xref: /linux/drivers/firewire/core-transaction.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/rculist.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/timer.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 
28 #include <asm/byteorder.h>
29 
30 #include "core.h"
31 #include "packet-header-definitions.h"
32 #include "phy-packet-definitions.h"
33 #include <trace/events/firewire.h>
34 
35 #define HEADER_DESTINATION_IS_BROADCAST(header) \
36 	((async_header_get_destination(header) & 0x3f) == 0x3f)
37 
38 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)39 static int try_cancel_split_timeout(struct fw_transaction *t)
40 {
41 	if (t->is_split_transaction)
42 		return timer_delete(&t->split_timeout_timer);
43 	else
44 		return 1;
45 }
46 
47 // card->transactions.lock must be acquired in advance.
remove_transaction_entry(struct fw_card * card,struct fw_transaction * entry)48 static void remove_transaction_entry(struct fw_card *card, struct fw_transaction *entry)
49 {
50 	list_del_init(&entry->link);
51 	card->transactions.tlabel_mask &= ~(1ULL << entry->tlabel);
52 }
53 
54 // Must be called without holding card->transactions.lock.
fw_cancel_pending_transactions(struct fw_card * card)55 void fw_cancel_pending_transactions(struct fw_card *card)
56 {
57 	struct fw_transaction *t, *tmp;
58 	LIST_HEAD(pending_list);
59 
60 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
61 	// local destination never runs in any type of IRQ context.
62 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
63 		list_for_each_entry_safe(t, tmp, &card->transactions.list, link) {
64 			if (try_cancel_split_timeout(t))
65 				list_move(&t->link, &pending_list);
66 		}
67 	}
68 
69 	list_for_each_entry_safe(t, tmp, &pending_list, link) {
70 		list_del(&t->link);
71 
72 		if (!t->with_tstamp) {
73 			t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0,
74 						   t->callback_data);
75 		} else {
76 			t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 0,
77 						NULL, 0, t->callback_data);
78 		}
79 	}
80 }
81 
82 // card->transactions.lock must be acquired in advance.
83 #define find_and_pop_transaction_entry(card, condition)			\
84 ({									\
85 	struct fw_transaction *iter, *t = NULL;				\
86 	list_for_each_entry(iter, &card->transactions.list, link) {	\
87 		if (condition) {					\
88 			t = iter;					\
89 			break;						\
90 		}							\
91 	}								\
92 	if (t && try_cancel_split_timeout(t))				\
93 		remove_transaction_entry(card, t);			\
94 	t;								\
95 })
96 
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode,u32 response_tstamp)97 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
98 			     u32 response_tstamp)
99 {
100 	struct fw_transaction *t;
101 
102 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
103 	// local destination never runs in any type of IRQ context.
104 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
105 		t = find_and_pop_transaction_entry(card, iter == transaction);
106 		if (!t)
107 			return -ENOENT;
108 	}
109 
110 	if (!t->with_tstamp) {
111 		t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
112 	} else {
113 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
114 					t->callback_data);
115 	}
116 
117 	return 0;
118 }
119 
120 /*
121  * Only valid for transactions that are potentially pending (ie have
122  * been sent).
123  */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)124 int fw_cancel_transaction(struct fw_card *card,
125 			  struct fw_transaction *transaction)
126 {
127 	u32 tstamp;
128 
129 	/*
130 	 * Cancel the packet transmission if it's still queued.  That
131 	 * will call the packet transmission callback which cancels
132 	 * the transaction.
133 	 */
134 
135 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
136 		return 0;
137 
138 	/*
139 	 * If the request packet has already been sent, we need to see
140 	 * if the transaction is still pending and remove it in that case.
141 	 */
142 
143 	if (transaction->packet.ack == 0) {
144 		// The timestamp is reused since it was just read now.
145 		tstamp = transaction->packet.timestamp;
146 	} else {
147 		u32 curr_cycle_time = 0;
148 
149 		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
150 		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
151 	}
152 
153 	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
154 }
155 EXPORT_SYMBOL(fw_cancel_transaction);
156 
split_transaction_timeout_callback(struct timer_list * timer)157 static void split_transaction_timeout_callback(struct timer_list *timer)
158 {
159 	struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer);
160 	struct fw_card *card = t->card;
161 
162 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
163 		if (list_empty(&t->link))
164 			return;
165 		remove_transaction_entry(card, t);
166 	}
167 
168 	if (!t->with_tstamp) {
169 		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
170 	} else {
171 		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
172 					t->split_timeout_cycle, NULL, 0, t->callback_data);
173 	}
174 }
175 
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)176 static void start_split_transaction_timeout(struct fw_transaction *t,
177 					    struct fw_card *card)
178 {
179 	unsigned long delta;
180 
181 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
182 		return;
183 
184 	t->is_split_transaction = true;
185 
186 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
187 	// local destination never runs in any type of IRQ context.
188 	scoped_guard(spinlock_irqsave, &card->split_timeout.lock)
189 		delta = card->split_timeout.jiffies;
190 	mod_timer(&t->split_timeout_timer, jiffies + delta);
191 }
192 
193 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
194 
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)195 static void transmit_complete_callback(struct fw_packet *packet,
196 				       struct fw_card *card, int status)
197 {
198 	struct fw_transaction *t =
199 	    container_of(packet, struct fw_transaction, packet);
200 
201 	trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
202 					      packet->speed, status, packet->timestamp);
203 
204 	switch (status) {
205 	case ACK_COMPLETE:
206 		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
207 		break;
208 	case ACK_PENDING:
209 	{
210 		// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
211 		// local destination never runs in any type of IRQ context.
212 		scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
213 			t->split_timeout_cycle =
214 				compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
215 		}
216 		start_split_transaction_timeout(t, card);
217 		break;
218 	}
219 	case ACK_BUSY_X:
220 	case ACK_BUSY_A:
221 	case ACK_BUSY_B:
222 		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
223 		break;
224 	case ACK_DATA_ERROR:
225 		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
226 		break;
227 	case ACK_TYPE_ERROR:
228 		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
229 		break;
230 	default:
231 		/*
232 		 * In this case the ack is really a juju specific
233 		 * rcode, so just forward that to the callback.
