1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "link_service.h"
44 #include "clk_mgr.h"
45 #include "dc_state_priv.h"
46 #include "dc_stream_priv.h"
47
48 #include "virtual/virtual_link_hwss.h"
49 #include "link/hwss/link_hwss_dio.h"
50 #include "link/hwss/link_hwss_dpia.h"
51 #include "link/hwss/link_hwss_hpo_dp.h"
52 #include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
53 #include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
54
55 #if defined(CONFIG_DRM_AMD_DC_SI)
56 #include "dce60/dce60_resource.h"
57 #endif
58 #include "dce80/dce80_resource.h"
59 #include "dce100/dce100_resource.h"
60 #include "dce110/dce110_resource.h"
61 #include "dce112/dce112_resource.h"
62 #include "dce120/dce120_resource.h"
63 #include "dcn10/dcn10_resource.h"
64 #include "dcn20/dcn20_resource.h"
65 #include "dcn21/dcn21_resource.h"
66 #include "dcn201/dcn201_resource.h"
67 #include "dcn30/dcn30_resource.h"
68 #include "dcn301/dcn301_resource.h"
69 #include "dcn302/dcn302_resource.h"
70 #include "dcn303/dcn303_resource.h"
71 #include "dcn31/dcn31_resource.h"
72 #include "dcn314/dcn314_resource.h"
73 #include "dcn315/dcn315_resource.h"
74 #include "dcn316/dcn316_resource.h"
75 #include "dcn32/dcn32_resource.h"
76 #include "dcn321/dcn321_resource.h"
77 #include "dcn35/dcn35_resource.h"
78 #include "dcn351/dcn351_resource.h"
79 #include "dcn36/dcn36_resource.h"
80 #include "dcn401/dcn401_resource.h"
81 #if defined(CONFIG_DRM_AMD_DC_FP)
82 #include "dc_spl_translate.h"
83 #endif
84
85 #define VISUAL_CONFIRM_BASE_DEFAULT 3
86 #define VISUAL_CONFIRM_BASE_MIN 1
87 #define VISUAL_CONFIRM_BASE_MAX 10
88 /* we choose 240 because it is a common denominator of common v addressable
89 * such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
90 * the visual confirm dpp offset height. So visual confirm height can stay
91 * relatively the same independent from timing used.
92 */
93 #define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
94
95 #define DC_LOGGER \
96 dc->ctx->logger
97 #define DC_LOGGER_INIT(logger)
98 #include "dml2_0/dml2_wrapper.h"
99
100 #define UNABLE_TO_SPLIT -1
101
capture_pipe_topology_data(struct dc * dc,int plane_idx,int slice_idx,int stream_idx,int dpp_inst,int opp_inst,int tg_inst,bool is_phantom_pipe)102 static void capture_pipe_topology_data(struct dc *dc, int plane_idx, int slice_idx, int stream_idx,
103 int dpp_inst, int opp_inst, int tg_inst, bool is_phantom_pipe)
104 {
105 struct pipe_topology_snapshot *current_snapshot = &dc->debug_data.topology_history.snapshots[dc->debug_data.topology_history.current_snapshot_index];
106
107 if (current_snapshot->line_count >= MAX_PIPES)
108 return;
109
110 current_snapshot->pipe_log_lines[current_snapshot->line_count].is_phantom_pipe = is_phantom_pipe;
111 current_snapshot->pipe_log_lines[current_snapshot->line_count].plane_idx = plane_idx;
112 current_snapshot->pipe_log_lines[current_snapshot->line_count].slice_idx = slice_idx;
113 current_snapshot->pipe_log_lines[current_snapshot->line_count].stream_idx = stream_idx;
114 current_snapshot->pipe_log_lines[current_snapshot->line_count].dpp_inst = dpp_inst;
115 current_snapshot->pipe_log_lines[current_snapshot->line_count].opp_inst = opp_inst;
116 current_snapshot->pipe_log_lines[current_snapshot->line_count].tg_inst = tg_inst;
117
118 current_snapshot->line_count++;
119 }
120
start_new_topology_snapshot(struct dc * dc,struct dc_state * state)121 static void start_new_topology_snapshot(struct dc *dc, struct dc_state *state)
122 {
123 // Move to next snapshot slot (circular buffer)
124 dc->debug_data.topology_history.current_snapshot_index = (dc->debug_data.topology_history.current_snapshot_index + 1) % MAX_TOPOLOGY_SNAPSHOTS;
125
126 // Clear the new snapshot
127 struct pipe_topology_snapshot *current_snapshot = &dc->debug_data.topology_history.snapshots[dc->debug_data.topology_history.current_snapshot_index];
128 memset(current_snapshot, 0, sizeof(*current_snapshot));
129
130 // Set metadata
131 current_snapshot->timestamp_us = dm_get_timestamp(dc->ctx);
132 current_snapshot->stream_count = state->stream_count;
133 current_snapshot->phantom_stream_count = state->phantom_stream_count;
134 }
135
resource_parse_asic_id(struct hw_asic_id asic_id)136 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
137 {
138 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
139
140 switch (asic_id.chip_family) {
141
142 #if defined(CONFIG_DRM_AMD_DC_SI)
143 case FAMILY_SI:
144 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
145 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
146 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
147 dc_version = DCE_VERSION_6_0;
148 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
149 dc_version = DCE_VERSION_6_4;
150 else
151 dc_version = DCE_VERSION_6_1;
152 break;
153 #endif
154 case FAMILY_CI:
155 dc_version = DCE_VERSION_8_0;
156 break;
157 case FAMILY_KV:
158 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
159 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
160 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
161 dc_version = DCE_VERSION_8_3;
162 else
163 dc_version = DCE_VERSION_8_1;
164 break;
165 case FAMILY_CZ:
166 dc_version = DCE_VERSION_11_0;
167 break;
168
169 case FAMILY_VI:
170 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
171 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
172 dc_version = DCE_VERSION_10_0;
173 break;
174 }
175 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
176 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
177 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
178 dc_version = DCE_VERSION_11_2;
179 }
180 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
181 dc_version = DCE_VERSION_11_22;
182 break;
183 case FAMILY_AI:
184 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
185 dc_version = DCE_VERSION_12_1;
186 else
187 dc_version = DCE_VERSION_12_0;
188 break;
189 case FAMILY_RV:
190 dc_version = DCN_VERSION_1_0;
191 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
192 dc_version = DCN_VERSION_1_01;
193 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
194 dc_version = DCN_VERSION_2_1;
195 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
196 dc_version = DCN_VERSION_2_1;
197 break;
198
199 case FAMILY_NV:
200 dc_version = DCN_VERSION_2_0;
201 if (asic_id.chip_id == DEVICE_ID_NV_13FE ||
202 asic_id.chip_id == DEVICE_ID_NV_143F ||
203 asic_id.chip_id == DEVICE_ID_NV_13F9 ||
204 asic_id.chip_id == DEVICE_ID_NV_13FA ||
205 asic_id.chip_id == DEVICE_ID_NV_13FB ||
206 asic_id.chip_id == DEVICE_ID_NV_13FC ||
207 asic_id.chip_id == DEVICE_ID_NV_13DB) {
208 dc_version = DCN_VERSION_2_01;
209 break;
210 }
211 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
212 dc_version = DCN_VERSION_3_0;
213 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
214 dc_version = DCN_VERSION_3_02;
215 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
216 dc_version = DCN_VERSION_3_03;
217 break;
218
219 case FAMILY_VGH:
220 dc_version = DCN_VERSION_3_01;
221 break;
222
223 case FAMILY_YELLOW_CARP:
224 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
225 dc_version = DCN_VERSION_3_1;
226 break;
227 case AMDGPU_FAMILY_GC_10_3_6:
228 if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
229 dc_version = DCN_VERSION_3_15;
230 break;
231 case AMDGPU_FAMILY_GC_10_3_7:
232 if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
233 dc_version = DCN_VERSION_3_16;
234 break;
235 case AMDGPU_FAMILY_GC_11_0_0:
236 dc_version = DCN_VERSION_3_2;
237 if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
238 dc_version = DCN_VERSION_3_21;
239 break;
240 case AMDGPU_FAMILY_GC_11_0_1:
241 dc_version = DCN_VERSION_3_14;
242 break;
243 case AMDGPU_FAMILY_GC_11_5_0:
244 dc_version = DCN_VERSION_3_5;
245 if (ASICREV_IS_GC_11_0_4(asic_id.hw_internal_rev))
246 dc_version = DCN_VERSION_3_51;
247 if (ASICREV_IS_DCN36(asic_id.hw_internal_rev))
248 dc_version = DCN_VERSION_3_6;
249 break;
250 case AMDGPU_FAMILY_GC_12_0_0:
251 if (ASICREV_IS_GC_12_0_1_A0(asic_id.hw_internal_rev) ||
252 ASICREV_IS_GC_12_0_0_A0(asic_id.hw_internal_rev))
253 dc_version = DCN_VERSION_4_01;
254 break;
255 default:
256 dc_version = DCE_VERSION_UNKNOWN;
257 break;
258 }
259 return dc_version;
260 }
261
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)262 struct resource_pool *dc_create_resource_pool(struct dc *dc,
263 const struct dc_init_data *init_data,
264 enum dce_version dc_version)
265 {
266 struct resource_pool *res_pool = NULL;
267
268 switch (dc_version) {
269 #if defined(CONFIG_DRM_AMD_DC_SI)
270 case DCE_VERSION_6_0:
271 res_pool = dce60_create_resource_pool(
272 init_data->num_virtual_links, dc);
273 break;
274 case DCE_VERSION_6_1:
275 res_pool = dce61_create_resource_pool(
276 init_data->num_virtual_links, dc);
277 break;
278 case DCE_VERSION_6_4:
279 res_pool = dce64_create_resource_pool(
280 init_data->num_virtual_links, dc);
281 break;
282 #endif
283 case DCE_VERSION_8_0:
284 res_pool = dce80_create_resource_pool(
285 init_data->num_virtual_links, dc);
286 break;
287 case DCE_VERSION_8_1:
288 res_pool = dce81_create_resource_pool(
289 init_data->num_virtual_links, dc);
290 break;
291 case DCE_VERSION_8_3:
292 res_pool = dce83_create_resource_pool(
293 init_data->num_virtual_links, dc);
294 break;
295 case DCE_VERSION_10_0:
296 res_pool = dce100_create_resource_pool(
297 init_data->num_virtual_links, dc);
298 break;
299 case DCE_VERSION_11_0:
300 res_pool = dce110_create_resource_pool(
301 init_data->num_virtual_links, dc,
302 init_data->asic_id);
303 break;
304 case DCE_VERSION_11_2:
305 case DCE_VERSION_11_22:
306 res_pool = dce112_create_resource_pool(
307 init_data->num_virtual_links, dc);
308 break;
309 case DCE_VERSION_12_0:
310 case DCE_VERSION_12_1:
311 res_pool = dce120_create_resource_pool(
312 init_data->num_virtual_links, dc);
313 break;
314
315 #if defined(CONFIG_DRM_AMD_DC_FP)
316 case DCN_VERSION_1_0:
317 case DCN_VERSION_1_01:
318 res_pool = dcn10_create_resource_pool(init_data, dc);
319 break;
320 case DCN_VERSION_2_0:
321 res_pool = dcn20_create_resource_pool(init_data, dc);
322 break;
323 case DCN_VERSION_2_1:
324 res_pool = dcn21_create_resource_pool(init_data, dc);
325 break;
326 case DCN_VERSION_2_01:
327 res_pool = dcn201_create_resource_pool(init_data, dc);
328 break;
329 case DCN_VERSION_3_0:
330 res_pool = dcn30_create_resource_pool(init_data, dc);
331 break;
332 case DCN_VERSION_3_01:
333 res_pool = dcn301_create_resource_pool(init_data, dc);
334 break;
335 case DCN_VERSION_3_02:
336 res_pool = dcn302_create_resource_pool(init_data, dc);
337 break;
338 case DCN_VERSION_3_03:
339 res_pool = dcn303_create_resource_pool(init_data, dc);
340 break;
341 case DCN_VERSION_3_1:
342 res_pool = dcn31_create_resource_pool(init_data, dc);
343 break;
344 case DCN_VERSION_3_14:
345 res_pool = dcn314_create_resource_pool(init_data, dc);
346 break;
347 case DCN_VERSION_3_15:
348 res_pool = dcn315_create_resource_pool(init_data, dc);
349 break;
350 case DCN_VERSION_3_16:
351 res_pool = dcn316_create_resource_pool(init_data, dc);
352 break;
353 case DCN_VERSION_3_2:
354 res_pool = dcn32_create_resource_pool(init_data, dc);
355 break;
356 case DCN_VERSION_3_21:
357 res_pool = dcn321_create_resource_pool(init_data, dc);
358 break;
359 case DCN_VERSION_3_5:
360 res_pool = dcn35_create_resource_pool(init_data, dc);
361 break;
362 case DCN_VERSION_3_51:
363 res_pool = dcn351_create_resource_pool(init_data, dc);
364 break;
365 case DCN_VERSION_3_6:
366 res_pool = dcn36_create_resource_pool(init_data, dc);
367 break;
368 case DCN_VERSION_4_01:
369 res_pool = dcn401_create_resource_pool(init_data, dc);
370 break;
371 #endif /* CONFIG_DRM_AMD_DC_FP */
372 default:
373 break;
374 }
375
376 if (res_pool != NULL) {
377 if (dc->ctx->dc_bios->fw_info_valid) {
378 res_pool->ref_clocks.xtalin_clock_inKhz =
379 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
380 /* initialize with firmware data first, no all
381 * ASIC have DCCG SW component. FPGA or
382 * simulation need initialization of
383 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
384 * with xtalin_clock_inKhz
385 */
386 res_pool->ref_clocks.dccg_ref_clock_inKhz =
387 res_pool->ref_clocks.xtalin_clock_inKhz;
388 res_pool->ref_clocks.dchub_ref_clock_inKhz =
389 res_pool->ref_clocks.xtalin_clock_inKhz;
390 } else
391 ASSERT_CRITICAL(false);
392 }
393
394 return res_pool;
395 }
396
dc_destroy_resource_pool(struct dc * dc)397 void dc_destroy_resource_pool(struct dc *dc)
398 {
399 if (dc) {
400 if (dc->res_pool)
401 dc->res_pool->funcs->destroy(&dc->res_pool);
402
403 kfree(dc->hwseq);
404 }
405 }
406
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)407 static void update_num_audio(
408 const struct resource_straps *straps,
409 unsigned int *num_audio,
410 struct audio_support *aud_support)
411 {
412 aud_support->dp_audio = true;
413 aud_support->hdmi_audio_native = false;
414 aud_support->hdmi_audio_on_dongle = false;
415
416 if (straps->hdmi_disable == 0) {
417 if (straps->dc_pinstraps_audio & 0x2) {
418 aud_support->hdmi_audio_on_dongle = true;
419 aud_support->hdmi_audio_native = true;
420 }
421 }
422
423 switch (straps->audio_stream_number) {
424 case 0: /* multi streams supported */
425 break;
426 case 1: /* multi streams not supported */
427 *num_audio = 1;
428 break;
429 default:
430 DC_ERR("DC: unexpected audio fuse!\n");
431 }
432 }
433
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)434 bool resource_construct(
435 unsigned int num_virtual_links,
436 struct dc *dc,
437 struct resource_pool *pool,
438 const struct resource_create_funcs *create_funcs)
439 {
440 struct dc_context *ctx = dc->ctx;
441 const struct resource_caps *caps = pool->res_cap;
442 int i;
443 unsigned int num_audio = caps->num_audio;
444 struct resource_straps straps = {0};
445
446 if (create_funcs->read_dce_straps)
447 create_funcs->read_dce_straps(dc->ctx, &straps);
448
449 pool->audio_count = 0;
450 if (create_funcs->create_audio) {
451 /* find the total number of streams available via the
452 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
453 * registers (one for each pin) starting from pin 1
454 * up to the max number of audio pins.
455 * We stop on the first pin where
456 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
457 */
458 update_num_audio(&straps, &num_audio, &pool->audio_support);
459 for (i = 0; i < caps->num_audio; i++) {
460 struct audio *aud = create_funcs->create_audio(ctx, i);
461
462 if (aud == NULL) {
463 DC_ERR("DC: failed to create audio!\n");
464 return false;
465 }
466 if (!aud->funcs->endpoint_valid(aud)) {
467 aud->funcs->destroy(&aud);
468 break;
469 }
470 pool->audios[i] = aud;
471 pool->audio_count++;
472 }
473 }
474
475 pool->stream_enc_count = 0;
476 if (create_funcs->create_stream_encoder) {
477 for (i = 0; i < caps->num_stream_encoder; i++) {
478 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
479 if (pool->stream_enc[i] == NULL)
480 DC_ERR("DC: failed to create stream_encoder!\n");
481 pool->stream_enc_count++;
482 }
483
484 for (i = 0; i < caps->num_analog_stream_encoder; i++) {
485 pool->stream_enc[caps->num_stream_encoder + i] =
486 create_funcs->create_stream_encoder(ENGINE_ID_DACA + i, ctx);
487 if (pool->stream_enc[caps->num_stream_encoder + i] == NULL)
488 DC_ERR("DC: failed to create analog stream_encoder %d!\n", i);
489 pool->stream_enc_count++;
490 }
491 }
492
493 pool->hpo_dp_stream_enc_count = 0;
494 if (create_funcs->create_hpo_dp_stream_encoder) {
495 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
496 pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
497 if (pool->hpo_dp_stream_enc[i] == NULL)
498 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
499 pool->hpo_dp_stream_enc_count++;
500
501 }
502 }
503
504 pool->hpo_dp_link_enc_count = 0;
505 if (create_funcs->create_hpo_dp_link_encoder) {
506 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
507 pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
508 if (pool->hpo_dp_link_enc[i] == NULL)
509 DC_ERR("DC: failed to create HPO DP link encoder!\n");
510 pool->hpo_dp_link_enc_count++;
511 }
512 }
513
514 for (i = 0; i < caps->num_mpc_3dlut; i++) {
515 pool->mpc_lut[i] = dc_create_3dlut_func();
516 if (pool->mpc_lut[i] == NULL)
517 DC_ERR("DC: failed to create MPC 3dlut!\n");
518 pool->mpc_shaper[i] = dc_create_transfer_func();
519 if (pool->mpc_shaper[i] == NULL)
520 DC_ERR("DC: failed to create MPC shaper!\n");
521 }
522
523 dc->caps.dynamic_audio = false;
524 if (pool->audio_count < pool->stream_enc_count) {
525 dc->caps.dynamic_audio = true;
526 }
527 for (i = 0; i < num_virtual_links; i++) {
528 pool->stream_enc[pool->stream_enc_count] =
529 virtual_stream_encoder_create(
530 ctx, ctx->dc_bios);
531 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
532 DC_ERR("DC: failed to create stream_encoder!\n");
533 return false;
534 }
535 pool->stream_enc_count++;
536 }
537
538 dc->hwseq = create_funcs->create_hwseq(ctx);
539
540 return true;
541 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)542 static int find_matching_clock_source(
543 const struct resource_pool *pool,
544 struct clock_source *clock_source)
545 {
546
547 int i;
548
549 for (i = 0; i < pool->clk_src_count; i++) {
550 if (pool->clock_sources[i] == clock_source)
551 return i;
552 }
553 return -1;
554 }
555
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)556 void resource_unreference_clock_source(
557 struct resource_context *res_ctx,
558 const struct resource_pool *pool,
559 struct clock_source *clock_source)
560 {
561 int i = find_matching_clock_source(pool, clock_source);
562
563 if (i > -1)
564 res_ctx->clock_source_ref_count[i]--;
565
566 if (pool->dp_clock_source == clock_source)
567 res_ctx->dp_clock_source_ref_count--;
568 }
569
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)570 void resource_reference_clock_source(
571 struct resource_context *res_ctx,
572 const struct resource_pool *pool,
573 struct clock_source *clock_source)
574 {
575 int i = find_matching_clock_source(pool, clock_source);
576
577 if (i > -1)
578 res_ctx->clock_source_ref_count[i]++;
579
580 if (pool->dp_clock_source == clock_source)
581 res_ctx->dp_clock_source_ref_count++;
582 }
583
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)584 int resource_get_clock_source_reference(
585 struct resource_context *res_ctx,
586 const struct resource_pool *pool,
587 struct clock_source *clock_source)
588 {
589 int i = find_matching_clock_source(pool, clock_source);
590
591 if (i > -1)
592 return res_ctx->clock_source_ref_count[i];
593
594 if (pool->dp_clock_source == clock_source)
595 return res_ctx->dp_clock_source_ref_count;
596
597 return -1;
598 }
599
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)600 bool resource_are_vblanks_synchronizable(
601 struct dc_stream_state *stream1,
602 struct dc_stream_state *stream2)
603 {
604 uint32_t base60_refresh_rates[] = {10, 20, 5};
605 uint8_t i;
606 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
607 uint64_t frame_time_diff;
608
609 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
610 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
611 dc_is_dp_signal(stream1->signal) &&
612 dc_is_dp_signal(stream2->signal) &&
613 false == stream1->has_non_synchronizable_pclk &&
614 false == stream2->has_non_synchronizable_pclk &&
615 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
616 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
617 /* disable refresh rates higher than 60Hz for now */
618 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
619 stream1->timing.v_total > 60)
620 return false;
621 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
622 stream2->timing.v_total > 60)
623 return false;
624 frame_time_diff = (uint64_t)10000 *
625 stream1->timing.h_total *
626 stream1->timing.v_total *
627 stream2->timing.pix_clk_100hz;
628 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
629 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
630 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
631 for (i = 0; i < rr_count; i++) {
632 int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
633
634 if (diff < 0)
635 diff = -diff;
636 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
637 return true;
638 }
639 }
640 return false;
641 }
642
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)643 bool resource_are_streams_timing_synchronizable(
644 struct dc_stream_state *stream1,
645 struct dc_stream_state *stream2)
646 {
647 if (stream1->timing.h_total != stream2->timing.h_total)
648 return false;
649
650 if (stream1->timing.v_total != stream2->timing.v_total)
651 return false;
652
653 if (stream1->timing.h_addressable
654 != stream2->timing.h_addressable)
655 return false;
656
657 if (stream1->timing.v_addressable
658 != stream2->timing.v_addressable)
659 return false;
660
661 if (stream1->timing.v_front_porch
662 != stream2->timing.v_front_porch)
663 return false;
664
665 if (stream1->timing.pix_clk_100hz
666 != stream2->timing.pix_clk_100hz)
667 return false;
668
669 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
670 return false;
671
672 if (stream1->phy_pix_clk != stream2->phy_pix_clk
673 && (!dc_is_dp_signal(stream1->signal)
674 || !dc_is_dp_signal(stream2->signal)))
675 return false;
676
677 if (stream1->view_format != stream2->view_format)
678 return false;
679
680 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
681 return false;
682
683 return true;
684 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)685 static bool is_dp_and_hdmi_sharable(
686 struct dc_stream_state *stream1,
687 struct dc_stream_state *stream2)
688 {
689 if (stream1->ctx->dc->caps.disable_dp_clk_share)
690 return false;
691
692 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
693 stream2->clamping.c_depth != COLOR_DEPTH_888)
694 return false;
695
696 return true;
697
698 }
699
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)700 static bool is_sharable_clk_src(
701 const struct pipe_ctx *pipe_with_clk_src,
702 const struct pipe_ctx *pipe)
703 {
704 if (pipe_with_clk_src->clock_source == NULL)
705 return false;
706
707 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
708 return false;
709
710 if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
711 (dc_is_dp_signal(pipe->stream->signal) &&
712 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
713 pipe->stream)))
714 return false;
715
716 if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
717 && dc_is_dual_link_signal(pipe->stream->signal))
718 return false;
719
720 if (dc_is_hdmi_signal(pipe->stream->signal)
721 && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
722 return false;
723
724 if (!resource_are_streams_timing_synchronizable(
725 pipe_with_clk_src->stream, pipe->stream))
726 return false;
727
728 return true;
729 }
730
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)731 struct clock_source *resource_find_used_clk_src_for_sharing(
732 struct resource_context *res_ctx,
733 struct pipe_ctx *pipe_ctx)
734 {
735 int i;
736
737 for (i = 0; i < MAX_PIPES; i++) {
738 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
739 return res_ctx->pipe_ctx[i].clock_source;
740 }
741
742 return NULL;
743 }
744
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)745 static enum pixel_format convert_pixel_format_to_dalsurface(
746 enum surface_pixel_format surface_pixel_format)
747 {
748 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
749
750 switch (surface_pixel_format) {
751 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
752 dal_pixel_format = PIXEL_FORMAT_INDEX8;
753 break;
754 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
755 dal_pixel_format = PIXEL_FORMAT_RGB565;
756 break;
757 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
758 dal_pixel_format = PIXEL_FORMAT_RGB565;
759 break;
760 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
761 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
762 break;
763 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
764 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
765 break;
766 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
767 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
768 break;
769 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
770 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
771 break;
772 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
773 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
774 break;
775 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
776 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
777 dal_pixel_format = PIXEL_FORMAT_FP16;
778 break;
779 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
780 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
781 dal_pixel_format = PIXEL_FORMAT_420BPP8;
782 break;
783 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
784 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
785 dal_pixel_format = PIXEL_FORMAT_420BPP10;
786 break;
787 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
788 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
789 default:
790 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
791 break;
792 }
793 return dal_pixel_format;
794 }
795
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)796 static inline void get_vp_scan_direction(
797 enum dc_rotation_angle rotation,
798 bool horizontal_mirror,
799 bool *orthogonal_rotation,
800 bool *flip_vert_scan_dir,
801 bool *flip_horz_scan_dir)
802 {
803 *orthogonal_rotation = false;
804 *flip_vert_scan_dir = false;
805 *flip_horz_scan_dir = false;
806 if (rotation == ROTATION_ANGLE_180) {
807 *flip_vert_scan_dir = true;
808 *flip_horz_scan_dir = true;
809 } else if (rotation == ROTATION_ANGLE_90) {
810 *orthogonal_rotation = true;
811 *flip_horz_scan_dir = true;
812 } else if (rotation == ROTATION_ANGLE_270) {
813 *orthogonal_rotation = true;
814 *flip_vert_scan_dir = true;
815 }
816
817 if (horizontal_mirror)
818 *flip_horz_scan_dir = !*flip_horz_scan_dir;
819 }
820
intersect_rec(const struct rect * r0,const struct rect * r1)821 static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
822 {
823 struct rect rec;
824 int r0_x_end = r0->x + r0->width;
825 int r1_x_end = r1->x + r1->width;
826 int r0_y_end = r0->y + r0->height;
827 int r1_y_end = r1->y + r1->height;
828
829 rec.x = r0->x > r1->x ? r0->x : r1->x;
830 rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
831 rec.y = r0->y > r1->y ? r0->y : r1->y;
832 rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
833
834 /* in case that there is no intersection */
835 if (rec.width < 0 || rec.height < 0)
836 memset(&rec, 0, sizeof(rec));
837
838 return rec;
839 }
840
shift_rec(const struct rect * rec_in,int x,int y)841 static struct rect shift_rec(const struct rect *rec_in, int x, int y)
842 {
843 struct rect rec_out = *rec_in;
844
845 rec_out.x += x;
846 rec_out.y += y;
847
848 return rec_out;
849 }
850
calculate_plane_rec_in_timing_active(struct pipe_ctx * pipe_ctx,const struct rect * rec_in)851 static struct rect calculate_plane_rec_in_timing_active(
852 struct pipe_ctx *pipe_ctx,
853 const struct rect *rec_in)
854 {
855 /*
856 * The following diagram shows an example where we map a 1920x1200
857 * desktop to a 2560x1440 timing with a plane rect in the middle
858 * of the screen. To map a plane rect from Stream Source to Timing
859 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
860 * horizontal and 1440/1200 vertical) to the plane's x and y, then
861 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
862 * This will give us a plane rect's position in Timing Active. However
863 * we have to remove the fractional. The rule is that we find left/right
864 * and top/bottom positions and round the value to the adjacent integer.
