3454 } else if (ret) {
3455 btrfs_abort_transaction(trans, ret);
3456 }
3457 }
3458
3459 /* If it's not on the io list, we need to put the block group */
3460 if (should_put)
3461 btrfs_put_block_group(cache);
3462 if (drop_reserve)
3463 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3464 /*
3465 * Avoid blocking other tasks for too long. It might even save
3466 * us from writing caches for block groups that are going to be
3467 * removed.
3468 */
3469 mutex_unlock(&trans->transaction->cache_write_mutex);
3470 if (ret)
3471 goto out;
3472 mutex_lock(&trans->transaction->cache_write_mutex);
3473 }
3474 mutex_unlock(&trans->transaction->cache_write_mutex);
3475
3476 /*
3477 * Go through delayed refs for all the stuff we've just kicked off
3478 * and then loop back (just once)
3479 */
3480 if (!ret)
3481 ret = btrfs_run_delayed_refs(trans, 0);
3482 if (!ret && loops == 0) {
3483 loops++;
3484 spin_lock(&cur_trans->dirty_bgs_lock);
3485 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3486 /*
3487 * dirty_bgs_lock protects us from concurrent block group
3488 * deletes too (not just cache_write_mutex).
3489 */
3490 if (!list_empty(&dirty)) {
3491 spin_unlock(&cur_trans->dirty_bgs_lock);
3492 goto again;
3493 }
3494 spin_unlock(&cur_trans->dirty_bgs_lock);
3495 }
3496 out:
3497 if (ret < 0) {
3498 spin_lock(&cur_trans->dirty_bgs_lock);
3499 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3500 spin_unlock(&cur_trans->dirty_bgs_lock);
3501 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3502 }
3503
3504 btrfs_free_path(path);
3505 return ret;
3506 }
3507
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3508 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3509 {
3510 struct btrfs_fs_info *fs_info = trans->fs_info;
3511 struct btrfs_block_group *cache;
3512 struct btrfs_transaction *cur_trans = trans->transaction;
3513 int ret = 0;
3514 int should_put;
3515 struct btrfs_path *path;
3516 struct list_head *io = &cur_trans->io_bgs;
3517
3518 path = btrfs_alloc_path();
3519 if (!path)
3520 return -ENOMEM;
3521
3522 /*
3523 * Even though we are in the critical section of the transaction commit,
3524 * we can still have concurrent tasks adding elements to this
3525 * transaction's list of dirty block groups. These tasks correspond to
3526 * endio free space workers started when writeback finishes for a
3527 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3528 * allocate new block groups as a result of COWing nodes of the root
3529 * tree when updating the free space inode. The writeback for the space
3530 * caches is triggered by an earlier call to
3531 * btrfs_start_dirty_block_groups() and iterations of the following
3532 * loop.
3533 * Also we want to do the cache_save_setup first and then run the
3534 * delayed refs to make sure we have the best chance at doing this all
3535 * in one shot.
3536 */
3537 spin_lock(&cur_trans->dirty_bgs_lock);
3538 while (!list_empty(&cur_trans->dirty_bgs)) {
3539 cache = list_first_entry(&cur_trans->dirty_bgs,
3540 struct btrfs_block_group,
3541 dirty_list);
3542
3543 /*
3544 * This can happen if cache_save_setup re-dirties a block group
3545 * that is already under IO. Just wait for it to finish and
3546 * then do it all again
3547 */
3548 if (!list_empty(&cache->io_list)) {
3549 spin_unlock(&cur_trans->dirty_bgs_lock);
3550 list_del_init(&cache->io_list);
3551 btrfs_wait_cache_io(trans, cache, path);
3552 btrfs_put_block_group(cache);
3553 spin_lock(&cur_trans->dirty_bgs_lock);
3554 }
3555
3556 /*
3557 * Don't remove from the dirty list until after we've waited on
3558 * any pending IO
3559 */
3560 list_del_init(&cache->dirty_list);
3561 spin_unlock(&cur_trans->dirty_bgs_lock);
3562 should_put = 1;
3563
3564 cache_save_setup(cache, trans, path);
3565
3566 if (!ret)
3567 ret = btrfs_run_delayed_refs(trans, U64_MAX);
3568
3569 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3570 cache->io_ctl.inode = NULL;
3571 ret = btrfs_write_out_cache(trans, cache, path);
3572 if (ret == 0 && cache->io_ctl.inode) {
3573 should_put = 0;
3574 list_add_tail(&cache->io_list, io);
3575 } else {
3576 /*
3577 * If we failed to write the cache, the
3578 * generation will be bad and life goes on
3579 */
3580 ret = 0;
3581 }
3582 }
3583 if (!ret) {
3584 ret = update_block_group_item(trans, path, cache);
3585 /*
3586 * One of the free space endio workers might have
3587 * created a new block group while updating a free space
3588 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3589 * and hasn't released its transaction handle yet, in
3590 * which case the new block group is still attached to
3591 * its transaction handle and its creation has not
3592 * finished yet (no block group item in the extent tree
3593 * yet, etc). If this is the case, wait for all free
3594 * space endio workers to finish and retry. This is a
3595 * very rare case so no need for a more efficient and
3596 * complex approach.