234 		 */
235 		close_transaction(t, card, status, packet->timestamp);
236 		break;
237 	}
238 }
239 
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)240 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
241 		int destination_id, int source_id, int generation, int speed,
242 		unsigned long long offset, void *payload, size_t length)
243 {
244 	int ext_tcode;
245 
246 	if (tcode == TCODE_STREAM_DATA) {
247 		// The value of destination_id argument should include tag, channel, and sy fields
248 		// as isochronous packet header has.
249 		packet->header[0] = destination_id;
250 		isoc_header_set_data_length(packet->header, length);
251 		isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
252 		packet->header_length = 4;
253 		packet->payload = payload;
254 		packet->payload_length = length;
255 
256 		goto common;
257 	}
258 
259 	if (tcode > 0x10) {
260 		ext_tcode = tcode & ~0x10;
261 		tcode = TCODE_LOCK_REQUEST;
262 	} else
263 		ext_tcode = 0;
264 
265 	async_header_set_retry(packet->header, RETRY_X);
266 	async_header_set_tlabel(packet->header, tlabel);
267 	async_header_set_tcode(packet->header, tcode);
268 	async_header_set_destination(packet->header, destination_id);
269 	async_header_set_source(packet->header, source_id);
270 	async_header_set_offset(packet->header, offset);
271 
272 	switch (tcode) {
273 	case TCODE_WRITE_QUADLET_REQUEST:
274 		async_header_set_quadlet_data(packet->header, *(u32 *)payload);
275 		packet->header_length = 16;
276 		packet->payload_length = 0;
277 		break;
278 
279 	case TCODE_LOCK_REQUEST:
280 	case TCODE_WRITE_BLOCK_REQUEST:
281 		async_header_set_data_length(packet->header, length);
282 		async_header_set_extended_tcode(packet->header, ext_tcode);
283 		packet->header_length = 16;
284 		packet->payload = payload;
285 		packet->payload_length = length;
286 		break;
287 
288 	case TCODE_READ_QUADLET_REQUEST:
289 		packet->header_length = 12;
290 		packet->payload_length = 0;
291 		break;
292 
293 	case TCODE_READ_BLOCK_REQUEST:
294 		async_header_set_data_length(packet->header, length);
295 		async_header_set_extended_tcode(packet->header, ext_tcode);
296 		packet->header_length = 16;
297 		packet->payload_length = 0;
298 		break;
299 
300 	default:
301 		WARN(1, "wrong tcode %d\n", tcode);
302 	}
303  common:
304 	packet->speed = speed;
305 	packet->generation = generation;
306 	packet->ack = 0;
307 	packet->payload_mapped = false;
308 }
309 
allocate_tlabel(struct fw_card * card)310 static int allocate_tlabel(struct fw_card *card)
311 __must_hold(&card->transactions.lock)
312 {
313 	int tlabel;
314 
315 	lockdep_assert_held(&card->transactions.lock);
316 
317 	tlabel = card->transactions.current_tlabel;
318 	while (card->transactions.tlabel_mask & (1ULL << tlabel)) {
319 		tlabel = (tlabel + 1) & 0x3f;
320 		if (tlabel == card->transactions.current_tlabel)
321 			return -EBUSY;
322 	}
323 
324 	card->transactions.current_tlabel = (tlabel + 1) & 0x3f;
325 	card->transactions.tlabel_mask |= 1ULL << tlabel;
326 
327 	return tlabel;
328 }
329 
330 /**
331  * __fw_send_request() - submit a request packet for transmission to generate callback for response
332  *			 subaction with or without time stamp.
333  * @card:		interface to send the request at
334  * @t:			transaction instance to which the request belongs
335  * @tcode:		transaction code
336  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
337  * @generation:		bus generation in which request and response are valid
338  * @speed:		transmission speed
339  * @offset:		48bit wide offset into destination's address space
340  * @payload:		data payload for the request subaction
341  * @length:		length of the payload, in bytes
342  * @callback:		union of two functions whether to receive time stamp or not for response
343  *			subaction.
344  * @with_tstamp:	Whether to receive time stamp or not for response subaction.
345  * @callback_data:	data to be passed to the transaction completion callback
346  *
347  * Submit a request packet into the asynchronous request transmission queue.
348  * Can be called from atomic context.  If you prefer a blocking API, use
349  * fw_run_transaction() in a context that can sleep.
350  *
351  * In case of lock requests, specify one of the firewire-core specific %TCODE_
352  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
353  *
354  * Make sure that the value in @destination_id is not older than the one in
355  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
356  *
357  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
358  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
359  * It will contain tag, channel, and sy data instead of a node ID then.
360  *
361  * The payload buffer at @data is going to be DMA-mapped except in case of
362  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
363  * buffer complies with the restrictions of the streaming DMA mapping API.
364  * @payload must not be freed before the @callback is called.
365  *
366  * In case of request types without payload, @data is NULL and @length is 0.
367  *
368  * After the transaction is completed successfully or unsuccessfully, the
369  * @callback will be called.  Among its parameters is the response code which
370  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
371  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
372  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
373  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
374  * generation, or missing ACK respectively.
375  *
376  * Note some timing corner cases:  fw_send_request() may complete much earlier
377  * than when the request packet actually hits the wire.  On the other hand,
378  * transaction completion and hence execution of @callback may happen even
379  * before fw_send_request() returns.
380  */
__fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,union fw_transaction_callback callback,bool with_tstamp,void * callback_data)381 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
382 		int destination_id, int generation, int speed, unsigned long long offset,
383 		void *payload, size_t length, union fw_transaction_callback callback,
384 		bool with_tstamp, void *callback_data)
385 {
386 	int tlabel;
387 
388 	/*
389 	 * Allocate tlabel from the bitmap and put the transaction on
390 	 * the list while holding the card spinlock.
391 	 */
392 
393 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
394 	// local destination never runs in any type of IRQ context.
395 	scoped_guard(spinlock_irqsave, &card->transactions.lock)
396 		tlabel = allocate_tlabel(card);
397 	if (tlabel < 0) {
398 		if (!with_tstamp) {
399 			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
400 		} else {
401 			// Timestamping on behalf of hardware.
