1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "mes_v11_api_def.h"
40 #include "kfd_debug.h"
41
42 /* Size of the per-pipe EOP queue */
43 #define CIK_HPD_EOP_BYTES_LOG2 11
44 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
45
46 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
47 u32 pasid, unsigned int vmid);
48
49 static int execute_queues_cpsch(struct device_queue_manager *dqm,
50 enum kfd_unmap_queues_filter filter,
51 uint32_t filter_param,
52 uint32_t grace_period);
53 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
54 enum kfd_unmap_queues_filter filter,
55 uint32_t filter_param,
56 uint32_t grace_period,
57 bool reset);
58
59 static int map_queues_cpsch(struct device_queue_manager *dqm);
60
61 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
62 struct queue *q);
63
64 static inline void deallocate_hqd(struct device_queue_manager *dqm,
65 struct queue *q);
66 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
67 static int allocate_sdma_queue(struct device_queue_manager *dqm,
68 struct queue *q, const uint32_t *restore_sdma_id);
69 static void kfd_process_hw_exception(struct work_struct *work);
70
71 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)72 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
73 {
74 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
75 return KFD_MQD_TYPE_SDMA;
76 return KFD_MQD_TYPE_CP;
77 }
78
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)79 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
80 {
81 int i;
82 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
83 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
84
85 /* queue is available for KFD usage if bit is 1 */
86 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
87 if (test_bit(pipe_offset + i,
88 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
89 return true;
90 return false;
91 }
92
get_cp_queues_num(struct device_queue_manager * dqm)93 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
94 {
95 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
96 AMDGPU_MAX_QUEUES);
97 }
98
get_queues_per_pipe(struct device_queue_manager * dqm)99 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
100 {
101 return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
102 }
103
get_pipes_per_mec(struct device_queue_manager * dqm)104 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
105 {
106 return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
107 }
108
get_num_all_sdma_engines(struct device_queue_manager * dqm)109 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
110 {
111 return kfd_get_num_sdma_engines(dqm->dev) +
112 kfd_get_num_xgmi_sdma_engines(dqm->dev);
113 }
114
get_num_sdma_queues(struct device_queue_manager * dqm)115 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
116 {
117 return kfd_get_num_sdma_engines(dqm->dev) *
118 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
119 }
120
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)121 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
122 {
123 return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
124 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
125 }
126
init_sdma_bitmaps(struct device_queue_manager * dqm)127 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
128 {
129 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
130 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
131
132 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
133 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
134
135 /* Mask out the reserved queues */
136 bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
137 dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
138 KFD_MAX_SDMA_QUEUES);
139 }
140
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)141 void program_sh_mem_settings(struct device_queue_manager *dqm,
142 struct qcm_process_device *qpd)
143 {
144 uint32_t xcc_mask = dqm->dev->xcc_mask;
145 int xcc_id;
146
147 for_each_inst(xcc_id, xcc_mask)
148 dqm->dev->kfd2kgd->program_sh_mem_settings(
149 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
150 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
151 qpd->sh_mem_bases, xcc_id);
152 }
153
kfd_hws_hang(struct device_queue_manager * dqm)154 static void kfd_hws_hang(struct device_queue_manager *dqm)
155 {
156 struct device_process_node *cur;
157 struct qcm_process_device *qpd;
158 struct queue *q;
159
160 /* Mark all device queues as reset. */
161 list_for_each_entry(cur, &dqm->queues, list) {
162 qpd = cur->qpd;
163 list_for_each_entry(q, &qpd->queues_list, list) {
164 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
165
166 pdd->has_reset_queue = true;
167 }
168 }
169
170 /*
171 * Issue a GPU reset if HWS is unresponsive
172 */
173 schedule_work(&dqm->hw_exception_work);
174 }
175
convert_to_mes_queue_type(int queue_type)176 static int convert_to_mes_queue_type(int queue_type)
177 {
178 int mes_queue_type;
179
180 switch (queue_type) {
181 case KFD_QUEUE_TYPE_COMPUTE:
182 mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
183 break;
184 case KFD_QUEUE_TYPE_SDMA:
185 mes_queue_type = MES_QUEUE_TYPE_SDMA;
186 break;
187 default:
188 WARN(1, "Invalid queue type %d", queue_type);
189 mes_queue_type = -EINVAL;
190 break;
191 }
192
193 return mes_queue_type;
194 }
195
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)196 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
197 struct qcm_process_device *qpd)
198 {
199 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
200 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
201 struct mes_add_queue_input queue_input;
202 int r, queue_type;
203 uint64_t wptr_addr_off;
204
205 if (!dqm->sched_running || dqm->sched_halt)
206 return 0;
207 if (!down_read_trylock(&adev->reset_domain->sem))
208 return -EIO;
209
210 if (!pdd->proc_ctx_cpu_ptr) {
211 r = amdgpu_amdkfd_alloc_gtt_mem(adev,
212 AMDGPU_MES_PROC_CTX_SIZE,
213 &pdd->proc_ctx_bo,
214 &pdd->proc_ctx_gpu_addr,
215 &pdd->proc_ctx_cpu_ptr,
216 false);
217 if (r) {
218 dev_err(adev->dev,
219 "failed to allocate process context bo\n");
220 return r;
221 }
222 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
223 }
224
225 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
226 queue_input.process_id = qpd->pqm->process->pasid;
227 queue_input.page_table_base_addr = qpd->page_table_base;
228 queue_input.process_va_start = 0;
229 queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
230 /* MES unit for quantum is 100ns */
231 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */
232 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
233 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
234 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
235 queue_input.inprocess_gang_priority = q->properties.priority;
236 queue_input.gang_global_priority_level =
237 AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
238 queue_input.doorbell_offset = q->properties.doorbell_off;
239 queue_input.mqd_addr = q->gart_mqd_addr;
240 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
241
242 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
243 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
244
245 queue_input.is_kfd_process = 1;
246 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
247 queue_input.queue_size = q->properties.queue_size >> 2;
248
249 queue_input.paging = false;
250 queue_input.tba_addr = qpd->tba_addr;
251 queue_input.tma_addr = qpd->tma_addr;
252 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
253 queue_input.skip_process_ctx_clear =
254 qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
255 (qpd->pqm->process->debug_trap_enabled ||
256 kfd_dbg_has_ttmps_always_setup(q->device));
257
258 queue_type = convert_to_mes_queue_type(q->properties.type);
259 if (queue_type < 0) {
260 dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
261 q->properties.type);
262 up_read(&adev->reset_domain->sem);
263 return -EINVAL;
264 }
265 queue_input.queue_type = (uint32_t)queue_type;
266
267 queue_input.exclusively_scheduled = q->properties.is_gws;
268
269 amdgpu_mes_lock(&adev->mes);
270 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
271 amdgpu_mes_unlock(&adev->mes);
272 up_read(&adev->reset_domain->sem);
273 if (r) {
274 dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
275 q->properties.doorbell_off);
276 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
277 kfd_hws_hang(dqm);
278 }
279
280 return r;
281 }
282
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)283 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
284 struct qcm_process_device *qpd)
285 {
286 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
287 int r;
288 struct mes_remove_queue_input queue_input;
289
290 if (!dqm->sched_running || dqm->sched_halt)
291 return 0;
292 if (!down_read_trylock(&adev->reset_domain->sem))
293 return -EIO;
294
295 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
296 queue_input.doorbell_offset = q->properties.doorbell_off;
297 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
298
299 amdgpu_mes_lock(&adev->mes);
300 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
301 amdgpu_mes_unlock(&adev->mes);
302 up_read(&adev->reset_domain->sem);
303
304 if (r) {
305 dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
306 q->properties.doorbell_off);
307 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
308 kfd_hws_hang(dqm);
309 }
310
311 return r;
312 }
313
remove_all_kfd_queues_mes(struct device_queue_manager * dqm)314 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
315 {
316 struct device_process_node *cur;
317 struct device *dev = dqm->dev->adev->dev;
318 struct qcm_process_device *qpd;
319 struct queue *q;
320 int retval = 0;
321
322 list_for_each_entry(cur, &dqm->queues, list) {
323 qpd = cur->qpd;
324 list_for_each_entry(q, &qpd->queues_list, list) {
325 if (q->properties.is_active) {
326 retval = remove_queue_mes(dqm, q, qpd);
327 if (retval) {
328 dev_err(dev, "%s: Failed to remove queue %d for dev %d",
329 __func__,
330 q->properties.queue_id,
331 dqm->dev->id);
332 return retval;
333 }
334 }
335 }
336 }
337
338 return retval;
339 }
340
add_all_kfd_queues_mes(struct device_queue_manager * dqm)341 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
342 {
343 struct device_process_node *cur;
344 struct device *dev = dqm->dev->adev->dev;
345 struct qcm_process_device *qpd;
346 struct queue *q;
347 int retval = 0;
348
349 list_for_each_entry(cur, &dqm->queues, list) {
350 qpd = cur->qpd;
351 list_for_each_entry(q, &qpd->queues_list, list) {
352 if (!q->properties.is_active)
353 continue;
354 retval = add_queue_mes(dqm, q, qpd);
355 if (retval) {
356 dev_err(dev, "%s: Failed to add queue %d for dev %d",
357 __func__,
358 q->properties.queue_id,
359 dqm->dev->id);
360 return retval;
361 }
362 }
363 }
364
365 return retval;
366 }
367
suspend_all_queues_mes(struct device_queue_manager * dqm)368 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
369 {
370 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
371 int r = 0;
372
373 if (!down_read_trylock(&adev->reset_domain->sem))
374 return -EIO;
375
376 r = amdgpu_mes_suspend(adev);
377 up_read(&adev->reset_domain->sem);
378
379 if (r) {
380 dev_err(adev->dev, "failed to suspend gangs from MES\n");
381 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
382 kfd_hws_hang(dqm);
383 }
384
385 return r;
386 }
387
resume_all_queues_mes(struct device_queue_manager * dqm)388 static int resume_all_queues_mes(struct device_queue_manager *dqm)
389 {
390 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
391 int r = 0;
392
393 if (!down_read_trylock(&adev->reset_domain->sem))
394 return -EIO;
395
396 r = amdgpu_mes_resume(adev);
397 up_read(&adev->reset_domain->sem);
398
399 if (r) {
400 dev_err(adev->dev, "failed to resume gangs from MES\n");
401 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
402 kfd_hws_hang(dqm);
403 }
404
405 return r;
406 }
407
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)408 static void increment_queue_count(struct device_queue_manager *dqm,
409 struct qcm_process_device *qpd,
410 struct queue *q)
411 {
412 dqm->active_queue_count++;
413 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
414 q->properties.type == KFD_QUEUE_TYPE_DIQ)
415 dqm->active_cp_queue_count++;
416
417 if (q->properties.is_gws) {
418 dqm->gws_queue_count++;
419 qpd->mapped_gws_queue = true;
420 }
421 }
422
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)423 static void decrement_queue_count(struct device_queue_manager *dqm,
424 struct qcm_process_device *qpd,
425 struct queue *q)
426 {
427 dqm->active_queue_count--;
428 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
429 q->properties.type == KFD_QUEUE_TYPE_DIQ)
430 dqm->active_cp_queue_count--;
431
432 if (q->properties.is_gws) {
433 dqm->gws_queue_count--;
434 qpd->mapped_gws_queue = false;
435 }
436 }
437
438 /*
439 * Allocate a doorbell ID to this queue.
440 * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
441 */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)442 static int allocate_doorbell(struct qcm_process_device *qpd,
443 struct queue *q,
444 uint32_t const *restore_id)
445 {
446 struct kfd_node *dev = qpd->dqm->dev;
447
448 if (!KFD_IS_SOC15(dev)) {
449 /* On pre-SOC15 chips we need to use the queue ID to
450 * preserve the user mode ABI.
451 */
452
453 if (restore_id && *restore_id != q->properties.queue_id)
454 return -EINVAL;
455
456 q->doorbell_id = q->properties.queue_id;
457 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
458 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
459 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
460 * doorbell assignments based on the engine and queue id.
461 * The doobell index distance between RLC (2*i) and (2*i+1)
462 * for a SDMA engine is 512.
463 */
464
465 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
466
467 /*
468 * q->properties.sdma_engine_id corresponds to the virtual
469 * sdma engine number. However, for doorbell allocation,
470 * we need the physical sdma engine id in order to get the
471 * correct doorbell offset.
