1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-prison-v2.h"
10 #include "dm-bio-record.h"
11 #include "dm-cache-metadata.h"
12 #include "dm-io-tracker.h"
13 #include "dm-cache-background-tracker.h"
14
15 #include <linux/dm-io.h>
16 #include <linux/dm-kcopyd.h>
17 #include <linux/jiffies.h>
18 #include <linux/init.h>
19 #include <linux/mempool.h>
20 #include <linux/module.h>
21 #include <linux/rwsem.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24
25 #define DM_MSG_PREFIX "cache"
26
27 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
28 "A percentage of time allocated for copying to and/or from cache");
29
30 /*----------------------------------------------------------------*/
31
32 /*
33 * Glossary:
34 *
35 * oblock: index of an origin block
36 * cblock: index of a cache block
37 * promotion: movement of a block from origin to cache
38 * demotion: movement of a block from cache to origin
39 * migration: movement of a block between the origin and cache device,
40 * either direction
41 */
42
43 /*----------------------------------------------------------------*/
44
45 /*
46 * Represents a chunk of future work. 'input' allows continuations to pass
47 * values between themselves, typically error values.
48 */
49 struct continuation {
50 struct work_struct ws;
51 blk_status_t input;
52 };
53
init_continuation(struct continuation * k,void (* fn)(struct work_struct *))54 static inline void init_continuation(struct continuation *k,
55 void (*fn)(struct work_struct *))
56 {
57 INIT_WORK(&k->ws, fn);
58 k->input = 0;
59 }
60
queue_continuation(struct workqueue_struct * wq,struct continuation * k)61 static inline void queue_continuation(struct workqueue_struct *wq,
62 struct continuation *k)
63 {
64 queue_work(wq, &k->ws);
65 }
66
67 /*----------------------------------------------------------------*/
68
69 /*
70 * The batcher collects together pieces of work that need a particular
71 * operation to occur before they can proceed (typically a commit).
72 */
73 struct batcher {
74 /*
75 * The operation that everyone is waiting for.
76 */
77 blk_status_t (*commit_op)(void *context);
78 void *commit_context;
79
80 /*
81 * This is how bios should be issued once the commit op is complete
82 * (accounted_request).
83 */
84 void (*issue_op)(struct bio *bio, void *context);
85 void *issue_context;
86
87 /*
88 * Queued work gets put on here after commit.
89 */
90 struct workqueue_struct *wq;
91
92 spinlock_t lock;
93 struct list_head work_items;
94 struct bio_list bios;
95 struct work_struct commit_work;
96
97 bool commit_scheduled;
98 };
99
__commit(struct work_struct * _ws)100 static void __commit(struct work_struct *_ws)
101 {
102 struct batcher *b = container_of(_ws, struct batcher, commit_work);
103 blk_status_t r;
104 struct list_head work_items;
105 struct work_struct *ws, *tmp;
106 struct continuation *k;
107 struct bio *bio;
108 struct bio_list bios;
109
110 INIT_LIST_HEAD(&work_items);
111 bio_list_init(&bios);
112
113 /*
114 * We have to grab these before the commit_op to avoid a race
115 * condition.
116 */
117 spin_lock_irq(&b->lock);
118 list_splice_init(&b->work_items, &work_items);
119 bio_list_merge_init(&bios, &b->bios);
120 b->commit_scheduled = false;
121 spin_unlock_irq(&b->lock);
122
123 r = b->commit_op(b->commit_context);
124
125 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
126 k = container_of(ws, struct continuation, ws);
127 k->input = r;
128 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
129 queue_work(b->wq, ws);
130 }
131
132 while ((bio = bio_list_pop(&bios))) {
133 if (r) {
134 bio->bi_status = r;
135 bio_endio(bio);
136 } else
137 b->issue_op(bio, b->issue_context);
138 }
139 }
140
batcher_init(struct batcher * b,blk_status_t (* commit_op)(void *),void * commit_context,void (* issue_op)(struct bio * bio,void *),void * issue_context,struct workqueue_struct * wq)141 static void batcher_init(struct batcher *b,
142 blk_status_t (*commit_op)(void *),
143 void *commit_context,
144 void (*issue_op)(struct bio *bio, void *),
145 void *issue_context,
146 struct workqueue_struct *wq)
147 {
148 b->commit_op = commit_op;
149 b->commit_context = commit_context;
150 b->issue_op = issue_op;
151 b->issue_context = issue_context;
152 b->wq = wq;
153
154 spin_lock_init(&b->lock);
155 INIT_LIST_HEAD(&b->work_items);
156 bio_list_init(&b->bios);
157 INIT_WORK(&b->commit_work, __commit);
158 b->commit_scheduled = false;
159 }
160
async_commit(struct batcher * b)161 static void async_commit(struct batcher *b)
162 {
163 queue_work(b->wq, &b->commit_work);
164 }
165
continue_after_commit(struct batcher * b,struct continuation * k)166 static void continue_after_commit(struct batcher *b, struct continuation *k)
167 {
168 bool commit_scheduled;
169
170 spin_lock_irq(&b->lock);
171 commit_scheduled = b->commit_scheduled;
172 list_add_tail(&k->ws.entry, &b->work_items);
173 spin_unlock_irq(&b->lock);
174
175 if (commit_scheduled)
176 async_commit(b);
177 }
178
179 /*
180 * Bios are errored if commit failed.
181 */
issue_after_commit(struct batcher * b,struct bio * bio)182 static void issue_after_commit(struct batcher *b, struct bio *bio)
183 {
184 bool commit_scheduled;
185
186 spin_lock_irq(&b->lock);
187 commit_scheduled = b->commit_scheduled;
188 bio_list_add(&b->bios, bio);
189 spin_unlock_irq(&b->lock);
190
191 if (commit_scheduled)
192 async_commit(b);
193 }
194
195 /*
196 * Call this if some urgent work is waiting for the commit to complete.
197 */
schedule_commit(struct batcher * b)198 static void schedule_commit(struct batcher *b)
199 {
200 bool immediate;
201
202 spin_lock_irq(&b->lock);
203 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
204 b->commit_scheduled = true;
205 spin_unlock_irq(&b->lock);
206
207 if (immediate)
208 async_commit(b);
209 }
210
211 /*
212 * There are a couple of places where we let a bio run, but want to do some
213 * work before calling its endio function. We do this by temporarily
214 * changing the endio fn.
215 */
216 struct dm_hook_info {
217 bio_end_io_t *bi_end_io;
218 };
219
dm_hook_bio(struct dm_hook_info * h,struct bio * bio,bio_end_io_t * bi_end_io,void * bi_private)220 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
221 bio_end_io_t *bi_end_io, void *bi_private)
222 {
223 h->bi_end_io = bio->bi_end_io;
224
225 bio->bi_end_io = bi_end_io;
226 bio->bi_private = bi_private;
227 }
228
dm_unhook_bio(struct dm_hook_info * h,struct bio * bio)229 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
230 {
231 bio->bi_end_io = h->bi_end_io;
232 }
233
234 /*----------------------------------------------------------------*/
235
236 #define MIGRATION_POOL_SIZE 128
237 #define COMMIT_PERIOD HZ
238 #define MIGRATION_COUNT_WINDOW 10
239
240 /*
241 * The block size of the device holding cache data must be
242 * between 32KB and 1GB.
243 */
244 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
245 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
246
247 enum cache_metadata_mode {
248 CM_WRITE, /* metadata may be changed */
249 CM_READ_ONLY, /* metadata may not be changed */
250 CM_FAIL
251 };
252
253 enum cache_io_mode {
254 /*
255 * Data is written to cached blocks only. These blocks are marked
256 * dirty. If you lose the cache device you will lose data.
257 * Potential performance increase for both reads and writes.
258 */
259 CM_IO_WRITEBACK,
260
261 /*
262 * Data is written to both cache and origin. Blocks are never
263 * dirty. Potential performance benfit for reads only.
264 */
265 CM_IO_WRITETHROUGH,
266
267 /*
268 * A degraded mode useful for various cache coherency situations
269 * (eg, rolling back snapshots). Reads and writes always go to the
270 * origin. If a write goes to a cached oblock, then the cache
271 * block is invalidated.
272 */
273 CM_IO_PASSTHROUGH
274 };
275
276 struct cache_features {
277 enum cache_metadata_mode mode;
278 enum cache_io_mode io_mode;
279 unsigned int metadata_version;
280 bool discard_passdown:1;
281 };
282
283 struct cache_stats {
284 atomic_t read_hit;
285 atomic_t read_miss;
286 atomic_t write_hit;
287 atomic_t write_miss;
288 atomic_t demotion;
289 atomic_t promotion;
290 atomic_t writeback;
291 atomic_t copies_avoided;
292 atomic_t cache_cell_clash;
293 atomic_t commit_count;
294 atomic_t discard_count;
295 };
296
297 struct cache {
298 struct dm_target *ti;
299 spinlock_t lock;
300
301 /*
302 * Fields for converting from sectors to blocks.
303 */
304 int sectors_per_block_shift;
305 sector_t sectors_per_block;
306
307 struct dm_cache_metadata *cmd;
308
309 /*
310 * Metadata is written to this device.
311 */
312 struct dm_dev *metadata_dev;
313
314 /*
315 * The slower of the two data devices. Typically a spindle.
316 */
317 struct dm_dev *origin_dev;
318
319 /*
320 * The faster of the two data devices. Typically an SSD.
321 */
322 struct dm_dev *cache_dev;
323
324 /*
325 * Size of the origin device in _complete_ blocks and native sectors.
326 */
327 dm_oblock_t origin_blocks;
328 sector_t origin_sectors;
329
330 /*
331 * Size of the cache device in blocks.
332 */
333 dm_cblock_t cache_size;
334
335 /*
336 * Invalidation fields.
337 */
338 spinlock_t invalidation_lock;
339 struct list_head invalidation_requests;
340
341 sector_t migration_threshold;
342 wait_queue_head_t migration_wait;
343 atomic_t nr_allocated_migrations;
344
345 /*
346 * The number of in flight migrations that are performing
347 * background io. eg, promotion, writeback.
348 */
349 atomic_t nr_io_migrations;
350
351 struct bio_list deferred_bios;
352
353 struct rw_semaphore quiesce_lock;
354
355 /*
356 * origin_blocks entries, discarded if set.
357 */
358 dm_dblock_t discard_nr_blocks;
359 unsigned long *discard_bitset;
360 uint32_t discard_block_size; /* a power of 2 times sectors per block */
361
362 /*
363 * Rather than reconstructing the table line for the status we just
364 * save it and regurgitate.
365 */
366 unsigned int nr_ctr_args;
367 const char **ctr_args;
368
369 struct dm_kcopyd_client *copier;
370 struct work_struct deferred_bio_worker;
371 struct work_struct migration_worker;
372 struct workqueue_struct *wq;
373 struct delayed_work waker;
374 struct dm_bio_prison_v2 *prison;
375
376 /*
377 * cache_size entries, dirty if set
378 */
379 unsigned long *dirty_bitset;
380 atomic_t nr_dirty;
381
382 unsigned int policy_nr_args;
383 struct dm_cache_policy *policy;
384
385 /*
386 * Cache features such as write-through.
387 */
388 struct cache_features features;
389
390 struct cache_stats stats;
391
392 bool need_tick_bio:1;
393 bool sized:1;
394 bool invalidate:1;
395 bool commit_requested:1;
396 bool loaded_mappings:1;
397 bool loaded_discards:1;
398
399 struct rw_semaphore background_work_lock;
400
401 struct batcher committer;
402 struct work_struct commit_ws;
403
404 struct dm_io_tracker tracker;
405
406 mempool_t migration_pool;
407
408 struct bio_set bs;
409
410 /*
411 * Cache_size entries. Set bits indicate blocks mapped beyond the
412 * target length, which are marked for invalidation.