402 			u32 curr_cycle_time = 0;
403 			u32 tstamp;
404 
405 			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
406 			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
407 
408 			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
409 					     callback_data);
410 		}
411 		return;
412 	}
413 
414 	t->node_id = destination_id;
415 	t->tlabel = tlabel;
416 	t->card = card;
417 	t->is_split_transaction = false;
418 	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
419 	t->callback = callback;
420 	t->with_tstamp = with_tstamp;
421 	t->callback_data = callback_data;
422 	t->packet.callback = transmit_complete_callback;
423 
424 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
425 	// local destination never runs in any type of IRQ context.
426 	scoped_guard(spinlock_irqsave, &card->lock) {
427 		// The node_id field of fw_card can be updated when handling SelfIDComplete.
428 		fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id,
429 				generation, speed, offset, payload, length);
430 	}
431 
432 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
433 	// local destination never runs in any type of IRQ context.
434 	scoped_guard(spinlock_irqsave, &card->transactions.lock)
435 		list_add_tail(&t->link, &card->transactions.list);
436 
437 	// Safe with no lock, since the index field of fw_card is immutable once assigned.
438 	trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
439 					      t->packet.header, payload,
440 					      tcode_is_read_request(tcode) ? 0 : length / 4);
441 
442 	card->driver->send_request(card, &t->packet);
443 }
444 EXPORT_SYMBOL_GPL(__fw_send_request);
445 
446 struct transaction_callback_data {
447 	struct completion done;
448 	void *payload;
449 	int rcode;
450 };
451 
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)452 static void transaction_callback(struct fw_card *card, int rcode,
453 				 void *payload, size_t length, void *data)
454 {
455 	struct transaction_callback_data *d = data;
456 
457 	if (rcode == RCODE_COMPLETE)
458 		memcpy(d->payload, payload, length);
459 	d->rcode = rcode;
460 	complete(&d->done);
461 }
462 
463 /**
464  * fw_run_transaction() - send request and sleep until transaction is completed
465  * @card:		card interface for this request
466  * @tcode:		transaction code
467  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
468  * @generation:		bus generation in which request and response are valid
469  * @speed:		transmission speed
470  * @offset:		48bit wide offset into destination's address space
471  * @payload:		data payload for the request subaction
472  * @length:		length of the payload, in bytes
473  *
474  * Returns the RCODE.  See fw_send_request() for parameter documentation.
475  * Unlike fw_send_request(), @data points to the payload of the request or/and
476  * to the payload of the response.  DMA mapping restrictions apply to outbound
477  * request payloads of >= 8 bytes but not to inbound response payloads.
478  */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)479 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
480 		       int generation, int speed, unsigned long long offset,
481 		       void *payload, size_t length)
482 {
483 	struct transaction_callback_data d;
484 	struct fw_transaction t;
485 
486 	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
487 	init_completion(&d.done);
488 	d.payload = payload;
489 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
490 			offset, payload, length, transaction_callback, &d);
491 	wait_for_completion(&d.done);
492 	timer_destroy_on_stack(&t.split_timeout_timer);
493 
494 	return d.rcode;
495 }
496 EXPORT_SYMBOL(fw_run_transaction);
497 
498 static DEFINE_MUTEX(phy_config_mutex);
499 static DECLARE_COMPLETION(phy_config_done);
500 
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)501 static void transmit_phy_packet_callback(struct fw_packet *packet,
502 					 struct fw_card *card, int status)
503 {
504 	trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
505 					  packet->timestamp);
506 	complete(&phy_config_done);
507 }
508 
509 static struct fw_packet phy_config_packet = {
510 	.header_length	= 12,
511 	.payload_length	= 0,
512 	.speed		= SCODE_100,
513 	.callback	= transmit_phy_packet_callback,
514 };
515 
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)516 void fw_send_phy_config(struct fw_card *card,
517 			int node_id, int generation, int gap_count)
518 {
519 	long timeout = msecs_to_jiffies(100);
520 	u32 data = 0;
521 
522 	phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
523 
524 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
525 		phy_packet_phy_config_set_root_id(&data, node_id);
526 		phy_packet_phy_config_set_force_root_node(&data, true);
527 	}
528 
529 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
530 		gap_count = card->driver->read_phy_reg(card, 1);
531 		if (gap_count < 0)
532 			return;
533 
534 		gap_count &= 63;
535 		if (gap_count == 63)
536 			return;
537 	}
538 	phy_packet_phy_config_set_gap_count(&data, gap_count);
539 	phy_packet_phy_config_set_gap_count_optimization(&data, true);
540 
541 	guard(mutex)(&phy_config_mutex);
542 
543 	async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
544 	phy_config_packet.header[1] = data;
545 	phy_config_packet.header[2] = ~data;
546 	phy_config_packet.generation = generation;
547 	reinit_completion(&phy_config_done);
548 
549 	trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
550 					  phy_config_packet.generation, phy_config_packet.header[1],
551 					  phy_config_packet.header[2]);
552 
553 	card->driver->send_request(card, &phy_config_packet);
554 	wait_for_completion_timeout(&phy_config_done, timeout);
555 }
556 
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)557 static struct fw_address_handler *lookup_overlapping_address_handler(
558 	struct list_head *list, unsigned long long offset, size_t length)
559 {
560 	struct fw_address_handler *handler;
561 
562 	list_for_each_entry_rcu(handler, list, link) {
563 		if (handler->offset < offset + length &&
564 		    offset < handler->offset + handler->length)
565 			return handler;
566 	}
567 
568 	return NULL;
569 }
570 
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)571 static bool is_enclosing_handler(struct fw_address_handler *handler,
572 				 unsigned long long offset, size_t length)
573 {
574 	return handler->offset <= offset &&
575 		offset + length <= handler->offset + handler->length;
576 }
577 
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)578 static struct fw_address_handler *lookup_enclosing_address_handler(
579 	struct list_head *list, unsigned long long offset, size_t length)
580 {
581 	struct fw_address_handler *handler;
582 
583 	list_for_each_entry_rcu(handler, list, link) {
584 		if (is_enclosing_handler(handler, offset, length))
585 			return handler;
586 	}
587 
588 	return NULL;
589 }
590 
591 static DEFINE_SPINLOCK(address_handler_list_lock);
592 static LIST_HEAD(address_handler_list);
593 
594 const struct fw_address_region fw_high_memory_region =
595 	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
596 EXPORT_SYMBOL(fw_high_memory_region);
597 
598 static const struct fw_address_region low_memory_region =
599 	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
600 
601 #if 0
602 const struct fw_address_region fw_private_region =
603 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
604 const struct fw_address_region fw_csr_region =
605 	{ .start = CSR_REGISTER_BASE,
606 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
607 const struct fw_address_region fw_unit_space_region =
608 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
609 #endif  /*  0  */
610 
complete_address_handler(struct kref * kref)611 static void complete_address_handler(struct kref *kref)
612 {
613 	struct fw_address_handler *handler = container_of(kref, struct fw_address_handler, kref);
614 
615 	complete(&handler->done);
616 }
617 
get_address_handler(struct fw_address_handler * handler)618 static void get_address_handler(struct fw_address_handler *handler)
619 {
620 	kref_get(&handler->kref);
621 }
622 
put_address_handler(struct fw_address_handler * handler)623 static int put_address_handler(struct fw_address_handler *handler)
624 {
625 	return kref_put(&handler->kref, complete_address_handler);
626 }
627 
628 /**
629  * fw_core_add_address_handler() - register for incoming requests
630  * @handler:	callback
631  * @region:	region in the IEEE 1212 node space address range
632  *
633  * region->start, ->end, and handler->length have to be quadlet-aligned.