865 *
866 * Stream Source Space
867 * ------------
868 * __________________________________________________
869 * |Stream Source (1920 x 1200) ^ |
870 * | y |
871 * | <------- w --------|> |
872 * | __________________V |
873 * |<-- x -->|Plane//////////////| ^ |
874 * | |(pre scale)////////| | |
875 * | |///////////////////| | |
876 * | |///////////////////| h |
877 * | |///////////////////| | |
878 * | |///////////////////| | |
879 * | |///////////////////| V |
880 * | |
881 * | |
882 * |__________________________________________________|
883 *
884 *
885 * Timing Active Space
886 * ---------------------------------
887 *
888 * Timing Active (2560 x 1440)
889 * __________________________________________________
890 * |*****| Stteam Destination (2304 x 1440) |*****|
891 * |*****| |*****|
892 * |<128>| |*****|
893 * |*****| __________________ |*****|
894 * |*****| |Plane/////////////| |*****|
895 * |*****| |(post scale)//////| |*****|
896 * |*****| |//////////////////| |*****|
897 * |*****| |//////////////////| |*****|
898 * |*****| |//////////////////| |*****|
899 * |*****| |//////////////////| |*****|
900 * |*****| |*****|
901 * |*****| |*****|
902 * |*****| |*****|
903 * |*****|______________________________________|*****|
904 *
905 * So the resulting formulas are shown below:
906 *
907 * recout_x = 128 + round(plane_x * 2304 / 1920)
908 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
909 * recout_y = 0 + round(plane_y * 1440 / 1280)
910 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
911 *
912 * NOTE: fixed point division is not error free. To reduce errors
913 * introduced by fixed point division, we divide only after
914 * multiplication is complete.
915 */
916 const struct dc_stream_state *stream = pipe_ctx->stream;
917 struct rect rec_out = {0};
918 struct fixed31_32 temp;
919
920 temp = dc_fixpt_from_fraction(rec_in->x * (long long)stream->dst.width,
921 stream->src.width);
922 rec_out.x = stream->dst.x + dc_fixpt_round(temp);
923
924 temp = dc_fixpt_from_fraction(
925 (rec_in->x + rec_in->width) * (long long)stream->dst.width,
926 stream->src.width);
927 rec_out.width = stream->dst.x + dc_fixpt_round(temp) - rec_out.x;
928
929 temp = dc_fixpt_from_fraction(rec_in->y * (long long)stream->dst.height,
930 stream->src.height);
931 rec_out.y = stream->dst.y + dc_fixpt_round(temp);
932
933 temp = dc_fixpt_from_fraction(
934 (rec_in->y + rec_in->height) * (long long)stream->dst.height,
935 stream->src.height);
936 rec_out.height = stream->dst.y + dc_fixpt_round(temp) - rec_out.y;
937
938 return rec_out;
939 }
940
calculate_mpc_slice_in_timing_active(struct pipe_ctx * pipe_ctx,struct rect * plane_clip_rec)941 static struct rect calculate_mpc_slice_in_timing_active(
942 struct pipe_ctx *pipe_ctx,
943 struct rect *plane_clip_rec)
944 {
945 const struct dc_stream_state *stream = pipe_ctx->stream;
946 int mpc_slice_count = resource_get_mpc_slice_count(pipe_ctx);
947 int mpc_slice_idx = resource_get_mpc_slice_index(pipe_ctx);
948 int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
949 struct rect mpc_rec;
950
951 mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
952 mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
953 mpc_rec.height = plane_clip_rec->height;
954 mpc_rec.y = plane_clip_rec->y;
955 ASSERT(mpc_slice_count == 1 ||
956 stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
957 mpc_rec.width % 2 == 0);
958
959 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
960 mpc_rec.x -= (mpc_rec.width * mpc_slice_idx);
961
962 /* extra pixels in the division remainder need to go to pipes after
963 * the extra pixel index minus one(epimo) defined here as:
964 */
965 if (mpc_slice_idx > epimo) {
966 mpc_rec.x += mpc_slice_idx - epimo - 1;
967 mpc_rec.width += 1;
968 }
969
970 if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
971 ASSERT(mpc_rec.height % 2 == 0);
972 mpc_rec.height /= 2;
973 }
974 return mpc_rec;
975 }
976
calculate_adjust_recout_for_visual_confirm(struct pipe_ctx * pipe_ctx,int * base_offset,int * dpp_offset)977 static void calculate_adjust_recout_for_visual_confirm(struct pipe_ctx *pipe_ctx,
978 int *base_offset, int *dpp_offset)
979 {
980 struct dc *dc = pipe_ctx->stream->ctx->dc;
981 *base_offset = 0;
982 *dpp_offset = 0;
983
984 if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE || !pipe_ctx->plane_res.dpp)
985 return;
986
987 *dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
988 *dpp_offset *= pipe_ctx->plane_res.dpp->inst;
989
990 if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
991 dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
992 *base_offset = dc->debug.visual_confirm_rect_height;
993 else
994 *base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
995 }
996
reverse_adjust_recout_for_visual_confirm(struct rect * recout,struct pipe_ctx * pipe_ctx)997 static void reverse_adjust_recout_for_visual_confirm(struct rect *recout,
998 struct pipe_ctx *pipe_ctx)
999 {
1000 int dpp_offset, base_offset;
1001
1002 calculate_adjust_recout_for_visual_confirm(pipe_ctx, &base_offset,
1003 &dpp_offset);
1004 recout->height += base_offset;
1005 recout->height += dpp_offset;
1006 }
1007
adjust_recout_for_visual_confirm(struct rect * recout,struct pipe_ctx * pipe_ctx)1008 static void adjust_recout_for_visual_confirm(struct rect *recout,
1009 struct pipe_ctx *pipe_ctx)
1010 {
1011 int dpp_offset, base_offset;
1012
1013 calculate_adjust_recout_for_visual_confirm(pipe_ctx, &base_offset,
1014 &dpp_offset);
1015 recout->height -= base_offset;
1016 recout->height -= dpp_offset;
1017 }
1018
1019 /*
1020 * The function maps a plane clip from Stream Source Space to ODM Slice Space
1021 * and calculates the rec of the overlapping area of MPC slice of the plane
1022 * clip, ODM slice associated with the pipe context and stream destination rec.
1023 */
calculate_recout(struct pipe_ctx * pipe_ctx)1024 static void calculate_recout(struct pipe_ctx *pipe_ctx)
1025 {
1026 /*
1027 * A plane clip represents the desired plane size and position in Stream
1028 * Source Space. Stream Source is the destination where all planes are
1029 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
1030 * all planes associated with the current stream are drawn together.
1031 * After Stream Source is completed, we will further scale and
1032 * reposition the entire canvas of the stream source to Stream
1033 * Destination in Timing Active Space. This could be due to display
1034 * overscan adjustment where we will need to rescale and reposition all
1035 * the planes so they can fit into a TV with overscan or downscale
1036 * upscale features such as GPU scaling or VSR.
1037 *
1038 * This two step blending is a virtual procedure in software. In
1039 * hardware there is no such thing as Stream Source. all planes are
1040 * blended once in Timing Active Space. Software virtualizes a Stream
1041 * Source space to decouple the math complicity so scaling param
1042 * calculation focuses on one step at a time.
1043 *
1044 * In the following two diagrams, user applied 10% overscan adjustment
1045 * so the Stream Source needs to be scaled down a little before mapping
1046 * to Timing Active Space. As a result the Plane Clip is also scaled
1047 * down by the same ratio, Plane Clip position (i.e. x and y) with
1048 * respect to Stream Source is also scaled down. To map it in Timing
1049 * Active Space additional x and y offsets from Stream Destination are
1050 * added to Plane Clip as well.
1051 *
1052 * Stream Source Space
1053 * ------------
1054 * __________________________________________________
1055 * |Stream Source (3840 x 2160) ^ |
1056 * | y |
1057 * | | |
1058 * | __________________V |
1059 * |<-- x -->|Plane Clip/////////| |
1060 * | |(pre scale)////////| |
1061 * | |///////////////////| |
1062 * | |///////////////////| |
1063 * | |///////////////////| |
1064 * | |///////////////////| |
1065 * | |///////////////////| |
1066 * | |
1067 * | |
1068 * |__________________________________________________|
1069 *
1070 *
1071 * Timing Active Space (3840 x 2160)
1072 * ---------------------------------
1073 *
1074 * Timing Active
1075 * __________________________________________________
1076 * | y_____________________________________________ |
1077 * |x |Stream Destination (3456 x 1944) | |
1078 * | | | |
1079 * | | __________________ | |
1080 * | | |Plane Clip////////| | |
1081 * | | |(post scale)//////| | |
1082 * | | |//////////////////| | |
1083 * | | |//////////////////| | |
1084 * | | |//////////////////| | |
1085 * | | |//////////////////| | |
1086 * | | | |
1087 * | | | |
1088 * | |____________________________________________| |
1089 * |__________________________________________________|
1090 *
1091 *
1092 * In Timing Active Space a plane clip could be further sliced into
1093 * pieces called MPC slices. Each Pipe Context is responsible for
1094 * processing only one MPC slice so the plane processing workload can be
1095 * distributed to multiple DPP Pipes. MPC slices could be blended
1096 * together to a single ODM slice. Each ODM slice is responsible for
1097 * processing a portion of Timing Active divided horizontally so the
1098 * output pixel processing workload can be distributed to multiple OPP
1099 * pipes. All ODM slices are mapped together in ODM block so all MPC
1100 * slices belong to different ODM slices could be pieced together to
1101 * form a single image in Timing Active. MPC slices must belong to
1102 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
1103 * needs to be divided into two MPC slices one for each ODM slice.
1104 *
1105 * In the following diagram the output pixel processing workload is
1106 * divided horizontally into two ODM slices one for each OPP blend tree.
1107 * OPP0 blend tree is responsible for processing left half of Timing
1108 * Active, while OPP2 blend tree is responsible for processing right
1109 * half.
1110 *
1111 * The plane has two MPC slices. However since the right MPC slice goes
1112 * across ODM boundary, two DPP pipes are needed one for each OPP blend
1113 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
1114 *
1115 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
1116 * working on processing the plane in the diagram. We want to know the
1117 * width and height of the shaded rectangle and its relative position
1118 * with respect to the ODM slice0. This is called the recout of the pipe
1119 * context.
1120 *
1121 * Planes can be at arbitrary size and position and there could be an
1122 * arbitrary number of MPC and ODM slices. The algorithm needs to take
1123 * all scenarios into account.
1124 *
1125 * Timing Active Space (3840 x 2160)
1126 * ---------------------------------
1127 *
1128 * Timing Active
1129 * __________________________________________________
1130 * |OPP0(ODM slice0)^ |OPP2(ODM slice1) |
1131 * | y | |
1132 * | | <- w -> |
1133 * | _____V________|____ |
1134 * | |DPP0 ^ |DPP1 |DPP2| |
1135 * |<------ x |-----|->|/////| | |
1136 * | | | |/////| | |
1137 * | | h |/////| | |
1138 * | | | |/////| | |
1139 * | |_____V__|/////|____| |
1140 * | | |
1141 * | | |
1142 * | | |
1143 * |_________________________|________________________|
1144 *
1145 *
1146 */
1147 struct rect plane_clip;
1148 struct rect mpc_slice_of_plane_clip;
1149 struct rect odm_slice_src;
1150 struct rect overlapping_area;
1151
1152 plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
1153 &pipe_ctx->plane_state->clip_rect);
1154 /* guard plane clip from drawing beyond stream dst here */
1155 plane_clip = intersect_rec(&plane_clip,
1156 &pipe_ctx->stream->dst);
1157 mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
1158 pipe_ctx, &plane_clip);
1159 odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
1160 overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice_src);
1161 if (overlapping_area.height > 0 &&
1162 overlapping_area.width > 0) {
1163 /* shift the overlapping area so it is with respect to current
1164 * ODM slice source's position
1165 */
1166 pipe_ctx->plane_res.scl_data.recout = shift_rec(
1167 &overlapping_area,
1168 -odm_slice_src.x, -odm_slice_src.y);
1169 adjust_recout_for_visual_confirm(
1170 &pipe_ctx->plane_res.scl_data.recout,
1171 pipe_ctx);
1172 } else {
1173 /* if there is no overlap, zero recout */
1174 memset(&pipe_ctx->plane_res.scl_data.recout, 0,
1175 sizeof(struct rect));
1176 }
1177
1178 }
1179
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)1180 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
1181 {
1182 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1183 const struct dc_stream_state *stream = pipe_ctx->stream;
1184 struct rect surf_src = plane_state->src_rect;
1185 const int in_w = stream->src.width;
1186 const int in_h = stream->src.height;
1187 const int out_w = stream->dst.width;
1188 const int out_h = stream->dst.height;
1189
1190 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
1191 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
1192 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
1193 swap(surf_src.height, surf_src.width);
1194
1195 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
1196 surf_src.width,
1197 plane_state->dst_rect.width);
1198 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
1199 surf_src.height,
1200 plane_state->dst_rect.height);
1201
1202 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1203 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
1204 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1205 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
1206
1207 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
1208 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
1209 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
1210 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
1211
1212 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
1213 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
1214
1215 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
1216 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
1217 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
1218 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
1219 }
1220 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
1221 pipe_ctx->plane_res.scl_data.ratios.horz, 19);
1222 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
1223 pipe_ctx->plane_res.scl_data.ratios.vert, 19);
1224 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
1225 pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
1226 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
1227 pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
1228 }
1229
1230
1231 /*
1232 * We completely calculate vp offset, size and inits here based entirely on scaling
1233 * ratios and recout for pixel perfect pipe combine.
1234 */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)1235 static void calculate_init_and_vp(
1236 bool flip_scan_dir,
1237 int recout_offset_within_recout_full,
1238 int recout_size,
1239 int src_size,
1240 int taps,
1241 struct fixed31_32 ratio,
1242 struct fixed31_32 *init,
1243 int *vp_offset,
1244 int *vp_size)
1245 {
1246 struct fixed31_32 temp;
1247 int int_part;
1248
1249 /*
1250 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
1251 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
1252 * All following calculations are based on this logic.
1253 *
1254 * Init calculated according to formula:
1255 * init = (scaling_ratio + number_of_taps + 1) / 2
1256 * init_bot = init + scaling_ratio
1257 * to get pixel perfect combine add the fraction from calculating vp offset
1258 */
1259 temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
1260 *vp_offset = dc_fixpt_floor(temp);
1261 temp.value &= 0xffffffff;
1262 *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
1263 dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
1264 /*
1265 * If viewport has non 0 offset and there are more taps than covered by init then
1266 * we should decrease the offset and increase init so we are never sampling
1267 * outside of viewport.
1268 */
1269 int_part = dc_fixpt_floor(*init);
1270 if (int_part < taps) {
1271 int_part = taps - int_part;
1272 if (int_part > *vp_offset)
1273 int_part = *vp_offset;
1274 *vp_offset -= int_part;
1275 *init = dc_fixpt_add_int(*init, int_part);
1276 }
1277 /*
1278 * If taps are sampling outside of viewport at end of recout and there are more pixels
1279 * available in the surface we should increase the viewport size, regardless set vp to
1280 * only what is used.
1281 */
1282 temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
1283 *vp_size = dc_fixpt_floor(temp);
1284 if (*vp_size + *vp_offset > src_size)
1285 *vp_size = src_size - *vp_offset;
1286
1287 /* We did all the math assuming we are scanning same direction as display does,
1288 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
1289 * is flipped we simply need to calculate offset from the other side of plane.
1290 * Note that outside of viewport all scaling hardware works in recout space.
1291 */
1292 if (flip_scan_dir)
1293 *vp_offset = src_size - *vp_offset - *vp_size;
1294 }
1295
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)1296 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
1297 {
1298 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1299 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1300 struct rect src = plane_state->src_rect;
1301 struct rect recout_dst_in_active_timing;
1302 struct rect recout_clip_in_active_timing;
1303 struct rect recout_clip_in_recout_dst;
1304 struct rect overlap_in_active_timing;
1305 struct rect odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
1306 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1307 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1308 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1309
1310 recout_clip_in_active_timing = shift_rec(
1311 &data->recout, odm_slice_src.x, odm_slice_src.y);
1312 recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
1313 pipe_ctx, &plane_state->dst_rect);
1314 overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
1315 &recout_dst_in_active_timing);
1316 if (overlap_in_active_timing.width > 0 &&
1317 overlap_in_active_timing.height > 0)
1318 recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
1319 -recout_dst_in_active_timing.x,
1320 -recout_dst_in_active_timing.y);
1321 else
1322 memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
1323
1324 /*
1325 * Work in recout rotation since that requires less transformations
1326 */
1327 get_vp_scan_direction(
1328 plane_state->rotation,
1329 plane_state->horizontal_mirror,
1330 &orthogonal_rotation,
1331 &flip_vert_scan_dir,
1332 &flip_horz_scan_dir);
1333
1334 if (orthogonal_rotation) {
1335 swap(src.width, src.height);
1336 swap(flip_vert_scan_dir, flip_horz_scan_dir);
1337 }
1338
1339 calculate_init_and_vp(
1340 flip_horz_scan_dir,
1341 recout_clip_in_recout_dst.x,
1342 data->recout.width,
1343 src.width,
1344 data->taps.h_taps,
1345 data->ratios.horz,
1346 &data->inits.h,
1347 &data->viewport.x,
1348 &data->viewport.width);
1349 calculate_init_and_vp(
1350 flip_horz_scan_dir,
1351 recout_clip_in_recout_dst.x,
1352 data->recout.width,
1353 src.width / vpc_div,
1354 data->taps.h_taps_c,
1355 data->ratios.horz_c,
1356 &data->inits.h_c,
1357 &data->viewport_c.x,
1358 &data->viewport_c.width);
1359 calculate_init_and_vp(
1360 flip_vert_scan_dir,
1361 recout_clip_in_recout_dst.y,
1362 data->recout.height,
1363 src.height,
1364 data->taps.v_taps,
1365 data->ratios.vert,
1366 &data->inits.v,
1367 &data->viewport.y,
1368 &data->viewport.height);
1369 calculate_init_and_vp(
1370 flip_vert_scan_dir,
1371 recout_clip_in_recout_dst.y,
1372 data->recout.height,
1373 src.height / vpc_div,
1374 data->taps.v_taps_c,
1375 data->ratios.vert_c,
1376 &data->inits.v_c,
1377 &data->viewport_c.y,
1378 &data->viewport_c.height);
1379 if (orthogonal_rotation) {
1380 swap(data->viewport.x, data->viewport.y);
1381 swap(data->viewport.width, data->viewport.height);
1382 swap(data->viewport_c.x, data->viewport_c.y);
1383 swap(data->viewport_c.width, data->viewport_c.height);
1384 }
1385 data->viewport.x += src.x;
1386 data->viewport.y += src.y;
1387 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1388 data->viewport_c.x += src.x / vpc_div;
1389 data->viewport_c.y += src.y / vpc_div;
1390 }
1391
convert_dp_to_controller_test_pattern(enum dp_test_pattern test_pattern)1392 static enum controller_dp_test_pattern convert_dp_to_controller_test_pattern(
1393 enum dp_test_pattern test_pattern)
1394 {
1395 enum controller_dp_test_pattern controller_test_pattern;
1396
1397 switch (test_pattern) {
1398 case DP_TEST_PATTERN_COLOR_SQUARES:
1399 controller_test_pattern =
1400 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1401 break;
1402 case DP_TEST_PATTERN_COLOR_SQUARES_CEA:
1403 controller_test_pattern =
1404 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA;
1405 break;
1406 case DP_TEST_PATTERN_VERTICAL_BARS:
1407 controller_test_pattern =
1408 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS;
1409 break;
1410 case DP_TEST_PATTERN_HORIZONTAL_BARS:
1411 controller_test_pattern =
1412 CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS;
1413 break;
1414 case DP_TEST_PATTERN_COLOR_RAMP:
1415 controller_test_pattern =
1416 CONTROLLER_DP_TEST_PATTERN_COLORRAMP;
1417 break;
1418 default:
1419 controller_test_pattern =
1420 CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1421 break;
1422 }
1423
1424 return controller_test_pattern;
1425 }
1426
convert_dp_to_controller_color_space(enum dp_test_pattern_color_space color_space)1427 static enum controller_dp_color_space convert_dp_to_controller_color_space(
1428 enum dp_test_pattern_color_space color_space)
1429 {
1430 enum controller_dp_color_space controller_color_space;
1431
1432 switch (color_space) {
1433 case DP_TEST_PATTERN_COLOR_SPACE_RGB:
1434 controller_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1435 break;
1436 case DP_TEST_PATTERN_COLOR_SPACE_YCBCR601:
1437 controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR601;
1438 break;
1439 case DP_TEST_PATTERN_COLOR_SPACE_YCBCR709:
1440 controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR709;
1441 break;
1442 case DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED:
1443 default:
1444 controller_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
1445 break;
1446 }
1447
1448 return controller_color_space;
1449 }
1450
resource_build_test_pattern_params(struct resource_context * res_ctx,struct pipe_ctx * otg_master)1451 void resource_build_test_pattern_params(struct resource_context *res_ctx,
1452 struct pipe_ctx *otg_master)
1453 {
1454 struct pipe_ctx *opp_heads[MAX_PIPES];
1455 struct test_pattern_params *params;
1456 int odm_cnt;
1457 enum controller_dp_test_pattern controller_test_pattern;
1458 enum controller_dp_color_space controller_color_space;
1459 enum dc_color_depth color_depth = otg_master->stream->timing.display_color_depth;
1460 struct rect odm_slice_src;
1461 int i;
1462
1463 controller_test_pattern = convert_dp_to_controller_test_pattern(
1464 otg_master->stream->test_pattern.type);
1465 controller_color_space = convert_dp_to_controller_color_space(
1466 otg_master->stream->test_pattern.color_space);
1467
1468 if (controller_test_pattern == CONTROLLER_DP_TEST_PATTERN_VIDEOMODE)
1469 return;
1470
1471 odm_cnt = resource_get_opp_heads_for_otg_master(otg_master, res_ctx, opp_heads);
1472
1473 for (i = 0; i < odm_cnt; i++) {
1474 odm_slice_src = resource_get_odm_slice_src_rect(opp_heads[i]);
1475 params = &opp_heads[i]->stream_res.test_pattern_params;
1476 params->test_pattern = controller_test_pattern;
1477 params->color_space = controller_color_space;
1478 params->color_depth = color_depth;
1479 params->height = odm_slice_src.height;
1480 params->offset = odm_slice_src.x;
1481 params->width = odm_slice_src.width;
1482 }
1483 }
1484
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1485 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1486 {
1487 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1488 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1489 const struct rect odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
1490 struct scaling_taps temp = {0};
1491 bool res = false;
1492
1493 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1494
1495 /* Invalid input */
1496 if (!plane_state ||
1497 !plane_state->dst_rect.width ||
1498 !plane_state->dst_rect.height ||
1499 !plane_state->src_rect.width ||
1500 !plane_state->src_rect.height) {
1501 ASSERT(0);
1502 return false;
1503 }
1504
1505 /* Timing borders are part of vactive that we are also supposed to skip in addition
1506 * to any stream dst offset. Since dm logic assumes dst is in addressable
1507 * space we need to add the left and top borders to dst offsets temporarily.