413 */
414 unsigned long *invalid_bitset;
415 };
416
417 struct per_bio_data {
418 bool tick:1;
419 unsigned int req_nr:2;
420 struct dm_bio_prison_cell_v2 *cell;
421 struct dm_hook_info hook_info;
422 sector_t len;
423 };
424
425 struct dm_cache_migration {
426 struct continuation k;
427 struct cache *cache;
428
429 struct policy_work *op;
430 struct bio *overwrite_bio;
431 struct dm_bio_prison_cell_v2 *cell;
432
433 dm_cblock_t invalidate_cblock;
434 dm_oblock_t invalidate_oblock;
435 };
436
437 /*----------------------------------------------------------------*/
438
writethrough_mode(struct cache * cache)439 static bool writethrough_mode(struct cache *cache)
440 {
441 return cache->features.io_mode == CM_IO_WRITETHROUGH;
442 }
443
writeback_mode(struct cache * cache)444 static bool writeback_mode(struct cache *cache)
445 {
446 return cache->features.io_mode == CM_IO_WRITEBACK;
447 }
448
passthrough_mode(struct cache * cache)449 static inline bool passthrough_mode(struct cache *cache)
450 {
451 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
452 }
453
454 /*----------------------------------------------------------------*/
455
wake_deferred_bio_worker(struct cache * cache)456 static void wake_deferred_bio_worker(struct cache *cache)
457 {
458 queue_work(cache->wq, &cache->deferred_bio_worker);
459 }
460
wake_migration_worker(struct cache * cache)461 static void wake_migration_worker(struct cache *cache)
462 {
463 if (passthrough_mode(cache))
464 return;
465
466 queue_work(cache->wq, &cache->migration_worker);
467 }
468
469 /*----------------------------------------------------------------*/
470
alloc_prison_cell(struct cache * cache)471 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
472 {
473 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
474 }
475
free_prison_cell(struct cache * cache,struct dm_bio_prison_cell_v2 * cell)476 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
477 {
478 dm_bio_prison_free_cell_v2(cache->prison, cell);
479 }
480
alloc_migration(struct cache * cache)481 static struct dm_cache_migration *alloc_migration(struct cache *cache)
482 {
483 struct dm_cache_migration *mg;
484
485 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
486
487 memset(mg, 0, sizeof(*mg));
488
489 mg->cache = cache;
490 atomic_inc(&cache->nr_allocated_migrations);
491
492 return mg;
493 }
494
free_migration(struct dm_cache_migration * mg)495 static void free_migration(struct dm_cache_migration *mg)
496 {
497 struct cache *cache = mg->cache;
498
499 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
500 wake_up(&cache->migration_wait);
501
502 mempool_free(mg, &cache->migration_pool);
503 }
504
505 /*----------------------------------------------------------------*/
506
oblock_succ(dm_oblock_t b)507 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
508 {
509 return to_oblock(from_oblock(b) + 1ull);
510 }
511
build_key(dm_oblock_t begin,dm_oblock_t end,struct dm_cell_key_v2 * key)512 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
513 {
514 key->virtual = 0;
515 key->dev = 0;
516 key->block_begin = from_oblock(begin);
517 key->block_end = from_oblock(end);
518 }
519
520 /*
521 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
522 * level 1 which prevents *both* READs and WRITEs.
523 */
524 #define WRITE_LOCK_LEVEL 0
525 #define READ_WRITE_LOCK_LEVEL 1
526
lock_level(struct bio * bio)527 static unsigned int lock_level(struct bio *bio)
528 {
529 return bio_data_dir(bio) == WRITE ?
530 WRITE_LOCK_LEVEL :
531 READ_WRITE_LOCK_LEVEL;
532 }
533
534 /*
535 *--------------------------------------------------------------
536 * Per bio data
537 *--------------------------------------------------------------
538 */
539
get_per_bio_data(struct bio * bio)540 static struct per_bio_data *get_per_bio_data(struct bio *bio)
541 {
542 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
543
544 BUG_ON(!pb);
545 return pb;
546 }
547
init_per_bio_data(struct bio * bio)548 static struct per_bio_data *init_per_bio_data(struct bio *bio)
549 {
550 struct per_bio_data *pb = get_per_bio_data(bio);
551
552 pb->tick = false;
553 pb->req_nr = dm_bio_get_target_bio_nr(bio);
554 pb->cell = NULL;
555 pb->len = 0;
556
557 return pb;
558 }
559
560 /*----------------------------------------------------------------*/
561
defer_bio(struct cache * cache,struct bio * bio)562 static void defer_bio(struct cache *cache, struct bio *bio)
563 {
564 spin_lock_irq(&cache->lock);
565 bio_list_add(&cache->deferred_bios, bio);
566 spin_unlock_irq(&cache->lock);
567
568 wake_deferred_bio_worker(cache);
569 }
570
defer_bios(struct cache * cache,struct bio_list * bios)571 static void defer_bios(struct cache *cache, struct bio_list *bios)
572 {
573 spin_lock_irq(&cache->lock);
574 bio_list_merge_init(&cache->deferred_bios, bios);
575 spin_unlock_irq(&cache->lock);
576
577 wake_deferred_bio_worker(cache);
578 }
579
580 /*----------------------------------------------------------------*/
581
bio_detain_shared(struct cache * cache,dm_oblock_t oblock,struct bio * bio)582 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
583 {
584 bool r;
585 struct per_bio_data *pb;
586 struct dm_cell_key_v2 key;
587 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
588 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
589
590 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
591
592 build_key(oblock, end, &key);
593 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
594 if (!r) {
595 /*
596 * Failed to get the lock.
597 */
598 free_prison_cell(cache, cell_prealloc);
599 return r;
600 }
601
602 if (cell != cell_prealloc)
603 free_prison_cell(cache, cell_prealloc);
604
605 pb = get_per_bio_data(bio);
606 pb->cell = cell;
607
608 return r;
609 }
610
611 /*----------------------------------------------------------------*/
612
is_dirty(struct cache * cache,dm_cblock_t b)613 static bool is_dirty(struct cache *cache, dm_cblock_t b)
614 {
615 return test_bit(from_cblock(b), cache->dirty_bitset);
616 }
617
set_dirty(struct cache * cache,dm_cblock_t cblock)618 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
619 {
620 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
621 atomic_inc(&cache->nr_dirty);
622 policy_set_dirty(cache->policy, cblock);
623 }
624 }
625
626 /*
627 * These two are called when setting after migrations to force the policy
628 * and dirty bitset to be in sync.
629 */
force_set_dirty(struct cache * cache,dm_cblock_t cblock)630 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
631 {
632 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
633 atomic_inc(&cache->nr_dirty);
634 policy_set_dirty(cache->policy, cblock);
635 }
636
force_clear_dirty(struct cache * cache,dm_cblock_t cblock)637 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
638 {
639 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
640 if (atomic_dec_return(&cache->nr_dirty) == 0)
641 dm_table_event(cache->ti->table);
642 }
643
644 policy_clear_dirty(cache->policy, cblock);
645 }
646
647 /*----------------------------------------------------------------*/
648
block_size_is_power_of_two(struct cache * cache)649 static bool block_size_is_power_of_two(struct cache *cache)
650 {
651 return cache->sectors_per_block_shift >= 0;
652 }
653
block_div(dm_block_t b,uint32_t n)654 static dm_block_t block_div(dm_block_t b, uint32_t n)
655 {
656 do_div(b, n);
657
658 return b;
659 }
660
oblocks_per_dblock(struct cache * cache)661 static dm_block_t oblocks_per_dblock(struct cache *cache)
662 {
663 dm_block_t oblocks = cache->discard_block_size;
664
665 if (block_size_is_power_of_two(cache))
666 oblocks >>= cache->sectors_per_block_shift;
667 else
668 oblocks = block_div(oblocks, cache->sectors_per_block);
669
670 return oblocks;
671 }
672
oblock_to_dblock(struct cache * cache,dm_oblock_t oblock)673 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
674 {
675 return to_dblock(block_div(from_oblock(oblock),
676 oblocks_per_dblock(cache)));
677 }
678
set_discard(struct cache * cache,dm_dblock_t b)679 static void set_discard(struct cache *cache, dm_dblock_t b)
680 {
681 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
682 atomic_inc(&cache->stats.discard_count);
683
684 spin_lock_irq(&cache->lock);
685 set_bit(from_dblock(b), cache->discard_bitset);
686 spin_unlock_irq(&cache->lock);
687 }
688
clear_discard(struct cache * cache,dm_dblock_t b)689 static void clear_discard(struct cache *cache, dm_dblock_t b)
690 {
691 spin_lock_irq(&cache->lock);
692 clear_bit(from_dblock(b), cache->discard_bitset);
693 spin_unlock_irq(&cache->lock);
694 }
695
is_discarded(struct cache * cache,dm_dblock_t b)696 static bool is_discarded(struct cache *cache, dm_dblock_t b)
697 {
698 int r;
699
700 spin_lock_irq(&cache->lock);
701 r = test_bit(from_dblock(b), cache->discard_bitset);
702 spin_unlock_irq(&cache->lock);
703
704 return r;
705 }
706
is_discarded_oblock(struct cache * cache,dm_oblock_t b)707 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
708 {
709 int r;
710
711 spin_lock_irq(&cache->lock);
712 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
713 cache->discard_bitset);
714 spin_unlock_irq(&cache->lock);
715
716 return r;
717 }
718
719 /*
720 * -------------------------------------------------------------
721 * Remapping
722 *--------------------------------------------------------------
723 */
remap_to_origin(struct cache * cache,struct bio * bio)724 static void remap_to_origin(struct cache *cache, struct bio *bio)
725 {
726 bio_set_dev(bio, cache->origin_dev->bdev);
727 }
728
remap_to_cache(struct cache * cache,struct bio * bio,dm_cblock_t cblock)729 static void remap_to_cache(struct cache *cache, struct bio *bio,
730 dm_cblock_t cblock)
731 {
732 sector_t bi_sector = bio->bi_iter.bi_sector;
733 sector_t block = from_cblock(cblock);
734
735 bio_set_dev(bio, cache->cache_dev->bdev);
736 if (!block_size_is_power_of_two(cache))
737 bio->bi_iter.bi_sector =
738 (block * cache->sectors_per_block) +
739 sector_div(bi_sector, cache->sectors_per_block);
740 else
741 bio->bi_iter.bi_sector =
742 (block << cache->sectors_per_block_shift) |
743 (bi_sector & (cache->sectors_per_block - 1));
744 }
745
check_if_tick_bio_needed(struct cache * cache,struct bio * bio)746 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
747 {
748 struct per_bio_data *pb;
749
750 spin_lock_irq(&cache->lock);
751 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
752 bio_op(bio) != REQ_OP_DISCARD) {
753 pb = get_per_bio_data(bio);
754 pb->tick = true;
755 cache->need_tick_bio = false;
756 }
757 spin_unlock_irq(&cache->lock);
758 }
759
remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock)760 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
761 dm_oblock_t oblock)
762 {
763 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
764 check_if_tick_bio_needed(cache, bio);
765 remap_to_origin(cache, bio);
766 if (bio_data_dir(bio) == WRITE)
767 clear_discard(cache, oblock_to_dblock(cache, oblock));
768 }
769
remap_to_cache_dirty(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)770 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
771 dm_oblock_t oblock, dm_cblock_t cblock)
772 {
773 check_if_tick_bio_needed(cache, bio);
774 remap_to_cache(cache, bio, cblock);
775 if (bio_data_dir(bio) == WRITE) {
776 set_dirty(cache, cblock);
777 clear_discard(cache, oblock_to_dblock(cache, oblock));
778 }
779 }
780
get_bio_block(struct cache * cache,struct bio * bio)781 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
782 {
783 sector_t block_nr = bio->bi_iter.bi_sector;
784
785 if (!block_size_is_power_of_two(cache))
786 (void) sector_div(block_nr, cache->sectors_per_block);
787 else
788 block_nr >>= cache->sectors_per_block_shift;
789
790 return to_oblock(block_nr);
791 }
792
accountable_bio(struct cache * cache,struct bio * bio)793 static bool accountable_bio(struct cache *cache, struct bio *bio)
794 {
795 return bio_op(bio) != REQ_OP_DISCARD;
796 }
797
accounted_begin(struct cache * cache,struct bio * bio)798 static void accounted_begin(struct cache *cache, struct bio *bio)
799 {
800 struct per_bio_data *pb;
801
802 if (accountable_bio(cache, bio)) {
803 pb = get_per_bio_data(bio);
804 pb->len = bio_sectors(bio);
805 dm_iot_io_begin(&cache->tracker, pb->len);
806 }
807 }
808
accounted_complete(struct cache * cache,struct bio * bio)809 static void accounted_complete(struct cache *cache, struct bio *bio)
810 {
811 struct per_bio_data *pb = get_per_bio_data(bio);
812
813 dm_iot_io_end(&cache->tracker, pb->len);
814 }
815
accounted_request(struct cache * cache,struct bio * bio)816 static void accounted_request(struct cache *cache, struct bio *bio)
817 {
818 accounted_begin(cache, bio);
819 dm_submit_bio_remap(bio, NULL);
820 }
821
issue_op(struct bio * bio,void * context)822 static void issue_op(struct bio *bio, void *context)
823 {
824 struct cache *cache = context;
825
826 accounted_request(cache, bio);
827 }
828
829 /*
830 * When running in writethrough mode we need to send writes to clean blocks
831 * to both the cache and origin devices. Clone the bio and send them in parallel.
