xref: /linux/drivers/gpu/drm/amd/display/dc/core/dc_resource.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "link_service.h"
44 #include "clk_mgr.h"
45 #include "dc_state_priv.h"
46 #include "dc_stream_priv.h"
47 
48 #include "virtual/virtual_link_hwss.h"
49 #include "link/hwss/link_hwss_dio.h"
50 #include "link/hwss/link_hwss_dpia.h"
51 #include "link/hwss/link_hwss_hpo_dp.h"
52 #include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
53 #include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
54 
55 #if defined(CONFIG_DRM_AMD_DC_SI)
56 #include "dce60/dce60_resource.h"
57 #endif
58 #include "dce80/dce80_resource.h"
59 #include "dce100/dce100_resource.h"
60 #include "dce110/dce110_resource.h"
61 #include "dce112/dce112_resource.h"
62 #include "dce120/dce120_resource.h"
63 #include "dcn10/dcn10_resource.h"
64 #include "dcn20/dcn20_resource.h"
65 #include "dcn21/dcn21_resource.h"
66 #include "dcn201/dcn201_resource.h"
67 #include "dcn30/dcn30_resource.h"
68 #include "dcn301/dcn301_resource.h"
69 #include "dcn302/dcn302_resource.h"
70 #include "dcn303/dcn303_resource.h"
71 #include "dcn31/dcn31_resource.h"
72 #include "dcn314/dcn314_resource.h"
73 #include "dcn315/dcn315_resource.h"
74 #include "dcn316/dcn316_resource.h"
75 #include "dcn32/dcn32_resource.h"
76 #include "dcn321/dcn321_resource.h"
77 #include "dcn35/dcn35_resource.h"
78 #include "dcn351/dcn351_resource.h"
79 #include "dcn36/dcn36_resource.h"
80 #include "dcn401/dcn401_resource.h"
81 #if defined(CONFIG_DRM_AMD_DC_FP)
82 #include "dc_spl_translate.h"
83 #endif
84 
85 #define VISUAL_CONFIRM_BASE_DEFAULT 3
86 #define VISUAL_CONFIRM_BASE_MIN 1
87 #define VISUAL_CONFIRM_BASE_MAX 10
88 /* we choose 240 because it is a common denominator of common v addressable
89  * such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
90  * the visual confirm dpp offset height. So visual confirm height can stay
91  * relatively the same independent from timing used.
92  */
93 #define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
94 
95 #define DC_LOGGER \
96 	dc->ctx->logger
97 #define DC_LOGGER_INIT(logger)
98 #include "dml2_0/dml2_wrapper.h"
99 
100 #define UNABLE_TO_SPLIT -1
101 
capture_pipe_topology_data(struct dc * dc,int plane_idx,int slice_idx,int stream_idx,int dpp_inst,int opp_inst,int tg_inst,bool is_phantom_pipe)102 static void capture_pipe_topology_data(struct dc *dc, int plane_idx, int slice_idx, int stream_idx,
103 									   int dpp_inst, int opp_inst, int tg_inst, bool is_phantom_pipe)
104 {
105 	struct pipe_topology_snapshot *current_snapshot = &dc->debug_data.topology_history.snapshots[dc->debug_data.topology_history.current_snapshot_index];
106 
107 	if (current_snapshot->line_count >= MAX_PIPES)
108 		return;
109 
110 	current_snapshot->pipe_log_lines[current_snapshot->line_count].is_phantom_pipe = is_phantom_pipe;
111 	current_snapshot->pipe_log_lines[current_snapshot->line_count].plane_idx = plane_idx;
112 	current_snapshot->pipe_log_lines[current_snapshot->line_count].slice_idx = slice_idx;
113 	current_snapshot->pipe_log_lines[current_snapshot->line_count].stream_idx = stream_idx;
114 	current_snapshot->pipe_log_lines[current_snapshot->line_count].dpp_inst = dpp_inst;
115 	current_snapshot->pipe_log_lines[current_snapshot->line_count].opp_inst = opp_inst;
116 	current_snapshot->pipe_log_lines[current_snapshot->line_count].tg_inst = tg_inst;
117 
118 	current_snapshot->line_count++;
119 }
120 
start_new_topology_snapshot(struct dc * dc,struct dc_state * state)121 static void start_new_topology_snapshot(struct dc *dc, struct dc_state *state)
122 {
123 	// Move to next snapshot slot (circular buffer)
124 	dc->debug_data.topology_history.current_snapshot_index = (dc->debug_data.topology_history.current_snapshot_index + 1) % MAX_TOPOLOGY_SNAPSHOTS;
125 
126 	// Clear the new snapshot
127 	struct pipe_topology_snapshot *current_snapshot = &dc->debug_data.topology_history.snapshots[dc->debug_data.topology_history.current_snapshot_index];
128 	memset(current_snapshot, 0, sizeof(*current_snapshot));
129 
130 	// Set metadata
131 	current_snapshot->timestamp_us = dm_get_timestamp(dc->ctx);
132 	current_snapshot->stream_count = state->stream_count;
133 	current_snapshot->phantom_stream_count = state->phantom_stream_count;
134 }
135 
resource_parse_asic_id(struct hw_asic_id asic_id)136 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
137 {
138 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
139 
140 	switch (asic_id.chip_family) {
141 
142 #if defined(CONFIG_DRM_AMD_DC_SI)
143 	case FAMILY_SI:
144 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
145 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
146 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
147 			dc_version = DCE_VERSION_6_0;
148 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
149 			dc_version = DCE_VERSION_6_4;
150 		else
151 			dc_version = DCE_VERSION_6_1;
152 		break;
153 #endif
154 	case FAMILY_CI:
155 		dc_version = DCE_VERSION_8_0;
156 		break;
157 	case FAMILY_KV:
158 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
159 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
160 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
161 			dc_version = DCE_VERSION_8_3;
162 		else
163 			dc_version = DCE_VERSION_8_1;
164 		break;
165 	case FAMILY_CZ:
166 		dc_version = DCE_VERSION_11_0;
167 		break;
168 
169 	case FAMILY_VI:
170 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
171 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
172 			dc_version = DCE_VERSION_10_0;
173 			break;
174 		}
175 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
176 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
177 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
178 			dc_version = DCE_VERSION_11_2;
179 		}
180 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
181 			dc_version = DCE_VERSION_11_22;
182 		break;
183 	case FAMILY_AI:
184 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
185 			dc_version = DCE_VERSION_12_1;
186 		else
187 			dc_version = DCE_VERSION_12_0;
188 		break;
189 	case FAMILY_RV:
190 		dc_version = DCN_VERSION_1_0;
191 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
192 			dc_version = DCN_VERSION_1_01;
193 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
194 			dc_version = DCN_VERSION_2_1;
195 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
196 			dc_version = DCN_VERSION_2_1;
197 		break;
198 
199 	case FAMILY_NV:
200 		dc_version = DCN_VERSION_2_0;
201 		if (asic_id.chip_id == DEVICE_ID_NV_13FE ||
202 		    asic_id.chip_id == DEVICE_ID_NV_143F ||
203 		    asic_id.chip_id == DEVICE_ID_NV_13F9 ||
204 		    asic_id.chip_id == DEVICE_ID_NV_13FA ||
205 		    asic_id.chip_id == DEVICE_ID_NV_13FB ||
206 		    asic_id.chip_id == DEVICE_ID_NV_13FC ||
207 		    asic_id.chip_id == DEVICE_ID_NV_13DB) {
208 			dc_version = DCN_VERSION_2_01;
209 			break;
210 		}
211 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
212 			dc_version = DCN_VERSION_3_0;
213 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
214 			dc_version = DCN_VERSION_3_02;
215 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
216 			dc_version = DCN_VERSION_3_03;
217 		break;
218 
219 	case FAMILY_VGH:
220 		dc_version = DCN_VERSION_3_01;
221 		break;
222 
223 	case FAMILY_YELLOW_CARP:
224 		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
225 			dc_version = DCN_VERSION_3_1;
226 		break;
227 	case AMDGPU_FAMILY_GC_10_3_6:
228 		if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
229 			dc_version = DCN_VERSION_3_15;
230 		break;
231 	case AMDGPU_FAMILY_GC_10_3_7:
232 		if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
233 			dc_version = DCN_VERSION_3_16;
234 		break;
235 	case AMDGPU_FAMILY_GC_11_0_0:
236 		dc_version = DCN_VERSION_3_2;
237 		if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
238 			dc_version = DCN_VERSION_3_21;
239 		break;
240 	case AMDGPU_FAMILY_GC_11_0_1:
241 		dc_version = DCN_VERSION_3_14;
242 		break;
243 	case AMDGPU_FAMILY_GC_11_5_0:
244 		dc_version = DCN_VERSION_3_5;
245 		if (ASICREV_IS_GC_11_0_4(asic_id.hw_internal_rev))
246 			dc_version = DCN_VERSION_3_51;
247 		if (ASICREV_IS_DCN36(asic_id.hw_internal_rev))
248 			dc_version = DCN_VERSION_3_6;
249 		break;
250 	case AMDGPU_FAMILY_GC_12_0_0:
251 		if (ASICREV_IS_GC_12_0_1_A0(asic_id.hw_internal_rev) ||
252 			ASICREV_IS_GC_12_0_0_A0(asic_id.hw_internal_rev))
253 			dc_version = DCN_VERSION_4_01;
254 		break;
255 	default:
256 		dc_version = DCE_VERSION_UNKNOWN;
257 		break;
258 	}
259 	return dc_version;
260 }
261 
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)262 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
263 					      const struct dc_init_data *init_data,
264 					      enum dce_version dc_version)
265 {
266 	struct resource_pool *res_pool = NULL;
267 
268 	switch (dc_version) {
269 #if defined(CONFIG_DRM_AMD_DC_SI)
270 	case DCE_VERSION_6_0:
271 		res_pool = dce60_create_resource_pool(
272 			init_data->num_virtual_links, dc);
273 		break;
274 	case DCE_VERSION_6_1:
275 		res_pool = dce61_create_resource_pool(
276 			init_data->num_virtual_links, dc);
277 		break;
278 	case DCE_VERSION_6_4:
279 		res_pool = dce64_create_resource_pool(
280 			init_data->num_virtual_links, dc);
281 		break;
282 #endif
283 	case DCE_VERSION_8_0:
284 		res_pool = dce80_create_resource_pool(
285 				init_data->num_virtual_links, dc);
286 		break;
287 	case DCE_VERSION_8_1:
288 		res_pool = dce81_create_resource_pool(
289 				init_data->num_virtual_links, dc);
290 		break;
291 	case DCE_VERSION_8_3:
292 		res_pool = dce83_create_resource_pool(
293 				init_data->num_virtual_links, dc);
294 		break;
295 	case DCE_VERSION_10_0:
296 		res_pool = dce100_create_resource_pool(
297 				init_data->num_virtual_links, dc);
298 		break;
299 	case DCE_VERSION_11_0:
300 		res_pool = dce110_create_resource_pool(
301 				init_data->num_virtual_links, dc,
302 				init_data->asic_id);
303 		break;
304 	case DCE_VERSION_11_2:
305 	case DCE_VERSION_11_22:
306 		res_pool = dce112_create_resource_pool(
307 				init_data->num_virtual_links, dc);
308 		break;
309 	case DCE_VERSION_12_0:
310 	case DCE_VERSION_12_1:
311 		res_pool = dce120_create_resource_pool(
312 				init_data->num_virtual_links, dc);
313 		break;
314 
315 #if defined(CONFIG_DRM_AMD_DC_FP)
316 	case DCN_VERSION_1_0:
317 	case DCN_VERSION_1_01:
318 		res_pool = dcn10_create_resource_pool(init_data, dc);
319 		break;
320 	case DCN_VERSION_2_0:
321 		res_pool = dcn20_create_resource_pool(init_data, dc);
322 		break;
323 	case DCN_VERSION_2_1:
324 		res_pool = dcn21_create_resource_pool(init_data, dc);
325 		break;
326 	case DCN_VERSION_2_01:
327 		res_pool = dcn201_create_resource_pool(init_data, dc);
328 		break;
329 	case DCN_VERSION_3_0:
330 		res_pool = dcn30_create_resource_pool(init_data, dc);
331 		break;
332 	case DCN_VERSION_3_01:
333 		res_pool = dcn301_create_resource_pool(init_data, dc);
334 		break;
335 	case DCN_VERSION_3_02:
336 		res_pool = dcn302_create_resource_pool(init_data, dc);
337 		break;
338 	case DCN_VERSION_3_03:
339 		res_pool = dcn303_create_resource_pool(init_data, dc);
340 		break;
341 	case DCN_VERSION_3_1:
342 		res_pool = dcn31_create_resource_pool(init_data, dc);
343 		break;
344 	case DCN_VERSION_3_14:
345 		res_pool = dcn314_create_resource_pool(init_data, dc);
346 		break;
347 	case DCN_VERSION_3_15:
348 		res_pool = dcn315_create_resource_pool(init_data, dc);
349 		break;
350 	case DCN_VERSION_3_16:
351 		res_pool = dcn316_create_resource_pool(init_data, dc);
352 		break;
353 	case DCN_VERSION_3_2:
354 		res_pool = dcn32_create_resource_pool(init_data, dc);
355 		break;
356 	case DCN_VERSION_3_21:
357 		res_pool = dcn321_create_resource_pool(init_data, dc);
358 		break;
359 	case DCN_VERSION_3_5:
360 		res_pool = dcn35_create_resource_pool(init_data, dc);
361 		break;
362 	case DCN_VERSION_3_51:
363 		res_pool = dcn351_create_resource_pool(init_data, dc);
364 		break;
365 	case DCN_VERSION_3_6:
366 		res_pool = dcn36_create_resource_pool(init_data, dc);
367 		break;
368 	case DCN_VERSION_4_01:
369 		res_pool = dcn401_create_resource_pool(init_data, dc);
370 		break;
371 #endif /* CONFIG_DRM_AMD_DC_FP */
372 	default:
373 		break;
374 	}
375 
376 	if (res_pool != NULL) {
377 		if (dc->ctx->dc_bios->fw_info_valid) {
378 			res_pool->ref_clocks.xtalin_clock_inKhz =
379 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
380 			/* initialize with firmware data first, no all
381 			 * ASIC have DCCG SW component. FPGA or
382 			 * simulation need initialization of
383 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
384 			 * with xtalin_clock_inKhz
385 			 */
386 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
387 				res_pool->ref_clocks.xtalin_clock_inKhz;
388 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
389 				res_pool->ref_clocks.xtalin_clock_inKhz;
390 		} else
391 			ASSERT_CRITICAL(false);
392 	}
393 
394 	return res_pool;
395 }
396 
dc_destroy_resource_pool(struct dc * dc)397 void dc_destroy_resource_pool(struct dc *dc)
398 {
399 	if (dc) {
400 		if (dc->res_pool)
401 			dc->res_pool->funcs->destroy(&dc->res_pool);
402 
403 		kfree(dc->hwseq);
404 	}
405 }
406 
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)407 static void update_num_audio(
408 	const struct resource_straps *straps,
409 	unsigned int *num_audio,
410 	struct audio_support *aud_support)
411 {
412 	aud_support->dp_audio = true;
413 	aud_support->hdmi_audio_native = false;
414 	aud_support->hdmi_audio_on_dongle = false;
415 
416 	if (straps->hdmi_disable == 0) {
417 		if (straps->dc_pinstraps_audio & 0x2) {
418 			aud_support->hdmi_audio_on_dongle = true;
419 			aud_support->hdmi_audio_native = true;
420 		}
421 	}
422 
423 	switch (straps->audio_stream_number) {
424 	case 0: /* multi streams supported */
425 		break;
426 	case 1: /* multi streams not supported */
427 		*num_audio = 1;
428 		break;
429 	default:
430 		DC_ERR("DC: unexpected audio fuse!\n");
431 	}
432 }
433 
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)434 bool resource_construct(
435 	unsigned int num_virtual_links,
436 	struct dc  *dc,
437 	struct resource_pool *pool,
438 	const struct resource_create_funcs *create_funcs)
439 {
440 	struct dc_context *ctx = dc->ctx;
441 	const struct resource_caps *caps = pool->res_cap;
442 	int i;
443 	unsigned int num_audio = caps->num_audio;
444 	struct resource_straps straps = {0};
445 
446 	if (create_funcs->read_dce_straps)
447 		create_funcs->read_dce_straps(dc->ctx, &straps);
448 
449 	pool->audio_count = 0;
450 	if (create_funcs->create_audio) {
451 		/* find the total number of streams available via the
452 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
453 		 * registers (one for each pin) starting from pin 1
454 		 * up to the max number of audio pins.
455 		 * We stop on the first pin where
456 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
457 		 */
458 		update_num_audio(&straps, &num_audio, &pool->audio_support);
459 		for (i = 0; i < caps->num_audio; i++) {
460 			struct audio *aud = create_funcs->create_audio(ctx, i);
461 
462 			if (aud == NULL) {
463 				DC_ERR("DC: failed to create audio!\n");
464 				return false;
465 			}
466 			if (!aud->funcs->endpoint_valid(aud)) {
467 				aud->funcs->destroy(&aud);
468 				break;
469 			}
470 			pool->audios[i] = aud;
471 			pool->audio_count++;
472 		}
473 	}
474 
475 	pool->stream_enc_count = 0;
476 	if (create_funcs->create_stream_encoder) {
477 		for (i = 0; i < caps->num_stream_encoder; i++) {
478 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
479 			if (pool->stream_enc[i] == NULL)
480 				DC_ERR("DC: failed to create stream_encoder!\n");
481 			pool->stream_enc_count++;
482 		}
483 
484 		for (i = 0; i < caps->num_analog_stream_encoder; i++) {
485 			pool->stream_enc[caps->num_stream_encoder + i] =
486 				create_funcs->create_stream_encoder(ENGINE_ID_DACA + i, ctx);
487 			if (pool->stream_enc[caps->num_stream_encoder + i] == NULL)
488 				DC_ERR("DC: failed to create analog stream_encoder %d!\n", i);
489 			pool->stream_enc_count++;
490 		}
491 	}
492 
493 	pool->hpo_dp_stream_enc_count = 0;
494 	if (create_funcs->create_hpo_dp_stream_encoder) {
495 		for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
496 			pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
497 			if (pool->hpo_dp_stream_enc[i] == NULL)
498 				DC_ERR("DC: failed to create HPO DP stream encoder!\n");
499 			pool->hpo_dp_stream_enc_count++;
500 
501 		}
502 	}
503 
504 	pool->hpo_dp_link_enc_count = 0;
505 	if (create_funcs->create_hpo_dp_link_encoder) {
506 		for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
507 			pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
508 			if (pool->hpo_dp_link_enc[i] == NULL)
509 				DC_ERR("DC: failed to create HPO DP link encoder!\n");
510 			pool->hpo_dp_link_enc_count++;
511 		}
512 	}
513 
514 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
515 		pool->mpc_lut[i] = dc_create_3dlut_func();
516 		if (pool->mpc_lut[i] == NULL)
517 			DC_ERR("DC: failed to create MPC 3dlut!\n");
518 		pool->mpc_shaper[i] = dc_create_transfer_func();
519 		if (pool->mpc_shaper[i] == NULL)
520 			DC_ERR("DC: failed to create MPC shaper!\n");
521 	}
522 
523 	dc->caps.dynamic_audio = false;
524 	if (pool->audio_count < pool->stream_enc_count) {
525 		dc->caps.dynamic_audio = true;
526 	}
527 	for (i = 0; i < num_virtual_links; i++) {
528 		pool->stream_enc[pool->stream_enc_count] =
529 			virtual_stream_encoder_create(
530 					ctx, ctx->dc_bios);
531 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
532 			DC_ERR("DC: failed to create stream_encoder!\n");
533 			return false;
534 		}
535 		pool->stream_enc_count++;
536 	}
537 
538 	dc->hwseq = create_funcs->create_hwseq(ctx);
539 
540 	return true;
541 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)542 static int find_matching_clock_source(
543 		const struct resource_pool *pool,
544 		struct clock_source *clock_source)
545 {
546 
547 	int i;
548 
549 	for (i = 0; i < pool->clk_src_count; i++) {
550 		if (pool->clock_sources[i] == clock_source)
551 			return i;
552 	}
553 	return -1;
554 }
555 
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)556 void resource_unreference_clock_source(
557 		struct resource_context *res_ctx,
558 		const struct resource_pool *pool,
559 		struct clock_source *clock_source)
560 {
561 	int i = find_matching_clock_source(pool, clock_source);
562 
563 	if (i > -1)
564 		res_ctx->clock_source_ref_count[i]--;
565 
566 	if (pool->dp_clock_source == clock_source)
567 		res_ctx->dp_clock_source_ref_count--;
568 }
569 
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)570 void resource_reference_clock_source(
571 		struct resource_context *res_ctx,
572 		const struct resource_pool *pool,
573 		struct clock_source *clock_source)
574 {
575 	int i = find_matching_clock_source(pool, clock_source);
576 
577 	if (i > -1)
578 		res_ctx->clock_source_ref_count[i]++;
579 
580 	if (pool->dp_clock_source == clock_source)
581 		res_ctx->dp_clock_source_ref_count++;
582 }
583 
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)584 int resource_get_clock_source_reference(
585 		struct resource_context *res_ctx,
586 		const struct resource_pool *pool,
587 		struct clock_source *clock_source)
588 {
589 	int i = find_matching_clock_source(pool, clock_source);
590 
591 	if (i > -1)
592 		return res_ctx->clock_source_ref_count[i];
593 
594 	if (pool->dp_clock_source == clock_source)
595 		return res_ctx->dp_clock_source_ref_count;
596 
597 	return -1;
598 }
599 
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)600 bool resource_are_vblanks_synchronizable(
601 	struct dc_stream_state *stream1,
602 	struct dc_stream_state *stream2)
603 {
604 	uint32_t base60_refresh_rates[] = {10, 20, 5};
605 	uint8_t i;
606 	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
607 	uint64_t frame_time_diff;
608 
609 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
610 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
611 		dc_is_dp_signal(stream1->signal) &&
612 		dc_is_dp_signal(stream2->signal) &&
613 		false == stream1->has_non_synchronizable_pclk &&
614 		false == stream2->has_non_synchronizable_pclk &&
615 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
616 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
617 		/* disable refresh rates higher than 60Hz for now */
618 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
619 				stream1->timing.v_total > 60)
620 			return false;
621 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
622 				stream2->timing.v_total > 60)
623 			return false;
624 		frame_time_diff = (uint64_t)10000 *
625 			stream1->timing.h_total *
626 			stream1->timing.v_total *
627 			stream2->timing.pix_clk_100hz;
628 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
629 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
630 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
631 		for (i = 0; i < rr_count; i++) {
632 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
633 
634 			if (diff < 0)
635 				diff = -diff;
636 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
637 				return true;
638 		}
639 	}
640 	return false;
641 }
642 
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)643 bool resource_are_streams_timing_synchronizable(
644 	struct dc_stream_state *stream1,
645 	struct dc_stream_state *stream2)
646 {
647 	if (stream1->timing.h_total != stream2->timing.h_total)
648 		return false;
649 
650 	if (stream1->timing.v_total != stream2->timing.v_total)
651 		return false;
652 
653 	if (stream1->timing.h_addressable
654 				!= stream2->timing.h_addressable)
655 		return false;
656 
657 	if (stream1->timing.v_addressable
658 				!= stream2->timing.v_addressable)
659 		return false;
660 
661 	if (stream1->timing.v_front_porch
662 				!= stream2->timing.v_front_porch)
663 		return false;
664 
665 	if (stream1->timing.pix_clk_100hz
666 				!= stream2->timing.pix_clk_100hz)
667 		return false;
668 
669 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
670 		return false;
671 
672 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
673 			&& (!dc_is_dp_signal(stream1->signal)
674 			|| !dc_is_dp_signal(stream2->signal)))
675 		return false;
676 
677 	if (stream1->view_format != stream2->view_format)
678 		return false;
679 
680 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
681 		return false;
682 
683 	return true;
684 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)685 static bool is_dp_and_hdmi_sharable(
686 		struct dc_stream_state *stream1,
687 		struct dc_stream_state *stream2)
688 {
689 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
690 		return false;
691 
692 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
693 		stream2->clamping.c_depth != COLOR_DEPTH_888)
694 		return false;
695 
696 	return true;
697 
698 }
699 
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)700 static bool is_sharable_clk_src(
701 	const struct pipe_ctx *pipe_with_clk_src,
702 	const struct pipe_ctx *pipe)
703 {
704 	if (pipe_with_clk_src->clock_source == NULL)
705 		return false;
706 
707 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
708 		return false;
709 
710 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
711 		(dc_is_dp_signal(pipe->stream->signal) &&
712 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
713 				     pipe->stream)))
714 		return false;
715 
716 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
717 			&& dc_is_dual_link_signal(pipe->stream->signal))
718 		return false;
719 
720 	if (dc_is_hdmi_signal(pipe->stream->signal)
721 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
722 		return false;
723 
724 	if (!resource_are_streams_timing_synchronizable(
725 			pipe_with_clk_src->stream, pipe->stream))
726 		return false;
727 
728 	return true;
729 }
730 
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)731 struct clock_source *resource_find_used_clk_src_for_sharing(
732 					struct resource_context *res_ctx,
733 					struct pipe_ctx *pipe_ctx)
734 {
735 	int i;
736 
737 	for (i = 0; i < MAX_PIPES; i++) {
738 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
739 			return res_ctx->pipe_ctx[i].clock_source;
740 	}
741 
742 	return NULL;
743 }
744 
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)745 static enum pixel_format convert_pixel_format_to_dalsurface(
746 		enum surface_pixel_format surface_pixel_format)
747 {
748 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
749 
750 	switch (surface_pixel_format) {
751 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
752 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
753 		break;
754 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
755 		dal_pixel_format = PIXEL_FORMAT_RGB565;
756 		break;
757 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
758 		dal_pixel_format = PIXEL_FORMAT_RGB565;
759 		break;
760 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
761 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
762 		break;
763 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
764 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
765 		break;
766 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
767 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
768 		break;
769 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
770 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
771 		break;
772 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
773 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
774 		break;
775 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
776 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
777 		dal_pixel_format = PIXEL_FORMAT_FP16;
778 		break;
779 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
780 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
781 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
782 		break;
783 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
784 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
785 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
786 		break;
787 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
788 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
789 	default:
790 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
791 		break;
792 	}
793 	return dal_pixel_format;
794 }
795 
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)796 static inline void get_vp_scan_direction(
797 	enum dc_rotation_angle rotation,
798 	bool horizontal_mirror,
799 	bool *orthogonal_rotation,
800 	bool *flip_vert_scan_dir,
801 	bool *flip_horz_scan_dir)
802 {
803 	*orthogonal_rotation = false;
804 	*flip_vert_scan_dir = false;
805 	*flip_horz_scan_dir = false;
806 	if (rotation == ROTATION_ANGLE_180) {
807 		*flip_vert_scan_dir = true;
808 		*flip_horz_scan_dir = true;
809 	} else if (rotation == ROTATION_ANGLE_90) {
810 		*orthogonal_rotation = true;
811 		*flip_horz_scan_dir = true;
812 	} else if (rotation == ROTATION_ANGLE_270) {
813 		*orthogonal_rotation = true;
814 		*flip_vert_scan_dir = true;
815 	}
816 
817 	if (horizontal_mirror)
818 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
819 }
820 
intersect_rec(const struct rect * r0,const struct rect * r1)821 static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
822 {
823 	struct rect rec;
824 	int r0_x_end = r0->x + r0->width;
825 	int r1_x_end = r1->x + r1->width;
826 	int r0_y_end = r0->y + r0->height;
827 	int r1_y_end = r1->y + r1->height;
828 
829 	rec.x = r0->x > r1->x ? r0->x : r1->x;
830 	rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
831 	rec.y = r0->y > r1->y ? r0->y : r1->y;
832 	rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
833 
834 	/* in case that there is no intersection */
835 	if (rec.width < 0 || rec.height < 0)
836 		memset(&rec, 0, sizeof(rec));
837 
838 	return rec;
839 }
840 
shift_rec(const struct rect * rec_in,int x,int y)841 static struct rect shift_rec(const struct rect *rec_in, int x, int y)
842 {
843 	struct rect rec_out = *rec_in;
844 
845 	rec_out.x += x;
846 	rec_out.y += y;
847 
848 	return rec_out;
849 }
850 
calculate_plane_rec_in_timing_active(struct pipe_ctx * pipe_ctx,const struct rect * rec_in)851 static struct rect calculate_plane_rec_in_timing_active(
852 		struct pipe_ctx *pipe_ctx,
853 		const struct rect *rec_in)
854 {
855 	/*
856 	 * The following diagram shows an example where we map a 1920x1200
857 	 * desktop to a 2560x1440 timing with a plane rect in the middle
858 	 * of the screen. To map a plane rect from Stream Source to Timing
859 	 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
860 	 * horizontal and 1440/1200 vertical) to the plane's x and y, then
861 	 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
862 	 * This will give us a plane rect's position in Timing Active. However
863 	 * we have to remove the fractional. The rule is that we find left/right
864 	 * and top/bottom positions and round the value to the adjacent integer.