3597 */
3598 if (ret == -ENOENT) {
3599 wait_event(cur_trans->writer_wait,
3600 atomic_read(&cur_trans->num_writers) == 1);
3601 ret = update_block_group_item(trans, path, cache);
3602 }
3603 if (ret)
3604 btrfs_abort_transaction(trans, ret);
3605 }
3606
3607 /* If its not on the io list, we need to put the block group */
3608 if (should_put)
3609 btrfs_put_block_group(cache);
3610 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3611 spin_lock(&cur_trans->dirty_bgs_lock);
3612 }
3613 spin_unlock(&cur_trans->dirty_bgs_lock);
3614
3615 /*
3616 * Refer to the definition of io_bgs member for details why it's safe
3617 * to use it without any locking
3618 */
3619 while (!list_empty(io)) {
3620 cache = list_first_entry(io, struct btrfs_block_group,
3621 io_list);
3622 list_del_init(&cache->io_list);
3623 btrfs_wait_cache_io(trans, cache, path);
3624 btrfs_put_block_group(cache);
3625 }
3626
3627 btrfs_free_path(path);
3628 return ret;
3629 }
3630
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3631 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3632 u64 bytenr, u64 num_bytes, bool alloc)
3633 {
3634 struct btrfs_fs_info *info = trans->fs_info;
3635 struct btrfs_space_info *space_info;
3636 struct btrfs_block_group *cache;
3637 u64 old_val;
3638 bool reclaim = false;
3639 bool bg_already_dirty = true;
3640 int factor;
3641
3642 /* Block accounting for super block */
3643 spin_lock(&info->delalloc_root_lock);
3644 old_val = btrfs_super_bytes_used(info->super_copy);
3645 if (alloc)
3646 old_val += num_bytes;
3647 else
3648 old_val -= num_bytes;
3649 btrfs_set_super_bytes_used(info->super_copy, old_val);
3650 spin_unlock(&info->delalloc_root_lock);
3651
3652 cache = btrfs_lookup_block_group(info, bytenr);
3653 if (!cache)
3654 return -ENOENT;
3655
3656 /* An extent can not span multiple block groups. */
3657 ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3658
3659 space_info = cache->space_info;
3660 factor = btrfs_bg_type_to_factor(cache->flags);
3661
3662 /*
3663 * If this block group has free space cache written out, we need to make
3664 * sure to load it if we are removing space. This is because we need
3665 * the unpinning stage to actually add the space back to the block group,
3666 * otherwise we will leak space.
3667 */
3668 if (!alloc && !btrfs_block_group_done(cache))
3669 btrfs_cache_block_group(cache, true);
3670
3671 spin_lock(&space_info->lock);
3672 spin_lock(&cache->lock);
3673
3674 if (btrfs_test_opt(info, SPACE_CACHE) &&
3675 cache->disk_cache_state < BTRFS_DC_CLEAR)
3676 cache->disk_cache_state = BTRFS_DC_CLEAR;
3677
3678 old_val = cache->used;
3679 if (alloc) {
3680 old_val += num_bytes;
3681 cache->used = old_val;
3682 cache->reserved -= num_bytes;
3683 cache->reclaim_mark = 0;
3684 space_info->bytes_reserved -= num_bytes;
3685 space_info->bytes_used += num_bytes;
3686 space_info->disk_used += num_bytes * factor;
3687 if (READ_ONCE(space_info->periodic_reclaim))
3688 btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3689 spin_unlock(&cache->lock);
3690 spin_unlock(&space_info->lock);
3691 } else {
3692 old_val -= num_bytes;
3693 cache->used = old_val;
3694 cache->pinned += num_bytes;
3695 btrfs_space_info_update_bytes_pinned(space_info, num_bytes);
3696 space_info->bytes_used -= num_bytes;
3697 space_info->disk_used -= num_bytes * factor;
3698 if (READ_ONCE(space_info->periodic_reclaim))
3699 btrfs_space_info_update_reclaimable(space_info, num_bytes);
3700 else
3701 reclaim = should_reclaim_block_group(cache, num_bytes);
3702
3703 spin_unlock(&cache->lock);
3704 spin_unlock(&space_info->lock);
3705
3706 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3707 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3708 }
3709
3710 spin_lock(&trans->transaction->dirty_bgs_lock);
3711 if (list_empty(&cache->dirty_list)) {
3712 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3713 bg_already_dirty = false;
3714 btrfs_get_block_group(cache);
3715 }
3716 spin_unlock(&trans->transaction->dirty_bgs_lock);
3717
3718 /*
3719 * No longer have used bytes in this block group, queue it for deletion.
3720 * We do this after adding the block group to the dirty list to avoid
3721 * races between cleaner kthread and space cache writeout.
3722 */
3723 if (!alloc && old_val == 0) {
3724 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3725 btrfs_mark_bg_unused(cache);
3726 } else if (!alloc && reclaim) {
3727 btrfs_mark_bg_to_reclaim(cache);
3728 }
3729
3730 btrfs_put_block_group(cache);
3731
3732 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3733 if (!bg_already_dirty)
3734 btrfs_inc_delayed_refs_rsv_bg_updates(info);
3735
3736 return 0;
3737 }
3738
3739 /*
3740 * Update the block_group and space info counters.
3741 *
3742 * @cache: The cache we are manipulating
3743 * @ram_bytes: The number of bytes of file content, and will be same to
3744 * @num_bytes except for the compress path.
3745 * @num_bytes: The number of bytes in question
3746 * @delalloc: The blocks are allocated for the delalloc write
3747 *
3748 * This is called by the allocator when it reserves space. If this is a
3749 * reservation and the block group has become read only we cannot make the
3750 * reservation and return -EAGAIN, otherwise this function always succeeds.