634  *
635  * When a request is received that falls within the specified address range, the specified callback
636  * is invoked.  The parameters passed to the callback give the details of the particular request.
637  * The callback is invoked in the workqueue context in most cases. However, if the request is
638  * initiated by the local node, the callback is invoked in the initiator's context.
639  *
640  * To be called in process context.
641  * Return value:  0 on success, non-zero otherwise.
642  *
643  * The start offset of the handler's address region is determined by
644  * fw_core_add_address_handler() and is returned in handler->offset.
645  *
646  * Address allocations are exclusive, except for the FCP registers.
647  */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)648 int fw_core_add_address_handler(struct fw_address_handler *handler,
649 				const struct fw_address_region *region)
650 {
651 	struct fw_address_handler *other;
652 	int ret = -EBUSY;
653 
654 	if (region->start & 0xffff000000000003ULL ||
655 	    region->start >= region->end ||
656 	    region->end   > 0x0001000000000000ULL ||
657 	    handler->length & 3 ||
658 	    handler->length == 0)
659 		return -EINVAL;
660 
661 	guard(spinlock)(&address_handler_list_lock);
662 
663 	handler->offset = region->start;
664 	while (handler->offset + handler->length <= region->end) {
665 		if (is_in_fcp_region(handler->offset, handler->length))
666 			other = NULL;
667 		else
668 			other = lookup_overlapping_address_handler
669 					(&address_handler_list,
670 					 handler->offset, handler->length);
671 		if (other != NULL) {
672 			handler->offset += other->length;
673 		} else {
674 			init_completion(&handler->done);
675 			kref_init(&handler->kref);
676 			list_add_tail_rcu(&handler->link, &address_handler_list);
677 			ret = 0;
678 			break;
679 		}
680 	}
681 
682 	return ret;
683 }
684 EXPORT_SYMBOL(fw_core_add_address_handler);
685 
686 /**
687  * fw_core_remove_address_handler() - unregister an address handler
688  * @handler: callback
689  *
690  * To be called in process context.
691  *
692  * When fw_core_remove_address_handler() returns, @handler->callback() is
693  * guaranteed to not run on any CPU anymore.
694  */
fw_core_remove_address_handler(struct fw_address_handler * handler)695 void fw_core_remove_address_handler(struct fw_address_handler *handler)
696 {
697 	scoped_guard(spinlock, &address_handler_list_lock)
698 		list_del_rcu(&handler->link);
699 
700 	synchronize_rcu();
701 
702 	if (!put_address_handler(handler))
703 		wait_for_completion(&handler->done);
704 }
705 EXPORT_SYMBOL(fw_core_remove_address_handler);
706 
707 struct fw_request {
708 	struct kref kref;
709 	struct fw_packet response;
710 	u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
711 	int ack;
712 	u32 timestamp;
713 	u32 length;
714 	u32 data[];
715 };
716 
fw_request_get(struct fw_request * request)717 void fw_request_get(struct fw_request *request)
718 {
719 	kref_get(&request->kref);
720 }
721 
release_request(struct kref * kref)722 static void release_request(struct kref *kref)
723 {
724 	struct fw_request *request = container_of(kref, struct fw_request, kref);
725 
726 	kfree(request);
727 }
728 
fw_request_put(struct fw_request * request)729 void fw_request_put(struct fw_request *request)
730 {
731 	kref_put(&request->kref, release_request);
732 }
733 
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)734 static void free_response_callback(struct fw_packet *packet,
735 				   struct fw_card *card, int status)
736 {
737 	struct fw_request *request = container_of(packet, struct fw_request, response);
738 
739 	trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
740 					       packet->speed, status, packet->timestamp);
741 
742 	// Decrease the reference count since not at in-flight.
743 	fw_request_put(request);
744 
745 	// Decrease the reference count to release the object.
746 	fw_request_put(request);
747 }
748 
fw_get_response_length(struct fw_request * r)749 int fw_get_response_length(struct fw_request *r)
750 {
751 	int tcode, ext_tcode, data_length;
752 
753 	tcode = async_header_get_tcode(r->request_header);
754 
755 	switch (tcode) {
756 	case TCODE_WRITE_QUADLET_REQUEST:
757 	case TCODE_WRITE_BLOCK_REQUEST:
758 		return 0;
759 
760 	case TCODE_READ_QUADLET_REQUEST:
761 		return 4;
762 
763 	case TCODE_READ_BLOCK_REQUEST:
764 		data_length = async_header_get_data_length(r->request_header);
765 		return data_length;
766 
767 	case TCODE_LOCK_REQUEST:
768 		ext_tcode = async_header_get_extended_tcode(r->request_header);
769 		data_length = async_header_get_data_length(r->request_header);
770 		switch (ext_tcode) {
771 		case EXTCODE_FETCH_ADD:
772 		case EXTCODE_LITTLE_ADD:
773 			return data_length;
774 		default:
775 			return data_length / 2;
776 		}
777 
778 	default:
779 		WARN(1, "wrong tcode %d\n", tcode);
780 		return 0;
781 	}
782 }
783 
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)784 void fw_fill_response(struct fw_packet *response, u32 *request_header,
785 		      int rcode, void *payload, size_t length)
786 {
787 	int tcode, tlabel, extended_tcode, source, destination;
788 
789 	tcode = async_header_get_tcode(request_header);
790 	tlabel = async_header_get_tlabel(request_header);
791 	source = async_header_get_destination(request_header); // Exchange.