1508 * TODO: fix in DM, stream dst is supposed to be in vactive
1509 */
1510 pipe_ctx->stream->dst.x += timing->h_border_left;
1511 pipe_ctx->stream->dst.y += timing->v_border_top;
1512
1513 /* Calculate H and V active size */
1514 pipe_ctx->plane_res.scl_data.h_active = odm_slice_src.width;
1515 pipe_ctx->plane_res.scl_data.v_active = odm_slice_src.height;
1516 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1517 pipe_ctx->plane_state->format);
1518
1519 #if defined(CONFIG_DRM_AMD_DC_FP)
1520 if ((pipe_ctx->stream->ctx->dc->config.use_spl) && (!pipe_ctx->stream->ctx->dc->debug.disable_spl)) {
1521 struct spl_in *spl_in = &pipe_ctx->plane_res.spl_in;
1522 struct spl_out *spl_out = &pipe_ctx->plane_res.spl_out;
1523
1524 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1525 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1526 else
1527 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1528
1529 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1530
1531 // Convert pipe_ctx to respective input params for SPL
1532 translate_SPL_in_params_from_pipe_ctx(pipe_ctx, spl_in);
1533 /* Pass visual confirm debug information */
1534 calculate_adjust_recout_for_visual_confirm(pipe_ctx,
1535 &spl_in->debug.visual_confirm_base_offset,
1536 &spl_in->debug.visual_confirm_dpp_offset);
1537 // Set SPL output parameters to dscl_prog_data to be used for hw registers
1538 spl_out->dscl_prog_data = resource_get_dscl_prog_data(pipe_ctx);
1539 // Calculate scaler parameters from SPL
1540 res = spl_calculate_scaler_params(spl_in, spl_out);
1541 // Convert respective out params from SPL to scaler data
1542 translate_SPL_out_params_to_pipe_ctx(pipe_ctx, spl_out);
1543
1544 /* Ignore scaler failure if pipe context plane is phantom plane */
1545 if (!res && plane_state->is_phantom)
1546 res = true;
1547 } else {
1548 #endif
1549 /* depends on h_active */
1550 calculate_recout(pipe_ctx);
1551 /* depends on pixel format */
1552 calculate_scaling_ratios(pipe_ctx);
1553
1554 /*
1555 * LB calculations depend on vp size, h/v_active and scaling ratios
1556 * Setting line buffer pixel depth to 24bpp yields banding
1557 * on certain displays, such as the Sharp 4k. 36bpp is needed
1558 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1559 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1560 * precision on DCN display engines, but apparently not for DCE, as
1561 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1562 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1563 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1564 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1565 */
1566 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1567 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1568 else
1569 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1570
1571 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1572
1573 // get TAP value with 100x100 dummy data for max scaling qualify, override
1574 // if a new scaling quality required
1575 pipe_ctx->plane_res.scl_data.viewport.width = 100;
1576 pipe_ctx->plane_res.scl_data.viewport.height = 100;
1577 pipe_ctx->plane_res.scl_data.viewport_c.width = 100;
1578 pipe_ctx->plane_res.scl_data.viewport_c.height = 100;
1579 if (pipe_ctx->plane_res.xfm != NULL)
1580 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1581 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1582
1583 if (pipe_ctx->plane_res.dpp != NULL)
1584 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1585 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1586
1587 temp = pipe_ctx->plane_res.scl_data.taps;
1588
1589 calculate_inits_and_viewports(pipe_ctx);
1590
1591 if (pipe_ctx->plane_res.xfm != NULL)
1592 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1593 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1594
1595 if (pipe_ctx->plane_res.dpp != NULL)
1596 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1597 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1598
1599
1600 if (!res) {
1601 /* Try 24 bpp linebuffer */
1602 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1603
1604 if (pipe_ctx->plane_res.xfm != NULL)
1605 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1606 pipe_ctx->plane_res.xfm,
1607 &pipe_ctx->plane_res.scl_data,
1608 &plane_state->scaling_quality);
1609
1610 if (pipe_ctx->plane_res.dpp != NULL)
1611 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1612 pipe_ctx->plane_res.dpp,
1613 &pipe_ctx->plane_res.scl_data,
1614 &plane_state->scaling_quality);
1615 }
1616
1617 /* Ignore scaler failure if pipe context plane is phantom plane */
1618 if (!res && plane_state->is_phantom)
1619 res = true;
1620
1621 if (res && (pipe_ctx->plane_res.scl_data.taps.v_taps != temp.v_taps ||
1622 pipe_ctx->plane_res.scl_data.taps.h_taps != temp.h_taps ||
1623 pipe_ctx->plane_res.scl_data.taps.v_taps_c != temp.v_taps_c ||
1624 pipe_ctx->plane_res.scl_data.taps.h_taps_c != temp.h_taps_c))
1625 calculate_inits_and_viewports(pipe_ctx);
1626
1627 /*
1628 * Handle side by side and top bottom 3d recout offsets after vp calculation
1629 * since 3d is special and needs to calculate vp as if there is no recout offset
1630 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1631 */
1632 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1633 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1634 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1635 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1636 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1637 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1638 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1639 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1640 }
1641
1642 /* Clamp minimum viewport size */
1643 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1644 pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1645 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1646 pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1647 #ifdef CONFIG_DRM_AMD_DC_FP
1648 }
1649 #endif
1650 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1651 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1652 __func__,
1653 pipe_ctx->pipe_idx,
1654 pipe_ctx->plane_res.scl_data.viewport.height,
1655 pipe_ctx->plane_res.scl_data.viewport.width,
1656 pipe_ctx->plane_res.scl_data.viewport.x,
1657 pipe_ctx->plane_res.scl_data.viewport.y,
1658 pipe_ctx->plane_res.scl_data.recout.height,
1659 pipe_ctx->plane_res.scl_data.recout.width,
1660 pipe_ctx->plane_res.scl_data.recout.x,
1661 pipe_ctx->plane_res.scl_data.recout.y,
1662 pipe_ctx->plane_res.scl_data.h_active,
1663 pipe_ctx->plane_res.scl_data.v_active,
1664 plane_state->src_rect.height,
1665 plane_state->src_rect.width,
1666 plane_state->src_rect.x,
1667 plane_state->src_rect.y,
1668 plane_state->dst_rect.height,
1669 plane_state->dst_rect.width,
1670 plane_state->dst_rect.x,
1671 plane_state->dst_rect.y,
1672 plane_state->clip_rect.height,
1673 plane_state->clip_rect.width,
1674 plane_state->clip_rect.x,
1675 plane_state->clip_rect.y);
1676
1677 pipe_ctx->stream->dst.x -= timing->h_border_left;
1678 pipe_ctx->stream->dst.y -= timing->v_border_top;
1679
1680 return res;
1681 }
1682
resource_can_pipe_disable_cursor(struct pipe_ctx * pipe_ctx)1683 bool resource_can_pipe_disable_cursor(struct pipe_ctx *pipe_ctx)
1684 {
1685 struct pipe_ctx *test_pipe, *split_pipe;
1686 struct rect r1 = pipe_ctx->plane_res.scl_data.recout;
1687 int r1_right, r1_bottom;
1688 int cur_layer = pipe_ctx->plane_state->layer_index;
1689
1690 reverse_adjust_recout_for_visual_confirm(&r1, pipe_ctx);
1691 r1_right = r1.x + r1.width;
1692 r1_bottom = r1.y + r1.height;
1693
1694 /**
1695 * Disable the cursor if there's another pipe above this with a
1696 * plane that contains this pipe's viewport to prevent double cursor
1697 * and incorrect scaling artifacts.
1698 */
1699 for (test_pipe = pipe_ctx->top_pipe; test_pipe;
1700 test_pipe = test_pipe->top_pipe) {
1701 struct rect r2;
1702 int r2_right, r2_bottom;
1703 // Skip invisible layer and pipe-split plane on same layer
1704 if (!test_pipe->plane_state ||
1705 !test_pipe->plane_state->visible ||
1706 test_pipe->plane_state->layer_index == cur_layer)
1707 continue;
1708
1709 r2 = test_pipe->plane_res.scl_data.recout;
1710 reverse_adjust_recout_for_visual_confirm(&r2, test_pipe);
1711 r2_right = r2.x + r2.width;
1712 r2_bottom = r2.y + r2.height;
1713
1714 /**
1715 * There is another half plane on same layer because of
1716 * pipe-split, merge together per same height.
1717 */
1718 for (split_pipe = pipe_ctx->top_pipe; split_pipe;
1719 split_pipe = split_pipe->top_pipe)
1720 if (split_pipe->plane_state->layer_index == test_pipe->plane_state->layer_index) {
1721 struct rect r2_half;
1722
1723 r2_half = split_pipe->plane_res.scl_data.recout;
1724 reverse_adjust_recout_for_visual_confirm(&r2_half, split_pipe);
1725 r2.x = min(r2_half.x, r2.x);
1726 r2.width = r2.width + r2_half.width;
1727 r2_right = r2.x + r2.width;
1728 r2_bottom = min(r2_bottom, r2_half.y + r2_half.height);
1729 break;
1730 }
1731
1732 if (r1.x >= r2.x && r1.y >= r2.y && r1_right <= r2_right && r1_bottom <= r2_bottom)
1733 return true;
1734 }
1735
1736 return false;
1737 }
1738
1739
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1740 enum dc_status resource_build_scaling_params_for_context(
1741 const struct dc *dc,
1742 struct dc_state *context)
1743 {
1744 int i;
1745
1746 for (i = 0; i < MAX_PIPES; i++) {
1747 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1748 context->res_ctx.pipe_ctx[i].stream != NULL)
1749 if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1750 return DC_FAIL_SCALING;
1751 }
1752
1753 return DC_OK;
1754 }
1755
resource_find_free_secondary_pipe_legacy(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1756 struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
1757 struct resource_context *res_ctx,
1758 const struct resource_pool *pool,
1759 const struct pipe_ctx *primary_pipe)
1760 {
1761 int i;
1762 struct pipe_ctx *secondary_pipe = NULL;
1763
1764 /*
1765 * We add a preferred pipe mapping to avoid the chance that
1766 * MPCCs already in use will need to be reassigned to other trees.
1767 * For example, if we went with the strict, assign backwards logic:
1768 *
1769 * (State 1)
1770 * Display A on, no surface, top pipe = 0
1771 * Display B on, no surface, top pipe = 1
1772 *
1773 * (State 2)
1774 * Display A on, no surface, top pipe = 0
1775 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1776 *
1777 * (State 3)
1778 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1779 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1780 *
1781 * The state 2->3 transition requires remapping MPCC 5 from display B
1782 * to display A.
1783 *
1784 * However, with the preferred pipe logic, state 2 would look like:
1785 *
1786 * (State 2)
1787 * Display A on, no surface, top pipe = 0
1788 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1789 *
1790 * This would then cause 2->3 to not require remapping any MPCCs.
1791 */
1792 if (primary_pipe) {
1793 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1794 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1795 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1796 secondary_pipe->pipe_idx = preferred_pipe_idx;
1797 }
1798 }
1799
1800 /*
1801 * search backwards for the second pipe to keep pipe
1802 * assignment more consistent
1803 */
1804 if (!secondary_pipe)
1805 for (i = pool->pipe_count - 1; i >= 0; i--) {
1806 if (res_ctx->pipe_ctx[i].stream == NULL) {
1807 secondary_pipe = &res_ctx->pipe_ctx[i];
1808 secondary_pipe->pipe_idx = i;
1809 break;
1810 }
1811 }
1812
1813 return secondary_pipe;
1814 }
1815
resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_otg_master)1816 int resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
1817 const struct resource_context *cur_res_ctx,
1818 struct resource_context *new_res_ctx,
1819 const struct pipe_ctx *cur_otg_master)
1820 {
1821 const struct pipe_ctx *cur_sec_opp_head = cur_otg_master->next_odm_pipe;
1822 struct pipe_ctx *new_pipe;
1823 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1824
1825 while (cur_sec_opp_head) {
1826 new_pipe = &new_res_ctx->pipe_ctx[cur_sec_opp_head->pipe_idx];
1827 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1828 free_pipe_idx = cur_sec_opp_head->pipe_idx;
1829 break;
1830 }
1831 cur_sec_opp_head = cur_sec_opp_head->next_odm_pipe;
1832 }
1833
1834 return free_pipe_idx;
1835 }
1836
resource_find_free_pipe_used_in_cur_mpc_blending_tree(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_opp_head)1837 int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
1838 const struct resource_context *cur_res_ctx,
1839 struct resource_context *new_res_ctx,
1840 const struct pipe_ctx *cur_opp_head)
1841 {
1842 const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
1843 struct pipe_ctx *new_pipe;
1844 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1845
1846 while (cur_sec_dpp) {
1847 /* find a free pipe used in current opp blend tree,
1848 * this is to avoid MPO pipe switching to different opp blending
1849 * tree
1850 */
1851 new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
1852 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1853 free_pipe_idx = cur_sec_dpp->pipe_idx;
1854 break;
1855 }
1856 cur_sec_dpp = cur_sec_dpp->bottom_pipe;
1857 }
1858
1859 return free_pipe_idx;
1860 }
1861
recource_find_free_pipe_not_used_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1862 int recource_find_free_pipe_not_used_in_cur_res_ctx(
1863 const struct resource_context *cur_res_ctx,
1864 struct resource_context *new_res_ctx,
1865 const struct resource_pool *pool)
1866 {
1867 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1868 const struct pipe_ctx *new_pipe, *cur_pipe;
1869 int i;
1870
1871 for (i = 0; i < pool->pipe_count; i++) {
1872 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1873 new_pipe = &new_res_ctx->pipe_ctx[i];
1874
1875 if (resource_is_pipe_type(cur_pipe, FREE_PIPE) &&
1876 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1877 free_pipe_idx = i;
1878 break;
1879 }
1880 }
1881
1882 return free_pipe_idx;
1883 }
1884
recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1885 int recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
1886 const struct resource_context *cur_res_ctx,
1887 struct resource_context *new_res_ctx,
1888 const struct resource_pool *pool)
1889 {
1890 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1891 const struct pipe_ctx *new_pipe, *cur_pipe;
1892 int i;
1893
1894 for (i = 0; i < pool->pipe_count; i++) {
1895 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1896 new_pipe = &new_res_ctx->pipe_ctx[i];
1897
1898 if (resource_is_pipe_type(cur_pipe, OTG_MASTER) &&
1899 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1900 free_pipe_idx = i;
1901 break;
1902 }
1903 }
1904
1905 return free_pipe_idx;
1906 }
1907
resource_find_free_pipe_used_as_cur_sec_dpp(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1908 int resource_find_free_pipe_used_as_cur_sec_dpp(
1909 const struct resource_context *cur_res_ctx,
1910 struct resource_context *new_res_ctx,
1911 const struct resource_pool *pool)
1912 {
1913 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1914 const struct pipe_ctx *new_pipe, *cur_pipe;
1915 int i;
1916
1917 for (i = 0; i < pool->pipe_count; i++) {
1918 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1919 new_pipe = &new_res_ctx->pipe_ctx[i];
1920
1921 if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1922 !resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1923 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1924 free_pipe_idx = i;
1925 break;
1926 }
1927 }
1928
1929 return free_pipe_idx;
1930 }
1931
resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1932 int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
1933 const struct resource_context *cur_res_ctx,
1934 struct resource_context *new_res_ctx,
1935 const struct resource_pool *pool)
1936 {
1937 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1938 const struct pipe_ctx *new_pipe, *cur_pipe;
1939 int i;
1940
1941 for (i = 0; i < pool->pipe_count; i++) {
1942 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1943 new_pipe = &new_res_ctx->pipe_ctx[i];
1944
1945 if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1946 !resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1947 resource_get_mpc_slice_index(cur_pipe) > 0 &&
1948 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1949 free_pipe_idx = i;
1950 break;
1951 }
1952 }
1953
1954 return free_pipe_idx;
1955 }
1956
resource_find_any_free_pipe(struct resource_context * new_res_ctx,const struct resource_pool * pool)1957 int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
1958 const struct resource_pool *pool)
1959 {
1960 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1961 const struct pipe_ctx *new_pipe;
1962 int i;
1963
1964 for (i = 0; i < pool->pipe_count; i++) {
1965 new_pipe = &new_res_ctx->pipe_ctx[i];
1966
1967 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1968 free_pipe_idx = i;
1969 break;
1970 }
1971 }
1972
1973 return free_pipe_idx;
1974 }
1975
resource_is_pipe_type(const struct pipe_ctx * pipe_ctx,enum pipe_type type)1976 bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
1977 {
1978 switch (type) {
1979 case OTG_MASTER:
1980 return !pipe_ctx->prev_odm_pipe &&
1981 !pipe_ctx->top_pipe &&
1982 pipe_ctx->stream;
1983 case OPP_HEAD:
1984 return !pipe_ctx->top_pipe && pipe_ctx->stream;
1985 case DPP_PIPE:
1986 return pipe_ctx->plane_state && pipe_ctx->stream;
1987 case FREE_PIPE:
1988 return !pipe_ctx->plane_state && !pipe_ctx->stream;
1989 default:
1990 return false;
1991 }
1992 }
1993
resource_get_otg_master_for_stream(struct resource_context * res_ctx,const struct dc_stream_state * stream)1994 struct pipe_ctx *resource_get_otg_master_for_stream(
1995 struct resource_context *res_ctx,
1996 const struct dc_stream_state *stream)
1997 {
1998 int i;
1999
2000 for (i = 0; i < MAX_PIPES; i++) {
2001 if (res_ctx->pipe_ctx[i].stream == stream &&
2002 resource_is_pipe_type(&res_ctx->pipe_ctx[i], OTG_MASTER))
2003 return &res_ctx->pipe_ctx[i];
2004 }
2005 return NULL;
2006 }
2007
resource_get_opp_heads_for_otg_master(const struct pipe_ctx * otg_master,struct resource_context * res_ctx,struct pipe_ctx * opp_heads[MAX_PIPES])2008 int resource_get_opp_heads_for_otg_master(const struct pipe_ctx *otg_master,
2009 struct resource_context *res_ctx,
2010 struct pipe_ctx *opp_heads[MAX_PIPES])
2011 {
2012 struct pipe_ctx *opp_head = &res_ctx->pipe_ctx[otg_master->pipe_idx];
2013 struct dc *dc = otg_master->stream->ctx->dc;
2014 int i = 0;
2015
2016 DC_LOGGER_INIT(dc->ctx->logger);
2017
2018 if (!resource_is_pipe_type(otg_master, OTG_MASTER)) {
2019 DC_LOG_WARNING("%s called from a non OTG master, something "
2020 "is wrong in the pipe configuration",
2021 __func__);
2022 ASSERT(0);
2023 return 0;
2024 }
2025 while (opp_head) {
2026 ASSERT(i < MAX_PIPES);
2027 opp_heads[i++] = opp_head;
2028 opp_head = opp_head->next_odm_pipe;
2029 }
2030 return i;
2031 }
2032
resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx * opp_head,struct resource_context * res_ctx,struct pipe_ctx * dpp_pipes[MAX_PIPES])2033 int resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx *opp_head,
2034 struct resource_context *res_ctx,
2035 struct pipe_ctx *dpp_pipes[MAX_PIPES])
2036 {
2037 struct pipe_ctx *pipe = &res_ctx->pipe_ctx[opp_head->pipe_idx];
2038 int i = 0;
2039
2040 if (!resource_is_pipe_type(opp_head, OPP_HEAD)) {
2041 ASSERT(0);
2042 return 0;
2043 }
2044 while (pipe && resource_is_pipe_type(pipe, DPP_PIPE)) {
2045 ASSERT(i < MAX_PIPES);
2046 dpp_pipes[i++] = pipe;
2047 pipe = pipe->bottom_pipe;
2048 }
2049 return i;
2050 }
2051
resource_get_dpp_pipes_for_plane(const struct dc_plane_state * plane,struct resource_context * res_ctx,struct pipe_ctx * dpp_pipes[MAX_PIPES])2052 int resource_get_dpp_pipes_for_plane(const struct dc_plane_state *plane,
2053 struct resource_context *res_ctx,
2054 struct pipe_ctx *dpp_pipes[MAX_PIPES])
2055 {
2056 int i = 0, j;
2057 struct pipe_ctx *pipe;
2058
2059 for (j = 0; j < MAX_PIPES; j++) {
2060 pipe = &res_ctx->pipe_ctx[j];
2061 if (pipe->plane_state == plane && pipe->prev_odm_pipe == NULL) {
2062 if (resource_is_pipe_type(pipe, OPP_HEAD) ||
2063 pipe->top_pipe->plane_state != plane)
2064 break;
2065 }
2066 }
2067
2068 if (j < MAX_PIPES) {
2069 if (pipe->next_odm_pipe)
2070 while (pipe) {
2071 dpp_pipes[i++] = pipe;
2072 pipe = pipe->next_odm_pipe;
2073 }
2074 else
2075 while (pipe && pipe->plane_state == plane) {
2076 dpp_pipes[i++] = pipe;
2077 pipe = pipe->bottom_pipe;
2078 }
2079 }
2080 return i;
2081 }
2082
resource_get_otg_master(const struct pipe_ctx * pipe_ctx)2083 struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
2084 {
2085 struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
2086
2087 while (otg_master->prev_odm_pipe)
2088 otg_master = otg_master->prev_odm_pipe;
2089 return otg_master;
2090 }
2091
resource_get_opp_head(const struct pipe_ctx * pipe_ctx)2092 struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
2093 {
2094 struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
2095
2096 ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
2097 while (opp_head->top_pipe)
2098 opp_head = opp_head->top_pipe;
2099 return opp_head;
2100 }
2101
resource_get_primary_dpp_pipe(const struct pipe_ctx * dpp_pipe)2102 struct pipe_ctx *resource_get_primary_dpp_pipe(const struct pipe_ctx *dpp_pipe)
2103 {
2104 struct pipe_ctx *pri_dpp_pipe = (struct pipe_ctx *) dpp_pipe;
2105
2106 ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
2107 while (pri_dpp_pipe->prev_odm_pipe)
2108 pri_dpp_pipe = pri_dpp_pipe->prev_odm_pipe;
2109 while (pri_dpp_pipe->top_pipe &&
2110 pri_dpp_pipe->top_pipe->plane_state == pri_dpp_pipe->plane_state)
2111 pri_dpp_pipe = pri_dpp_pipe->top_pipe;
2112 return pri_dpp_pipe;
2113 }
2114
2115
resource_get_mpc_slice_index(const struct pipe_ctx * pipe_ctx)2116 int resource_get_mpc_slice_index(const struct pipe_ctx *pipe_ctx)
2117 {
2118 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
2119 int index = 0;
2120
2121 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
2122 index++;
2123 split_pipe = split_pipe->top_pipe;
2124 }
2125
2126 return index;
2127 }
2128
resource_get_mpc_slice_count(const struct pipe_ctx * pipe)2129 int resource_get_mpc_slice_count(const struct pipe_ctx *pipe)
2130 {
2131 int mpc_split_count = 1;
2132 const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
2133
2134 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
2135 mpc_split_count++;
2136 other_pipe = other_pipe->bottom_pipe;
2137 }
2138 other_pipe = pipe->top_pipe;
2139 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
2140 mpc_split_count++;
2141 other_pipe = other_pipe->top_pipe;
2142 }
2143
2144 return mpc_split_count;
2145 }
2146
resource_get_odm_slice_count(const struct pipe_ctx * pipe)2147 int resource_get_odm_slice_count(const struct pipe_ctx *pipe)
2148 {
2149 int odm_split_count = 1;
2150
2151 pipe = resource_get_otg_master(pipe);
2152
2153 while (pipe->next_odm_pipe) {
2154 odm_split_count++;
2155 pipe = pipe->next_odm_pipe;
2156 }
2157 return odm_split_count;
2158 }
2159
resource_get_odm_slice_index(const struct pipe_ctx * pipe_ctx)2160 int resource_get_odm_slice_index(const struct pipe_ctx *pipe_ctx)
2161 {
2162 int index = 0;
2163
2164 pipe_ctx = resource_get_opp_head(pipe_ctx);
2165 if (!pipe_ctx)
2166 return 0;
2167
2168 while (pipe_ctx->prev_odm_pipe) {
2169 index++;
2170 pipe_ctx = pipe_ctx->prev_odm_pipe;
2171 }
2172
2173 return index;
2174 }
2175
resource_get_odm_slice_dst_width(struct pipe_ctx * otg_master,bool is_last_segment)2176 int resource_get_odm_slice_dst_width(struct pipe_ctx *otg_master,
2177 bool is_last_segment)
2178 {
2179 const struct dc_crtc_timing *timing;
2180 int count;
2181 int h_active;
2182 int width;
2183 bool two_pixel_alignment_required = false;
2184
2185 if (!otg_master || !otg_master->stream)
2186 return 0;
2187
2188 timing = &otg_master->stream->timing;
2189 count = resource_get_odm_slice_count(otg_master);
2190 h_active = timing->h_addressable +
2191 timing->h_border_left +
2192 timing->h_border_right +
2193 otg_master->dsc_padding_params.dsc_hactive_padding;
2194 width = h_active / count;
2195
2196 if (otg_master->stream_res.tg)
2197 two_pixel_alignment_required =
2198 otg_master->stream_res.tg->funcs->is_two_pixels_per_container(timing) ||
2199 /*
2200 * 422 is sub-sampled horizontally. 1 set of chromas
2201 * (Cb/Cr) is shared for 2 lumas (i.e 2 Y values).
2202 * Therefore even if 422 is still 1 pixel per container,
2203 * ODM segment width still needs to be 2 pixel aligned.
2204 */
2205 timing->pixel_encoding == PIXEL_ENCODING_YCBCR422;
2206 if ((width % 2) && two_pixel_alignment_required)
2207 width++;
2208
2209 return is_last_segment ?