3751 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc,bool force_wrong_size_class)3752 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3753 u64 ram_bytes, u64 num_bytes, int delalloc,
3754 bool force_wrong_size_class)
3755 {
3756 struct btrfs_space_info *space_info = cache->space_info;
3757 enum btrfs_block_group_size_class size_class;
3758 int ret = 0;
3759
3760 spin_lock(&space_info->lock);
3761 spin_lock(&cache->lock);
3762 if (cache->ro) {
3763 ret = -EAGAIN;
3764 goto out;
3765 }
3766
3767 if (btrfs_block_group_should_use_size_class(cache)) {
3768 size_class = btrfs_calc_block_group_size_class(num_bytes);
3769 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3770 if (ret)
3771 goto out;
3772 }
3773 cache->reserved += num_bytes;
3774 space_info->bytes_reserved += num_bytes;
3775 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3776 space_info->flags, num_bytes, 1);
3777 btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes);
3778 if (delalloc)
3779 cache->delalloc_bytes += num_bytes;
3780
3781 /*
3782 * Compression can use less space than we reserved, so wake tickets if
3783 * that happens.
3784 */
3785 if (num_bytes < ram_bytes)
3786 btrfs_try_granting_tickets(cache->fs_info, space_info);
3787 out:
3788 spin_unlock(&cache->lock);
3789 spin_unlock(&space_info->lock);
3790 return ret;
3791 }
3792
3793 /*
3794 * Update the block_group and space info counters.
3795 *
3796 * @cache: The cache we are manipulating
3797 * @num_bytes: The number of bytes in question
3798 * @delalloc: The blocks are allocated for the delalloc write
3799 *
3800 * This is called by somebody who is freeing space that was never actually used
3801 * on disk. For example if you reserve some space for a new leaf in transaction
3802 * A and before transaction A commits you free that leaf, you call this with
3803 * reserve set to 0 in order to clear the reservation.
3804 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3805 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3806 u64 num_bytes, int delalloc)
3807 {
3808 struct btrfs_space_info *space_info = cache->space_info;
3809
3810 spin_lock(&space_info->lock);
3811 spin_lock(&cache->lock);
3812 if (cache->ro)
3813 space_info->bytes_readonly += num_bytes;
3814 else if (btrfs_is_zoned(cache->fs_info))
3815 space_info->bytes_zone_unusable += num_bytes;
3816 cache->reserved -= num_bytes;
3817 space_info->bytes_reserved -= num_bytes;
3818 space_info->max_extent_size = 0;
3819
3820 if (delalloc)
3821 cache->delalloc_bytes -= num_bytes;
3822 spin_unlock(&cache->lock);
3823
3824 btrfs_try_granting_tickets(cache->fs_info, space_info);
3825 spin_unlock(&space_info->lock);
3826 }
3827
force_metadata_allocation(struct btrfs_fs_info * info)3828 static void force_metadata_allocation(struct btrfs_fs_info *info)
3829 {
3830 struct list_head *head = &info->space_info;
3831 struct btrfs_space_info *found;
3832
3833 list_for_each_entry(found, head, list) {
3834 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3835 found->force_alloc = CHUNK_ALLOC_FORCE;
3836 }
3837 }
3838
should_alloc_chunk(const struct btrfs_fs_info * fs_info,const struct btrfs_space_info * sinfo,int force)3839 static int should_alloc_chunk(const struct btrfs_fs_info *fs_info,
3840 const struct btrfs_space_info *sinfo, int force)
3841 {
3842 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3843 u64 thresh;
3844
3845 if (force == CHUNK_ALLOC_FORCE)
3846 return 1;
3847
3848 /*
3849 * in limited mode, we want to have some free space up to
3850 * about 1% of the FS size.
3851 */
3852 if (force == CHUNK_ALLOC_LIMITED) {
3853 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3854 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3855
3856 if (sinfo->total_bytes - bytes_used < thresh)
3857 return 1;
3858 }
3859
3860 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3861 return 0;
3862 return 1;
3863 }
3864
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3865 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3866 {
3867 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3868
3869 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3870 }
3871
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3872 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3873 {
3874 struct btrfs_block_group *bg;
3875 int ret;
3876
3877 /*
3878 * Check if we have enough space in the system space info because we
3879 * will need to update device items in the chunk btree and insert a new
3880 * chunk item in the chunk btree as well. This will allocate a new
3881 * system block group if needed.
3882 */
3883 check_system_chunk(trans, flags);
3884
3885 bg = btrfs_create_chunk(trans, flags);
3886 if (IS_ERR(bg)) {
3887 ret = PTR_ERR(bg);
3888 goto out;
3889 }
3890
3891 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3892 /*
3893 * Normally we are not expected to fail with -ENOSPC here, since we have
3894 * previously reserved space in the system space_info and allocated one
3895 * new system chunk if necessary. However there are three exceptions:
3896 *
3897 * 1) We may have enough free space in the system space_info but all the
3898 * existing system block groups have a profile which can not be used
3899 * for extent allocation.