792 	destination = async_header_get_source(request_header); // Exchange.
793 	extended_tcode = async_header_get_extended_tcode(request_header);
794 
795 	async_header_set_retry(response->header, RETRY_1);
796 	async_header_set_tlabel(response->header, tlabel);
797 	async_header_set_destination(response->header, destination);
798 	async_header_set_source(response->header, source);
799 	async_header_set_rcode(response->header, rcode);
800 	response->header[2] = 0;	// The field is reserved.
801 
802 	switch (tcode) {
803 	case TCODE_WRITE_QUADLET_REQUEST:
804 	case TCODE_WRITE_BLOCK_REQUEST:
805 		async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
806 		response->header_length = 12;
807 		response->payload_length = 0;
808 		break;
809 
810 	case TCODE_READ_QUADLET_REQUEST:
811 		async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
812 		if (payload != NULL)
813 			async_header_set_quadlet_data(response->header, *(u32 *)payload);
814 		else
815 			async_header_set_quadlet_data(response->header, 0);
816 		response->header_length = 16;
817 		response->payload_length = 0;
818 		break;
819 
820 	case TCODE_READ_BLOCK_REQUEST:
821 	case TCODE_LOCK_REQUEST:
822 		async_header_set_tcode(response->header, tcode + 2);
823 		async_header_set_data_length(response->header, length);
824 		async_header_set_extended_tcode(response->header, extended_tcode);
825 		response->header_length = 16;
826 		response->payload = payload;
827 		response->payload_length = length;
828 		break;
829 
830 	default:
831 		WARN(1, "wrong tcode %d\n", tcode);
832 	}
833 
834 	response->payload_mapped = false;
835 }
836 EXPORT_SYMBOL(fw_fill_response);
837 
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)838 static u32 compute_split_timeout_timestamp(struct fw_card *card,
839 					   u32 request_timestamp)
840 __must_hold(&card->split_timeout.lock)
841 {
842 	unsigned int cycles;
843 	u32 timestamp;
844 
845 	lockdep_assert_held(&card->split_timeout.lock);
846 
847 	cycles = card->split_timeout.cycles;
848 	cycles += request_timestamp & 0x1fff;
849 
850 	timestamp = request_timestamp & ~0x1fff;
851 	timestamp += (cycles / 8000) << 13;
852 	timestamp |= cycles % 8000;
853 
854 	return timestamp;
855 }
856 
allocate_request(struct fw_card * card,struct fw_packet * p)857 static struct fw_request *allocate_request(struct fw_card *card,
858 					   struct fw_packet *p)
859 {
860 	struct fw_request *request;
861 	u32 *data, length;
862 	int request_tcode;
863 
864 	request_tcode = async_header_get_tcode(p->header);
865 	switch (request_tcode) {
866 	case TCODE_WRITE_QUADLET_REQUEST:
867 		data = &p->header[3];
868 		length = 4;
869 		break;
870 
871 	case TCODE_WRITE_BLOCK_REQUEST:
872 	case TCODE_LOCK_REQUEST:
873 		data = p->payload;
874 		length = async_header_get_data_length(p->header);
875 		break;
876 
877 	case TCODE_READ_QUADLET_REQUEST:
878 		data = NULL;
879 		length = 4;
880 		break;
881 
882 	case TCODE_READ_BLOCK_REQUEST:
883 		data = NULL;
884 		length = async_header_get_data_length(p->header);
885 		break;
886 
887 	default:
888 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
889 			 p->header[0], p->header[1], p->header[2]);
890 		return NULL;
891 	}
892 
893 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
894 	if (request == NULL)
895 		return NULL;
896 	kref_init(&request->kref);
897 
898 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
899 	// local destination never runs in any type of IRQ context.
900 	scoped_guard(spinlock_irqsave, &card->split_timeout.lock)
901 		request->response.timestamp = compute_split_timeout_timestamp(card, p->timestamp);
902 
903 	request->response.speed = p->speed;
904 	request->response.generation = p->generation;
905 	request->response.ack = 0;
906 	request->response.callback = free_response_callback;
907 	request->ack = p->ack;
908 	request->timestamp = p->timestamp;
909 	request->length = length;
910 	if (data)
911 		memcpy(request->data, data, length);
912 
913 	memcpy(request->request_header, p->header, sizeof(p->header));
914 
915 	return request;
916 }
917 
918 /**
919  * fw_send_response: - send response packet for asynchronous transaction.
920  * @card:	interface to send the response at.
921  * @request:	firewire request data for the transaction.
922  * @rcode:	response code to send.
923  *
924  * Submit a response packet into the asynchronous response transmission queue. The @request
925  * is going to be released when the transmission successfully finishes later.
926  */
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)927 void fw_send_response(struct fw_card *card,
928 		      struct fw_request *request, int rcode)
929 {
930 	u32 *data = NULL;
931 	unsigned int data_length = 0;
932 
933 	/* unified transaction or broadcast transaction: don't respond */
934 	if (request->ack != ACK_PENDING ||
935 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
936 		fw_request_put(request);
937 		return;
938 	}
939 
940 	if (rcode == RCODE_COMPLETE) {
941 		data = request->data;
942 		data_length = fw_get_response_length(request);
943 	}
944 
945 	fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
946 
947 	// Increase the reference count so that the object is kept during in-flight.
948 	fw_request_get(request);
949 
950 	trace_async_response_outbound_initiate((uintptr_t)request, card->index,
951 					       request->response.generation, request->response.speed,
952 					       request->response.header, data,
953 					       data ? data_length / 4 : 0);
954 
955 	card->driver->send_response(card, &request->response);
956 }
957 EXPORT_SYMBOL(fw_send_response);
958 
959 /**
960  * fw_get_request_speed() - returns speed at which the @request was received
961  * @request: firewire request data
962  */
fw_get_request_speed(struct fw_request * request)963 int fw_get_request_speed(struct fw_request *request)
964 {
965 	return request->response.speed;
966 }
967 EXPORT_SYMBOL(fw_get_request_speed);
968 
969 /**
970  * fw_request_get_timestamp: Get timestamp of the request.