472 */
473 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
474 get_num_all_sdma_engines(qpd->dqm) +
475 q->properties.sdma_engine_id]
476 + (q->properties.sdma_queue_id & 1)
477 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
478 + (q->properties.sdma_queue_id >> 1);
479
480 if (restore_id && *restore_id != valid_id)
481 return -EINVAL;
482 q->doorbell_id = valid_id;
483 } else {
484 /* For CP queues on SOC15 */
485 if (restore_id) {
486 /* make sure that ID is free */
487 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
488 return -EINVAL;
489
490 q->doorbell_id = *restore_id;
491 } else {
492 /* or reserve a free doorbell ID */
493 unsigned int found;
494
495 found = find_first_zero_bit(qpd->doorbell_bitmap,
496 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
497 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
498 pr_debug("No doorbells available");
499 return -EBUSY;
500 }
501 set_bit(found, qpd->doorbell_bitmap);
502 q->doorbell_id = found;
503 }
504 }
505
506 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
507 qpd->proc_doorbells,
508 q->doorbell_id,
509 dev->kfd->device_info.doorbell_size);
510 return 0;
511 }
512
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)513 static void deallocate_doorbell(struct qcm_process_device *qpd,
514 struct queue *q)
515 {
516 unsigned int old;
517 struct kfd_node *dev = qpd->dqm->dev;
518
519 if (!KFD_IS_SOC15(dev) ||
520 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
521 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
522 return;
523
524 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
525 WARN_ON(!old);
526 }
527
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)528 static void program_trap_handler_settings(struct device_queue_manager *dqm,
529 struct qcm_process_device *qpd)
530 {
531 uint32_t xcc_mask = dqm->dev->xcc_mask;
532 int xcc_id;
533
534 if (dqm->dev->kfd2kgd->program_trap_handler_settings)
535 for_each_inst(xcc_id, xcc_mask)
536 dqm->dev->kfd2kgd->program_trap_handler_settings(
537 dqm->dev->adev, qpd->vmid, qpd->tba_addr,
538 qpd->tma_addr, xcc_id);
539 }
540
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)541 static int allocate_vmid(struct device_queue_manager *dqm,
542 struct qcm_process_device *qpd,
543 struct queue *q)
544 {
545 struct device *dev = dqm->dev->adev->dev;
546 int allocated_vmid = -1, i;
547
548 for (i = dqm->dev->vm_info.first_vmid_kfd;
549 i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
550 if (!dqm->vmid_pasid[i]) {
551 allocated_vmid = i;
552 break;
553 }
554 }
555
556 if (allocated_vmid < 0) {
557 dev_err(dev, "no more vmid to allocate\n");
558 return -ENOSPC;
559 }
560
561 pr_debug("vmid allocated: %d\n", allocated_vmid);
562
563 dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
564
565 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
566
567 qpd->vmid = allocated_vmid;
568 q->properties.vmid = allocated_vmid;
569
570 program_sh_mem_settings(dqm, qpd);
571
572 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
573 program_trap_handler_settings(dqm, qpd);
574
575 /* qpd->page_table_base is set earlier when register_process()
576 * is called, i.e. when the first queue is created.
577 */
578 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
579 qpd->vmid,
580 qpd->page_table_base);
581 /* invalidate the VM context after pasid and vmid mapping is set up */
582 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
583
584 if (dqm->dev->kfd2kgd->set_scratch_backing_va)
585 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
586 qpd->sh_hidden_private_base, qpd->vmid);
587
588 return 0;
589 }
590
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)591 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
592 struct qcm_process_device *qpd)
593 {
594 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
595 int ret;
596
597 if (!qpd->ib_kaddr)
598 return -ENOMEM;
599
600 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
601 if (ret)
602 return ret;
603
604 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
605 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
606 pmf->release_mem_size / sizeof(uint32_t));
607 }
608
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)609 static void deallocate_vmid(struct device_queue_manager *dqm,
610 struct qcm_process_device *qpd,
611 struct queue *q)
612 {
613 struct device *dev = dqm->dev->adev->dev;
614
615 /* On GFX v7, CP doesn't flush TC at dequeue */
616 if (q->device->adev->asic_type == CHIP_HAWAII)
617 if (flush_texture_cache_nocpsch(q->device, qpd))
618 dev_err(dev, "Failed to flush TC\n");
619
620 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
621
622 /* Release the vmid mapping */
623 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
624 dqm->vmid_pasid[qpd->vmid] = 0;
625
626 qpd->vmid = 0;
627 q->properties.vmid = 0;
628 }
629
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)630 static int create_queue_nocpsch(struct device_queue_manager *dqm,
631 struct queue *q,
632 struct qcm_process_device *qpd,
633 const struct kfd_criu_queue_priv_data *qd,
634 const void *restore_mqd, const void *restore_ctl_stack)
635 {
636 struct mqd_manager *mqd_mgr;
637 int retval;
638
639 dqm_lock(dqm);
640
641 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
642 pr_warn("Can't create new usermode queue because %d queues were already created\n",
643 dqm->total_queue_count);
644 retval = -EPERM;
645 goto out_unlock;
646 }
647
648 if (list_empty(&qpd->queues_list)) {
649 retval = allocate_vmid(dqm, qpd, q);
650 if (retval)
651 goto out_unlock;
652 }
653 q->properties.vmid = qpd->vmid;
654 /*
655 * Eviction state logic: mark all queues as evicted, even ones
656 * not currently active. Restoring inactive queues later only
657 * updates the is_evicted flag but is a no-op otherwise.
658 */
659 q->properties.is_evicted = !!qpd->evicted;
660
661 q->properties.tba_addr = qpd->tba_addr;
662 q->properties.tma_addr = qpd->tma_addr;
663
664 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
665 q->properties.type)];
666 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
667 retval = allocate_hqd(dqm, q);
668 if (retval)
669 goto deallocate_vmid;
670 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
671 q->pipe, q->queue);
672 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
673 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
674 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
675 if (retval)
676 goto deallocate_vmid;
677 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
678 }
679
680 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
681 if (retval)
682 goto out_deallocate_hqd;
683
684 /* Temporarily release dqm lock to avoid a circular lock dependency */
685 dqm_unlock(dqm);
686 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
687 dqm_lock(dqm);
688
689 if (!q->mqd_mem_obj) {
690 retval = -ENOMEM;
691 goto out_deallocate_doorbell;
692 }
693
694 if (qd)
695 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
696 &q->properties, restore_mqd, restore_ctl_stack,
697 qd->ctl_stack_size);
698 else
699 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
700 &q->gart_mqd_addr, &q->properties);
701
702 if (q->properties.is_active) {
703 if (!dqm->sched_running) {
704 WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
705 goto add_queue_to_list;
706 }
707
708 if (WARN(q->process->mm != current->mm,
709 "should only run in user thread"))
710 retval = -EFAULT;
711 else
712 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
713 q->queue, &q->properties, current->mm);
714 if (retval)
715 goto out_free_mqd;
716 }
717
718 add_queue_to_list:
719 list_add(&q->list, &qpd->queues_list);
720 qpd->queue_count++;
721 if (q->properties.is_active)
722 increment_queue_count(dqm, qpd, q);
723
724 /*
725 * Unconditionally increment this counter, regardless of the queue's
726 * type or whether the queue is active.
727 */
728 dqm->total_queue_count++;
729 pr_debug("Total of %d queues are accountable so far\n",
730 dqm->total_queue_count);
731 goto out_unlock;
732
733 out_free_mqd:
734 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
735 out_deallocate_doorbell:
736 deallocate_doorbell(qpd, q);
737 out_deallocate_hqd:
738 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
739 deallocate_hqd(dqm, q);
740 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
741 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
742 deallocate_sdma_queue(dqm, q);
743 deallocate_vmid:
744 if (list_empty(&qpd->queues_list))
745 deallocate_vmid(dqm, qpd, q);
746 out_unlock:
747 dqm_unlock(dqm);
748 return retval;
749 }
750
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)751 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
752 {
753 bool set;
754 int pipe, bit, i;
755
756 set = false;
757
758 for (pipe = dqm->next_pipe_to_allocate, i = 0;
759 i < get_pipes_per_mec(dqm);
760 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
761
762 if (!is_pipe_enabled(dqm, 0, pipe))
763 continue;
764
765 if (dqm->allocated_queues[pipe] != 0) {
766 bit = ffs(dqm->allocated_queues[pipe]) - 1;
767 dqm->allocated_queues[pipe] &= ~(1 << bit);
768 q->pipe = pipe;
769 q->queue = bit;
770 set = true;
771 break;
772 }
773 }
774
775 if (!set)
776 return -EBUSY;
777
778 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
779 /* horizontal hqd allocation */
780 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
781
782 return 0;
783 }
784
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)785 static inline void deallocate_hqd(struct device_queue_manager *dqm,
786 struct queue *q)
787 {
788 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
789 }
790
791 #define SQ_IND_CMD_CMD_KILL 0x00000003
792 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001
793
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)794 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
795 {
796 int status = 0;
797 unsigned int vmid;
798 uint16_t queried_pasid;
799 union SQ_CMD_BITS reg_sq_cmd;
800 union GRBM_GFX_INDEX_BITS reg_gfx_index;
801 struct kfd_process_device *pdd;
802 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
803 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
804 uint32_t xcc_mask = dev->xcc_mask;
805 int xcc_id;
806
807 reg_sq_cmd.u32All = 0;
808 reg_gfx_index.u32All = 0;
809
810 pr_debug("Killing all process wavefronts\n");
811
812 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
813 dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
814 return -EOPNOTSUPP;
815 }
816
817 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
818 * ATC_VMID15_PASID_MAPPING
819 * to check which VMID the current process is mapped to.
820 */
821
822 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
823 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
824 (dev->adev, vmid, &queried_pasid);
825
826 if (status && queried_pasid == p->pasid) {
827 pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
828 vmid, p->pasid);
829 break;
830 }
831 }
832
833 if (vmid > last_vmid_to_scan) {
834 dev_err(dev->adev->dev, "Didn't find vmid for pasid 0x%x\n", p->pasid);
835 return -EFAULT;
836 }
837
838 /* taking the VMID for that process on the safe way using PDD */
839 pdd = kfd_get_process_device_data(dev, p);
840 if (!pdd)
841 return -EFAULT;
842
843 reg_gfx_index.bits.sh_broadcast_writes = 1;
844 reg_gfx_index.bits.se_broadcast_writes = 1;
845 reg_gfx_index.bits.instance_broadcast_writes = 1;
846 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
847 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
848 reg_sq_cmd.bits.vm_id = vmid;
849
850 for_each_inst(xcc_id, xcc_mask)
851 dev->kfd2kgd->wave_control_execute(
852 dev->adev, reg_gfx_index.u32All,
853 reg_sq_cmd.u32All, xcc_id);
854
855 return 0;
856 }
857
858 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
859 * to avoid asynchronized access
860 */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)861 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
862 struct qcm_process_device *qpd,
863 struct queue *q)
864 {
865 int retval;
866 struct mqd_manager *mqd_mgr;
867
868 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
869 q->properties.type)];
870
871 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
872 deallocate_hqd(dqm, q);
873 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
874 deallocate_sdma_queue(dqm, q);
875 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
876 deallocate_sdma_queue(dqm, q);
877 else {
878 pr_debug("q->properties.type %d is invalid\n",
879 q->properties.type);
880 return -EINVAL;
881 }
882 dqm->total_queue_count--;
883
884 deallocate_doorbell(qpd, q);
885
886 if (!dqm->sched_running) {
887 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
888 return 0;
889 }
890
891 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
892 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
893 KFD_UNMAP_LATENCY_MS,
894 q->pipe, q->queue);
895 if (retval == -ETIME)
896 qpd->reset_wavefronts = true;
897
898 list_del(&q->list);
899 if (list_empty(&qpd->queues_list)) {
900 if (qpd->reset_wavefronts) {
901 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
902 dqm->dev);
903 /* dbgdev_wave_reset_wavefronts has to be called before
904 * deallocate_vmid(), i.e. when vmid is still in use.
905 */
906 dbgdev_wave_reset_wavefronts(dqm->dev,
907 qpd->pqm->process);
908 qpd->reset_wavefronts = false;
909 }
910
911 deallocate_vmid(dqm, qpd, q);
912 }
913 qpd->queue_count--;
914 if (q->properties.is_active)
915 decrement_queue_count(dqm, qpd, q);
916
917 return retval;
918 }
919
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)920 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
921 struct qcm_process_device *qpd,
922 struct queue *q)
923 {
924 int retval;
925 uint64_t sdma_val = 0;
926 struct device *dev = dqm->dev->adev->dev;
927 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
928 struct mqd_manager *mqd_mgr =
929 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
930
931 /* Get the SDMA queue stats */
932 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
933 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
934 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
935 &sdma_val);
936 if (retval)
937 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
938 q->properties.queue_id);
939 }
940
941 dqm_lock(dqm);
942 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
943 if (!retval)
944 pdd->sdma_past_activity_counter += sdma_val;
945 dqm_unlock(dqm);
946
947 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
948
949 return retval;
950 }
951
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)952 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
953 struct mqd_update_info *minfo)
954 {
955 int retval = 0;
956 struct device *dev = dqm->dev->adev->dev;
957 struct mqd_manager *mqd_mgr;
958 struct kfd_process_device *pdd;
959 bool prev_active = false;
960
961 dqm_lock(dqm);
962 pdd = kfd_get_process_device_data(q->device, q->process);
963 if (!pdd) {
964 retval = -ENODEV;
965 goto out_unlock;
966 }
967 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
968 q->properties.type)];
969
970 /* Save previous activity state for counters */
971 prev_active = q->properties.is_active;
972
973 /* Make sure the queue is unmapped before updating the MQD */
974 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
975 if (!dqm->dev->kfd->shared_resources.enable_mes)
976 retval = unmap_queues_cpsch(dqm,
977 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
978 else if (prev_active)
979 retval = remove_queue_mes(dqm, q, &pdd->qpd);
980
981 /* queue is reset so inaccessable */
982 if (pdd->has_reset_queue) {
983 retval = -EACCES;
984 goto out_unlock;
985 }
986
987 if (retval) {
988 dev_err(dev, "unmap queue failed\n");
989 goto out_unlock;
990 }
991 } else if (prev_active &&
992 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
993 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
994 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
995
996 if (!dqm->sched_running) {
997 WARN_ONCE(1, "Update non-HWS queue while stopped\n");
998 goto out_unlock;
999 }
1000
1001 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1002 (dqm->dev->kfd->cwsr_enabled ?