865 	 *
866 	 * Stream Source Space
867 	 * ------------
868 	 *        __________________________________________________
869 	 *       |Stream Source (1920 x 1200) ^                     |
870 	 *       |                            y                     |
871 	 *       |         <------- w --------|>                    |
872 	 *       |          __________________V                     |
873 	 *       |<-- x -->|Plane//////////////| ^                  |
874 	 *       |         |(pre scale)////////| |                  |
875 	 *       |         |///////////////////| |                  |
876 	 *       |         |///////////////////| h                  |
877 	 *       |         |///////////////////| |                  |
878 	 *       |         |///////////////////| |                  |
879 	 *       |         |///////////////////| V                  |
880 	 *       |                                                  |
881 	 *       |                                                  |
882 	 *       |__________________________________________________|
883 	 *
884 	 *
885 	 * Timing Active Space
886 	 * ---------------------------------
887 	 *
888 	 *       Timing Active (2560 x 1440)
889 	 *        __________________________________________________
890 	 *       |*****|  Stteam Destination (2304 x 1440)    |*****|
891 	 *       |*****|                                      |*****|
892 	 *       |<128>|                                      |*****|
893 	 *       |*****|     __________________               |*****|
894 	 *       |*****|    |Plane/////////////|              |*****|
895 	 *       |*****|    |(post scale)//////|              |*****|
896 	 *       |*****|    |//////////////////|              |*****|
897 	 *       |*****|    |//////////////////|              |*****|
898 	 *       |*****|    |//////////////////|              |*****|
899 	 *       |*****|    |//////////////////|              |*****|
900 	 *       |*****|                                      |*****|
901 	 *       |*****|                                      |*****|
902 	 *       |*****|                                      |*****|
903 	 *       |*****|______________________________________|*****|
904 	 *
905 	 * So the resulting formulas are shown below:
906 	 *
907 	 * recout_x = 128 + round(plane_x * 2304 / 1920)
908 	 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
909 	 * recout_y = 0 + round(plane_y * 1440 / 1280)
910 	 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
911 	 *
912 	 * NOTE: fixed point division is not error free. To reduce errors
913 	 * introduced by fixed point division, we divide only after
914 	 * multiplication is complete.
915 	 */
916 	const struct dc_stream_state *stream = pipe_ctx->stream;
917 	struct rect rec_out = {0};
918 	struct fixed31_32 temp;
919 
920 	temp = dc_fixpt_from_fraction(rec_in->x * (long long)stream->dst.width,
921 			stream->src.width);
922 	rec_out.x = stream->dst.x + dc_fixpt_round(temp);
923 
924 	temp = dc_fixpt_from_fraction(
925 			(rec_in->x + rec_in->width) * (long long)stream->dst.width,
926 			stream->src.width);
927 	rec_out.width = stream->dst.x + dc_fixpt_round(temp) - rec_out.x;
928 
929 	temp = dc_fixpt_from_fraction(rec_in->y * (long long)stream->dst.height,
930 			stream->src.height);
931 	rec_out.y = stream->dst.y + dc_fixpt_round(temp);
932 
933 	temp = dc_fixpt_from_fraction(
934 			(rec_in->y + rec_in->height) * (long long)stream->dst.height,
935 			stream->src.height);
936 	rec_out.height = stream->dst.y + dc_fixpt_round(temp) - rec_out.y;
937 
938 	return rec_out;
939 }
940 
calculate_mpc_slice_in_timing_active(struct pipe_ctx * pipe_ctx,struct rect * plane_clip_rec)941 static struct rect calculate_mpc_slice_in_timing_active(
942 		struct pipe_ctx *pipe_ctx,
943 		struct rect *plane_clip_rec)
944 {
945 	const struct dc_stream_state *stream = pipe_ctx->stream;
946 	int mpc_slice_count = resource_get_mpc_slice_count(pipe_ctx);
947 	int mpc_slice_idx = resource_get_mpc_slice_index(pipe_ctx);
948 	int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
949 	struct rect mpc_rec;
950 
951 	mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
952 	mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
953 	mpc_rec.height = plane_clip_rec->height;
954 	mpc_rec.y = plane_clip_rec->y;
955 	ASSERT(mpc_slice_count == 1 ||
956 			stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
957 			mpc_rec.width % 2 == 0);
958 
959 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
960 		mpc_rec.x -= (mpc_rec.width * mpc_slice_idx);
961 
962 	/* extra pixels in the division remainder need to go to pipes after
963 	 * the extra pixel index minus one(epimo) defined here as:
964 	 */
965 	if (mpc_slice_idx > epimo) {
966 		mpc_rec.x += mpc_slice_idx - epimo - 1;
967 		mpc_rec.width += 1;
968 	}
969 
970 	if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
971 		ASSERT(mpc_rec.height % 2 == 0);
972 		mpc_rec.height /= 2;
973 	}
974 	return mpc_rec;
975 }
976 
calculate_adjust_recout_for_visual_confirm(struct pipe_ctx * pipe_ctx,int * base_offset,int * dpp_offset)977 static void calculate_adjust_recout_for_visual_confirm(struct pipe_ctx *pipe_ctx,
978 	int *base_offset, int *dpp_offset)
979 {
980 	struct dc *dc = pipe_ctx->stream->ctx->dc;
981 	*base_offset = 0;
982 	*dpp_offset = 0;
983 
984 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE || !pipe_ctx->plane_res.dpp)
985 		return;
986 
987 	*dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
988 	*dpp_offset *= pipe_ctx->plane_res.dpp->inst;
989 
990 	if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
991 			dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
992 		*base_offset = dc->debug.visual_confirm_rect_height;
993 	else
994 		*base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
995 }
996 
reverse_adjust_recout_for_visual_confirm(struct rect * recout,struct pipe_ctx * pipe_ctx)997 static void reverse_adjust_recout_for_visual_confirm(struct rect *recout,
998 		struct pipe_ctx *pipe_ctx)
999 {
1000 	int dpp_offset, base_offset;
1001 
1002 	calculate_adjust_recout_for_visual_confirm(pipe_ctx, &base_offset,
1003 		&dpp_offset);
1004 	recout->height += base_offset;
1005 	recout->height += dpp_offset;
1006 }
1007 
adjust_recout_for_visual_confirm(struct rect * recout,struct pipe_ctx * pipe_ctx)1008 static void adjust_recout_for_visual_confirm(struct rect *recout,
1009 		struct pipe_ctx *pipe_ctx)
1010 {
1011 	int dpp_offset, base_offset;
1012 
1013 	calculate_adjust_recout_for_visual_confirm(pipe_ctx, &base_offset,
1014 		&dpp_offset);
1015 	recout->height -= base_offset;
1016 	recout->height -= dpp_offset;
1017 }
1018 
1019 /*
1020  * The function maps a plane clip from Stream Source Space to ODM Slice Space
1021  * and calculates the rec of the overlapping area of MPC slice of the plane
1022  * clip, ODM slice associated with the pipe context and stream destination rec.
1023  */
calculate_recout(struct pipe_ctx * pipe_ctx)1024 static void calculate_recout(struct pipe_ctx *pipe_ctx)
1025 {
1026 	/*
1027 	 * A plane clip represents the desired plane size and position in Stream
1028 	 * Source Space. Stream Source is the destination where all planes are
1029 	 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
1030 	 * all planes associated with the current stream are drawn together.
1031 	 * After Stream Source is completed, we will further scale and
1032 	 * reposition the entire canvas of the stream source to Stream
1033 	 * Destination in Timing Active Space. This could be due to display
1034 	 * overscan adjustment where we will need to rescale and reposition all
1035 	 * the planes so they can fit into a TV with overscan or downscale
1036 	 * upscale features such as GPU scaling or VSR.
1037 	 *
1038 	 * This two step blending is a virtual procedure in software. In
1039 	 * hardware there is no such thing as Stream Source. all planes are
1040 	 * blended once in Timing Active Space. Software virtualizes a Stream
1041 	 * Source space to decouple the math complicity so scaling param
1042 	 * calculation focuses on one step at a time.
1043 	 *
1044 	 * In the following two diagrams, user applied 10% overscan adjustment
1045 	 * so the Stream Source needs to be scaled down a little before mapping
1046 	 * to Timing Active Space. As a result the Plane Clip is also scaled
1047 	 * down by the same ratio, Plane Clip position (i.e. x and y) with
1048 	 * respect to Stream Source is also scaled down. To map it in Timing
1049 	 * Active Space additional x and y offsets from Stream Destination are
1050 	 * added to Plane Clip as well.
1051 	 *
1052 	 * Stream Source Space
1053 	 * ------------
1054 	 *        __________________________________________________
1055 	 *       |Stream Source (3840 x 2160) ^                     |
1056 	 *       |                            y                     |
1057 	 *       |                            |                     |
1058 	 *       |          __________________V                     |
1059 	 *       |<-- x -->|Plane Clip/////////|                    |
1060 	 *       |         |(pre scale)////////|                    |
1061 	 *       |         |///////////////////|                    |
1062 	 *       |         |///////////////////|                    |
1063 	 *       |         |///////////////////|                    |
1064 	 *       |         |///////////////////|                    |
1065 	 *       |         |///////////////////|                    |
1066 	 *       |                                                  |
1067 	 *       |                                                  |
1068 	 *       |__________________________________________________|
1069 	 *
1070 	 *
1071 	 * Timing Active Space (3840 x 2160)
1072 	 * ---------------------------------
1073 	 *
1074 	 *       Timing Active
1075 	 *        __________________________________________________
1076 	 *       | y_____________________________________________   |
1077 	 *       |x |Stream Destination (3456 x 1944)            |  |
1078 	 *       |  |                                            |  |
1079 	 *       |  |        __________________                  |  |
1080 	 *       |  |       |Plane Clip////////|                 |  |
1081 	 *       |  |       |(post scale)//////|                 |  |
1082 	 *       |  |       |//////////////////|                 |  |
1083 	 *       |  |       |//////////////////|                 |  |
1084 	 *       |  |       |//////////////////|                 |  |
1085 	 *       |  |       |//////////////////|                 |  |
1086 	 *       |  |                                            |  |
1087 	 *       |  |                                            |  |
1088 	 *       |  |____________________________________________|  |
1089 	 *       |__________________________________________________|
1090 	 *
1091 	 *
1092 	 * In Timing Active Space a plane clip could be further sliced into
1093 	 * pieces called MPC slices. Each Pipe Context is responsible for
1094 	 * processing only one MPC slice so the plane processing workload can be
1095 	 * distributed to multiple DPP Pipes. MPC slices could be blended
1096 	 * together to a single ODM slice. Each ODM slice is responsible for
1097 	 * processing a portion of Timing Active divided horizontally so the
1098 	 * output pixel processing workload can be distributed to multiple OPP
1099 	 * pipes. All ODM slices are mapped together in ODM block so all MPC
1100 	 * slices belong to different ODM slices could be pieced together to
1101 	 * form a single image in Timing Active. MPC slices must belong to
1102 	 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
1103 	 * needs to be divided into two MPC slices one for each ODM slice.
1104 	 *
1105 	 * In the following diagram the output pixel processing workload is
1106 	 * divided horizontally into two ODM slices one for each OPP blend tree.
1107 	 * OPP0 blend tree is responsible for processing left half of Timing
1108 	 * Active, while OPP2 blend tree is responsible for processing right
1109 	 * half.
1110 	 *
1111 	 * The plane has two MPC slices. However since the right MPC slice goes
1112 	 * across ODM boundary, two DPP pipes are needed one for each OPP blend
1113 	 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
1114 	 *
1115 	 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
1116 	 * working on processing the plane in the diagram. We want to know the
1117 	 * width and height of the shaded rectangle and its relative position
1118 	 * with respect to the ODM slice0. This is called the recout of the pipe
1119 	 * context.
1120 	 *
1121 	 * Planes can be at arbitrary size and position and there could be an
1122 	 * arbitrary number of MPC and ODM slices. The algorithm needs to take
1123 	 * all scenarios into account.
1124 	 *
1125 	 * Timing Active Space (3840 x 2160)
1126 	 * ---------------------------------
1127 	 *
1128 	 *       Timing Active
1129 	 *        __________________________________________________
1130 	 *       |OPP0(ODM slice0)^        |OPP2(ODM slice1)        |
1131 	 *       |                y        |                        |
1132 	 *       |                |  <- w ->                        |
1133 	 *       |           _____V________|____                    |
1134 	 *       |          |DPP0 ^  |DPP1 |DPP2|                   |
1135 	 *       |<------ x |-----|->|/////|    |                   |
1136 	 *       |          |     |  |/////|    |                   |
1137 	 *       |          |     h  |/////|    |                   |
1138 	 *       |          |     |  |/////|    |                   |
1139 	 *       |          |_____V__|/////|____|                   |
1140 	 *       |                         |                        |
1141 	 *       |                         |                        |
1142 	 *       |                         |                        |
1143 	 *       |_________________________|________________________|
1144 	 *
1145 	 *
1146 	 */
1147 	struct rect plane_clip;
1148 	struct rect mpc_slice_of_plane_clip;
1149 	struct rect odm_slice_src;
1150 	struct rect overlapping_area;
1151 
1152 	plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
1153 			&pipe_ctx->plane_state->clip_rect);
1154 	/* guard plane clip from drawing beyond stream dst here */
1155 	plane_clip = intersect_rec(&plane_clip,
1156 				&pipe_ctx->stream->dst);
1157 	mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
1158 			pipe_ctx, &plane_clip);
1159 	odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
1160 	overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice_src);
1161 	if (overlapping_area.height > 0 &&
1162 			overlapping_area.width > 0) {
1163 		/* shift the overlapping area so it is with respect to current
1164 		 * ODM slice source's position
1165 		 */
1166 		pipe_ctx->plane_res.scl_data.recout = shift_rec(
1167 				&overlapping_area,
1168 				-odm_slice_src.x, -odm_slice_src.y);
1169 		adjust_recout_for_visual_confirm(
1170 				&pipe_ctx->plane_res.scl_data.recout,
1171 				pipe_ctx);
1172 	} else {
1173 		/* if there is no overlap, zero recout */
1174 		memset(&pipe_ctx->plane_res.scl_data.recout, 0,
1175 				sizeof(struct rect));
1176 	}
1177 
1178 }
1179 
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)1180 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
1181 {
1182 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1183 	const struct dc_stream_state *stream = pipe_ctx->stream;
1184 	struct rect surf_src = plane_state->src_rect;
1185 	const int in_w = stream->src.width;
1186 	const int in_h = stream->src.height;
1187 	const int out_w = stream->dst.width;
1188 	const int out_h = stream->dst.height;
1189 
1190 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
1191 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
1192 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
1193 		swap(surf_src.height, surf_src.width);
1194 
1195 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
1196 					surf_src.width,
1197 					plane_state->dst_rect.width);
1198 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
1199 					surf_src.height,
1200 					plane_state->dst_rect.height);
1201 
1202 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1203 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
1204 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1205 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
1206 
1207 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
1208 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
1209 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
1210 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
1211 
1212 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
1213 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
1214 
1215 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
1216 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
1217 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
1218 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
1219 	}
1220 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
1221 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
1222 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
1223 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
1224 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
1225 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
1226 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
1227 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
1228 }
1229 
1230 
1231 /*
1232  * We completely calculate vp offset, size and inits here based entirely on scaling
1233  * ratios and recout for pixel perfect pipe combine.
1234  */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)1235 static void calculate_init_and_vp(
1236 		bool flip_scan_dir,
1237 		int recout_offset_within_recout_full,
1238 		int recout_size,
1239 		int src_size,
1240 		int taps,
1241 		struct fixed31_32 ratio,
1242 		struct fixed31_32 *init,
1243 		int *vp_offset,
1244 		int *vp_size)
1245 {
1246 	struct fixed31_32 temp;
1247 	int int_part;
1248 
1249 	/*
1250 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
1251 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
1252 	 * All following calculations are based on this logic.
1253 	 *
1254 	 * Init calculated according to formula:
1255 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
1256 	 * 	init_bot = init + scaling_ratio
1257 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
1258 	 */
1259 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
1260 	*vp_offset = dc_fixpt_floor(temp);
1261 	temp.value &= 0xffffffff;
1262 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
1263 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
1264 	/*
1265 	 * If viewport has non 0 offset and there are more taps than covered by init then
1266 	 * we should decrease the offset and increase init so we are never sampling
1267 	 * outside of viewport.
1268 	 */
1269 	int_part = dc_fixpt_floor(*init);
1270 	if (int_part < taps) {
1271 		int_part = taps - int_part;
1272 		if (int_part > *vp_offset)
1273 			int_part = *vp_offset;
1274 		*vp_offset -= int_part;
1275 		*init = dc_fixpt_add_int(*init, int_part);
1276 	}
1277 	/*
1278 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
1279 	 * available in the surface we should increase the viewport size, regardless set vp to
1280 	 * only what is used.
1281 	 */
1282 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
1283 	*vp_size = dc_fixpt_floor(temp);
1284 	if (*vp_size + *vp_offset > src_size)
1285 		*vp_size = src_size - *vp_offset;
1286 
1287 	/* We did all the math assuming we are scanning same direction as display does,
1288 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
1289 	 * is flipped we simply need to calculate offset from the other side of plane.
1290 	 * Note that outside of viewport all scaling hardware works in recout space.
1291 	 */
1292 	if (flip_scan_dir)
1293 		*vp_offset = src_size - *vp_offset - *vp_size;
1294 }
1295 
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)1296 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
1297 {
1298 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1299 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1300 	struct rect src = plane_state->src_rect;
1301 	struct rect recout_dst_in_active_timing;
1302 	struct rect recout_clip_in_active_timing;
1303 	struct rect recout_clip_in_recout_dst;
1304 	struct rect overlap_in_active_timing;
1305 	struct rect odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
1306 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1307 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1308 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1309 
1310 	recout_clip_in_active_timing = shift_rec(
1311 			&data->recout, odm_slice_src.x, odm_slice_src.y);
1312 	recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
1313 			pipe_ctx, &plane_state->dst_rect);
1314 	overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
1315 			&recout_dst_in_active_timing);
1316 	if (overlap_in_active_timing.width > 0 &&
1317 			overlap_in_active_timing.height > 0)
1318 		recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
1319 				-recout_dst_in_active_timing.x,
1320 				-recout_dst_in_active_timing.y);
1321 	else
1322 		memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
1323 
1324 	/*
1325 	 * Work in recout rotation since that requires less transformations
1326 	 */
1327 	get_vp_scan_direction(
1328 			plane_state->rotation,
1329 			plane_state->horizontal_mirror,
1330 			&orthogonal_rotation,
1331 			&flip_vert_scan_dir,
1332 			&flip_horz_scan_dir);
1333 
1334 	if (orthogonal_rotation) {
1335 		swap(src.width, src.height);
1336 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
1337 	}
1338 
1339 	calculate_init_and_vp(
1340 			flip_horz_scan_dir,
1341 			recout_clip_in_recout_dst.x,
1342 			data->recout.width,
1343 			src.width,
1344 			data->taps.h_taps,
1345 			data->ratios.horz,
1346 			&data->inits.h,
1347 			&data->viewport.x,
1348 			&data->viewport.width);
1349 	calculate_init_and_vp(
1350 			flip_horz_scan_dir,
1351 			recout_clip_in_recout_dst.x,
1352 			data->recout.width,
1353 			src.width / vpc_div,
1354 			data->taps.h_taps_c,
1355 			data->ratios.horz_c,
1356 			&data->inits.h_c,
1357 			&data->viewport_c.x,
1358 			&data->viewport_c.width);
1359 	calculate_init_and_vp(
1360 			flip_vert_scan_dir,
1361 			recout_clip_in_recout_dst.y,
1362 			data->recout.height,
1363 			src.height,
1364 			data->taps.v_taps,
1365 			data->ratios.vert,
1366 			&data->inits.v,
1367 			&data->viewport.y,
1368 			&data->viewport.height);
1369 	calculate_init_and_vp(
1370 			flip_vert_scan_dir,
1371 			recout_clip_in_recout_dst.y,
1372 			data->recout.height,
1373 			src.height / vpc_div,
1374 			data->taps.v_taps_c,
1375 			data->ratios.vert_c,
1376 			&data->inits.v_c,
1377 			&data->viewport_c.y,
1378 			&data->viewport_c.height);
1379 	if (orthogonal_rotation) {
1380 		swap(data->viewport.x, data->viewport.y);
1381 		swap(data->viewport.width, data->viewport.height);
1382 		swap(data->viewport_c.x, data->viewport_c.y);
1383 		swap(data->viewport_c.width, data->viewport_c.height);
1384 	}
1385 	data->viewport.x += src.x;
1386 	data->viewport.y += src.y;
1387 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1388 	data->viewport_c.x += src.x / vpc_div;
1389 	data->viewport_c.y += src.y / vpc_div;
1390 }
1391 
convert_dp_to_controller_test_pattern(enum dp_test_pattern test_pattern)1392 static enum controller_dp_test_pattern convert_dp_to_controller_test_pattern(
1393 				enum dp_test_pattern test_pattern)
1394 {
1395 	enum controller_dp_test_pattern controller_test_pattern;
1396 
1397 	switch (test_pattern) {
1398 	case DP_TEST_PATTERN_COLOR_SQUARES:
1399 		controller_test_pattern =
1400 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1401 	break;
1402 	case DP_TEST_PATTERN_COLOR_SQUARES_CEA:
1403 		controller_test_pattern =
1404 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA;
1405 	break;
1406 	case DP_TEST_PATTERN_VERTICAL_BARS:
1407 		controller_test_pattern =
1408 				CONTROLLER_DP_TEST_PATTERN_VERTICALBARS;
1409 	break;
1410 	case DP_TEST_PATTERN_HORIZONTAL_BARS:
1411 		controller_test_pattern =
1412 				CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS;
1413 	break;
1414 	case DP_TEST_PATTERN_COLOR_RAMP:
1415 		controller_test_pattern =
1416 				CONTROLLER_DP_TEST_PATTERN_COLORRAMP;
1417 	break;
1418 	default:
1419 		controller_test_pattern =
1420 				CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1421 	break;
1422 	}
1423 
1424 	return controller_test_pattern;
1425 }
1426 
convert_dp_to_controller_color_space(enum dp_test_pattern_color_space color_space)1427 static enum controller_dp_color_space convert_dp_to_controller_color_space(
1428 		enum dp_test_pattern_color_space color_space)
1429 {
1430 	enum controller_dp_color_space controller_color_space;
1431 
1432 	switch (color_space) {
1433 	case DP_TEST_PATTERN_COLOR_SPACE_RGB:
1434 		controller_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1435 		break;
1436 	case DP_TEST_PATTERN_COLOR_SPACE_YCBCR601:
1437 		controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR601;
1438 		break;
1439 	case DP_TEST_PATTERN_COLOR_SPACE_YCBCR709:
1440 		controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR709;
1441 		break;
1442 	case DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED:
1443 	default:
1444 		controller_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
1445 		break;
1446 	}
1447 
1448 	return controller_color_space;
1449 }
1450 
resource_build_test_pattern_params(struct resource_context * res_ctx,struct pipe_ctx * otg_master)1451 void resource_build_test_pattern_params(struct resource_context *res_ctx,
1452 				struct pipe_ctx *otg_master)
1453 {
1454 	struct pipe_ctx *opp_heads[MAX_PIPES];
1455 	struct test_pattern_params *params;
1456 	int odm_cnt;
1457 	enum controller_dp_test_pattern controller_test_pattern;
1458 	enum controller_dp_color_space controller_color_space;
1459 	enum dc_color_depth color_depth = otg_master->stream->timing.display_color_depth;
1460 	struct rect odm_slice_src;
1461 	int i;
1462 
1463 	controller_test_pattern = convert_dp_to_controller_test_pattern(
1464 			otg_master->stream->test_pattern.type);
1465 	controller_color_space = convert_dp_to_controller_color_space(
1466 			otg_master->stream->test_pattern.color_space);
1467 
1468 	if (controller_test_pattern == CONTROLLER_DP_TEST_PATTERN_VIDEOMODE)
1469 		return;
1470 
1471 	odm_cnt = resource_get_opp_heads_for_otg_master(otg_master, res_ctx, opp_heads);
1472 
1473 	for (i = 0; i < odm_cnt; i++) {
1474 		odm_slice_src = resource_get_odm_slice_src_rect(opp_heads[i]);
1475 		params = &opp_heads[i]->stream_res.test_pattern_params;
1476 		params->test_pattern = controller_test_pattern;
1477 		params->color_space = controller_color_space;
1478 		params->color_depth = color_depth;
1479 		params->height = odm_slice_src.height;
1480 		params->offset = odm_slice_src.x;
1481 		params->width = odm_slice_src.width;
1482 	}
1483 }
1484 
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1485 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1486 {
1487 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1488 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1489 	const struct rect odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
1490 	struct scaling_taps temp = {0};
1491 	bool res = false;
1492 
1493 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1494 
1495 	/* Invalid input */
1496 	if (!plane_state ||
1497 			!plane_state->dst_rect.width ||
1498 			!plane_state->dst_rect.height ||
1499 			!plane_state->src_rect.width ||
1500 			!plane_state->src_rect.height) {
1501 		ASSERT(0);
1502 		return false;
1503 	}
1504 
1505 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1506 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1507 	 * space we need to add the left and top borders to dst offsets temporarily.