971  * @request: The opaque pointer to request structure.
972  *
973  * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
974  * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
975  * field of isochronous cycle time register.
976  *
977  * Returns: timestamp of the request.
978  */
fw_request_get_timestamp(const struct fw_request * request)979 u32 fw_request_get_timestamp(const struct fw_request *request)
980 {
981 	return request->timestamp;
982 }
983 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
984 
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)985 static void handle_exclusive_region_request(struct fw_card *card,
986 					    struct fw_packet *p,
987 					    struct fw_request *request,
988 					    unsigned long long offset)
989 {
990 	struct fw_address_handler *handler;
991 	int tcode, destination, source;
992 
993 	destination = async_header_get_destination(p->header);
994 	source = async_header_get_source(p->header);
995 	tcode = async_header_get_tcode(p->header);
996 	if (tcode == TCODE_LOCK_REQUEST)
997 		tcode = 0x10 + async_header_get_extended_tcode(p->header);
998 
999 	scoped_guard(rcu) {
1000 		handler = lookup_enclosing_address_handler(&address_handler_list, offset,
1001 							   request->length);
1002 		if (handler)
1003 			get_address_handler(handler);
1004 	}
1005 
1006 	if (!handler) {
1007 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1008 		return;
1009 	}
1010 
1011 	// Outside the RCU read-side critical section. Without spinlock. With reference count.
1012 	handler->address_callback(card, request, tcode, destination, source, p->generation, offset,
1013 				  request->data, request->length, handler->callback_data);
1014 	put_address_handler(handler);
1015 }
1016 
1017 // To use kmalloc allocator efficiently, this should be power of two.
1018 #define BUFFER_ON_KERNEL_STACK_SIZE	4
1019 
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)1020 static void handle_fcp_region_request(struct fw_card *card,
1021 				      struct fw_packet *p,
1022 				      struct fw_request *request,
1023 				      unsigned long long offset)
1024 {
1025 	struct fw_address_handler *buffer_on_kernel_stack[BUFFER_ON_KERNEL_STACK_SIZE];
1026 	struct fw_address_handler *handler, **handlers;
1027 	int tcode, destination, source, i, count, buffer_size;
1028 
1029 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
1030 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
1031 	    request->length > 0x200) {
1032 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1033 
1034 		return;
1035 	}
1036 
1037 	tcode = async_header_get_tcode(p->header);
1038 	destination = async_header_get_destination(p->header);
1039 	source = async_header_get_source(p->header);
1040 
1041 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
1042 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
1043 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1044 
1045 		return;
1046 	}
1047 
1048 	count = 0;
1049 	handlers = buffer_on_kernel_stack;
1050 	buffer_size = ARRAY_SIZE(buffer_on_kernel_stack);
1051 	scoped_guard(rcu) {
1052 		list_for_each_entry_rcu(handler, &address_handler_list, link) {
1053 			if (is_enclosing_handler(handler, offset, request->length)) {
1054 				if (count >= buffer_size) {
1055 					int next_size = buffer_size * 2;
1056 					struct fw_address_handler **buffer_on_kernel_heap;
1057 
1058 					if (handlers == buffer_on_kernel_stack)
1059 						buffer_on_kernel_heap = NULL;
1060 					else
1061 						buffer_on_kernel_heap = handlers;
1062 
1063 					buffer_on_kernel_heap =
1064 						krealloc_array(buffer_on_kernel_heap, next_size,
1065 							sizeof(*buffer_on_kernel_heap), GFP_ATOMIC);
1066 					// FCP is used for purposes unrelated to significant system
1067 					// resources (e.g. storage or networking), so allocation
1068 					// failures are not considered so critical.
1069 					if (!buffer_on_kernel_heap)
1070 						break;
1071 
1072 					if (handlers == buffer_on_kernel_stack) {
1073 						memcpy(buffer_on_kernel_heap, buffer_on_kernel_stack,
1074 						       sizeof(buffer_on_kernel_stack));
1075 					}
1076 
1077 					handlers = buffer_on_kernel_heap;
1078 					buffer_size = next_size;
1079 				}
1080 				get_address_handler(handler);
1081 				handlers[count++] = handler;
1082 			}
1083 		}
1084 	}
1085 
1086 	for (i = 0; i < count; ++i) {
1087 		handler = handlers[i];
1088 		handler->address_callback(card, request, tcode, destination, source,
1089 					  p->generation, offset, request->data,
1090 					  request->length, handler->callback_data);
1091 		put_address_handler(handler);
1092 	}
1093 
1094 	if (handlers != buffer_on_kernel_stack)
1095 		kfree(handlers);
1096 
1097 	fw_send_response(card, request, RCODE_COMPLETE);
1098 }
1099 
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)1100 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
1101 {
1102 	struct fw_request *request;
1103 	unsigned long long offset;
1104 	unsigned int tcode;
1105 
1106 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
1107 		return;
1108 
1109 	tcode = async_header_get_tcode(p->header);
1110 	if (tcode_is_link_internal(tcode)) {
1111 		trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
1112 					 p->header[1], p->header[2]);
1113 		fw_cdev_handle_phy_packet(card, p);
1114 		return;
1115 	}
1116 
1117 	request = allocate_request(card, p);
1118 	if (request == NULL) {
1119 		/* FIXME: send statically allocated busy packet. */
1120 		return;
1121 	}
1122 
1123 	trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
1124 				    p->ack, p->timestamp, p->header, request->data,
1125 				    tcode_is_read_request(tcode) ? 0 : request->length / 4);
1126 
1127 	offset = async_header_get_offset(p->header);
1128 
1129 	if (!is_in_fcp_region(offset, request->length))
1130 		handle_exclusive_region_request(card, p, request, offset);
1131 	else
1132 		handle_fcp_region_request(card, p, request, offset);
1133 
1134 }
1135 EXPORT_SYMBOL(fw_core_handle_request);
1136 
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)1137 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1138 {
1139 	struct fw_transaction *t = NULL;
1140 	u32 *data;
1141 	size_t data_length;
1142 	int tcode, tlabel, source, rcode;
1143 
1144 	tcode = async_header_get_tcode(p->header);
1145 	tlabel = async_header_get_tlabel(p->header);
1146 	source = async_header_get_source(p->header);
1147 	rcode = async_header_get_rcode(p->header);
1148 
1149 	// FIXME: sanity check packet, is length correct, does tcodes
1150 	// and addresses match to the transaction request queried later.