3900 *
3901 * This happens when mounting in degraded mode. For example we have a
3902 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3903 * using the other device in degraded mode. If we then allocate a chunk,
3904 * we may have enough free space in the existing system space_info, but
3905 * none of the block groups can be used for extent allocation since they
3906 * have a RAID1 profile, and because we are in degraded mode with a
3907 * single device, we are forced to allocate a new system chunk with a
3908 * SINGLE profile. Making check_system_chunk() iterate over all system
3909 * block groups and check if they have a usable profile and enough space
3910 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3911 * try again after forcing allocation of a new system chunk. Like this
3912 * we avoid paying the cost of that search in normal circumstances, when
3913 * we were not mounted in degraded mode;
3914 *
3915 * 2) We had enough free space info the system space_info, and one suitable
3916 * block group to allocate from when we called check_system_chunk()
3917 * above. However right after we called it, the only system block group
3918 * with enough free space got turned into RO mode by a running scrub,
3919 * and in this case we have to allocate a new one and retry. We only
3920 * need do this allocate and retry once, since we have a transaction
3921 * handle and scrub uses the commit root to search for block groups;
3922 *
3923 * 3) We had one system block group with enough free space when we called
3924 * check_system_chunk(), but after that, right before we tried to
3925 * allocate the last extent buffer we needed, a discard operation came
3926 * in and it temporarily removed the last free space entry from the
3927 * block group (discard removes a free space entry, discards it, and
3928 * then adds back the entry to the block group cache).
3929 */
3930 if (ret == -ENOSPC) {
3931 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3932 struct btrfs_block_group *sys_bg;
3933
3934 sys_bg = btrfs_create_chunk(trans, sys_flags);
3935 if (IS_ERR(sys_bg)) {
3936 ret = PTR_ERR(sys_bg);
3937 btrfs_abort_transaction(trans, ret);
3938 goto out;
3939 }
3940
3941 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3942 if (ret) {
3943 btrfs_abort_transaction(trans, ret);
3944 goto out;
3945 }
3946
3947 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3948 if (ret) {
3949 btrfs_abort_transaction(trans, ret);
3950 goto out;
3951 }
3952 } else if (ret) {
3953 btrfs_abort_transaction(trans, ret);
3954 goto out;
3955 }
3956 out:
3957 btrfs_trans_release_chunk_metadata(trans);
3958
3959 if (ret)
3960 return ERR_PTR(ret);
3961
3962 btrfs_get_block_group(bg);
3963 return bg;
3964 }
3965
3966 /*
3967 * Chunk allocation is done in 2 phases:
3968 *
3969 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3970 * the chunk, the chunk mapping, create its block group and add the items
3971 * that belong in the chunk btree to it - more specifically, we need to
3972 * update device items in the chunk btree and add a new chunk item to it.
3973 *
3974 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3975 * group item to the extent btree and the device extent items to the devices
3976 * btree.
3977 *
3978 * This is done to prevent deadlocks. For example when COWing a node from the
3979 * extent btree we are holding a write lock on the node's parent and if we
3980 * trigger chunk allocation and attempted to insert the new block group item
3981 * in the extent btree right way, we could deadlock because the path for the
3982 * insertion can include that parent node. At first glance it seems impossible
3983 * to trigger chunk allocation after starting a transaction since tasks should
3984 * reserve enough transaction units (metadata space), however while that is true
3985 * most of the time, chunk allocation may still be triggered for several reasons:
3986 *
3987 * 1) When reserving metadata, we check if there is enough free space in the
3988 * metadata space_info and therefore don't trigger allocation of a new chunk.
3989 * However later when the task actually tries to COW an extent buffer from
3990 * the extent btree or from the device btree for example, it is forced to
3991 * allocate a new block group (chunk) because the only one that had enough
3992 * free space was just turned to RO mode by a running scrub for example (or
3993 * device replace, block group reclaim thread, etc), so we can not use it
3994 * for allocating an extent and end up being forced to allocate a new one;
3995 *
3996 * 2) Because we only check that the metadata space_info has enough free bytes,
3997 * we end up not allocating a new metadata chunk in that case. However if
3998 * the filesystem was mounted in degraded mode, none of the existing block
3999 * groups might be suitable for extent allocation due to their incompatible
4000 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
4001 * use a RAID1 profile, in degraded mode using a single device). In this case
4002 * when the task attempts to COW some extent buffer of the extent btree for
4003 * example, it will trigger allocation of a new metadata block group with a
4004 * suitable profile (SINGLE profile in the example of the degraded mount of
4005 * the RAID1 filesystem);
4006 *
4007 * 3) The task has reserved enough transaction units / metadata space, but when
4008 * it attempts to COW an extent buffer from the extent or device btree for
4009 * example, it does not find any free extent in any metadata block group,
4010 * therefore forced to try to allocate a new metadata block group.
4011 * This is because some other task allocated all available extents in the
4012 * meanwhile - this typically happens with tasks that don't reserve space
4013 * properly, either intentionally or as a bug. One example where this is
4014 * done intentionally is fsync, as it does not reserve any transaction units
4015 * and ends up allocating a variable number of metadata extents for log
4016 * tree extent buffers;
4017 *
4018 * 4) The task has reserved enough transaction units / metadata space, but right
4019 * before it tries to allocate the last extent buffer it needs, a discard
4020 * operation comes in and, temporarily, removes the last free space entry from
4021 * the only metadata block group that had free space (discard starts by
4022 * removing a free space entry from a block group, then does the discard
4023 * operation and, once it's done, it adds back the free space entry to the
4024 * block group).