2210 h_active - width * (count - 1) :
2211 width;
2212 }
2213
resource_get_odm_slice_dst_rect(struct pipe_ctx * pipe_ctx)2214 struct rect resource_get_odm_slice_dst_rect(struct pipe_ctx *pipe_ctx)
2215 {
2216 const struct dc_stream_state *stream = pipe_ctx->stream;
2217 bool is_last_odm_slice = pipe_ctx->next_odm_pipe == NULL;
2218 struct pipe_ctx *otg_master = resource_get_otg_master(pipe_ctx);
2219 int odm_slice_idx = resource_get_odm_slice_index(pipe_ctx);
2220 int odm_segment_offset = resource_get_odm_slice_dst_width(otg_master, false);
2221 struct rect odm_slice_dst;
2222
2223 odm_slice_dst.x = odm_segment_offset * odm_slice_idx;
2224 odm_slice_dst.width = resource_get_odm_slice_dst_width(otg_master, is_last_odm_slice);
2225 odm_slice_dst.y = 0;
2226 odm_slice_dst.height = stream->timing.v_addressable +
2227 stream->timing.v_border_bottom +
2228 stream->timing.v_border_top;
2229
2230 return odm_slice_dst;
2231 }
2232
resource_get_odm_slice_src_rect(struct pipe_ctx * pipe_ctx)2233 struct rect resource_get_odm_slice_src_rect(struct pipe_ctx *pipe_ctx)
2234 {
2235 struct rect odm_slice_dst;
2236 struct rect odm_slice_src;
2237 struct pipe_ctx *opp_head = resource_get_opp_head(pipe_ctx);
2238 struct output_pixel_processor *opp = opp_head->stream_res.opp;
2239 uint32_t left_edge_extra_pixel_count;
2240
2241 odm_slice_dst = resource_get_odm_slice_dst_rect(opp_head);
2242 odm_slice_src = odm_slice_dst;
2243
2244 if (opp && opp->funcs->opp_get_left_edge_extra_pixel_count)
2245 left_edge_extra_pixel_count =
2246 opp->funcs->opp_get_left_edge_extra_pixel_count(
2247 opp, pipe_ctx->stream->timing.pixel_encoding,
2248 resource_is_pipe_type(opp_head, OTG_MASTER));
2249 else
2250 left_edge_extra_pixel_count = 0;
2251
2252 odm_slice_src.x -= left_edge_extra_pixel_count;
2253 odm_slice_src.width += left_edge_extra_pixel_count;
2254
2255 return odm_slice_src;
2256 }
2257
resource_is_pipe_topology_changed(const struct dc_state * state_a,const struct dc_state * state_b)2258 bool resource_is_pipe_topology_changed(const struct dc_state *state_a,
2259 const struct dc_state *state_b)
2260 {
2261 int i;
2262 const struct pipe_ctx *pipe_a, *pipe_b;
2263
2264 if (state_a->stream_count != state_b->stream_count)
2265 return true;
2266
2267 for (i = 0; i < MAX_PIPES; i++) {
2268 pipe_a = &state_a->res_ctx.pipe_ctx[i];
2269 pipe_b = &state_b->res_ctx.pipe_ctx[i];
2270
2271 if (pipe_a->stream && !pipe_b->stream)
2272 return true;
2273 else if (!pipe_a->stream && pipe_b->stream)
2274 return true;
2275
2276 if (pipe_a->plane_state && !pipe_b->plane_state)
2277 return true;
2278 else if (!pipe_a->plane_state && pipe_b->plane_state)
2279 return true;
2280
2281 if (pipe_a->bottom_pipe && pipe_b->bottom_pipe) {
2282 if (pipe_a->bottom_pipe->pipe_idx != pipe_b->bottom_pipe->pipe_idx)
2283 return true;
2284 if ((pipe_a->bottom_pipe->plane_state == pipe_a->plane_state) &&
2285 (pipe_b->bottom_pipe->plane_state != pipe_b->plane_state))
2286 return true;
2287 else if ((pipe_a->bottom_pipe->plane_state != pipe_a->plane_state) &&
2288 (pipe_b->bottom_pipe->plane_state == pipe_b->plane_state))
2289 return true;
2290 } else if (pipe_a->bottom_pipe || pipe_b->bottom_pipe) {
2291 return true;
2292 }
2293
2294 if (pipe_a->next_odm_pipe && pipe_b->next_odm_pipe) {
2295 if (pipe_a->next_odm_pipe->pipe_idx != pipe_b->next_odm_pipe->pipe_idx)
2296 return true;
2297 } else if (pipe_a->next_odm_pipe || pipe_b->next_odm_pipe) {
2298 return true;
2299 }
2300 }
2301 return false;
2302 }
2303
resource_is_odm_topology_changed(const struct pipe_ctx * otg_master_a,const struct pipe_ctx * otg_master_b)2304 bool resource_is_odm_topology_changed(const struct pipe_ctx *otg_master_a,
2305 const struct pipe_ctx *otg_master_b)
2306 {
2307 const struct pipe_ctx *opp_head_a = otg_master_a;
2308 const struct pipe_ctx *opp_head_b = otg_master_b;
2309
2310 if (!resource_is_pipe_type(otg_master_a, OTG_MASTER) ||
2311 !resource_is_pipe_type(otg_master_b, OTG_MASTER))
2312 return true;
2313
2314 while (opp_head_a && opp_head_b) {
2315 if (opp_head_a->stream_res.opp != opp_head_b->stream_res.opp)
2316 return true;
2317 if ((opp_head_a->next_odm_pipe && !opp_head_b->next_odm_pipe) ||
2318 (!opp_head_a->next_odm_pipe && opp_head_b->next_odm_pipe))
2319 return true;
2320 opp_head_a = opp_head_a->next_odm_pipe;
2321 opp_head_b = opp_head_b->next_odm_pipe;
2322 }
2323
2324 return false;
2325 }
2326
2327 /*
2328 * Sample log:
2329 * pipe topology update
2330 * ________________________
2331 * | plane0 slice0 stream0|
2332 * |DPP0----OPP0----OTG0----| <--- case 0 (OTG master pipe with plane)
2333 * | plane1 | | |
2334 * |DPP1----| | | <--- case 5 (DPP pipe not in last slice)
2335 * | plane0 slice1 | |
2336 * |DPP2----OPP2----| | <--- case 2 (OPP head pipe with plane)
2337 * | plane1 | |
2338 * |DPP3----| | <--- case 4 (DPP pipe in last slice)
2339 * | slice0 stream1|
2340 * |DPG4----OPP4----OTG4----| <--- case 1 (OTG master pipe without plane)
2341 * | slice1 | |
2342 * |DPG5----OPP5----| | <--- case 3 (OPP head pipe without plane)
2343 * |________________________|
2344 */
2345
resource_log_pipe(struct dc * dc,struct pipe_ctx * pipe,int stream_idx,int slice_idx,int plane_idx,int slice_count,bool is_primary,bool is_phantom_pipe)2346 static void resource_log_pipe(struct dc *dc, struct pipe_ctx *pipe,
2347 int stream_idx, int slice_idx, int plane_idx, int slice_count,
2348 bool is_primary, bool is_phantom_pipe)
2349 {
2350 DC_LOGGER_INIT(dc->ctx->logger);
2351
2352 // new format for logging: bit storing code
2353 if (slice_idx == 0 && plane_idx == 0 && is_primary) {
2354 /* case 0 (OTG master pipe with plane) */
2355 DC_LOG_DC(" | plane%d slice%d stream%d|",
2356 plane_idx, slice_idx, stream_idx);
2357 DC_LOG_DC(" |DPP%d----OPP%d----OTG%d----|",
2358 pipe->plane_res.dpp->inst,
2359 pipe->stream_res.opp->inst,
2360 pipe->stream_res.tg->inst);
2361 capture_pipe_topology_data(dc, plane_idx, slice_idx, stream_idx,
2362 pipe->plane_res.dpp->inst,
2363 pipe->stream_res.opp->inst,
2364 pipe->stream_res.tg->inst, is_phantom_pipe);
2365 } else if (slice_idx == 0 && plane_idx == -1) {
2366 /* case 1 (OTG master pipe without plane) */
2367 DC_LOG_DC(" | slice%d stream%d|",
2368 slice_idx, stream_idx);
2369 DC_LOG_DC(" |DPG%d----OPP%d----OTG%d----|",
2370 pipe->stream_res.opp->inst,
2371 pipe->stream_res.opp->inst,
2372 pipe->stream_res.tg->inst);
2373 capture_pipe_topology_data(dc, 0xF, slice_idx, stream_idx,
2374 pipe->plane_res.dpp->inst,
2375 pipe->stream_res.opp->inst,
2376 pipe->stream_res.tg->inst, is_phantom_pipe);
2377 } else if (slice_idx != 0 && plane_idx == 0 && is_primary) {
2378 /* case 2 (OPP head pipe with plane) */
2379 DC_LOG_DC(" | plane%d slice%d | |",
2380 plane_idx, slice_idx);
2381 DC_LOG_DC(" |DPP%d----OPP%d----| |",
2382 pipe->plane_res.dpp->inst,
2383 pipe->stream_res.opp->inst);
2384 capture_pipe_topology_data(dc, plane_idx, slice_idx, stream_idx,
2385 pipe->plane_res.dpp->inst,
2386 pipe->stream_res.opp->inst,
2387 pipe->stream_res.tg->inst, is_phantom_pipe);
2388 } else if (slice_idx != 0 && plane_idx == -1) {
2389 /* case 3 (OPP head pipe without plane) */
2390 DC_LOG_DC(" | slice%d | |", slice_idx);
2391 DC_LOG_DC(" |DPG%d----OPP%d----| |",
2392 pipe->plane_res.dpp->inst,
2393 pipe->stream_res.opp->inst);
2394 capture_pipe_topology_data(dc, 0xF, slice_idx, stream_idx,
2395 pipe->plane_res.dpp->inst,
2396 pipe->stream_res.opp->inst,
2397 pipe->stream_res.tg->inst, is_phantom_pipe);
2398 } else if (slice_idx == slice_count - 1) {
2399 /* case 4 (DPP pipe in last slice) */
2400 DC_LOG_DC(" | plane%d | |", plane_idx);
2401 DC_LOG_DC(" |DPP%d----| |",
2402 pipe->plane_res.dpp->inst);
2403 capture_pipe_topology_data(dc, plane_idx, slice_idx, stream_idx,
2404 pipe->plane_res.dpp->inst,
2405 pipe->stream_res.opp->inst,
2406 pipe->stream_res.tg->inst, is_phantom_pipe);
2407 } else {
2408 /* case 5 (DPP pipe not in last slice) */
2409 DC_LOG_DC(" | plane%d | | |", plane_idx);
2410 DC_LOG_DC(" |DPP%d----| | |",
2411 pipe->plane_res.dpp->inst);
2412 capture_pipe_topology_data(dc, plane_idx, slice_idx, stream_idx,
2413 pipe->plane_res.dpp->inst,
2414 pipe->stream_res.opp->inst,
2415 pipe->stream_res.tg->inst, is_phantom_pipe);
2416 }
2417 }
2418
resource_log_pipe_for_stream(struct dc * dc,struct dc_state * state,struct pipe_ctx * otg_master,int stream_idx,bool is_phantom_pipe)2419 static void resource_log_pipe_for_stream(struct dc *dc, struct dc_state *state,
2420 struct pipe_ctx *otg_master, int stream_idx, bool is_phantom_pipe)
2421 {
2422 struct pipe_ctx *opp_heads[MAX_PIPES];
2423 struct pipe_ctx *dpp_pipes[MAX_PIPES];
2424
2425 int slice_idx, dpp_idx, plane_idx, slice_count, dpp_count;
2426 bool is_primary;
2427 DC_LOGGER_INIT(dc->ctx->logger);
2428
2429 slice_count = resource_get_opp_heads_for_otg_master(otg_master,
2430 &state->res_ctx, opp_heads);
2431 for (slice_idx = 0; slice_idx < slice_count; slice_idx++) {
2432 plane_idx = -1;
2433 if (opp_heads[slice_idx]->plane_state) {
2434 dpp_count = resource_get_dpp_pipes_for_opp_head(
2435 opp_heads[slice_idx],
2436 &state->res_ctx,
2437 dpp_pipes);
2438 for (dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++) {
2439 is_primary = !dpp_pipes[dpp_idx]->top_pipe ||
2440 dpp_pipes[dpp_idx]->top_pipe->plane_state != dpp_pipes[dpp_idx]->plane_state;
2441 if (is_primary)
2442 plane_idx++;
2443 resource_log_pipe(dc, dpp_pipes[dpp_idx],
2444 stream_idx, slice_idx,
2445 plane_idx, slice_count,
2446 is_primary, is_phantom_pipe);
2447 }
2448 } else {
2449 resource_log_pipe(dc, opp_heads[slice_idx],
2450 stream_idx, slice_idx, plane_idx,
2451 slice_count, true, is_phantom_pipe);
2452 }
2453
2454 }
2455 }
2456
resource_stream_to_stream_idx(struct dc_state * state,struct dc_stream_state * stream)2457 static int resource_stream_to_stream_idx(struct dc_state *state,
2458 struct dc_stream_state *stream)
2459 {
2460 int i, stream_idx = -1;
2461
2462 for (i = 0; i < state->stream_count; i++)
2463 if (state->streams[i] == stream) {
2464 stream_idx = i;
2465 break;
2466 }
2467
2468 /* never return negative array index */
2469 if (stream_idx == -1) {
2470 ASSERT(0);
2471 return 0;
2472 }
2473
2474 return stream_idx;
2475 }
2476
resource_log_pipe_topology_update(struct dc * dc,struct dc_state * state)2477 void resource_log_pipe_topology_update(struct dc *dc, struct dc_state *state)
2478 {
2479 struct pipe_ctx *otg_master;
2480 int stream_idx, phantom_stream_idx;
2481 DC_LOGGER_INIT(dc->ctx->logger);
2482 bool is_phantom_pipe = false;
2483
2484 // Start a new snapshot for this topology update
2485 start_new_topology_snapshot(dc, state);
2486
2487 DC_LOG_DC(" pipe topology update");
2488 DC_LOG_DC(" ________________________");
2489 for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
2490 if (state->streams[stream_idx]->is_phantom)
2491 continue;
2492
2493 otg_master = resource_get_otg_master_for_stream(
2494 &state->res_ctx, state->streams[stream_idx]);
2495
2496 if (!otg_master)
2497 continue;
2498
2499 resource_log_pipe_for_stream(dc, state, otg_master, stream_idx, is_phantom_pipe);
2500 }
2501 if (state->phantom_stream_count > 0) {
2502 is_phantom_pipe = true;
2503 DC_LOG_DC(" | (phantom pipes) |");
2504 for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
2505 if (state->stream_status[stream_idx].mall_stream_config.type != SUBVP_MAIN)
2506 continue;
2507
2508 phantom_stream_idx = resource_stream_to_stream_idx(state,
2509 state->stream_status[stream_idx].mall_stream_config.paired_stream);
2510 otg_master = resource_get_otg_master_for_stream(
2511 &state->res_ctx, state->streams[phantom_stream_idx]);
2512 if (!otg_master)
2513 continue;
2514
2515 resource_log_pipe_for_stream(dc, state, otg_master, stream_idx, is_phantom_pipe);
2516 }
2517 }
2518 DC_LOG_DC(" |________________________|\n");
2519 }
2520
get_tail_pipe(struct pipe_ctx * head_pipe)2521 static struct pipe_ctx *get_tail_pipe(
2522 struct pipe_ctx *head_pipe)
2523 {
2524 struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
2525
2526 while (tail_pipe) {
2527 head_pipe = tail_pipe;
2528 tail_pipe = tail_pipe->bottom_pipe;
2529 }
2530
2531 return head_pipe;
2532 }
2533
get_last_opp_head(struct pipe_ctx * opp_head)2534 static struct pipe_ctx *get_last_opp_head(
2535 struct pipe_ctx *opp_head)
2536 {
2537 ASSERT(resource_is_pipe_type(opp_head, OPP_HEAD));
2538 while (opp_head->next_odm_pipe)
2539 opp_head = opp_head->next_odm_pipe;
2540 return opp_head;
2541 }
2542
get_last_dpp_pipe_in_mpcc_combine(struct pipe_ctx * dpp_pipe)2543 static struct pipe_ctx *get_last_dpp_pipe_in_mpcc_combine(
2544 struct pipe_ctx *dpp_pipe)
2545 {
2546 ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
2547 while (dpp_pipe->bottom_pipe &&
2548 dpp_pipe->plane_state == dpp_pipe->bottom_pipe->plane_state)
2549 dpp_pipe = dpp_pipe->bottom_pipe;
2550 return dpp_pipe;
2551 }
2552
update_pipe_params_after_odm_slice_count_change(struct pipe_ctx * otg_master,struct dc_state * context,const struct resource_pool * pool)2553 static bool update_pipe_params_after_odm_slice_count_change(
2554 struct pipe_ctx *otg_master,
2555 struct dc_state *context,
2556 const struct resource_pool *pool)
2557 {
2558 int i;
2559 struct pipe_ctx *pipe;
2560 bool result = true;
2561
2562 for (i = 0; i < pool->pipe_count && result; i++) {
2563 pipe = &context->res_ctx.pipe_ctx[i];
2564 if (pipe->stream == otg_master->stream && pipe->plane_state)
2565 result = resource_build_scaling_params(pipe);
2566 }
2567
2568 if (pool->funcs->build_pipe_pix_clk_params)
2569 pool->funcs->build_pipe_pix_clk_params(otg_master);
2570
2571 resource_build_test_pattern_params(&context->res_ctx, otg_master);
2572
2573 return result;
2574 }
2575
update_pipe_params_after_mpc_slice_count_change(const struct dc_plane_state * plane,struct dc_state * context,const struct resource_pool * pool)2576 static bool update_pipe_params_after_mpc_slice_count_change(
2577 const struct dc_plane_state *plane,
2578 struct dc_state *context,
2579 const struct resource_pool *pool)
2580 {
2581 int i;
2582 struct pipe_ctx *pipe;
2583 bool result = true;
2584
2585 for (i = 0; i < pool->pipe_count && result; i++) {
2586 pipe = &context->res_ctx.pipe_ctx[i];
2587 if (pipe->plane_state == plane)
2588 result = resource_build_scaling_params(pipe);
2589 }
2590 return result;
2591 }
2592
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2593 static int acquire_first_split_pipe(
2594 struct resource_context *res_ctx,
2595 const struct resource_pool *pool,
2596 struct dc_stream_state *stream)
2597 {
2598 int i;
2599
2600 for (i = 0; i < pool->pipe_count; i++) {
2601 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
2602
2603 if (split_pipe->top_pipe &&
2604 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
2605 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
2606 if (split_pipe->bottom_pipe)
2607 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
2608
2609 if (split_pipe->top_pipe->plane_state)
2610 resource_build_scaling_params(split_pipe->top_pipe);
2611
2612 memset(split_pipe, 0, sizeof(*split_pipe));
2613 split_pipe->stream_res.tg = pool->timing_generators[i];
2614 split_pipe->plane_res.hubp = pool->hubps[i];
2615 split_pipe->plane_res.ipp = pool->ipps[i];
2616 split_pipe->plane_res.dpp = pool->dpps[i];
2617 split_pipe->stream_res.opp = pool->opps[i];
2618 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
2619 split_pipe->pipe_idx = i;
2620
2621 split_pipe->stream = stream;
2622 return i;
2623 }
2624 }
2625 return FREE_PIPE_INDEX_NOT_FOUND;
2626 }
2627
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)2628 static void update_stream_engine_usage(
2629 struct resource_context *res_ctx,
2630 const struct resource_pool *pool,
2631 struct stream_encoder *stream_enc,
2632 bool acquired)
2633 {
2634 int i;
2635
2636 for (i = 0; i < pool->stream_enc_count; i++) {
2637 if (pool->stream_enc[i] == stream_enc)
2638 res_ctx->is_stream_enc_acquired[i] = acquired;
2639 }
2640 }
2641
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)2642 static void update_hpo_dp_stream_engine_usage(
2643 struct resource_context *res_ctx,
2644 const struct resource_pool *pool,
2645 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
2646 bool acquired)
2647 {
2648 int i;
2649
2650 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2651 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
2652 res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
2653 }
2654 }
2655
find_acquired_hpo_dp_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)2656 static inline int find_acquired_hpo_dp_link_enc_for_link(
2657 const struct resource_context *res_ctx,
2658 const struct dc_link *link)
2659 {
2660 int i;
2661
2662 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
2663 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
2664 res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
2665 return i;
2666
2667 return -1;
2668 }
2669
find_free_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * pool)2670 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2671 const struct resource_pool *pool)
2672 {
2673 int i;
2674
2675 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2676 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2677 break;
2678
2679 return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2680 i < pool->hpo_dp_link_enc_count) ? i : -1;
2681 }
2682
acquire_hpo_dp_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2683 static inline void acquire_hpo_dp_link_enc(
2684 struct resource_context *res_ctx,
2685 unsigned int link_index,
2686 int enc_index)
2687 {
2688 res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2689 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2690 }
2691
retain_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2692 static inline void retain_hpo_dp_link_enc(
2693 struct resource_context *res_ctx,
2694 int enc_index)
2695 {
2696 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2697 }
2698
release_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2699 static inline void release_hpo_dp_link_enc(
2700 struct resource_context *res_ctx,
2701 int enc_index)
2702 {
2703 ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2704 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2705 }
2706
add_hpo_dp_link_enc_to_ctx(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2707 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2708 const struct resource_pool *pool,
2709 struct pipe_ctx *pipe_ctx,
2710 struct dc_stream_state *stream)
2711 {
2712 int enc_index;
2713
2714 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2715
2716 if (enc_index >= 0) {
2717 retain_hpo_dp_link_enc(res_ctx, enc_index);
2718 } else {
2719 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2720 if (enc_index >= 0)
2721 acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2722 }
2723
2724 if (enc_index >= 0)
2725 pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2726
2727 return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2728 }
2729
remove_hpo_dp_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2730 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2731 struct pipe_ctx *pipe_ctx,
2732 struct dc_stream_state *stream)
2733 {
2734 int enc_index;
2735
2736 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2737
2738 if (enc_index >= 0) {
2739 release_hpo_dp_link_enc(res_ctx, enc_index);
2740 pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2741 }
2742 }
2743
find_acquired_dio_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)2744 static inline int find_acquired_dio_link_enc_for_link(
2745 const struct resource_context *res_ctx,
2746 const struct dc_link *link)
2747 {
2748 int i;
2749
2750 for (i = 0; i < ARRAY_SIZE(res_ctx->dio_link_enc_ref_cnts); i++)
2751 if (res_ctx->dio_link_enc_ref_cnts[i] > 0 &&
2752 res_ctx->dio_link_enc_to_link_idx[i] == link->link_index)
2753 return i;
2754
2755 return -1;
2756 }
2757
find_fixed_dio_link_enc(const struct dc_link * link)2758 static inline int find_fixed_dio_link_enc(const struct dc_link *link)
2759 {
2760 /* the 8b10b dp phy can only use fixed link encoder */
2761 return link->eng_id;
2762 }
2763
find_free_dio_link_enc(const struct resource_context * res_ctx,const struct dc_link * link,const struct resource_pool * pool,struct dc_stream_state * stream)2764 static inline int find_free_dio_link_enc(const struct resource_context *res_ctx,
2765 const struct dc_link *link, const struct resource_pool *pool, struct dc_stream_state *stream)
2766 {
2767 int i, j = -1;
2768 int stream_enc_inst = -1;
2769 int enc_count = pool->dig_link_enc_count;
2770
2771 /* Find stream encoder instance for the stream */
2772 if (stream) {
2773 for (i = 0; i < pool->pipe_count; i++) {
2774 if ((res_ctx->pipe_ctx[i].stream == stream) &&
2775 (res_ctx->pipe_ctx[i].stream_res.stream_enc != NULL)) {
2776 stream_enc_inst = res_ctx->pipe_ctx[i].stream_res.stream_enc->id;
2777 break;
2778 }
2779 }
2780 }
2781
2782 /* Assign dpia preferred > stream enc instance > available */
2783 for (i = 0; i < enc_count; i++) {
2784 if (res_ctx->dio_link_enc_ref_cnts[i] == 0) {
2785 if (j == -1)
2786 j = i;
2787
2788 if (link->dpia_preferred_eng_id == i) {
2789 j = i;
2790 break;
2791 }
2792
2793 if (stream_enc_inst == i) {
2794 j = stream_enc_inst;
2795 }
2796 }
2797 }
2798 return j;
2799 }
2800
acquire_dio_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2801 static inline void acquire_dio_link_enc(
2802 struct resource_context *res_ctx,
2803 unsigned int link_index,
2804 int enc_index)
2805 {
2806 res_ctx->dio_link_enc_to_link_idx[enc_index] = link_index;
2807 res_ctx->dio_link_enc_ref_cnts[enc_index] = 1;
2808 }
2809
retain_dio_link_enc(struct resource_context * res_ctx,int enc_index)2810 static inline void retain_dio_link_enc(
2811 struct resource_context *res_ctx,
2812 int enc_index)
2813 {
2814 res_ctx->dio_link_enc_ref_cnts[enc_index]++;
2815 }
2816
release_dio_link_enc(struct resource_context * res_ctx,int enc_index)2817 static inline void release_dio_link_enc(
2818 struct resource_context *res_ctx,
2819 int enc_index)
2820 {
2821 ASSERT(res_ctx->dio_link_enc_ref_cnts[enc_index] > 0);
2822 res_ctx->dio_link_enc_ref_cnts[enc_index]--;
2823 }
2824
is_dio_enc_acquired_by_other_link(const struct dc_link * link,int enc_index,int * link_index)2825 static bool is_dio_enc_acquired_by_other_link(const struct dc_link *link,
2826 int enc_index,
2827 int *link_index)
2828 {
2829 const struct dc *dc = link->dc;
2830 const struct resource_context *res_ctx = &dc->current_state->res_ctx;
2831
2832 /* pass the link_index that acquired the enc_index */
2833 if (res_ctx->dio_link_enc_ref_cnts[enc_index] > 0 &&
2834 res_ctx->dio_link_enc_to_link_idx[enc_index] != link->link_index) {
2835 *link_index = res_ctx->dio_link_enc_to_link_idx[enc_index];
2836 return true;
2837 }
2838
2839 return false;
2840 }
2841
swap_dio_link_enc_to_muxable_ctx(struct dc_state * context,const struct resource_pool * pool,int new_encoder,int old_encoder)2842 static void swap_dio_link_enc_to_muxable_ctx(struct dc_state *context,
2843 const struct resource_pool *pool,
2844 int new_encoder,
2845 int old_encoder)
2846 {
2847 struct resource_context *res_ctx = &context->res_ctx;
2848 int stream_count = context->stream_count;
2849 int i = 0;
2850
2851 res_ctx->dio_link_enc_ref_cnts[new_encoder] = res_ctx->dio_link_enc_ref_cnts[old_encoder];
2852 res_ctx->dio_link_enc_to_link_idx[new_encoder] = res_ctx->dio_link_enc_to_link_idx[old_encoder];
2853 res_ctx->dio_link_enc_ref_cnts[old_encoder] = 0;
2854
2855 for (i = 0; i < stream_count; i++) {
2856 struct dc_stream_state *stream = context->streams[i];
2857 struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
2858
2859 if (pipe_ctx && pipe_ctx->link_res.dio_link_enc == pool->link_encoders[old_encoder])
2860 pipe_ctx->link_res.dio_link_enc = pool->link_encoders[new_encoder];
2861 }
2862 }
2863
add_dio_link_enc_to_ctx(const struct dc * dc,struct dc_state * context,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2864 static bool add_dio_link_enc_to_ctx(const struct dc *dc,
2865 struct dc_state *context,
2866 const struct resource_pool *pool,
2867 struct pipe_ctx *pipe_ctx,
2868 struct dc_stream_state *stream)
2869 {
2870 struct resource_context *res_ctx = &context->res_ctx;
2871 int enc_index;
2872
2873 enc_index = find_acquired_dio_link_enc_for_link(res_ctx, stream->link);
2874
2875 if (enc_index >= 0) {
2876 retain_dio_link_enc(res_ctx, enc_index);
2877 } else {
2878 if (stream->link->is_dig_mapping_flexible)
2879 enc_index = find_free_dio_link_enc(res_ctx, stream->link, pool, stream);
2880 else {
2881 int link_index = 0;
2882
2883 enc_index = find_fixed_dio_link_enc(stream->link);
2884 /* Fixed mapping link can only use its fixed link encoder.