1003 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1004 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1005 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1006 if (retval) {
1007 dev_err(dev, "destroy mqd failed\n");
1008 goto out_unlock;
1009 }
1010 }
1011
1012 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1013
1014 /*
1015 * check active state vs. the previous state and modify
1016 * counter accordingly. map_queues_cpsch uses the
1017 * dqm->active_queue_count to determine whether a new runlist must be
1018 * uploaded.
1019 */
1020 if (q->properties.is_active && !prev_active) {
1021 increment_queue_count(dqm, &pdd->qpd, q);
1022 } else if (!q->properties.is_active && prev_active) {
1023 decrement_queue_count(dqm, &pdd->qpd, q);
1024 } else if (q->gws && !q->properties.is_gws) {
1025 if (q->properties.is_active) {
1026 dqm->gws_queue_count++;
1027 pdd->qpd.mapped_gws_queue = true;
1028 }
1029 q->properties.is_gws = true;
1030 } else if (!q->gws && q->properties.is_gws) {
1031 if (q->properties.is_active) {
1032 dqm->gws_queue_count--;
1033 pdd->qpd.mapped_gws_queue = false;
1034 }
1035 q->properties.is_gws = false;
1036 }
1037
1038 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1039 if (!dqm->dev->kfd->shared_resources.enable_mes)
1040 retval = map_queues_cpsch(dqm);
1041 else if (q->properties.is_active)
1042 retval = add_queue_mes(dqm, q, &pdd->qpd);
1043 } else if (q->properties.is_active &&
1044 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1045 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1046 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1047 if (WARN(q->process->mm != current->mm,
1048 "should only run in user thread"))
1049 retval = -EFAULT;
1050 else
1051 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1052 q->pipe, q->queue,
1053 &q->properties, current->mm);
1054 }
1055
1056 out_unlock:
1057 dqm_unlock(dqm);
1058 return retval;
1059 }
1060
1061 /* suspend_single_queue does not lock the dqm like the
1062 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1063 * lock the dqm before calling, and unlock after calling.
1064 *
1065 * The reason we don't lock the dqm is because this function may be
1066 * called on multiple queues in a loop, so rather than locking/unlocking
1067 * multiple times, we will just keep the dqm locked for all of the calls.
1068 */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)1069 static int suspend_single_queue(struct device_queue_manager *dqm,
1070 struct kfd_process_device *pdd,
1071 struct queue *q)
1072 {
1073 bool is_new;
1074
1075 if (q->properties.is_suspended)
1076 return 0;
1077
1078 pr_debug("Suspending PASID %u queue [%i]\n",
1079 pdd->process->pasid,
1080 q->properties.queue_id);
1081
1082 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1083
1084 if (is_new || q->properties.is_being_destroyed) {
1085 pr_debug("Suspend: skip %s queue id %i\n",
1086 is_new ? "new" : "destroyed",
1087 q->properties.queue_id);
1088 return -EBUSY;
1089 }
1090
1091 q->properties.is_suspended = true;
1092 if (q->properties.is_active) {
1093 if (dqm->dev->kfd->shared_resources.enable_mes) {
1094 int r = remove_queue_mes(dqm, q, &pdd->qpd);
1095
1096 if (r)
1097 return r;
1098 }
1099
1100 decrement_queue_count(dqm, &pdd->qpd, q);
1101 q->properties.is_active = false;
1102 }
1103
1104 return 0;
1105 }
1106
1107 /* resume_single_queue does not lock the dqm like the functions
1108 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1109 * lock the dqm before calling, and unlock after calling.
1110 *
1111 * The reason we don't lock the dqm is because this function may be
1112 * called on multiple queues in a loop, so rather than locking/unlocking
1113 * multiple times, we will just keep the dqm locked for all of the calls.
1114 */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1115 static int resume_single_queue(struct device_queue_manager *dqm,
1116 struct qcm_process_device *qpd,
1117 struct queue *q)
1118 {
1119 struct kfd_process_device *pdd;
1120
1121 if (!q->properties.is_suspended)
1122 return 0;
1123
1124 pdd = qpd_to_pdd(qpd);
1125
1126 pr_debug("Restoring from suspend PASID %u queue [%i]\n",
1127 pdd->process->pasid,
1128 q->properties.queue_id);
1129
1130 q->properties.is_suspended = false;
1131
1132 if (QUEUE_IS_ACTIVE(q->properties)) {
1133 if (dqm->dev->kfd->shared_resources.enable_mes) {
1134 int r = add_queue_mes(dqm, q, &pdd->qpd);
1135
1136 if (r)
1137 return r;
1138 }
1139
1140 q->properties.is_active = true;
1141 increment_queue_count(dqm, qpd, q);
1142 }
1143
1144 return 0;
1145 }
1146
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1147 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1148 struct qcm_process_device *qpd)
1149 {
1150 struct queue *q;
1151 struct mqd_manager *mqd_mgr;
1152 struct kfd_process_device *pdd;
1153 int retval, ret = 0;
1154
1155 dqm_lock(dqm);
1156 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1157 goto out;
1158
1159 pdd = qpd_to_pdd(qpd);
1160 pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1161 pdd->process->pasid);
1162
1163 pdd->last_evict_timestamp = get_jiffies_64();
1164 /* Mark all queues as evicted. Deactivate all active queues on
1165 * the qpd.
1166 */
1167 list_for_each_entry(q, &qpd->queues_list, list) {
1168 q->properties.is_evicted = true;
1169 if (!q->properties.is_active)
1170 continue;
1171
1172 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1173 q->properties.type)];
1174 q->properties.is_active = false;
1175 decrement_queue_count(dqm, qpd, q);
1176
1177 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1178 continue;
1179
1180 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1181 (dqm->dev->kfd->cwsr_enabled ?
1182 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1183 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1184 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1185 if (retval && !ret)
1186 /* Return the first error, but keep going to
1187 * maintain a consistent eviction state
1188 */
1189 ret = retval;
1190 }
1191
1192 out:
1193 dqm_unlock(dqm);
1194 return ret;
1195 }
1196
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1197 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1198 struct qcm_process_device *qpd)
1199 {
1200 struct queue *q;
1201 struct device *dev = dqm->dev->adev->dev;
1202 struct kfd_process_device *pdd;
1203 int retval = 0;
1204
1205 dqm_lock(dqm);
1206 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1207 goto out;
1208
1209 pdd = qpd_to_pdd(qpd);
1210
1211 /* The debugger creates processes that temporarily have not acquired
1212 * all VMs for all devices and has no VMs itself.
1213 * Skip queue eviction on process eviction.
1214 */
1215 if (!pdd->drm_priv)
1216 goto out;
1217
1218 pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1219 pdd->process->pasid);
1220
1221 /* Mark all queues as evicted. Deactivate all active queues on
1222 * the qpd.
1223 */
1224 list_for_each_entry(q, &qpd->queues_list, list) {
1225 q->properties.is_evicted = true;
1226 if (!q->properties.is_active)
1227 continue;
1228
1229 q->properties.is_active = false;
1230 decrement_queue_count(dqm, qpd, q);
1231
1232 if (dqm->dev->kfd->shared_resources.enable_mes) {
1233 int err;
1234
1235 err = remove_queue_mes(dqm, q, qpd);
1236 if (err) {
1237 dev_err(dev, "Failed to evict queue %d\n",
1238 q->properties.queue_id);
1239 retval = err;
1240 }
1241 }
1242 }
1243 pdd->last_evict_timestamp = get_jiffies_64();
1244 if (!dqm->dev->kfd->shared_resources.enable_mes)
1245 retval = execute_queues_cpsch(dqm,
1246 qpd->is_debug ?
1247 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1248 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1249 USE_DEFAULT_GRACE_PERIOD);
1250
1251 out:
1252 dqm_unlock(dqm);
1253 return retval;
1254 }
1255
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1256 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1257 struct qcm_process_device *qpd)
1258 {
1259 struct mm_struct *mm = NULL;
1260 struct queue *q;
1261 struct mqd_manager *mqd_mgr;
1262 struct kfd_process_device *pdd;
1263 uint64_t pd_base;
1264 uint64_t eviction_duration;
1265 int retval, ret = 0;
1266
1267 pdd = qpd_to_pdd(qpd);
1268 /* Retrieve PD base */
1269 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1270
1271 dqm_lock(dqm);
1272 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1273 goto out;
1274 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1275 qpd->evicted--;
1276 goto out;
1277 }
1278
1279 pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1280 pdd->process->pasid);
1281
1282 /* Update PD Base in QPD */
1283 qpd->page_table_base = pd_base;
1284 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1285
1286 if (!list_empty(&qpd->queues_list)) {
1287 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1288 dqm->dev->adev,
1289 qpd->vmid,
1290 qpd->page_table_base);
1291 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1292 }
1293
1294 /* Take a safe reference to the mm_struct, which may otherwise
1295 * disappear even while the kfd_process is still referenced.
1296 */
1297 mm = get_task_mm(pdd->process->lead_thread);
1298 if (!mm) {
1299 ret = -EFAULT;
1300 goto out;
1301 }
1302
1303 /* Remove the eviction flags. Activate queues that are not
1304 * inactive for other reasons.
1305 */
1306 list_for_each_entry(q, &qpd->queues_list, list) {
1307 q->properties.is_evicted = false;
1308 if (!QUEUE_IS_ACTIVE(q->properties))
1309 continue;
1310
1311 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1312 q->properties.type)];
1313 q->properties.is_active = true;
1314 increment_queue_count(dqm, qpd, q);
1315
1316 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1317 continue;
1318
1319 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1320 q->queue, &q->properties, mm);
1321 if (retval && !ret)
1322 /* Return the first error, but keep going to
1323 * maintain a consistent eviction state
1324 */
1325 ret = retval;
1326 }
1327 qpd->evicted = 0;
1328 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1329 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1330 out:
1331 if (mm)
1332 mmput(mm);
1333 dqm_unlock(dqm);
1334 return ret;
1335 }
1336
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1337 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1338 struct qcm_process_device *qpd)
1339 {
1340 struct queue *q;
1341 struct device *dev = dqm->dev->adev->dev;
1342 struct kfd_process_device *pdd;
1343 uint64_t eviction_duration;
1344 int retval = 0;
1345
1346 pdd = qpd_to_pdd(qpd);
1347
1348 dqm_lock(dqm);
1349 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1350 goto out;
1351 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1352 qpd->evicted--;
1353 goto out;
1354 }
1355
1356 /* The debugger creates processes that temporarily have not acquired
1357 * all VMs for all devices and has no VMs itself.
1358 * Skip queue restore on process restore.
1359 */
1360 if (!pdd->drm_priv)
1361 goto vm_not_acquired;
1362
1363 pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1364 pdd->process->pasid);
1365
1366 /* Update PD Base in QPD */
1367 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1368 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1369
1370 /* activate all active queues on the qpd */
1371 list_for_each_entry(q, &qpd->queues_list, list) {
1372 q->properties.is_evicted = false;
1373 if (!QUEUE_IS_ACTIVE(q->properties))
1374 continue;
1375
1376 q->properties.is_active = true;
1377 increment_queue_count(dqm, &pdd->qpd, q);
1378
1379 if (dqm->dev->kfd->shared_resources.enable_mes) {
1380 retval = add_queue_mes(dqm, q, qpd);
1381 if (retval) {
1382 dev_err(dev, "Failed to restore queue %d\n",
1383 q->properties.queue_id);
1384 goto out;
1385 }
1386 }
1387 }
1388 if (!dqm->dev->kfd->shared_resources.enable_mes)
1389 retval = execute_queues_cpsch(dqm,
1390 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1391 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1392 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1393 vm_not_acquired:
1394 qpd->evicted = 0;
1395 out:
1396 dqm_unlock(dqm);
1397 return retval;
1398 }
1399
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1400 static int register_process(struct device_queue_manager *dqm,
1401 struct qcm_process_device *qpd)
1402 {
1403 struct device_process_node *n;
1404 struct kfd_process_device *pdd;
1405 uint64_t pd_base;
1406 int retval;
1407
1408 n = kzalloc(sizeof(*n), GFP_KERNEL);
1409 if (!n)
1410 return -ENOMEM;
1411
1412 n->qpd = qpd;
1413
1414 pdd = qpd_to_pdd(qpd);
1415 /* Retrieve PD base */
1416 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1417
1418 dqm_lock(dqm);
1419 list_add(&n->list, &dqm->queues);
1420
1421 /* Update PD Base in QPD */
1422 qpd->page_table_base = pd_base;
1423 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1424
1425 retval = dqm->asic_ops.update_qpd(dqm, qpd);
1426
1427 dqm->processes_count++;
1428
1429 dqm_unlock(dqm);
1430
1431 /* Outside the DQM lock because under the DQM lock we can't do
1432 * reclaim or take other locks that others hold while reclaiming.
1433 */
1434 kfd_inc_compute_active(dqm->dev);
1435
1436 return retval;
1437 }
1438
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1439 static int unregister_process(struct device_queue_manager *dqm,
1440 struct qcm_process_device *qpd)
1441 {
1442 int retval;
1443 struct device_process_node *cur, *next;
1444
1445 pr_debug("qpd->queues_list is %s\n",
1446 list_empty(&qpd->queues_list) ? "empty" : "not empty");
1447
1448 retval = 0;
1449 dqm_lock(dqm);
1450
1451 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1452 if (qpd == cur->qpd) {
1453 list_del(&cur->list);
1454 kfree(cur);
1455 dqm->processes_count--;
1456 goto out;
1457 }
1458 }
1459 /* qpd not found in dqm list */
1460 retval = 1;
1461 out:
1462 dqm_unlock(dqm);
1463
1464 /* Outside the DQM lock because under the DQM lock we can't do
1465 * reclaim or take other locks that others hold while reclaiming.