1151 	//
1152 	// For the tracepoints event, let us decode the header here against the concern.
1153 
1154 	switch (tcode) {
1155 	case TCODE_READ_QUADLET_RESPONSE:
1156 		data = (u32 *) &p->header[3];
1157 		data_length = 4;
1158 		break;
1159 
1160 	case TCODE_WRITE_RESPONSE:
1161 		data = NULL;
1162 		data_length = 0;
1163 		break;
1164 
1165 	case TCODE_READ_BLOCK_RESPONSE:
1166 	case TCODE_LOCK_RESPONSE:
1167 		data = p->payload;
1168 		data_length = async_header_get_data_length(p->header);
1169 		break;
1170 
1171 	default:
1172 		/* Should never happen, this is just to shut up gcc. */
1173 		data = NULL;
1174 		data_length = 0;
1175 		break;
1176 	}
1177 
1178 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
1179 	// local destination never runs in any type of IRQ context.
1180 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
1181 		t = find_and_pop_transaction_entry(card,
1182 				iter->node_id == source && iter->tlabel == tlabel);
1183 	}
1184 
1185 	trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1186 				     p->timestamp, p->header, data, data_length / 4);
1187 
1188 	if (!t) {
1189 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1190 			  source, tlabel);
1191 		return;
1192 	}
1193 
1194 	/*
1195 	 * The response handler may be executed while the request handler
1196 	 * is still pending.  Cancel the request handler.
1197 	 */
1198 	card->driver->cancel_packet(card, &t->packet);
1199 
1200 	if (!t->with_tstamp) {
1201 		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1202 	} else {
1203 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1204 					data_length, t->callback_data);
1205 	}
1206 }
1207 EXPORT_SYMBOL(fw_core_handle_response);
1208 
1209 /**
1210  * fw_rcode_string - convert a firewire result code to an error description
1211  * @rcode: the result code
1212  */
fw_rcode_string(int rcode)1213 const char *fw_rcode_string(int rcode)
1214 {
1215 	static const char *const names[] = {
1216 		[RCODE_COMPLETE]       = "no error",
1217 		[RCODE_CONFLICT_ERROR] = "conflict error",
1218 		[RCODE_DATA_ERROR]     = "data error",
1219 		[RCODE_TYPE_ERROR]     = "type error",
1220 		[RCODE_ADDRESS_ERROR]  = "address error",
1221 		[RCODE_SEND_ERROR]     = "send error",
1222 		[RCODE_CANCELLED]      = "timeout",
1223 		[RCODE_BUSY]           = "busy",
1224 		[RCODE_GENERATION]     = "bus reset",
1225 		[RCODE_NO_ACK]         = "no ack",
1226 	};
1227 
1228 	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1229 		return names[rcode];
1230 	else
1231 		return "unknown";
1232 }
1233 EXPORT_SYMBOL(fw_rcode_string);
1234 
1235 static const struct fw_address_region topology_map_region =
1236 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1237 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1238 
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1239 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1240 		int tcode, int destination, int source, int generation,
1241 		unsigned long long offset, void *payload, size_t length,
1242 		void *callback_data)
1243 {
1244 	int start;
1245 
1246 	if (!tcode_is_read_request(tcode)) {
1247 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1248 		return;
1249 	}
1250 
1251 	if ((offset & 3) > 0 || (length & 3) > 0) {
1252 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1253 		return;
1254 	}
1255 
1256 	start = (offset - topology_map_region.start) / 4;
1257 
1258 	// NOTE: This can be without irqsave when we can guarantee that fw_send_request() for local
1259 	// destination never runs in any type of IRQ context.
1260 	scoped_guard(spinlock_irqsave, &card->topology_map.lock)
1261 		memcpy(payload, &card->topology_map.buffer[start], length);
1262 
1263 	fw_send_response(card, request, RCODE_COMPLETE);
1264 }
1265 
1266 static struct fw_address_handler topology_map = {
1267 	.length			= 0x400,
1268 	.address_callback	= handle_topology_map,
1269 };
1270 
1271 static const struct fw_address_region registers_region =
1272 	{ .start = CSR_REGISTER_BASE,
1273 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1274 
update_split_timeout(struct fw_card * card)1275 static void update_split_timeout(struct fw_card *card)
1276 __must_hold(&card->split_timeout.lock)
1277 {
1278 	unsigned int cycles;
1279 
1280 	cycles = card->split_timeout.hi * 8000 + (card->split_timeout.lo >> 19);
1281 
1282 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1283 	cycles = clamp(cycles, 800u, 3u * 8000u);
1284 
1285 	card->split_timeout.cycles = cycles;
1286 	card->split_timeout.jiffies = isoc_cycles_to_jiffies(cycles);
1287 }
1288 
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1289 static void handle_registers(struct fw_card *card, struct fw_request *request,
1290 		int tcode, int destination, int source, int generation,
1291 		unsigned long long offset, void *payload, size_t length,
1292 		void *callback_data)
1293 {
1294 	int reg = offset & ~CSR_REGISTER_BASE;
1295 	__be32 *data = payload;
1296 	int rcode = RCODE_COMPLETE;
1297 
1298 	switch (reg) {
1299 	case CSR_PRIORITY_BUDGET:
1300 		if (!card->priority_budget_implemented) {
1301 			rcode = RCODE_ADDRESS_ERROR;
1302 			break;
1303 		}
1304 		fallthrough;
1305 
1306 	case CSR_NODE_IDS:
1307 		/*
1308 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1309 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1310 		 */
1311 		fallthrough;
1312 
1313 	case CSR_STATE_CLEAR:
1314 	case CSR_STATE_SET:
1315 	case CSR_CYCLE_TIME:
1316 	case CSR_BUS_TIME:
1317 	case CSR_BUSY_TIMEOUT:
1318 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1319 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1320 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1321 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1322 		else
1323 			rcode = RCODE_TYPE_ERROR;
1324 		break;
1325 
1326 	case CSR_RESET_START:
1327 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1328 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1329 						CSR_STATE_BIT_ABDICATE);
1330 		else
1331 			rcode = RCODE_TYPE_ERROR;
1332 		break;
1333 
1334 	case CSR_SPLIT_TIMEOUT_HI:
1335 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1336 			*data = cpu_to_be32(card->split_timeout.hi);
1337 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1338 			// NOTE: This can be without irqsave when we can guarantee that
1339 			// __fw_send_request() for local destination never runs in any type of IRQ
1340 			// context.