1508 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1509 	 */
1510 	pipe_ctx->stream->dst.x += timing->h_border_left;
1511 	pipe_ctx->stream->dst.y += timing->v_border_top;
1512 
1513 	/* Calculate H and V active size */
1514 	pipe_ctx->plane_res.scl_data.h_active = odm_slice_src.width;
1515 	pipe_ctx->plane_res.scl_data.v_active = odm_slice_src.height;
1516 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1517 			pipe_ctx->plane_state->format);
1518 
1519 #if defined(CONFIG_DRM_AMD_DC_FP)
1520 	if ((pipe_ctx->stream->ctx->dc->config.use_spl)	&& (!pipe_ctx->stream->ctx->dc->debug.disable_spl)) {
1521 		struct spl_in *spl_in = &pipe_ctx->plane_res.spl_in;
1522 		struct spl_out *spl_out = &pipe_ctx->plane_res.spl_out;
1523 
1524 		if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1525 			pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1526 		else
1527 			pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1528 
1529 		pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1530 
1531 		// Convert pipe_ctx to respective input params for SPL
1532 		translate_SPL_in_params_from_pipe_ctx(pipe_ctx, spl_in);
1533 		/* Pass visual confirm debug information */
1534 		calculate_adjust_recout_for_visual_confirm(pipe_ctx,
1535 			&spl_in->debug.visual_confirm_base_offset,
1536 			&spl_in->debug.visual_confirm_dpp_offset);
1537 		// Set SPL output parameters to dscl_prog_data to be used for hw registers
1538 		spl_out->dscl_prog_data = resource_get_dscl_prog_data(pipe_ctx);
1539 		// Calculate scaler parameters from SPL
1540 		res = spl_calculate_scaler_params(spl_in, spl_out);
1541 		// Convert respective out params from SPL to scaler data
1542 		translate_SPL_out_params_to_pipe_ctx(pipe_ctx, spl_out);
1543 
1544 		/* Ignore scaler failure if pipe context plane is phantom plane */
1545 		if (!res && plane_state->is_phantom)
1546 			res = true;
1547 	} else {
1548 #endif
1549 	/* depends on h_active */
1550 	calculate_recout(pipe_ctx);
1551 	/* depends on pixel format */
1552 	calculate_scaling_ratios(pipe_ctx);
1553 
1554 	/*
1555 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1556 	 * Setting line buffer pixel depth to 24bpp yields banding
1557 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1558 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1559 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1560 	 * precision on DCN display engines, but apparently not for DCE, as
1561 	 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1562 	 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1563 	 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1564 	 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1565 	 */
1566 	if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1567 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1568 	else
1569 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1570 
1571 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1572 
1573 	// get TAP value with 100x100 dummy data for max scaling qualify, override
1574 	// if a new scaling quality required
1575 	pipe_ctx->plane_res.scl_data.viewport.width = 100;
1576 	pipe_ctx->plane_res.scl_data.viewport.height = 100;
1577 	pipe_ctx->plane_res.scl_data.viewport_c.width = 100;
1578 	pipe_ctx->plane_res.scl_data.viewport_c.height = 100;
1579 	if (pipe_ctx->plane_res.xfm != NULL)
1580 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1581 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1582 
1583 	if (pipe_ctx->plane_res.dpp != NULL)
1584 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1585 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1586 
1587 	temp = pipe_ctx->plane_res.scl_data.taps;
1588 
1589 	calculate_inits_and_viewports(pipe_ctx);
1590 
1591 	if (pipe_ctx->plane_res.xfm != NULL)
1592 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1593 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1594 
1595 	if (pipe_ctx->plane_res.dpp != NULL)
1596 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1597 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1598 
1599 
1600 	if (!res) {
1601 		/* Try 24 bpp linebuffer */
1602 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1603 
1604 		if (pipe_ctx->plane_res.xfm != NULL)
1605 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1606 					pipe_ctx->plane_res.xfm,
1607 					&pipe_ctx->plane_res.scl_data,
1608 					&plane_state->scaling_quality);
1609 
1610 		if (pipe_ctx->plane_res.dpp != NULL)
1611 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1612 					pipe_ctx->plane_res.dpp,
1613 					&pipe_ctx->plane_res.scl_data,
1614 					&plane_state->scaling_quality);
1615 	}
1616 
1617 	/* Ignore scaler failure if pipe context plane is phantom plane */
1618 	if (!res && plane_state->is_phantom)
1619 		res = true;
1620 
1621 	if (res && (pipe_ctx->plane_res.scl_data.taps.v_taps != temp.v_taps ||
1622 		pipe_ctx->plane_res.scl_data.taps.h_taps != temp.h_taps ||
1623 		pipe_ctx->plane_res.scl_data.taps.v_taps_c != temp.v_taps_c ||
1624 		pipe_ctx->plane_res.scl_data.taps.h_taps_c != temp.h_taps_c))
1625 		calculate_inits_and_viewports(pipe_ctx);
1626 
1627 	/*
1628 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1629 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1630 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1631 	 */
1632 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1633 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1634 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1635 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1636 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1637 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1638 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1639 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1640 	}
1641 
1642 	/* Clamp minimum viewport size */
1643 	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1644 		pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1645 	if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1646 		pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1647 #ifdef CONFIG_DRM_AMD_DC_FP
1648 	}
1649 #endif
1650 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1651 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1652 			__func__,
1653 			pipe_ctx->pipe_idx,
1654 			pipe_ctx->plane_res.scl_data.viewport.height,
1655 			pipe_ctx->plane_res.scl_data.viewport.width,
1656 			pipe_ctx->plane_res.scl_data.viewport.x,
1657 			pipe_ctx->plane_res.scl_data.viewport.y,
1658 			pipe_ctx->plane_res.scl_data.recout.height,
1659 			pipe_ctx->plane_res.scl_data.recout.width,
1660 			pipe_ctx->plane_res.scl_data.recout.x,
1661 			pipe_ctx->plane_res.scl_data.recout.y,
1662 			pipe_ctx->plane_res.scl_data.h_active,
1663 			pipe_ctx->plane_res.scl_data.v_active,
1664 			plane_state->src_rect.height,
1665 			plane_state->src_rect.width,
1666 			plane_state->src_rect.x,
1667 			plane_state->src_rect.y,
1668 			plane_state->dst_rect.height,
1669 			plane_state->dst_rect.width,
1670 			plane_state->dst_rect.x,
1671 			plane_state->dst_rect.y,
1672 			plane_state->clip_rect.height,
1673 			plane_state->clip_rect.width,
1674 			plane_state->clip_rect.x,
1675 			plane_state->clip_rect.y);
1676 
1677 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1678 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1679 
1680 	return res;
1681 }
1682 
resource_can_pipe_disable_cursor(struct pipe_ctx * pipe_ctx)1683 bool resource_can_pipe_disable_cursor(struct pipe_ctx *pipe_ctx)
1684 {
1685 	struct pipe_ctx *test_pipe, *split_pipe;
1686 	struct rect r1 = pipe_ctx->plane_res.scl_data.recout;
1687 	int r1_right, r1_bottom;
1688 	int cur_layer = pipe_ctx->plane_state->layer_index;
1689 
1690 	reverse_adjust_recout_for_visual_confirm(&r1, pipe_ctx);
1691 	r1_right = r1.x + r1.width;
1692 	r1_bottom = r1.y + r1.height;
1693 
1694 	/**
1695 	 * Disable the cursor if there's another pipe above this with a
1696 	 * plane that contains this pipe's viewport to prevent double cursor
1697 	 * and incorrect scaling artifacts.
1698 	 */
1699 	for (test_pipe = pipe_ctx->top_pipe; test_pipe;
1700 	     test_pipe = test_pipe->top_pipe) {
1701 		struct rect r2;
1702 		int r2_right, r2_bottom;
1703 		// Skip invisible layer and pipe-split plane on same layer
1704 		if (!test_pipe->plane_state ||
1705 		    !test_pipe->plane_state->visible ||
1706 		    test_pipe->plane_state->layer_index == cur_layer)
1707 			continue;
1708 
1709 		r2 = test_pipe->plane_res.scl_data.recout;
1710 		reverse_adjust_recout_for_visual_confirm(&r2, test_pipe);
1711 		r2_right = r2.x + r2.width;
1712 		r2_bottom = r2.y + r2.height;
1713 
1714 		/**
1715 		 * There is another half plane on same layer because of
1716 		 * pipe-split, merge together per same height.
1717 		 */
1718 		for (split_pipe = pipe_ctx->top_pipe; split_pipe;
1719 		     split_pipe = split_pipe->top_pipe)
1720 			if (split_pipe->plane_state->layer_index == test_pipe->plane_state->layer_index) {
1721 				struct rect r2_half;
1722 
1723 				r2_half = split_pipe->plane_res.scl_data.recout;
1724 				reverse_adjust_recout_for_visual_confirm(&r2_half, split_pipe);
1725 				r2.x = min(r2_half.x, r2.x);
1726 				r2.width = r2.width + r2_half.width;
1727 				r2_right = r2.x + r2.width;
1728 				r2_bottom = min(r2_bottom, r2_half.y + r2_half.height);
1729 				break;
1730 			}
1731 
1732 		if (r1.x >= r2.x && r1.y >= r2.y && r1_right <= r2_right && r1_bottom <= r2_bottom)
1733 			return true;
1734 	}
1735 
1736 	return false;
1737 }
1738 
1739 
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1740 enum dc_status resource_build_scaling_params_for_context(
1741 	const struct dc  *dc,
1742 	struct dc_state *context)
1743 {
1744 	int i;
1745 
1746 	for (i = 0; i < MAX_PIPES; i++) {
1747 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1748 				context->res_ctx.pipe_ctx[i].stream != NULL)
1749 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1750 				return DC_FAIL_SCALING;
1751 	}
1752 
1753 	return DC_OK;
1754 }
1755 
resource_find_free_secondary_pipe_legacy(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1756 struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
1757 		struct resource_context *res_ctx,
1758 		const struct resource_pool *pool,
1759 		const struct pipe_ctx *primary_pipe)
1760 {
1761 	int i;
1762 	struct pipe_ctx *secondary_pipe = NULL;
1763 
1764 	/*
1765 	 * We add a preferred pipe mapping to avoid the chance that
1766 	 * MPCCs already in use will need to be reassigned to other trees.
1767 	 * For example, if we went with the strict, assign backwards logic:
1768 	 *
1769 	 * (State 1)
1770 	 * Display A on, no surface, top pipe = 0
1771 	 * Display B on, no surface, top pipe = 1
1772 	 *
1773 	 * (State 2)
1774 	 * Display A on, no surface, top pipe = 0
1775 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1776 	 *
1777 	 * (State 3)
1778 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1779 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1780 	 *
1781 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1782 	 * to display A.
1783 	 *
1784 	 * However, with the preferred pipe logic, state 2 would look like:
1785 	 *
1786 	 * (State 2)
1787 	 * Display A on, no surface, top pipe = 0
1788 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1789 	 *
1790 	 * This would then cause 2->3 to not require remapping any MPCCs.
1791 	 */
1792 	if (primary_pipe) {
1793 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1794 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1795 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1796 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1797 		}
1798 	}
1799 
1800 	/*
1801 	 * search backwards for the second pipe to keep pipe
1802 	 * assignment more consistent
1803 	 */
1804 	if (!secondary_pipe)
1805 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1806 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1807 				secondary_pipe = &res_ctx->pipe_ctx[i];
1808 				secondary_pipe->pipe_idx = i;
1809 				break;
1810 			}
1811 		}
1812 
1813 	return secondary_pipe;
1814 }
1815 
resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_otg_master)1816 int resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
1817 		const struct resource_context *cur_res_ctx,
1818 		struct resource_context *new_res_ctx,
1819 		const struct pipe_ctx *cur_otg_master)
1820 {
1821 	const struct pipe_ctx *cur_sec_opp_head = cur_otg_master->next_odm_pipe;
1822 	struct pipe_ctx *new_pipe;
1823 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1824 
1825 	while (cur_sec_opp_head) {
1826 		new_pipe = &new_res_ctx->pipe_ctx[cur_sec_opp_head->pipe_idx];
1827 		if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1828 			free_pipe_idx = cur_sec_opp_head->pipe_idx;
1829 			break;
1830 		}
1831 		cur_sec_opp_head = cur_sec_opp_head->next_odm_pipe;
1832 	}
1833 
1834 	return free_pipe_idx;
1835 }
1836 
resource_find_free_pipe_used_in_cur_mpc_blending_tree(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_opp_head)1837 int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
1838 		const struct resource_context *cur_res_ctx,
1839 		struct resource_context *new_res_ctx,
1840 		const struct pipe_ctx *cur_opp_head)
1841 {
1842 	const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
1843 	struct pipe_ctx *new_pipe;
1844 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1845 
1846 	while (cur_sec_dpp) {
1847 		/* find a free pipe used in current opp blend tree,
1848 		 * this is to avoid MPO pipe switching to different opp blending
1849 		 * tree
1850 		 */
1851 		new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
1852 		if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1853 			free_pipe_idx = cur_sec_dpp->pipe_idx;
1854 			break;
1855 		}
1856 		cur_sec_dpp = cur_sec_dpp->bottom_pipe;
1857 	}
1858 
1859 	return free_pipe_idx;
1860 }
1861 
recource_find_free_pipe_not_used_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1862 int recource_find_free_pipe_not_used_in_cur_res_ctx(
1863 		const struct resource_context *cur_res_ctx,
1864 		struct resource_context *new_res_ctx,
1865 		const struct resource_pool *pool)
1866 {
1867 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1868 	const struct pipe_ctx *new_pipe, *cur_pipe;
1869 	int i;
1870 
1871 	for (i = 0; i < pool->pipe_count; i++) {
1872 		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1873 		new_pipe = &new_res_ctx->pipe_ctx[i];
1874 
1875 		if (resource_is_pipe_type(cur_pipe, FREE_PIPE) &&
1876 				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1877 			free_pipe_idx = i;
1878 			break;
1879 		}
1880 	}
1881 
1882 	return free_pipe_idx;
1883 }
1884 
recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1885 int recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
1886 		const struct resource_context *cur_res_ctx,
1887 		struct resource_context *new_res_ctx,
1888 		const struct resource_pool *pool)
1889 {
1890 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1891 	const struct pipe_ctx *new_pipe, *cur_pipe;
1892 	int i;
1893 
1894 	for (i = 0; i < pool->pipe_count; i++) {
1895 		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1896 		new_pipe = &new_res_ctx->pipe_ctx[i];
1897 
1898 		if (resource_is_pipe_type(cur_pipe, OTG_MASTER) &&
1899 				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1900 			free_pipe_idx = i;
1901 			break;
1902 		}
1903 	}
1904 
1905 	return free_pipe_idx;
1906 }
1907 
resource_find_free_pipe_used_as_cur_sec_dpp(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1908 int resource_find_free_pipe_used_as_cur_sec_dpp(
1909 		const struct resource_context *cur_res_ctx,
1910 		struct resource_context *new_res_ctx,
1911 		const struct resource_pool *pool)
1912 {
1913 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1914 	const struct pipe_ctx *new_pipe, *cur_pipe;
1915 	int i;
1916 
1917 	for (i = 0; i < pool->pipe_count; i++) {
1918 		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1919 		new_pipe = &new_res_ctx->pipe_ctx[i];
1920 
1921 		if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1922 				!resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1923 				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1924 			free_pipe_idx = i;
1925 			break;
1926 		}
1927 	}
1928 
1929 	return free_pipe_idx;
1930 }
1931 
resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1932 int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
1933 		const struct resource_context *cur_res_ctx,
1934 		struct resource_context *new_res_ctx,
1935 		const struct resource_pool *pool)
1936 {
1937 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1938 	const struct pipe_ctx *new_pipe, *cur_pipe;
1939 	int i;
1940 
1941 	for (i = 0; i < pool->pipe_count; i++) {
1942 		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1943 		new_pipe = &new_res_ctx->pipe_ctx[i];
1944 
1945 		if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1946 				!resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1947 				resource_get_mpc_slice_index(cur_pipe) > 0 &&
1948 				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1949 			free_pipe_idx = i;
1950 			break;
1951 		}
1952 	}
1953 
1954 	return free_pipe_idx;
1955 }
1956 
resource_find_any_free_pipe(struct resource_context * new_res_ctx,const struct resource_pool * pool)1957 int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
1958 		const struct resource_pool *pool)
1959 {
1960 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1961 	const struct pipe_ctx *new_pipe;
1962 	int i;
1963 
1964 	for (i = 0; i < pool->pipe_count; i++) {
1965 		new_pipe = &new_res_ctx->pipe_ctx[i];
1966 
1967 		if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1968 			free_pipe_idx = i;
1969 			break;
1970 		}
1971 	}
1972 
1973 	return free_pipe_idx;
1974 }
1975 
resource_is_pipe_type(const struct pipe_ctx * pipe_ctx,enum pipe_type type)1976 bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
1977 {
1978 	switch (type) {
1979 	case OTG_MASTER:
1980 		return !pipe_ctx->prev_odm_pipe &&
1981 				!pipe_ctx->top_pipe &&
1982 				pipe_ctx->stream;
1983 	case OPP_HEAD:
1984 		return !pipe_ctx->top_pipe && pipe_ctx->stream;
1985 	case DPP_PIPE:
1986 		return pipe_ctx->plane_state && pipe_ctx->stream;
1987 	case FREE_PIPE:
1988 		return !pipe_ctx->plane_state && !pipe_ctx->stream;
1989 	default:
1990 		return false;
1991 	}
1992 }
1993 
resource_get_otg_master_for_stream(struct resource_context * res_ctx,const struct dc_stream_state * stream)1994 struct pipe_ctx *resource_get_otg_master_for_stream(
1995 		struct resource_context *res_ctx,
1996 		const struct dc_stream_state *stream)
1997 {
1998 	int i;
1999 
2000 	for (i = 0; i < MAX_PIPES; i++) {
2001 		if (res_ctx->pipe_ctx[i].stream == stream &&
2002 				resource_is_pipe_type(&res_ctx->pipe_ctx[i], OTG_MASTER))
2003 			return &res_ctx->pipe_ctx[i];
2004 	}
2005 	return NULL;
2006 }
2007 
resource_get_opp_heads_for_otg_master(const struct pipe_ctx * otg_master,struct resource_context * res_ctx,struct pipe_ctx * opp_heads[MAX_PIPES])2008 int resource_get_opp_heads_for_otg_master(const struct pipe_ctx *otg_master,
2009 		struct resource_context *res_ctx,
2010 		struct pipe_ctx *opp_heads[MAX_PIPES])
2011 {
2012 	struct pipe_ctx *opp_head = &res_ctx->pipe_ctx[otg_master->pipe_idx];
2013 	struct dc *dc = otg_master->stream->ctx->dc;
2014 	int i = 0;
2015 
2016 	DC_LOGGER_INIT(dc->ctx->logger);
2017 
2018 	if (!resource_is_pipe_type(otg_master, OTG_MASTER)) {
2019 		DC_LOG_WARNING("%s called from a non OTG master, something "
2020 			       "is wrong in the pipe configuration",
2021 			       __func__);
2022 		ASSERT(0);
2023 		return 0;
2024 	}
2025 	while (opp_head) {
2026 		ASSERT(i < MAX_PIPES);
2027 		opp_heads[i++] = opp_head;
2028 		opp_head = opp_head->next_odm_pipe;
2029 	}
2030 	return i;
2031 }
2032 
resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx * opp_head,struct resource_context * res_ctx,struct pipe_ctx * dpp_pipes[MAX_PIPES])2033 int resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx *opp_head,
2034 		struct resource_context *res_ctx,
2035 		struct pipe_ctx *dpp_pipes[MAX_PIPES])
2036 {
2037 	struct pipe_ctx *pipe = &res_ctx->pipe_ctx[opp_head->pipe_idx];
2038 	int i = 0;
2039 
2040 	if (!resource_is_pipe_type(opp_head, OPP_HEAD)) {
2041 		ASSERT(0);
2042 		return 0;
2043 	}
2044 	while (pipe && resource_is_pipe_type(pipe, DPP_PIPE)) {
2045 		ASSERT(i < MAX_PIPES);
2046 		dpp_pipes[i++] = pipe;
2047 		pipe = pipe->bottom_pipe;
2048 	}
2049 	return i;
2050 }
2051 
resource_get_dpp_pipes_for_plane(const struct dc_plane_state * plane,struct resource_context * res_ctx,struct pipe_ctx * dpp_pipes[MAX_PIPES])2052 int resource_get_dpp_pipes_for_plane(const struct dc_plane_state *plane,
2053 		struct resource_context *res_ctx,
2054 		struct pipe_ctx *dpp_pipes[MAX_PIPES])
2055 {
2056 	int i = 0, j;
2057 	struct pipe_ctx *pipe;
2058 
2059 	for (j = 0; j < MAX_PIPES; j++) {
2060 		pipe = &res_ctx->pipe_ctx[j];
2061 		if (pipe->plane_state == plane && pipe->prev_odm_pipe == NULL) {
2062 			if (resource_is_pipe_type(pipe, OPP_HEAD) ||
2063 					pipe->top_pipe->plane_state != plane)
2064 				break;
2065 		}
2066 	}
2067 
2068 	if (j < MAX_PIPES) {
2069 		if (pipe->next_odm_pipe)
2070 			while (pipe) {
2071 				dpp_pipes[i++] = pipe;
2072 				pipe = pipe->next_odm_pipe;
2073 			}
2074 		else
2075 			while (pipe && pipe->plane_state == plane) {
2076 				dpp_pipes[i++] = pipe;
2077 				pipe = pipe->bottom_pipe;
2078 			}
2079 	}
2080 	return i;
2081 }
2082 
resource_get_otg_master(const struct pipe_ctx * pipe_ctx)2083 struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
2084 {
2085 	struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
2086 
2087 	while (otg_master->prev_odm_pipe)
2088 		otg_master = otg_master->prev_odm_pipe;
2089 	return otg_master;
2090 }
2091 
resource_get_opp_head(const struct pipe_ctx * pipe_ctx)2092 struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
2093 {
2094 	struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
2095 
2096 	ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
2097 	while (opp_head->top_pipe)
2098 		opp_head = opp_head->top_pipe;
2099 	return opp_head;
2100 }
2101 
resource_get_primary_dpp_pipe(const struct pipe_ctx * dpp_pipe)2102 struct pipe_ctx *resource_get_primary_dpp_pipe(const struct pipe_ctx *dpp_pipe)
2103 {
2104 	struct pipe_ctx *pri_dpp_pipe = (struct pipe_ctx *) dpp_pipe;
2105 
2106 	ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
2107 	while (pri_dpp_pipe->prev_odm_pipe)
2108 		pri_dpp_pipe = pri_dpp_pipe->prev_odm_pipe;
2109 	while (pri_dpp_pipe->top_pipe &&
2110 			pri_dpp_pipe->top_pipe->plane_state == pri_dpp_pipe->plane_state)
2111 		pri_dpp_pipe = pri_dpp_pipe->top_pipe;
2112 	return pri_dpp_pipe;
2113 }
2114 
2115 
resource_get_mpc_slice_index(const struct pipe_ctx * pipe_ctx)2116 int resource_get_mpc_slice_index(const struct pipe_ctx *pipe_ctx)
2117 {
2118 	struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
2119 	int index = 0;
2120 
2121 	while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
2122 		index++;
2123 		split_pipe = split_pipe->top_pipe;
2124 	}
2125 
2126 	return index;
2127 }
2128 
resource_get_mpc_slice_count(const struct pipe_ctx * pipe)2129 int resource_get_mpc_slice_count(const struct pipe_ctx *pipe)
2130 {
2131 	int mpc_split_count = 1;
2132 	const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
2133 
2134 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
2135 		mpc_split_count++;
2136 		other_pipe = other_pipe->bottom_pipe;
2137 	}
2138 	other_pipe = pipe->top_pipe;
2139 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
2140 		mpc_split_count++;
2141 		other_pipe = other_pipe->top_pipe;
2142 	}
2143 
2144 	return mpc_split_count;
2145 }
2146 
resource_get_odm_slice_count(const struct pipe_ctx * pipe)2147 int resource_get_odm_slice_count(const struct pipe_ctx *pipe)
2148 {
2149 	int odm_split_count = 1;
2150 
2151 	pipe = resource_get_otg_master(pipe);
2152 
2153 	while (pipe->next_odm_pipe) {
2154 		odm_split_count++;
2155 		pipe = pipe->next_odm_pipe;
2156 	}
2157 	return odm_split_count;
2158 }
2159 
resource_get_odm_slice_index(const struct pipe_ctx * pipe_ctx)2160 int resource_get_odm_slice_index(const struct pipe_ctx *pipe_ctx)
2161 {
2162 	int index = 0;
2163 
2164 	pipe_ctx = resource_get_opp_head(pipe_ctx);
2165 	if (!pipe_ctx)
2166 		return 0;
2167 
2168 	while (pipe_ctx->prev_odm_pipe) {
2169 		index++;
2170 		pipe_ctx = pipe_ctx->prev_odm_pipe;
2171 	}
2172 
2173 	return index;
2174 }
2175 
resource_get_odm_slice_dst_width(struct pipe_ctx * otg_master,bool is_last_segment)2176 int resource_get_odm_slice_dst_width(struct pipe_ctx *otg_master,
2177 		bool is_last_segment)
2178 {
2179 	const struct dc_crtc_timing *timing;
2180 	int count;
2181 	int h_active;
2182 	int width;
2183 	bool two_pixel_alignment_required = false;
2184 
2185 	if (!otg_master || !otg_master->stream)
2186 		return 0;
2187 
2188 	timing = &otg_master->stream->timing;
2189 	count = resource_get_odm_slice_count(otg_master);
2190 	h_active = timing->h_addressable +
2191 			timing->h_border_left +
2192 			timing->h_border_right +
2193 			otg_master->dsc_padding_params.dsc_hactive_padding;
2194 	width = h_active / count;
2195 
2196 	if (otg_master->stream_res.tg)
2197 		two_pixel_alignment_required =
2198 				otg_master->stream_res.tg->funcs->is_two_pixels_per_container(timing) ||
2199 				/*
2200 				 * 422 is sub-sampled horizontally. 1 set of chromas
2201 				 * (Cb/Cr) is shared for 2 lumas (i.e 2 Y values).
2202 				 * Therefore even if 422 is still 1 pixel per container,
2203 				 * ODM segment width still needs to be 2 pixel aligned.
2204 				 */
2205 				timing->pixel_encoding == PIXEL_ENCODING_YCBCR422;
2206 	if ((width % 2) && two_pixel_alignment_required)
2207 		width++;
2208 
2209 	return is_last_segment ?