1466 */
1467 if (!retval)
1468 kfd_dec_compute_active(dqm->dev);
1469
1470 return retval;
1471 }
1472
1473 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1474 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1475 unsigned int vmid)
1476 {
1477 uint32_t xcc_mask = dqm->dev->xcc_mask;
1478 int xcc_id, ret;
1479
1480 for_each_inst(xcc_id, xcc_mask) {
1481 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1482 dqm->dev->adev, pasid, vmid, xcc_id);
1483 if (ret)
1484 break;
1485 }
1486
1487 return ret;
1488 }
1489
init_interrupts(struct device_queue_manager * dqm)1490 static void init_interrupts(struct device_queue_manager *dqm)
1491 {
1492 uint32_t xcc_mask = dqm->dev->xcc_mask;
1493 unsigned int i, xcc_id;
1494
1495 for_each_inst(xcc_id, xcc_mask) {
1496 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1497 if (is_pipe_enabled(dqm, 0, i)) {
1498 dqm->dev->kfd2kgd->init_interrupts(
1499 dqm->dev->adev, i, xcc_id);
1500 }
1501 }
1502 }
1503 }
1504
initialize_nocpsch(struct device_queue_manager * dqm)1505 static int initialize_nocpsch(struct device_queue_manager *dqm)
1506 {
1507 int pipe, queue;
1508
1509 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1510
1511 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1512 sizeof(unsigned int), GFP_KERNEL);
1513 if (!dqm->allocated_queues)
1514 return -ENOMEM;
1515
1516 mutex_init(&dqm->lock_hidden);
1517 INIT_LIST_HEAD(&dqm->queues);
1518 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1519 dqm->active_cp_queue_count = 0;
1520 dqm->gws_queue_count = 0;
1521
1522 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1523 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1524
1525 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1526 if (test_bit(pipe_offset + queue,
1527 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1528 dqm->allocated_queues[pipe] |= 1 << queue;
1529 }
1530
1531 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1532
1533 init_sdma_bitmaps(dqm);
1534
1535 return 0;
1536 }
1537
uninitialize(struct device_queue_manager * dqm)1538 static void uninitialize(struct device_queue_manager *dqm)
1539 {
1540 int i;
1541
1542 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1543
1544 kfree(dqm->allocated_queues);
1545 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1546 kfree(dqm->mqd_mgrs[i]);
1547 mutex_destroy(&dqm->lock_hidden);
1548 }
1549
start_nocpsch(struct device_queue_manager * dqm)1550 static int start_nocpsch(struct device_queue_manager *dqm)
1551 {
1552 int r = 0;
1553
1554 pr_info("SW scheduler is used");
1555 init_interrupts(dqm);
1556
1557 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1558 r = pm_init(&dqm->packet_mgr, dqm);
1559 if (!r)
1560 dqm->sched_running = true;
1561
1562 return r;
1563 }
1564
stop_nocpsch(struct device_queue_manager * dqm)1565 static int stop_nocpsch(struct device_queue_manager *dqm)
1566 {
1567 dqm_lock(dqm);
1568 if (!dqm->sched_running) {
1569 dqm_unlock(dqm);
1570 return 0;
1571 }
1572
1573 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1574 pm_uninit(&dqm->packet_mgr);
1575 dqm->sched_running = false;
1576 dqm_unlock(dqm);
1577
1578 return 0;
1579 }
1580
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1581 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1582 struct queue *q, const uint32_t *restore_sdma_id)
1583 {
1584 struct device *dev = dqm->dev->adev->dev;
1585 int bit;
1586
1587 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1588 if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1589 dev_err(dev, "No more SDMA queue to allocate\n");
1590 return -ENOMEM;
1591 }
1592
1593 if (restore_sdma_id) {
1594 /* Re-use existing sdma_id */
1595 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1596 dev_err(dev, "SDMA queue already in use\n");
1597 return -EBUSY;
1598 }
1599 clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1600 q->sdma_id = *restore_sdma_id;
1601 } else {
1602 /* Find first available sdma_id */
1603 bit = find_first_bit(dqm->sdma_bitmap,
1604 get_num_sdma_queues(dqm));
1605 clear_bit(bit, dqm->sdma_bitmap);
1606 q->sdma_id = bit;
1607 }
1608
1609 q->properties.sdma_engine_id =
1610 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1611 q->properties.sdma_queue_id = q->sdma_id /
1612 kfd_get_num_sdma_engines(dqm->dev);
1613 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1614 if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1615 dev_err(dev, "No more XGMI SDMA queue to allocate\n");
1616 return -ENOMEM;
1617 }
1618 if (restore_sdma_id) {
1619 /* Re-use existing sdma_id */
1620 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1621 dev_err(dev, "SDMA queue already in use\n");
1622 return -EBUSY;
1623 }
1624 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1625 q->sdma_id = *restore_sdma_id;
1626 } else {
1627 bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1628 get_num_xgmi_sdma_queues(dqm));
1629 clear_bit(bit, dqm->xgmi_sdma_bitmap);
1630 q->sdma_id = bit;
1631 }
1632 /* sdma_engine_id is sdma id including
1633 * both PCIe-optimized SDMAs and XGMI-
1634 * optimized SDMAs. The calculation below
1635 * assumes the first N engines are always
1636 * PCIe-optimized ones
1637 */
1638 q->properties.sdma_engine_id =
1639 kfd_get_num_sdma_engines(dqm->dev) +
1640 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1641 q->properties.sdma_queue_id = q->sdma_id /
1642 kfd_get_num_xgmi_sdma_engines(dqm->dev);
1643 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1644 int i, num_queues, num_engines, eng_offset = 0, start_engine;
1645 bool free_bit_found = false, is_xgmi = false;
1646
1647 if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1648 num_queues = get_num_sdma_queues(dqm);
1649 num_engines = kfd_get_num_sdma_engines(dqm->dev);
1650 q->properties.type = KFD_QUEUE_TYPE_SDMA;
1651 } else {
1652 num_queues = get_num_xgmi_sdma_queues(dqm);
1653 num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1654 eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1655 q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1656 is_xgmi = true;
1657 }
1658
1659 /* Scan available bit based on target engine ID. */
1660 start_engine = q->properties.sdma_engine_id - eng_offset;
1661 for (i = start_engine; i < num_queues; i += num_engines) {
1662
1663 if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1664 continue;
1665
1666 clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1667 q->sdma_id = i;
1668 q->properties.sdma_queue_id = q->sdma_id / num_engines;
1669 free_bit_found = true;
1670 break;
1671 }
1672
1673 if (!free_bit_found) {
1674 dev_err(dev, "No more SDMA queue to allocate for target ID %i\n",
1675 q->properties.sdma_engine_id);
1676 return -ENOMEM;
1677 }
1678 }
1679
1680 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1681 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1682
1683 return 0;
1684 }
1685
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1686 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1687 struct queue *q)
1688 {
1689 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1690 if (q->sdma_id >= get_num_sdma_queues(dqm))
1691 return;
1692 set_bit(q->sdma_id, dqm->sdma_bitmap);
1693 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1694 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1695 return;
1696 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1697 }
1698 }
1699
1700 /*
1701 * Device Queue Manager implementation for cp scheduler
1702 */
1703
set_sched_resources(struct device_queue_manager * dqm)1704 static int set_sched_resources(struct device_queue_manager *dqm)
1705 {
1706 int i, mec;
1707 struct scheduling_resources res;
1708 struct device *dev = dqm->dev->adev->dev;
1709
1710 res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1711
1712 res.queue_mask = 0;
1713 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1714 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1715 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1716
1717 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1718 continue;
1719
1720 /* only acquire queues from the first MEC */
1721 if (mec > 0)
1722 continue;
1723
1724 /* This situation may be hit in the future if a new HW
1725 * generation exposes more than 64 queues. If so, the
1726 * definition of res.queue_mask needs updating
1727 */
1728 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1729 dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1730 break;
1731 }
1732
1733 res.queue_mask |= 1ull
1734 << amdgpu_queue_mask_bit_to_set_resource_bit(
1735 dqm->dev->adev, i);
1736 }
1737 res.gws_mask = ~0ull;
1738 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1739
1740 pr_debug("Scheduling resources:\n"
1741 "vmid mask: 0x%8X\n"
1742 "queue mask: 0x%8llX\n",
1743 res.vmid_mask, res.queue_mask);
1744
1745 return pm_send_set_resources(&dqm->packet_mgr, &res);
1746 }
1747
initialize_cpsch(struct device_queue_manager * dqm)1748 static int initialize_cpsch(struct device_queue_manager *dqm)
1749 {
1750 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1751
1752 mutex_init(&dqm->lock_hidden);
1753 INIT_LIST_HEAD(&dqm->queues);
1754 dqm->active_queue_count = dqm->processes_count = 0;
1755 dqm->active_cp_queue_count = 0;
1756 dqm->gws_queue_count = 0;
1757 dqm->active_runlist = false;
1758 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1759 dqm->trap_debug_vmid = 0;
1760
1761 init_sdma_bitmaps(dqm);
1762
1763 if (dqm->dev->kfd2kgd->get_iq_wait_times)
1764 dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
1765 &dqm->wait_times,
1766 ffs(dqm->dev->xcc_mask) - 1);
1767 return 0;
1768 }
1769
1770 /* halt_cpsch:
1771 * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1772 * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1773 * is called.
1774 */
halt_cpsch(struct device_queue_manager * dqm)1775 static int halt_cpsch(struct device_queue_manager *dqm)
1776 {
1777 int ret = 0;
1778
1779 dqm_lock(dqm);
1780 if (!dqm->sched_running) {
1781 dqm_unlock(dqm);
1782 return 0;
1783 }
1784
1785 WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1786
1787 if (!dqm->is_hws_hang) {
1788 if (!dqm->dev->kfd->shared_resources.enable_mes)
1789 ret = unmap_queues_cpsch(dqm,
1790 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1791 USE_DEFAULT_GRACE_PERIOD, false);
1792 else
1793 ret = remove_all_kfd_queues_mes(dqm);
1794 }
1795 dqm->sched_halt = true;
1796 dqm_unlock(dqm);
1797
1798 return ret;
1799 }
1800
1801 /* unhalt_cpsch
1802 * Unset dqm->sched_halt and map queues back to runlist
1803 */
unhalt_cpsch(struct device_queue_manager * dqm)1804 static int unhalt_cpsch(struct device_queue_manager *dqm)
1805 {
1806 int ret = 0;
1807
1808 dqm_lock(dqm);
1809 if (!dqm->sched_running || !dqm->sched_halt) {
1810 WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1811 dqm_unlock(dqm);
1812 return 0;
1813 }
1814 dqm->sched_halt = false;
1815 if (!dqm->dev->kfd->shared_resources.enable_mes)
1816 ret = execute_queues_cpsch(dqm,
1817 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1818 0, USE_DEFAULT_GRACE_PERIOD);
1819 else
1820 ret = add_all_kfd_queues_mes(dqm);
1821
1822 dqm_unlock(dqm);
1823
1824 return ret;
1825 }
1826
start_cpsch(struct device_queue_manager * dqm)1827 static int start_cpsch(struct device_queue_manager *dqm)
1828 {
1829 struct device *dev = dqm->dev->adev->dev;
1830 int retval, num_hw_queue_slots;
1831
1832 retval = 0;
1833
1834 dqm_lock(dqm);
1835
1836 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1837 retval = pm_init(&dqm->packet_mgr, dqm);
1838 if (retval)
1839 goto fail_packet_manager_init;
1840
1841 retval = set_sched_resources(dqm);
1842 if (retval)
1843 goto fail_set_sched_resources;
1844 }
1845 pr_debug("Allocating fence memory\n");
1846
1847 /* allocate fence memory on the gart */
1848 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1849 &dqm->fence_mem);
1850
1851 if (retval)
1852 goto fail_allocate_vidmem;
1853
1854 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1855 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1856
1857 init_interrupts(dqm);
1858
1859 /* clear hang status when driver try to start the hw scheduler */
1860 dqm->sched_running = true;
1861
1862 if (!dqm->dev->kfd->shared_resources.enable_mes)
1863 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1864
1865 /* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */
1866 if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu &&
1867 (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) {
1868 uint32_t reg_offset = 0;
1869 uint32_t grace_period = 1;
1870
1871 retval = pm_update_grace_period(&dqm->packet_mgr,
1872 grace_period);
1873 if (retval)
1874 dev_err(dev, "Setting grace timeout failed\n");
1875 else if (dqm->dev->kfd2kgd->build_grace_period_packet_info)
1876 /* Update dqm->wait_times maintained in software */
1877 dqm->dev->kfd2kgd->build_grace_period_packet_info(
1878 dqm->dev->adev, dqm->wait_times,
1879 grace_period, ®_offset,
1880 &dqm->wait_times);
1881 }
1882
1883 /* setup per-queue reset detection buffer */
1884 num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1885 dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1886 NUM_XCC(dqm->dev->xcc_mask);
1887
1888 dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1889 dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1890
1891 if (!dqm->detect_hang_info) {
1892 retval = -ENOMEM;
1893 goto fail_detect_hang_buffer;
1894 }
1895
1896 dqm_unlock(dqm);
1897
1898 return 0;
1899 fail_detect_hang_buffer:
1900 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1901 fail_allocate_vidmem:
1902 fail_set_sched_resources:
1903 if (!dqm->dev->kfd->shared_resources.enable_mes)
1904 pm_uninit(&dqm->packet_mgr);
1905 fail_packet_manager_init:
1906 dqm_unlock(dqm);
1907 return retval;
1908 }
1909
stop_cpsch(struct device_queue_manager * dqm)1910 static int stop_cpsch(struct device_queue_manager *dqm)
1911 {
1912 dqm_lock(dqm);
1913 if (!dqm->sched_running) {
1914 dqm_unlock(dqm);
1915 return 0;
1916 }
1917
1918 if (!dqm->dev->kfd->shared_resources.enable_mes)
1919 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1920 else
1921 remove_all_kfd_queues_mes(dqm);
1922
1923 dqm->sched_running = false;
1924
1925 if (!dqm->dev->kfd->shared_resources.enable_mes)
1926 pm_release_ib(&dqm->packet_mgr);
1927
1928 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1929 if (!dqm->dev->kfd->shared_resources.enable_mes)
1930 pm_uninit(&dqm->packet_mgr);
1931 kfree(dqm->detect_hang_info);
1932 dqm->detect_hang_info = NULL;
1933 dqm_unlock(dqm);
1934
1935 return 0;
1936 }
1937
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1938 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1939 struct kernel_queue *kq,
1940 struct qcm_process_device *qpd)
1941 {
1942 dqm_lock(dqm);
1943 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1944 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1945 dqm->total_queue_count);
1946 dqm_unlock(dqm);
1947 return -EPERM;
1948 }
1949
1950 /*
1951 * Unconditionally increment this counter, regardless of the queue's
1952 * type or whether the queue is active.