4025 *
4026 * We also need this 2 phases setup when adding a device to a filesystem with
4027 * a seed device - we must create new metadata and system chunks without adding
4028 * any of the block group items to the chunk, extent and device btrees. If we
4029 * did not do it this way, we would get ENOSPC when attempting to update those
4030 * btrees, since all the chunks from the seed device are read-only.
4031 *
4032 * Phase 1 does the updates and insertions to the chunk btree because if we had
4033 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4034 * parallel, we risk having too many system chunks allocated by many tasks if
4035 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4036 * extreme case this leads to exhaustion of the system chunk array in the
4037 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4038 * and with RAID filesystems (so we have more device items in the chunk btree).
4039 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4040 * the system chunk array due to concurrent allocations") provides more details.
4041 *
4042 * Allocation of system chunks does not happen through this function. A task that
4043 * needs to update the chunk btree (the only btree that uses system chunks), must
4044 * preallocate chunk space by calling either check_system_chunk() or
4045 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4046 * metadata chunk or when removing a chunk, while the later is used before doing
4047 * a modification to the chunk btree - use cases for the later are adding,
4048 * removing and resizing a device as well as relocation of a system chunk.
4049 * See the comment below for more details.
4050 *
4051 * The reservation of system space, done through check_system_chunk(), as well
4052 * as all the updates and insertions into the chunk btree must be done while
4053 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4054 * an extent buffer from the chunks btree we never trigger allocation of a new
4055 * system chunk, which would result in a deadlock (trying to lock twice an
4056 * extent buffer of the chunk btree, first time before triggering the chunk
4057 * allocation and the second time during chunk allocation while attempting to
4058 * update the chunks btree). The system chunk array is also updated while holding
4059 * that mutex. The same logic applies to removing chunks - we must reserve system
4060 * space, update the chunk btree and the system chunk array in the superblock
4061 * while holding fs_info->chunk_mutex.
4062 *
4063 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4064 *
4065 * If @force is CHUNK_ALLOC_FORCE:
4066 * - return 1 if it successfully allocates a chunk,
4067 * - return errors including -ENOSPC otherwise.
4068 * If @force is NOT CHUNK_ALLOC_FORCE:
4069 * - return 0 if it doesn't need to allocate a new chunk,
4070 * - return 1 if it successfully allocates a chunk,
4071 * - return errors including -ENOSPC otherwise.
4072 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)4073 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4074 enum btrfs_chunk_alloc_enum force)
4075 {
4076 struct btrfs_fs_info *fs_info = trans->fs_info;
4077 struct btrfs_space_info *space_info;
4078 struct btrfs_block_group *ret_bg;
4079 bool wait_for_alloc = false;
4080 bool should_alloc = false;
4081 bool from_extent_allocation = false;
4082 int ret = 0;
4083
4084 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4085 from_extent_allocation = true;
4086 force = CHUNK_ALLOC_FORCE;
4087 }
4088
4089 /* Don't re-enter if we're already allocating a chunk */
4090 if (trans->allocating_chunk)
4091 return -ENOSPC;
4092 /*
4093 * Allocation of system chunks can not happen through this path, as we
4094 * could end up in a deadlock if we are allocating a data or metadata
4095 * chunk and there is another task modifying the chunk btree.
4096 *
4097 * This is because while we are holding the chunk mutex, we will attempt
4098 * to add the new chunk item to the chunk btree or update an existing
4099 * device item in the chunk btree, while the other task that is modifying
4100 * the chunk btree is attempting to COW an extent buffer while holding a
4101 * lock on it and on its parent - if the COW operation triggers a system
4102 * chunk allocation, then we can deadlock because we are holding the
4103 * chunk mutex and we may need to access that extent buffer or its parent
4104 * in order to add the chunk item or update a device item.
4105 *
4106 * Tasks that want to modify the chunk tree should reserve system space
4107 * before updating the chunk btree, by calling either
4108 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4109 * It's possible that after a task reserves the space, it still ends up
4110 * here - this happens in the cases described above at do_chunk_alloc().
4111 * The task will have to either retry or fail.
4112 */
4113 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4114 return -ENOSPC;
4115
4116 space_info = btrfs_find_space_info(fs_info, flags);
4117 ASSERT(space_info);
4118
4119 do {
4120 spin_lock(&space_info->lock);
4121 if (force < space_info->force_alloc)
4122 force = space_info->force_alloc;
4123 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4124 if (space_info->full) {
4125 /* No more free physical space */
4126 if (should_alloc)
4127 ret = -ENOSPC;
4128 else
4129 ret = 0;
4130 spin_unlock(&space_info->lock);
4131 return ret;
4132 } else if (!should_alloc) {
4133 spin_unlock(&space_info->lock);
4134 return 0;
4135 } else if (space_info->chunk_alloc) {
4136 /*
4137 * Someone is already allocating, so we need to block
4138 * until this someone is finished and then loop to
4139 * recheck if we should continue with our allocation
4140 * attempt.
4141 */
4142 wait_for_alloc = true;
4143 force = CHUNK_ALLOC_NO_FORCE;
4144 spin_unlock(&space_info->lock);
4145 mutex_lock(&fs_info->chunk_mutex);
4146 mutex_unlock(&fs_info->chunk_mutex);
4147 } else {
4148 /* Proceed with allocation */
4149 space_info->chunk_alloc = 1;
4150 wait_for_alloc = false;
4151 spin_unlock(&space_info->lock);
4152 }
4153
4154 cond_resched();
4155 } while (wait_for_alloc);
4156
4157 mutex_lock(&fs_info->chunk_mutex);
4158 trans->allocating_chunk = true;
4159
4160 /*
4161 * If we have mixed data/metadata chunks we want to make sure we keep
4162 * allocating mixed chunks instead of individual chunks.