2210 			h_active - width * (count - 1) :
2211 			width;
2212 }
2213 
resource_get_odm_slice_dst_rect(struct pipe_ctx * pipe_ctx)2214 struct rect resource_get_odm_slice_dst_rect(struct pipe_ctx *pipe_ctx)
2215 {
2216 	const struct dc_stream_state *stream = pipe_ctx->stream;
2217 	bool is_last_odm_slice = pipe_ctx->next_odm_pipe == NULL;
2218 	struct pipe_ctx *otg_master = resource_get_otg_master(pipe_ctx);
2219 	int odm_slice_idx = resource_get_odm_slice_index(pipe_ctx);
2220 	int odm_segment_offset = resource_get_odm_slice_dst_width(otg_master, false);
2221 	struct rect odm_slice_dst;
2222 
2223 	odm_slice_dst.x = odm_segment_offset * odm_slice_idx;
2224 	odm_slice_dst.width = resource_get_odm_slice_dst_width(otg_master, is_last_odm_slice);
2225 	odm_slice_dst.y = 0;
2226 	odm_slice_dst.height = stream->timing.v_addressable +
2227 			stream->timing.v_border_bottom +
2228 			stream->timing.v_border_top;
2229 
2230 	return odm_slice_dst;
2231 }
2232 
resource_get_odm_slice_src_rect(struct pipe_ctx * pipe_ctx)2233 struct rect resource_get_odm_slice_src_rect(struct pipe_ctx *pipe_ctx)
2234 {
2235 	struct rect odm_slice_dst;
2236 	struct rect odm_slice_src;
2237 	struct pipe_ctx *opp_head = resource_get_opp_head(pipe_ctx);
2238 	struct output_pixel_processor *opp = opp_head->stream_res.opp;
2239 	uint32_t left_edge_extra_pixel_count;
2240 
2241 	odm_slice_dst = resource_get_odm_slice_dst_rect(opp_head);
2242 	odm_slice_src = odm_slice_dst;
2243 
2244 	if (opp && opp->funcs->opp_get_left_edge_extra_pixel_count)
2245 		left_edge_extra_pixel_count =
2246 				opp->funcs->opp_get_left_edge_extra_pixel_count(
2247 						opp, pipe_ctx->stream->timing.pixel_encoding,
2248 						resource_is_pipe_type(opp_head, OTG_MASTER));
2249 	else
2250 		left_edge_extra_pixel_count = 0;
2251 
2252 	odm_slice_src.x -= left_edge_extra_pixel_count;
2253 	odm_slice_src.width += left_edge_extra_pixel_count;
2254 
2255 	return odm_slice_src;
2256 }
2257 
resource_is_pipe_topology_changed(const struct dc_state * state_a,const struct dc_state * state_b)2258 bool resource_is_pipe_topology_changed(const struct dc_state *state_a,
2259 		const struct dc_state *state_b)
2260 {
2261 	int i;
2262 	const struct pipe_ctx *pipe_a, *pipe_b;
2263 
2264 	if (state_a->stream_count != state_b->stream_count)
2265 		return true;
2266 
2267 	for (i = 0; i < MAX_PIPES; i++) {
2268 		pipe_a = &state_a->res_ctx.pipe_ctx[i];
2269 		pipe_b = &state_b->res_ctx.pipe_ctx[i];
2270 
2271 		if (pipe_a->stream && !pipe_b->stream)
2272 			return true;
2273 		else if (!pipe_a->stream && pipe_b->stream)
2274 			return true;
2275 
2276 		if (pipe_a->plane_state && !pipe_b->plane_state)
2277 			return true;
2278 		else if (!pipe_a->plane_state && pipe_b->plane_state)
2279 			return true;
2280 
2281 		if (pipe_a->bottom_pipe && pipe_b->bottom_pipe) {
2282 			if (pipe_a->bottom_pipe->pipe_idx != pipe_b->bottom_pipe->pipe_idx)
2283 				return true;
2284 			if ((pipe_a->bottom_pipe->plane_state == pipe_a->plane_state) &&
2285 					(pipe_b->bottom_pipe->plane_state != pipe_b->plane_state))
2286 				return true;
2287 			else if ((pipe_a->bottom_pipe->plane_state != pipe_a->plane_state) &&
2288 					(pipe_b->bottom_pipe->plane_state == pipe_b->plane_state))
2289 				return true;
2290 		} else if (pipe_a->bottom_pipe || pipe_b->bottom_pipe) {
2291 			return true;
2292 		}
2293 
2294 		if (pipe_a->next_odm_pipe && pipe_b->next_odm_pipe) {
2295 			if (pipe_a->next_odm_pipe->pipe_idx != pipe_b->next_odm_pipe->pipe_idx)
2296 				return true;
2297 		} else if (pipe_a->next_odm_pipe || pipe_b->next_odm_pipe) {
2298 			return true;
2299 		}
2300 	}
2301 	return false;
2302 }
2303 
resource_is_odm_topology_changed(const struct pipe_ctx * otg_master_a,const struct pipe_ctx * otg_master_b)2304 bool resource_is_odm_topology_changed(const struct pipe_ctx *otg_master_a,
2305 		const struct pipe_ctx *otg_master_b)
2306 {
2307 	const struct pipe_ctx *opp_head_a = otg_master_a;
2308 	const struct pipe_ctx *opp_head_b = otg_master_b;
2309 
2310 	if (!resource_is_pipe_type(otg_master_a, OTG_MASTER) ||
2311 			!resource_is_pipe_type(otg_master_b, OTG_MASTER))
2312 		return true;
2313 
2314 	while (opp_head_a && opp_head_b) {
2315 		if (opp_head_a->stream_res.opp != opp_head_b->stream_res.opp)
2316 			return true;
2317 		if ((opp_head_a->next_odm_pipe && !opp_head_b->next_odm_pipe) ||
2318 				(!opp_head_a->next_odm_pipe && opp_head_b->next_odm_pipe))
2319 			return true;
2320 		opp_head_a = opp_head_a->next_odm_pipe;
2321 		opp_head_b = opp_head_b->next_odm_pipe;
2322 	}
2323 
2324 	return false;
2325 }
2326 
2327 /*
2328  * Sample log:
2329  *    pipe topology update
2330  *  ________________________
2331  * | plane0  slice0  stream0|
2332  * |DPP0----OPP0----OTG0----| <--- case 0 (OTG master pipe with plane)
2333  * | plane1 |       |       |
2334  * |DPP1----|       |       | <--- case 5 (DPP pipe not in last slice)
2335  * | plane0  slice1 |       |
2336  * |DPP2----OPP2----|       | <--- case 2 (OPP head pipe with plane)
2337  * | plane1 |               |
2338  * |DPP3----|               | <--- case 4 (DPP pipe in last slice)
2339  * |         slice0  stream1|
2340  * |DPG4----OPP4----OTG4----| <--- case 1 (OTG master pipe without plane)
2341  * |         slice1 |       |
2342  * |DPG5----OPP5----|       | <--- case 3 (OPP head pipe without plane)
2343  * |________________________|
2344  */
2345 
resource_log_pipe(struct dc * dc,struct pipe_ctx * pipe,int stream_idx,int slice_idx,int plane_idx,int slice_count,bool is_primary,bool is_phantom_pipe)2346 static void resource_log_pipe(struct dc *dc, struct pipe_ctx *pipe,
2347 		int stream_idx, int slice_idx, int plane_idx, int slice_count,
2348 		bool is_primary, bool is_phantom_pipe)
2349 {
2350 	DC_LOGGER_INIT(dc->ctx->logger);
2351 
2352 	// new format for logging: bit storing code
2353 	if (slice_idx == 0 && plane_idx == 0 && is_primary) {
2354 		/* case 0 (OTG master pipe with plane) */
2355 		DC_LOG_DC(" | plane%d  slice%d  stream%d|",
2356 				plane_idx, slice_idx, stream_idx);
2357 		DC_LOG_DC(" |DPP%d----OPP%d----OTG%d----|",
2358 				pipe->plane_res.dpp->inst,
2359 				pipe->stream_res.opp->inst,
2360 				pipe->stream_res.tg->inst);
2361 		capture_pipe_topology_data(dc, plane_idx, slice_idx, stream_idx,
2362 				pipe->plane_res.dpp->inst,
2363 				pipe->stream_res.opp->inst,
2364 				pipe->stream_res.tg->inst, is_phantom_pipe);
2365 	} else if (slice_idx == 0 && plane_idx == -1) {
2366 		/* case 1 (OTG master pipe without plane) */
2367 		DC_LOG_DC(" |         slice%d  stream%d|",
2368 				slice_idx, stream_idx);
2369 		DC_LOG_DC(" |DPG%d----OPP%d----OTG%d----|",
2370 				pipe->stream_res.opp->inst,
2371 				pipe->stream_res.opp->inst,
2372 				pipe->stream_res.tg->inst);
2373 		capture_pipe_topology_data(dc, 0xF, slice_idx, stream_idx,
2374 				pipe->plane_res.dpp->inst,
2375 				pipe->stream_res.opp->inst,
2376 				pipe->stream_res.tg->inst, is_phantom_pipe);
2377 	} else if (slice_idx != 0 && plane_idx == 0 && is_primary) {
2378 		/* case 2 (OPP head pipe with plane) */
2379 		DC_LOG_DC(" | plane%d  slice%d |       |",
2380 				plane_idx, slice_idx);
2381 		DC_LOG_DC(" |DPP%d----OPP%d----|       |",
2382 				pipe->plane_res.dpp->inst,
2383 				pipe->stream_res.opp->inst);
2384 		capture_pipe_topology_data(dc, plane_idx, slice_idx, stream_idx,
2385 				pipe->plane_res.dpp->inst,
2386 				pipe->stream_res.opp->inst,
2387 				pipe->stream_res.tg->inst, is_phantom_pipe);
2388 	} else if (slice_idx != 0 && plane_idx == -1) {
2389 		/* case 3 (OPP head pipe without plane) */
2390 		DC_LOG_DC(" |         slice%d |       |", slice_idx);
2391 		DC_LOG_DC(" |DPG%d----OPP%d----|       |",
2392 				pipe->plane_res.dpp->inst,
2393 				pipe->stream_res.opp->inst);
2394 		capture_pipe_topology_data(dc, 0xF, slice_idx, stream_idx,
2395 				pipe->plane_res.dpp->inst,
2396 				pipe->stream_res.opp->inst,
2397 				pipe->stream_res.tg->inst, is_phantom_pipe);
2398 	} else if (slice_idx == slice_count - 1) {
2399 		/* case 4 (DPP pipe in last slice) */
2400 		DC_LOG_DC(" | plane%d |               |", plane_idx);
2401 		DC_LOG_DC(" |DPP%d----|               |",
2402 				pipe->plane_res.dpp->inst);
2403 		capture_pipe_topology_data(dc, plane_idx, slice_idx, stream_idx,
2404 				pipe->plane_res.dpp->inst,
2405 				pipe->stream_res.opp->inst,
2406 				pipe->stream_res.tg->inst, is_phantom_pipe);
2407 	} else {
2408 		/* case 5 (DPP pipe not in last slice) */
2409 		DC_LOG_DC(" | plane%d |       |       |", plane_idx);
2410 		DC_LOG_DC(" |DPP%d----|       |       |",
2411 				pipe->plane_res.dpp->inst);
2412 		capture_pipe_topology_data(dc, plane_idx, slice_idx, stream_idx,
2413 				pipe->plane_res.dpp->inst,
2414 				pipe->stream_res.opp->inst,
2415 				pipe->stream_res.tg->inst, is_phantom_pipe);
2416 	}
2417 }
2418 
resource_log_pipe_for_stream(struct dc * dc,struct dc_state * state,struct pipe_ctx * otg_master,int stream_idx,bool is_phantom_pipe)2419 static void resource_log_pipe_for_stream(struct dc *dc, struct dc_state *state,
2420 		struct pipe_ctx *otg_master, int stream_idx, bool is_phantom_pipe)
2421 {
2422 	struct pipe_ctx *opp_heads[MAX_PIPES];
2423 	struct pipe_ctx *dpp_pipes[MAX_PIPES];
2424 
2425 	int slice_idx, dpp_idx, plane_idx, slice_count, dpp_count;
2426 	bool is_primary;
2427 	DC_LOGGER_INIT(dc->ctx->logger);
2428 
2429 	slice_count = resource_get_opp_heads_for_otg_master(otg_master,
2430 			&state->res_ctx, opp_heads);
2431 	for (slice_idx = 0; slice_idx < slice_count; slice_idx++) {
2432 		plane_idx = -1;
2433 		if (opp_heads[slice_idx]->plane_state) {
2434 			dpp_count = resource_get_dpp_pipes_for_opp_head(
2435 					opp_heads[slice_idx],
2436 					&state->res_ctx,
2437 					dpp_pipes);
2438 			for (dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++) {
2439 				is_primary = !dpp_pipes[dpp_idx]->top_pipe ||
2440 						dpp_pipes[dpp_idx]->top_pipe->plane_state != dpp_pipes[dpp_idx]->plane_state;
2441 				if (is_primary)
2442 					plane_idx++;
2443 				resource_log_pipe(dc, dpp_pipes[dpp_idx],
2444 						stream_idx, slice_idx,
2445 						plane_idx, slice_count,
2446 						is_primary, is_phantom_pipe);
2447 			}
2448 		} else {
2449 			resource_log_pipe(dc, opp_heads[slice_idx],
2450 					stream_idx, slice_idx, plane_idx,
2451 					slice_count, true, is_phantom_pipe);
2452 		}
2453 
2454 	}
2455 }
2456 
resource_stream_to_stream_idx(struct dc_state * state,struct dc_stream_state * stream)2457 static int resource_stream_to_stream_idx(struct dc_state *state,
2458 		struct dc_stream_state *stream)
2459 {
2460 	int i, stream_idx = -1;
2461 
2462 	for (i = 0; i < state->stream_count; i++)
2463 		if (state->streams[i] == stream) {
2464 			stream_idx = i;
2465 			break;
2466 		}
2467 
2468 	/* never return negative array index */
2469 	if (stream_idx == -1) {
2470 		ASSERT(0);
2471 		return 0;
2472 	}
2473 
2474 	return stream_idx;
2475 }
2476 
resource_log_pipe_topology_update(struct dc * dc,struct dc_state * state)2477 void resource_log_pipe_topology_update(struct dc *dc, struct dc_state *state)
2478 {
2479 	struct pipe_ctx *otg_master;
2480 	int stream_idx, phantom_stream_idx;
2481 	DC_LOGGER_INIT(dc->ctx->logger);
2482 	bool is_phantom_pipe = false;
2483 
2484 	// Start a new snapshot for this topology update
2485 	start_new_topology_snapshot(dc, state);
2486 
2487 	DC_LOG_DC("    pipe topology update");
2488 	DC_LOG_DC("  ________________________");
2489 	for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
2490 		if (state->streams[stream_idx]->is_phantom)
2491 			continue;
2492 
2493 		otg_master = resource_get_otg_master_for_stream(
2494 				&state->res_ctx, state->streams[stream_idx]);
2495 
2496 		if (!otg_master)
2497 			continue;
2498 
2499 		resource_log_pipe_for_stream(dc, state, otg_master, stream_idx, is_phantom_pipe);
2500 	}
2501 	if (state->phantom_stream_count > 0) {
2502 		is_phantom_pipe = true;
2503 		DC_LOG_DC(" |    (phantom pipes)     |");
2504 		for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
2505 			if (state->stream_status[stream_idx].mall_stream_config.type != SUBVP_MAIN)
2506 				continue;
2507 
2508 			phantom_stream_idx = resource_stream_to_stream_idx(state,
2509 					state->stream_status[stream_idx].mall_stream_config.paired_stream);
2510 			otg_master = resource_get_otg_master_for_stream(
2511 					&state->res_ctx, state->streams[phantom_stream_idx]);
2512 			if (!otg_master)
2513 				continue;
2514 
2515 			resource_log_pipe_for_stream(dc, state, otg_master, stream_idx, is_phantom_pipe);
2516 		}
2517 	}
2518 	DC_LOG_DC(" |________________________|\n");
2519 }
2520 
get_tail_pipe(struct pipe_ctx * head_pipe)2521 static struct pipe_ctx *get_tail_pipe(
2522 		struct pipe_ctx *head_pipe)
2523 {
2524 	struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
2525 
2526 	while (tail_pipe) {
2527 		head_pipe = tail_pipe;
2528 		tail_pipe = tail_pipe->bottom_pipe;
2529 	}
2530 
2531 	return head_pipe;
2532 }
2533 
get_last_opp_head(struct pipe_ctx * opp_head)2534 static struct pipe_ctx *get_last_opp_head(
2535 		struct pipe_ctx *opp_head)
2536 {
2537 	ASSERT(resource_is_pipe_type(opp_head, OPP_HEAD));
2538 	while (opp_head->next_odm_pipe)
2539 		opp_head = opp_head->next_odm_pipe;
2540 	return opp_head;
2541 }
2542 
get_last_dpp_pipe_in_mpcc_combine(struct pipe_ctx * dpp_pipe)2543 static struct pipe_ctx *get_last_dpp_pipe_in_mpcc_combine(
2544 		struct pipe_ctx *dpp_pipe)
2545 {
2546 	ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
2547 	while (dpp_pipe->bottom_pipe &&
2548 			dpp_pipe->plane_state == dpp_pipe->bottom_pipe->plane_state)
2549 		dpp_pipe = dpp_pipe->bottom_pipe;
2550 	return dpp_pipe;
2551 }
2552 
update_pipe_params_after_odm_slice_count_change(struct pipe_ctx * otg_master,struct dc_state * context,const struct resource_pool * pool)2553 static bool update_pipe_params_after_odm_slice_count_change(
2554 		struct pipe_ctx *otg_master,
2555 		struct dc_state *context,
2556 		const struct resource_pool *pool)
2557 {
2558 	int i;
2559 	struct pipe_ctx *pipe;
2560 	bool result = true;
2561 
2562 	for (i = 0; i < pool->pipe_count && result; i++) {
2563 		pipe = &context->res_ctx.pipe_ctx[i];
2564 		if (pipe->stream == otg_master->stream && pipe->plane_state)
2565 			result = resource_build_scaling_params(pipe);
2566 	}
2567 
2568 	if (pool->funcs->build_pipe_pix_clk_params)
2569 		pool->funcs->build_pipe_pix_clk_params(otg_master);
2570 
2571 	resource_build_test_pattern_params(&context->res_ctx, otg_master);
2572 
2573 	return result;
2574 }
2575 
update_pipe_params_after_mpc_slice_count_change(const struct dc_plane_state * plane,struct dc_state * context,const struct resource_pool * pool)2576 static bool update_pipe_params_after_mpc_slice_count_change(
2577 		const struct dc_plane_state *plane,
2578 		struct dc_state *context,
2579 		const struct resource_pool *pool)
2580 {
2581 	int i;
2582 	struct pipe_ctx *pipe;
2583 	bool result = true;
2584 
2585 	for (i = 0; i < pool->pipe_count && result; i++) {
2586 		pipe = &context->res_ctx.pipe_ctx[i];
2587 		if (pipe->plane_state == plane)
2588 			result = resource_build_scaling_params(pipe);
2589 	}
2590 	return result;
2591 }
2592 
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2593 static int acquire_first_split_pipe(
2594 		struct resource_context *res_ctx,
2595 		const struct resource_pool *pool,
2596 		struct dc_stream_state *stream)
2597 {
2598 	int i;
2599 
2600 	for (i = 0; i < pool->pipe_count; i++) {
2601 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
2602 
2603 		if (split_pipe->top_pipe &&
2604 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
2605 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
2606 			if (split_pipe->bottom_pipe)
2607 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
2608 
2609 			if (split_pipe->top_pipe->plane_state)
2610 				resource_build_scaling_params(split_pipe->top_pipe);
2611 
2612 			memset(split_pipe, 0, sizeof(*split_pipe));
2613 			split_pipe->stream_res.tg = pool->timing_generators[i];
2614 			split_pipe->plane_res.hubp = pool->hubps[i];
2615 			split_pipe->plane_res.ipp = pool->ipps[i];
2616 			split_pipe->plane_res.dpp = pool->dpps[i];
2617 			split_pipe->stream_res.opp = pool->opps[i];
2618 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
2619 			split_pipe->pipe_idx = i;
2620 
2621 			split_pipe->stream = stream;
2622 			return i;
2623 		}
2624 	}
2625 	return FREE_PIPE_INDEX_NOT_FOUND;
2626 }
2627 
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)2628 static void update_stream_engine_usage(
2629 		struct resource_context *res_ctx,
2630 		const struct resource_pool *pool,
2631 		struct stream_encoder *stream_enc,
2632 		bool acquired)
2633 {
2634 	int i;
2635 
2636 	for (i = 0; i < pool->stream_enc_count; i++) {
2637 		if (pool->stream_enc[i] == stream_enc)
2638 			res_ctx->is_stream_enc_acquired[i] = acquired;
2639 	}
2640 }
2641 
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)2642 static void update_hpo_dp_stream_engine_usage(
2643 		struct resource_context *res_ctx,
2644 		const struct resource_pool *pool,
2645 		struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
2646 		bool acquired)
2647 {
2648 	int i;
2649 
2650 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2651 		if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
2652 			res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
2653 	}
2654 }
2655 
find_acquired_hpo_dp_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)2656 static inline int find_acquired_hpo_dp_link_enc_for_link(
2657 		const struct resource_context *res_ctx,
2658 		const struct dc_link *link)
2659 {
2660 	int i;
2661 
2662 	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
2663 		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
2664 				res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
2665 			return i;
2666 
2667 	return -1;
2668 }
2669 
find_free_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * pool)2670 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2671 		const struct resource_pool *pool)
2672 {
2673 	int i;
2674 
2675 	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2676 		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2677 			break;
2678 
2679 	return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2680 			i < pool->hpo_dp_link_enc_count) ? i : -1;
2681 }
2682 
acquire_hpo_dp_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2683 static inline void acquire_hpo_dp_link_enc(
2684 		struct resource_context *res_ctx,
2685 		unsigned int link_index,
2686 		int enc_index)
2687 {
2688 	res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2689 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2690 }
2691 
retain_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2692 static inline void retain_hpo_dp_link_enc(
2693 		struct resource_context *res_ctx,
2694 		int enc_index)
2695 {
2696 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2697 }
2698 
release_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2699 static inline void release_hpo_dp_link_enc(
2700 		struct resource_context *res_ctx,
2701 		int enc_index)
2702 {
2703 	ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2704 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2705 }
2706 
add_hpo_dp_link_enc_to_ctx(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2707 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2708 		const struct resource_pool *pool,
2709 		struct pipe_ctx *pipe_ctx,
2710 		struct dc_stream_state *stream)
2711 {
2712 	int enc_index;
2713 
2714 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2715 
2716 	if (enc_index >= 0) {
2717 		retain_hpo_dp_link_enc(res_ctx, enc_index);
2718 	} else {
2719 		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2720 		if (enc_index >= 0)
2721 			acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2722 	}
2723 
2724 	if (enc_index >= 0)
2725 		pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2726 
2727 	return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2728 }
2729 
remove_hpo_dp_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2730 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2731 		struct pipe_ctx *pipe_ctx,
2732 		struct dc_stream_state *stream)
2733 {
2734 	int enc_index;
2735 
2736 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2737 
2738 	if (enc_index >= 0) {
2739 		release_hpo_dp_link_enc(res_ctx, enc_index);
2740 		pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2741 	}
2742 }
2743 
find_acquired_dio_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)2744 static inline int find_acquired_dio_link_enc_for_link(
2745 		const struct resource_context *res_ctx,
2746 		const struct dc_link *link)
2747 {
2748 	int i;
2749 
2750 	for (i = 0; i < ARRAY_SIZE(res_ctx->dio_link_enc_ref_cnts); i++)
2751 		if (res_ctx->dio_link_enc_ref_cnts[i] > 0 &&
2752 				res_ctx->dio_link_enc_to_link_idx[i] == link->link_index)
2753 			return i;
2754 
2755 	return -1;
2756 }
2757 
find_fixed_dio_link_enc(const struct dc_link * link)2758 static inline int find_fixed_dio_link_enc(const struct dc_link *link)
2759 {
2760 	/* the 8b10b dp phy can only use fixed link encoder */
2761 	return link->eng_id;
2762 }
2763 
find_free_dio_link_enc(const struct resource_context * res_ctx,const struct dc_link * link,const struct resource_pool * pool,struct dc_stream_state * stream)2764 static inline int find_free_dio_link_enc(const struct resource_context *res_ctx,
2765 		const struct dc_link *link, const struct resource_pool *pool, struct dc_stream_state *stream)
2766 {
2767 	int i, j = -1;
2768 	int stream_enc_inst = -1;
2769 	int enc_count = pool->dig_link_enc_count;
2770 
2771 	/* Find stream encoder instance for the stream */
2772 	if (stream) {
2773 		for (i = 0; i < pool->pipe_count; i++) {
2774 			if ((res_ctx->pipe_ctx[i].stream == stream) &&
2775 				(res_ctx->pipe_ctx[i].stream_res.stream_enc != NULL)) {
2776 				stream_enc_inst = res_ctx->pipe_ctx[i].stream_res.stream_enc->id;
2777 				break;
2778 			}
2779 		}
2780 	}
2781 
2782 	/* Assign dpia preferred > stream enc instance > available */
2783 	for (i = 0; i < enc_count; i++) {
2784 		if (res_ctx->dio_link_enc_ref_cnts[i] == 0) {
2785 			if (j == -1)
2786 				j = i;
2787 
2788 			if (link->dpia_preferred_eng_id == i) {
2789 				j = i;
2790 				break;
2791 			}
2792 
2793 			if (stream_enc_inst == i) {
2794 				j = stream_enc_inst;
2795 			}
2796 		}
2797 	}
2798 	return j;
2799 }
2800 
acquire_dio_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2801 static inline void acquire_dio_link_enc(
2802 		struct resource_context *res_ctx,
2803 		unsigned int link_index,
2804 		int enc_index)
2805 {
2806 	res_ctx->dio_link_enc_to_link_idx[enc_index] = link_index;
2807 	res_ctx->dio_link_enc_ref_cnts[enc_index] = 1;
2808 }
2809 
retain_dio_link_enc(struct resource_context * res_ctx,int enc_index)2810 static inline void retain_dio_link_enc(
2811 		struct resource_context *res_ctx,
2812 		int enc_index)
2813 {
2814 	res_ctx->dio_link_enc_ref_cnts[enc_index]++;
2815 }
2816 
release_dio_link_enc(struct resource_context * res_ctx,int enc_index)2817 static inline void release_dio_link_enc(
2818 		struct resource_context *res_ctx,
2819 		int enc_index)
2820 {
2821 	ASSERT(res_ctx->dio_link_enc_ref_cnts[enc_index] > 0);
2822 	res_ctx->dio_link_enc_ref_cnts[enc_index]--;
2823 }
2824 
is_dio_enc_acquired_by_other_link(const struct dc_link * link,int enc_index,int * link_index)2825 static bool is_dio_enc_acquired_by_other_link(const struct dc_link *link,
2826 		int enc_index,
2827 		int *link_index)
2828 {
2829 	const struct dc *dc  = link->dc;
2830 	const struct resource_context *res_ctx = &dc->current_state->res_ctx;
2831 
2832 	/* pass the link_index that acquired the enc_index */
2833 	if (res_ctx->dio_link_enc_ref_cnts[enc_index] > 0 &&
2834 			res_ctx->dio_link_enc_to_link_idx[enc_index] != link->link_index) {
2835 		*link_index = res_ctx->dio_link_enc_to_link_idx[enc_index];
2836 		return true;
2837 	}
2838 
2839 	return false;
2840 }
2841 
swap_dio_link_enc_to_muxable_ctx(struct dc_state * context,const struct resource_pool * pool,int new_encoder,int old_encoder)2842 static void swap_dio_link_enc_to_muxable_ctx(struct dc_state *context,
2843 		const struct resource_pool *pool,
2844 		int new_encoder,
2845 		int old_encoder)
2846 {
2847 	struct resource_context *res_ctx = &context->res_ctx;
2848 	int stream_count = context->stream_count;
2849 	int i = 0;
2850 
2851 	res_ctx->dio_link_enc_ref_cnts[new_encoder] = res_ctx->dio_link_enc_ref_cnts[old_encoder];
2852 	res_ctx->dio_link_enc_to_link_idx[new_encoder] = res_ctx->dio_link_enc_to_link_idx[old_encoder];
2853 	res_ctx->dio_link_enc_ref_cnts[old_encoder] = 0;
2854 
2855 	for (i = 0; i < stream_count; i++) {
2856 		struct dc_stream_state *stream = context->streams[i];
2857 		struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
2858 
2859 		if (pipe_ctx && pipe_ctx->link_res.dio_link_enc == pool->link_encoders[old_encoder])
2860 			pipe_ctx->link_res.dio_link_enc = pool->link_encoders[new_encoder];
2861 	}
2862 }
2863 
add_dio_link_enc_to_ctx(const struct dc * dc,struct dc_state * context,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2864 static bool add_dio_link_enc_to_ctx(const struct dc *dc,
2865 		struct dc_state *context,
2866 		const struct resource_pool *pool,
2867 		struct pipe_ctx *pipe_ctx,
2868 		struct dc_stream_state *stream)
2869 {
2870 	struct resource_context *res_ctx = &context->res_ctx;
2871 	int enc_index;
2872 
2873 	enc_index = find_acquired_dio_link_enc_for_link(res_ctx, stream->link);
2874 
2875 	if (enc_index >= 0) {
2876 		retain_dio_link_enc(res_ctx, enc_index);
2877 	} else {
2878 		if (stream->link->is_dig_mapping_flexible)
2879 			enc_index = find_free_dio_link_enc(res_ctx, stream->link, pool, stream);
2880 		else {
2881 			int link_index = 0;
2882 
2883 			enc_index = find_fixed_dio_link_enc(stream->link);
2884 			/* Fixed mapping link can only use its fixed link encoder.