1953 */
1954 dqm->total_queue_count++;
1955 pr_debug("Total of %d queues are accountable so far\n",
1956 dqm->total_queue_count);
1957
1958 list_add(&kq->list, &qpd->priv_queue_list);
1959 increment_queue_count(dqm, qpd, kq->queue);
1960 qpd->is_debug = true;
1961 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1962 USE_DEFAULT_GRACE_PERIOD);
1963 dqm_unlock(dqm);
1964
1965 return 0;
1966 }
1967
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1968 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1969 struct kernel_queue *kq,
1970 struct qcm_process_device *qpd)
1971 {
1972 dqm_lock(dqm);
1973 list_del(&kq->list);
1974 decrement_queue_count(dqm, qpd, kq->queue);
1975 qpd->is_debug = false;
1976 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1977 USE_DEFAULT_GRACE_PERIOD);
1978 /*
1979 * Unconditionally decrement this counter, regardless of the queue's
1980 * type.
1981 */
1982 dqm->total_queue_count--;
1983 pr_debug("Total of %d queues are accountable so far\n",
1984 dqm->total_queue_count);
1985 dqm_unlock(dqm);
1986 }
1987
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1988 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1989 struct qcm_process_device *qpd,
1990 const struct kfd_criu_queue_priv_data *qd,
1991 const void *restore_mqd, const void *restore_ctl_stack)
1992 {
1993 int retval;
1994 struct mqd_manager *mqd_mgr;
1995
1996 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1997 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1998 dqm->total_queue_count);
1999 retval = -EPERM;
2000 goto out;
2001 }
2002
2003 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2004 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
2005 q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
2006 dqm_lock(dqm);
2007 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
2008 dqm_unlock(dqm);
2009 if (retval)
2010 goto out;
2011 }
2012
2013 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
2014 if (retval)
2015 goto out_deallocate_sdma_queue;
2016
2017 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2018 q->properties.type)];
2019
2020 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2021 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2022 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2023 q->properties.tba_addr = qpd->tba_addr;
2024 q->properties.tma_addr = qpd->tma_addr;
2025 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2026 if (!q->mqd_mem_obj) {
2027 retval = -ENOMEM;
2028 goto out_deallocate_doorbell;
2029 }
2030
2031 dqm_lock(dqm);
2032 /*
2033 * Eviction state logic: mark all queues as evicted, even ones
2034 * not currently active. Restoring inactive queues later only
2035 * updates the is_evicted flag but is a no-op otherwise.
2036 */
2037 q->properties.is_evicted = !!qpd->evicted;
2038 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2039 kfd_dbg_has_cwsr_workaround(q->device);
2040
2041 if (qd)
2042 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2043 &q->properties, restore_mqd, restore_ctl_stack,
2044 qd->ctl_stack_size);
2045 else
2046 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2047 &q->gart_mqd_addr, &q->properties);
2048
2049 list_add(&q->list, &qpd->queues_list);
2050 qpd->queue_count++;
2051
2052 if (q->properties.is_active) {
2053 increment_queue_count(dqm, qpd, q);
2054
2055 if (!dqm->dev->kfd->shared_resources.enable_mes)
2056 retval = execute_queues_cpsch(dqm,
2057 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2058 else
2059 retval = add_queue_mes(dqm, q, qpd);
2060 if (retval)
2061 goto cleanup_queue;
2062 }
2063
2064 /*
2065 * Unconditionally increment this counter, regardless of the queue's
2066 * type or whether the queue is active.
2067 */
2068 dqm->total_queue_count++;
2069
2070 pr_debug("Total of %d queues are accountable so far\n",
2071 dqm->total_queue_count);
2072
2073 dqm_unlock(dqm);
2074 return retval;
2075
2076 cleanup_queue:
2077 qpd->queue_count--;
2078 list_del(&q->list);
2079 if (q->properties.is_active)
2080 decrement_queue_count(dqm, qpd, q);
2081 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2082 dqm_unlock(dqm);
2083 out_deallocate_doorbell:
2084 deallocate_doorbell(qpd, q);
2085 out_deallocate_sdma_queue:
2086 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2087 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2088 dqm_lock(dqm);
2089 deallocate_sdma_queue(dqm, q);
2090 dqm_unlock(dqm);
2091 }
2092 out:
2093 return retval;
2094 }
2095
amdkfd_fence_wait_timeout(struct device_queue_manager * dqm,uint64_t fence_value,unsigned int timeout_ms)2096 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2097 uint64_t fence_value,
2098 unsigned int timeout_ms)
2099 {
2100 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2101 struct device *dev = dqm->dev->adev->dev;
2102 uint64_t *fence_addr = dqm->fence_addr;
2103
2104 while (*fence_addr != fence_value) {
2105 /* Fatal err detected, this response won't come */
2106 if (amdgpu_amdkfd_is_fed(dqm->dev->adev))
2107 return -EIO;
2108
2109 if (time_after(jiffies, end_jiffies)) {
2110 dev_err(dev, "qcm fence wait loop timeout expired\n");
2111 /* In HWS case, this is used to halt the driver thread
2112 * in order not to mess up CP states before doing
2113 * scandumps for FW debugging.
2114 */
2115 while (halt_if_hws_hang)
2116 schedule();
2117
2118 return -ETIME;
2119 }
2120 schedule();
2121 }
2122
2123 return 0;
2124 }
2125
2126 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)2127 static int map_queues_cpsch(struct device_queue_manager *dqm)
2128 {
2129 struct device *dev = dqm->dev->adev->dev;
2130 int retval;
2131
2132 if (!dqm->sched_running || dqm->sched_halt)
2133 return 0;
2134 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2135 return 0;
2136 if (dqm->active_runlist)
2137 return 0;
2138
2139 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2140 pr_debug("%s sent runlist\n", __func__);
2141 if (retval) {
2142 dev_err(dev, "failed to execute runlist\n");
2143 return retval;
2144 }
2145 dqm->active_runlist = true;
2146
2147 return retval;
2148 }
2149
set_queue_as_reset(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)2150 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2151 struct qcm_process_device *qpd)
2152 {
2153 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2154
2155 dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid 0x%0x is reset\n",
2156 q->properties.queue_id, q->process->pasid);
2157
2158 pdd->has_reset_queue = true;
2159 if (q->properties.is_active) {
2160 q->properties.is_active = false;
2161 decrement_queue_count(dqm, qpd, q);
2162 }
2163 }
2164
detect_queue_hang(struct device_queue_manager * dqm)2165 static int detect_queue_hang(struct device_queue_manager *dqm)
2166 {
2167 int i;
2168
2169 /* detect should be used only in dqm locked queue reset */
2170 if (WARN_ON(dqm->detect_hang_count > 0))
2171 return 0;
2172
2173 memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2174
2175 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2176 uint32_t mec, pipe, queue;
2177 int xcc_id;
2178
2179 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2180 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2181
2182 if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2183 continue;
2184
2185 amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2186
2187 for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2188 uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2189 dqm->dev->adev, pipe, queue, xcc_id);
2190 struct dqm_detect_hang_info hang_info;
2191
2192 if (!queue_addr)
2193 continue;
2194
2195 hang_info.pipe_id = pipe;
2196 hang_info.queue_id = queue;
2197 hang_info.xcc_id = xcc_id;
2198 hang_info.queue_address = queue_addr;
2199
2200 dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2201 dqm->detect_hang_count++;
2202 }
2203 }
2204
2205 return dqm->detect_hang_count;
2206 }
2207
find_queue_by_address(struct device_queue_manager * dqm,uint64_t queue_address)2208 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2209 {
2210 struct device_process_node *cur;
2211 struct qcm_process_device *qpd;
2212 struct queue *q;
2213
2214 list_for_each_entry(cur, &dqm->queues, list) {
2215 qpd = cur->qpd;
2216 list_for_each_entry(q, &qpd->queues_list, list) {
2217 if (queue_address == q->properties.queue_address)
2218 return q;
2219 }
2220 }
2221
2222 return NULL;
2223 }
2224
2225 /* only for compute queue */
reset_queues_on_hws_hang(struct device_queue_manager * dqm)2226 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm)
2227 {
2228 int r = 0, reset_count = 0, i;
2229
2230 if (!dqm->detect_hang_info || dqm->is_hws_hang)
2231 return -EIO;
2232
2233 /* assume dqm locked. */
2234 if (!detect_queue_hang(dqm))
2235 return -ENOTRECOVERABLE;
2236
2237 for (i = 0; i < dqm->detect_hang_count; i++) {
2238 struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2239 struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2240 struct kfd_process_device *pdd;
2241 uint64_t queue_addr = 0;
2242
2243 if (!q) {
2244 r = -ENOTRECOVERABLE;
2245 goto reset_fail;
2246 }
2247
2248 pdd = kfd_get_process_device_data(dqm->dev, q->process);
2249 if (!pdd) {
2250 r = -ENOTRECOVERABLE;
2251 goto reset_fail;
2252 }
2253
2254 queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2255 hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2256 KFD_UNMAP_LATENCY_MS);
2257
2258 /* either reset failed or we reset an unexpected queue. */
2259 if (queue_addr != q->properties.queue_address) {
2260 r = -ENOTRECOVERABLE;
2261 goto reset_fail;
2262 }
2263
2264 set_queue_as_reset(dqm, q, &pdd->qpd);
2265 reset_count++;
2266 }
2267
2268 if (reset_count == dqm->detect_hang_count)
2269 kfd_signal_reset_event(dqm->dev);
2270 else
2271 r = -ENOTRECOVERABLE;
2272
2273 reset_fail:
2274 dqm->detect_hang_count = 0;
2275
2276 return r;
2277 }
2278
2279 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)2280 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2281 enum kfd_unmap_queues_filter filter,
2282 uint32_t filter_param,
2283 uint32_t grace_period,
2284 bool reset)
2285 {
2286 struct device *dev = dqm->dev->adev->dev;
2287 struct mqd_manager *mqd_mgr;
2288 int retval;
2289
2290 if (!dqm->sched_running)
2291 return 0;
2292 if (!dqm->active_runlist)
2293 return 0;
2294 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2295 return -EIO;
2296
2297 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2298 retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
2299 if (retval)
2300 goto out;
2301 }
2302
2303 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2304 if (retval)
2305 goto out;
2306
2307 *dqm->fence_addr = KFD_FENCE_INIT;
2308 mb();
2309 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2310 KFD_FENCE_COMPLETED);
2311 /* should be timed out */
2312 retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2313 queue_preemption_timeout_ms);
2314 if (retval) {
2315 dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2316 kfd_hws_hang(dqm);
2317 goto out;
2318 }
2319
2320 /* In the current MEC firmware implementation, if compute queue
2321 * doesn't response to the preemption request in time, HIQ will
2322 * abandon the unmap request without returning any timeout error
2323 * to driver. Instead, MEC firmware will log the doorbell of the
2324 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2325 * To make sure the queue unmap was successful, driver need to
2326 * check those fields
2327 */
2328 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2329 if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd)) {
2330 while (halt_if_hws_hang)
2331 schedule();
2332 if (reset_queues_on_hws_hang(dqm)) {
2333 dqm->is_hws_hang = true;
2334 kfd_hws_hang(dqm);
2335 retval = -ETIME;
2336 goto out;
2337 }
2338 }
2339
2340 /* We need to reset the grace period value for this device */
2341 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2342 if (pm_update_grace_period(&dqm->packet_mgr,
2343 USE_DEFAULT_GRACE_PERIOD))
2344 dev_err(dev, "Failed to reset grace period\n");
2345 }
2346
2347 pm_release_ib(&dqm->packet_mgr);
2348 dqm->active_runlist = false;
2349
2350 out:
2351 up_read(&dqm->dev->adev->reset_domain->sem);
2352 return retval;
2353 }
2354
2355 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)2356 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2357 {
2358 int retval;
2359
2360 dqm_lock(dqm);
2361
2362 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2363 pasid, USE_DEFAULT_GRACE_PERIOD, true);
2364
2365 dqm_unlock(dqm);
2366 return retval;
2367 }
2368
2369 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2370 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2371 enum kfd_unmap_queues_filter filter,
2372 uint32_t filter_param,
2373 uint32_t grace_period)
2374 {
2375 int retval;
2376
2377 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2378 return -EIO;
2379 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2380 if (!retval)
2381 retval = map_queues_cpsch(dqm);
2382 up_read(&dqm->dev->adev->reset_domain->sem);
2383 return retval;
2384 }
2385
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2386 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2387 struct queue *q)
2388 {
2389 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2390 q->process);
2391 int ret = 0;
2392
2393 if (WARN_ON(!pdd))
2394 return ret;
2395
2396 if (pdd->qpd.is_debug)
2397 return ret;
2398
2399 q->properties.is_being_destroyed = true;
2400
2401 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2402 dqm_unlock(dqm);
2403 mutex_unlock(&q->process->mutex);
2404 ret = wait_event_interruptible(dqm->destroy_wait,
2405 !q->properties.is_suspended);
2406
2407 mutex_lock(&q->process->mutex);
2408 dqm_lock(dqm);
2409 }
2410
2411 return ret;
2412 }
2413
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2414 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2415 struct qcm_process_device *qpd,
2416 struct queue *q)
2417 {
2418 int retval;
2419 struct mqd_manager *mqd_mgr;
2420 uint64_t sdma_val = 0;
2421 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2422 struct device *dev = dqm->dev->adev->dev;
2423
2424 /* Get the SDMA queue stats */
2425 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2426 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2427 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2428 &sdma_val);
2429 if (retval)
2430 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2431 q->properties.queue_id);
2432 }
2433
2434 /* remove queue from list to prevent rescheduling after preemption */
2435 dqm_lock(dqm);
2436
2437 retval = wait_on_destroy_queue(dqm, q);
2438
2439 if (retval) {
2440 dqm_unlock(dqm);
2441 return retval;
2442 }
2443
2444 if (qpd->is_debug) {
2445 /*
2446 * error, currently we do not allow to destroy a queue
2447 * of a currently debugged process
2448 */
2449 retval = -EBUSY;
2450 goto failed_try_destroy_debugged_queue;
2451
2452 }
2453
2454 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2455 q->properties.type)];
2456
2457 deallocate_doorbell(qpd, q);
2458
2459 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2460 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2461 deallocate_sdma_queue(dqm, q);
2462 pdd->sdma_past_activity_counter += sdma_val;
2463 }
2464
2465 if (q->properties.is_active) {
2466 decrement_queue_count(dqm, qpd, q);
2467 q->properties.is_active = false;
2468 if (!dqm->dev->kfd->shared_resources.enable_mes) {
2469 retval = execute_queues_cpsch(dqm,
2470 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2471 USE_DEFAULT_GRACE_PERIOD);
2472 if (retval == -ETIME)
2473 qpd->reset_wavefronts = true;
2474 } else {
2475 retval = remove_queue_mes(dqm, q, qpd);
2476 }
2477 }
2478 list_del(&q->list);
2479 qpd->queue_count--;
2480
2481 /*
2482 * Unconditionally decrement this counter, regardless of the queue's
2483 * type
2484 */
2485 dqm->total_queue_count--;
2486 pr_debug("Total of %d queues are accountable so far\n",
2487 dqm->total_queue_count);
2488
2489 dqm_unlock(dqm);
2490
2491 /*
2492 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2493 * circular locking
2494 */
2495 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2496 qpd->pqm->process, q->device,
2497 -1, false, NULL, 0);
2498
2499 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2500
2501 return retval;
2502
2503 failed_try_destroy_debugged_queue:
2504
2505 dqm_unlock(dqm);
2506 return retval;
2507 }
2508
2509 /*
2510 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
2511 * stay in user mode.