2885 * If the encoder is acquired by other link then get a new free encoder and swap the new
2886 * one into the acquiring link.
2887 */
2888 if (enc_index >= 0 && is_dio_enc_acquired_by_other_link(stream->link, enc_index, &link_index)) {
2889 int new_enc_index = find_free_dio_link_enc(res_ctx, dc->links[link_index], pool, stream);
2890
2891 if (new_enc_index >= 0)
2892 swap_dio_link_enc_to_muxable_ctx(context, pool, new_enc_index, enc_index);
2893 else
2894 return false;
2895 }
2896 }
2897
2898 if (enc_index >= 0)
2899 acquire_dio_link_enc(res_ctx, stream->link->link_index, enc_index);
2900 }
2901
2902 if (enc_index >= 0)
2903 pipe_ctx->link_res.dio_link_enc = pool->link_encoders[enc_index];
2904
2905 return pipe_ctx->link_res.dio_link_enc != NULL;
2906 }
2907
remove_dio_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2908 static void remove_dio_link_enc_from_ctx(struct resource_context *res_ctx,
2909 struct pipe_ctx *pipe_ctx,
2910 struct dc_stream_state *stream)
2911 {
2912 int enc_index = -1;
2913
2914 if (stream->link)
2915 enc_index = find_acquired_dio_link_enc_for_link(res_ctx, stream->link);
2916
2917 if (enc_index >= 0) {
2918 release_dio_link_enc(res_ctx, enc_index);
2919 pipe_ctx->link_res.dio_link_enc = NULL;
2920 }
2921 }
2922
get_num_of_free_pipes(const struct resource_pool * pool,const struct dc_state * context)2923 static int get_num_of_free_pipes(const struct resource_pool *pool, const struct dc_state *context)
2924 {
2925 int i;
2926 int count = 0;
2927
2928 for (i = 0; i < pool->pipe_count; i++)
2929 if (resource_is_pipe_type(&context->res_ctx.pipe_ctx[i], FREE_PIPE))
2930 count++;
2931 return count;
2932 }
2933
resource_add_otg_master_for_stream_output(struct dc_state * new_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2934 enum dc_status resource_add_otg_master_for_stream_output(struct dc_state *new_ctx,
2935 const struct resource_pool *pool,
2936 struct dc_stream_state *stream)
2937 {
2938 struct dc *dc = stream->ctx->dc;
2939
2940 return dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2941 }
2942
resource_remove_otg_master_for_stream_output(struct dc_state * context,const struct resource_pool * pool,struct dc_stream_state * stream)2943 void resource_remove_otg_master_for_stream_output(struct dc_state *context,
2944 const struct resource_pool *pool,
2945 struct dc_stream_state *stream)
2946 {
2947 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
2948 &context->res_ctx, stream);
2949
2950 if (!otg_master)
2951 return;
2952
2953 ASSERT(resource_get_odm_slice_count(otg_master) == 1);
2954 ASSERT(otg_master->plane_state == NULL);
2955 ASSERT(otg_master->stream_res.stream_enc);
2956 update_stream_engine_usage(
2957 &context->res_ctx,
2958 pool,
2959 otg_master->stream_res.stream_enc,
2960 false);
2961
2962 if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(otg_master)) {
2963 update_hpo_dp_stream_engine_usage(
2964 &context->res_ctx, pool,
2965 otg_master->stream_res.hpo_dp_stream_enc,
2966 false);
2967 remove_hpo_dp_link_enc_from_ctx(
2968 &context->res_ctx, otg_master, stream);
2969 }
2970
2971 if (stream->ctx->dc->config.unify_link_enc_assignment)
2972 remove_dio_link_enc_from_ctx(&context->res_ctx, otg_master, stream);
2973
2974 if (otg_master->stream_res.audio)
2975 update_audio_usage(
2976 &context->res_ctx,
2977 pool,
2978 otg_master->stream_res.audio,
2979 false);
2980
2981 resource_unreference_clock_source(&context->res_ctx,
2982 pool,
2983 otg_master->clock_source);
2984
2985 if (pool->funcs->remove_stream_from_ctx)
2986 pool->funcs->remove_stream_from_ctx(
2987 stream->ctx->dc, context, stream);
2988
2989 memset(otg_master, 0, sizeof(*otg_master));
2990 }
2991
2992 /* For each OPP head of an OTG master, add top plane at plane index 0.
2993 *
2994 * In the following example, the stream has 2 ODM slices without a top plane.
2995 * By adding a plane 0 to OPP heads, we are configuring our hardware to render
2996 * plane 0 by using each OPP head's DPP.
2997 *
2998 * Inter-pipe Relation (Before Adding Plane)
2999 * __________________________________________________
3000 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3001 * | | | slice 0 | |
3002 * | 0 | |blank ----ODM----------- |
3003 * | | | slice 1 | | |
3004 * | 1 | |blank ---- | |
3005 * |________|_______________|___________|_____________|
3006 *
3007 * Inter-pipe Relation (After Adding Plane)
3008 * __________________________________________________
3009 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3010 * | | plane 0 | slice 0 | |
3011 * | 0 | -------------------------ODM----------- |
3012 * | | plane 0 | slice 1 | | |
3013 * | 1 | ------------------------- | |
3014 * |________|_______________|___________|_____________|
3015 */
add_plane_to_opp_head_pipes(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * context)3016 static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
3017 struct dc_plane_state *plane_state,
3018 struct dc_state *context)
3019 {
3020 struct pipe_ctx *opp_head_pipe = otg_master_pipe;
3021
3022 while (opp_head_pipe) {
3023 if (opp_head_pipe->plane_state) {
3024 ASSERT(0);
3025 return false;
3026 }
3027 opp_head_pipe->plane_state = plane_state;
3028 opp_head_pipe = opp_head_pipe->next_odm_pipe;
3029 }
3030
3031 return true;
3032 }
3033
3034 /* For each OPP head of an OTG master, acquire a secondary DPP pipe and add
3035 * the plane. So the plane is added to all ODM slices associated with the OTG
3036 * master pipe in the bottom layer.
3037 *
3038 * In the following example, the stream has 2 ODM slices and a top plane 0.
3039 * By acquiring secondary DPP pipes and adding a plane 1, we are configuring our
3040 * hardware to render the plane 1 by acquiring a new pipe for each ODM slice and
3041 * render plane 1 using new pipes' DPP in the Z axis below plane 0.
3042 *
3043 * Inter-pipe Relation (Before Adding Plane)
3044 * __________________________________________________
3045 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3046 * | | plane 0 | slice 0 | |
3047 * | 0 | -------------------------ODM----------- |
3048 * | | plane 0 | slice 1 | | |
3049 * | 1 | ------------------------- | |
3050 * |________|_______________|___________|_____________|
3051 *
3052 * Inter-pipe Relation (After Acquiring and Adding Plane)
3053 * __________________________________________________
3054 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3055 * | | plane 0 | slice 0 | |
3056 * | 0 | -------------MPC---------ODM----------- |
3057 * | | plane 1 | | | | |
3058 * | 2 | ------------- | | | |
3059 * | | plane 0 | slice 1 | | |
3060 * | 1 | -------------MPC--------- | |
3061 * | | plane 1 | | | |
3062 * | 3 | ------------- | | |
3063 * |________|_______________|___________|_____________|
3064 */
acquire_secondary_dpp_pipes_and_add_plane(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool)3065 static bool acquire_secondary_dpp_pipes_and_add_plane(
3066 struct pipe_ctx *otg_master_pipe,
3067 struct dc_plane_state *plane_state,
3068 struct dc_state *new_ctx,
3069 struct dc_state *cur_ctx,
3070 struct resource_pool *pool)
3071 {
3072 struct pipe_ctx *sec_pipe, *tail_pipe;
3073 struct pipe_ctx *opp_heads[MAX_PIPES];
3074 int opp_head_count;
3075 int i;
3076
3077 if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
3078 ASSERT(0);
3079 return false;
3080 }
3081
3082 opp_head_count = resource_get_opp_heads_for_otg_master(otg_master_pipe,
3083 &new_ctx->res_ctx, opp_heads);
3084 if (get_num_of_free_pipes(pool, new_ctx) < opp_head_count)
3085 /* not enough free pipes */
3086 return false;
3087
3088 for (i = 0; i < opp_head_count; i++) {
3089 sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
3090 cur_ctx,
3091 new_ctx,
3092 pool,
3093 opp_heads[i]);
3094 ASSERT(sec_pipe);
3095 sec_pipe->plane_state = plane_state;
3096
3097 /* establish pipe relationship */
3098 tail_pipe = get_tail_pipe(opp_heads[i]);
3099 tail_pipe->bottom_pipe = sec_pipe;
3100 sec_pipe->top_pipe = tail_pipe;
3101 sec_pipe->bottom_pipe = NULL;
3102 if (tail_pipe->prev_odm_pipe) {
3103 ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
3104 sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
3105 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
3106 } else {
3107 sec_pipe->prev_odm_pipe = NULL;
3108 }
3109 }
3110 return true;
3111 }
3112
resource_append_dpp_pipes_for_plane_composition(struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool,struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state)3113 bool resource_append_dpp_pipes_for_plane_composition(
3114 struct dc_state *new_ctx,
3115 struct dc_state *cur_ctx,
3116 struct resource_pool *pool,
3117 struct pipe_ctx *otg_master_pipe,
3118 struct dc_plane_state *plane_state)
3119 {
3120 bool success;
3121
3122 if (otg_master_pipe->plane_state == NULL)
3123 success = add_plane_to_opp_head_pipes(otg_master_pipe,
3124 plane_state, new_ctx);
3125 else
3126 success = acquire_secondary_dpp_pipes_and_add_plane(
3127 otg_master_pipe, plane_state, new_ctx,
3128 cur_ctx, pool);
3129 if (success) {
3130 /* when appending a plane mpc slice count changes from 0 to 1 */
3131 success = update_pipe_params_after_mpc_slice_count_change(
3132 plane_state, new_ctx, pool);
3133 if (!success)
3134 resource_remove_dpp_pipes_for_plane_composition(new_ctx,
3135 pool, plane_state);
3136 }
3137
3138 return success;
3139 }
3140
resource_remove_dpp_pipes_for_plane_composition(struct dc_state * context,const struct resource_pool * pool,const struct dc_plane_state * plane_state)3141 void resource_remove_dpp_pipes_for_plane_composition(
3142 struct dc_state *context,
3143 const struct resource_pool *pool,
3144 const struct dc_plane_state *plane_state)
3145 {
3146 int i;
3147
3148 for (i = pool->pipe_count - 1; i >= 0; i--) {
3149 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3150
3151 if (pipe_ctx->plane_state == plane_state) {
3152 if (pipe_ctx->top_pipe)
3153 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
3154
3155 /* Second condition is to avoid setting NULL to top pipe
3156 * of tail pipe making it look like head pipe in subsequent
3157 * deletes
3158 */
3159 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
3160 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
3161
3162 /*
3163 * For head pipe detach surfaces from pipe for tail
3164 * pipe just zero it out
3165 */
3166 if (!pipe_ctx->top_pipe)
3167 pipe_ctx->plane_state = NULL;
3168 else
3169 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
3170 }
3171 }
3172 }
3173
3174 /*
3175 * Increase ODM slice count by 1 by acquiring pipes and adding a new ODM slice
3176 * at the last index.
3177 * return - true if a new ODM slice is added and required pipes are acquired.
3178 * false if new_ctx is no longer a valid state after new ODM slice is added.
3179 *
3180 * This is achieved by duplicating MPC blending tree from previous ODM slice.
3181 * In the following example, we have a single MPC tree and 1 ODM slice 0. We
3182 * want to add a new odm slice by duplicating the MPC blending tree and add
3183 * ODM slice 1.
3184 *
3185 * Inter-pipe Relation (Before Acquiring and Adding ODM Slice)
3186 * __________________________________________________
3187 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3188 * | | plane 0 | slice 0 | |
3189 * | 0 | -------------MPC---------ODM----------- |
3190 * | | plane 1 | | | |
3191 * | 1 | ------------- | | |
3192 * |________|_______________|___________|_____________|
3193 *
3194 * Inter-pipe Relation (After Acquiring and Adding ODM Slice)
3195 * __________________________________________________
3196 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3197 * | | plane 0 | slice 0 | |
3198 * | 0 | -------------MPC---------ODM----------- |
3199 * | | plane 1 | | | | |
3200 * | 1 | ------------- | | | |
3201 * | | plane 0 | slice 1 | | |
3202 * | 2 | -------------MPC--------- | |
3203 * | | plane 1 | | | |
3204 * | 3 | ------------- | | |
3205 * |________|_______________|___________|_____________|
3206 */
acquire_pipes_and_add_odm_slice(struct pipe_ctx * otg_master_pipe,struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool)3207 static bool acquire_pipes_and_add_odm_slice(
3208 struct pipe_ctx *otg_master_pipe,
3209 struct dc_state *new_ctx,
3210 const struct dc_state *cur_ctx,
3211 const struct resource_pool *pool)
3212 {
3213 struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
3214 struct pipe_ctx *new_opp_head;
3215 struct pipe_ctx *last_top_dpp_pipe, *last_bottom_dpp_pipe,
3216 *new_top_dpp_pipe, *new_bottom_dpp_pipe;
3217
3218 if (!pool->funcs->acquire_free_pipe_as_secondary_opp_head) {
3219 ASSERT(0);
3220 return false;
3221 }
3222 new_opp_head = pool->funcs->acquire_free_pipe_as_secondary_opp_head(
3223 cur_ctx, new_ctx, pool,
3224 otg_master_pipe);
3225 if (!new_opp_head)
3226 return false;
3227
3228 last_opp_head->next_odm_pipe = new_opp_head;
3229 new_opp_head->prev_odm_pipe = last_opp_head;
3230 new_opp_head->next_odm_pipe = NULL;
3231 new_opp_head->plane_state = last_opp_head->plane_state;
3232 last_top_dpp_pipe = last_opp_head;
3233 new_top_dpp_pipe = new_opp_head;
3234
3235 while (last_top_dpp_pipe->bottom_pipe) {
3236 last_bottom_dpp_pipe = last_top_dpp_pipe->bottom_pipe;
3237 new_bottom_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
3238 cur_ctx, new_ctx, pool,
3239 new_opp_head);
3240 if (!new_bottom_dpp_pipe)
3241 return false;
3242
3243 new_bottom_dpp_pipe->plane_state = last_bottom_dpp_pipe->plane_state;
3244 new_top_dpp_pipe->bottom_pipe = new_bottom_dpp_pipe;
3245 new_bottom_dpp_pipe->top_pipe = new_top_dpp_pipe;
3246 last_bottom_dpp_pipe->next_odm_pipe = new_bottom_dpp_pipe;
3247 new_bottom_dpp_pipe->prev_odm_pipe = last_bottom_dpp_pipe;
3248 new_bottom_dpp_pipe->next_odm_pipe = NULL;
3249 last_top_dpp_pipe = last_bottom_dpp_pipe;
3250 }
3251
3252 return true;
3253 }
3254
3255 /*
3256 * Decrease ODM slice count by 1 by releasing pipes and removing the ODM slice
3257 * at the last index.
3258 * return - true if the last ODM slice is removed and related pipes are
3259 * released. false if there is no removable ODM slice.
3260 *
3261 * In the following example, we have 2 MPC trees and ODM slice 0 and slice 1.
3262 * We want to remove the last ODM i.e slice 1. We are releasing secondary DPP
3263 * pipe 3 and OPP head pipe 2.
3264 *
3265 * Inter-pipe Relation (Before Releasing and Removing ODM Slice)
3266 * __________________________________________________
3267 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3268 * | | plane 0 | slice 0 | |
3269 * | 0 | -------------MPC---------ODM----------- |
3270 * | | plane 1 | | | | |
3271 * | 1 | ------------- | | | |
3272 * | | plane 0 | slice 1 | | |
3273 * | 2 | -------------MPC--------- | |
3274 * | | plane 1 | | | |
3275 * | 3 | ------------- | | |
3276 * |________|_______________|___________|_____________|
3277 *
3278 * Inter-pipe Relation (After Releasing and Removing ODM Slice)
3279 * __________________________________________________
3280 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3281 * | | plane 0 | slice 0 | |
3282 * | 0 | -------------MPC---------ODM----------- |
3283 * | | plane 1 | | | |
3284 * | 1 | ------------- | | |
3285 * |________|_______________|___________|_____________|
3286 */
release_pipes_and_remove_odm_slice(struct pipe_ctx * otg_master_pipe,struct dc_state * context,const struct resource_pool * pool)3287 static bool release_pipes_and_remove_odm_slice(
3288 struct pipe_ctx *otg_master_pipe,
3289 struct dc_state *context,
3290 const struct resource_pool *pool)
3291 {
3292 struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
3293 struct pipe_ctx *tail_pipe = get_tail_pipe(last_opp_head);
3294
3295 if (!pool->funcs->release_pipe) {
3296 ASSERT(0);
3297 return false;
3298 }
3299
3300 if (resource_is_pipe_type(last_opp_head, OTG_MASTER))
3301 return false;
3302
3303 while (tail_pipe->top_pipe) {
3304 tail_pipe->prev_odm_pipe->next_odm_pipe = NULL;
3305 tail_pipe = tail_pipe->top_pipe;
3306 pool->funcs->release_pipe(context, tail_pipe->bottom_pipe, pool);
3307 tail_pipe->bottom_pipe = NULL;
3308 }
3309 last_opp_head->prev_odm_pipe->next_odm_pipe = NULL;
3310 pool->funcs->release_pipe(context, last_opp_head, pool);
3311
3312 return true;
3313 }
3314
3315 /*
3316 * Increase MPC slice count by 1 by acquiring a new DPP pipe and add it as the
3317 * last MPC slice of the plane associated with dpp_pipe.
3318 *
3319 * return - true if a new MPC slice is added and required pipes are acquired.
3320 * false if new_ctx is no longer a valid state after new MPC slice is added.
3321 *
3322 * In the following example, we add a new MPC slice for plane 0 into the
3323 * new_ctx. To do so we pass pipe 0 as dpp_pipe. The function acquires a new DPP
3324 * pipe 2 for plane 0 as the bottom most pipe for plane 0.
3325 *
3326 * Inter-pipe Relation (Before Acquiring and Adding MPC Slice)
3327 * __________________________________________________
3328 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3329 * | | plane 0 | | |
3330 * | 0 | -------------MPC----------------------- |
3331 * | | plane 1 | | | |
3332 * | 1 | ------------- | | |
3333 * |________|_______________|___________|_____________|
3334 *
3335 * Inter-pipe Relation (After Acquiring and Adding MPC Slice)
3336 * __________________________________________________
3337 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3338 * | | plane 0 | | |
3339 * | 0 | -------------MPC----------------------- |
3340 * | | plane 0 | | | |
3341 * | 2 | ------------- | | |
3342 * | | plane 1 | | | |
3343 * | 1 | ------------- | | |
3344 * |________|_______________|___________|_____________|
3345 */
acquire_dpp_pipe_and_add_mpc_slice(struct pipe_ctx * dpp_pipe,struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool)3346 static bool acquire_dpp_pipe_and_add_mpc_slice(
3347 struct pipe_ctx *dpp_pipe,
3348 struct dc_state *new_ctx,
3349 const struct dc_state *cur_ctx,
3350 const struct resource_pool *pool)
3351 {
3352 struct pipe_ctx *last_dpp_pipe =
3353 get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
3354 struct pipe_ctx *opp_head = resource_get_opp_head(dpp_pipe);
3355 struct pipe_ctx *new_dpp_pipe;
3356
3357 if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
3358 ASSERT(0);
3359 return false;
3360 }
3361 new_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
3362 cur_ctx, new_ctx, pool, opp_head);
3363 if (!new_dpp_pipe || resource_get_odm_slice_count(dpp_pipe) > 1)
3364 return false;
3365
3366 new_dpp_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
3367 if (new_dpp_pipe->bottom_pipe)
3368 new_dpp_pipe->bottom_pipe->top_pipe = new_dpp_pipe;
3369 new_dpp_pipe->top_pipe = last_dpp_pipe;
3370 last_dpp_pipe->bottom_pipe = new_dpp_pipe;
3371 new_dpp_pipe->plane_state = last_dpp_pipe->plane_state;
3372
3373 return true;
3374 }
3375
3376 /*
3377 * Reduce MPC slice count by 1 by releasing the bottom DPP pipe in MPCC combine
3378 * with dpp_pipe and removing last MPC slice of the plane associated with
3379 * dpp_pipe.
3380 *
3381 * return - true if the last MPC slice of the plane associated with dpp_pipe is
3382 * removed and last DPP pipe in MPCC combine with dpp_pipe is released.
3383 * false if there is no removable MPC slice.
3384 *
3385 * In the following example, we remove an MPC slice for plane 0 from the
3386 * context. To do so we pass pipe 0 as dpp_pipe. The function releases pipe 1 as
3387 * it is the last pipe for plane 0.