832 */
remap_to_origin_and_cache(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)833 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
834 dm_oblock_t oblock, dm_cblock_t cblock)
835 {
836 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
837 GFP_NOIO, &cache->bs);
838
839 BUG_ON(!origin_bio);
840
841 bio_chain(origin_bio, bio);
842
843 if (bio_data_dir(origin_bio) == WRITE)
844 clear_discard(cache, oblock_to_dblock(cache, oblock));
845 submit_bio(origin_bio);
846
847 remap_to_cache(cache, bio, cblock);
848 }
849
850 /*
851 *--------------------------------------------------------------
852 * Failure modes
853 *--------------------------------------------------------------
854 */
get_cache_mode(struct cache * cache)855 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
856 {
857 return cache->features.mode;
858 }
859
cache_device_name(struct cache * cache)860 static const char *cache_device_name(struct cache *cache)
861 {
862 return dm_table_device_name(cache->ti->table);
863 }
864
notify_mode_switch(struct cache * cache,enum cache_metadata_mode mode)865 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
866 {
867 static const char *descs[] = {
868 "write",
869 "read-only",
870 "fail"
871 };
872
873 dm_table_event(cache->ti->table);
874 DMINFO("%s: switching cache to %s mode",
875 cache_device_name(cache), descs[(int)mode]);
876 }
877
set_cache_mode(struct cache * cache,enum cache_metadata_mode new_mode)878 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
879 {
880 bool needs_check;
881 enum cache_metadata_mode old_mode = get_cache_mode(cache);
882
883 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
884 DMERR("%s: unable to read needs_check flag, setting failure mode.",
885 cache_device_name(cache));
886 new_mode = CM_FAIL;
887 }
888
889 if (new_mode == CM_WRITE && needs_check) {
890 DMERR("%s: unable to switch cache to write mode until repaired.",
891 cache_device_name(cache));
892 if (old_mode != new_mode)
893 new_mode = old_mode;
894 else
895 new_mode = CM_READ_ONLY;
896 }
897
898 /* Never move out of fail mode */
899 if (old_mode == CM_FAIL)
900 new_mode = CM_FAIL;
901
902 switch (new_mode) {
903 case CM_FAIL:
904 case CM_READ_ONLY:
905 dm_cache_metadata_set_read_only(cache->cmd);
906 break;
907
908 case CM_WRITE:
909 dm_cache_metadata_set_read_write(cache->cmd);
910 break;
911 }
912
913 cache->features.mode = new_mode;
914
915 if (new_mode != old_mode)
916 notify_mode_switch(cache, new_mode);
917 }
918
abort_transaction(struct cache * cache)919 static void abort_transaction(struct cache *cache)
920 {
921 const char *dev_name = cache_device_name(cache);
922
923 if (get_cache_mode(cache) >= CM_READ_ONLY)
924 return;
925
926 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
927 if (dm_cache_metadata_abort(cache->cmd)) {
928 DMERR("%s: failed to abort metadata transaction", dev_name);
929 set_cache_mode(cache, CM_FAIL);
930 }
931
932 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
933 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
934 set_cache_mode(cache, CM_FAIL);
935 }
936 }
937
metadata_operation_failed(struct cache * cache,const char * op,int r)938 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
939 {
940 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
941 cache_device_name(cache), op, r);
942 abort_transaction(cache);
943 set_cache_mode(cache, CM_READ_ONLY);
944 }
945
946 /*----------------------------------------------------------------*/
947
load_stats(struct cache * cache)948 static void load_stats(struct cache *cache)
949 {
950 struct dm_cache_statistics stats;
951
952 dm_cache_metadata_get_stats(cache->cmd, &stats);
953 atomic_set(&cache->stats.read_hit, stats.read_hits);
954 atomic_set(&cache->stats.read_miss, stats.read_misses);
955 atomic_set(&cache->stats.write_hit, stats.write_hits);
956 atomic_set(&cache->stats.write_miss, stats.write_misses);
957 }
958
save_stats(struct cache * cache)959 static void save_stats(struct cache *cache)
960 {
961 struct dm_cache_statistics stats;
962
963 if (get_cache_mode(cache) >= CM_READ_ONLY)
964 return;
965
966 stats.read_hits = atomic_read(&cache->stats.read_hit);
967 stats.read_misses = atomic_read(&cache->stats.read_miss);
968 stats.write_hits = atomic_read(&cache->stats.write_hit);
969 stats.write_misses = atomic_read(&cache->stats.write_miss);
970
971 dm_cache_metadata_set_stats(cache->cmd, &stats);
972 }
973
update_stats(struct cache_stats * stats,enum policy_operation op)974 static void update_stats(struct cache_stats *stats, enum policy_operation op)
975 {
976 switch (op) {
977 case POLICY_PROMOTE:
978 atomic_inc(&stats->promotion);
979 break;
980
981 case POLICY_DEMOTE:
982 atomic_inc(&stats->demotion);
983 break;
984
985 case POLICY_WRITEBACK:
986 atomic_inc(&stats->writeback);
987 break;
988 }
989 }
990
991 /*
992 *---------------------------------------------------------------------
993 * Migration processing
994 *
995 * Migration covers moving data from the origin device to the cache, or
996 * vice versa.
997 *---------------------------------------------------------------------
998 */
inc_io_migrations(struct cache * cache)999 static void inc_io_migrations(struct cache *cache)
1000 {
1001 atomic_inc(&cache->nr_io_migrations);
1002 }
1003
dec_io_migrations(struct cache * cache)1004 static void dec_io_migrations(struct cache *cache)
1005 {
1006 atomic_dec(&cache->nr_io_migrations);
1007 }
1008
discard_or_flush(struct bio * bio)1009 static bool discard_or_flush(struct bio *bio)
1010 {
1011 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1012 }
1013
calc_discard_block_range(struct cache * cache,struct bio * bio,dm_dblock_t * b,dm_dblock_t * e)1014 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1015 dm_dblock_t *b, dm_dblock_t *e)
1016 {
1017 sector_t sb = bio->bi_iter.bi_sector;
1018 sector_t se = bio_end_sector(bio);
1019
1020 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1021
1022 if (se - sb < cache->discard_block_size)
1023 *e = *b;
1024 else
1025 *e = to_dblock(block_div(se, cache->discard_block_size));
1026 }
1027
1028 /*----------------------------------------------------------------*/
1029
prevent_background_work(struct cache * cache)1030 static void prevent_background_work(struct cache *cache)
1031 {
1032 lockdep_off();
1033 down_write(&cache->background_work_lock);
1034 lockdep_on();
1035 }
1036
allow_background_work(struct cache * cache)1037 static void allow_background_work(struct cache *cache)
1038 {
1039 lockdep_off();
1040 up_write(&cache->background_work_lock);
1041 lockdep_on();
1042 }
1043
background_work_begin(struct cache * cache)1044 static bool background_work_begin(struct cache *cache)
1045 {
1046 bool r;
1047
1048 lockdep_off();
1049 r = down_read_trylock(&cache->background_work_lock);
1050 lockdep_on();
1051
1052 return r;
1053 }
1054
background_work_end(struct cache * cache)1055 static void background_work_end(struct cache *cache)
1056 {
1057 lockdep_off();
1058 up_read(&cache->background_work_lock);
1059 lockdep_on();
1060 }
1061
1062 /*----------------------------------------------------------------*/
1063
bio_writes_complete_block(struct cache * cache,struct bio * bio)1064 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1065 {
1066 return (bio_data_dir(bio) == WRITE) &&
1067 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1068 }
1069
optimisable_bio(struct cache * cache,struct bio * bio,dm_oblock_t block)1070 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1071 {
1072 return writeback_mode(cache) &&
1073 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1074 }
1075
quiesce(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1076 static void quiesce(struct dm_cache_migration *mg,
1077 void (*continuation)(struct work_struct *))
1078 {
1079 init_continuation(&mg->k, continuation);
1080 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1081 }
1082
ws_to_mg(struct work_struct * ws)1083 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1084 {
1085 struct continuation *k = container_of(ws, struct continuation, ws);
1086
1087 return container_of(k, struct dm_cache_migration, k);
1088 }
1089
copy_complete(int read_err,unsigned long write_err,void * context)1090 static void copy_complete(int read_err, unsigned long write_err, void *context)
1091 {
1092 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1093
1094 if (read_err || write_err)
1095 mg->k.input = BLK_STS_IOERR;
1096
1097 queue_continuation(mg->cache->wq, &mg->k);
1098 }
1099
copy(struct dm_cache_migration * mg,bool promote)1100 static void copy(struct dm_cache_migration *mg, bool promote)
1101 {
1102 struct dm_io_region o_region, c_region;
1103 struct cache *cache = mg->cache;
1104
1105 o_region.bdev = cache->origin_dev->bdev;
1106 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1107 o_region.count = cache->sectors_per_block;
1108
1109 c_region.bdev = cache->cache_dev->bdev;
1110 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1111 c_region.count = cache->sectors_per_block;
1112
1113 if (promote)
1114 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1115 else
1116 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1117 }
1118
bio_drop_shared_lock(struct cache * cache,struct bio * bio)1119 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1120 {
1121 struct per_bio_data *pb = get_per_bio_data(bio);
1122
1123 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1124 free_prison_cell(cache, pb->cell);
1125 pb->cell = NULL;
1126 }
1127
overwrite_endio(struct bio * bio)1128 static void overwrite_endio(struct bio *bio)
1129 {
1130 struct dm_cache_migration *mg = bio->bi_private;
1131 struct cache *cache = mg->cache;
1132 struct per_bio_data *pb = get_per_bio_data(bio);
1133
1134 dm_unhook_bio(&pb->hook_info, bio);
1135
1136 if (bio->bi_status)
1137 mg->k.input = bio->bi_status;
1138
1139 queue_continuation(cache->wq, &mg->k);
1140 }
1141
overwrite(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1142 static void overwrite(struct dm_cache_migration *mg,
1143 void (*continuation)(struct work_struct *))
1144 {
1145 struct bio *bio = mg->overwrite_bio;
1146 struct per_bio_data *pb = get_per_bio_data(bio);
1147
1148 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1149
1150 /*
1151 * The overwrite bio is part of the copy operation, as such it does
1152 * not set/clear discard or dirty flags.
1153 */
1154 if (mg->op->op == POLICY_PROMOTE)
1155 remap_to_cache(mg->cache, bio, mg->op->cblock);
1156 else
1157 remap_to_origin(mg->cache, bio);
1158
1159 init_continuation(&mg->k, continuation);
1160 accounted_request(mg->cache, bio);
1161 }
1162
1163 /*
1164 * Migration steps:
1165 *
1166 * 1) exclusive lock preventing WRITEs
1167 * 2) quiesce
1168 * 3) copy or issue overwrite bio
1169 * 4) upgrade to exclusive lock preventing READs and WRITEs
1170 * 5) quiesce
1171 * 6) update metadata and commit
1172 * 7) unlock
1173 */
mg_complete(struct dm_cache_migration * mg,bool success)1174 static void mg_complete(struct dm_cache_migration *mg, bool success)
1175 {
1176 struct bio_list bios;
1177 struct cache *cache = mg->cache;
1178 struct policy_work *op = mg->op;
1179 dm_cblock_t cblock = op->cblock;
1180
1181 if (success)
1182 update_stats(&cache->stats, op->op);
1183
1184 switch (op->op) {
1185 case POLICY_PROMOTE:
1186 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1187 policy_complete_background_work(cache->policy, op, success);
1188
1189 if (mg->overwrite_bio) {
1190 if (success)
1191 force_set_dirty(cache, cblock);
1192 else if (mg->k.input)
1193 mg->overwrite_bio->bi_status = mg->k.input;
1194 else
1195 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1196 bio_endio(mg->overwrite_bio);
1197 } else {
1198 if (success)
1199 force_clear_dirty(cache, cblock);
1200 dec_io_migrations(cache);
1201 }
1202 break;
1203
1204 case POLICY_DEMOTE:
1205 /*
1206 * We clear dirty here to update the nr_dirty counter.
1207 */
1208 if (success)
1209 force_clear_dirty(cache, cblock);
1210 policy_complete_background_work(cache->policy, op, success);
1211 dec_io_migrations(cache);
1212 break;
1213
1214 case POLICY_WRITEBACK:
1215 if (success)
1216 force_clear_dirty(cache, cblock);
1217 policy_complete_background_work(cache->policy, op, success);
1218 dec_io_migrations(cache);
1219 break;
1220 }
1221
1222 bio_list_init(&bios);
1223 if (mg->cell) {
1224 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1225 free_prison_cell(cache, mg->cell);
1226 }
1227
1228 free_migration(mg);
1229 defer_bios(cache, &bios);
1230 wake_migration_worker(cache);
1231
1232 background_work_end(cache);
1233 }
1234
mg_success(struct work_struct * ws)1235 static void mg_success(struct work_struct *ws)
1236 {
1237 struct dm_cache_migration *mg = ws_to_mg(ws);
1238
1239 mg_complete(mg, mg->k.input == 0);
1240 }
1241
mg_update_metadata(struct work_struct * ws)1242 static void mg_update_metadata(struct work_struct *ws)
1243 {
1244 int r;
1245 struct dm_cache_migration *mg = ws_to_mg(ws);
1246 struct cache *cache = mg->cache;
1247 struct policy_work *op = mg->op;
1248
1249 switch (op->op) {
1250 case POLICY_PROMOTE:
1251 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1252 if (r) {
1253 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1254 cache_device_name(cache));
1255 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1256
1257 mg_complete(mg, false);
1258 return;
1259 }
1260 mg_complete(mg, true);
1261 break;
1262
1263 case POLICY_DEMOTE:
1264 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1265 if (r) {
1266 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1267 cache_device_name(cache));
1268 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1269
1270 mg_complete(mg, false);
1271 return;
1272 }
1273
1274 /*
1275 * It would be nice if we only had to commit when a REQ_FLUSH
1276 * comes through. But there's one scenario that we have to
1277 * look out for:
1278 *
1279 * - vblock x in a cache block
1280 * - domotion occurs
1281 * - cache block gets reallocated and over written
1282 * - crash
1283 *
1284 * When we recover, because there was no commit the cache will
1285 * rollback to having the data for vblock x in the cache block.