2512 */
2513 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
2514 /* APE1 limit is inclusive and 64K aligned. */
2515 #define APE1_LIMIT_ALIGNMENT 0xFFFF
2516
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)2517 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2518 struct qcm_process_device *qpd,
2519 enum cache_policy default_policy,
2520 enum cache_policy alternate_policy,
2521 void __user *alternate_aperture_base,
2522 uint64_t alternate_aperture_size)
2523 {
2524 bool retval = true;
2525
2526 if (!dqm->asic_ops.set_cache_memory_policy)
2527 return retval;
2528
2529 dqm_lock(dqm);
2530
2531 if (alternate_aperture_size == 0) {
2532 /* base > limit disables APE1 */
2533 qpd->sh_mem_ape1_base = 1;
2534 qpd->sh_mem_ape1_limit = 0;
2535 } else {
2536 /*
2537 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
2538 * SH_MEM_APE1_BASE[31:0], 0x0000 }
2539 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
2540 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
2541 * Verify that the base and size parameters can be
2542 * represented in this format and convert them.
2543 * Additionally restrict APE1 to user-mode addresses.
2544 */
2545
2546 uint64_t base = (uintptr_t)alternate_aperture_base;
2547 uint64_t limit = base + alternate_aperture_size - 1;
2548
2549 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
2550 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
2551 retval = false;
2552 goto out;
2553 }
2554
2555 qpd->sh_mem_ape1_base = base >> 16;
2556 qpd->sh_mem_ape1_limit = limit >> 16;
2557 }
2558
2559 retval = dqm->asic_ops.set_cache_memory_policy(
2560 dqm,
2561 qpd,
2562 default_policy,
2563 alternate_policy,
2564 alternate_aperture_base,
2565 alternate_aperture_size);
2566
2567 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2568 program_sh_mem_settings(dqm, qpd);
2569
2570 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2571 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2572 qpd->sh_mem_ape1_limit);
2573
2574 out:
2575 dqm_unlock(dqm);
2576 return retval;
2577 }
2578
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2579 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2580 struct qcm_process_device *qpd)
2581 {
2582 struct queue *q;
2583 struct device_process_node *cur, *next_dpn;
2584 int retval = 0;
2585 bool found = false;
2586
2587 dqm_lock(dqm);
2588
2589 /* Clear all user mode queues */
2590 while (!list_empty(&qpd->queues_list)) {
2591 struct mqd_manager *mqd_mgr;
2592 int ret;
2593
2594 q = list_first_entry(&qpd->queues_list, struct queue, list);
2595 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2596 q->properties.type)];
2597 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2598 if (ret)
2599 retval = ret;
2600 dqm_unlock(dqm);
2601 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2602 dqm_lock(dqm);
2603 }
2604
2605 /* Unregister process */
2606 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2607 if (qpd == cur->qpd) {
2608 list_del(&cur->list);
2609 kfree(cur);
2610 dqm->processes_count--;
2611 found = true;
2612 break;
2613 }
2614 }
2615
2616 dqm_unlock(dqm);
2617
2618 /* Outside the DQM lock because under the DQM lock we can't do
2619 * reclaim or take other locks that others hold while reclaiming.
2620 */
2621 if (found)
2622 kfd_dec_compute_active(dqm->dev);
2623
2624 return retval;
2625 }
2626
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2627 static int get_wave_state(struct device_queue_manager *dqm,
2628 struct queue *q,
2629 void __user *ctl_stack,
2630 u32 *ctl_stack_used_size,
2631 u32 *save_area_used_size)
2632 {
2633 struct mqd_manager *mqd_mgr;
2634
2635 dqm_lock(dqm);
2636
2637 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2638
2639 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2640 q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2641 !mqd_mgr->get_wave_state) {
2642 dqm_unlock(dqm);
2643 return -EINVAL;
2644 }
2645
2646 dqm_unlock(dqm);
2647
2648 /*
2649 * get_wave_state is outside the dqm lock to prevent circular locking
2650 * and the queue should be protected against destruction by the process
2651 * lock.
2652 */
2653 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2654 ctl_stack, ctl_stack_used_size, save_area_used_size);
2655 }
2656
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2657 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2658 const struct queue *q,
2659 u32 *mqd_size,
2660 u32 *ctl_stack_size)
2661 {
2662 struct mqd_manager *mqd_mgr;
2663 enum KFD_MQD_TYPE mqd_type =
2664 get_mqd_type_from_queue_type(q->properties.type);
2665
2666 dqm_lock(dqm);
2667 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2668 *mqd_size = mqd_mgr->mqd_size;
2669 *ctl_stack_size = 0;
2670
2671 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2672 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2673
2674 dqm_unlock(dqm);
2675 }
2676
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2677 static int checkpoint_mqd(struct device_queue_manager *dqm,
2678 const struct queue *q,
2679 void *mqd,
2680 void *ctl_stack)
2681 {
2682 struct mqd_manager *mqd_mgr;
2683 int r = 0;
2684 enum KFD_MQD_TYPE mqd_type =
2685 get_mqd_type_from_queue_type(q->properties.type);
2686
2687 dqm_lock(dqm);
2688
2689 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2690 r = -EINVAL;
2691 goto dqm_unlock;
2692 }
2693
2694 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2695 if (!mqd_mgr->checkpoint_mqd) {
2696 r = -EOPNOTSUPP;
2697 goto dqm_unlock;
2698 }
2699
2700 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2701
2702 dqm_unlock:
2703 dqm_unlock(dqm);
2704 return r;
2705 }
2706
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2707 static int process_termination_cpsch(struct device_queue_manager *dqm,
2708 struct qcm_process_device *qpd)
2709 {
2710 int retval;
2711 struct queue *q;
2712 struct device *dev = dqm->dev->adev->dev;
2713 struct kernel_queue *kq, *kq_next;
2714 struct mqd_manager *mqd_mgr;
2715 struct device_process_node *cur, *next_dpn;
2716 enum kfd_unmap_queues_filter filter =
2717 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2718 bool found = false;
2719
2720 retval = 0;
2721
2722 dqm_lock(dqm);
2723
2724 /* Clean all kernel queues */
2725 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2726 list_del(&kq->list);
2727 decrement_queue_count(dqm, qpd, kq->queue);
2728 qpd->is_debug = false;
2729 dqm->total_queue_count--;
2730 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2731 }
2732
2733 /* Clear all user mode queues */
2734 list_for_each_entry(q, &qpd->queues_list, list) {
2735 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2736 deallocate_sdma_queue(dqm, q);
2737 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2738 deallocate_sdma_queue(dqm, q);
2739
2740 if (q->properties.is_active) {
2741 decrement_queue_count(dqm, qpd, q);
2742
2743 if (dqm->dev->kfd->shared_resources.enable_mes) {
2744 retval = remove_queue_mes(dqm, q, qpd);
2745 if (retval)
2746 dev_err(dev, "Failed to remove queue %d\n",
2747 q->properties.queue_id);
2748 }
2749 }
2750
2751 dqm->total_queue_count--;
2752 }
2753
2754 /* Unregister process */
2755 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2756 if (qpd == cur->qpd) {
2757 list_del(&cur->list);
2758 kfree(cur);
2759 dqm->processes_count--;
2760 found = true;
2761 break;
2762 }
2763 }
2764
2765 if (!dqm->dev->kfd->shared_resources.enable_mes)
2766 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2767
2768 if ((retval || qpd->reset_wavefronts) &&
2769 down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2770 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2771 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2772 qpd->reset_wavefronts = false;
2773 up_read(&dqm->dev->adev->reset_domain->sem);
2774 }
2775
2776 /* Lastly, free mqd resources.
2777 * Do free_mqd() after dqm_unlock to avoid circular locking.
2778 */
2779 while (!list_empty(&qpd->queues_list)) {
2780 q = list_first_entry(&qpd->queues_list, struct queue, list);
2781 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2782 q->properties.type)];
2783 list_del(&q->list);
2784 qpd->queue_count--;
2785 dqm_unlock(dqm);
2786 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2787 dqm_lock(dqm);
2788 }
2789 dqm_unlock(dqm);
2790
2791 /* Outside the DQM lock because under the DQM lock we can't do
2792 * reclaim or take other locks that others hold while reclaiming.
2793 */
2794 if (found)
2795 kfd_dec_compute_active(dqm->dev);
2796
2797 return retval;
2798 }
2799
init_mqd_managers(struct device_queue_manager * dqm)2800 static int init_mqd_managers(struct device_queue_manager *dqm)
2801 {
2802 int i, j;
2803 struct device *dev = dqm->dev->adev->dev;
2804 struct mqd_manager *mqd_mgr;
2805
2806 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2807 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2808 if (!mqd_mgr) {
2809 dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2810 goto out_free;
2811 }
2812 dqm->mqd_mgrs[i] = mqd_mgr;
2813 }
2814
2815 return 0;
2816
2817 out_free:
2818 for (j = 0; j < i; j++) {
2819 kfree(dqm->mqd_mgrs[j]);
2820 dqm->mqd_mgrs[j] = NULL;
2821 }
2822
2823 return -ENOMEM;
2824 }
2825
2826 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2827 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2828 {
2829 int retval;
2830 struct kfd_node *dev = dqm->dev;
2831 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2832 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2833 get_num_all_sdma_engines(dqm) *
2834 dev->kfd->device_info.num_sdma_queues_per_engine +
2835 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2836 NUM_XCC(dqm->dev->xcc_mask));
2837
2838 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2839 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2840 (void *)&(mem_obj->cpu_ptr), false);
2841
2842 return retval;
2843 }
2844
device_queue_manager_init(struct kfd_node * dev)2845 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2846 {
2847 struct device_queue_manager *dqm;
2848
2849 pr_debug("Loading device queue manager\n");
2850
2851 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2852 if (!dqm)
2853 return NULL;
2854
2855 switch (dev->adev->asic_type) {
2856 /* HWS is not available on Hawaii. */
2857 case CHIP_HAWAII:
2858 /* HWS depends on CWSR for timely dequeue. CWSR is not
2859 * available on Tonga.