3388 *
3389 * Inter-pipe Relation (Before Releasing and Removing MPC Slice)
3390 * __________________________________________________
3391 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3392 * | | plane 0 | | |
3393 * | 0 | -------------MPC----------------------- |
3394 * | | plane 0 | | | |
3395 * | 1 | ------------- | | |
3396 * | | plane 1 | | | |
3397 * | 2 | ------------- | | |
3398 * |________|_______________|___________|_____________|
3399 *
3400 * Inter-pipe Relation (After Releasing and Removing MPC Slice)
3401 * __________________________________________________
3402 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3403 * | | plane 0 | | |
3404 * | 0 | -------------MPC----------------------- |
3405 * | | plane 1 | | | |
3406 * | 2 | ------------- | | |
3407 * |________|_______________|___________|_____________|
3408 */
release_dpp_pipe_and_remove_mpc_slice(struct pipe_ctx * dpp_pipe,struct dc_state * context,const struct resource_pool * pool)3409 static bool release_dpp_pipe_and_remove_mpc_slice(
3410 struct pipe_ctx *dpp_pipe,
3411 struct dc_state *context,
3412 const struct resource_pool *pool)
3413 {
3414 struct pipe_ctx *last_dpp_pipe =
3415 get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
3416
3417 if (!pool->funcs->release_pipe) {
3418 ASSERT(0);
3419 return false;
3420 }
3421
3422 if (resource_is_pipe_type(last_dpp_pipe, OPP_HEAD) ||
3423 resource_get_odm_slice_count(dpp_pipe) > 1)
3424 return false;
3425
3426 last_dpp_pipe->top_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
3427 if (last_dpp_pipe->bottom_pipe)
3428 last_dpp_pipe->bottom_pipe->top_pipe = last_dpp_pipe->top_pipe;
3429 pool->funcs->release_pipe(context, last_dpp_pipe, pool);
3430
3431 return true;
3432 }
3433
resource_update_pipes_for_stream_with_slice_count(struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool,const struct dc_stream_state * stream,int new_slice_count)3434 bool resource_update_pipes_for_stream_with_slice_count(
3435 struct dc_state *new_ctx,
3436 const struct dc_state *cur_ctx,
3437 const struct resource_pool *pool,
3438 const struct dc_stream_state *stream,
3439 int new_slice_count)
3440 {
3441 int i;
3442 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
3443 &new_ctx->res_ctx, stream);
3444 int cur_slice_count;
3445 bool result = true;
3446
3447 if (!otg_master)
3448 return false;
3449
3450 cur_slice_count = resource_get_odm_slice_count(otg_master);
3451
3452 if (new_slice_count == cur_slice_count)
3453 return result;
3454
3455 if (new_slice_count > cur_slice_count)
3456 for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
3457 result = acquire_pipes_and_add_odm_slice(
3458 otg_master, new_ctx, cur_ctx, pool);
3459 else
3460 for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
3461 result = release_pipes_and_remove_odm_slice(
3462 otg_master, new_ctx, pool);
3463 if (result)
3464 result = update_pipe_params_after_odm_slice_count_change(
3465 otg_master, new_ctx, pool);
3466 return result;
3467 }
3468
resource_update_pipes_for_plane_with_slice_count(struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool,const struct dc_plane_state * plane,int new_slice_count)3469 bool resource_update_pipes_for_plane_with_slice_count(
3470 struct dc_state *new_ctx,
3471 const struct dc_state *cur_ctx,
3472 const struct resource_pool *pool,
3473 const struct dc_plane_state *plane,
3474 int new_slice_count)
3475 {
3476 int i;
3477 int dpp_pipe_count;
3478 int cur_slice_count;
3479 struct pipe_ctx *dpp_pipes[MAX_PIPES] = {0};
3480 bool result = true;
3481
3482 dpp_pipe_count = resource_get_dpp_pipes_for_plane(plane,
3483 &new_ctx->res_ctx, dpp_pipes);
3484 ASSERT(dpp_pipe_count > 0);
3485 cur_slice_count = resource_get_mpc_slice_count(dpp_pipes[0]);
3486
3487 if (new_slice_count == cur_slice_count)
3488 return result;
3489
3490 if (new_slice_count > cur_slice_count)
3491 for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
3492 result = acquire_dpp_pipe_and_add_mpc_slice(
3493 dpp_pipes[0], new_ctx, cur_ctx, pool);
3494 else
3495 for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
3496 result = release_dpp_pipe_and_remove_mpc_slice(
3497 dpp_pipes[0], new_ctx, pool);
3498 if (result)
3499 result = update_pipe_params_after_mpc_slice_count_change(
3500 dpp_pipes[0]->plane_state, new_ctx, pool);
3501 return result;
3502 }
3503
dc_is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)3504 bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
3505 struct dc_stream_state *new_stream)
3506 {
3507 if (cur_stream == NULL)
3508 return true;
3509
3510 /* If output color space is changed, need to reprogram info frames */
3511 if (cur_stream->output_color_space != new_stream->output_color_space)
3512 return true;
3513
3514 return memcmp(
3515 &cur_stream->timing,
3516 &new_stream->timing,
3517 sizeof(struct dc_crtc_timing)) != 0;
3518 }
3519
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)3520 static bool are_stream_backends_same(
3521 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
3522 {
3523 if (stream_a == stream_b)
3524 return true;
3525
3526 if (stream_a == NULL || stream_b == NULL)
3527 return false;
3528
3529 if (dc_is_timing_changed(stream_a, stream_b))
3530 return false;
3531
3532 if (stream_a->signal != stream_b->signal)
3533 return false;
3534
3535 if (stream_a->dpms_off != stream_b->dpms_off)
3536 return false;
3537
3538 return true;
3539 }
3540
3541 /*
3542 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
3543 *
3544 * Checks if there a difference between the two states
3545 * that would require a mode change.
3546 *
3547 * Does not compare cursor position or attributes.
3548 */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)3549 bool dc_is_stream_unchanged(
3550 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
3551 {
3552 if (!old_stream || !stream)
3553 return false;
3554
3555 if (!are_stream_backends_same(old_stream, stream))
3556 return false;
3557
3558 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
3559 return false;
3560
3561 /*compare audio info*/
3562 if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
3563 return false;
3564
3565 return true;
3566 }
3567
3568 /*
3569 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
3570 */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)3571 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
3572 struct dc_stream_state *stream)
3573 {
3574 if (old_stream == stream)
3575 return true;
3576
3577 if (old_stream == NULL || stream == NULL)
3578 return false;
3579
3580 if (memcmp(&old_stream->src,
3581 &stream->src,
3582 sizeof(struct rect)) != 0)
3583 return false;
3584
3585 if (memcmp(&old_stream->dst,
3586 &stream->dst,
3587 sizeof(struct rect)) != 0)
3588 return false;
3589
3590 return true;
3591 }
3592
3593 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)3594 void update_audio_usage(
3595 struct resource_context *res_ctx,
3596 const struct resource_pool *pool,
3597 struct audio *audio,
3598 bool acquired)
3599 {
3600 int i;
3601 for (i = 0; i < pool->audio_count; i++) {
3602 if (pool->audios[i] == audio)
3603 res_ctx->is_audio_acquired[i] = acquired;
3604 }
3605 }
3606
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3607 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
3608 struct resource_context *res_ctx,
3609 const struct resource_pool *pool,
3610 struct dc_stream_state *stream)
3611 {
3612 int i;
3613
3614 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
3615 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
3616 pool->hpo_dp_stream_enc[i]) {
3617
3618 return pool->hpo_dp_stream_enc[i];
3619 }
3620 }
3621
3622 return NULL;
3623 }
3624
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)3625 static struct audio *find_first_free_audio(
3626 struct resource_context *res_ctx,
3627 const struct resource_pool *pool,
3628 enum engine_id id,
3629 enum dce_version dc_version)
3630 {
3631 int i, available_audio_count;
3632
3633 if (id == ENGINE_ID_UNKNOWN)
3634 return NULL;
3635
3636 available_audio_count = pool->audio_count;
3637
3638 for (i = 0; i < available_audio_count; i++) {
3639 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
3640 /*we have enough audio endpoint, find the matching inst*/
3641 if (id != i)
3642 continue;
3643 return pool->audios[i];
3644 }
3645 }
3646
3647 /* use engine id to find free audio */
3648 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
3649 return pool->audios[id];
3650 }
3651 /*not found the matching one, first come first serve*/
3652 for (i = 0; i < available_audio_count; i++) {
3653 if (res_ctx->is_audio_acquired[i] == false) {
3654 return pool->audios[i];
3655 }
3656 }
3657 return NULL;
3658 }
3659
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)3660 static struct dc_stream_state *find_pll_sharable_stream(
3661 struct dc_stream_state *stream_needs_pll,
3662 struct dc_state *context)
3663 {
3664 int i;
3665
3666 for (i = 0; i < context->stream_count; i++) {
3667 struct dc_stream_state *stream_has_pll = context->streams[i];
3668
3669 /* We are looking for non dp, non virtual stream */
3670 if (resource_are_streams_timing_synchronizable(
3671 stream_needs_pll, stream_has_pll)
3672 && !dc_is_dp_signal(stream_has_pll->signal)
3673 && stream_has_pll->link->connector_signal
3674 != SIGNAL_TYPE_VIRTUAL)
3675 return stream_has_pll;
3676
3677 }
3678
3679 return NULL;
3680 }
3681
get_norm_pix_clk(const struct dc_crtc_timing * timing)3682 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
3683 {
3684 uint32_t pix_clk = timing->pix_clk_100hz;
3685 uint32_t normalized_pix_clk = pix_clk;
3686
3687 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
3688 pix_clk /= 2;
3689 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
3690 switch (timing->display_color_depth) {
3691 case COLOR_DEPTH_666:
3692 case COLOR_DEPTH_888:
3693 normalized_pix_clk = pix_clk;
3694 break;
3695 case COLOR_DEPTH_101010:
3696 normalized_pix_clk = (pix_clk * 30) / 24;
3697 break;
3698 case COLOR_DEPTH_121212:
3699 normalized_pix_clk = (pix_clk * 36) / 24;
3700 break;
3701 case COLOR_DEPTH_141414:
3702 normalized_pix_clk = (pix_clk * 42) / 24;
3703 break;
3704 case COLOR_DEPTH_161616:
3705 normalized_pix_clk = (pix_clk * 48) / 24;
3706 break;
3707 default:
3708 ASSERT(0);
3709 break;
3710 }
3711 }
3712 return normalized_pix_clk;
3713 }
3714
calculate_phy_pix_clks(struct dc_stream_state * stream)3715 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
3716 {
3717 /* update actual pixel clock on all streams */
3718 if (dc_is_hdmi_signal(stream->signal))
3719 stream->phy_pix_clk = get_norm_pix_clk(
3720 &stream->timing) / 10;
3721 else
3722 stream->phy_pix_clk =
3723 stream->timing.pix_clk_100hz / 10;
3724
3725 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
3726 stream->phy_pix_clk *= 2;
3727 }
3728
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3729 static int acquire_resource_from_hw_enabled_state(
3730 struct resource_context *res_ctx,
3731 const struct resource_pool *pool,
3732 struct dc_stream_state *stream)
3733 {
3734 struct dc_link *link = stream->link;
3735 unsigned int i, inst, tg_inst = 0;
3736 uint32_t numPipes = 1;
3737 uint32_t id_src[4] = {0};
3738
3739 /* Check for enabled DIG to identify enabled display */
3740 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
3741 return -1;
3742
3743 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
3744
3745 if (inst == ENGINE_ID_UNKNOWN)
3746 return -1;
3747
3748 for (i = 0; i < pool->stream_enc_count; i++) {
3749 if (pool->stream_enc[i]->id == inst) {
3750 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
3751 pool->stream_enc[i]);
3752 break;
3753 }
3754 }
3755
3756 // tg_inst not found
3757 if (i == pool->stream_enc_count)
3758 return -1;
3759
3760 if (tg_inst >= pool->timing_generator_count)
3761 return -1;
3762
3763 if (!res_ctx->pipe_ctx[tg_inst].stream) {
3764 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
3765
3766 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3767 id_src[0] = tg_inst;
3768
3769 if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
3770 pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
3771 &numPipes, &id_src[0], &id_src[1]);
3772
3773 if (id_src[0] == 0xf && id_src[1] == 0xf) {
3774 id_src[0] = tg_inst;
3775 numPipes = 1;
3776 }
3777
3778 for (i = 0; i < numPipes; i++) {
3779 //Check if src id invalid
3780 if (id_src[i] == 0xf)
3781 return -1;
3782
3783 pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
3784
3785 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3786 pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
3787 pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
3788 pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
3789 pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
3790 pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
3791 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3792
3793 if (pool->dpps[id_src[i]]) {
3794 pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
3795
3796 if (pool->mpc->funcs->read_mpcc_state) {
3797 struct mpcc_state s = {0};
3798
3799 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
3800
3801 if (s.dpp_id < MAX_MPCC)
3802 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
3803 s.dpp_id;
3804
3805 if (s.bot_mpcc_id < MAX_MPCC)
3806 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
3807 &pool->mpc->mpcc_array[s.bot_mpcc_id];
3808
3809 if (s.opp_id < MAX_OPP)
3810 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
3811 }
3812 }
3813 pipe_ctx->pipe_idx = id_src[i];
3814
3815 if (id_src[i] >= pool->timing_generator_count) {
3816 id_src[i] = pool->timing_generator_count - 1;
3817
3818 pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
3819 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3820 }
3821
3822 pipe_ctx->stream = stream;
3823 }
3824
3825 if (numPipes == 2) {
3826 stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
3827 res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
3828 res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
3829 res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
3830 res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
3831 } else
3832 stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
3833
3834 return id_src[0];
3835 }
3836
3837 return -1;
3838 }
3839
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)3840 static void mark_seamless_boot_stream(const struct dc *dc,
3841 struct dc_stream_state *stream)
3842 {
3843 struct dc_bios *dcb = dc->ctx->dc_bios;
3844
3845 DC_LOGGER_INIT(dc->ctx->logger);
3846
3847 if (stream->apply_seamless_boot_optimization)
3848 return;
3849 if (!dc->config.allow_seamless_boot_optimization)
3850 return;
3851 if (dcb->funcs->is_accelerated_mode(dcb))
3852 return;
3853 if (dc_validate_boot_timing(dc, stream->sink, &stream->timing)) {
3854 stream->apply_seamless_boot_optimization = true;
3855 DC_LOG_DC("Marked stream for seamless boot optimization\n");
3856 }
3857 }
3858
3859 /*
3860 * Acquire a pipe as OTG master and assign to the stream in new dc context.
3861 * return - true if OTG master pipe is acquired and new dc context is updated.
3862 * false if it fails to acquire an OTG master pipe for this stream.
3863 *
3864 * In the example below, we acquired pipe 0 as OTG master pipe for the stream.
3865 * After the function its Inter-pipe Relation is represented by the diagram
3866 * below.
3867 *
3868 * Inter-pipe Relation
3869 * __________________________________________________
3870 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3871 * | | | | |
3872 * | 0 | |blank ------------------ |
3873 * |________|_______________|___________|_____________|
3874 */
acquire_otg_master_pipe_for_stream(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3875 static bool acquire_otg_master_pipe_for_stream(
3876 const struct dc_state *cur_ctx,
3877 struct dc_state *new_ctx,
3878 const struct resource_pool *pool,
3879 struct dc_stream_state *stream)
3880 {
3881 /* TODO: Move this function to DCN specific resource file and acquire
3882 * DSC resource here. The reason is that the function should have the
3883 * same level of responsibility as when we acquire secondary OPP head.
3884 * We acquire DSC when we acquire secondary OPP head, so we should
3885 * acquire DSC when we acquire OTG master.
3886 */
3887 int pipe_idx;
3888 struct pipe_ctx *pipe_ctx = NULL;
3889
3890 /*
3891 * Upper level code is responsible to optimize unnecessary addition and
3892 * removal for unchanged streams. So unchanged stream will keep the same
3893 * OTG master instance allocated. When current stream is removed and a
3894 * new stream is added, we want to reuse the OTG instance made available
3895 * by the removed stream first. If not found, we try to avoid of using
3896 * any free pipes already used in current context as this could tear
3897 * down exiting ODM/MPC/MPO configuration unnecessarily.
3898 */
3899
3900 /*
3901 * Try to acquire the same OTG master already in use. This is not
3902 * optimal because resetting an enabled OTG master pipe for a new stream
3903 * requires an extra frame of wait. However there are test automation
3904 * and eDP assumptions that rely on reusing the same OTG master pipe
3905 * during mode change. We have to keep this logic as is for now.
3906 */
3907 pipe_idx = recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
3908 &cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3909 /*
3910 * Try to acquire a pipe not used in current resource context to avoid
3911 * pipe swapping.
3912 */
3913 if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3914 pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
3915 &cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3916 /*
3917 * If pipe swapping is unavoidable, try to acquire pipe used as
3918 * secondary DPP pipe in current state as we prioritize to support more
3919 * streams over supporting MPO planes.
3920 */
3921 if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3922 pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp(
3923 &cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3924 if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3925 pipe_idx = resource_find_any_free_pipe(&new_ctx->res_ctx, pool);
3926 if (pipe_idx != FREE_PIPE_INDEX_NOT_FOUND) {
3927 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
3928 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
3929 pipe_ctx->pipe_idx = pipe_idx;
3930 pipe_ctx->stream_res.tg = pool->timing_generators[pipe_idx];
3931 pipe_ctx->plane_res.mi = pool->mis[pipe_idx];
3932 pipe_ctx->plane_res.hubp = pool->hubps[pipe_idx];
3933 pipe_ctx->plane_res.ipp = pool->ipps[pipe_idx];
3934 pipe_ctx->plane_res.xfm = pool->transforms[pipe_idx];
3935 pipe_ctx->plane_res.dpp = pool->dpps[pipe_idx];
3936 pipe_ctx->stream_res.opp = pool->opps[pipe_idx];
3937 if (pool->dpps[pipe_idx])
3938 pipe_ctx->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
3939
3940 if (pipe_idx >= pool->timing_generator_count && pool->timing_generator_count != 0) {
3941 int tg_inst = pool->timing_generator_count - 1;
3942
3943 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3944 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
3945 }
3946
3947 pipe_ctx->stream = stream;
3948 } else {
3949 pipe_idx = acquire_first_split_pipe(&new_ctx->res_ctx, pool, stream);
3950 }
3951
3952 return pipe_idx != FREE_PIPE_INDEX_NOT_FOUND;
3953 }
3954
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)3955 enum dc_status resource_map_pool_resources(
3956 const struct dc *dc,
3957 struct dc_state *context,
3958 struct dc_stream_state *stream)
3959 {
3960 const struct resource_pool *pool = dc->res_pool;
3961 int i;
3962 struct dc_context *dc_ctx = dc->ctx;
3963 struct pipe_ctx *pipe_ctx = NULL;
3964 int pipe_idx = -1;
3965 bool acquired = false;
3966 bool is_dio_encoder = true;
3967
3968 calculate_phy_pix_clks(stream);
3969
3970 mark_seamless_boot_stream(dc, stream);
3971
3972 if (stream->apply_seamless_boot_optimization) {
3973 pipe_idx = acquire_resource_from_hw_enabled_state(
3974 &context->res_ctx,
3975 pool,
3976 stream);
3977 if (pipe_idx < 0)
3978 /* hw resource was assigned to other stream */
3979 stream->apply_seamless_boot_optimization = false;
3980 else
3981 acquired = true;
3982 }
3983
3984 if (!acquired)
3985 /* acquire new resources */
3986 acquired = acquire_otg_master_pipe_for_stream(dc->current_state,
3987 context, pool, stream);
3988
3989 pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
3990
3991 if (!pipe_ctx || pipe_ctx->stream_res.tg == NULL)
3992 return DC_NO_CONTROLLER_RESOURCE;
3993
3994 pipe_ctx->stream_res.stream_enc =
3995 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
3996 &context->res_ctx, pool, stream);
3997
3998 if (!pipe_ctx->stream_res.stream_enc)
3999 return DC_NO_STREAM_ENC_RESOURCE;
4000
4001 update_stream_engine_usage(
4002 &context->res_ctx, pool,
4003 pipe_ctx->stream_res.stream_enc,
4004 true);
4005
4006 /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
4007 * and link settings
4008 */
4009 if (dc_is_dp_signal(stream->signal) ||
4010 dc_is_virtual_signal(stream->signal)) {
4011 if (!dc->link_srv->dp_decide_link_settings(stream,
4012 &pipe_ctx->link_config.dp_link_settings))
4013 return DC_FAIL_DP_LINK_BANDWIDTH;
4014
4015 dc->link_srv->dp_decide_tunnel_settings(stream,
4016 &pipe_ctx->link_config.dp_tunnel_settings);
4017
4018 if (dc->link_srv->dp_get_encoding_format(
4019 &pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
4020 pipe_ctx->stream_res.hpo_dp_stream_enc =
4021 find_first_free_match_hpo_dp_stream_enc_for_link(
4022 &context->res_ctx, pool, stream);
4023
4024 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
4025 return DC_NO_STREAM_ENC_RESOURCE;
4026
4027 update_hpo_dp_stream_engine_usage(
4028 &context->res_ctx, pool,
4029 pipe_ctx->stream_res.hpo_dp_stream_enc,
4030 true);
4031 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
4032 return DC_NO_LINK_ENC_RESOURCE;
4033 }
4034 }
4035
4036 if (dc->config.unify_link_enc_assignment && is_dio_encoder)
4037 if (!add_dio_link_enc_to_ctx(dc, context, pool, pipe_ctx, stream))
4038 return DC_NO_LINK_ENC_RESOURCE;
4039
4040 /* TODO: Add check if ASIC support and EDID audio */
4041 if (!stream->converter_disable_audio &&
4042 dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
4043 stream->audio_info.mode_count &&
4044 (stream->audio_info.flags.all ||
4045 (stream->sink && stream->sink->edid_caps.panel_patch.skip_audio_sab_check))) {
4046 pipe_ctx->stream_res.audio = find_first_free_audio(
4047 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
4048
4049 /*
4050 * Audio assigned in order first come first get.
4051 * There are asics which has number of audio
4052 * resources less then number of pipes
4053 */
4054 if (pipe_ctx->stream_res.audio)
4055 update_audio_usage(&context->res_ctx, pool,
4056 pipe_ctx->stream_res.audio, true);
4057 }
4058
4059 /* Add ABM to the resource if on EDP */
4060 if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
4061 if (pool->abm)
4062 pipe_ctx->stream_res.abm = pool->abm;
4063 else
4064 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
4065 }
4066
4067 for (i = 0; i < context->stream_count; i++)
4068 if (context->streams[i] == stream) {
4069 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
4070 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
4071 context->stream_status[i].audio_inst =
4072 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
4073
4074 return DC_OK;
4075 }
4076
4077 DC_ERROR("Stream %p not found in new ctx!\n", stream);
4078 return DC_ERROR_UNEXPECTED;
4079 }
4080
dc_resource_is_dsc_encoding_supported(const struct dc * dc)4081 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
4082 {
4083 if (dc->res_pool == NULL)
4084 return false;
4085
4086 return dc->res_pool->res_cap->num_dsc > 0;
4087 }
4088
planes_changed_for_existing_stream(struct dc_state * context,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count)4089 static bool planes_changed_for_existing_stream(struct dc_state *context,
4090 struct dc_stream_state *stream,
4091 const struct dc_validation_set set[],
4092 int set_count)
4093 {
4094 int i, j;
4095 struct dc_stream_status *stream_status = NULL;
4096
4097 for (i = 0; i < context->stream_count; i++) {
4098 if (context->streams[i] == stream) {
4099 stream_status = &context->stream_status[i];
4100 break;
4101 }
4102 }
4103
4104 if (!stream_status) {
4105 ASSERT(0);
4106 return false;
4107 }
4108
4109 for (i = 0; i < set_count; i++)
4110 if (set[i].stream == stream)
4111 break;
4112
4113 if (i == set_count)
4114 ASSERT(0);
4115
4116 if (set[i].plane_count != stream_status->plane_count)
4117 return true;
4118
4119 for (j = 0; j < set[i].plane_count; j++)
4120 if (set[i].plane_states[j] != stream_status->plane_states[j])
4121 return true;
4122
4123 return false;
4124 }
4125
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * state)4126 static bool add_all_planes_for_stream(
4127 const struct dc *dc,
4128 struct dc_stream_state *stream,
4129 const struct dc_validation_set set[],
4130 int set_count,
4131 struct dc_state *state)
4132 {
4133 int i, j;
4134
4135 for (i = 0; i < set_count; i++)
4136 if (set[i].stream == stream)
4137 break;
4138
4139 if (i == set_count) {
4140 dm_error("Stream %p not found in set!\n", stream);
4141 return false;
4142 }
4143
4144 for (j = 0; j < set[i].plane_count; j++)
4145 if (!dc_state_add_plane(dc, stream, set[i].plane_states[j], state))
4146 return false;
4147
4148 return true;
4149 }
4150
4151 /**
4152 * dc_validate_with_context - Validate and update the potential new stream in the context object
4153 *
4154 * @dc: Used to get the current state status
4155 * @set: An array of dc_validation_set with all the current streams reference
4156 * @set_count: Total of streams
4157 * @context: New context
4158 * @validate_mode: identify the validation mode
4159 *
4160 * This function updates the potential new stream in the context object. It
4161 * creates multiple lists for the add, remove, and unchanged streams. In
4162 * particular, if the unchanged streams have a plane that changed, it is
4163 * necessary to remove all planes from the unchanged streams. In summary, this
4164 * function is responsible for validating the new context.
4165 *
4166 * Return:
4167 * In case of success, return DC_OK (1), otherwise, return a DC error.
4168 */
dc_validate_with_context(struct dc * dc,const struct dc_validation_set set[],int set_count,struct dc_state * context,enum dc_validate_mode validate_mode)4169 enum dc_status dc_validate_with_context(struct dc *dc,
4170 const struct dc_validation_set set[],
4171 int set_count,
4172 struct dc_state *context,
4173 enum dc_validate_mode validate_mode)
4174 {
4175 struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
4176 struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
4177 struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
4178 int old_stream_count = context->stream_count;
4179 enum dc_status res = DC_ERROR_UNEXPECTED;
4180 int unchanged_streams_count = 0;
4181 int del_streams_count = 0;
4182 int add_streams_count = 0;
4183 bool found = false;
4184 int i, j, k;
4185
4186 DC_LOGGER_INIT(dc->ctx->logger);
4187
4188 /* First build a list of streams to be remove from current context */
4189 for (i = 0; i < old_stream_count; i++) {
4190 struct dc_stream_state *stream = context->streams[i];
4191
4192 for (j = 0; j < set_count; j++) {
4193 if (stream == set[j].stream) {
4194 found = true;
4195 break;
4196 }
4197 }
4198
4199 if (!found)
4200 del_streams[del_streams_count++] = stream;
4201
4202 found = false;
4203 }
4204
4205 /* Second, build a list of new streams */
4206 for (i = 0; i < set_count; i++) {
4207 struct dc_stream_state *stream = set[i].stream;
4208
4209 for (j = 0; j < old_stream_count; j++) {
4210 if (stream == context->streams[j]) {
4211 found = true;
4212 break;
4213 }
4214 }
4215
4216 if (!found)
4217 add_streams[add_streams_count++] = stream;
4218
4219 found = false;
4220 }
4221
4222 /* Build a list of unchanged streams which is necessary for handling
4223 * planes change such as added, removed, and updated.