1341 			scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1342 				card->split_timeout.hi = be32_to_cpu(*data) & 7;
1343 				update_split_timeout(card);
1344 			}
1345 		} else {
1346 			rcode = RCODE_TYPE_ERROR;
1347 		}
1348 		break;
1349 
1350 	case CSR_SPLIT_TIMEOUT_LO:
1351 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1352 			*data = cpu_to_be32(card->split_timeout.lo);
1353 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1354 			// NOTE: This can be without irqsave when we can guarantee that
1355 			// __fw_send_request() for local destination never runs in any type of IRQ
1356 			// context.
1357 			scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1358 				card->split_timeout.lo = be32_to_cpu(*data) & 0xfff80000;
1359 				update_split_timeout(card);
1360 			}
1361 		} else {
1362 			rcode = RCODE_TYPE_ERROR;
1363 		}
1364 		break;
1365 
1366 	case CSR_MAINT_UTILITY:
1367 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1368 			*data = card->maint_utility_register;
1369 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1370 			card->maint_utility_register = *data;
1371 		else
1372 			rcode = RCODE_TYPE_ERROR;
1373 		break;
1374 
1375 	case CSR_BROADCAST_CHANNEL:
1376 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1377 			*data = cpu_to_be32(card->broadcast_channel);
1378 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1379 			card->broadcast_channel =
1380 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1381 			    BROADCAST_CHANNEL_INITIAL;
1382 		else
1383 			rcode = RCODE_TYPE_ERROR;
1384 		break;
1385 
1386 	case CSR_BUS_MANAGER_ID:
1387 	case CSR_BANDWIDTH_AVAILABLE:
1388 	case CSR_CHANNELS_AVAILABLE_HI:
1389 	case CSR_CHANNELS_AVAILABLE_LO:
1390 		/*
1391 		 * FIXME: these are handled by the OHCI hardware and
1392 		 * the stack never sees these request. If we add
1393 		 * support for a new type of controller that doesn't
1394 		 * handle this in hardware we need to deal with these
1395 		 * transactions.
1396 		 */
1397 		BUG();
1398 		break;
1399 
1400 	default:
1401 		rcode = RCODE_ADDRESS_ERROR;
1402 		break;
1403 	}
1404 
1405 	fw_send_response(card, request, rcode);
1406 }
1407 
1408 static struct fw_address_handler registers = {
1409 	.length			= 0x400,
1410 	.address_callback	= handle_registers,
1411 };
1412 
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1413 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1414 		int tcode, int destination, int source, int generation,
1415 		unsigned long long offset, void *payload, size_t length,
1416 		void *callback_data)
1417 {
1418 	/*
1419 	 * This catches requests not handled by the physical DMA unit,
1420 	 * i.e., wrong transaction types or unauthorized source nodes.
1421 	 */
1422 	fw_send_response(card, request, RCODE_TYPE_ERROR);
1423 }
1424 
1425 static struct fw_address_handler low_memory = {
1426 	.length			= FW_MAX_PHYSICAL_RANGE,
1427 	.address_callback	= handle_low_memory,
1428 };
1429 
1430 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1431 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1432 MODULE_LICENSE("GPL");
1433 
1434 static const u32 vendor_textual_descriptor[] = {
1435 	/* textual descriptor leaf () */
1436 	0x00060000,
1437 	0x00000000,
1438 	0x00000000,
1439 	0x4c696e75,		/* L i n u */
1440 	0x78204669,		/* x   F i */
1441 	0x72657769,		/* r e w i */
1442 	0x72650000,		/* r e     */
1443 };
1444 
1445 static const u32 model_textual_descriptor[] = {
1446 	/* model descriptor leaf () */
1447 	0x00030000,
1448 	0x00000000,
1449 	0x00000000,
1450 	0x4a756a75,		/* J u j u */
1451 };
1452 
1453 static struct fw_descriptor vendor_id_descriptor = {
1454 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1455 	.immediate = 0x03001f11,
1456 	.key = 0x81000000,
1457 	.data = vendor_textual_descriptor,
1458 };
1459 
1460 static struct fw_descriptor model_id_descriptor = {
1461 	.length = ARRAY_SIZE(model_textual_descriptor),
1462 	.immediate = 0x17023901,
1463 	.key = 0x81000000,
1464 	.data = model_textual_descriptor,
1465 };
1466 
fw_core_init(void)1467 static int __init fw_core_init(void)
1468 {
1469 	int ret;
1470 
1471 	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM | WQ_UNBOUND,
1472 				       0);
1473 	if (!fw_workqueue)
1474 		return -ENOMEM;
1475 
1476 	ret = bus_register(&fw_bus_type);
1477 	if (ret < 0) {
1478 		destroy_workqueue(fw_workqueue);
1479 		return ret;
1480 	}
1481 
1482 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1483 	if (fw_cdev_major < 0) {
1484 		bus_unregister(&fw_bus_type);
1485 		destroy_workqueue(fw_workqueue);
1486 		return fw_cdev_major;
1487 	}
1488 
1489 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1490 	fw_core_add_address_handler(&registers, &registers_region);
1491 	fw_core_add_address_handler(&low_memory, &low_memory_region);
1492 	fw_core_add_descriptor(&vendor_id_descriptor);
1493 	fw_core_add_descriptor(&model_id_descriptor);
1494 
1495 	return 0;
1496 }
1497 
fw_core_cleanup(void)1498 static void __exit fw_core_cleanup(void)
1499 {
1500 	unregister_chrdev(fw_cdev_major, "firewire");
1501 	bus_unregister(&fw_bus_type);
1502 	destroy_workqueue(fw_workqueue);
1503 	xa_destroy(&fw_device_xa);
1504 }
1505 
1506 module_init(fw_core_init);
1507 module_exit(fw_core_cleanup);
1508