2860 *
2861 * FIXME: This argument also applies to Kaveri.
2862 */
2863 case CHIP_TONGA:
2864 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2865 break;
2866 default:
2867 dqm->sched_policy = sched_policy;
2868 break;
2869 }
2870
2871 dqm->dev = dev;
2872 switch (dqm->sched_policy) {
2873 case KFD_SCHED_POLICY_HWS:
2874 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2875 /* initialize dqm for cp scheduling */
2876 dqm->ops.create_queue = create_queue_cpsch;
2877 dqm->ops.initialize = initialize_cpsch;
2878 dqm->ops.start = start_cpsch;
2879 dqm->ops.stop = stop_cpsch;
2880 dqm->ops.halt = halt_cpsch;
2881 dqm->ops.unhalt = unhalt_cpsch;
2882 dqm->ops.destroy_queue = destroy_queue_cpsch;
2883 dqm->ops.update_queue = update_queue;
2884 dqm->ops.register_process = register_process;
2885 dqm->ops.unregister_process = unregister_process;
2886 dqm->ops.uninitialize = uninitialize;
2887 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2888 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2889 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2890 dqm->ops.process_termination = process_termination_cpsch;
2891 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2892 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2893 dqm->ops.get_wave_state = get_wave_state;
2894 dqm->ops.reset_queues = reset_queues_cpsch;
2895 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2896 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2897 break;
2898 case KFD_SCHED_POLICY_NO_HWS:
2899 /* initialize dqm for no cp scheduling */
2900 dqm->ops.start = start_nocpsch;
2901 dqm->ops.stop = stop_nocpsch;
2902 dqm->ops.create_queue = create_queue_nocpsch;
2903 dqm->ops.destroy_queue = destroy_queue_nocpsch;
2904 dqm->ops.update_queue = update_queue;
2905 dqm->ops.register_process = register_process;
2906 dqm->ops.unregister_process = unregister_process;
2907 dqm->ops.initialize = initialize_nocpsch;
2908 dqm->ops.uninitialize = uninitialize;
2909 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2910 dqm->ops.process_termination = process_termination_nocpsch;
2911 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2912 dqm->ops.restore_process_queues =
2913 restore_process_queues_nocpsch;
2914 dqm->ops.get_wave_state = get_wave_state;
2915 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2916 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2917 break;
2918 default:
2919 dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2920 goto out_free;
2921 }
2922
2923 switch (dev->adev->asic_type) {
2924 case CHIP_KAVERI:
2925 case CHIP_HAWAII:
2926 device_queue_manager_init_cik(&dqm->asic_ops);
2927 break;
2928
2929 case CHIP_CARRIZO:
2930 case CHIP_TONGA:
2931 case CHIP_FIJI:
2932 case CHIP_POLARIS10:
2933 case CHIP_POLARIS11:
2934 case CHIP_POLARIS12:
2935 case CHIP_VEGAM:
2936 device_queue_manager_init_vi(&dqm->asic_ops);
2937 break;
2938
2939 default:
2940 if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
2941 device_queue_manager_init_v12(&dqm->asic_ops);
2942 else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2943 device_queue_manager_init_v11(&dqm->asic_ops);
2944 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2945 device_queue_manager_init_v10(&dqm->asic_ops);
2946 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2947 device_queue_manager_init_v9(&dqm->asic_ops);
2948 else {
2949 WARN(1, "Unexpected ASIC family %u",
2950 dev->adev->asic_type);
2951 goto out_free;
2952 }
2953 }
2954
2955 if (init_mqd_managers(dqm))
2956 goto out_free;
2957
2958 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
2959 dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
2960 goto out_free;
2961 }
2962
2963 if (!dqm->ops.initialize(dqm)) {
2964 init_waitqueue_head(&dqm->destroy_wait);
2965 return dqm;
2966 }
2967
2968 out_free:
2969 kfree(dqm);
2970 return NULL;
2971 }
2972
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)2973 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2974 struct kfd_mem_obj *mqd)
2975 {
2976 WARN(!mqd, "No hiq sdma mqd trunk to free");
2977
2978 amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
2979 }
2980
device_queue_manager_uninit(struct device_queue_manager * dqm)2981 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2982 {
2983 dqm->ops.stop(dqm);
2984 dqm->ops.uninitialize(dqm);
2985 if (!dqm->dev->kfd->shared_resources.enable_mes)
2986 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2987 kfree(dqm);
2988 }
2989
kfd_dqm_suspend_bad_queue_mes(struct kfd_node * knode,u32 pasid,u32 doorbell_id)2990 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
2991 {
2992 struct kfd_process_device *pdd;
2993 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2994 struct device_queue_manager *dqm = knode->dqm;
2995 struct device *dev = dqm->dev->adev->dev;
2996 struct qcm_process_device *qpd;
2997 struct queue *q = NULL;
2998 int ret = 0;
2999
3000 if (!p)
3001 return -EINVAL;
3002
3003 dqm_lock(dqm);
3004
3005 pdd = kfd_get_process_device_data(dqm->dev, p);
3006 if (pdd) {
3007 qpd = &pdd->qpd;
3008
3009 list_for_each_entry(q, &qpd->queues_list, list) {
3010 if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3011 ret = suspend_all_queues_mes(dqm);
3012 if (ret) {
3013 dev_err(dev, "Suspending all queues failed");
3014 goto out;
3015 }
3016
3017 q->properties.is_evicted = true;
3018 q->properties.is_active = false;
3019 decrement_queue_count(dqm, qpd, q);
3020
3021 ret = remove_queue_mes(dqm, q, qpd);
3022 if (ret) {
3023 dev_err(dev, "Removing bad queue failed");
3024 goto out;
3025 }
3026
3027 ret = resume_all_queues_mes(dqm);
3028 if (ret)
3029 dev_err(dev, "Resuming all queues failed");
3030
3031 break;
3032 }
3033 }
3034 }
3035
3036 out:
3037 dqm_unlock(dqm);
3038 return ret;
3039 }
3040
kfd_dqm_evict_pasid_mes(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3041 static int kfd_dqm_evict_pasid_mes(struct device_queue_manager *dqm,
3042 struct qcm_process_device *qpd)
3043 {
3044 struct device *dev = dqm->dev->adev->dev;
3045 int ret = 0;
3046
3047 /* Check if process is already evicted */
3048 dqm_lock(dqm);
3049 if (qpd->evicted) {
3050 /* Increment the evicted count to make sure the
3051 * process stays evicted before its terminated.
3052 */
3053 qpd->evicted++;
3054 dqm_unlock(dqm);
3055 goto out;
3056 }
3057 dqm_unlock(dqm);
3058
3059 ret = suspend_all_queues_mes(dqm);
3060 if (ret) {
3061 dev_err(dev, "Suspending all queues failed");
3062 goto out;
3063 }
3064
3065 ret = dqm->ops.evict_process_queues(dqm, qpd);
3066 if (ret) {
3067 dev_err(dev, "Evicting process queues failed");
3068 goto out;
3069 }
3070
3071 ret = resume_all_queues_mes(dqm);
3072 if (ret)
3073 dev_err(dev, "Resuming all queues failed");
3074
3075 out:
3076 return ret;
3077 }
3078
kfd_dqm_evict_pasid(struct device_queue_manager * dqm,u32 pasid)3079 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
3080 {
3081 struct kfd_process_device *pdd;
3082 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
3083 int ret = 0;
3084
3085 if (!p)
3086 return -EINVAL;
3087 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3088 pdd = kfd_get_process_device_data(dqm->dev, p);
3089 if (pdd) {
3090 if (dqm->dev->kfd->shared_resources.enable_mes)
3091 ret = kfd_dqm_evict_pasid_mes(dqm, &pdd->qpd);
3092 else
3093 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3094 }
3095
3096 kfd_unref_process(p);
3097
3098 return ret;
3099 }
3100
kfd_process_hw_exception(struct work_struct * work)3101 static void kfd_process_hw_exception(struct work_struct *work)
3102 {
3103 struct device_queue_manager *dqm = container_of(work,
3104 struct device_queue_manager, hw_exception_work);
3105 amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
3106 }
3107
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3108 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3109 struct qcm_process_device *qpd)
3110 {
3111 int r;
3112 struct device *dev = dqm->dev->adev->dev;
3113 int updated_vmid_mask;
3114
3115 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3116 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3117 return -EINVAL;
3118 }
3119
3120 dqm_lock(dqm);
3121
3122 if (dqm->trap_debug_vmid != 0) {
3123 dev_err(dev, "Trap debug id already reserved\n");
3124 r = -EBUSY;
3125 goto out_unlock;
3126 }
3127
3128 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3129 USE_DEFAULT_GRACE_PERIOD, false);
3130 if (r)
3131 goto out_unlock;
3132
3133 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3134 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3135
3136 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3137 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3138 r = set_sched_resources(dqm);
3139 if (r)
3140 goto out_unlock;
3141
3142 r = map_queues_cpsch(dqm);
3143 if (r)
3144 goto out_unlock;
3145
3146 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3147
3148 out_unlock:
3149 dqm_unlock(dqm);
3150 return r;
3151 }
3152
3153 /*
3154 * Releases vmid for the trap debugger
3155 */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3156 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3157 struct qcm_process_device *qpd)
3158 {
3159 struct device *dev = dqm->dev->adev->dev;
3160 int r;
3161 int updated_vmid_mask;
3162 uint32_t trap_debug_vmid;
3163
3164 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3165 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3166 return -EINVAL;
3167 }
3168
3169 dqm_lock(dqm);
3170 trap_debug_vmid = dqm->trap_debug_vmid;
3171 if (dqm->trap_debug_vmid == 0) {
3172 dev_err(dev, "Trap debug id is not reserved\n");
3173 r = -EINVAL;
3174 goto out_unlock;
3175 }
3176
3177 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3178 USE_DEFAULT_GRACE_PERIOD, false);
3179 if (r)
3180 goto out_unlock;
3181
3182 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3183 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3184
3185 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3186 dqm->trap_debug_vmid = 0;
3187 r = set_sched_resources(dqm);
3188 if (r)
3189 goto out_unlock;
3190
3191 r = map_queues_cpsch(dqm);
3192 if (r)
3193 goto out_unlock;
3194
3195 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3196
3197 out_unlock:
3198 dqm_unlock(dqm);
3199 return r;
3200 }
3201
3202 #define QUEUE_NOT_FOUND -1
3203 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)3204 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3205 {
3206 int i;
3207
3208 for (i = 0; i < num_queues; i++)
3209 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3210 }
3211
3212 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)3213 static int q_array_get_index(unsigned int queue_id,
3214 uint32_t num_queues,
3215 uint32_t *queue_ids)
3216 {
3217 int i;
3218
3219 for (i = 0; i < num_queues; i++)
3220 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3221 return i;
3222
3223 return QUEUE_NOT_FOUND;
3224 }
3225
3226 struct copy_context_work_handler_workarea {
3227 struct work_struct copy_context_work;
3228 struct kfd_process *p;
3229 };
3230
copy_context_work_handler(struct work_struct * work)3231 static void copy_context_work_handler(struct work_struct *work)
3232 {
3233 struct copy_context_work_handler_workarea *workarea;
3234 struct mqd_manager *mqd_mgr;
3235 struct queue *q;
3236 struct mm_struct *mm;
3237 struct kfd_process *p;
3238 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3239 int i;
3240
3241 workarea = container_of(work,
3242 struct copy_context_work_handler_workarea,
3243 copy_context_work);
3244
3245 p = workarea->p;
3246 mm = get_task_mm(p->lead_thread);
3247
3248 if (!mm)
3249 return;
3250
3251 kthread_use_mm(mm);
3252 for (i = 0; i < p->n_pdds; i++) {
3253 struct kfd_process_device *pdd = p->pdds[i];
3254 struct device_queue_manager *dqm = pdd->dev->dqm;
3255 struct qcm_process_device *qpd = &pdd->qpd;
3256
3257 list_for_each_entry(q, &qpd->queues_list, list) {
3258 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3259 continue;
3260
3261 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3262
3263 /* We ignore the return value from get_wave_state
3264 * because
3265 * i) right now, it always returns 0, and
3266 * ii) if we hit an error, we would continue to the
3267 * next queue anyway.