2885 			 * If the encoder is acquired by other link then get a new free encoder and swap the new
2886 			 * one into the acquiring link.
2887 			 */
2888 			if (enc_index >= 0 && is_dio_enc_acquired_by_other_link(stream->link, enc_index, &link_index)) {
2889 				int new_enc_index = find_free_dio_link_enc(res_ctx, dc->links[link_index], pool, stream);
2890 
2891 				if (new_enc_index >= 0)
2892 					swap_dio_link_enc_to_muxable_ctx(context, pool, new_enc_index, enc_index);
2893 				else
2894 					return false;
2895 			}
2896 		}
2897 
2898 		if (enc_index >= 0)
2899 			acquire_dio_link_enc(res_ctx, stream->link->link_index, enc_index);
2900 	}
2901 
2902 	if (enc_index >= 0)
2903 		pipe_ctx->link_res.dio_link_enc = pool->link_encoders[enc_index];
2904 
2905 	return pipe_ctx->link_res.dio_link_enc != NULL;
2906 }
2907 
remove_dio_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2908 static void remove_dio_link_enc_from_ctx(struct resource_context *res_ctx,
2909 		struct pipe_ctx *pipe_ctx,
2910 		struct dc_stream_state *stream)
2911 {
2912 	int enc_index = -1;
2913 
2914 	if (stream->link)
2915 		enc_index = find_acquired_dio_link_enc_for_link(res_ctx, stream->link);
2916 
2917 	if (enc_index >= 0) {
2918 		release_dio_link_enc(res_ctx, enc_index);
2919 		pipe_ctx->link_res.dio_link_enc = NULL;
2920 	}
2921 }
2922 
get_num_of_free_pipes(const struct resource_pool * pool,const struct dc_state * context)2923 static int get_num_of_free_pipes(const struct resource_pool *pool, const struct dc_state *context)
2924 {
2925 	int i;
2926 	int count = 0;
2927 
2928 	for (i = 0; i < pool->pipe_count; i++)
2929 		if (resource_is_pipe_type(&context->res_ctx.pipe_ctx[i], FREE_PIPE))
2930 			count++;
2931 	return count;
2932 }
2933 
resource_add_otg_master_for_stream_output(struct dc_state * new_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2934 enum dc_status resource_add_otg_master_for_stream_output(struct dc_state *new_ctx,
2935 		const struct resource_pool *pool,
2936 		struct dc_stream_state *stream)
2937 {
2938 	struct dc *dc = stream->ctx->dc;
2939 
2940 	return dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2941 }
2942 
resource_remove_otg_master_for_stream_output(struct dc_state * context,const struct resource_pool * pool,struct dc_stream_state * stream)2943 void resource_remove_otg_master_for_stream_output(struct dc_state *context,
2944 		const struct resource_pool *pool,
2945 		struct dc_stream_state *stream)
2946 {
2947 	struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
2948 			&context->res_ctx, stream);
2949 
2950 	if (!otg_master)
2951 		return;
2952 
2953 	ASSERT(resource_get_odm_slice_count(otg_master) == 1);
2954 	ASSERT(otg_master->plane_state == NULL);
2955 	ASSERT(otg_master->stream_res.stream_enc);
2956 	update_stream_engine_usage(
2957 			&context->res_ctx,
2958 			pool,
2959 			otg_master->stream_res.stream_enc,
2960 			false);
2961 
2962 	if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(otg_master)) {
2963 		update_hpo_dp_stream_engine_usage(
2964 			&context->res_ctx, pool,
2965 			otg_master->stream_res.hpo_dp_stream_enc,
2966 			false);
2967 		remove_hpo_dp_link_enc_from_ctx(
2968 				&context->res_ctx, otg_master, stream);
2969 	}
2970 
2971 	if (stream->ctx->dc->config.unify_link_enc_assignment)
2972 		remove_dio_link_enc_from_ctx(&context->res_ctx, otg_master, stream);
2973 
2974 	if (otg_master->stream_res.audio)
2975 		update_audio_usage(
2976 			&context->res_ctx,
2977 			pool,
2978 			otg_master->stream_res.audio,
2979 			false);
2980 
2981 	resource_unreference_clock_source(&context->res_ctx,
2982 					  pool,
2983 					  otg_master->clock_source);
2984 
2985 	if (pool->funcs->remove_stream_from_ctx)
2986 		pool->funcs->remove_stream_from_ctx(
2987 				stream->ctx->dc, context, stream);
2988 
2989 	memset(otg_master, 0, sizeof(*otg_master));
2990 }
2991 
2992 /* For each OPP head of an OTG master, add top plane at plane index 0.
2993  *
2994  * In the following example, the stream has 2 ODM slices without a top plane.
2995  * By adding a plane 0 to OPP heads, we are configuring our hardware to render
2996  * plane 0 by using each OPP head's DPP.
2997  *
2998  *       Inter-pipe Relation (Before Adding Plane)
2999  *        __________________________________________________
3000  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3001  *       |        |               | slice 0   |             |
3002  *       |   0    |               |blank ----ODM----------- |
3003  *       |        |               | slice 1 | |             |
3004  *       |   1    |               |blank ---- |             |
3005  *       |________|_______________|___________|_____________|
3006  *
3007  *       Inter-pipe Relation (After Adding Plane)
3008  *        __________________________________________________
3009  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3010  *       |        |  plane 0      | slice 0   |             |
3011  *       |   0    | -------------------------ODM----------- |
3012  *       |        |  plane 0      | slice 1 | |             |
3013  *       |   1    | ------------------------- |             |
3014  *       |________|_______________|___________|_____________|
3015  */
add_plane_to_opp_head_pipes(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * context)3016 static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
3017 		struct dc_plane_state *plane_state,
3018 		struct dc_state *context)
3019 {
3020 	struct pipe_ctx *opp_head_pipe = otg_master_pipe;
3021 
3022 	while (opp_head_pipe) {
3023 		if (opp_head_pipe->plane_state) {
3024 			ASSERT(0);
3025 			return false;
3026 		}
3027 		opp_head_pipe->plane_state = plane_state;
3028 		opp_head_pipe = opp_head_pipe->next_odm_pipe;
3029 	}
3030 
3031 	return true;
3032 }
3033 
3034 /* For each OPP head of an OTG master, acquire a secondary DPP pipe and add
3035  * the plane. So the plane is added to all ODM slices associated with the OTG
3036  * master pipe in the bottom layer.
3037  *
3038  * In the following example, the stream has 2 ODM slices and a top plane 0.
3039  * By acquiring secondary DPP pipes and adding a plane 1, we are configuring our
3040  * hardware to render the plane 1 by acquiring a new pipe for each ODM slice and
3041  * render plane 1 using new pipes' DPP in the Z axis below plane 0.
3042  *
3043  *       Inter-pipe Relation (Before Adding Plane)
3044  *        __________________________________________________
3045  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3046  *       |        |  plane 0      | slice 0   |             |
3047  *       |   0    | -------------------------ODM----------- |
3048  *       |        |  plane 0      | slice 1 | |             |
3049  *       |   1    | ------------------------- |             |
3050  *       |________|_______________|___________|_____________|
3051  *
3052  *       Inter-pipe Relation (After Acquiring and Adding Plane)
3053  *        __________________________________________________
3054  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3055  *       |        |  plane 0      | slice 0   |             |
3056  *       |   0    | -------------MPC---------ODM----------- |
3057  *       |        |  plane 1    | |         | |             |
3058  *       |   2    | ------------- |         | |             |
3059  *       |        |  plane 0      | slice 1 | |             |
3060  *       |   1    | -------------MPC--------- |             |
3061  *       |        |  plane 1    | |           |             |
3062  *       |   3    | ------------- |           |             |
3063  *       |________|_______________|___________|_____________|
3064  */
acquire_secondary_dpp_pipes_and_add_plane(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool)3065 static bool acquire_secondary_dpp_pipes_and_add_plane(
3066 		struct pipe_ctx *otg_master_pipe,
3067 		struct dc_plane_state *plane_state,
3068 		struct dc_state *new_ctx,
3069 		struct dc_state *cur_ctx,
3070 		struct resource_pool *pool)
3071 {
3072 	struct pipe_ctx *sec_pipe, *tail_pipe;
3073 	struct pipe_ctx *opp_heads[MAX_PIPES];
3074 	int opp_head_count;
3075 	int i;
3076 
3077 	if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
3078 		ASSERT(0);
3079 		return false;
3080 	}
3081 
3082 	opp_head_count = resource_get_opp_heads_for_otg_master(otg_master_pipe,
3083 			&new_ctx->res_ctx, opp_heads);
3084 	if (get_num_of_free_pipes(pool, new_ctx) < opp_head_count)
3085 		/* not enough free pipes */
3086 		return false;
3087 
3088 	for (i = 0; i < opp_head_count; i++) {
3089 		sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
3090 				cur_ctx,
3091 				new_ctx,
3092 				pool,
3093 				opp_heads[i]);
3094 		ASSERT(sec_pipe);
3095 		sec_pipe->plane_state = plane_state;
3096 
3097 		/* establish pipe relationship */
3098 		tail_pipe = get_tail_pipe(opp_heads[i]);
3099 		tail_pipe->bottom_pipe = sec_pipe;
3100 		sec_pipe->top_pipe = tail_pipe;
3101 		sec_pipe->bottom_pipe = NULL;
3102 		if (tail_pipe->prev_odm_pipe) {
3103 			ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
3104 			sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
3105 			tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
3106 		} else {
3107 			sec_pipe->prev_odm_pipe = NULL;
3108 		}
3109 	}
3110 	return true;
3111 }
3112 
resource_append_dpp_pipes_for_plane_composition(struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool,struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state)3113 bool resource_append_dpp_pipes_for_plane_composition(
3114 		struct dc_state *new_ctx,
3115 		struct dc_state *cur_ctx,
3116 		struct resource_pool *pool,
3117 		struct pipe_ctx *otg_master_pipe,
3118 		struct dc_plane_state *plane_state)
3119 {
3120 	bool success;
3121 
3122 	if (otg_master_pipe->plane_state == NULL)
3123 		success = add_plane_to_opp_head_pipes(otg_master_pipe,
3124 				plane_state, new_ctx);
3125 	else
3126 		success = acquire_secondary_dpp_pipes_and_add_plane(
3127 				otg_master_pipe, plane_state, new_ctx,
3128 				cur_ctx, pool);
3129 	if (success) {
3130 		/* when appending a plane mpc slice count changes from 0 to 1 */
3131 		success = update_pipe_params_after_mpc_slice_count_change(
3132 				plane_state, new_ctx, pool);
3133 		if (!success)
3134 			resource_remove_dpp_pipes_for_plane_composition(new_ctx,
3135 					pool, plane_state);
3136 	}
3137 
3138 	return success;
3139 }
3140 
resource_remove_dpp_pipes_for_plane_composition(struct dc_state * context,const struct resource_pool * pool,const struct dc_plane_state * plane_state)3141 void resource_remove_dpp_pipes_for_plane_composition(
3142 		struct dc_state *context,
3143 		const struct resource_pool *pool,
3144 		const struct dc_plane_state *plane_state)
3145 {
3146 	int i;
3147 
3148 	for (i = pool->pipe_count - 1; i >= 0; i--) {
3149 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3150 
3151 		if (pipe_ctx->plane_state == plane_state) {
3152 			if (pipe_ctx->top_pipe)
3153 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
3154 
3155 			/* Second condition is to avoid setting NULL to top pipe
3156 			 * of tail pipe making it look like head pipe in subsequent
3157 			 * deletes
3158 			 */
3159 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
3160 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
3161 
3162 			/*
3163 			 * For head pipe detach surfaces from pipe for tail
3164 			 * pipe just zero it out
3165 			 */
3166 			if (!pipe_ctx->top_pipe)
3167 				pipe_ctx->plane_state = NULL;
3168 			else
3169 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
3170 		}
3171 	}
3172 }
3173 
3174 /*
3175  * Increase ODM slice count by 1 by acquiring pipes and adding a new ODM slice
3176  * at the last index.
3177  * return - true if a new ODM slice is added and required pipes are acquired.
3178  * false if new_ctx is no longer a valid state after new ODM slice is added.
3179  *
3180  * This is achieved by duplicating MPC blending tree from previous ODM slice.
3181  * In the following example, we have a single MPC tree and 1 ODM slice 0. We
3182  * want to add a new odm slice by duplicating the MPC blending tree and add
3183  * ODM slice 1.
3184  *
3185  *       Inter-pipe Relation (Before Acquiring and Adding ODM Slice)
3186  *        __________________________________________________
3187  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3188  *       |        |  plane 0      | slice 0   |             |
3189  *       |   0    | -------------MPC---------ODM----------- |
3190  *       |        |  plane 1    | |           |             |
3191  *       |   1    | ------------- |           |             |
3192  *       |________|_______________|___________|_____________|
3193  *
3194  *       Inter-pipe Relation (After Acquiring and Adding ODM Slice)
3195  *        __________________________________________________
3196  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3197  *       |        |  plane 0      | slice 0   |             |
3198  *       |   0    | -------------MPC---------ODM----------- |
3199  *       |        |  plane 1    | |         | |             |
3200  *       |   1    | ------------- |         | |             |
3201  *       |        |  plane 0      | slice 1 | |             |
3202  *       |   2    | -------------MPC--------- |             |
3203  *       |        |  plane 1    | |           |             |
3204  *       |   3    | ------------- |           |             |
3205  *       |________|_______________|___________|_____________|
3206  */
acquire_pipes_and_add_odm_slice(struct pipe_ctx * otg_master_pipe,struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool)3207 static bool acquire_pipes_and_add_odm_slice(
3208 		struct pipe_ctx *otg_master_pipe,
3209 		struct dc_state *new_ctx,
3210 		const struct dc_state *cur_ctx,
3211 		const struct resource_pool *pool)
3212 {
3213 	struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
3214 	struct pipe_ctx *new_opp_head;
3215 	struct pipe_ctx *last_top_dpp_pipe, *last_bottom_dpp_pipe,
3216 			*new_top_dpp_pipe, *new_bottom_dpp_pipe;
3217 
3218 	if (!pool->funcs->acquire_free_pipe_as_secondary_opp_head) {
3219 		ASSERT(0);
3220 		return false;
3221 	}
3222 	new_opp_head = pool->funcs->acquire_free_pipe_as_secondary_opp_head(
3223 					cur_ctx, new_ctx, pool,
3224 					otg_master_pipe);
3225 	if (!new_opp_head)
3226 		return false;
3227 
3228 	last_opp_head->next_odm_pipe = new_opp_head;
3229 	new_opp_head->prev_odm_pipe = last_opp_head;
3230 	new_opp_head->next_odm_pipe = NULL;
3231 	new_opp_head->plane_state = last_opp_head->plane_state;
3232 	last_top_dpp_pipe = last_opp_head;
3233 	new_top_dpp_pipe = new_opp_head;
3234 
3235 	while (last_top_dpp_pipe->bottom_pipe) {
3236 		last_bottom_dpp_pipe = last_top_dpp_pipe->bottom_pipe;
3237 		new_bottom_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
3238 				cur_ctx, new_ctx, pool,
3239 				new_opp_head);
3240 		if (!new_bottom_dpp_pipe)
3241 			return false;
3242 
3243 		new_bottom_dpp_pipe->plane_state = last_bottom_dpp_pipe->plane_state;
3244 		new_top_dpp_pipe->bottom_pipe = new_bottom_dpp_pipe;
3245 		new_bottom_dpp_pipe->top_pipe = new_top_dpp_pipe;
3246 		last_bottom_dpp_pipe->next_odm_pipe = new_bottom_dpp_pipe;
3247 		new_bottom_dpp_pipe->prev_odm_pipe = last_bottom_dpp_pipe;
3248 		new_bottom_dpp_pipe->next_odm_pipe = NULL;
3249 		last_top_dpp_pipe = last_bottom_dpp_pipe;
3250 	}
3251 
3252 	return true;
3253 }
3254 
3255 /*
3256  * Decrease ODM slice count by 1 by releasing pipes and removing the ODM slice
3257  * at the last index.
3258  * return - true if the last ODM slice is removed and related pipes are
3259  * released. false if there is no removable ODM slice.
3260  *
3261  * In the following example, we have 2 MPC trees and ODM slice 0 and slice 1.
3262  * We want to remove the last ODM i.e slice 1. We are releasing secondary DPP
3263  * pipe 3 and OPP head pipe 2.
3264  *
3265  *       Inter-pipe Relation (Before Releasing and Removing ODM Slice)
3266  *        __________________________________________________
3267  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3268  *       |        |  plane 0      | slice 0   |             |
3269  *       |   0    | -------------MPC---------ODM----------- |
3270  *       |        |  plane 1    | |         | |             |
3271  *       |   1    | ------------- |         | |             |
3272  *       |        |  plane 0      | slice 1 | |             |
3273  *       |   2    | -------------MPC--------- |             |
3274  *       |        |  plane 1    | |           |             |
3275  *       |   3    | ------------- |           |             |
3276  *       |________|_______________|___________|_____________|
3277  *
3278  *       Inter-pipe Relation (After Releasing and Removing ODM Slice)
3279  *        __________________________________________________
3280  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3281  *       |        |  plane 0      | slice 0   |             |
3282  *       |   0    | -------------MPC---------ODM----------- |
3283  *       |        |  plane 1    | |           |             |
3284  *       |   1    | ------------- |           |             |
3285  *       |________|_______________|___________|_____________|
3286  */
release_pipes_and_remove_odm_slice(struct pipe_ctx * otg_master_pipe,struct dc_state * context,const struct resource_pool * pool)3287 static bool release_pipes_and_remove_odm_slice(
3288 		struct pipe_ctx *otg_master_pipe,
3289 		struct dc_state *context,
3290 		const struct resource_pool *pool)
3291 {
3292 	struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
3293 	struct pipe_ctx *tail_pipe = get_tail_pipe(last_opp_head);
3294 
3295 	if (!pool->funcs->release_pipe) {
3296 		ASSERT(0);
3297 		return false;
3298 	}
3299 
3300 	if (resource_is_pipe_type(last_opp_head, OTG_MASTER))
3301 		return false;
3302 
3303 	while (tail_pipe->top_pipe) {
3304 		tail_pipe->prev_odm_pipe->next_odm_pipe = NULL;
3305 		tail_pipe = tail_pipe->top_pipe;
3306 		pool->funcs->release_pipe(context, tail_pipe->bottom_pipe, pool);
3307 		tail_pipe->bottom_pipe = NULL;
3308 	}
3309 	last_opp_head->prev_odm_pipe->next_odm_pipe = NULL;
3310 	pool->funcs->release_pipe(context, last_opp_head, pool);
3311 
3312 	return true;
3313 }
3314 
3315 /*
3316  * Increase MPC slice count by 1 by acquiring a new DPP pipe and add it as the
3317  * last MPC slice of the plane associated with dpp_pipe.
3318  *
3319  * return - true if a new MPC slice is added and required pipes are acquired.
3320  * false if new_ctx is no longer a valid state after new MPC slice is added.
3321  *
3322  * In the following example, we add a new MPC slice for plane 0 into the
3323  * new_ctx. To do so we pass pipe 0 as dpp_pipe. The function acquires a new DPP
3324  * pipe 2 for plane 0 as the bottom most pipe for plane 0.
3325  *
3326  *       Inter-pipe Relation (Before Acquiring and Adding MPC Slice)
3327  *        __________________________________________________
3328  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3329  *       |        |  plane 0      |           |             |
3330  *       |   0    | -------------MPC----------------------- |
3331  *       |        |  plane 1    | |           |             |
3332  *       |   1    | ------------- |           |             |
3333  *       |________|_______________|___________|_____________|
3334  *
3335  *       Inter-pipe Relation (After Acquiring and Adding MPC Slice)
3336  *        __________________________________________________
3337  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3338  *       |        |  plane 0      |           |             |
3339  *       |   0    | -------------MPC----------------------- |
3340  *       |        |  plane 0    | |           |             |
3341  *       |   2    | ------------- |           |             |
3342  *       |        |  plane 1    | |           |             |
3343  *       |   1    | ------------- |           |             |
3344  *       |________|_______________|___________|_____________|
3345  */
acquire_dpp_pipe_and_add_mpc_slice(struct pipe_ctx * dpp_pipe,struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool)3346 static bool acquire_dpp_pipe_and_add_mpc_slice(
3347 		struct pipe_ctx *dpp_pipe,
3348 		struct dc_state *new_ctx,
3349 		const struct dc_state *cur_ctx,
3350 		const struct resource_pool *pool)
3351 {
3352 	struct pipe_ctx *last_dpp_pipe =
3353 			get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
3354 	struct pipe_ctx *opp_head = resource_get_opp_head(dpp_pipe);
3355 	struct pipe_ctx *new_dpp_pipe;
3356 
3357 	if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
3358 		ASSERT(0);
3359 		return false;
3360 	}
3361 	new_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
3362 			cur_ctx, new_ctx, pool, opp_head);
3363 	if (!new_dpp_pipe || resource_get_odm_slice_count(dpp_pipe) > 1)
3364 		return false;
3365 
3366 	new_dpp_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
3367 	if (new_dpp_pipe->bottom_pipe)
3368 		new_dpp_pipe->bottom_pipe->top_pipe = new_dpp_pipe;
3369 	new_dpp_pipe->top_pipe = last_dpp_pipe;
3370 	last_dpp_pipe->bottom_pipe = new_dpp_pipe;
3371 	new_dpp_pipe->plane_state = last_dpp_pipe->plane_state;
3372 
3373 	return true;
3374 }
3375 
3376 /*
3377  * Reduce MPC slice count by 1 by releasing the bottom DPP pipe in MPCC combine
3378  * with dpp_pipe and removing last MPC slice of the plane associated with
3379  * dpp_pipe.
3380  *
3381  * return - true if the last MPC slice of the plane associated with dpp_pipe is
3382  * removed and last DPP pipe in MPCC combine with dpp_pipe is released.
3383  * false if there is no removable MPC slice.
3384  *
3385  * In the following example, we remove an MPC slice for plane 0 from the
3386  * context. To do so we pass pipe 0 as dpp_pipe. The function releases pipe 1 as
3387  * it is the last pipe for plane 0.