1286 * But the cache block has since been overwritten, so it'll end
1287 * up pointing to data that was never in 'x' during the history
1288 * of the device.
1289 *
1290 * To avoid this issue we require a commit as part of the
1291 * demotion operation.
1292 */
1293 init_continuation(&mg->k, mg_success);
1294 continue_after_commit(&cache->committer, &mg->k);
1295 schedule_commit(&cache->committer);
1296 break;
1297
1298 case POLICY_WRITEBACK:
1299 mg_complete(mg, true);
1300 break;
1301 }
1302 }
1303
mg_update_metadata_after_copy(struct work_struct * ws)1304 static void mg_update_metadata_after_copy(struct work_struct *ws)
1305 {
1306 struct dm_cache_migration *mg = ws_to_mg(ws);
1307
1308 /*
1309 * Did the copy succeed?
1310 */
1311 if (mg->k.input)
1312 mg_complete(mg, false);
1313 else
1314 mg_update_metadata(ws);
1315 }
1316
mg_upgrade_lock(struct work_struct * ws)1317 static void mg_upgrade_lock(struct work_struct *ws)
1318 {
1319 int r;
1320 struct dm_cache_migration *mg = ws_to_mg(ws);
1321
1322 /*
1323 * Did the copy succeed?
1324 */
1325 if (mg->k.input)
1326 mg_complete(mg, false);
1327
1328 else {
1329 /*
1330 * Now we want the lock to prevent both reads and writes.
1331 */
1332 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1333 READ_WRITE_LOCK_LEVEL);
1334 if (r < 0)
1335 mg_complete(mg, false);
1336
1337 else if (r)
1338 quiesce(mg, mg_update_metadata);
1339
1340 else
1341 mg_update_metadata(ws);
1342 }
1343 }
1344
mg_full_copy(struct work_struct * ws)1345 static void mg_full_copy(struct work_struct *ws)
1346 {
1347 struct dm_cache_migration *mg = ws_to_mg(ws);
1348 struct cache *cache = mg->cache;
1349 struct policy_work *op = mg->op;
1350 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1351
1352 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1353 is_discarded_oblock(cache, op->oblock)) {
1354 mg_upgrade_lock(ws);
1355 return;
1356 }
1357
1358 init_continuation(&mg->k, mg_upgrade_lock);
1359 copy(mg, is_policy_promote);
1360 }
1361
mg_copy(struct work_struct * ws)1362 static void mg_copy(struct work_struct *ws)
1363 {
1364 struct dm_cache_migration *mg = ws_to_mg(ws);
1365
1366 if (mg->overwrite_bio) {
1367 /*
1368 * No exclusive lock was held when we last checked if the bio
1369 * was optimisable. So we have to check again in case things
1370 * have changed (eg, the block may no longer be discarded).
1371 */
1372 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1373 /*
1374 * Fallback to a real full copy after doing some tidying up.
1375 */
1376 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1377
1378 BUG_ON(rb); /* An exclusive lock must _not_ be held for this block */
1379 mg->overwrite_bio = NULL;
1380 inc_io_migrations(mg->cache);
1381 mg_full_copy(ws);
1382 return;
1383 }
1384
1385 /*
1386 * It's safe to do this here, even though it's new data
1387 * because all IO has been locked out of the block.
1388 *
1389 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1390 * so _not_ using mg_upgrade_lock() as continutation.
1391 */
1392 overwrite(mg, mg_update_metadata_after_copy);
1393
1394 } else
1395 mg_full_copy(ws);
1396 }
1397
mg_lock_writes(struct dm_cache_migration * mg)1398 static int mg_lock_writes(struct dm_cache_migration *mg)
1399 {
1400 int r;
1401 struct dm_cell_key_v2 key;
1402 struct cache *cache = mg->cache;
1403 struct dm_bio_prison_cell_v2 *prealloc;
1404
1405 prealloc = alloc_prison_cell(cache);
1406
1407 /*
1408 * Prevent writes to the block, but allow reads to continue.
1409 * Unless we're using an overwrite bio, in which case we lock
1410 * everything.
1411 */
1412 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1413 r = dm_cell_lock_v2(cache->prison, &key,
1414 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1415 prealloc, &mg->cell);
1416 if (r < 0) {
1417 free_prison_cell(cache, prealloc);
1418 mg_complete(mg, false);
1419 return r;
1420 }
1421
1422 if (mg->cell != prealloc)
1423 free_prison_cell(cache, prealloc);
1424
1425 if (r == 0)
1426 mg_copy(&mg->k.ws);
1427 else
1428 quiesce(mg, mg_copy);
1429
1430 return 0;
1431 }
1432
mg_start(struct cache * cache,struct policy_work * op,struct bio * bio)1433 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1434 {
1435 struct dm_cache_migration *mg;
1436
1437 if (!background_work_begin(cache)) {
1438 policy_complete_background_work(cache->policy, op, false);
1439 return -EPERM;
1440 }
1441
1442 mg = alloc_migration(cache);
1443
1444 mg->op = op;
1445 mg->overwrite_bio = bio;
1446
1447 if (!bio)
1448 inc_io_migrations(cache);
1449
1450 return mg_lock_writes(mg);
1451 }
1452
1453 /*
1454 *--------------------------------------------------------------
1455 * invalidation processing
1456 *--------------------------------------------------------------
1457 */
1458
invalidate_complete(struct dm_cache_migration * mg,bool success)1459 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1460 {
1461 struct bio_list bios;
1462 struct cache *cache = mg->cache;
1463
1464 bio_list_init(&bios);
1465 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1466 free_prison_cell(cache, mg->cell);
1467
1468 if (!success && mg->overwrite_bio)
1469 bio_io_error(mg->overwrite_bio);
1470
1471 free_migration(mg);
1472 defer_bios(cache, &bios);
1473
1474 background_work_end(cache);
1475 }
1476
invalidate_completed(struct work_struct * ws)1477 static void invalidate_completed(struct work_struct *ws)
1478 {
1479 struct dm_cache_migration *mg = ws_to_mg(ws);
1480
1481 invalidate_complete(mg, !mg->k.input);
1482 }
1483
invalidate_cblock(struct cache * cache,dm_cblock_t cblock)1484 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1485 {
1486 int r;
1487
1488 r = policy_invalidate_mapping(cache->policy, cblock);
1489 if (!r) {
1490 r = dm_cache_remove_mapping(cache->cmd, cblock);
1491 if (r) {
1492 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1493 cache_device_name(cache));
1494 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1495 }
1496
1497 } else if (r == -ENODATA) {
1498 /*
1499 * Harmless, already unmapped.
1500 */
1501 r = 0;
1502
1503 } else
1504 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1505
1506 return r;
1507 }
1508
invalidate_remove(struct work_struct * ws)1509 static void invalidate_remove(struct work_struct *ws)
1510 {
1511 int r;
1512 struct dm_cache_migration *mg = ws_to_mg(ws);
1513 struct cache *cache = mg->cache;
1514
1515 r = invalidate_cblock(cache, mg->invalidate_cblock);
1516 if (r) {
1517 invalidate_complete(mg, false);
1518 return;
1519 }
1520
1521 init_continuation(&mg->k, invalidate_completed);
1522 continue_after_commit(&cache->committer, &mg->k);
1523 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1524 mg->overwrite_bio = NULL;
1525 schedule_commit(&cache->committer);
1526 }
1527
invalidate_lock(struct dm_cache_migration * mg)1528 static int invalidate_lock(struct dm_cache_migration *mg)
1529 {
1530 int r;
1531 struct dm_cell_key_v2 key;
1532 struct cache *cache = mg->cache;
1533 struct dm_bio_prison_cell_v2 *prealloc;
1534
1535 prealloc = alloc_prison_cell(cache);
1536
1537 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1538 r = dm_cell_lock_v2(cache->prison, &key,
1539 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1540 if (r < 0) {
1541 free_prison_cell(cache, prealloc);
1542 invalidate_complete(mg, false);
1543 return r;
1544 }
1545
1546 if (mg->cell != prealloc)
1547 free_prison_cell(cache, prealloc);
1548
1549 if (r)
1550 quiesce(mg, invalidate_remove);
1551
1552 else {
1553 /*
1554 * We can't call invalidate_remove() directly here because we
1555 * might still be in request context.
1556 */
1557 init_continuation(&mg->k, invalidate_remove);
1558 queue_work(cache->wq, &mg->k.ws);
1559 }
1560
1561 return 0;
1562 }
1563
invalidate_start(struct cache * cache,dm_cblock_t cblock,dm_oblock_t oblock,struct bio * bio)1564 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1565 dm_oblock_t oblock, struct bio *bio)
1566 {
1567 struct dm_cache_migration *mg;
1568
1569 if (!background_work_begin(cache))
1570 return -EPERM;
1571
1572 mg = alloc_migration(cache);
1573
1574 mg->overwrite_bio = bio;
1575 mg->invalidate_cblock = cblock;
1576 mg->invalidate_oblock = oblock;
1577
1578 return invalidate_lock(mg);
1579 }
1580
1581 /*
1582 *--------------------------------------------------------------
1583 * bio processing
1584 *--------------------------------------------------------------
1585 */
1586
1587 enum busy {
1588 IDLE,
1589 BUSY
1590 };
1591
spare_migration_bandwidth(struct cache * cache)1592 static enum busy spare_migration_bandwidth(struct cache *cache)
1593 {
1594 bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1595 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1596 cache->sectors_per_block;
1597
1598 if (idle && current_volume <= cache->migration_threshold)
1599 return IDLE;
1600 else
1601 return BUSY;
1602 }
1603
inc_hit_counter(struct cache * cache,struct bio * bio)1604 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1605 {
1606 atomic_inc(bio_data_dir(bio) == READ ?
1607 &cache->stats.read_hit : &cache->stats.write_hit);
1608 }
1609
inc_miss_counter(struct cache * cache,struct bio * bio)1610 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1611 {
1612 atomic_inc(bio_data_dir(bio) == READ ?
1613 &cache->stats.read_miss : &cache->stats.write_miss);
1614 }
1615
1616 /*----------------------------------------------------------------*/
1617
map_bio(struct cache * cache,struct bio * bio,dm_oblock_t block,bool * commit_needed)1618 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1619 bool *commit_needed)
1620 {
1621 int r, data_dir;
1622 bool rb, background_queued;
1623 dm_cblock_t cblock;
1624
1625 *commit_needed = false;
1626
1627 rb = bio_detain_shared(cache, block, bio);
1628 if (!rb) {
1629 /*
1630 * An exclusive lock is held for this block, so we have to
1631 * wait. We set the commit_needed flag so the current
1632 * transaction will be committed asap, allowing this lock
1633 * to be dropped.
1634 */
1635 *commit_needed = true;
1636 return DM_MAPIO_SUBMITTED;
1637 }
1638
1639 data_dir = bio_data_dir(bio);
1640
1641 if (optimisable_bio(cache, bio, block)) {
1642 struct policy_work *op = NULL;
1643
1644 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1645 if (unlikely(r && r != -ENOENT)) {
1646 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1647 cache_device_name(cache), r);
1648 bio_io_error(bio);
1649 return DM_MAPIO_SUBMITTED;
1650 }
1651
1652 if (r == -ENOENT && op) {
1653 bio_drop_shared_lock(cache, bio);
1654 BUG_ON(op->op != POLICY_PROMOTE);
1655 mg_start(cache, op, bio);
1656 return DM_MAPIO_SUBMITTED;
1657 }
1658 } else {
1659 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1660 if (unlikely(r && r != -ENOENT)) {
1661 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1662 cache_device_name(cache), r);
1663 bio_io_error(bio);
1664 return DM_MAPIO_SUBMITTED;
1665 }
1666
1667 if (background_queued)
1668 wake_migration_worker(cache);
1669 }
1670
1671 if (r == -ENOENT) {
1672 struct per_bio_data *pb = get_per_bio_data(bio);
1673
1674 /*
1675 * Miss.
1676 */
1677 inc_miss_counter(cache, bio);
1678 if (pb->req_nr == 0) {
1679 accounted_begin(cache, bio);
1680 remap_to_origin_clear_discard(cache, bio, block);
1681 } else {
1682 /*
1683 * This is a duplicate writethrough io that is no
1684 * longer needed because the block has been demoted.
1685 */
1686 bio_endio(bio);
1687 return DM_MAPIO_SUBMITTED;
1688 }
1689 } else {
1690 /*
1691 * Hit.
1692 */
1693 inc_hit_counter(cache, bio);
1694
1695 /*
1696 * Passthrough always maps to the origin, invalidating any
1697 * cache blocks that are written to.