4163 */
4164 if (btrfs_mixed_space_info(space_info))
4165 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4166
4167 /*
4168 * if we're doing a data chunk, go ahead and make sure that
4169 * we keep a reasonable number of metadata chunks allocated in the
4170 * FS as well.
4171 */
4172 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4173 fs_info->data_chunk_allocations++;
4174 if (!(fs_info->data_chunk_allocations %
4175 fs_info->metadata_ratio))
4176 force_metadata_allocation(fs_info);
4177 }
4178
4179 ret_bg = do_chunk_alloc(trans, flags);
4180 trans->allocating_chunk = false;
4181
4182 if (IS_ERR(ret_bg)) {
4183 ret = PTR_ERR(ret_bg);
4184 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4185 /*
4186 * New block group is likely to be used soon. Try to activate
4187 * it now. Failure is OK for now.
4188 */
4189 btrfs_zone_activate(ret_bg);
4190 }
4191
4192 if (!ret)
4193 btrfs_put_block_group(ret_bg);
4194
4195 spin_lock(&space_info->lock);
4196 if (ret < 0) {
4197 if (ret == -ENOSPC)
4198 space_info->full = 1;
4199 else
4200 goto out;
4201 } else {
4202 ret = 1;
4203 space_info->max_extent_size = 0;
4204 }
4205
4206 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4207 out:
4208 space_info->chunk_alloc = 0;
4209 spin_unlock(&space_info->lock);
4210 mutex_unlock(&fs_info->chunk_mutex);
4211
4212 return ret;
4213 }
4214
get_profile_num_devs(const struct btrfs_fs_info * fs_info,u64 type)4215 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type)
4216 {
4217 u64 num_dev;
4218
4219 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4220 if (!num_dev)
4221 num_dev = fs_info->fs_devices->rw_devices;
4222
4223 return num_dev;
4224 }
4225
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)4226 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4227 u64 bytes,
4228 u64 type)
4229 {
4230 struct btrfs_fs_info *fs_info = trans->fs_info;
4231 struct btrfs_space_info *info;
4232 u64 left;
4233 int ret = 0;
4234
4235 /*
4236 * Needed because we can end up allocating a system chunk and for an
4237 * atomic and race free space reservation in the chunk block reserve.
4238 */
4239 lockdep_assert_held(&fs_info->chunk_mutex);
4240
4241 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4242 spin_lock(&info->lock);
4243 left = info->total_bytes - btrfs_space_info_used(info, true);
4244 spin_unlock(&info->lock);
4245
4246 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4247 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4248 left, bytes, type);
4249 btrfs_dump_space_info(fs_info, info, 0, 0);
4250 }
4251
4252 if (left < bytes) {
4253 u64 flags = btrfs_system_alloc_profile(fs_info);
4254 struct btrfs_block_group *bg;
4255
4256 /*
4257 * Ignore failure to create system chunk. We might end up not
4258 * needing it, as we might not need to COW all nodes/leafs from
4259 * the paths we visit in the chunk tree (they were already COWed
4260 * or created in the current transaction for example).
4261 */
4262 bg = btrfs_create_chunk(trans, flags);
4263 if (IS_ERR(bg)) {
4264 ret = PTR_ERR(bg);
4265 } else {
4266 /*
4267 * We have a new chunk. We also need to activate it for
4268 * zoned filesystem.
4269 */
4270 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4271 if (ret < 0)
4272 return;
4273
4274 /*
4275 * If we fail to add the chunk item here, we end up
4276 * trying again at phase 2 of chunk allocation, at
4277 * btrfs_create_pending_block_groups(). So ignore
4278 * any error here. An ENOSPC here could happen, due to
4279 * the cases described at do_chunk_alloc() - the system
4280 * block group we just created was just turned into RO
4281 * mode by a scrub for example, or a running discard
4282 * temporarily removed its free space entries, etc.
4283 */
4284 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4285 }
4286 }
4287
4288 if (!ret) {
4289 ret = btrfs_block_rsv_add(fs_info,
4290 &fs_info->chunk_block_rsv,
4291 bytes, BTRFS_RESERVE_NO_FLUSH);
4292 if (!ret)
4293 trans->chunk_bytes_reserved += bytes;
4294 }
4295 }
4296
4297 /*
4298 * Reserve space in the system space for allocating or removing a chunk.
4299 * The caller must be holding fs_info->chunk_mutex.
4300 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4301 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4302 {
4303 struct btrfs_fs_info *fs_info = trans->fs_info;
4304 const u64 num_devs = get_profile_num_devs(fs_info, type);
4305 u64 bytes;
4306
4307 /* num_devs device items to update and 1 chunk item to add or remove. */
4308 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4309 btrfs_calc_insert_metadata_size(fs_info, 1);
4310
4311 reserve_chunk_space(trans, bytes, type);
4312 }
4313
4314 /*
4315 * Reserve space in the system space, if needed, for doing a modification to the
4316 * chunk btree.
4317 *
4318 * @trans: A transaction handle.
4319 * @is_item_insertion: Indicate if the modification is for inserting a new item
4320 * in the chunk btree or if it's for the deletion or update
4321 * of an existing item.