3388  *
3389  *       Inter-pipe Relation (Before Releasing and Removing MPC Slice)
3390  *        __________________________________________________
3391  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3392  *       |        |  plane 0      |           |             |
3393  *       |   0    | -------------MPC----------------------- |
3394  *       |        |  plane 0    | |           |             |
3395  *       |   1    | ------------- |           |             |
3396  *       |        |  plane 1    | |           |             |
3397  *       |   2    | ------------- |           |             |
3398  *       |________|_______________|___________|_____________|
3399  *
3400  *       Inter-pipe Relation (After Releasing and Removing MPC Slice)
3401  *        __________________________________________________
3402  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3403  *       |        |  plane 0      |           |             |
3404  *       |   0    | -------------MPC----------------------- |
3405  *       |        |  plane 1    | |           |             |
3406  *       |   2    | ------------- |           |             |
3407  *       |________|_______________|___________|_____________|
3408  */
release_dpp_pipe_and_remove_mpc_slice(struct pipe_ctx * dpp_pipe,struct dc_state * context,const struct resource_pool * pool)3409 static bool release_dpp_pipe_and_remove_mpc_slice(
3410 		struct pipe_ctx *dpp_pipe,
3411 		struct dc_state *context,
3412 		const struct resource_pool *pool)
3413 {
3414 	struct pipe_ctx *last_dpp_pipe =
3415 			get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
3416 
3417 	if (!pool->funcs->release_pipe) {
3418 		ASSERT(0);
3419 		return false;
3420 	}
3421 
3422 	if (resource_is_pipe_type(last_dpp_pipe, OPP_HEAD) ||
3423 			resource_get_odm_slice_count(dpp_pipe) > 1)
3424 		return false;
3425 
3426 	last_dpp_pipe->top_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
3427 	if (last_dpp_pipe->bottom_pipe)
3428 		last_dpp_pipe->bottom_pipe->top_pipe = last_dpp_pipe->top_pipe;
3429 	pool->funcs->release_pipe(context, last_dpp_pipe, pool);
3430 
3431 	return true;
3432 }
3433 
resource_update_pipes_for_stream_with_slice_count(struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool,const struct dc_stream_state * stream,int new_slice_count)3434 bool resource_update_pipes_for_stream_with_slice_count(
3435 		struct dc_state *new_ctx,
3436 		const struct dc_state *cur_ctx,
3437 		const struct resource_pool *pool,
3438 		const struct dc_stream_state *stream,
3439 		int new_slice_count)
3440 {
3441 	int i;
3442 	struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
3443 			&new_ctx->res_ctx, stream);
3444 	int cur_slice_count;
3445 	bool result = true;
3446 
3447 	if (!otg_master)
3448 		return false;
3449 
3450 	cur_slice_count = resource_get_odm_slice_count(otg_master);
3451 
3452 	if (new_slice_count == cur_slice_count)
3453 		return result;
3454 
3455 	if (new_slice_count > cur_slice_count)
3456 		for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
3457 			result = acquire_pipes_and_add_odm_slice(
3458 					otg_master, new_ctx, cur_ctx, pool);
3459 	else
3460 		for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
3461 			result = release_pipes_and_remove_odm_slice(
3462 					otg_master, new_ctx, pool);
3463 	if (result)
3464 		result = update_pipe_params_after_odm_slice_count_change(
3465 				otg_master, new_ctx, pool);
3466 	return result;
3467 }
3468 
resource_update_pipes_for_plane_with_slice_count(struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool,const struct dc_plane_state * plane,int new_slice_count)3469 bool resource_update_pipes_for_plane_with_slice_count(
3470 		struct dc_state *new_ctx,
3471 		const struct dc_state *cur_ctx,
3472 		const struct resource_pool *pool,
3473 		const struct dc_plane_state *plane,
3474 		int new_slice_count)
3475 {
3476 	int i;
3477 	int dpp_pipe_count;
3478 	int cur_slice_count;
3479 	struct pipe_ctx *dpp_pipes[MAX_PIPES] = {0};
3480 	bool result = true;
3481 
3482 	dpp_pipe_count = resource_get_dpp_pipes_for_plane(plane,
3483 			&new_ctx->res_ctx, dpp_pipes);
3484 	ASSERT(dpp_pipe_count > 0);
3485 	cur_slice_count = resource_get_mpc_slice_count(dpp_pipes[0]);
3486 
3487 	if (new_slice_count == cur_slice_count)
3488 		return result;
3489 
3490 	if (new_slice_count > cur_slice_count)
3491 		for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
3492 			result = acquire_dpp_pipe_and_add_mpc_slice(
3493 					dpp_pipes[0], new_ctx, cur_ctx, pool);
3494 	else
3495 		for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
3496 			result = release_dpp_pipe_and_remove_mpc_slice(
3497 					dpp_pipes[0], new_ctx, pool);
3498 	if (result)
3499 		result = update_pipe_params_after_mpc_slice_count_change(
3500 				dpp_pipes[0]->plane_state, new_ctx, pool);
3501 	return result;
3502 }
3503 
dc_is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)3504 bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
3505 		       struct dc_stream_state *new_stream)
3506 {
3507 	if (cur_stream == NULL)
3508 		return true;
3509 
3510 	/* If output color space is changed, need to reprogram info frames */
3511 	if (cur_stream->output_color_space != new_stream->output_color_space)
3512 		return true;
3513 
3514 	return memcmp(
3515 		&cur_stream->timing,
3516 		&new_stream->timing,
3517 		sizeof(struct dc_crtc_timing)) != 0;
3518 }
3519 
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)3520 static bool are_stream_backends_same(
3521 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
3522 {
3523 	if (stream_a == stream_b)
3524 		return true;
3525 
3526 	if (stream_a == NULL || stream_b == NULL)
3527 		return false;
3528 
3529 	if (dc_is_timing_changed(stream_a, stream_b))
3530 		return false;
3531 
3532 	if (stream_a->signal != stream_b->signal)
3533 		return false;
3534 
3535 	if (stream_a->dpms_off != stream_b->dpms_off)
3536 		return false;
3537 
3538 	return true;
3539 }
3540 
3541 /*
3542  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
3543  *
3544  * Checks if there a difference between the two states
3545  * that would require a mode change.
3546  *
3547  * Does not compare cursor position or attributes.
3548  */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)3549 bool dc_is_stream_unchanged(
3550 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
3551 {
3552 	if (!old_stream || !stream)
3553 		return false;
3554 
3555 	if (!are_stream_backends_same(old_stream, stream))
3556 		return false;
3557 
3558 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
3559 		return false;
3560 
3561 	/*compare audio info*/
3562 	if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
3563 		return false;
3564 
3565 	return true;
3566 }
3567 
3568 /*
3569  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
3570  */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)3571 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
3572 				    struct dc_stream_state *stream)
3573 {
3574 	if (old_stream == stream)
3575 		return true;
3576 
3577 	if (old_stream == NULL || stream == NULL)
3578 		return false;
3579 
3580 	if (memcmp(&old_stream->src,
3581 			&stream->src,
3582 			sizeof(struct rect)) != 0)
3583 		return false;
3584 
3585 	if (memcmp(&old_stream->dst,
3586 			&stream->dst,
3587 			sizeof(struct rect)) != 0)
3588 		return false;
3589 
3590 	return true;
3591 }
3592 
3593 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)3594 void update_audio_usage(
3595 		struct resource_context *res_ctx,
3596 		const struct resource_pool *pool,
3597 		struct audio *audio,
3598 		bool acquired)
3599 {
3600 	int i;
3601 	for (i = 0; i < pool->audio_count; i++) {
3602 		if (pool->audios[i] == audio)
3603 			res_ctx->is_audio_acquired[i] = acquired;
3604 	}
3605 }
3606 
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3607 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
3608 		struct resource_context *res_ctx,
3609 		const struct resource_pool *pool,
3610 		struct dc_stream_state *stream)
3611 {
3612 	int i;
3613 
3614 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
3615 		if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
3616 				pool->hpo_dp_stream_enc[i]) {
3617 
3618 			return pool->hpo_dp_stream_enc[i];
3619 		}
3620 	}
3621 
3622 	return NULL;
3623 }
3624 
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)3625 static struct audio *find_first_free_audio(
3626 		struct resource_context *res_ctx,
3627 		const struct resource_pool *pool,
3628 		enum engine_id id,
3629 		enum dce_version dc_version)
3630 {
3631 	int i, available_audio_count;
3632 
3633 	if (id == ENGINE_ID_UNKNOWN)
3634 		return NULL;
3635 
3636 	available_audio_count = pool->audio_count;
3637 
3638 	for (i = 0; i < available_audio_count; i++) {
3639 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
3640 			/*we have enough audio endpoint, find the matching inst*/
3641 			if (id != i)
3642 				continue;
3643 			return pool->audios[i];
3644 		}
3645 	}
3646 
3647 	/* use engine id to find free audio */
3648 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
3649 		return pool->audios[id];
3650 	}
3651 	/*not found the matching one, first come first serve*/
3652 	for (i = 0; i < available_audio_count; i++) {
3653 		if (res_ctx->is_audio_acquired[i] == false) {
3654 			return pool->audios[i];
3655 		}
3656 	}
3657 	return NULL;
3658 }
3659 
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)3660 static struct dc_stream_state *find_pll_sharable_stream(
3661 		struct dc_stream_state *stream_needs_pll,
3662 		struct dc_state *context)
3663 {
3664 	int i;
3665 
3666 	for (i = 0; i < context->stream_count; i++) {
3667 		struct dc_stream_state *stream_has_pll = context->streams[i];
3668 
3669 		/* We are looking for non dp, non virtual stream */
3670 		if (resource_are_streams_timing_synchronizable(
3671 			stream_needs_pll, stream_has_pll)
3672 			&& !dc_is_dp_signal(stream_has_pll->signal)
3673 			&& stream_has_pll->link->connector_signal
3674 			!= SIGNAL_TYPE_VIRTUAL)
3675 			return stream_has_pll;
3676 
3677 	}
3678 
3679 	return NULL;
3680 }
3681 
get_norm_pix_clk(const struct dc_crtc_timing * timing)3682 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
3683 {
3684 	uint32_t pix_clk = timing->pix_clk_100hz;
3685 	uint32_t normalized_pix_clk = pix_clk;
3686 
3687 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
3688 		pix_clk /= 2;
3689 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
3690 		switch (timing->display_color_depth) {
3691 		case COLOR_DEPTH_666:
3692 		case COLOR_DEPTH_888:
3693 			normalized_pix_clk = pix_clk;
3694 			break;
3695 		case COLOR_DEPTH_101010:
3696 			normalized_pix_clk = (pix_clk * 30) / 24;
3697 			break;
3698 		case COLOR_DEPTH_121212:
3699 			normalized_pix_clk = (pix_clk * 36) / 24;
3700 			break;
3701 		case COLOR_DEPTH_141414:
3702 			normalized_pix_clk = (pix_clk * 42) / 24;
3703 			break;
3704 		case COLOR_DEPTH_161616:
3705 			normalized_pix_clk = (pix_clk * 48) / 24;
3706 			break;
3707 		default:
3708 			ASSERT(0);
3709 		break;
3710 		}
3711 	}
3712 	return normalized_pix_clk;
3713 }
3714 
calculate_phy_pix_clks(struct dc_stream_state * stream)3715 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
3716 {
3717 	/* update actual pixel clock on all streams */
3718 	if (dc_is_hdmi_signal(stream->signal))
3719 		stream->phy_pix_clk = get_norm_pix_clk(
3720 			&stream->timing) / 10;
3721 	else
3722 		stream->phy_pix_clk =
3723 			stream->timing.pix_clk_100hz / 10;
3724 
3725 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
3726 		stream->phy_pix_clk *= 2;
3727 }
3728 
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3729 static int acquire_resource_from_hw_enabled_state(
3730 		struct resource_context *res_ctx,
3731 		const struct resource_pool *pool,
3732 		struct dc_stream_state *stream)
3733 {
3734 	struct dc_link *link = stream->link;
3735 	unsigned int i, inst, tg_inst = 0;
3736 	uint32_t numPipes = 1;
3737 	uint32_t id_src[4] = {0};
3738 
3739 	/* Check for enabled DIG to identify enabled display */
3740 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
3741 		return -1;
3742 
3743 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
3744 
3745 	if (inst == ENGINE_ID_UNKNOWN)
3746 		return -1;
3747 
3748 	for (i = 0; i < pool->stream_enc_count; i++) {
3749 		if (pool->stream_enc[i]->id == inst) {
3750 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
3751 				pool->stream_enc[i]);
3752 			break;
3753 		}
3754 	}
3755 
3756 	// tg_inst not found
3757 	if (i == pool->stream_enc_count)
3758 		return -1;
3759 
3760 	if (tg_inst >= pool->timing_generator_count)
3761 		return -1;
3762 
3763 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
3764 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
3765 
3766 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3767 		id_src[0] = tg_inst;
3768 
3769 		if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
3770 			pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
3771 						&numPipes, &id_src[0], &id_src[1]);
3772 
3773 		if (id_src[0] == 0xf && id_src[1] == 0xf) {
3774 			id_src[0] = tg_inst;
3775 			numPipes = 1;
3776 		}
3777 
3778 		for (i = 0; i < numPipes; i++) {
3779 			//Check if src id invalid
3780 			if (id_src[i] == 0xf)
3781 				return -1;
3782 
3783 			pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
3784 
3785 			pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3786 			pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
3787 			pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
3788 			pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
3789 			pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
3790 			pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
3791 			pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3792 
3793 			if (pool->dpps[id_src[i]]) {
3794 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
3795 
3796 				if (pool->mpc->funcs->read_mpcc_state) {
3797 					struct mpcc_state s = {0};
3798 
3799 					pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
3800 
3801 					if (s.dpp_id < MAX_MPCC)
3802 						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
3803 								s.dpp_id;
3804 
3805 					if (s.bot_mpcc_id < MAX_MPCC)
3806 						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
3807 								&pool->mpc->mpcc_array[s.bot_mpcc_id];
3808 
3809 					if (s.opp_id < MAX_OPP)
3810 						pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
3811 				}
3812 			}
3813 			pipe_ctx->pipe_idx = id_src[i];
3814 
3815 			if (id_src[i] >= pool->timing_generator_count) {
3816 				id_src[i] = pool->timing_generator_count - 1;
3817 
3818 				pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
3819 				pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3820 			}
3821 
3822 			pipe_ctx->stream = stream;
3823 		}
3824 
3825 		if (numPipes == 2) {
3826 			stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
3827 			res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
3828 			res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
3829 			res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
3830 			res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
3831 		} else
3832 			stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
3833 
3834 		return id_src[0];
3835 	}
3836 
3837 	return -1;
3838 }
3839 
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)3840 static void mark_seamless_boot_stream(const struct dc  *dc,
3841 				      struct dc_stream_state *stream)
3842 {
3843 	struct dc_bios *dcb = dc->ctx->dc_bios;
3844 
3845 	DC_LOGGER_INIT(dc->ctx->logger);
3846 
3847 	if (stream->apply_seamless_boot_optimization)
3848 		return;
3849 	if (!dc->config.allow_seamless_boot_optimization)
3850 		return;
3851 	if (dcb->funcs->is_accelerated_mode(dcb))
3852 		return;
3853 	if (dc_validate_boot_timing(dc, stream->sink, &stream->timing)) {
3854 		stream->apply_seamless_boot_optimization = true;
3855 		DC_LOG_DC("Marked stream for seamless boot optimization\n");
3856 	}
3857 }
3858 
3859 /*
3860  * Acquire a pipe as OTG master and assign to the stream in new dc context.
3861  * return - true if OTG master pipe is acquired and new dc context is updated.
3862  * false if it fails to acquire an OTG master pipe for this stream.
3863  *
3864  * In the example below, we acquired pipe 0 as OTG master pipe for the stream.
3865  * After the function its Inter-pipe Relation is represented by the diagram
3866  * below.
3867  *
3868  *       Inter-pipe Relation
3869  *        __________________________________________________
3870  *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3871  *       |        |               |           |             |
3872  *       |   0    |               |blank ------------------ |
3873  *       |________|_______________|___________|_____________|
3874  */
acquire_otg_master_pipe_for_stream(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3875 static bool acquire_otg_master_pipe_for_stream(
3876 		const struct dc_state *cur_ctx,
3877 		struct dc_state *new_ctx,
3878 		const struct resource_pool *pool,
3879 		struct dc_stream_state *stream)
3880 {
3881 	/* TODO: Move this function to DCN specific resource file and acquire
3882 	 * DSC resource here. The reason is that the function should have the
3883 	 * same level of responsibility as when we acquire secondary OPP head.
3884 	 * We acquire DSC when we acquire secondary OPP head, so we should
3885 	 * acquire DSC when we acquire OTG master.
3886 	 */
3887 	int pipe_idx;
3888 	struct pipe_ctx *pipe_ctx = NULL;
3889 
3890 	/*
3891 	 * Upper level code is responsible to optimize unnecessary addition and
3892 	 * removal for unchanged streams. So unchanged stream will keep the same
3893 	 * OTG master instance allocated. When current stream is removed and a
3894 	 * new stream is added, we want to reuse the OTG instance made available
3895 	 * by the removed stream first. If not found, we try to avoid of using
3896 	 * any free pipes already used in current context as this could tear
3897 	 * down exiting ODM/MPC/MPO configuration unnecessarily.
3898 	 */
3899 
3900 	/*
3901 	 * Try to acquire the same OTG master already in use. This is not
3902 	 * optimal because resetting an enabled OTG master pipe for a new stream
3903 	 * requires an extra frame of wait. However there are test automation
3904 	 * and eDP assumptions that rely on reusing the same OTG master pipe
3905 	 * during mode change. We have to keep this logic as is for now.
3906 	 */
3907 	pipe_idx = recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
3908 			&cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3909 	/*
3910 	 * Try to acquire a pipe not used in current resource context to avoid
3911 	 * pipe swapping.
3912 	 */
3913 	if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3914 		pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
3915 				&cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3916 	/*
3917 	 * If pipe swapping is unavoidable, try to acquire pipe used as
3918 	 * secondary DPP pipe in current state as we prioritize to support more
3919 	 * streams over supporting MPO planes.
3920 	 */
3921 	if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3922 		pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp(
3923 				&cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3924 	if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3925 		pipe_idx = resource_find_any_free_pipe(&new_ctx->res_ctx, pool);
3926 	if (pipe_idx != FREE_PIPE_INDEX_NOT_FOUND) {
3927 		pipe_ctx = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
3928 		memset(pipe_ctx, 0, sizeof(*pipe_ctx));
3929 		pipe_ctx->pipe_idx = pipe_idx;
3930 		pipe_ctx->stream_res.tg = pool->timing_generators[pipe_idx];
3931 		pipe_ctx->plane_res.mi = pool->mis[pipe_idx];
3932 		pipe_ctx->plane_res.hubp = pool->hubps[pipe_idx];
3933 		pipe_ctx->plane_res.ipp = pool->ipps[pipe_idx];
3934 		pipe_ctx->plane_res.xfm = pool->transforms[pipe_idx];
3935 		pipe_ctx->plane_res.dpp = pool->dpps[pipe_idx];
3936 		pipe_ctx->stream_res.opp = pool->opps[pipe_idx];
3937 		if (pool->dpps[pipe_idx])
3938 			pipe_ctx->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
3939 
3940 		if (pipe_idx >= pool->timing_generator_count && pool->timing_generator_count != 0) {
3941 			int tg_inst = pool->timing_generator_count - 1;
3942 
3943 			pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3944 			pipe_ctx->stream_res.opp = pool->opps[tg_inst];
3945 		}
3946 
3947 		pipe_ctx->stream = stream;
3948 	} else {
3949 		pipe_idx = acquire_first_split_pipe(&new_ctx->res_ctx, pool, stream);
3950 	}
3951 
3952 	return pipe_idx != FREE_PIPE_INDEX_NOT_FOUND;
3953 }
3954 
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)3955 enum dc_status resource_map_pool_resources(
3956 		const struct dc  *dc,
3957 		struct dc_state *context,
3958 		struct dc_stream_state *stream)
3959 {
3960 	const struct resource_pool *pool = dc->res_pool;
3961 	int i;
3962 	struct dc_context *dc_ctx = dc->ctx;
3963 	struct pipe_ctx *pipe_ctx = NULL;
3964 	int pipe_idx = -1;
3965 	bool acquired = false;
3966 	bool is_dio_encoder = true;
3967 
3968 	calculate_phy_pix_clks(stream);
3969 
3970 	mark_seamless_boot_stream(dc, stream);
3971 
3972 	if (stream->apply_seamless_boot_optimization) {
3973 		pipe_idx = acquire_resource_from_hw_enabled_state(
3974 				&context->res_ctx,
3975 				pool,
3976 				stream);
3977 		if (pipe_idx < 0)
3978 			/* hw resource was assigned to other stream */
3979 			stream->apply_seamless_boot_optimization = false;
3980 		else
3981 			acquired = true;
3982 	}
3983 
3984 	if (!acquired)
3985 		/* acquire new resources */
3986 		acquired = acquire_otg_master_pipe_for_stream(dc->current_state,
3987 				context, pool, stream);
3988 
3989 	pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
3990 
3991 	if (!pipe_ctx || pipe_ctx->stream_res.tg == NULL)
3992 		return DC_NO_CONTROLLER_RESOURCE;
3993 
3994 	pipe_ctx->stream_res.stream_enc =
3995 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
3996 			&context->res_ctx, pool, stream);
3997 
3998 	if (!pipe_ctx->stream_res.stream_enc)
3999 		return DC_NO_STREAM_ENC_RESOURCE;
4000 
4001 	update_stream_engine_usage(
4002 		&context->res_ctx, pool,
4003 		pipe_ctx->stream_res.stream_enc,
4004 		true);
4005 
4006 	/* Allocate DP HPO Stream Encoder based on signal, hw capabilities
4007 	 * and link settings
4008 	 */
4009 	if (dc_is_dp_signal(stream->signal) ||
4010 			dc_is_virtual_signal(stream->signal)) {
4011 		if (!dc->link_srv->dp_decide_link_settings(stream,
4012 				&pipe_ctx->link_config.dp_link_settings))
4013 			return DC_FAIL_DP_LINK_BANDWIDTH;
4014 
4015 		dc->link_srv->dp_decide_tunnel_settings(stream,
4016 				&pipe_ctx->link_config.dp_tunnel_settings);
4017 
4018 		if (dc->link_srv->dp_get_encoding_format(
4019 				&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
4020 			pipe_ctx->stream_res.hpo_dp_stream_enc =
4021 					find_first_free_match_hpo_dp_stream_enc_for_link(
4022 							&context->res_ctx, pool, stream);
4023 
4024 			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
4025 				return DC_NO_STREAM_ENC_RESOURCE;
4026 
4027 			update_hpo_dp_stream_engine_usage(
4028 					&context->res_ctx, pool,
4029 					pipe_ctx->stream_res.hpo_dp_stream_enc,
4030 					true);
4031 			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
4032 				return DC_NO_LINK_ENC_RESOURCE;
4033 		}
4034 	}
4035 
4036 	if (dc->config.unify_link_enc_assignment && is_dio_encoder)
4037 		if (!add_dio_link_enc_to_ctx(dc, context, pool, pipe_ctx, stream))
4038 			return DC_NO_LINK_ENC_RESOURCE;
4039 
4040 	/* TODO: Add check if ASIC support and EDID audio */
4041 	if (!stream->converter_disable_audio &&
4042 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
4043 	    stream->audio_info.mode_count &&
4044 		(stream->audio_info.flags.all ||
4045 		(stream->sink && stream->sink->edid_caps.panel_patch.skip_audio_sab_check))) {
4046 		pipe_ctx->stream_res.audio = find_first_free_audio(
4047 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
4048 
4049 		/*
4050 		 * Audio assigned in order first come first get.
4051 		 * There are asics which has number of audio
4052 		 * resources less then number of pipes
4053 		 */
4054 		if (pipe_ctx->stream_res.audio)
4055 			update_audio_usage(&context->res_ctx, pool,
4056 					   pipe_ctx->stream_res.audio, true);
4057 	}
4058 
4059 	/* Add ABM to the resource if on EDP */
4060 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
4061 		if (pool->abm)
4062 			pipe_ctx->stream_res.abm = pool->abm;
4063 		else
4064 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
4065 	}
4066 
4067 	for (i = 0; i < context->stream_count; i++)
4068 		if (context->streams[i] == stream) {
4069 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
4070 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
4071 			context->stream_status[i].audio_inst =
4072 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
4073 
4074 			return DC_OK;
4075 		}
4076 
4077 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
4078 	return DC_ERROR_UNEXPECTED;
4079 }
4080 
dc_resource_is_dsc_encoding_supported(const struct dc * dc)4081 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
4082 {
4083 	if (dc->res_pool == NULL)
4084 		return false;
4085 
4086 	return dc->res_pool->res_cap->num_dsc > 0;
4087 }
4088 
planes_changed_for_existing_stream(struct dc_state * context,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count)4089 static bool planes_changed_for_existing_stream(struct dc_state *context,
4090 					       struct dc_stream_state *stream,
4091 					       const struct dc_validation_set set[],
4092 					       int set_count)
4093 {
4094 	int i, j;
4095 	struct dc_stream_status *stream_status = NULL;
4096 
4097 	for (i = 0; i < context->stream_count; i++) {
4098 		if (context->streams[i] == stream) {
4099 			stream_status = &context->stream_status[i];
4100 			break;
4101 		}
4102 	}
4103 
4104 	if (!stream_status) {
4105 		ASSERT(0);
4106 		return false;
4107 	}
4108 
4109 	for (i = 0; i < set_count; i++)
4110 		if (set[i].stream == stream)
4111 			break;
4112 
4113 	if (i == set_count)
4114 		ASSERT(0);
4115 
4116 	if (set[i].plane_count != stream_status->plane_count)
4117 		return true;
4118 
4119 	for (j = 0; j < set[i].plane_count; j++)
4120 		if (set[i].plane_states[j] != stream_status->plane_states[j])
4121 			return true;
4122 
4123 	return false;
4124 }
4125 
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * state)4126 static bool add_all_planes_for_stream(
4127 		const struct dc *dc,
4128 		struct dc_stream_state *stream,
4129 		const struct dc_validation_set set[],
4130 		int set_count,
4131 		struct dc_state *state)
4132 {
4133 	int i, j;
4134 
4135 	for (i = 0; i < set_count; i++)
4136 		if (set[i].stream == stream)
4137 			break;
4138 
4139 	if (i == set_count) {
4140 		dm_error("Stream %p not found in set!\n", stream);
4141 		return false;
4142 	}
4143 
4144 	for (j = 0; j < set[i].plane_count; j++)
4145 		if (!dc_state_add_plane(dc, stream, set[i].plane_states[j], state))
4146 			return false;
4147 
4148 	return true;
4149 }
4150 
4151 /**
4152  * dc_validate_with_context - Validate and update the potential new stream in the context object
4153  *
4154  * @dc: Used to get the current state status
4155  * @set: An array of dc_validation_set with all the current streams reference
4156  * @set_count: Total of streams
4157  * @context: New context
4158  * @validate_mode: identify the validation mode
4159  *
4160  * This function updates the potential new stream in the context object. It
4161  * creates multiple lists for the add, remove, and unchanged streams. In
4162  * particular, if the unchanged streams have a plane that changed, it is
4163  * necessary to remove all planes from the unchanged streams. In summary, this
4164  * function is responsible for validating the new context.
4165  *
4166  * Return:
4167  * In case of success, return DC_OK (1), otherwise, return a DC error.
4168  */
dc_validate_with_context(struct dc * dc,const struct dc_validation_set set[],int set_count,struct dc_state * context,enum dc_validate_mode validate_mode)4169 enum dc_status dc_validate_with_context(struct dc *dc,
4170 					const struct dc_validation_set set[],
4171 					int set_count,
4172 					struct dc_state *context,
4173 					enum dc_validate_mode validate_mode)
4174 {
4175 	struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
4176 	struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
4177 	struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
4178 	int old_stream_count = context->stream_count;
4179 	enum dc_status res = DC_ERROR_UNEXPECTED;
4180 	int unchanged_streams_count = 0;
4181 	int del_streams_count = 0;
4182 	int add_streams_count = 0;
4183 	bool found = false;
4184 	int i, j, k;
4185 
4186 	DC_LOGGER_INIT(dc->ctx->logger);
4187 
4188 	/* First build a list of streams to be remove from current context */
4189 	for (i = 0; i < old_stream_count; i++) {
4190 		struct dc_stream_state *stream = context->streams[i];
4191 
4192 		for (j = 0; j < set_count; j++) {
4193 			if (stream == set[j].stream) {
4194 				found = true;
4195 				break;
4196 			}
4197 		}
4198 
4199 		if (!found)
4200 			del_streams[del_streams_count++] = stream;
4201 
4202 		found = false;
4203 	}
4204 
4205 	/* Second, build a list of new streams */
4206 	for (i = 0; i < set_count; i++) {
4207 		struct dc_stream_state *stream = set[i].stream;
4208 
4209 		for (j = 0; j < old_stream_count; j++) {
4210 			if (stream == context->streams[j]) {
4211 				found = true;
4212 				break;
4213 			}
4214 		}
4215 
4216 		if (!found)
4217 			add_streams[add_streams_count++] = stream;
4218 
4219 		found = false;
4220 	}
4221 
4222 	/* Build a list of unchanged streams which is necessary for handling
4223 	 * planes change such as added, removed, and updated.