4224 */
4225 for (i = 0; i < set_count; i++) {
4226 /* Check if stream is part of the delete list */
4227 for (j = 0; j < del_streams_count; j++) {
4228 if (set[i].stream == del_streams[j]) {
4229 found = true;
4230 break;
4231 }
4232 }
4233
4234 if (!found) {
4235 /* Check if stream is part of the add list */
4236 for (j = 0; j < add_streams_count; j++) {
4237 if (set[i].stream == add_streams[j]) {
4238 found = true;
4239 break;
4240 }
4241 }
4242 }
4243
4244 if (!found)
4245 unchanged_streams[unchanged_streams_count++] = set[i].stream;
4246
4247 found = false;
4248 }
4249
4250 /* Remove all planes for unchanged streams if planes changed */
4251 for (i = 0; i < unchanged_streams_count; i++) {
4252 if (planes_changed_for_existing_stream(context,
4253 unchanged_streams[i],
4254 set,
4255 set_count)) {
4256
4257 if (!dc_state_rem_all_planes_for_stream(dc,
4258 unchanged_streams[i],
4259 context)) {
4260 res = DC_FAIL_DETACH_SURFACES;
4261 goto fail;
4262 }
4263 }
4264 }
4265
4266 /* Remove all planes for removed streams and then remove the streams */
4267 for (i = 0; i < del_streams_count; i++) {
4268 /* Need to cpy the dwb data from the old stream in order to efc to work */
4269 if (del_streams[i]->num_wb_info > 0) {
4270 for (j = 0; j < add_streams_count; j++) {
4271 if (del_streams[i]->sink == add_streams[j]->sink) {
4272 add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
4273 for (k = 0; k < del_streams[i]->num_wb_info; k++)
4274 add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
4275 }
4276 }
4277 }
4278
4279 if (dc_state_get_stream_subvp_type(context, del_streams[i]) == SUBVP_PHANTOM) {
4280 /* remove phantoms specifically */
4281 if (!dc_state_rem_all_phantom_planes_for_stream(dc, del_streams[i], context, true)) {
4282 res = DC_FAIL_DETACH_SURFACES;
4283 goto fail;
4284 }
4285
4286 res = dc_state_remove_phantom_stream(dc, context, del_streams[i]);
4287 dc_state_release_phantom_stream(dc, context, del_streams[i]);
4288 } else {
4289 if (!dc_state_rem_all_planes_for_stream(dc, del_streams[i], context)) {
4290 res = DC_FAIL_DETACH_SURFACES;
4291 goto fail;
4292 }
4293
4294 res = dc_state_remove_stream(dc, context, del_streams[i]);
4295 }
4296
4297 if (res != DC_OK)
4298 goto fail;
4299 }
4300
4301 /* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
4302 * matches. This may change in the future if seamless_boot_stream can be
4303 * multiple.
4304 */
4305 for (i = 0; i < add_streams_count; i++) {
4306 mark_seamless_boot_stream(dc, add_streams[i]);
4307 if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
4308 struct dc_stream_state *temp = add_streams[0];
4309
4310 add_streams[0] = add_streams[i];
4311 add_streams[i] = temp;
4312 break;
4313 }
4314 }
4315
4316 /* Add new streams and then add all planes for the new stream */
4317 for (i = 0; i < add_streams_count; i++) {
4318 calculate_phy_pix_clks(add_streams[i]);
4319 res = dc_state_add_stream(dc, context, add_streams[i]);
4320 if (res != DC_OK)
4321 goto fail;
4322
4323 if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
4324 res = DC_FAIL_ATTACH_SURFACES;
4325 goto fail;
4326 }
4327 }
4328
4329 /* Add all planes for unchanged streams if planes changed */
4330 for (i = 0; i < unchanged_streams_count; i++) {
4331 if (planes_changed_for_existing_stream(context,
4332 unchanged_streams[i],
4333 set,
4334 set_count)) {
4335 if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
4336 res = DC_FAIL_ATTACH_SURFACES;
4337 goto fail;
4338 }
4339 }
4340 }
4341
4342 /* clear subvp cursor limitations */
4343 for (i = 0; i < context->stream_count; i++) {
4344 dc_state_set_stream_subvp_cursor_limit(context->streams[i], context, false);
4345 }
4346
4347 res = dc_validate_global_state(dc, context, validate_mode);
4348
4349 /* calculate pixel rate divider after deciding pxiel clock & odm combine */
4350 if ((dc->hwss.calculate_pix_rate_divider) && (res == DC_OK)) {
4351 for (i = 0; i < add_streams_count; i++)
4352 dc->hwss.calculate_pix_rate_divider(dc, context, add_streams[i]);
4353 }
4354
4355 fail:
4356 if (res != DC_OK)
4357 DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
4358 __func__,
4359 res);
4360
4361 return res;
4362 }
4363
4364 #if defined(CONFIG_DRM_AMD_DC_FP)
4365 #endif /* CONFIG_DRM_AMD_DC_FP */
4366
4367 /**
4368 * calculate_timing_params_for_dsc_with_padding - Calculates timing parameters for DSC with padding.
4369 * @pipe_ctx: Pointer to the pipe context structure.
4370 *
4371 * This function calculates the timing parameters for a given pipe context based on the
4372 * display stream compression (DSC) configuration. If the horizontal active pixels (hactive) are less
4373 * than the total width of the DSC slices, it sets the dsc_hactive_padding value to the difference. If the
4374 * total horizontal timing minus the dsc_hactive_padding value is less than 32, it resets the dsc_hactive_padding
4375 * value to 0.
4376 */
calculate_timing_params_for_dsc_with_padding(struct pipe_ctx * pipe_ctx)4377 static void calculate_timing_params_for_dsc_with_padding(struct pipe_ctx *pipe_ctx)
4378 {
4379 struct dc_stream_state *stream = NULL;
4380
4381 if (!pipe_ctx)
4382 return;
4383
4384 stream = pipe_ctx->stream;
4385 pipe_ctx->dsc_padding_params.dsc_hactive_padding = 0;
4386 pipe_ctx->dsc_padding_params.dsc_htotal_padding = 0;
4387
4388 if (stream)
4389 pipe_ctx->dsc_padding_params.dsc_pix_clk_100hz = stream->timing.pix_clk_100hz;
4390
4391 }
4392
4393 /**
4394 * dc_validate_global_state() - Determine if hardware can support a given state
4395 *
4396 * @dc: dc struct for this driver
4397 * @new_ctx: state to be validated
4398 * @validate_mode: identify the validation mode
4399 *
4400 * Checks hardware resource availability and bandwidth requirement.
4401 *
4402 * Return:
4403 * DC_OK if the result can be programmed. Otherwise, an error code.
4404 */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,enum dc_validate_mode validate_mode)4405 enum dc_status dc_validate_global_state(
4406 struct dc *dc,
4407 struct dc_state *new_ctx,
4408 enum dc_validate_mode validate_mode)
4409 {
4410 enum dc_status result = DC_ERROR_UNEXPECTED;
4411 int i, j;
4412
4413 if (!new_ctx)
4414 return DC_ERROR_UNEXPECTED;
4415
4416 if (dc->res_pool->funcs->validate_global) {
4417 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
4418 if (result != DC_OK)
4419 return result;
4420 }
4421
4422 for (i = 0; i < new_ctx->stream_count; i++) {
4423 struct dc_stream_state *stream = new_ctx->streams[i];
4424
4425 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4426 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
4427
4428 if (pipe_ctx->stream != stream)
4429 continue;
4430
4431 /* Decide whether hblank borrow is needed and save it in pipe_ctx */
4432 if (dc->debug.enable_hblank_borrow)
4433 calculate_timing_params_for_dsc_with_padding(pipe_ctx);
4434
4435 if (dc->res_pool->funcs->patch_unknown_plane_state &&
4436 pipe_ctx->plane_state &&
4437 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
4438 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
4439 if (result != DC_OK)
4440 return result;
4441 }
4442
4443 /* Switch to dp clock source only if there is
4444 * no non dp stream that shares the same timing
4445 * with the dp stream.
4446 */
4447 if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
4448 !find_pll_sharable_stream(stream, new_ctx)) {
4449
4450 resource_unreference_clock_source(
4451 &new_ctx->res_ctx,
4452 dc->res_pool,
4453 pipe_ctx->clock_source);
4454
4455 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
4456 resource_reference_clock_source(
4457 &new_ctx->res_ctx,
4458 dc->res_pool,
4459 pipe_ctx->clock_source);
4460 }
4461 }
4462 }
4463
4464 result = resource_build_scaling_params_for_context(dc, new_ctx);
4465
4466 if (result == DC_OK)
4467 result = dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, validate_mode);
4468
4469 return result;
4470 }
4471
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)4472 static void patch_gamut_packet_checksum(
4473 struct dc_info_packet *gamut_packet)
4474 {
4475 /* For gamut we recalc checksum */
4476 if (gamut_packet->valid) {
4477 uint8_t chk_sum = 0;
4478 uint8_t *ptr;
4479 uint8_t i;
4480
4481 /*start of the Gamut data. */
4482 ptr = &gamut_packet->sb[3];
4483
4484 for (i = 0; i <= gamut_packet->sb[1]; i++)
4485 chk_sum += ptr[i];
4486
4487 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
4488 }
4489 }
4490
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)4491 static void set_avi_info_frame(
4492 struct dc_info_packet *info_packet,
4493 struct pipe_ctx *pipe_ctx)
4494 {
4495 struct dc_stream_state *stream = pipe_ctx->stream;
4496 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
4497 uint32_t pixel_encoding = 0;
4498 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
4499 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
4500 uint8_t *check_sum = NULL;
4501 uint8_t byte_index = 0;
4502 union hdmi_info_packet hdmi_info;
4503 unsigned int vic = pipe_ctx->stream->timing.vic;
4504 unsigned int rid = pipe_ctx->stream->timing.rid;
4505 unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
4506 enum dc_timing_3d_format format;
4507
4508 if (stream->avi_infopacket.valid) {
4509 *info_packet = stream->avi_infopacket;
4510 return;
4511 }
4512
4513 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
4514
4515
4516 color_space = pipe_ctx->stream->output_color_space;
4517 if (color_space == COLOR_SPACE_UNKNOWN)
4518 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
4519 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
4520
4521 /* Initialize header */
4522 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
4523 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
4524 * not be used in HDMI 2.0 (Section 10.1) */
4525 hdmi_info.bits.header.version = 2;
4526 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
4527
4528 /*
4529 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
4530 * according to HDMI 2.0 spec (Section 10.1)
4531 */
4532
4533 switch (stream->timing.pixel_encoding) {
4534 case PIXEL_ENCODING_YCBCR422:
4535 pixel_encoding = 1;
4536 break;
4537
4538 case PIXEL_ENCODING_YCBCR444:
4539 pixel_encoding = 2;
4540 break;
4541 case PIXEL_ENCODING_YCBCR420:
4542 pixel_encoding = 3;
4543 break;
4544
4545 case PIXEL_ENCODING_RGB:
4546 default:
4547 pixel_encoding = 0;
4548 }
4549
4550 /* Y0_Y1_Y2 : The pixel encoding */
4551 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
4552 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
4553
4554 /* A0 = 1 Active Format Information valid */
4555 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
4556
4557 /* B0, B1 = 3; Bar info data is valid */
4558 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
4559
4560 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
4561
4562 /* S0, S1 : Underscan / Overscan */
4563 /* TODO: un-hardcode scan type */
4564 scan_type = SCANNING_TYPE_UNDERSCAN;
4565 hdmi_info.bits.S0_S1 = scan_type;
4566
4567 /* C0, C1 : Colorimetry */
4568 switch (color_space) {
4569 case COLOR_SPACE_YCBCR709:
4570 case COLOR_SPACE_YCBCR709_LIMITED:
4571 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4572 break;
4573 case COLOR_SPACE_YCBCR601:
4574 case COLOR_SPACE_YCBCR601_LIMITED:
4575 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
4576 break;
4577 case COLOR_SPACE_2020_RGB_FULLRANGE:
4578 case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
4579 case COLOR_SPACE_2020_YCBCR_LIMITED:
4580 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
4581 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
4582 break;
4583 case COLOR_SPACE_ADOBERGB:
4584 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
4585 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
4586 break;
4587 case COLOR_SPACE_SRGB:
4588 default:
4589 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
4590 break;
4591 }
4592
4593 if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR_LIMITED &&
4594 stream->out_transfer_func.tf == TRANSFER_FUNCTION_GAMMA22) {
4595 hdmi_info.bits.EC0_EC2 = 0;
4596 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4597 }
4598
4599 /* TODO: un-hardcode aspect ratio */
4600 aspect = stream->timing.aspect_ratio;
4601
4602 switch (aspect) {
4603 case ASPECT_RATIO_4_3:
4604 case ASPECT_RATIO_16_9:
4605 hdmi_info.bits.M0_M1 = aspect;
4606 break;
4607
4608 case ASPECT_RATIO_NO_DATA:
4609 case ASPECT_RATIO_64_27:
4610 case ASPECT_RATIO_256_135:
4611 default:
4612 hdmi_info.bits.M0_M1 = 0;
4613 }
4614
4615 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
4616 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
4617
4618 switch (stream->content_type) {
4619 case DISPLAY_CONTENT_TYPE_NO_DATA:
4620 hdmi_info.bits.CN0_CN1 = 0;
4621 hdmi_info.bits.ITC = 1;
4622 break;
4623 case DISPLAY_CONTENT_TYPE_GRAPHICS:
4624 hdmi_info.bits.CN0_CN1 = 0;
4625 hdmi_info.bits.ITC = 1;
4626 break;
4627 case DISPLAY_CONTENT_TYPE_PHOTO:
4628 hdmi_info.bits.CN0_CN1 = 1;
4629 hdmi_info.bits.ITC = 1;
4630 break;
4631 case DISPLAY_CONTENT_TYPE_CINEMA:
4632 hdmi_info.bits.CN0_CN1 = 2;
4633 hdmi_info.bits.ITC = 1;
4634 break;
4635 case DISPLAY_CONTENT_TYPE_GAME:
4636 hdmi_info.bits.CN0_CN1 = 3;
4637 hdmi_info.bits.ITC = 1;
4638 break;
4639 }
4640
4641 if (stream->qs_bit == 1) {
4642 if (color_space == COLOR_SPACE_SRGB ||
4643 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
4644 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
4645 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
4646 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
4647 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
4648 else
4649 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
4650 } else
4651 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
4652
4653 /* TODO : We should handle YCC quantization */
4654 /* but we do not have matrix calculation */
4655 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
4656
4657 ///VIC
4658 if (pipe_ctx->stream->timing.hdmi_vic != 0)
4659 vic = 0;
4660 format = stream->timing.timing_3d_format;
4661 /*todo, add 3DStereo support*/
4662 if (format != TIMING_3D_FORMAT_NONE) {
4663 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
4664 switch (pipe_ctx->stream->timing.hdmi_vic) {
4665 case 1:
4666 vic = 95;
4667 break;
4668 case 2:
4669 vic = 94;
4670 break;
4671 case 3:
4672 vic = 93;
4673 break;
4674 case 4:
4675 vic = 98;
4676 break;
4677 default:
4678 break;
4679 }
4680 }
4681 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
4682 hdmi_info.bits.VIC0_VIC7 = vic;
4683 if (vic >= 128)
4684 hdmi_info.bits.header.version = 3;
4685 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
4686 * the Source shall use 20 AVI InfoFrame Version 4
4687 */
4688 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
4689 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
4690 hdmi_info.bits.header.version = 4;
4691 hdmi_info.bits.header.length = 14;
4692 }
4693
4694 if (rid != 0 && fr_ind != 0) {
4695 hdmi_info.bits.header.version = 4;
4696 hdmi_info.bits.header.length = 15;
4697
4698 hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
4699 hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
4700 hdmi_info.bits.RID0_RID5 = rid;
4701 }
4702
4703 /* pixel repetition
4704 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
4705 * repetition start from 1 */
4706 hdmi_info.bits.PR0_PR3 = 0;
4707
4708 /* Bar Info
4709 * barTop: Line Number of End of Top Bar.
4710 * barBottom: Line Number of Start of Bottom Bar.
4711 * barLeft: Pixel Number of End of Left Bar.
4712 * barRight: Pixel Number of Start of Right Bar. */
4713 hdmi_info.bits.bar_top = stream->timing.v_border_top;
4714 hdmi_info.bits.bar_bottom = (stream->timing.v_total
4715 - stream->timing.v_border_bottom + 1);
4716 hdmi_info.bits.bar_left = stream->timing.h_border_left;
4717 hdmi_info.bits.bar_right = (stream->timing.h_total
4718 - stream->timing.h_border_right + 1);
4719
4720 /* Additional Colorimetry Extension
4721 * Used in conduction with C0-C1 and EC0-EC2
4722 * 0 = DCI-P3 RGB (D65)
4723 * 1 = DCI-P3 RGB (theater)
4724 */
4725 hdmi_info.bits.ACE0_ACE3 = 0;
4726
4727 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
4728 check_sum = &hdmi_info.packet_raw_data.sb[0];
4729
4730 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
4731
4732 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
4733 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
4734
4735 /* one byte complement */
4736 *check_sum = (uint8_t) (0x100 - *check_sum);
4737
4738 /* Store in hw_path_mode */
4739 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
4740 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
4741 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
4742
4743 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
4744 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
4745
4746 info_packet->valid = true;
4747 }
4748
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4749 static void set_vendor_info_packet(
4750 struct dc_info_packet *info_packet,
4751 struct dc_stream_state *stream)
4752 {
4753 /* SPD info packet for FreeSync */
4754
4755 /* Check if Freesync is supported. Return if false. If true,
4756 * set the corresponding bit in the info packet
4757 */
4758 if (!stream->vsp_infopacket.valid)
4759 return;
4760
4761 *info_packet = stream->vsp_infopacket;
4762 }
4763
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4764 static void set_spd_info_packet(
4765 struct dc_info_packet *info_packet,
4766 struct dc_stream_state *stream)
4767 {
4768 /* SPD info packet for FreeSync */
4769
4770 /* Check if Freesync is supported. Return if false. If true,
4771 * set the corresponding bit in the info packet
4772 */
4773 if (!stream->vrr_infopacket.valid)
4774 return;
4775
4776 *info_packet = stream->vrr_infopacket;
4777 }
4778
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4779 static void set_hdr_static_info_packet(
4780 struct dc_info_packet *info_packet,
4781 struct dc_stream_state *stream)
4782 {
4783 /* HDR Static Metadata info packet for HDR10 */
4784
4785 if (!stream->hdr_static_metadata.valid ||
4786 stream->use_dynamic_meta)
4787 return;
4788
4789 *info_packet = stream->hdr_static_metadata;
4790 }
4791
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4792 static void set_vsc_info_packet(
4793 struct dc_info_packet *info_packet,
4794 struct dc_stream_state *stream)
4795 {
4796 if (!stream->vsc_infopacket.valid)
4797 return;
4798
4799 *info_packet = stream->vsc_infopacket;
4800 }
set_hfvs_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4801 static void set_hfvs_info_packet(
4802 struct dc_info_packet *info_packet,
4803 struct dc_stream_state *stream)
4804 {
4805 if (!stream->hfvsif_infopacket.valid)
4806 return;
4807
4808 *info_packet = stream->hfvsif_infopacket;
4809 }
4810
adaptive_sync_override_dp_info_packets_sdp_line_num(const struct dc_crtc_timing * timing,struct enc_sdp_line_num * sdp_line_num,unsigned int vstartup_start)4811 static void adaptive_sync_override_dp_info_packets_sdp_line_num(
4812 const struct dc_crtc_timing *timing,
4813 struct enc_sdp_line_num *sdp_line_num,
4814 unsigned int vstartup_start)
4815 {
4816 uint32_t asic_blank_start = 0;
4817 uint32_t asic_blank_end = 0;
4818 uint32_t v_update = 0;
4819
4820 const struct dc_crtc_timing *tg = timing;
4821
4822 /* blank_start = frame end - front porch */
4823 asic_blank_start = tg->v_total - tg->v_front_porch;
4824
4825 /* blank_end = blank_start - active */
4826 asic_blank_end = (asic_blank_start - tg->v_border_bottom -
4827 tg->v_addressable - tg->v_border_top);
4828
4829 if (vstartup_start > asic_blank_end) {
4830 v_update = (tg->v_total - (vstartup_start - asic_blank_end));
4831 sdp_line_num->adaptive_sync_line_num_valid = true;
4832 sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
4833 } else {
4834 sdp_line_num->adaptive_sync_line_num_valid = false;
4835 sdp_line_num->adaptive_sync_line_num = 0;
4836 }
4837 }
4838
set_adaptive_sync_info_packet(struct dc_info_packet * info_packet,const struct dc_stream_state * stream,struct encoder_info_frame * info_frame,unsigned int vstartup_start)4839 static void set_adaptive_sync_info_packet(
4840 struct dc_info_packet *info_packet,
4841 const struct dc_stream_state *stream,
4842 struct encoder_info_frame *info_frame,
4843 unsigned int vstartup_start)
4844 {
4845 if (!stream->adaptive_sync_infopacket.valid)
4846 return;
4847
4848 adaptive_sync_override_dp_info_packets_sdp_line_num(
4849 &stream->timing,
4850 &info_frame->sdp_line_num,
4851 vstartup_start);
4852
4853 *info_packet = stream->adaptive_sync_infopacket;
4854 }
4855
set_vtem_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4856 static void set_vtem_info_packet(
4857 struct dc_info_packet *info_packet,
4858 struct dc_stream_state *stream)
4859 {
4860 if (!stream->vtem_infopacket.valid)
4861 return;
4862
4863 *info_packet = stream->vtem_infopacket;
4864 }
4865
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)4866 struct clock_source *dc_resource_find_first_free_pll(
4867 struct resource_context *res_ctx,
4868 const struct resource_pool *pool)
4869 {
4870 int i;
4871
4872 for (i = 0; i < pool->clk_src_count; ++i) {
4873 if (res_ctx->clock_source_ref_count[i] == 0)
4874 return pool->clock_sources[i];
4875 }
4876
4877 return NULL;
4878 }
4879
resource_build_info_frame(struct pipe_ctx * pipe_ctx)4880 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
4881 {
4882 enum signal_type signal = SIGNAL_TYPE_NONE;
4883 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
4884 unsigned int vstartup_start = 0;
4885
4886 /* default all packets to invalid */
4887 info->avi.valid = false;
4888 info->gamut.valid = false;
4889 info->vendor.valid = false;
4890 info->spd.valid = false;
4891 info->hdrsmd.valid = false;
4892 info->vsc.valid = false;
4893 info->hfvsif.valid = false;
4894 info->vtem.valid = false;
4895 info->adaptive_sync.valid = false;
4896 signal = pipe_ctx->stream->signal;
4897
4898 if (pipe_ctx->stream->ctx->dc->res_pool->funcs->get_vstartup_for_pipe)
4899 vstartup_start = pipe_ctx->stream->ctx->dc->res_pool->funcs->get_vstartup_for_pipe(pipe_ctx);
4900
4901 /* HDMi and DP have different info packets*/
4902 if (dc_is_hdmi_signal(signal)) {
4903 set_avi_info_frame(&info->avi, pipe_ctx);
4904
4905 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
4906 set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
4907 set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
4908
4909 set_spd_info_packet(&info->spd, pipe_ctx->stream);
4910
4911 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
4912
4913 } else if (dc_is_dp_signal(signal)) {
4914 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
4915
4916 set_spd_info_packet(&info->spd, pipe_ctx->stream);
4917
4918 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
4919 set_adaptive_sync_info_packet(&info->adaptive_sync,
4920 pipe_ctx->stream,
4921 info,
4922 vstartup_start);
4923 }
4924
4925 patch_gamut_packet_checksum(&info->gamut);
4926 }
4927
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)4928 enum dc_status resource_map_clock_resources(
4929 const struct dc *dc,
4930 struct dc_state *context,
4931 struct dc_stream_state *stream)
4932 {
4933 /* acquire new resources */
4934 const struct resource_pool *pool = dc->res_pool;
4935 struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
4936 &context->res_ctx, stream);
4937
4938 if (!pipe_ctx)
4939 return DC_ERROR_UNEXPECTED;
4940
4941 if (dc_is_dp_signal(pipe_ctx->stream->signal)
4942 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
4943 pipe_ctx->clock_source = pool->dp_clock_source;
4944 else {
4945 pipe_ctx->clock_source = NULL;
4946
4947 if (!dc->config.disable_disp_pll_sharing)
4948 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
4949 &context->res_ctx,
4950 pipe_ctx);
4951
4952 if (pipe_ctx->clock_source == NULL)
4953 pipe_ctx->clock_source =
4954 dc_resource_find_first_free_pll(
4955 &context->res_ctx,
4956 pool);
4957 }
4958
4959 if (pipe_ctx->clock_source == NULL)
4960 return DC_NO_CLOCK_SOURCE_RESOURCE;
4961
4962 resource_reference_clock_source(
4963 &context->res_ctx, pool,
4964 pipe_ctx->clock_source);
4965
4966 return DC_OK;
4967 }
4968
4969 /*
4970 * Note: We need to disable output if clock sources change,
4971 * since bios does optimization and doesn't apply if changing
4972 * PHY when not already disabled.