4322 *
4323 * This is used in a context where we need to update the chunk btree outside
4324 * block group allocation and removal, to avoid a deadlock with a concurrent
4325 * task that is allocating a metadata or data block group and therefore needs to
4326 * update the chunk btree while holding the chunk mutex. After the update to the
4327 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4328 *
4329 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)4330 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4331 bool is_item_insertion)
4332 {
4333 struct btrfs_fs_info *fs_info = trans->fs_info;
4334 u64 bytes;
4335
4336 if (is_item_insertion)
4337 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4338 else
4339 bytes = btrfs_calc_metadata_size(fs_info, 1);
4340
4341 mutex_lock(&fs_info->chunk_mutex);
4342 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4343 mutex_unlock(&fs_info->chunk_mutex);
4344 }
4345
btrfs_put_block_group_cache(struct btrfs_fs_info * info)4346 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4347 {
4348 struct btrfs_block_group *block_group;
4349
4350 block_group = btrfs_lookup_first_block_group(info, 0);
4351 while (block_group) {
4352 btrfs_wait_block_group_cache_done(block_group);
4353 spin_lock(&block_group->lock);
4354 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4355 &block_group->runtime_flags)) {
4356 struct btrfs_inode *inode = block_group->inode;
4357
4358 block_group->inode = NULL;
4359 spin_unlock(&block_group->lock);
4360
4361 ASSERT(block_group->io_ctl.inode == NULL);
4362 iput(&inode->vfs_inode);
4363 } else {
4364 spin_unlock(&block_group->lock);
4365 }
4366 block_group = btrfs_next_block_group(block_group);
4367 }
4368 }
4369
4370 /*
4371 * Must be called only after stopping all workers, since we could have block
4372 * group caching kthreads running, and therefore they could race with us if we
4373 * freed the block groups before stopping them.
4374 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4375 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4376 {
4377 struct btrfs_block_group *block_group;
4378 struct btrfs_space_info *space_info;
4379 struct btrfs_caching_control *caching_ctl;
4380 struct rb_node *n;
4381
4382 if (btrfs_is_zoned(info)) {
4383 if (info->active_meta_bg) {
4384 btrfs_put_block_group(info->active_meta_bg);
4385 info->active_meta_bg = NULL;
4386 }
4387 if (info->active_system_bg) {
4388 btrfs_put_block_group(info->active_system_bg);
4389 info->active_system_bg = NULL;
4390 }
4391 }
4392
4393 write_lock(&info->block_group_cache_lock);
4394 while (!list_empty(&info->caching_block_groups)) {
4395 caching_ctl = list_entry(info->caching_block_groups.next,
4396 struct btrfs_caching_control, list);
4397 list_del(&caching_ctl->list);
4398 btrfs_put_caching_control(caching_ctl);
4399 }
4400 write_unlock(&info->block_group_cache_lock);
4401
4402 spin_lock(&info->unused_bgs_lock);
4403 while (!list_empty(&info->unused_bgs)) {
4404 block_group = list_first_entry(&info->unused_bgs,
4405 struct btrfs_block_group,
4406 bg_list);
4407 list_del_init(&block_group->bg_list);
4408 btrfs_put_block_group(block_group);
4409 }
4410
4411 while (!list_empty(&info->reclaim_bgs)) {
4412 block_group = list_first_entry(&info->reclaim_bgs,
4413 struct btrfs_block_group,
4414 bg_list);
4415 list_del_init(&block_group->bg_list);
4416 btrfs_put_block_group(block_group);
4417 }
4418 spin_unlock(&info->unused_bgs_lock);
4419
4420 spin_lock(&info->zone_active_bgs_lock);
4421 while (!list_empty(&info->zone_active_bgs)) {
4422 block_group = list_first_entry(&info->zone_active_bgs,
4423 struct btrfs_block_group,
4424 active_bg_list);
4425 list_del_init(&block_group->active_bg_list);
4426 btrfs_put_block_group(block_group);
4427 }
4428 spin_unlock(&info->zone_active_bgs_lock);
4429
4430 write_lock(&info->block_group_cache_lock);
4431 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4432 block_group = rb_entry(n, struct btrfs_block_group,
4433 cache_node);
4434 rb_erase_cached(&block_group->cache_node,
4435 &info->block_group_cache_tree);
4436 RB_CLEAR_NODE(&block_group->cache_node);
4437 write_unlock(&info->block_group_cache_lock);
4438
4439 down_write(&block_group->space_info->groups_sem);
4440 list_del(&block_group->list);
4441 up_write(&block_group->space_info->groups_sem);
4442
4443 /*
4444 * We haven't cached this block group, which means we could
4445 * possibly have excluded extents on this block group.
4446 */
4447 if (block_group->cached == BTRFS_CACHE_NO ||
4448 block_group->cached == BTRFS_CACHE_ERROR)
4449 btrfs_free_excluded_extents(block_group);
4450
4451 btrfs_remove_free_space_cache(block_group);
4452 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4453 ASSERT(list_empty(&block_group->dirty_list));
4454 ASSERT(list_empty(&block_group->io_list));
4455 ASSERT(list_empty(&block_group->bg_list));
4456 ASSERT(refcount_read(&block_group->refs) == 1);
4457 ASSERT(block_group->swap_extents == 0);
4458 btrfs_put_block_group(block_group);
4459
4460 write_lock(&info->block_group_cache_lock);
4461 }
4462 write_unlock(&info->block_group_cache_lock);
4463
4464 btrfs_release_global_block_rsv(info);
4465
4466 while (!list_empty(&info->space_info)) {
4467 space_info = list_entry(info->space_info.next,
4468 struct btrfs_space_info,
4469 list);
4470
4471 /*
4472 * Do not hide this behind enospc_debug, this is actually
4473 * important and indicates a real bug if this happens.