1698 */
1699 if (passthrough_mode(cache)) {
1700 if (bio_data_dir(bio) == WRITE) {
1701 bio_drop_shared_lock(cache, bio);
1702 atomic_inc(&cache->stats.demotion);
1703 invalidate_start(cache, cblock, block, bio);
1704 } else
1705 remap_to_origin_clear_discard(cache, bio, block);
1706 } else {
1707 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1708 !is_dirty(cache, cblock)) {
1709 remap_to_origin_and_cache(cache, bio, block, cblock);
1710 accounted_begin(cache, bio);
1711 } else
1712 remap_to_cache_dirty(cache, bio, block, cblock);
1713 }
1714 }
1715
1716 /*
1717 * dm core turns FUA requests into a separate payload and FLUSH req.
1718 */
1719 if (bio->bi_opf & REQ_FUA) {
1720 /*
1721 * issue_after_commit will call accounted_begin a second time. So
1722 * we call accounted_complete() to avoid double accounting.
1723 */
1724 accounted_complete(cache, bio);
1725 issue_after_commit(&cache->committer, bio);
1726 *commit_needed = true;
1727 return DM_MAPIO_SUBMITTED;
1728 }
1729
1730 return DM_MAPIO_REMAPPED;
1731 }
1732
process_bio(struct cache * cache,struct bio * bio)1733 static bool process_bio(struct cache *cache, struct bio *bio)
1734 {
1735 bool commit_needed;
1736
1737 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1738 dm_submit_bio_remap(bio, NULL);
1739
1740 return commit_needed;
1741 }
1742
1743 /*
1744 * A non-zero return indicates read_only or fail_io mode.
1745 */
commit(struct cache * cache,bool clean_shutdown)1746 static int commit(struct cache *cache, bool clean_shutdown)
1747 {
1748 int r;
1749
1750 if (get_cache_mode(cache) >= CM_READ_ONLY)
1751 return -EINVAL;
1752
1753 atomic_inc(&cache->stats.commit_count);
1754 r = dm_cache_commit(cache->cmd, clean_shutdown);
1755 if (r)
1756 metadata_operation_failed(cache, "dm_cache_commit", r);
1757
1758 return r;
1759 }
1760
1761 /*
1762 * Used by the batcher.
1763 */
commit_op(void * context)1764 static blk_status_t commit_op(void *context)
1765 {
1766 struct cache *cache = context;
1767
1768 if (dm_cache_changed_this_transaction(cache->cmd))
1769 return errno_to_blk_status(commit(cache, false));
1770
1771 return 0;
1772 }
1773
1774 /*----------------------------------------------------------------*/
1775
process_flush_bio(struct cache * cache,struct bio * bio)1776 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1777 {
1778 struct per_bio_data *pb = get_per_bio_data(bio);
1779
1780 if (!pb->req_nr)
1781 remap_to_origin(cache, bio);
1782 else
1783 remap_to_cache(cache, bio, 0);
1784
1785 issue_after_commit(&cache->committer, bio);
1786 return true;
1787 }
1788
process_discard_bio(struct cache * cache,struct bio * bio)1789 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1790 {
1791 dm_dblock_t b, e;
1792
1793 /*
1794 * FIXME: do we need to lock the region? Or can we just assume the
1795 * user wont be so foolish as to issue discard concurrently with
1796 * other IO?
1797 */
1798 calc_discard_block_range(cache, bio, &b, &e);
1799 while (b != e) {
1800 set_discard(cache, b);
1801 b = to_dblock(from_dblock(b) + 1);
1802 }
1803
1804 if (cache->features.discard_passdown) {
1805 remap_to_origin(cache, bio);
1806 dm_submit_bio_remap(bio, NULL);
1807 } else
1808 bio_endio(bio);
1809
1810 return false;
1811 }
1812
process_deferred_bios(struct work_struct * ws)1813 static void process_deferred_bios(struct work_struct *ws)
1814 {
1815 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1816
1817 bool commit_needed = false;
1818 struct bio_list bios;
1819 struct bio *bio;
1820
1821 bio_list_init(&bios);
1822
1823 spin_lock_irq(&cache->lock);
1824 bio_list_merge_init(&bios, &cache->deferred_bios);
1825 spin_unlock_irq(&cache->lock);
1826
1827 while ((bio = bio_list_pop(&bios))) {
1828 if (bio->bi_opf & REQ_PREFLUSH)
1829 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1830
1831 else if (bio_op(bio) == REQ_OP_DISCARD)
1832 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1833
1834 else
1835 commit_needed = process_bio(cache, bio) || commit_needed;
1836 cond_resched();
1837 }
1838
1839 if (commit_needed)
1840 schedule_commit(&cache->committer);
1841 }
1842
1843 /*
1844 *--------------------------------------------------------------
1845 * Main worker loop
1846 *--------------------------------------------------------------
1847 */
requeue_deferred_bios(struct cache * cache)1848 static void requeue_deferred_bios(struct cache *cache)
1849 {
1850 struct bio *bio;
1851 struct bio_list bios;
1852
1853 bio_list_init(&bios);
1854 bio_list_merge_init(&bios, &cache->deferred_bios);
1855
1856 while ((bio = bio_list_pop(&bios))) {
1857 bio->bi_status = BLK_STS_DM_REQUEUE;
1858 bio_endio(bio);
1859 cond_resched();
1860 }
1861 }
1862
1863 /*
1864 * We want to commit periodically so that not too much
1865 * unwritten metadata builds up.
1866 */
do_waker(struct work_struct * ws)1867 static void do_waker(struct work_struct *ws)
1868 {
1869 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1870
1871 policy_tick(cache->policy, true);
1872 wake_migration_worker(cache);
1873 schedule_commit(&cache->committer);
1874 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1875 }
1876
check_migrations(struct work_struct * ws)1877 static void check_migrations(struct work_struct *ws)
1878 {
1879 int r;
1880 struct policy_work *op;
1881 struct cache *cache = container_of(ws, struct cache, migration_worker);
1882 enum busy b;
1883
1884 for (;;) {
1885 b = spare_migration_bandwidth(cache);
1886
1887 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1888 if (r == -ENODATA)
1889 break;
1890
1891 if (r) {
1892 DMERR_LIMIT("%s: policy_background_work failed",
1893 cache_device_name(cache));
1894 break;
1895 }
1896
1897 r = mg_start(cache, op, NULL);
1898 if (r)
1899 break;
1900
1901 cond_resched();
1902 }
1903 }
1904
1905 /*
1906 *--------------------------------------------------------------
1907 * Target methods
1908 *--------------------------------------------------------------
1909 */
1910
1911 /*
1912 * This function gets called on the error paths of the constructor, so we
1913 * have to cope with a partially initialised struct.
1914 */
__destroy(struct cache * cache)1915 static void __destroy(struct cache *cache)
1916 {
1917 mempool_exit(&cache->migration_pool);
1918
1919 if (cache->prison)
1920 dm_bio_prison_destroy_v2(cache->prison);
1921
1922 if (cache->wq)
1923 destroy_workqueue(cache->wq);
1924
1925 if (cache->dirty_bitset)
1926 free_bitset(cache->dirty_bitset);
1927
1928 if (cache->discard_bitset)
1929 free_bitset(cache->discard_bitset);
1930
1931 if (cache->invalid_bitset)
1932 free_bitset(cache->invalid_bitset);
1933
1934 if (cache->copier)
1935 dm_kcopyd_client_destroy(cache->copier);
1936
1937 if (cache->cmd)
1938 dm_cache_metadata_close(cache->cmd);
1939
1940 if (cache->metadata_dev)
1941 dm_put_device(cache->ti, cache->metadata_dev);
1942
1943 if (cache->origin_dev)
1944 dm_put_device(cache->ti, cache->origin_dev);
1945
1946 if (cache->cache_dev)
1947 dm_put_device(cache->ti, cache->cache_dev);
1948
1949 if (cache->policy)
1950 dm_cache_policy_destroy(cache->policy);
1951
1952 bioset_exit(&cache->bs);
1953
1954 kfree(cache);
1955 }
1956
destroy(struct cache * cache)1957 static void destroy(struct cache *cache)
1958 {
1959 unsigned int i;
1960
1961 cancel_delayed_work_sync(&cache->waker);
1962
1963 for (i = 0; i < cache->nr_ctr_args ; i++)
1964 kfree(cache->ctr_args[i]);
1965 kfree(cache->ctr_args);
1966
1967 __destroy(cache);
1968 }
1969
cache_dtr(struct dm_target * ti)1970 static void cache_dtr(struct dm_target *ti)
1971 {
1972 struct cache *cache = ti->private;
1973
1974 destroy(cache);
1975 }
1976
get_dev_size(struct dm_dev * dev)1977 static sector_t get_dev_size(struct dm_dev *dev)
1978 {
1979 return bdev_nr_sectors(dev->bdev);
1980 }
1981
1982 /*----------------------------------------------------------------*/
1983
1984 /*
1985 * Construct a cache device mapping.
1986 *
1987 * cache <metadata dev> <cache dev> <origin dev> <block size>
1988 * <#feature args> [<feature arg>]*
1989 * <policy> <#policy args> [<policy arg>]*
1990 *
1991 * metadata dev : fast device holding the persistent metadata
1992 * cache dev : fast device holding cached data blocks
1993 * origin dev : slow device holding original data blocks
1994 * block size : cache unit size in sectors
1995 *
1996 * #feature args : number of feature arguments passed
1997 * feature args : writethrough. (The default is writeback.)
1998 *
1999 * policy : the replacement policy to use
2000 * #policy args : an even number of policy arguments corresponding
2001 * to key/value pairs passed to the policy
2002 * policy args : key/value pairs passed to the policy
2003 * E.g. 'sequential_threshold 1024'
2004 * See cache-policies.txt for details.
2005 *
2006 * Optional feature arguments are:
2007 * writethrough : write through caching that prohibits cache block
2008 * content from being different from origin block content.
2009 * Without this argument, the default behaviour is to write
2010 * back cache block contents later for performance reasons,
2011 * so they may differ from the corresponding origin blocks.