4224 	 */
4225 	for (i = 0; i < set_count; i++) {
4226 		/* Check if stream is part of the delete list */
4227 		for (j = 0; j < del_streams_count; j++) {
4228 			if (set[i].stream == del_streams[j]) {
4229 				found = true;
4230 				break;
4231 			}
4232 		}
4233 
4234 		if (!found) {
4235 			/* Check if stream is part of the add list */
4236 			for (j = 0; j < add_streams_count; j++) {
4237 				if (set[i].stream == add_streams[j]) {
4238 					found = true;
4239 					break;
4240 				}
4241 			}
4242 		}
4243 
4244 		if (!found)
4245 			unchanged_streams[unchanged_streams_count++] = set[i].stream;
4246 
4247 		found = false;
4248 	}
4249 
4250 	/* Remove all planes for unchanged streams if planes changed */
4251 	for (i = 0; i < unchanged_streams_count; i++) {
4252 		if (planes_changed_for_existing_stream(context,
4253 						       unchanged_streams[i],
4254 						       set,
4255 						       set_count)) {
4256 
4257 			if (!dc_state_rem_all_planes_for_stream(dc,
4258 							  unchanged_streams[i],
4259 							  context)) {
4260 				res = DC_FAIL_DETACH_SURFACES;
4261 				goto fail;
4262 			}
4263 		}
4264 	}
4265 
4266 	/* Remove all planes for removed streams and then remove the streams */
4267 	for (i = 0; i < del_streams_count; i++) {
4268 		/* Need to cpy the dwb data from the old stream in order to efc to work */
4269 		if (del_streams[i]->num_wb_info > 0) {
4270 			for (j = 0; j < add_streams_count; j++) {
4271 				if (del_streams[i]->sink == add_streams[j]->sink) {
4272 					add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
4273 					for (k = 0; k < del_streams[i]->num_wb_info; k++)
4274 						add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
4275 				}
4276 			}
4277 		}
4278 
4279 		if (dc_state_get_stream_subvp_type(context, del_streams[i]) == SUBVP_PHANTOM) {
4280 			/* remove phantoms specifically */
4281 			if (!dc_state_rem_all_phantom_planes_for_stream(dc, del_streams[i], context, true)) {
4282 				res = DC_FAIL_DETACH_SURFACES;
4283 				goto fail;
4284 			}
4285 
4286 			res = dc_state_remove_phantom_stream(dc, context, del_streams[i]);
4287 			dc_state_release_phantom_stream(dc, context, del_streams[i]);
4288 		} else {
4289 			if (!dc_state_rem_all_planes_for_stream(dc, del_streams[i], context)) {
4290 				res = DC_FAIL_DETACH_SURFACES;
4291 				goto fail;
4292 			}
4293 
4294 			res = dc_state_remove_stream(dc, context, del_streams[i]);
4295 		}
4296 
4297 		if (res != DC_OK)
4298 			goto fail;
4299 	}
4300 
4301 	/* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
4302 	 * matches. This may change in the future if seamless_boot_stream can be
4303 	 * multiple.
4304 	 */
4305 	for (i = 0; i < add_streams_count; i++) {
4306 		mark_seamless_boot_stream(dc, add_streams[i]);
4307 		if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
4308 			struct dc_stream_state *temp = add_streams[0];
4309 
4310 			add_streams[0] = add_streams[i];
4311 			add_streams[i] = temp;
4312 			break;
4313 		}
4314 	}
4315 
4316 	/* Add new streams and then add all planes for the new stream */
4317 	for (i = 0; i < add_streams_count; i++) {
4318 		calculate_phy_pix_clks(add_streams[i]);
4319 		res = dc_state_add_stream(dc, context, add_streams[i]);
4320 		if (res != DC_OK)
4321 			goto fail;
4322 
4323 		if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
4324 			res = DC_FAIL_ATTACH_SURFACES;
4325 			goto fail;
4326 		}
4327 	}
4328 
4329 	/* Add all planes for unchanged streams if planes changed */
4330 	for (i = 0; i < unchanged_streams_count; i++) {
4331 		if (planes_changed_for_existing_stream(context,
4332 						       unchanged_streams[i],
4333 						       set,
4334 						       set_count)) {
4335 			if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
4336 				res = DC_FAIL_ATTACH_SURFACES;
4337 				goto fail;
4338 			}
4339 		}
4340 	}
4341 
4342 	/* clear subvp cursor limitations */
4343 	for (i = 0; i < context->stream_count; i++) {
4344 		dc_state_set_stream_subvp_cursor_limit(context->streams[i], context, false);
4345 	}
4346 
4347 	res = dc_validate_global_state(dc, context, validate_mode);
4348 
4349 	/* calculate pixel rate divider after deciding pxiel clock & odm combine  */
4350 	if ((dc->hwss.calculate_pix_rate_divider) && (res == DC_OK)) {
4351 		for (i = 0; i < add_streams_count; i++)
4352 			dc->hwss.calculate_pix_rate_divider(dc, context, add_streams[i]);
4353 	}
4354 
4355 fail:
4356 	if (res != DC_OK)
4357 		DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
4358 			       __func__,
4359 			       res);
4360 
4361 	return res;
4362 }
4363 
4364 #if defined(CONFIG_DRM_AMD_DC_FP)
4365 #endif /* CONFIG_DRM_AMD_DC_FP */
4366 
4367 /**
4368  * calculate_timing_params_for_dsc_with_padding - Calculates timing parameters for DSC with padding.
4369  * @pipe_ctx: Pointer to the pipe context structure.
4370  *
4371  * This function calculates the timing parameters for a given pipe context based on the
4372  * display stream compression (DSC) configuration. If the horizontal active pixels (hactive) are less
4373  * than the total width of the DSC slices, it sets the dsc_hactive_padding value to the difference. If the
4374  * total horizontal timing minus the dsc_hactive_padding value is less than 32, it resets the dsc_hactive_padding
4375  * value to 0.
4376  */
calculate_timing_params_for_dsc_with_padding(struct pipe_ctx * pipe_ctx)4377 static void calculate_timing_params_for_dsc_with_padding(struct pipe_ctx *pipe_ctx)
4378 {
4379 	struct dc_stream_state *stream = NULL;
4380 
4381 	if (!pipe_ctx)
4382 		return;
4383 
4384 	stream = pipe_ctx->stream;
4385 	pipe_ctx->dsc_padding_params.dsc_hactive_padding = 0;
4386 	pipe_ctx->dsc_padding_params.dsc_htotal_padding = 0;
4387 
4388 	if (stream)
4389 		pipe_ctx->dsc_padding_params.dsc_pix_clk_100hz = stream->timing.pix_clk_100hz;
4390 
4391 }
4392 
4393 /**
4394  * dc_validate_global_state() - Determine if hardware can support a given state
4395  *
4396  * @dc: dc struct for this driver
4397  * @new_ctx: state to be validated
4398  * @validate_mode: identify the validation mode
4399  *
4400  * Checks hardware resource availability and bandwidth requirement.
4401  *
4402  * Return:
4403  * DC_OK if the result can be programmed. Otherwise, an error code.
4404  */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,enum dc_validate_mode validate_mode)4405 enum dc_status dc_validate_global_state(
4406 		struct dc *dc,
4407 		struct dc_state *new_ctx,
4408 		enum dc_validate_mode validate_mode)
4409 {
4410 	enum dc_status result = DC_ERROR_UNEXPECTED;
4411 	int i, j;
4412 
4413 	if (!new_ctx)
4414 		return DC_ERROR_UNEXPECTED;
4415 
4416 	if (dc->res_pool->funcs->validate_global) {
4417 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
4418 		if (result != DC_OK)
4419 			return result;
4420 	}
4421 
4422 	for (i = 0; i < new_ctx->stream_count; i++) {
4423 		struct dc_stream_state *stream = new_ctx->streams[i];
4424 
4425 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
4426 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
4427 
4428 			if (pipe_ctx->stream != stream)
4429 				continue;
4430 
4431 			/* Decide whether hblank borrow is needed and save it in pipe_ctx */
4432 			if (dc->debug.enable_hblank_borrow)
4433 				calculate_timing_params_for_dsc_with_padding(pipe_ctx);
4434 
4435 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
4436 					pipe_ctx->plane_state &&
4437 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
4438 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
4439 				if (result != DC_OK)
4440 					return result;
4441 			}
4442 
4443 			/* Switch to dp clock source only if there is
4444 			 * no non dp stream that shares the same timing
4445 			 * with the dp stream.
4446 			 */
4447 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
4448 				!find_pll_sharable_stream(stream, new_ctx)) {
4449 
4450 				resource_unreference_clock_source(
4451 						&new_ctx->res_ctx,
4452 						dc->res_pool,
4453 						pipe_ctx->clock_source);
4454 
4455 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
4456 				resource_reference_clock_source(
4457 						&new_ctx->res_ctx,
4458 						dc->res_pool,
4459 						 pipe_ctx->clock_source);
4460 			}
4461 		}
4462 	}
4463 
4464 	result = resource_build_scaling_params_for_context(dc, new_ctx);
4465 
4466 	if (result == DC_OK)
4467 		result = dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, validate_mode);
4468 
4469 	return result;
4470 }
4471 
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)4472 static void patch_gamut_packet_checksum(
4473 		struct dc_info_packet *gamut_packet)
4474 {
4475 	/* For gamut we recalc checksum */
4476 	if (gamut_packet->valid) {
4477 		uint8_t chk_sum = 0;
4478 		uint8_t *ptr;
4479 		uint8_t i;
4480 
4481 		/*start of the Gamut data. */
4482 		ptr = &gamut_packet->sb[3];
4483 
4484 		for (i = 0; i <= gamut_packet->sb[1]; i++)
4485 			chk_sum += ptr[i];
4486 
4487 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
4488 	}
4489 }
4490 
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)4491 static void set_avi_info_frame(
4492 		struct dc_info_packet *info_packet,
4493 		struct pipe_ctx *pipe_ctx)
4494 {
4495 	struct dc_stream_state *stream = pipe_ctx->stream;
4496 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
4497 	uint32_t pixel_encoding = 0;
4498 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
4499 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
4500 	uint8_t *check_sum = NULL;
4501 	uint8_t byte_index = 0;
4502 	union hdmi_info_packet hdmi_info;
4503 	unsigned int vic = pipe_ctx->stream->timing.vic;
4504 	unsigned int rid = pipe_ctx->stream->timing.rid;
4505 	unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
4506 	enum dc_timing_3d_format format;
4507 
4508 	if (stream->avi_infopacket.valid) {
4509 		*info_packet = stream->avi_infopacket;
4510 		return;
4511 	}
4512 
4513 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
4514 
4515 
4516 	color_space = pipe_ctx->stream->output_color_space;
4517 	if (color_space == COLOR_SPACE_UNKNOWN)
4518 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
4519 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
4520 
4521 	/* Initialize header */
4522 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
4523 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
4524 	* not be used in HDMI 2.0 (Section 10.1) */
4525 	hdmi_info.bits.header.version = 2;
4526 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
4527 
4528 	/*
4529 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
4530 	 * according to HDMI 2.0 spec (Section 10.1)
4531 	 */
4532 
4533 	switch (stream->timing.pixel_encoding) {
4534 	case PIXEL_ENCODING_YCBCR422:
4535 		pixel_encoding = 1;
4536 		break;
4537 
4538 	case PIXEL_ENCODING_YCBCR444:
4539 		pixel_encoding = 2;
4540 		break;
4541 	case PIXEL_ENCODING_YCBCR420:
4542 		pixel_encoding = 3;
4543 		break;
4544 
4545 	case PIXEL_ENCODING_RGB:
4546 	default:
4547 		pixel_encoding = 0;
4548 	}
4549 
4550 	/* Y0_Y1_Y2 : The pixel encoding */
4551 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
4552 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
4553 
4554 	/* A0 = 1 Active Format Information valid */
4555 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
4556 
4557 	/* B0, B1 = 3; Bar info data is valid */
4558 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
4559 
4560 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
4561 
4562 	/* S0, S1 : Underscan / Overscan */
4563 	/* TODO: un-hardcode scan type */
4564 	scan_type = SCANNING_TYPE_UNDERSCAN;
4565 	hdmi_info.bits.S0_S1 = scan_type;
4566 
4567 	/* C0, C1 : Colorimetry */
4568 	switch (color_space) {
4569 	case COLOR_SPACE_YCBCR709:
4570 	case COLOR_SPACE_YCBCR709_LIMITED:
4571 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4572 		break;
4573 	case COLOR_SPACE_YCBCR601:
4574 	case COLOR_SPACE_YCBCR601_LIMITED:
4575 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
4576 		break;
4577 	case COLOR_SPACE_2020_RGB_FULLRANGE:
4578 	case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
4579 	case COLOR_SPACE_2020_YCBCR_LIMITED:
4580 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
4581 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
4582 		break;
4583 	case COLOR_SPACE_ADOBERGB:
4584 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
4585 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
4586 		break;
4587 	case COLOR_SPACE_SRGB:
4588 	default:
4589 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
4590 		break;
4591 	}
4592 
4593 	if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR_LIMITED &&
4594 			stream->out_transfer_func.tf == TRANSFER_FUNCTION_GAMMA22) {
4595 		hdmi_info.bits.EC0_EC2 = 0;
4596 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4597 	}
4598 
4599 	/* TODO: un-hardcode aspect ratio */
4600 	aspect = stream->timing.aspect_ratio;
4601 
4602 	switch (aspect) {
4603 	case ASPECT_RATIO_4_3:
4604 	case ASPECT_RATIO_16_9:
4605 		hdmi_info.bits.M0_M1 = aspect;
4606 		break;
4607 
4608 	case ASPECT_RATIO_NO_DATA:
4609 	case ASPECT_RATIO_64_27:
4610 	case ASPECT_RATIO_256_135:
4611 	default:
4612 		hdmi_info.bits.M0_M1 = 0;
4613 	}
4614 
4615 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
4616 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
4617 
4618 	switch (stream->content_type) {
4619 	case DISPLAY_CONTENT_TYPE_NO_DATA:
4620 		hdmi_info.bits.CN0_CN1 = 0;
4621 		hdmi_info.bits.ITC = 1;
4622 		break;
4623 	case DISPLAY_CONTENT_TYPE_GRAPHICS:
4624 		hdmi_info.bits.CN0_CN1 = 0;
4625 		hdmi_info.bits.ITC = 1;
4626 		break;
4627 	case DISPLAY_CONTENT_TYPE_PHOTO:
4628 		hdmi_info.bits.CN0_CN1 = 1;
4629 		hdmi_info.bits.ITC = 1;
4630 		break;
4631 	case DISPLAY_CONTENT_TYPE_CINEMA:
4632 		hdmi_info.bits.CN0_CN1 = 2;
4633 		hdmi_info.bits.ITC = 1;
4634 		break;
4635 	case DISPLAY_CONTENT_TYPE_GAME:
4636 		hdmi_info.bits.CN0_CN1 = 3;
4637 		hdmi_info.bits.ITC = 1;
4638 		break;
4639 	}
4640 
4641 	if (stream->qs_bit == 1) {
4642 		if (color_space == COLOR_SPACE_SRGB ||
4643 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
4644 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
4645 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
4646 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
4647 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
4648 		else
4649 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
4650 	} else
4651 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
4652 
4653 	/* TODO : We should handle YCC quantization */
4654 	/* but we do not have matrix calculation */
4655 	hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
4656 
4657 	///VIC
4658 	if (pipe_ctx->stream->timing.hdmi_vic != 0)
4659 		vic = 0;
4660 	format = stream->timing.timing_3d_format;
4661 	/*todo, add 3DStereo support*/
4662 	if (format != TIMING_3D_FORMAT_NONE) {
4663 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
4664 		switch (pipe_ctx->stream->timing.hdmi_vic) {
4665 		case 1:
4666 			vic = 95;
4667 			break;
4668 		case 2:
4669 			vic = 94;
4670 			break;
4671 		case 3:
4672 			vic = 93;
4673 			break;
4674 		case 4:
4675 			vic = 98;
4676 			break;
4677 		default:
4678 			break;
4679 		}
4680 	}
4681 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
4682 	hdmi_info.bits.VIC0_VIC7 = vic;
4683 	if (vic >= 128)
4684 		hdmi_info.bits.header.version = 3;
4685 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
4686 	 * the Source shall use 20 AVI InfoFrame Version 4
4687 	 */
4688 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
4689 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
4690 		hdmi_info.bits.header.version = 4;
4691 		hdmi_info.bits.header.length = 14;
4692 	}
4693 
4694 	if (rid != 0 && fr_ind != 0) {
4695 		hdmi_info.bits.header.version = 4;
4696 		hdmi_info.bits.header.length = 15;
4697 
4698 		hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
4699 		hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
4700 		hdmi_info.bits.RID0_RID5 = rid;
4701 	}
4702 
4703 	/* pixel repetition
4704 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
4705 	 * repetition start from 1 */
4706 	hdmi_info.bits.PR0_PR3 = 0;
4707 
4708 	/* Bar Info
4709 	 * barTop:    Line Number of End of Top Bar.
4710 	 * barBottom: Line Number of Start of Bottom Bar.
4711 	 * barLeft:   Pixel Number of End of Left Bar.
4712 	 * barRight:  Pixel Number of Start of Right Bar. */
4713 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
4714 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
4715 			- stream->timing.v_border_bottom + 1);
4716 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
4717 	hdmi_info.bits.bar_right = (stream->timing.h_total
4718 			- stream->timing.h_border_right + 1);
4719 
4720     /* Additional Colorimetry Extension
4721      * Used in conduction with C0-C1 and EC0-EC2
4722      * 0 = DCI-P3 RGB (D65)
4723      * 1 = DCI-P3 RGB (theater)
4724      */
4725 	hdmi_info.bits.ACE0_ACE3 = 0;
4726 
4727 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
4728 	check_sum = &hdmi_info.packet_raw_data.sb[0];
4729 
4730 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
4731 
4732 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
4733 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
4734 
4735 	/* one byte complement */
4736 	*check_sum = (uint8_t) (0x100 - *check_sum);
4737 
4738 	/* Store in hw_path_mode */
4739 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
4740 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
4741 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
4742 
4743 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
4744 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
4745 
4746 	info_packet->valid = true;
4747 }
4748 
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4749 static void set_vendor_info_packet(
4750 		struct dc_info_packet *info_packet,
4751 		struct dc_stream_state *stream)
4752 {
4753 	/* SPD info packet for FreeSync */
4754 
4755 	/* Check if Freesync is supported. Return if false. If true,
4756 	 * set the corresponding bit in the info packet
4757 	 */
4758 	if (!stream->vsp_infopacket.valid)
4759 		return;
4760 
4761 	*info_packet = stream->vsp_infopacket;
4762 }
4763 
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4764 static void set_spd_info_packet(
4765 		struct dc_info_packet *info_packet,
4766 		struct dc_stream_state *stream)
4767 {
4768 	/* SPD info packet for FreeSync */
4769 
4770 	/* Check if Freesync is supported. Return if false. If true,
4771 	 * set the corresponding bit in the info packet
4772 	 */
4773 	if (!stream->vrr_infopacket.valid)
4774 		return;
4775 
4776 	*info_packet = stream->vrr_infopacket;
4777 }
4778 
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4779 static void set_hdr_static_info_packet(
4780 		struct dc_info_packet *info_packet,
4781 		struct dc_stream_state *stream)
4782 {
4783 	/* HDR Static Metadata info packet for HDR10 */
4784 
4785 	if (!stream->hdr_static_metadata.valid ||
4786 			stream->use_dynamic_meta)
4787 		return;
4788 
4789 	*info_packet = stream->hdr_static_metadata;
4790 }
4791 
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4792 static void set_vsc_info_packet(
4793 		struct dc_info_packet *info_packet,
4794 		struct dc_stream_state *stream)
4795 {
4796 	if (!stream->vsc_infopacket.valid)
4797 		return;
4798 
4799 	*info_packet = stream->vsc_infopacket;
4800 }
set_hfvs_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4801 static void set_hfvs_info_packet(
4802 		struct dc_info_packet *info_packet,
4803 		struct dc_stream_state *stream)
4804 {
4805 	if (!stream->hfvsif_infopacket.valid)
4806 		return;
4807 
4808 	*info_packet = stream->hfvsif_infopacket;
4809 }
4810 
adaptive_sync_override_dp_info_packets_sdp_line_num(const struct dc_crtc_timing * timing,struct enc_sdp_line_num * sdp_line_num,unsigned int vstartup_start)4811 static void adaptive_sync_override_dp_info_packets_sdp_line_num(
4812 		const struct dc_crtc_timing *timing,
4813 		struct enc_sdp_line_num *sdp_line_num,
4814 		unsigned int vstartup_start)
4815 {
4816 	uint32_t asic_blank_start = 0;
4817 	uint32_t asic_blank_end   = 0;
4818 	uint32_t v_update = 0;
4819 
4820 	const struct dc_crtc_timing *tg = timing;
4821 
4822 	/* blank_start = frame end - front porch */
4823 	asic_blank_start = tg->v_total - tg->v_front_porch;
4824 
4825 	/* blank_end = blank_start - active */
4826 	asic_blank_end = (asic_blank_start - tg->v_border_bottom -
4827 						tg->v_addressable - tg->v_border_top);
4828 
4829 	if (vstartup_start > asic_blank_end) {
4830 		v_update = (tg->v_total - (vstartup_start - asic_blank_end));
4831 		sdp_line_num->adaptive_sync_line_num_valid = true;
4832 		sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
4833 	} else {
4834 		sdp_line_num->adaptive_sync_line_num_valid = false;
4835 		sdp_line_num->adaptive_sync_line_num = 0;
4836 	}
4837 }
4838 
set_adaptive_sync_info_packet(struct dc_info_packet * info_packet,const struct dc_stream_state * stream,struct encoder_info_frame * info_frame,unsigned int vstartup_start)4839 static void set_adaptive_sync_info_packet(
4840 		struct dc_info_packet *info_packet,
4841 		const struct dc_stream_state *stream,
4842 		struct encoder_info_frame *info_frame,
4843 		unsigned int vstartup_start)
4844 {
4845 	if (!stream->adaptive_sync_infopacket.valid)
4846 		return;
4847 
4848 	adaptive_sync_override_dp_info_packets_sdp_line_num(
4849 			&stream->timing,
4850 			&info_frame->sdp_line_num,
4851 			vstartup_start);
4852 
4853 	*info_packet = stream->adaptive_sync_infopacket;
4854 }
4855 
set_vtem_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4856 static void set_vtem_info_packet(
4857 		struct dc_info_packet *info_packet,
4858 		struct dc_stream_state *stream)
4859 {
4860 	if (!stream->vtem_infopacket.valid)
4861 		return;
4862 
4863 	*info_packet = stream->vtem_infopacket;
4864 }
4865 
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)4866 struct clock_source *dc_resource_find_first_free_pll(
4867 		struct resource_context *res_ctx,
4868 		const struct resource_pool *pool)
4869 {
4870 	int i;
4871 
4872 	for (i = 0; i < pool->clk_src_count; ++i) {
4873 		if (res_ctx->clock_source_ref_count[i] == 0)
4874 			return pool->clock_sources[i];
4875 	}
4876 
4877 	return NULL;
4878 }
4879 
resource_build_info_frame(struct pipe_ctx * pipe_ctx)4880 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
4881 {
4882 	enum signal_type signal = SIGNAL_TYPE_NONE;
4883 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
4884 	unsigned int vstartup_start = 0;
4885 
4886 	/* default all packets to invalid */
4887 	info->avi.valid = false;
4888 	info->gamut.valid = false;
4889 	info->vendor.valid = false;
4890 	info->spd.valid = false;
4891 	info->hdrsmd.valid = false;
4892 	info->vsc.valid = false;
4893 	info->hfvsif.valid = false;
4894 	info->vtem.valid = false;
4895 	info->adaptive_sync.valid = false;
4896 	signal = pipe_ctx->stream->signal;
4897 
4898 	if (pipe_ctx->stream->ctx->dc->res_pool->funcs->get_vstartup_for_pipe)
4899 		vstartup_start = pipe_ctx->stream->ctx->dc->res_pool->funcs->get_vstartup_for_pipe(pipe_ctx);
4900 
4901 	/* HDMi and DP have different info packets*/
4902 	if (dc_is_hdmi_signal(signal)) {
4903 		set_avi_info_frame(&info->avi, pipe_ctx);
4904 
4905 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
4906 		set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
4907 		set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
4908 
4909 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
4910 
4911 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
4912 
4913 	} else if (dc_is_dp_signal(signal)) {
4914 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
4915 
4916 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
4917 
4918 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
4919 		set_adaptive_sync_info_packet(&info->adaptive_sync,
4920 										pipe_ctx->stream,
4921 										info,
4922 										vstartup_start);
4923 	}
4924 
4925 	patch_gamut_packet_checksum(&info->gamut);
4926 }
4927 
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)4928 enum dc_status resource_map_clock_resources(
4929 		const struct dc  *dc,
4930 		struct dc_state *context,
4931 		struct dc_stream_state *stream)
4932 {
4933 	/* acquire new resources */
4934 	const struct resource_pool *pool = dc->res_pool;
4935 	struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
4936 				&context->res_ctx, stream);
4937 
4938 	if (!pipe_ctx)
4939 		return DC_ERROR_UNEXPECTED;
4940 
4941 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
4942 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
4943 		pipe_ctx->clock_source = pool->dp_clock_source;
4944 	else {
4945 		pipe_ctx->clock_source = NULL;
4946 
4947 		if (!dc->config.disable_disp_pll_sharing)
4948 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
4949 				&context->res_ctx,
4950 				pipe_ctx);
4951 
4952 		if (pipe_ctx->clock_source == NULL)
4953 			pipe_ctx->clock_source =
4954 				dc_resource_find_first_free_pll(
4955 					&context->res_ctx,
4956 					pool);
4957 	}
4958 
4959 	if (pipe_ctx->clock_source == NULL)
4960 		return DC_NO_CLOCK_SOURCE_RESOURCE;
4961 
4962 	resource_reference_clock_source(
4963 		&context->res_ctx, pool,
4964 		pipe_ctx->clock_source);
4965 
4966 	return DC_OK;
4967 }
4968 
4969 /*
4970  * Note: We need to disable output if clock sources change,
4971  * since bios does optimization and doesn't apply if changing
4972  * PHY when not already disabled.