3268 */
3269 mqd_mgr->get_wave_state(mqd_mgr,
3270 q->mqd,
3271 &q->properties,
3272 (void __user *) q->properties.ctx_save_restore_area_address,
3273 &tmp_ctl_stack_used_size,
3274 &tmp_save_area_used_size);
3275 }
3276 }
3277 kthread_unuse_mm(mm);
3278 mmput(mm);
3279 }
3280
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)3281 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3282 {
3283 size_t array_size = num_queues * sizeof(uint32_t);
3284
3285 if (!usr_queue_id_array)
3286 return NULL;
3287
3288 return memdup_user(usr_queue_id_array, array_size);
3289 }
3290
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)3291 int resume_queues(struct kfd_process *p,
3292 uint32_t num_queues,
3293 uint32_t *usr_queue_id_array)
3294 {
3295 uint32_t *queue_ids = NULL;
3296 int total_resumed = 0;
3297 int i;
3298
3299 if (usr_queue_id_array) {
3300 queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3301
3302 if (IS_ERR(queue_ids))
3303 return PTR_ERR(queue_ids);
3304
3305 /* mask all queues as invalid. unmask per successful request */
3306 q_array_invalidate(num_queues, queue_ids);
3307 }
3308
3309 for (i = 0; i < p->n_pdds; i++) {
3310 struct kfd_process_device *pdd = p->pdds[i];
3311 struct device_queue_manager *dqm = pdd->dev->dqm;
3312 struct device *dev = dqm->dev->adev->dev;
3313 struct qcm_process_device *qpd = &pdd->qpd;
3314 struct queue *q;
3315 int r, per_device_resumed = 0;
3316
3317 dqm_lock(dqm);
3318
3319 /* unmask queues that resume or already resumed as valid */
3320 list_for_each_entry(q, &qpd->queues_list, list) {
3321 int q_idx = QUEUE_NOT_FOUND;
3322
3323 if (queue_ids)
3324 q_idx = q_array_get_index(
3325 q->properties.queue_id,
3326 num_queues,
3327 queue_ids);
3328
3329 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3330 int err = resume_single_queue(dqm, &pdd->qpd, q);
3331
3332 if (queue_ids) {
3333 if (!err) {
3334 queue_ids[q_idx] &=
3335 ~KFD_DBG_QUEUE_INVALID_MASK;
3336 } else {
3337 queue_ids[q_idx] |=
3338 KFD_DBG_QUEUE_ERROR_MASK;
3339 break;
3340 }
3341 }
3342
3343 if (dqm->dev->kfd->shared_resources.enable_mes) {
3344 wake_up_all(&dqm->destroy_wait);
3345 if (!err)
3346 total_resumed++;
3347 } else {
3348 per_device_resumed++;
3349 }
3350 }
3351 }
3352
3353 if (!per_device_resumed) {
3354 dqm_unlock(dqm);
3355 continue;
3356 }
3357
3358 r = execute_queues_cpsch(dqm,
3359 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3360 0,
3361 USE_DEFAULT_GRACE_PERIOD);
3362 if (r) {
3363 dev_err(dev, "Failed to resume process queues\n");
3364 if (queue_ids) {
3365 list_for_each_entry(q, &qpd->queues_list, list) {
3366 int q_idx = q_array_get_index(
3367 q->properties.queue_id,
3368 num_queues,
3369 queue_ids);
3370
3371 /* mask queue as error on resume fail */
3372 if (q_idx != QUEUE_NOT_FOUND)
3373 queue_ids[q_idx] |=
3374 KFD_DBG_QUEUE_ERROR_MASK;
3375 }
3376 }
3377 } else {
3378 wake_up_all(&dqm->destroy_wait);
3379 total_resumed += per_device_resumed;
3380 }
3381
3382 dqm_unlock(dqm);
3383 }
3384
3385 if (queue_ids) {
3386 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3387 num_queues * sizeof(uint32_t)))
3388 pr_err("copy_to_user failed on queue resume\n");
3389
3390 kfree(queue_ids);
3391 }
3392
3393 return total_resumed;
3394 }
3395
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)3396 int suspend_queues(struct kfd_process *p,
3397 uint32_t num_queues,
3398 uint32_t grace_period,
3399 uint64_t exception_clear_mask,
3400 uint32_t *usr_queue_id_array)
3401 {
3402 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3403 int total_suspended = 0;
3404 int i;
3405
3406 if (IS_ERR(queue_ids))
3407 return PTR_ERR(queue_ids);
3408
3409 /* mask all queues as invalid. umask on successful request */
3410 q_array_invalidate(num_queues, queue_ids);
3411
3412 for (i = 0; i < p->n_pdds; i++) {
3413 struct kfd_process_device *pdd = p->pdds[i];
3414 struct device_queue_manager *dqm = pdd->dev->dqm;
3415 struct device *dev = dqm->dev->adev->dev;
3416 struct qcm_process_device *qpd = &pdd->qpd;
3417 struct queue *q;
3418 int r, per_device_suspended = 0;
3419
3420 mutex_lock(&p->event_mutex);
3421 dqm_lock(dqm);
3422
3423 /* unmask queues that suspend or already suspended */
3424 list_for_each_entry(q, &qpd->queues_list, list) {
3425 int q_idx = q_array_get_index(q->properties.queue_id,
3426 num_queues,
3427 queue_ids);
3428
3429 if (q_idx != QUEUE_NOT_FOUND) {
3430 int err = suspend_single_queue(dqm, pdd, q);
3431 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3432
3433 if (!err) {
3434 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3435 if (exception_clear_mask && is_mes)
3436 q->properties.exception_status &=
3437 ~exception_clear_mask;
3438
3439 if (is_mes)
3440 total_suspended++;
3441 else
3442 per_device_suspended++;
3443 } else if (err != -EBUSY) {
3444 r = err;
3445 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3446 break;
3447 }
3448 }
3449 }
3450
3451 if (!per_device_suspended) {
3452 dqm_unlock(dqm);
3453 mutex_unlock(&p->event_mutex);
3454 if (total_suspended)
3455 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3456 continue;
3457 }
3458
3459 r = execute_queues_cpsch(dqm,
3460 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3461 grace_period);
3462
3463 if (r)
3464 dev_err(dev, "Failed to suspend process queues.\n");
3465 else
3466 total_suspended += per_device_suspended;
3467
3468 list_for_each_entry(q, &qpd->queues_list, list) {
3469 int q_idx = q_array_get_index(q->properties.queue_id,
3470 num_queues, queue_ids);
3471
3472 if (q_idx == QUEUE_NOT_FOUND)
3473 continue;
3474
3475 /* mask queue as error on suspend fail */
3476 if (r)
3477 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3478 else if (exception_clear_mask)
3479 q->properties.exception_status &=
3480 ~exception_clear_mask;
3481 }
3482
3483 dqm_unlock(dqm);
3484 mutex_unlock(&p->event_mutex);
3485 amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3486 }
3487
3488 if (total_suspended) {
3489 struct copy_context_work_handler_workarea copy_context_worker;
3490
3491 INIT_WORK_ONSTACK(
3492 ©_context_worker.copy_context_work,
3493 copy_context_work_handler);
3494
3495 copy_context_worker.p = p;
3496
3497 schedule_work(©_context_worker.copy_context_work);
3498
3499
3500 flush_work(©_context_worker.copy_context_work);
3501 destroy_work_on_stack(©_context_worker.copy_context_work);
3502 }
3503
3504 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3505 num_queues * sizeof(uint32_t)))
3506 pr_err("copy_to_user failed on queue suspend\n");
3507
3508 kfree(queue_ids);
3509
3510 return total_suspended;
3511 }
3512
set_queue_type_for_user(struct queue_properties * q_props)3513 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3514 {
3515 switch (q_props->type) {
3516 case KFD_QUEUE_TYPE_COMPUTE:
3517 return q_props->format == KFD_QUEUE_FORMAT_PM4
3518 ? KFD_IOC_QUEUE_TYPE_COMPUTE
3519 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3520 case KFD_QUEUE_TYPE_SDMA:
3521 return KFD_IOC_QUEUE_TYPE_SDMA;
3522 case KFD_QUEUE_TYPE_SDMA_XGMI:
3523 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3524 default:
3525 WARN_ONCE(true, "queue type not recognized!");
3526 return 0xffffffff;
3527 };
3528 }
3529
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3530 void set_queue_snapshot_entry(struct queue *q,
3531 uint64_t exception_clear_mask,
3532 struct kfd_queue_snapshot_entry *qss_entry)
3533 {
3534 qss_entry->ring_base_address = q->properties.queue_address;
3535 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3536 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3537 qss_entry->ctx_save_restore_address =
3538 q->properties.ctx_save_restore_area_address;
3539 qss_entry->ctx_save_restore_area_size =
3540 q->properties.ctx_save_restore_area_size;
3541 qss_entry->exception_status = q->properties.exception_status;
3542 qss_entry->queue_id = q->properties.queue_id;
3543 qss_entry->gpu_id = q->device->id;
3544 qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3545 qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3546 q->properties.exception_status &= ~exception_clear_mask;
3547 }
3548
debug_lock_and_unmap(struct device_queue_manager * dqm)3549 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3550 {
3551 struct device *dev = dqm->dev->adev->dev;
3552 int r;
3553
3554 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3555 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3556 return -EINVAL;
3557 }
3558
3559 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3560 return 0;
3561
3562 dqm_lock(dqm);
3563
3564 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3565 if (r)
3566 dqm_unlock(dqm);
3567
3568 return r;
3569 }
3570
debug_map_and_unlock(struct device_queue_manager * dqm)3571 int debug_map_and_unlock(struct device_queue_manager *dqm)
3572 {
3573 struct device *dev = dqm->dev->adev->dev;
3574 int r;
3575
3576 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3577 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3578 return -EINVAL;
3579 }
3580
3581 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3582 return 0;
3583
3584 r = map_queues_cpsch(dqm);
3585
3586 dqm_unlock(dqm);
3587
3588 return r;
3589 }
3590
debug_refresh_runlist(struct device_queue_manager * dqm)3591 int debug_refresh_runlist(struct device_queue_manager *dqm)
3592 {
3593 int r = debug_lock_and_unmap(dqm);
3594
3595 if (r)
3596 return r;
3597
3598 return debug_map_and_unlock(dqm);
3599 }
3600
kfd_dqm_is_queue_in_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd,int doorbell_off,u32 * queue_format)3601 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3602 struct qcm_process_device *qpd,
3603 int doorbell_off, u32 *queue_format)
3604 {
3605 struct queue *q;
3606 bool r = false;
3607
3608 if (!queue_format)
3609 return r;
3610
3611 dqm_lock(dqm);
3612
3613 list_for_each_entry(q, &qpd->queues_list, list) {
3614 if (q->properties.doorbell_off == doorbell_off) {
3615 *queue_format = q->properties.format;
3616 r = true;
3617 goto out;
3618 }
3619 }
3620
3621 out:
3622 dqm_unlock(dqm);
3623 return r;
3624 }
3625 #if defined(CONFIG_DEBUG_FS)
3626
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3627 static void seq_reg_dump(struct seq_file *m,
3628 uint32_t (*dump)[2], uint32_t n_regs)
3629 {
3630 uint32_t i, count;
3631
3632 for (i = 0, count = 0; i < n_regs; i++) {
3633 if (count == 0 ||
3634 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3635 seq_printf(m, "%s %08x: %08x",
3636 i ? "\n" : "",
3637 dump[i][0], dump[i][1]);
3638 count = 7;
3639 } else {
3640 seq_printf(m, " %08x", dump[i][1]);
3641 count--;
3642 }
3643 }
3644
3645 seq_puts(m, "\n");
3646 }
3647
dqm_debugfs_hqds(struct seq_file * m,void * data)3648 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3649 {
3650 struct device_queue_manager *dqm = data;
3651 uint32_t xcc_mask = dqm->dev->xcc_mask;
3652 uint32_t (*dump)[2], n_regs;
3653 int pipe, queue;
3654 int r = 0, xcc_id;
3655 uint32_t sdma_engine_start;
3656
3657 if (!dqm->sched_running) {
3658 seq_puts(m, " Device is stopped\n");
3659 return 0;
3660 }
3661
3662 for_each_inst(xcc_id, xcc_mask) {
3663 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3664 KFD_CIK_HIQ_PIPE,
3665 KFD_CIK_HIQ_QUEUE, &dump,
3666 &n_regs, xcc_id);
3667 if (!r) {
3668 seq_printf(
3669 m,
3670 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3671 xcc_id,
3672 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3673 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3674 KFD_CIK_HIQ_QUEUE);
3675 seq_reg_dump(m, dump, n_regs);
3676
3677 kfree(dump);
3678 }
3679
3680 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3681 int pipe_offset = pipe * get_queues_per_pipe(dqm);
3682
3683 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3684 if (!test_bit(pipe_offset + queue,
3685 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3686 continue;
3687
3688 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3689 pipe, queue,
3690 &dump, &n_regs,
3691 xcc_id);
3692 if (r)
3693 break;
3694
3695 seq_printf(m,
3696 " Inst %d, CP Pipe %d, Queue %d\n",
3697 xcc_id, pipe, queue);
3698 seq_reg_dump(m, dump, n_regs);
3699
3700 kfree(dump);
3701 }
3702 }
3703 }
3704
3705 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3706 for (pipe = sdma_engine_start;
3707 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3708 pipe++) {
3709 for (queue = 0;
3710 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3711 queue++) {
3712 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3713 dqm->dev->adev, pipe, queue, &dump, &n_regs);
3714 if (r)
3715 break;
3716
3717 seq_printf(m, " SDMA Engine %d, RLC %d\n",
3718 pipe, queue);
3719 seq_reg_dump(m, dump, n_regs);
3720
3721 kfree(dump);
3722 }
3723 }
3724
3725 return r;
3726 }
3727
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3728 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3729 {
3730 int r = 0;
3731
3732 dqm_lock(dqm);
3733 r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3734 if (r) {
3735 dqm_unlock(dqm);
3736 return r;
3737 }
3738 dqm->active_runlist = true;
3739 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3740 0, USE_DEFAULT_GRACE_PERIOD);
3741 dqm_unlock(dqm);
3742
3743 return r;
3744 }
3745
3746 #endif
3747