2012 */
2013 struct cache_args {
2014 struct dm_target *ti;
2015
2016 struct dm_dev *metadata_dev;
2017
2018 struct dm_dev *cache_dev;
2019 sector_t cache_sectors;
2020
2021 struct dm_dev *origin_dev;
2022
2023 uint32_t block_size;
2024
2025 const char *policy_name;
2026 int policy_argc;
2027 const char **policy_argv;
2028
2029 struct cache_features features;
2030 };
2031
destroy_cache_args(struct cache_args * ca)2032 static void destroy_cache_args(struct cache_args *ca)
2033 {
2034 if (ca->metadata_dev)
2035 dm_put_device(ca->ti, ca->metadata_dev);
2036
2037 if (ca->cache_dev)
2038 dm_put_device(ca->ti, ca->cache_dev);
2039
2040 if (ca->origin_dev)
2041 dm_put_device(ca->ti, ca->origin_dev);
2042
2043 kfree(ca);
2044 }
2045
at_least_one_arg(struct dm_arg_set * as,char ** error)2046 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2047 {
2048 if (!as->argc) {
2049 *error = "Insufficient args";
2050 return false;
2051 }
2052
2053 return true;
2054 }
2055
parse_metadata_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2056 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2057 char **error)
2058 {
2059 int r;
2060 sector_t metadata_dev_size;
2061
2062 if (!at_least_one_arg(as, error))
2063 return -EINVAL;
2064
2065 r = dm_get_device(ca->ti, dm_shift_arg(as),
2066 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2067 if (r) {
2068 *error = "Error opening metadata device";
2069 return r;
2070 }
2071
2072 metadata_dev_size = get_dev_size(ca->metadata_dev);
2073 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2074 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2075 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2076
2077 return 0;
2078 }
2079
parse_cache_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2080 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2081 char **error)
2082 {
2083 int r;
2084
2085 if (!at_least_one_arg(as, error))
2086 return -EINVAL;
2087
2088 r = dm_get_device(ca->ti, dm_shift_arg(as),
2089 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2090 if (r) {
2091 *error = "Error opening cache device";
2092 return r;
2093 }
2094 ca->cache_sectors = get_dev_size(ca->cache_dev);
2095
2096 return 0;
2097 }
2098
parse_origin_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2099 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2100 char **error)
2101 {
2102 int r;
2103
2104 if (!at_least_one_arg(as, error))
2105 return -EINVAL;
2106
2107 r = dm_get_device(ca->ti, dm_shift_arg(as),
2108 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2109 if (r) {
2110 *error = "Error opening origin device";
2111 return r;
2112 }
2113
2114 return 0;
2115 }
2116
parse_block_size(struct cache_args * ca,struct dm_arg_set * as,char ** error)2117 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2118 char **error)
2119 {
2120 unsigned long block_size;
2121
2122 if (!at_least_one_arg(as, error))
2123 return -EINVAL;
2124
2125 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2126 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2127 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2128 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2129 *error = "Invalid data block size";
2130 return -EINVAL;
2131 }
2132
2133 if (block_size > ca->cache_sectors) {
2134 *error = "Data block size is larger than the cache device";
2135 return -EINVAL;
2136 }
2137
2138 ca->block_size = block_size;
2139
2140 return 0;
2141 }
2142
init_features(struct cache_features * cf)2143 static void init_features(struct cache_features *cf)
2144 {
2145 cf->mode = CM_WRITE;
2146 cf->io_mode = CM_IO_WRITEBACK;
2147 cf->metadata_version = 1;
2148 cf->discard_passdown = true;
2149 }
2150
parse_features(struct cache_args * ca,struct dm_arg_set * as,char ** error)2151 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2152 char **error)
2153 {
2154 static const struct dm_arg _args[] = {
2155 {0, 3, "Invalid number of cache feature arguments"},
2156 };
2157
2158 int r, mode_ctr = 0;
2159 unsigned int argc;
2160 const char *arg;
2161 struct cache_features *cf = &ca->features;
2162
2163 init_features(cf);
2164
2165 r = dm_read_arg_group(_args, as, &argc, error);
2166 if (r)
2167 return -EINVAL;
2168
2169 while (argc--) {
2170 arg = dm_shift_arg(as);
2171
2172 if (!strcasecmp(arg, "writeback")) {
2173 cf->io_mode = CM_IO_WRITEBACK;
2174 mode_ctr++;
2175 }
2176
2177 else if (!strcasecmp(arg, "writethrough")) {
2178 cf->io_mode = CM_IO_WRITETHROUGH;
2179 mode_ctr++;
2180 }
2181
2182 else if (!strcasecmp(arg, "passthrough")) {
2183 cf->io_mode = CM_IO_PASSTHROUGH;
2184 mode_ctr++;
2185 }
2186
2187 else if (!strcasecmp(arg, "metadata2"))
2188 cf->metadata_version = 2;
2189
2190 else if (!strcasecmp(arg, "no_discard_passdown"))
2191 cf->discard_passdown = false;
2192
2193 else {
2194 *error = "Unrecognised cache feature requested";
2195 return -EINVAL;
2196 }
2197 }
2198
2199 if (mode_ctr > 1) {
2200 *error = "Duplicate cache io_mode features requested";
2201 return -EINVAL;
2202 }
2203
2204 return 0;
2205 }
2206
parse_policy(struct cache_args * ca,struct dm_arg_set * as,char ** error)2207 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2208 char **error)
2209 {
2210 static const struct dm_arg _args[] = {
2211 {0, 1024, "Invalid number of policy arguments"},
2212 };
2213
2214 int r;
2215
2216 if (!at_least_one_arg(as, error))
2217 return -EINVAL;
2218
2219 ca->policy_name = dm_shift_arg(as);
2220
2221 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2222 if (r)
2223 return -EINVAL;
2224
2225 ca->policy_argv = (const char **)as->argv;
2226 dm_consume_args(as, ca->policy_argc);
2227
2228 return 0;
2229 }
2230
parse_cache_args(struct cache_args * ca,int argc,char ** argv,char ** error)2231 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2232 char **error)
2233 {
2234 int r;
2235 struct dm_arg_set as;
2236
2237 as.argc = argc;
2238 as.argv = argv;
2239
2240 r = parse_metadata_dev(ca, &as, error);
2241 if (r)
2242 return r;
2243
2244 r = parse_cache_dev(ca, &as, error);
2245 if (r)
2246 return r;
2247
2248 r = parse_origin_dev(ca, &as, error);
2249 if (r)
2250 return r;
2251
2252 r = parse_block_size(ca, &as, error);
2253 if (r)
2254 return r;
2255
2256 r = parse_features(ca, &as, error);
2257 if (r)
2258 return r;
2259
2260 r = parse_policy(ca, &as, error);
2261 if (r)
2262 return r;
2263
2264 return 0;
2265 }
2266
2267 /*----------------------------------------------------------------*/
2268
2269 static struct kmem_cache *migration_cache = NULL;
2270
2271 #define NOT_CORE_OPTION 1
2272
process_config_option(struct cache * cache,const char * key,const char * value)2273 static int process_config_option(struct cache *cache, const char *key, const char *value)
2274 {
2275 unsigned long tmp;
2276
2277 if (!strcasecmp(key, "migration_threshold")) {
2278 if (kstrtoul(value, 10, &tmp))
2279 return -EINVAL;
2280
2281 cache->migration_threshold = tmp;
2282 return 0;
2283 }
2284
2285 return NOT_CORE_OPTION;
2286 }
2287
set_config_value(struct cache * cache,const char * key,const char * value)2288 static int set_config_value(struct cache *cache, const char *key, const char *value)
2289 {
2290 int r = process_config_option(cache, key, value);
2291
2292 if (r == NOT_CORE_OPTION)
2293 r = policy_set_config_value(cache->policy, key, value);
2294
2295 if (r)
2296 DMWARN("bad config value for %s: %s", key, value);
2297
2298 return r;
2299 }
2300
set_config_values(struct cache * cache,int argc,const char ** argv)2301 static int set_config_values(struct cache *cache, int argc, const char **argv)
2302 {
2303 int r = 0;
2304
2305 if (argc & 1) {
2306 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2307 return -EINVAL;
2308 }
2309
2310 while (argc) {
2311 r = set_config_value(cache, argv[0], argv[1]);
2312 if (r)
2313 break;
2314
2315 argc -= 2;
2316 argv += 2;
2317 }
2318
2319 return r;
2320 }
2321
create_cache_policy(struct cache * cache,struct cache_args * ca,char ** error)2322 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2323 char **error)
2324 {
2325 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2326 cache->cache_size,
2327 cache->origin_sectors,
2328 cache->sectors_per_block);
2329 if (IS_ERR(p)) {
2330 *error = "Error creating cache's policy";
2331 return PTR_ERR(p);
2332 }
2333 cache->policy = p;
2334 BUG_ON(!cache->policy);
2335
2336 return 0;
2337 }
2338
2339 /*
2340 * We want the discard block size to be at least the size of the cache
2341 * block size and have no more than 2^14 discard blocks across the origin.
2342 */
2343 #define MAX_DISCARD_BLOCKS (1 << 14)
2344
too_many_discard_blocks(sector_t discard_block_size,sector_t origin_size)2345 static bool too_many_discard_blocks(sector_t discard_block_size,
2346 sector_t origin_size)
2347 {
2348 (void) sector_div(origin_size, discard_block_size);
2349
2350 return origin_size > MAX_DISCARD_BLOCKS;
2351 }
2352
calculate_discard_block_size(sector_t cache_block_size,sector_t origin_size)2353 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2354 sector_t origin_size)
2355 {
2356 sector_t discard_block_size = cache_block_size;
2357
2358 if (origin_size)
2359 while (too_many_discard_blocks(discard_block_size, origin_size))
2360 discard_block_size *= 2;
2361
2362 return discard_block_size;
2363 }
2364
set_cache_size(struct cache * cache,dm_cblock_t size)2365 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2366 {
2367 dm_block_t nr_blocks = from_cblock(size);
2368
2369 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2370 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2371 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2372 "Please consider increasing the cache block size to reduce the overall cache block count.",
2373 (unsigned long long) nr_blocks);
2374
2375 cache->cache_size = size;
2376 }
2377
2378 #define DEFAULT_MIGRATION_THRESHOLD 2048
2379
cache_create(struct cache_args * ca,struct cache ** result)2380 static int cache_create(struct cache_args *ca, struct cache **result)
2381 {
2382 int r = 0;
2383 char **error = &ca->ti->error;
2384 struct cache *cache;
2385 struct dm_target *ti = ca->ti;
2386 dm_block_t origin_blocks;
2387 struct dm_cache_metadata *cmd;
2388 bool may_format = ca->features.mode == CM_WRITE;
2389
2390 cache = kzalloc_obj(*cache, GFP_KERNEL);
2391 if (!cache)
2392 return -ENOMEM;
2393
2394 cache->ti = ca->ti;
2395 ti->private = cache;
2396 ti->accounts_remapped_io = true;
2397 ti->num_flush_bios = 2;
2398 ti->flush_supported = true;
2399
2400 ti->num_discard_bios = 1;
2401 ti->discards_supported = true;
2402
2403 ti->per_io_data_size = sizeof(struct per_bio_data);
2404
2405 cache->features = ca->features;
2406 if (writethrough_mode(cache)) {
2407 /* Create bioset for writethrough bios issued to origin */
2408 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2409 if (r)
2410 goto bad;
2411 }
2412
2413 cache->metadata_dev = ca->metadata_dev;
2414 cache->origin_dev = ca->origin_dev;
2415 cache->cache_dev = ca->cache_dev;
2416
2417 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2418
2419 origin_blocks = cache->origin_sectors = ti->len;
2420 origin_blocks = block_div(origin_blocks, ca->block_size);
2421 cache->origin_blocks = to_oblock(origin_blocks);
2422
2423 cache->sectors_per_block = ca->block_size;
2424 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2425 r = -EINVAL;
2426 goto bad;
2427 }
2428
2429 if (ca->block_size & (ca->block_size - 1)) {
2430 dm_block_t cache_size = ca->cache_sectors;
2431
2432 cache->sectors_per_block_shift = -1;
2433 cache_size = block_div(cache_size, ca->block_size);
2434 set_cache_size(cache, to_cblock(cache_size));
2435 } else {
2436 cache->sectors_per_block_shift = __ffs(ca->block_size);
2437 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2438 }
2439
2440 r = create_cache_policy(cache, ca, error);
2441 if (r)
2442 goto bad;
2443
2444 cache->policy_nr_args = ca->policy_argc;
2445 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2446
2447 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2448 if (r) {
2449 *error = "Error setting cache policy's config values";
2450 goto bad;
2451 }
2452
2453 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2454 ca->block_size, may_format,
2455 dm_cache_policy_get_hint_size(cache->policy),
2456 ca->features.metadata_version);
2457 if (IS_ERR(cmd)) {
2458 *error = "Error creating metadata object";
2459 r = PTR_ERR(cmd);
2460 goto bad;
2461 }
2462 cache->cmd = cmd;
2463 set_cache_mode(cache, CM_WRITE);
2464 if (get_cache_mode(cache) != CM_WRITE) {
2465 *error = "Unable to get write access to metadata, please check/repair metadata.";
2466 r = -EINVAL;
2467 goto bad;
2468 }
2469
2470 if (passthrough_mode(cache)) {
2471 bool all_clean;
2472
2473 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2474 if (r) {
2475 *error = "dm_cache_metadata_all_clean() failed";
2476 goto bad;
2477 }
2478
2479 if (!all_clean) {
2480 *error = "Cannot enter passthrough mode unless all blocks are clean";
2481 r = -EINVAL;
2482 goto bad;
2483 }
2484
2485 policy_allow_migrations(cache->policy, false);
2486 }
2487
2488 spin_lock_init(&cache->lock);
2489 bio_list_init(&cache->deferred_bios);
2490 atomic_set(&cache->nr_allocated_migrations, 0);
2491 atomic_set(&cache->nr_io_migrations, 0);
2492 init_waitqueue_head(&cache->migration_wait);
2493
2494 r = -ENOMEM;
2495 atomic_set(&cache->nr_dirty, 0);
2496 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2497 if (!cache->dirty_bitset) {
2498 *error = "could not allocate dirty bitset";
2499 goto bad;
2500 }
2501 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2502
2503 cache->discard_block_size =
2504 calculate_discard_block_size(cache->sectors_per_block,
2505 cache->origin_sectors);
2506 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2507 cache->discard_block_size));
2508 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2509 if (!cache->discard_bitset) {
2510 *error = "could not allocate discard bitset";
2511 goto bad;
2512 }
2513 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2514
2515 cache->invalid_bitset = alloc_bitset(from_cblock(cache->cache_size));
2516 if (!cache->invalid_bitset) {
2517 *error = "could not allocate bitset for invalid blocks";
2518 goto bad;
2519 }
2520 clear_bitset(cache->invalid_bitset, from_cblock(cache->cache_size));
2521
2522 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2523 if (IS_ERR(cache->copier)) {
2524 *error = "could not create kcopyd client";
2525 r = PTR_ERR(cache->copier);
2526 goto bad;
2527 }
2528
2529 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX,
2530 WQ_MEM_RECLAIM | WQ_PERCPU, 0);
2531 if (!cache->wq) {
2532 *error = "could not create workqueue for metadata object";
2533 goto bad;
2534 }
2535 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2536 INIT_WORK(&cache->migration_worker, check_migrations);
2537 INIT_DELAYED_WORK(&cache->waker, do_waker);
2538
2539 cache->prison = dm_bio_prison_create_v2(cache->wq);
2540 if (!cache->prison) {
2541 *error = "could not create bio prison";
2542 goto bad;
2543 }
2544
2545 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2546 migration_cache);
2547 if (r) {
2548 *error = "Error creating cache's migration mempool";
2549 goto bad;
2550 }
2551
2552 cache->need_tick_bio = true;
2553 cache->sized = false;
2554 cache->invalidate = false;
2555 cache->commit_requested = false;
2556 cache->loaded_mappings = false;
2557 cache->loaded_discards = false;
2558
2559 load_stats(cache);
2560
2561 atomic_set(&cache->stats.demotion, 0);
2562 atomic_set(&cache->stats.promotion, 0);
2563 atomic_set(&cache->stats.copies_avoided, 0);
2564 atomic_set(&cache->stats.cache_cell_clash, 0);
2565 atomic_set(&cache->stats.commit_count, 0);
2566 atomic_set(&cache->stats.discard_count, 0);
2567
2568 spin_lock_init(&cache->invalidation_lock);
2569 INIT_LIST_HEAD(&cache->invalidation_requests);
2570
2571 batcher_init(&cache->committer, commit_op, cache,
2572 issue_op, cache, cache->wq);
2573 dm_iot_init(&cache->tracker);
2574
2575 init_rwsem(&cache->background_work_lock);
2576 prevent_background_work(cache);
2577
2578 *result = cache;
2579 return 0;
2580 bad:
2581 __destroy(cache);
2582 return r;
2583 }
2584
copy_ctr_args(struct cache * cache,int argc,const char ** argv)2585 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2586 {
2587 unsigned int i;
2588 const char **copy;
2589
2590 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2591 if (!copy)
2592 return -ENOMEM;
2593 for (i = 0; i < argc; i++) {
2594 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2595 if (!copy[i]) {
2596 while (i--)
2597 kfree(copy[i]);
2598 kfree(copy);
2599 return -ENOMEM;
2600 }
2601 }
2602
2603 cache->nr_ctr_args = argc;
2604 cache->ctr_args = copy;
2605
2606 return 0;
2607 }
2608
cache_ctr(struct dm_target * ti,unsigned int argc,char ** argv)2609 static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2610 {
2611 int r = -EINVAL;
2612 struct cache_args *ca;
2613 struct cache *cache = NULL;
2614
2615 ca = kzalloc_obj(*ca, GFP_KERNEL);
2616 if (!ca) {
2617 ti->error = "Error allocating memory for cache";
2618 return -ENOMEM;
2619 }
2620 ca->ti = ti;
2621
2622 r = parse_cache_args(ca, argc, argv, &ti->error);
2623 if (r)
2624 goto out;
2625
2626 r = cache_create(ca, &cache);
2627 if (r)
2628 goto out;
2629
2630 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2631 if (r) {
2632 __destroy(cache);
2633 goto out;
2634 }
2635
2636 ti->private = cache;
2637 out:
2638 destroy_cache_args(ca);
2639 return r;
2640 }
2641
2642 /*----------------------------------------------------------------*/
2643
cache_map(struct dm_target * ti,struct bio * bio)2644 static int cache_map(struct dm_target *ti, struct bio *bio)
2645 {
2646 struct cache *cache = ti->private;
2647
2648 int r;
2649 bool commit_needed;
2650 dm_oblock_t block = get_bio_block(cache, bio);
2651
2652 init_per_bio_data(bio);
2653 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2654 /*
2655 * This can only occur if the io goes to a partial block at
2656 * the end of the origin device. We don't cache these.