4973 */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)4974 bool pipe_need_reprogram(
4975 struct pipe_ctx *pipe_ctx_old,
4976 struct pipe_ctx *pipe_ctx)
4977 {
4978 if (!pipe_ctx_old->stream)
4979 return false;
4980
4981 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
4982 return true;
4983
4984 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
4985 return true;
4986
4987 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
4988 return true;
4989
4990 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
4991 && pipe_ctx_old->stream != pipe_ctx->stream)
4992 return true;
4993
4994 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
4995 return true;
4996
4997 if (dc_is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
4998 return true;
4999
5000 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
5001 return true;
5002
5003 if (false == pipe_ctx_old->stream->link->link_state_valid &&
5004 false == pipe_ctx_old->stream->dpms_off)
5005 return true;
5006
5007 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
5008 return true;
5009
5010 if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
5011 return true;
5012 if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
5013 return true;
5014
5015 /* DIG link encoder resource assignment for stream changed. */
5016 if (pipe_ctx_old->stream->ctx->dc->config.unify_link_enc_assignment) {
5017 if (pipe_ctx_old->link_res.dio_link_enc != pipe_ctx->link_res.dio_link_enc)
5018 return true;
5019 } else if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
5020 bool need_reprogram = false;
5021 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
5022 struct link_encoder *link_enc_prev =
5023 link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
5024
5025 if (link_enc_prev != pipe_ctx->stream->link_enc)
5026 need_reprogram = true;
5027
5028 return need_reprogram;
5029 }
5030
5031 return false;
5032 }
5033
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)5034 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
5035 struct bit_depth_reduction_params *fmt_bit_depth)
5036 {
5037 enum dc_dither_option option = stream->dither_option;
5038 enum dc_pixel_encoding pixel_encoding =
5039 stream->timing.pixel_encoding;
5040
5041 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
5042
5043 if (option == DITHER_OPTION_DEFAULT) {
5044 switch (stream->timing.display_color_depth) {
5045 case COLOR_DEPTH_666:
5046 option = DITHER_OPTION_SPATIAL6;
5047 break;
5048 case COLOR_DEPTH_888:
5049 option = DITHER_OPTION_SPATIAL8;
5050 break;
5051 case COLOR_DEPTH_101010:
5052 option = DITHER_OPTION_TRUN10;
5053 break;
5054 default:
5055 option = DITHER_OPTION_DISABLE;
5056 }
5057 }
5058
5059 if (option == DITHER_OPTION_DISABLE)
5060 return;
5061
5062 if (option == DITHER_OPTION_TRUN6) {
5063 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
5064 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
5065 } else if (option == DITHER_OPTION_TRUN8 ||
5066 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
5067 option == DITHER_OPTION_TRUN8_FM6) {
5068 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
5069 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
5070 } else if (option == DITHER_OPTION_TRUN10 ||
5071 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
5072 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
5073 option == DITHER_OPTION_TRUN10_FM8 ||
5074 option == DITHER_OPTION_TRUN10_FM6 ||
5075 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
5076 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
5077 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
5078 if (option == DITHER_OPTION_TRUN10)
5079 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
5080 }
5081
5082 /* special case - Formatter can only reduce by 4 bits at most.
5083 * When reducing from 12 to 6 bits,
5084 * HW recommends we use trunc with round mode
5085 * (if we did nothing, trunc to 10 bits would be used)
5086 * note that any 12->10 bit reduction is ignored prior to DCE8,
5087 * as the input was 10 bits.
5088 */
5089 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
5090 option == DITHER_OPTION_SPATIAL6 ||
5091 option == DITHER_OPTION_FM6) {
5092 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
5093 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
5094 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
5095 }
5096
5097 /* spatial dither
5098 * note that spatial modes 1-3 are never used
5099 */
5100 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
5101 option == DITHER_OPTION_SPATIAL6 ||
5102 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
5103 option == DITHER_OPTION_TRUN8_SPATIAL6) {
5104 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
5105 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
5106 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
5107 fmt_bit_depth->flags.RGB_RANDOM =
5108 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
5109 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
5110 option == DITHER_OPTION_SPATIAL8 ||
5111 option == DITHER_OPTION_SPATIAL8_FM6 ||
5112 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
5113 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
5114 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
5115 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
5116 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
5117 fmt_bit_depth->flags.RGB_RANDOM =
5118 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
5119 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
5120 option == DITHER_OPTION_SPATIAL10 ||
5121 option == DITHER_OPTION_SPATIAL10_FM8 ||
5122 option == DITHER_OPTION_SPATIAL10_FM6) {
5123 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
5124 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
5125 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
5126 fmt_bit_depth->flags.RGB_RANDOM =
5127 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
5128 }
5129
5130 if (option == DITHER_OPTION_SPATIAL6 ||
5131 option == DITHER_OPTION_SPATIAL8 ||
5132 option == DITHER_OPTION_SPATIAL10) {
5133 fmt_bit_depth->flags.FRAME_RANDOM = 0;
5134 } else {
5135 fmt_bit_depth->flags.FRAME_RANDOM = 1;
5136 }
5137
5138 //////////////////////
5139 //// temporal dither
5140 //////////////////////
5141 if (option == DITHER_OPTION_FM6 ||
5142 option == DITHER_OPTION_SPATIAL8_FM6 ||
5143 option == DITHER_OPTION_SPATIAL10_FM6 ||
5144 option == DITHER_OPTION_TRUN10_FM6 ||
5145 option == DITHER_OPTION_TRUN8_FM6 ||
5146 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
5147 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
5148 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
5149 } else if (option == DITHER_OPTION_FM8 ||
5150 option == DITHER_OPTION_SPATIAL10_FM8 ||
5151 option == DITHER_OPTION_TRUN10_FM8) {
5152 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
5153 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
5154 } else if (option == DITHER_OPTION_FM10) {
5155 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
5156 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
5157 }
5158
5159 fmt_bit_depth->pixel_encoding = pixel_encoding;
5160 }
5161
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)5162 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
5163 {
5164 if (dc == NULL || stream == NULL)
5165 return DC_ERROR_UNEXPECTED;
5166
5167 struct dc_link *link = stream->link;
5168 struct timing_generator *tg = dc->res_pool->timing_generators[0];
5169 enum dc_status res = DC_OK;
5170
5171 calculate_phy_pix_clks(stream);
5172
5173 if (!tg->funcs->validate_timing(tg, &stream->timing))
5174 res = DC_FAIL_CONTROLLER_VALIDATE;
5175
5176 if (res == DC_OK) {
5177 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
5178 !link->link_enc->funcs->validate_output_with_stream(
5179 link->link_enc, stream))
5180 res = DC_FAIL_ENC_VALIDATE;
5181 }
5182
5183 /* TODO: validate audio ASIC caps, encoder */
5184
5185 if (res == DC_OK)
5186 res = dc->link_srv->validate_mode_timing(stream,
5187 link,
5188 &stream->timing);
5189
5190 return res;
5191 }
5192
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)5193 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
5194 {
5195 enum dc_status res = DC_OK;
5196
5197 /* check if surface has invalid dimensions */
5198 if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
5199 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
5200 return DC_FAIL_SURFACE_VALIDATE;
5201
5202 /* TODO For now validates pixel format only */
5203 if (dc->res_pool->funcs->validate_plane)
5204 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
5205
5206 return res;
5207 }
5208
resource_pixel_format_to_bpp(enum surface_pixel_format format)5209 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
5210 {
5211 switch (format) {
5212 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
5213 return 8;
5214 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
5215 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
5216 return 12;
5217 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
5218 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
5219 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
5220 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
5221 return 16;
5222 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
5223 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
5224 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
5225 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
5226 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
5227 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
5228 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
5229 return 32;
5230 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
5231 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
5232 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
5233 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
5234 return 64;
5235 default:
5236 ASSERT_CRITICAL(false);
5237 return -1;
5238 }
5239 }
get_max_audio_sample_rate(struct audio_mode * modes)5240 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
5241 {
5242 if (modes) {
5243 if (modes->sample_rates.rate.RATE_192)
5244 return 192000;
5245 if (modes->sample_rates.rate.RATE_176_4)
5246 return 176400;
5247 if (modes->sample_rates.rate.RATE_96)
5248 return 96000;
5249 if (modes->sample_rates.rate.RATE_88_2)
5250 return 88200;
5251 if (modes->sample_rates.rate.RATE_48)
5252 return 48000;
5253 if (modes->sample_rates.rate.RATE_44_1)
5254 return 44100;
5255 if (modes->sample_rates.rate.RATE_32)
5256 return 32000;
5257 }
5258 /*original logic when no audio info*/
5259 return 441000;
5260 }
5261
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)5262 void get_audio_check(struct audio_info *aud_modes,
5263 struct audio_check *audio_chk)
5264 {
5265 unsigned int i;
5266 unsigned int max_sample_rate = 0;
5267
5268 if (aud_modes) {
5269 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
5270
5271 audio_chk->max_audiosample_rate = 0;
5272 for (i = 0; i < aud_modes->mode_count; i++) {
5273 max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
5274 if (audio_chk->max_audiosample_rate < max_sample_rate)
5275 audio_chk->max_audiosample_rate = max_sample_rate;
5276 /*dts takes the same as type 2: AP = 0.25*/
5277 }
5278 /*check which one take more bandwidth*/
5279 if (audio_chk->max_audiosample_rate > 192000)
5280 audio_chk->audio_packet_type = 0x9;/*AP =1*/
5281 audio_chk->acat = 0;/*not support*/
5282 }
5283 }
5284
get_temp_dio_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)5285 struct link_encoder *get_temp_dio_link_enc(
5286 const struct resource_context *res_ctx,
5287 const struct resource_pool *const pool,
5288 const struct dc_link *link)
5289 {
5290 struct link_encoder *link_enc = NULL;
5291 int enc_index;
5292
5293 if (link->is_dig_mapping_flexible)
5294 enc_index = find_acquired_dio_link_enc_for_link(res_ctx, link);
5295 else
5296 enc_index = link->eng_id;
5297
5298 if (enc_index < 0)
5299 enc_index = find_free_dio_link_enc(res_ctx, link, pool, NULL);
5300
5301 if (enc_index >= 0)
5302 link_enc = pool->link_encoders[enc_index];
5303
5304 return link_enc;
5305 }
5306
get_temp_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)5307 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
5308 const struct resource_context *res_ctx,
5309 const struct resource_pool *const pool,
5310 const struct dc_link *link)
5311 {
5312 struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
5313 int enc_index;
5314
5315 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
5316
5317 if (enc_index < 0)
5318 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
5319
5320 if (enc_index >= 0)
5321 hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
5322
5323 return hpo_dp_link_enc;
5324 }
5325
get_temp_dp_link_res(struct dc_link * link,struct link_resource * link_res,struct dc_link_settings * link_settings)5326 bool get_temp_dp_link_res(struct dc_link *link,
5327 struct link_resource *link_res,
5328 struct dc_link_settings *link_settings)
5329 {
5330 const struct dc *dc = link->dc;
5331 const struct resource_context *res_ctx = &dc->current_state->res_ctx;
5332
5333 memset(link_res, 0, sizeof(*link_res));
5334
5335 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
5336 link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx, dc->res_pool, link);
5337 if (!link_res->hpo_dp_link_enc)
5338 return false;
5339 } else if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING &&
5340 dc->config.unify_link_enc_assignment) {
5341 link_res->dio_link_enc = get_temp_dio_link_enc(res_ctx,
5342 dc->res_pool, link);
5343 if (!link_res->dio_link_enc)
5344 return false;
5345 }
5346
5347 return true;
5348 }
5349
reset_syncd_pipes_from_disabled_pipes(struct dc * dc,struct dc_state * context)5350 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
5351 struct dc_state *context)
5352 {
5353 int i, j;
5354 struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
5355
5356 /* If pipe backend is reset, need to reset pipe syncd status */
5357 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5358 pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i];
5359 pipe_ctx = &context->res_ctx.pipe_ctx[i];
5360
5361 if (!resource_is_pipe_type(pipe_ctx_old, OTG_MASTER))
5362 continue;
5363
5364 if (!pipe_ctx->stream ||
5365 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
5366
5367 /* Reset all the syncd pipes from the disabled pipe */
5368 for (j = 0; j < dc->res_pool->pipe_count; j++) {
5369 pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
5370 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
5371 !IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
5372 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
5373 }
5374 }
5375 }
5376 }
5377
check_syncd_pipes_for_disabled_master_pipe(struct dc * dc,struct dc_state * context,uint8_t disabled_master_pipe_idx)5378 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
5379 struct dc_state *context,
5380 uint8_t disabled_master_pipe_idx)
5381 {
5382 int i;
5383 struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
5384
5385 pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
5386 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
5387 !IS_PIPE_SYNCD_VALID(pipe_ctx))
5388 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
5389
5390 /* for the pipe disabled, check if any slave pipe exists and assert */
5391 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5392 pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
5393
5394 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
5395 IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
5396 struct pipe_ctx *first_pipe = pipe_ctx_check;
5397
5398 while (first_pipe->prev_odm_pipe)
5399 first_pipe = first_pipe->prev_odm_pipe;
5400 /* When ODM combine is enabled, this case is expected. If the disabled pipe
5401 * is part of the ODM tree, then we should not print an error.
5402 * */
5403 if (first_pipe->pipe_idx == disabled_master_pipe_idx)
5404 continue;
5405
5406 DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
5407 i, disabled_master_pipe_idx);
5408 }
5409 }
5410 }
5411
reset_sync_context_for_pipe(const struct dc * dc,struct dc_state * context,uint8_t pipe_idx)5412 void reset_sync_context_for_pipe(const struct dc *dc,
5413 struct dc_state *context,
5414 uint8_t pipe_idx)
5415 {
5416 int i;
5417 struct pipe_ctx *pipe_ctx_reset;
5418
5419 /* reset the otg sync context for the pipe and its slave pipes if any */
5420 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5421 pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
5422
5423 if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
5424 IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
5425 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
5426 }
5427 }
5428
resource_transmitter_to_phy_idx(const struct dc * dc,enum transmitter transmitter)5429 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
5430 {
5431 /* TODO - get transmitter to phy idx mapping from DMUB */
5432 uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
5433
5434 if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
5435 dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
5436 switch (transmitter) {
5437 case TRANSMITTER_UNIPHY_A:
5438 phy_idx = 0;
5439 break;
5440 case TRANSMITTER_UNIPHY_B:
5441 phy_idx = 1;
5442 break;
5443 case TRANSMITTER_UNIPHY_C:
5444 phy_idx = 5;
5445 break;
5446 case TRANSMITTER_UNIPHY_D:
5447 phy_idx = 6;
5448 break;
5449 case TRANSMITTER_UNIPHY_E:
5450 phy_idx = 4;
5451 break;
5452 default:
5453 phy_idx = 0;
5454 break;
5455 }
5456 }
5457
5458 return phy_idx;
5459 }
5460
get_link_hwss(const struct dc_link * link,const struct link_resource * link_res)5461 const struct link_hwss *get_link_hwss(const struct dc_link *link,
5462 const struct link_resource *link_res)
5463 {
5464 /* Link_hwss is only accessible by getter function instead of accessing
5465 * by pointers in dc with the intent to protect against breaking polymorphism.
5466 */
5467 if (can_use_hpo_dp_link_hwss(link, link_res))
5468 /* TODO: some assumes that if decided link settings is 128b/132b
5469 * channel coding format hpo_dp_link_enc should be used.
5470 * Others believe that if hpo_dp_link_enc is available in link
5471 * resource then hpo_dp_link_enc must be used. This bound between
5472 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
5473 * with a premise that both hpo_dp_link_enc pointer and decided link
5474 * settings are determined based on single policy function like
5475 * "decide_link_settings" from upper layer. This "convention"
5476 * cannot be maintained and enforced at current level.
5477 * Therefore a refactor is due so we can enforce a strong bound
5478 * between those two parameters at this level.
5479 *
5480 * To put it simple, we want to make enforcement at low level so that
5481 * we will not return link hwss if caller plans to do 8b/10b
5482 * with an hpo encoder. Or we can return a very dummy one that doesn't
5483 * do work for all functions
5484 */
5485 return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
5486 get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
5487 else if (can_use_dpia_link_hwss(link, link_res))
5488 return get_dpia_link_hwss();
5489 else if (can_use_dio_link_hwss(link, link_res))
5490 return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
5491 get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
5492 else
5493 return get_virtual_link_hwss();
5494 }
5495
is_h_timing_divisible_by_2(struct dc_stream_state * stream)5496 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
5497 {
5498 bool divisible = false;
5499 uint16_t h_blank_start = 0;
5500 uint16_t h_blank_end = 0;
5501
5502 if (stream) {
5503 h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
5504 h_blank_end = h_blank_start - stream->timing.h_addressable;
5505
5506 /* HTOTAL, Hblank start/end, and Hsync start/end all must be
5507 * divisible by 2 in order for the horizontal timing params
5508 * to be considered divisible by 2. Hsync start is always 0.
5509 */
5510 divisible = (stream->timing.h_total % 2 == 0) &&
5511 (h_blank_start % 2 == 0) &&
5512 (h_blank_end % 2 == 0) &&
5513 (stream->timing.h_sync_width % 2 == 0);
5514 }
5515 return divisible;
5516 }
5517
5518 /* This interface is deprecated for new DCNs. It is replaced by the following
5519 * new interfaces. These two interfaces encapsulate pipe selection priority
5520 * with DCN specific minimum hardware transition optimization algorithm. With
5521 * the new interfaces caller no longer needs to know the implementation detail
5522 * of a pipe topology.
5523 *
5524 * resource_update_pipes_with_odm_slice_count
5525 * resource_update_pipes_with_mpc_slice_count
5526 *
5527 */
dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(const struct dc * dc,struct dc_state * state,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)5528 bool dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(
5529 const struct dc *dc,
5530 struct dc_state *state,
5531 struct pipe_ctx *pri_pipe,
5532 struct pipe_ctx *sec_pipe,
5533 bool odm)
5534 {
5535 int pipe_idx = sec_pipe->pipe_idx;
5536 struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
5537 const struct resource_pool *pool = dc->res_pool;
5538
5539 sec_top = sec_pipe->top_pipe;
5540 sec_bottom = sec_pipe->bottom_pipe;
5541 sec_next = sec_pipe->next_odm_pipe;
5542 sec_prev = sec_pipe->prev_odm_pipe;
5543
5544 if (pri_pipe == NULL)
5545 return false;
5546
5547 *sec_pipe = *pri_pipe;
5548
5549 sec_pipe->top_pipe = sec_top;
5550 sec_pipe->bottom_pipe = sec_bottom;
5551 sec_pipe->next_odm_pipe = sec_next;
5552 sec_pipe->prev_odm_pipe = sec_prev;
5553
5554 sec_pipe->pipe_idx = pipe_idx;
5555 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
5556 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
5557 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
5558 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
5559 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
5560 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
5561 sec_pipe->stream_res.dsc = NULL;
5562 if (odm) {
5563 if (!sec_pipe->top_pipe)
5564 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
5565 else
5566 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
5567 if (sec_pipe->stream->timing.flags.DSC == 1) {
5568 #if defined(CONFIG_DRM_AMD_DC_FP)
5569 dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, sec_pipe->stream_res.opp->inst);
5570 #endif
5571 ASSERT(sec_pipe->stream_res.dsc);
5572 if (sec_pipe->stream_res.dsc == NULL)
5573 return false;
5574 }
5575 #if defined(CONFIG_DRM_AMD_DC_FP)
5576 dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
5577 #endif
5578 }
5579
5580 return true;
5581 }
5582
update_dp_encoder_resources_for_test_harness(const struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)5583 enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
5584 struct dc_state *context,
5585 struct pipe_ctx *pipe_ctx)
5586 {
5587 if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
5588 if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
5589 pipe_ctx->stream_res.hpo_dp_stream_enc =
5590 find_first_free_match_hpo_dp_stream_enc_for_link(
5591 &context->res_ctx, dc->res_pool, pipe_ctx->stream);
5592
5593 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
5594 return DC_NO_STREAM_ENC_RESOURCE;
5595
5596 update_hpo_dp_stream_engine_usage(
5597 &context->res_ctx, dc->res_pool,
5598 pipe_ctx->stream_res.hpo_dp_stream_enc,
5599 true);
5600 }
5601
5602 if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
5603 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
5604 return DC_NO_LINK_ENC_RESOURCE;
5605 }
5606 } else {
5607 if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
5608 update_hpo_dp_stream_engine_usage(
5609 &context->res_ctx, dc->res_pool,
5610 pipe_ctx->stream_res.hpo_dp_stream_enc,
5611 false);
5612 pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
5613 }
5614 if (pipe_ctx->link_res.hpo_dp_link_enc)
5615 remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
5616 }
5617
5618 if (pipe_ctx->link_res.dio_link_enc == NULL && dc->config.unify_link_enc_assignment)
5619 if (!add_dio_link_enc_to_ctx(dc, context, dc->res_pool, pipe_ctx, pipe_ctx->stream))
5620 return DC_NO_LINK_ENC_RESOURCE;
5621
5622 return DC_OK;
5623 }
5624
resource_get_dscl_prog_data(struct pipe_ctx * pipe_ctx)5625 struct dscl_prog_data *resource_get_dscl_prog_data(struct pipe_ctx *pipe_ctx)
5626 {
5627 return &pipe_ctx->plane_res.scl_data.dscl_prog_data;
5628 }
5629
resource_allocate_mcache(struct dc_state * context,const struct dc_mcache_params * mcache_params)5630 static bool resource_allocate_mcache(struct dc_state *context, const struct dc_mcache_params *mcache_params)
5631 {
5632 if (context->clk_mgr->ctx->dc->res_pool->funcs->program_mcache_pipe_config)
5633 context->clk_mgr->ctx->dc->res_pool->funcs->program_mcache_pipe_config(context, mcache_params);
5634
5635 return true;
5636 }
5637
resource_init_common_dml2_callbacks(struct dc * dc,struct dml2_configuration_options * dml2_options)5638 void resource_init_common_dml2_callbacks(struct dc *dc, struct dml2_configuration_options *dml2_options)
5639 {
5640 dml2_options->callbacks.dc = dc;
5641 dml2_options->callbacks.build_scaling_params = &resource_build_scaling_params;
5642 dml2_options->callbacks.build_test_pattern_params = &resource_build_test_pattern_params;
5643 dml2_options->callbacks.acquire_secondary_pipe_for_mpc_odm = &dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy;
5644 dml2_options->callbacks.update_pipes_for_stream_with_slice_count = &resource_update_pipes_for_stream_with_slice_count;
5645 dml2_options->callbacks.update_pipes_for_plane_with_slice_count = &resource_update_pipes_for_plane_with_slice_count;
5646 dml2_options->callbacks.get_mpc_slice_index = &resource_get_mpc_slice_index;
5647 dml2_options->callbacks.get_mpc_slice_count = &resource_get_mpc_slice_count;
5648 dml2_options->callbacks.get_odm_slice_index = &resource_get_odm_slice_index;
5649 dml2_options->callbacks.get_odm_slice_count = &resource_get_odm_slice_count;
5650 dml2_options->callbacks.get_opp_head = &resource_get_opp_head;
5651 dml2_options->callbacks.get_otg_master_for_stream = &resource_get_otg_master_for_stream;
5652 dml2_options->callbacks.get_opp_heads_for_otg_master = &resource_get_opp_heads_for_otg_master;
5653 dml2_options->callbacks.get_dpp_pipes_for_plane = &resource_get_dpp_pipes_for_plane;
5654 dml2_options->callbacks.get_stream_status = &dc_state_get_stream_status;
5655 dml2_options->callbacks.get_stream_from_id = &dc_state_get_stream_from_id;
5656 dml2_options->callbacks.get_max_flickerless_instant_vtotal_increase = &dc_stream_get_max_flickerless_instant_vtotal_increase;
5657 dml2_options->callbacks.allocate_mcache = &resource_allocate_mcache;
5658
5659 dml2_options->svp_pstate.callbacks.dc = dc;
5660 dml2_options->svp_pstate.callbacks.add_phantom_plane = &dc_state_add_phantom_plane;
5661 dml2_options->svp_pstate.callbacks.add_phantom_stream = &dc_state_add_phantom_stream;
5662 dml2_options->svp_pstate.callbacks.build_scaling_params = &resource_build_scaling_params;
5663 dml2_options->svp_pstate.callbacks.create_phantom_plane = &dc_state_create_phantom_plane;
5664 dml2_options->svp_pstate.callbacks.remove_phantom_plane = &dc_state_remove_phantom_plane;
5665 dml2_options->svp_pstate.callbacks.remove_phantom_stream = &dc_state_remove_phantom_stream;
5666 dml2_options->svp_pstate.callbacks.create_phantom_stream = &dc_state_create_phantom_stream;
5667 dml2_options->svp_pstate.callbacks.release_phantom_plane = &dc_state_release_phantom_plane;
5668 dml2_options->svp_pstate.callbacks.release_phantom_stream = &dc_state_release_phantom_stream;
5669 dml2_options->svp_pstate.callbacks.get_pipe_subvp_type = &dc_state_get_pipe_subvp_type;
5670 dml2_options->svp_pstate.callbacks.get_stream_subvp_type = &dc_state_get_stream_subvp_type;
5671 dml2_options->svp_pstate.callbacks.get_paired_subvp_stream = &dc_state_get_paired_subvp_stream;
5672 dml2_options->svp_pstate.callbacks.remove_phantom_streams_and_planes = &dc_state_remove_phantom_streams_and_planes;
5673 dml2_options->svp_pstate.callbacks.release_phantom_streams_and_planes = &dc_state_release_phantom_streams_and_planes;
5674 }
5675
5676 /* Returns number of DET segments allocated for a given OTG_MASTER pipe */
resource_calculate_det_for_stream(struct dc_state * state,struct pipe_ctx * otg_master)5677 int resource_calculate_det_for_stream(struct dc_state *state, struct pipe_ctx *otg_master)
5678 {
5679 struct pipe_ctx *opp_heads[MAX_PIPES];
5680 struct pipe_ctx *dpp_pipes[MAX_PIPES];
5681
5682 int dpp_count = 0;
5683 int det_segments = 0;
5684
5685 if (!otg_master->stream)
5686 return 0;
5687
5688 int slice_count = resource_get_opp_heads_for_otg_master(otg_master,
5689 &state->res_ctx, opp_heads);
5690
5691 for (int slice_idx = 0; slice_idx < slice_count; slice_idx++) {
5692 if (opp_heads[slice_idx]->plane_state) {
5693 dpp_count = resource_get_dpp_pipes_for_opp_head(
5694 opp_heads[slice_idx],
5695 &state->res_ctx,
5696 dpp_pipes);
5697 for (int dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++)
5698 det_segments += dpp_pipes[dpp_idx]->hubp_regs.det_size;
5699 }
5700 }
5701 return det_segments;
5702 }
5703
resource_is_hpo_acquired(struct dc_state * context)5704 bool resource_is_hpo_acquired(struct dc_state *context)
5705 {
5706 int i;
5707
5708 for (i = 0; i < MAX_HPO_DP2_ENCODERS; i++) {
5709 if (context->res_ctx.is_hpo_dp_stream_enc_acquired[i]) {
5710 return true;
5711 }
5712 }
5713
5714 return false;
5715 }
5716