4474 */
4475 if (WARN_ON(space_info->bytes_pinned > 0 ||
4476 space_info->bytes_may_use > 0))
4477 btrfs_dump_space_info(info, space_info, 0, 0);
4478
4479 /*
4480 * If there was a failure to cleanup a log tree, very likely due
4481 * to an IO failure on a writeback attempt of one or more of its
4482 * extent buffers, we could not do proper (and cheap) unaccounting
4483 * of their reserved space, so don't warn on bytes_reserved > 0 in
4484 * that case.
4485 */
4486 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4487 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4488 if (WARN_ON(space_info->bytes_reserved > 0))
4489 btrfs_dump_space_info(info, space_info, 0, 0);
4490 }
4491
4492 WARN_ON(space_info->reclaim_size > 0);
4493 list_del(&space_info->list);
4494 btrfs_sysfs_remove_space_info(space_info);
4495 }
4496 return 0;
4497 }
4498
btrfs_freeze_block_group(struct btrfs_block_group * cache)4499 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4500 {
4501 atomic_inc(&cache->frozen);
4502 }
4503
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4504 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4505 {
4506 struct btrfs_fs_info *fs_info = block_group->fs_info;
4507 bool cleanup;
4508
4509 spin_lock(&block_group->lock);
4510 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4511 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4512 spin_unlock(&block_group->lock);
4513
4514 if (cleanup) {
4515 struct btrfs_chunk_map *map;
4516
4517 map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4518 /* Logic error, can't happen. */
4519 ASSERT(map);
4520
4521 btrfs_remove_chunk_map(fs_info, map);
4522
4523 /* Once for our lookup reference. */
4524 btrfs_free_chunk_map(map);
4525
4526 /*
4527 * We may have left one free space entry and other possible
4528 * tasks trimming this block group have left 1 entry each one.
4529 * Free them if any.
4530 */
4531 btrfs_remove_free_space_cache(block_group);
4532 }
4533 }
4534
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4535 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4536 {
4537 bool ret = true;
4538
4539 spin_lock(&bg->lock);
4540 if (bg->ro)
4541 ret = false;
4542 else
4543 bg->swap_extents++;
4544 spin_unlock(&bg->lock);
4545
4546 return ret;
4547 }
4548
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4549 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4550 {
4551 spin_lock(&bg->lock);
4552 ASSERT(!bg->ro);
4553 ASSERT(bg->swap_extents >= amount);
4554 bg->swap_extents -= amount;
4555 spin_unlock(&bg->lock);
4556 }
4557
btrfs_calc_block_group_size_class(u64 size)4558 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4559 {
4560 if (size <= SZ_128K)
4561 return BTRFS_BG_SZ_SMALL;
4562 if (size <= SZ_8M)
4563 return BTRFS_BG_SZ_MEDIUM;
4564 return BTRFS_BG_SZ_LARGE;
4565 }
4566
4567 /*
4568 * Handle a block group allocating an extent in a size class
4569 *
4570 * @bg: The block group we allocated in.
4571 * @size_class: The size class of the allocation.
4572 * @force_wrong_size_class: Whether we are desperate enough to allow
4573 * mismatched size classes.
4574 *
4575 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4576 * case of a race that leads to the wrong size class without
4577 * force_wrong_size_class set.
4578 *
4579 * find_free_extent will skip block groups with a mismatched size class until
4580 * it really needs to avoid ENOSPC. In that case it will set
4581 * force_wrong_size_class. However, if a block group is newly allocated and
4582 * doesn't yet have a size class, then it is possible for two allocations of
4583 * different sizes to race and both try to use it. The loser is caught here and
4584 * has to retry.
4585 */
btrfs_use_block_group_size_class(struct btrfs_block_group * bg,enum btrfs_block_group_size_class size_class,bool force_wrong_size_class)4586 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4587 enum btrfs_block_group_size_class size_class,
4588 bool force_wrong_size_class)
4589 {
4590 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4591
4592 /* The new allocation is in the right size class, do nothing */
4593 if (bg->size_class == size_class)
4594 return 0;
4595 /*
4596 * The new allocation is in a mismatched size class.
4597 * This means one of two things:
4598 *
4599 * 1. Two tasks in find_free_extent for different size_classes raced
4600 * and hit the same empty block_group. Make the loser try again.
4601 * 2. A call to find_free_extent got desperate enough to set
4602 * 'force_wrong_slab'. Don't change the size_class, but allow the
4603 * allocation.
4604 */
4605 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4606 if (force_wrong_size_class)
4607 return 0;
4608 return -EAGAIN;
4609 }
4610 /*
4611 * The happy new block group case: the new allocation is the first
4612 * one in the block_group so we set size_class.
4613 */
4614 bg->size_class = size_class;
4615
4616 return 0;
4617 }
4618
btrfs_block_group_should_use_size_class(const struct btrfs_block_group * bg)4619 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg)
4620 {
4621 if (btrfs_is_zoned(bg->fs_info))
4622 return false;
4623 if (!btrfs_is_block_group_data_only(bg))
4624 return false;
4625 return true;
4626 }
4627