2657 * Just remap to the origin and carry on.
2658 */
2659 remap_to_origin(cache, bio);
2660 accounted_begin(cache, bio);
2661 return DM_MAPIO_REMAPPED;
2662 }
2663
2664 if (discard_or_flush(bio)) {
2665 defer_bio(cache, bio);
2666 return DM_MAPIO_SUBMITTED;
2667 }
2668
2669 r = map_bio(cache, bio, block, &commit_needed);
2670 if (commit_needed)
2671 schedule_commit(&cache->committer);
2672
2673 return r;
2674 }
2675
cache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * error)2676 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2677 {
2678 struct cache *cache = ti->private;
2679 unsigned long flags;
2680 struct per_bio_data *pb = get_per_bio_data(bio);
2681
2682 if (pb->tick) {
2683 policy_tick(cache->policy, false);
2684
2685 spin_lock_irqsave(&cache->lock, flags);
2686 cache->need_tick_bio = true;
2687 spin_unlock_irqrestore(&cache->lock, flags);
2688 }
2689
2690 bio_drop_shared_lock(cache, bio);
2691 accounted_complete(cache, bio);
2692
2693 return DM_ENDIO_DONE;
2694 }
2695
write_dirty_bitset(struct cache * cache)2696 static int write_dirty_bitset(struct cache *cache)
2697 {
2698 int r;
2699
2700 if (get_cache_mode(cache) >= CM_READ_ONLY)
2701 return -EINVAL;
2702
2703 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2704 if (r)
2705 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2706
2707 return r;
2708 }
2709
write_discard_bitset(struct cache * cache)2710 static int write_discard_bitset(struct cache *cache)
2711 {
2712 unsigned int i, r;
2713
2714 if (get_cache_mode(cache) >= CM_READ_ONLY)
2715 return -EINVAL;
2716
2717 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2718 cache->discard_nr_blocks);
2719 if (r) {
2720 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2721 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2722 return r;
2723 }
2724
2725 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2726 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2727 is_discarded(cache, to_dblock(i)));
2728 if (r) {
2729 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2730 return r;
2731 }
2732 }
2733
2734 return 0;
2735 }
2736
write_hints(struct cache * cache)2737 static int write_hints(struct cache *cache)
2738 {
2739 int r;
2740
2741 if (get_cache_mode(cache) >= CM_READ_ONLY)
2742 return -EINVAL;
2743
2744 r = dm_cache_write_hints(cache->cmd, cache->policy);
2745 if (r) {
2746 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2747 return r;
2748 }
2749
2750 return 0;
2751 }
2752
2753 /*
2754 * returns true on success
2755 */
sync_metadata(struct cache * cache)2756 static bool sync_metadata(struct cache *cache)
2757 {
2758 int r1, r2, r3, r4;
2759
2760 r1 = write_dirty_bitset(cache);
2761 if (r1)
2762 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2763
2764 r2 = write_discard_bitset(cache);
2765 if (r2)
2766 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2767
2768 save_stats(cache);
2769
2770 r3 = write_hints(cache);
2771 if (r3)
2772 DMERR("%s: could not write hints", cache_device_name(cache));
2773
2774 /*
2775 * If writing the above metadata failed, we still commit, but don't
2776 * set the clean shutdown flag. This will effectively force every
2777 * dirty bit to be set on reload.
2778 */
2779 r4 = commit(cache, !r1 && !r2 && !r3);
2780 if (r4)
2781 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2782
2783 return !r1 && !r2 && !r3 && !r4;
2784 }
2785
cache_postsuspend(struct dm_target * ti)2786 static void cache_postsuspend(struct dm_target *ti)
2787 {
2788 struct cache *cache = ti->private;
2789
2790 prevent_background_work(cache);
2791 BUG_ON(atomic_read(&cache->nr_io_migrations));
2792
2793 cancel_delayed_work_sync(&cache->waker);
2794 drain_workqueue(cache->wq);
2795 WARN_ON(cache->tracker.in_flight);
2796
2797 /*
2798 * If it's a flush suspend there won't be any deferred bios, so this
2799 * call is harmless.
2800 */
2801 requeue_deferred_bios(cache);
2802
2803 if (get_cache_mode(cache) == CM_WRITE)
2804 (void) sync_metadata(cache);
2805 }
2806
load_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2807 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2808 bool dirty, uint32_t hint, bool hint_valid)
2809 {
2810 struct cache *cache = context;
2811
2812 if (dirty) {
2813 set_bit(from_cblock(cblock), cache->dirty_bitset);
2814 atomic_inc(&cache->nr_dirty);
2815 } else
2816 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2817
2818 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2819 }
2820
load_filtered_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2821 static int load_filtered_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2822 bool dirty, uint32_t hint, bool hint_valid)
2823 {
2824 struct cache *cache = context;
2825
2826 if (from_oblock(oblock) >= from_oblock(cache->origin_blocks)) {
2827 if (dirty) {
2828 DMERR("%s: unable to shrink origin; cache block %u is dirty",
2829 cache_device_name(cache), from_cblock(cblock));
2830 return -EFBIG;
2831 }
2832 set_bit(from_cblock(cblock), cache->invalid_bitset);
2833 return 0;
2834 }
2835
2836 return load_mapping(context, oblock, cblock, dirty, hint, hint_valid);
2837 }
2838
2839 /*
2840 * The discard block size in the on disk metadata is not
2841 * necessarily the same as we're currently using. So we have to
2842 * be careful to only set the discarded attribute if we know it
2843 * covers a complete block of the new size.
2844 */
2845 struct discard_load_info {
2846 struct cache *cache;
2847
2848 /*
2849 * These blocks are sized using the on disk dblock size, rather
2850 * than the current one.
2851 */
2852 dm_block_t block_size;
2853 dm_block_t discard_begin, discard_end;
2854 };
2855
discard_load_info_init(struct cache * cache,struct discard_load_info * li)2856 static void discard_load_info_init(struct cache *cache,
2857 struct discard_load_info *li)
2858 {
2859 li->cache = cache;
2860 li->discard_begin = li->discard_end = 0;
2861 }
2862
set_discard_range(struct discard_load_info * li)2863 static void set_discard_range(struct discard_load_info *li)
2864 {
2865 sector_t b, e;
2866
2867 if (li->discard_begin == li->discard_end)
2868 return;
2869
2870 /*
2871 * Convert to sectors.
2872 */
2873 b = li->discard_begin * li->block_size;
2874 e = li->discard_end * li->block_size;
2875
2876 /*
2877 * Then convert back to the current dblock size.
2878 */
2879 b = dm_sector_div_up(b, li->cache->discard_block_size);
2880 sector_div(e, li->cache->discard_block_size);
2881
2882 /*
2883 * The origin may have shrunk, so we need to check we're still in
2884 * bounds.
2885 */
2886 if (e > from_dblock(li->cache->discard_nr_blocks))
2887 e = from_dblock(li->cache->discard_nr_blocks);
2888
2889 for (; b < e; b++)
2890 set_discard(li->cache, to_dblock(b));
2891 }
2892
load_discard(void * context,sector_t discard_block_size,dm_dblock_t dblock,bool discard)2893 static int load_discard(void *context, sector_t discard_block_size,
2894 dm_dblock_t dblock, bool discard)
2895 {
2896 struct discard_load_info *li = context;
2897
2898 li->block_size = discard_block_size;
2899
2900 if (discard) {
2901 if (from_dblock(dblock) == li->discard_end)
2902 /*
2903 * We're already in a discard range, just extend it.
2904 */
2905 li->discard_end = li->discard_end + 1ULL;
2906
2907 else {
2908 /*
2909 * Emit the old range and start a new one.
2910 */
2911 set_discard_range(li);
2912 li->discard_begin = from_dblock(dblock);
2913 li->discard_end = li->discard_begin + 1ULL;
2914 }
2915 } else {
2916 set_discard_range(li);
2917 li->discard_begin = li->discard_end = 0;
2918 }
2919
2920 return 0;
2921 }
2922
get_cache_dev_size(struct cache * cache)2923 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2924 {
2925 sector_t size = get_dev_size(cache->cache_dev);
2926 (void) sector_div(size, cache->sectors_per_block);
2927 return to_cblock(size);
2928 }
2929
can_resume(struct cache * cache)2930 static bool can_resume(struct cache *cache)
2931 {
2932 /*
2933 * Disallow retrying the resume operation for devices that failed the
2934 * first resume attempt, as the failure leaves the policy object partially
2935 * initialized. Retrying could trigger BUG_ON when loading cache mappings
2936 * into the incomplete policy object.
2937 */
2938 if (cache->sized && !cache->loaded_mappings) {
2939 if (get_cache_mode(cache) != CM_WRITE)
2940 DMERR("%s: unable to resume a failed-loaded cache, please check metadata.",
2941 cache_device_name(cache));
2942 else
2943 DMERR("%s: unable to resume cache due to missing proper cache table reload",
2944 cache_device_name(cache));
2945 return false;
2946 }
2947
2948 return true;
2949 }
2950
can_resize(struct cache * cache,dm_cblock_t new_size)2951 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2952 {
2953 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2954 DMERR("%s: unable to extend cache due to missing cache table reload",
2955 cache_device_name(cache));
2956 return false;
2957 }
2958
2959 /*
2960 * We can't drop a dirty block when shrinking the cache.