4973  */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)4974 bool pipe_need_reprogram(
4975 		struct pipe_ctx *pipe_ctx_old,
4976 		struct pipe_ctx *pipe_ctx)
4977 {
4978 	if (!pipe_ctx_old->stream)
4979 		return false;
4980 
4981 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
4982 		return true;
4983 
4984 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
4985 		return true;
4986 
4987 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
4988 		return true;
4989 
4990 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
4991 			&& pipe_ctx_old->stream != pipe_ctx->stream)
4992 		return true;
4993 
4994 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
4995 		return true;
4996 
4997 	if (dc_is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
4998 		return true;
4999 
5000 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
5001 		return true;
5002 
5003 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
5004 		false == pipe_ctx_old->stream->dpms_off)
5005 		return true;
5006 
5007 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
5008 		return true;
5009 
5010 	if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
5011 		return true;
5012 	if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
5013 		return true;
5014 
5015 	/* DIG link encoder resource assignment for stream changed. */
5016 	if (pipe_ctx_old->stream->ctx->dc->config.unify_link_enc_assignment) {
5017 		if (pipe_ctx_old->link_res.dio_link_enc != pipe_ctx->link_res.dio_link_enc)
5018 			return true;
5019 	} else if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
5020 		bool need_reprogram = false;
5021 		struct dc *dc = pipe_ctx_old->stream->ctx->dc;
5022 		struct link_encoder *link_enc_prev =
5023 			link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
5024 
5025 		if (link_enc_prev != pipe_ctx->stream->link_enc)
5026 			need_reprogram = true;
5027 
5028 		return need_reprogram;
5029 	}
5030 
5031 	return false;
5032 }
5033 
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)5034 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
5035 		struct bit_depth_reduction_params *fmt_bit_depth)
5036 {
5037 	enum dc_dither_option option = stream->dither_option;
5038 	enum dc_pixel_encoding pixel_encoding =
5039 			stream->timing.pixel_encoding;
5040 
5041 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
5042 
5043 	if (option == DITHER_OPTION_DEFAULT) {
5044 		switch (stream->timing.display_color_depth) {
5045 		case COLOR_DEPTH_666:
5046 			option = DITHER_OPTION_SPATIAL6;
5047 			break;
5048 		case COLOR_DEPTH_888:
5049 			option = DITHER_OPTION_SPATIAL8;
5050 			break;
5051 		case COLOR_DEPTH_101010:
5052 			option = DITHER_OPTION_TRUN10;
5053 			break;
5054 		default:
5055 			option = DITHER_OPTION_DISABLE;
5056 		}
5057 	}
5058 
5059 	if (option == DITHER_OPTION_DISABLE)
5060 		return;
5061 
5062 	if (option == DITHER_OPTION_TRUN6) {
5063 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
5064 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
5065 	} else if (option == DITHER_OPTION_TRUN8 ||
5066 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
5067 			option == DITHER_OPTION_TRUN8_FM6) {
5068 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
5069 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
5070 	} else if (option == DITHER_OPTION_TRUN10        ||
5071 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
5072 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
5073 			option == DITHER_OPTION_TRUN10_FM8     ||
5074 			option == DITHER_OPTION_TRUN10_FM6     ||
5075 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
5076 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
5077 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
5078 		if (option == DITHER_OPTION_TRUN10)
5079 			fmt_bit_depth->flags.TRUNCATE_MODE = 1;
5080 	}
5081 
5082 	/* special case - Formatter can only reduce by 4 bits at most.
5083 	 * When reducing from 12 to 6 bits,
5084 	 * HW recommends we use trunc with round mode
5085 	 * (if we did nothing, trunc to 10 bits would be used)
5086 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
5087 	 * as the input was 10 bits.
5088 	 */
5089 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
5090 			option == DITHER_OPTION_SPATIAL6 ||
5091 			option == DITHER_OPTION_FM6) {
5092 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
5093 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
5094 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
5095 	}
5096 
5097 	/* spatial dither
5098 	 * note that spatial modes 1-3 are never used
5099 	 */
5100 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
5101 			option == DITHER_OPTION_SPATIAL6 ||
5102 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
5103 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
5104 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
5105 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
5106 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
5107 		fmt_bit_depth->flags.RGB_RANDOM =
5108 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
5109 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
5110 			option == DITHER_OPTION_SPATIAL8 ||
5111 			option == DITHER_OPTION_SPATIAL8_FM6        ||
5112 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
5113 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
5114 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
5115 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
5116 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
5117 		fmt_bit_depth->flags.RGB_RANDOM =
5118 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
5119 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
5120 			option == DITHER_OPTION_SPATIAL10 ||
5121 			option == DITHER_OPTION_SPATIAL10_FM8 ||
5122 			option == DITHER_OPTION_SPATIAL10_FM6) {
5123 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
5124 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
5125 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
5126 		fmt_bit_depth->flags.RGB_RANDOM =
5127 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
5128 	}
5129 
5130 	if (option == DITHER_OPTION_SPATIAL6 ||
5131 			option == DITHER_OPTION_SPATIAL8 ||
5132 			option == DITHER_OPTION_SPATIAL10) {
5133 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
5134 	} else {
5135 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
5136 	}
5137 
5138 	//////////////////////
5139 	//// temporal dither
5140 	//////////////////////
5141 	if (option == DITHER_OPTION_FM6           ||
5142 			option == DITHER_OPTION_SPATIAL8_FM6     ||
5143 			option == DITHER_OPTION_SPATIAL10_FM6     ||
5144 			option == DITHER_OPTION_TRUN10_FM6     ||
5145 			option == DITHER_OPTION_TRUN8_FM6      ||
5146 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
5147 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
5148 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
5149 	} else if (option == DITHER_OPTION_FM8        ||
5150 			option == DITHER_OPTION_SPATIAL10_FM8  ||
5151 			option == DITHER_OPTION_TRUN10_FM8) {
5152 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
5153 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
5154 	} else if (option == DITHER_OPTION_FM10) {
5155 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
5156 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
5157 	}
5158 
5159 	fmt_bit_depth->pixel_encoding = pixel_encoding;
5160 }
5161 
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)5162 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
5163 {
5164 	if (dc == NULL || stream == NULL)
5165 		return DC_ERROR_UNEXPECTED;
5166 
5167 	struct dc_link *link = stream->link;
5168 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
5169 	enum dc_status res = DC_OK;
5170 
5171 	calculate_phy_pix_clks(stream);
5172 
5173 	if (!tg->funcs->validate_timing(tg, &stream->timing))
5174 		res = DC_FAIL_CONTROLLER_VALIDATE;
5175 
5176 	if (res == DC_OK) {
5177 		if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
5178 				!link->link_enc->funcs->validate_output_with_stream(
5179 						link->link_enc, stream))
5180 			res = DC_FAIL_ENC_VALIDATE;
5181 	}
5182 
5183 	/* TODO: validate audio ASIC caps, encoder */
5184 
5185 	if (res == DC_OK)
5186 		res = dc->link_srv->validate_mode_timing(stream,
5187 		      link,
5188 		      &stream->timing);
5189 
5190 	return res;
5191 }
5192 
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)5193 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
5194 {
5195 	enum dc_status res = DC_OK;
5196 
5197 	/* check if surface has invalid dimensions */
5198 	if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
5199 		plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
5200 		return DC_FAIL_SURFACE_VALIDATE;
5201 
5202 	/* TODO For now validates pixel format only */
5203 	if (dc->res_pool->funcs->validate_plane)
5204 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
5205 
5206 	return res;
5207 }
5208 
resource_pixel_format_to_bpp(enum surface_pixel_format format)5209 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
5210 {
5211 	switch (format) {
5212 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
5213 		return 8;
5214 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
5215 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
5216 		return 12;
5217 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
5218 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
5219 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
5220 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
5221 		return 16;
5222 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
5223 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
5224 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
5225 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
5226 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
5227 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
5228 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
5229 		return 32;
5230 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
5231 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
5232 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
5233 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
5234 		return 64;
5235 	default:
5236 		ASSERT_CRITICAL(false);
5237 		return -1;
5238 	}
5239 }
get_max_audio_sample_rate(struct audio_mode * modes)5240 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
5241 {
5242 	if (modes) {
5243 		if (modes->sample_rates.rate.RATE_192)
5244 			return 192000;
5245 		if (modes->sample_rates.rate.RATE_176_4)
5246 			return 176400;
5247 		if (modes->sample_rates.rate.RATE_96)
5248 			return 96000;
5249 		if (modes->sample_rates.rate.RATE_88_2)
5250 			return 88200;
5251 		if (modes->sample_rates.rate.RATE_48)
5252 			return 48000;
5253 		if (modes->sample_rates.rate.RATE_44_1)
5254 			return 44100;
5255 		if (modes->sample_rates.rate.RATE_32)
5256 			return 32000;
5257 	}
5258 	/*original logic when no audio info*/
5259 	return 441000;
5260 }
5261 
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)5262 void get_audio_check(struct audio_info *aud_modes,
5263 	struct audio_check *audio_chk)
5264 {
5265 	unsigned int i;
5266 	unsigned int max_sample_rate = 0;
5267 
5268 	if (aud_modes) {
5269 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
5270 
5271 		audio_chk->max_audiosample_rate = 0;
5272 		for (i = 0; i < aud_modes->mode_count; i++) {
5273 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
5274 			if (audio_chk->max_audiosample_rate < max_sample_rate)
5275 				audio_chk->max_audiosample_rate = max_sample_rate;
5276 			/*dts takes the same as type 2: AP = 0.25*/
5277 		}
5278 		/*check which one take more bandwidth*/
5279 		if (audio_chk->max_audiosample_rate > 192000)
5280 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
5281 		audio_chk->acat = 0;/*not support*/
5282 	}
5283 }
5284 
get_temp_dio_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)5285 struct link_encoder *get_temp_dio_link_enc(
5286 		const struct resource_context *res_ctx,
5287 		const struct resource_pool *const pool,
5288 		const struct dc_link *link)
5289 {
5290 	struct link_encoder *link_enc = NULL;
5291 	int enc_index;
5292 
5293 	if (link->is_dig_mapping_flexible)
5294 		enc_index = find_acquired_dio_link_enc_for_link(res_ctx, link);
5295 	else
5296 		enc_index = link->eng_id;
5297 
5298 	if (enc_index < 0)
5299 		enc_index = find_free_dio_link_enc(res_ctx, link, pool, NULL);
5300 
5301 	if (enc_index >= 0)
5302 		link_enc = pool->link_encoders[enc_index];
5303 
5304 	return link_enc;
5305 }
5306 
get_temp_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)5307 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
5308 		const struct resource_context *res_ctx,
5309 		const struct resource_pool *const pool,
5310 		const struct dc_link *link)
5311 {
5312 	struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
5313 	int enc_index;
5314 
5315 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
5316 
5317 	if (enc_index < 0)
5318 		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
5319 
5320 	if (enc_index >= 0)
5321 		hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
5322 
5323 	return hpo_dp_link_enc;
5324 }
5325 
get_temp_dp_link_res(struct dc_link * link,struct link_resource * link_res,struct dc_link_settings * link_settings)5326 bool get_temp_dp_link_res(struct dc_link *link,
5327 		struct link_resource *link_res,
5328 		struct dc_link_settings *link_settings)
5329 {
5330 	const struct dc *dc  = link->dc;
5331 	const struct resource_context *res_ctx = &dc->current_state->res_ctx;
5332 
5333 	memset(link_res, 0, sizeof(*link_res));
5334 
5335 	if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
5336 		link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx, dc->res_pool, link);
5337 		if (!link_res->hpo_dp_link_enc)
5338 			return false;
5339 	} else if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING &&
5340 				dc->config.unify_link_enc_assignment) {
5341 		link_res->dio_link_enc = get_temp_dio_link_enc(res_ctx,
5342 				dc->res_pool, link);
5343 		if (!link_res->dio_link_enc)
5344 			return false;
5345 	}
5346 
5347 	return true;
5348 }
5349 
reset_syncd_pipes_from_disabled_pipes(struct dc * dc,struct dc_state * context)5350 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
5351 		struct dc_state *context)
5352 {
5353 	int i, j;
5354 	struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
5355 
5356 	/* If pipe backend is reset, need to reset pipe syncd status */
5357 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
5358 		pipe_ctx_old =	&dc->current_state->res_ctx.pipe_ctx[i];
5359 		pipe_ctx = &context->res_ctx.pipe_ctx[i];
5360 
5361 		if (!resource_is_pipe_type(pipe_ctx_old, OTG_MASTER))
5362 			continue;
5363 
5364 		if (!pipe_ctx->stream ||
5365 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
5366 
5367 			/* Reset all the syncd pipes from the disabled pipe */
5368 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
5369 				pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
5370 				if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
5371 					!IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
5372 					SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
5373 			}
5374 		}
5375 	}
5376 }
5377 
check_syncd_pipes_for_disabled_master_pipe(struct dc * dc,struct dc_state * context,uint8_t disabled_master_pipe_idx)5378 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
5379 	struct dc_state *context,
5380 	uint8_t disabled_master_pipe_idx)
5381 {
5382 	int i;
5383 	struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
5384 
5385 	pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
5386 	if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
5387 		!IS_PIPE_SYNCD_VALID(pipe_ctx))
5388 		SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
5389 
5390 	/* for the pipe disabled, check if any slave pipe exists and assert */
5391 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
5392 		pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
5393 
5394 		if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
5395 		    IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
5396 			struct pipe_ctx *first_pipe = pipe_ctx_check;
5397 
5398 			while (first_pipe->prev_odm_pipe)
5399 				first_pipe = first_pipe->prev_odm_pipe;
5400 			/* When ODM combine is enabled, this case is expected. If the disabled pipe
5401 			 * is part of the ODM tree, then we should not print an error.
5402 			 * */
5403 			if (first_pipe->pipe_idx == disabled_master_pipe_idx)
5404 				continue;
5405 
5406 			DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
5407 				   i, disabled_master_pipe_idx);
5408 		}
5409 	}
5410 }
5411 
reset_sync_context_for_pipe(const struct dc * dc,struct dc_state * context,uint8_t pipe_idx)5412 void reset_sync_context_for_pipe(const struct dc *dc,
5413 	struct dc_state *context,
5414 	uint8_t pipe_idx)
5415 {
5416 	int i;
5417 	struct pipe_ctx *pipe_ctx_reset;
5418 
5419 	/* reset the otg sync context for the pipe and its slave pipes if any */
5420 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
5421 		pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
5422 
5423 		if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
5424 			IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
5425 			SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
5426 	}
5427 }
5428 
resource_transmitter_to_phy_idx(const struct dc * dc,enum transmitter transmitter)5429 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
5430 {
5431 	/* TODO - get transmitter to phy idx mapping from DMUB */
5432 	uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
5433 
5434 	if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
5435 			dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
5436 		switch (transmitter) {
5437 		case TRANSMITTER_UNIPHY_A:
5438 			phy_idx = 0;
5439 			break;
5440 		case TRANSMITTER_UNIPHY_B:
5441 			phy_idx = 1;
5442 			break;
5443 		case TRANSMITTER_UNIPHY_C:
5444 			phy_idx = 5;
5445 			break;
5446 		case TRANSMITTER_UNIPHY_D:
5447 			phy_idx = 6;
5448 			break;
5449 		case TRANSMITTER_UNIPHY_E:
5450 			phy_idx = 4;
5451 			break;
5452 		default:
5453 			phy_idx = 0;
5454 			break;
5455 		}
5456 	}
5457 
5458 	return phy_idx;
5459 }
5460 
get_link_hwss(const struct dc_link * link,const struct link_resource * link_res)5461 const struct link_hwss *get_link_hwss(const struct dc_link *link,
5462 		const struct link_resource *link_res)
5463 {
5464 	/* Link_hwss is only accessible by getter function instead of accessing
5465 	 * by pointers in dc with the intent to protect against breaking polymorphism.
5466 	 */
5467 	if (can_use_hpo_dp_link_hwss(link, link_res))
5468 		/* TODO: some assumes that if decided link settings is 128b/132b
5469 		 * channel coding format hpo_dp_link_enc should be used.
5470 		 * Others believe that if hpo_dp_link_enc is available in link
5471 		 * resource then hpo_dp_link_enc must be used. This bound between
5472 		 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
5473 		 * with a premise that both hpo_dp_link_enc pointer and decided link
5474 		 * settings are determined based on single policy function like
5475 		 * "decide_link_settings" from upper layer. This "convention"
5476 		 * cannot be maintained and enforced at current level.
5477 		 * Therefore a refactor is due so we can enforce a strong bound
5478 		 * between those two parameters at this level.
5479 		 *
5480 		 * To put it simple, we want to make enforcement at low level so that
5481 		 * we will not return link hwss if caller plans to do 8b/10b
5482 		 * with an hpo encoder. Or we can return a very dummy one that doesn't
5483 		 * do work for all functions
5484 		 */
5485 		return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
5486 				get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
5487 	else if (can_use_dpia_link_hwss(link, link_res))
5488 		return get_dpia_link_hwss();
5489 	else if (can_use_dio_link_hwss(link, link_res))
5490 		return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
5491 				get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
5492 	else
5493 		return get_virtual_link_hwss();
5494 }
5495 
is_h_timing_divisible_by_2(struct dc_stream_state * stream)5496 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
5497 {
5498 	bool divisible = false;
5499 	uint16_t h_blank_start = 0;
5500 	uint16_t h_blank_end = 0;
5501 
5502 	if (stream) {
5503 		h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
5504 		h_blank_end = h_blank_start - stream->timing.h_addressable;
5505 
5506 		/* HTOTAL, Hblank start/end, and Hsync start/end all must be
5507 		 * divisible by 2 in order for the horizontal timing params
5508 		 * to be considered divisible by 2. Hsync start is always 0.
5509 		 */
5510 		divisible = (stream->timing.h_total % 2 == 0) &&
5511 				(h_blank_start % 2 == 0) &&
5512 				(h_blank_end % 2 == 0) &&
5513 				(stream->timing.h_sync_width % 2 == 0);
5514 	}
5515 	return divisible;
5516 }
5517 
5518 /* This interface is deprecated for new DCNs. It is replaced by the following
5519  * new interfaces. These two interfaces encapsulate pipe selection priority
5520  * with DCN specific minimum hardware transition optimization algorithm. With
5521  * the new interfaces caller no longer needs to know the implementation detail
5522  * of a pipe topology.
5523  *
5524  * resource_update_pipes_with_odm_slice_count
5525  * resource_update_pipes_with_mpc_slice_count
5526  *
5527  */
dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(const struct dc * dc,struct dc_state * state,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)5528 bool dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(
5529 		const struct dc *dc,
5530 		struct dc_state *state,
5531 		struct pipe_ctx *pri_pipe,
5532 		struct pipe_ctx *sec_pipe,
5533 		bool odm)
5534 {
5535 	int pipe_idx = sec_pipe->pipe_idx;
5536 	struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
5537 	const struct resource_pool *pool = dc->res_pool;
5538 
5539 	sec_top = sec_pipe->top_pipe;
5540 	sec_bottom = sec_pipe->bottom_pipe;
5541 	sec_next = sec_pipe->next_odm_pipe;
5542 	sec_prev = sec_pipe->prev_odm_pipe;
5543 
5544 	if (pri_pipe == NULL)
5545 		return false;
5546 
5547 	*sec_pipe = *pri_pipe;
5548 
5549 	sec_pipe->top_pipe = sec_top;
5550 	sec_pipe->bottom_pipe = sec_bottom;
5551 	sec_pipe->next_odm_pipe = sec_next;
5552 	sec_pipe->prev_odm_pipe = sec_prev;
5553 
5554 	sec_pipe->pipe_idx = pipe_idx;
5555 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
5556 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
5557 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
5558 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
5559 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
5560 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
5561 	sec_pipe->stream_res.dsc = NULL;
5562 	if (odm) {
5563 		if (!sec_pipe->top_pipe)
5564 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
5565 		else
5566 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
5567 		if (sec_pipe->stream->timing.flags.DSC == 1) {
5568 #if defined(CONFIG_DRM_AMD_DC_FP)
5569 			dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, sec_pipe->stream_res.opp->inst);
5570 #endif
5571 			ASSERT(sec_pipe->stream_res.dsc);
5572 			if (sec_pipe->stream_res.dsc == NULL)
5573 				return false;
5574 		}
5575 #if defined(CONFIG_DRM_AMD_DC_FP)
5576 		dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
5577 #endif
5578 	}
5579 
5580 	return true;
5581 }
5582 
update_dp_encoder_resources_for_test_harness(const struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)5583 enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
5584 		struct dc_state *context,
5585 		struct pipe_ctx *pipe_ctx)
5586 {
5587 	if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
5588 		if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
5589 			pipe_ctx->stream_res.hpo_dp_stream_enc =
5590 					find_first_free_match_hpo_dp_stream_enc_for_link(
5591 							&context->res_ctx, dc->res_pool, pipe_ctx->stream);
5592 
5593 			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
5594 				return DC_NO_STREAM_ENC_RESOURCE;
5595 
5596 			update_hpo_dp_stream_engine_usage(
5597 					&context->res_ctx, dc->res_pool,
5598 					pipe_ctx->stream_res.hpo_dp_stream_enc,
5599 					true);
5600 		}
5601 
5602 		if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
5603 			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
5604 				return DC_NO_LINK_ENC_RESOURCE;
5605 		}
5606 	} else {
5607 		if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
5608 			update_hpo_dp_stream_engine_usage(
5609 					&context->res_ctx, dc->res_pool,
5610 					pipe_ctx->stream_res.hpo_dp_stream_enc,
5611 					false);
5612 			pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
5613 		}
5614 		if (pipe_ctx->link_res.hpo_dp_link_enc)
5615 			remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
5616 	}
5617 
5618 	if (pipe_ctx->link_res.dio_link_enc == NULL && dc->config.unify_link_enc_assignment)
5619 		if (!add_dio_link_enc_to_ctx(dc, context, dc->res_pool, pipe_ctx, pipe_ctx->stream))
5620 			return DC_NO_LINK_ENC_RESOURCE;
5621 
5622 	return DC_OK;
5623 }
5624 
resource_get_dscl_prog_data(struct pipe_ctx * pipe_ctx)5625 struct dscl_prog_data *resource_get_dscl_prog_data(struct pipe_ctx *pipe_ctx)
5626 {
5627 	return &pipe_ctx->plane_res.scl_data.dscl_prog_data;
5628 }
5629 
resource_allocate_mcache(struct dc_state * context,const struct dc_mcache_params * mcache_params)5630 static bool resource_allocate_mcache(struct dc_state *context, const struct  dc_mcache_params *mcache_params)
5631 {
5632 	if (context->clk_mgr->ctx->dc->res_pool->funcs->program_mcache_pipe_config)
5633 		context->clk_mgr->ctx->dc->res_pool->funcs->program_mcache_pipe_config(context, mcache_params);
5634 
5635 	return true;
5636 }
5637 
resource_init_common_dml2_callbacks(struct dc * dc,struct dml2_configuration_options * dml2_options)5638 void resource_init_common_dml2_callbacks(struct dc *dc, struct dml2_configuration_options *dml2_options)
5639 {
5640 	dml2_options->callbacks.dc = dc;
5641 	dml2_options->callbacks.build_scaling_params = &resource_build_scaling_params;
5642 	dml2_options->callbacks.build_test_pattern_params = &resource_build_test_pattern_params;
5643 	dml2_options->callbacks.acquire_secondary_pipe_for_mpc_odm = &dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy;
5644 	dml2_options->callbacks.update_pipes_for_stream_with_slice_count = &resource_update_pipes_for_stream_with_slice_count;
5645 	dml2_options->callbacks.update_pipes_for_plane_with_slice_count = &resource_update_pipes_for_plane_with_slice_count;
5646 	dml2_options->callbacks.get_mpc_slice_index = &resource_get_mpc_slice_index;
5647 	dml2_options->callbacks.get_mpc_slice_count = &resource_get_mpc_slice_count;
5648 	dml2_options->callbacks.get_odm_slice_index = &resource_get_odm_slice_index;
5649 	dml2_options->callbacks.get_odm_slice_count = &resource_get_odm_slice_count;
5650 	dml2_options->callbacks.get_opp_head = &resource_get_opp_head;
5651 	dml2_options->callbacks.get_otg_master_for_stream = &resource_get_otg_master_for_stream;
5652 	dml2_options->callbacks.get_opp_heads_for_otg_master = &resource_get_opp_heads_for_otg_master;
5653 	dml2_options->callbacks.get_dpp_pipes_for_plane = &resource_get_dpp_pipes_for_plane;
5654 	dml2_options->callbacks.get_stream_status = &dc_state_get_stream_status;
5655 	dml2_options->callbacks.get_stream_from_id = &dc_state_get_stream_from_id;
5656 	dml2_options->callbacks.get_max_flickerless_instant_vtotal_increase = &dc_stream_get_max_flickerless_instant_vtotal_increase;
5657 	dml2_options->callbacks.allocate_mcache = &resource_allocate_mcache;
5658 
5659 	dml2_options->svp_pstate.callbacks.dc = dc;
5660 	dml2_options->svp_pstate.callbacks.add_phantom_plane = &dc_state_add_phantom_plane;
5661 	dml2_options->svp_pstate.callbacks.add_phantom_stream = &dc_state_add_phantom_stream;
5662 	dml2_options->svp_pstate.callbacks.build_scaling_params = &resource_build_scaling_params;
5663 	dml2_options->svp_pstate.callbacks.create_phantom_plane = &dc_state_create_phantom_plane;
5664 	dml2_options->svp_pstate.callbacks.remove_phantom_plane = &dc_state_remove_phantom_plane;
5665 	dml2_options->svp_pstate.callbacks.remove_phantom_stream = &dc_state_remove_phantom_stream;
5666 	dml2_options->svp_pstate.callbacks.create_phantom_stream = &dc_state_create_phantom_stream;
5667 	dml2_options->svp_pstate.callbacks.release_phantom_plane = &dc_state_release_phantom_plane;
5668 	dml2_options->svp_pstate.callbacks.release_phantom_stream = &dc_state_release_phantom_stream;
5669 	dml2_options->svp_pstate.callbacks.get_pipe_subvp_type = &dc_state_get_pipe_subvp_type;
5670 	dml2_options->svp_pstate.callbacks.get_stream_subvp_type = &dc_state_get_stream_subvp_type;
5671 	dml2_options->svp_pstate.callbacks.get_paired_subvp_stream = &dc_state_get_paired_subvp_stream;
5672 	dml2_options->svp_pstate.callbacks.remove_phantom_streams_and_planes = &dc_state_remove_phantom_streams_and_planes;
5673 	dml2_options->svp_pstate.callbacks.release_phantom_streams_and_planes = &dc_state_release_phantom_streams_and_planes;
5674 }
5675 
5676 /* Returns number of DET segments allocated for a given OTG_MASTER pipe */
resource_calculate_det_for_stream(struct dc_state * state,struct pipe_ctx * otg_master)5677 int resource_calculate_det_for_stream(struct dc_state *state, struct pipe_ctx *otg_master)
5678 {
5679 	struct pipe_ctx *opp_heads[MAX_PIPES];
5680 	struct pipe_ctx *dpp_pipes[MAX_PIPES];
5681 
5682 	int dpp_count = 0;
5683 	int det_segments = 0;
5684 
5685 	if (!otg_master->stream)
5686 		return 0;
5687 
5688 	int slice_count = resource_get_opp_heads_for_otg_master(otg_master,
5689 			&state->res_ctx, opp_heads);
5690 
5691 	for (int slice_idx = 0; slice_idx < slice_count; slice_idx++) {
5692 		if (opp_heads[slice_idx]->plane_state) {
5693 			dpp_count = resource_get_dpp_pipes_for_opp_head(
5694 					opp_heads[slice_idx],
5695 					&state->res_ctx,
5696 					dpp_pipes);
5697 			for (int dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++)
5698 				det_segments += dpp_pipes[dpp_idx]->hubp_regs.det_size;
5699 		}
5700 	}
5701 	return det_segments;
5702 }
5703 
resource_is_hpo_acquired(struct dc_state * context)5704 bool resource_is_hpo_acquired(struct dc_state *context)
5705 {
5706 	int i;
5707 
5708 	for (i = 0; i < MAX_HPO_DP2_ENCODERS; i++) {
5709 		if (context->res_ctx.is_hpo_dp_stream_enc_acquired[i]) {
5710 			return true;
5711 		}
5712 	}
5713 
5714 	return false;
5715 }
5716