2961 */
2962 if (cache->loaded_mappings) {
2963 new_size = to_cblock(find_next_bit(cache->dirty_bitset,
2964 from_cblock(cache->cache_size),
2965 from_cblock(new_size)));
2966 if (new_size != cache->cache_size) {
2967 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2968 cache_device_name(cache),
2969 (unsigned long long) from_cblock(new_size));
2970 return false;
2971 }
2972 }
2973
2974 return true;
2975 }
2976
resize_cache_dev(struct cache * cache,dm_cblock_t new_size)2977 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2978 {
2979 int r;
2980
2981 r = dm_cache_resize(cache->cmd, new_size);
2982 if (r) {
2983 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2984 metadata_operation_failed(cache, "dm_cache_resize", r);
2985 return r;
2986 }
2987
2988 set_cache_size(cache, new_size);
2989
2990 return 0;
2991 }
2992
truncate_oblocks(struct cache * cache)2993 static int truncate_oblocks(struct cache *cache)
2994 {
2995 uint32_t nr_blocks = from_cblock(cache->cache_size);
2996 uint32_t i;
2997 int r;
2998
2999 for_each_set_bit(i, cache->invalid_bitset, nr_blocks) {
3000 r = dm_cache_remove_mapping(cache->cmd, to_cblock(i));
3001 if (r) {
3002 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
3003 cache_device_name(cache));
3004 return r;
3005 }
3006 }
3007
3008 return 0;
3009 }
3010
cache_preresume(struct dm_target * ti)3011 static int cache_preresume(struct dm_target *ti)
3012 {
3013 int r = 0;
3014 struct cache *cache = ti->private;
3015 dm_cblock_t csize = get_cache_dev_size(cache);
3016
3017 if (!can_resume(cache))
3018 return -EINVAL;
3019
3020 /*
3021 * Check to see if the cache has resized.
3022 */
3023 if (!cache->sized || csize != cache->cache_size) {
3024 if (!can_resize(cache, csize))
3025 return -EINVAL;
3026
3027 r = resize_cache_dev(cache, csize);
3028 if (r)
3029 return r;
3030
3031 cache->sized = true;
3032 }
3033
3034 if (!cache->loaded_mappings) {
3035 /*
3036 * The fast device could have been resized since the last
3037 * failed preresume attempt. To be safe we start by a blank
3038 * bitset for cache blocks.
3039 */
3040 clear_bitset(cache->invalid_bitset, from_cblock(cache->cache_size));
3041
3042 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3043 load_filtered_mapping, cache);
3044 if (r) {
3045 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3046 if (r != -EFBIG)
3047 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3048 return r;
3049 }
3050
3051 r = truncate_oblocks(cache);
3052 if (r) {
3053 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
3054 return r;
3055 }
3056
3057 cache->loaded_mappings = true;
3058 }
3059
3060 if (!cache->loaded_discards) {
3061 struct discard_load_info li;
3062
3063 /*
3064 * The discard bitset could have been resized, or the
3065 * discard block size changed. To be safe we start by
3066 * setting every dblock to not discarded.
3067 */
3068 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3069
3070 discard_load_info_init(cache, &li);
3071 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3072 if (r) {
3073 DMERR("%s: could not load origin discards", cache_device_name(cache));
3074 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3075 return r;
3076 }
3077 set_discard_range(&li);
3078
3079 cache->loaded_discards = true;
3080 }
3081
3082 return r;
3083 }
3084
cache_resume(struct dm_target * ti)3085 static void cache_resume(struct dm_target *ti)
3086 {
3087 struct cache *cache = ti->private;
3088
3089 cache->need_tick_bio = true;
3090 allow_background_work(cache);
3091 do_waker(&cache->waker.work);
3092 }
3093
emit_flags(struct cache * cache,char * result,unsigned int maxlen,ssize_t * sz_ptr)3094 static void emit_flags(struct cache *cache, char *result,
3095 unsigned int maxlen, ssize_t *sz_ptr)
3096 {
3097 ssize_t sz = *sz_ptr;
3098 struct cache_features *cf = &cache->features;
3099 unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3100
3101 DMEMIT("%u ", count);
3102
3103 if (cf->metadata_version == 2)
3104 DMEMIT("metadata2 ");
3105
3106 if (writethrough_mode(cache))
3107 DMEMIT("writethrough ");
3108
3109 else if (passthrough_mode(cache))
3110 DMEMIT("passthrough ");
3111
3112 else if (writeback_mode(cache))
3113 DMEMIT("writeback ");
3114
3115 else {
3116 DMEMIT("unknown ");
3117 DMERR("%s: internal error: unknown io mode: %d",
3118 cache_device_name(cache), (int) cf->io_mode);
3119 }
3120
3121 if (!cf->discard_passdown)
3122 DMEMIT("no_discard_passdown ");
3123
3124 *sz_ptr = sz;
3125 }
3126
3127 /*
3128 * Status format:
3129 *
3130 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3131 * <cache block size> <#used cache blocks>/<#total cache blocks>
3132 * <#read hits> <#read misses> <#write hits> <#write misses>
3133 * <#demotions> <#promotions> <#dirty>
3134 * <#features> <features>*
3135 * <#core args> <core args>
3136 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3137 */
cache_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3138 static void cache_status(struct dm_target *ti, status_type_t type,
3139 unsigned int status_flags, char *result, unsigned int maxlen)
3140 {
3141 int r = 0;
3142 unsigned int i;
3143 ssize_t sz = 0;
3144 dm_block_t nr_free_blocks_metadata = 0;
3145 dm_block_t nr_blocks_metadata = 0;
3146 char buf[BDEVNAME_SIZE];
3147 struct cache *cache = ti->private;
3148 dm_cblock_t residency;
3149 bool needs_check;
3150
3151 switch (type) {
3152 case STATUSTYPE_INFO:
3153 if (get_cache_mode(cache) == CM_FAIL) {
3154 DMEMIT("Fail");
3155 break;
3156 }
3157
3158 /* Commit to ensure statistics aren't out-of-date */
3159 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3160 (void) commit(cache, false);
3161
3162 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3163 if (r) {
3164 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3165 cache_device_name(cache), r);
3166 goto err;
3167 }
3168
3169 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3170 if (r) {
3171 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3172 cache_device_name(cache), r);
3173 goto err;
3174 }
3175
3176 residency = policy_residency(cache->policy);
3177
3178 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3179 (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3180 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3181 (unsigned long long)nr_blocks_metadata,
3182 (unsigned long long)cache->sectors_per_block,
3183 (unsigned long long) from_cblock(residency),
3184 (unsigned long long) from_cblock(cache->cache_size),
3185 (unsigned int) atomic_read(&cache->stats.read_hit),
3186 (unsigned int) atomic_read(&cache->stats.read_miss),
3187 (unsigned int) atomic_read(&cache->stats.write_hit),
3188 (unsigned int) atomic_read(&cache->stats.write_miss),
3189 (unsigned int) atomic_read(&cache->stats.demotion),
3190 (unsigned int) atomic_read(&cache->stats.promotion),
3191 (unsigned long) atomic_read(&cache->nr_dirty));
3192
3193 emit_flags(cache, result, maxlen, &sz);
3194
3195 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3196
3197 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3198 if (sz < maxlen) {
3199 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3200 if (r)
3201 DMERR("%s: policy_emit_config_values returned %d",
3202 cache_device_name(cache), r);
3203 }
3204
3205 if (get_cache_mode(cache) == CM_READ_ONLY)
3206 DMEMIT("ro ");
3207 else
3208 DMEMIT("rw ");
3209
3210 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3211
3212 if (r || needs_check)
3213 DMEMIT("needs_check ");
3214 else
3215 DMEMIT("- ");
3216
3217 break;
3218
3219 case STATUSTYPE_TABLE:
3220 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3221 DMEMIT("%s ", buf);
3222 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3223 DMEMIT("%s ", buf);
3224 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3225 DMEMIT("%s", buf);
3226
3227 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3228 DMEMIT(" %s", cache->ctr_args[i]);
3229 if (cache->nr_ctr_args)
3230 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3231 break;
3232
3233 case STATUSTYPE_IMA:
3234 DMEMIT_TARGET_NAME_VERSION(ti->type);
3235 if (get_cache_mode(cache) == CM_FAIL)
3236 DMEMIT(",metadata_mode=fail");
3237 else if (get_cache_mode(cache) == CM_READ_ONLY)
3238 DMEMIT(",metadata_mode=ro");
3239 else
3240 DMEMIT(",metadata_mode=rw");
3241
3242 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3243 DMEMIT(",cache_metadata_device=%s", buf);
3244 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3245 DMEMIT(",cache_device=%s", buf);
3246 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3247 DMEMIT(",cache_origin_device=%s", buf);
3248 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3249 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3250 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3251 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3252 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3253 DMEMIT(";");
3254 break;
3255 }
3256
3257 return;
3258
3259 err:
3260 DMEMIT("Error");
3261 }
3262
3263 /*
3264 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3265 * the one-past-the-end value.
3266 */
3267 struct cblock_range {
3268 dm_cblock_t begin;
3269 dm_cblock_t end;
3270 };
3271
3272 /*
3273 * A cache block range can take two forms:
3274 *
3275 * i) A single cblock, eg. '3456'
3276 * ii) A begin and end cblock with a dash between, eg. 123-234
3277 */
parse_cblock_range(struct cache * cache,const char * str,struct cblock_range * result)3278 static int parse_cblock_range(struct cache *cache, const char *str,
3279 struct cblock_range *result)
3280 {
3281 char dummy;
3282 uint64_t b, e;
3283 int r;
3284
3285 /*
3286 * Try and parse form (ii) first.
3287 */
3288 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3289
3290 if (r == 2) {
3291 result->begin = to_cblock(b);
3292 result->end = to_cblock(e);
3293 return 0;
3294 }
3295
3296 /*
3297 * That didn't work, try form (i).
3298 */
3299 r = sscanf(str, "%llu%c", &b, &dummy);
3300
3301 if (r == 1) {
3302 result->begin = to_cblock(b);
3303 result->end = to_cblock(from_cblock(result->begin) + 1u);
3304 return 0;
3305 }
3306
3307 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3308 return -EINVAL;
3309 }
3310
validate_cblock_range(struct cache * cache,struct cblock_range * range)3311 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3312 {
3313 uint64_t b = from_cblock(range->begin);
3314 uint64_t e = from_cblock(range->end);
3315 uint64_t n = from_cblock(cache->cache_size);
3316
3317 if (b >= n) {
3318 DMERR("%s: begin cblock out of range: %llu >= %llu",
3319 cache_device_name(cache), b, n);
3320 return -EINVAL;
3321 }
3322
3323 if (e > n) {
3324 DMERR("%s: end cblock out of range: %llu > %llu",
3325 cache_device_name(cache), e, n);
3326 return -EINVAL;
3327 }
3328
3329 if (b >= e) {
3330 DMERR("%s: invalid cblock range: %llu >= %llu",
3331 cache_device_name(cache), b, e);
3332 return -EINVAL;
3333 }
3334
3335 return 0;
3336 }
3337
cblock_succ(dm_cblock_t b)3338 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3339 {
3340 return to_cblock(from_cblock(b) + 1);
3341 }
3342
request_invalidation(struct cache * cache,struct cblock_range * range)3343 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3344 {
3345 int r = 0;
3346
3347 /*
3348 * We don't need to do any locking here because we know we're in
3349 * passthrough mode. There's is potential for a race between an
3350 * invalidation triggered by an io and an invalidation message. This
3351 * is harmless, we must not worry if the policy call fails.
3352 */
3353 while (range->begin != range->end) {
3354 r = invalidate_cblock(cache, range->begin);
3355 if (r)
3356 return r;
3357
3358 range->begin = cblock_succ(range->begin);
3359 }
3360
3361 cache->commit_requested = true;
3362 return r;
3363 }
3364
process_invalidate_cblocks_message(struct cache * cache,unsigned int count,const char ** cblock_ranges)3365 static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3366 const char **cblock_ranges)
3367 {
3368 int r = 0;
3369 unsigned int i;
3370 struct cblock_range range;
3371
3372 if (!passthrough_mode(cache)) {
3373 DMERR("%s: cache has to be in passthrough mode for invalidation",
3374 cache_device_name(cache));
3375 return -EPERM;
3376 }
3377
3378 for (i = 0; i < count; i++) {
3379 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3380 if (r)
3381 break;
3382
3383 r = validate_cblock_range(cache, &range);
3384 if (r)
3385 break;
3386
3387 /*
3388 * Pass begin and end origin blocks to the worker and wake it.
3389 */
3390 r = request_invalidation(cache, &range);
3391 if (r)
3392 break;
3393 }
3394
3395 return r;
3396 }
3397
3398 /*
3399 * Supports
3400 * "<key> <value>"
3401 * and
3402 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3403 *
3404 * The key migration_threshold is supported by the cache target core.
3405 */
cache_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3406 static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3407 char *result, unsigned int maxlen)
3408 {
3409 struct cache *cache = ti->private;
3410
3411 if (!argc)
3412 return -EINVAL;
3413
3414 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3415 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3416 cache_device_name(cache));
3417 return -EOPNOTSUPP;
3418 }
3419
3420 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3421 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3422
3423 if (argc != 2)
3424 return -EINVAL;
3425
3426 return set_config_value(cache, argv[0], argv[1]);
3427 }
3428
cache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3429 static int cache_iterate_devices(struct dm_target *ti,
3430 iterate_devices_callout_fn fn, void *data)
3431 {
3432 int r = 0;
3433 struct cache *cache = ti->private;
3434
3435 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3436 if (!r)
3437 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3438
3439 return r;
3440 }
3441
3442 /*
3443 * If discard_passdown was enabled verify that the origin device
3444 * supports discards. Disable discard_passdown if not.
3445 */
disable_passdown_if_not_supported(struct cache * cache)3446 static void disable_passdown_if_not_supported(struct cache *cache)
3447 {
3448 struct block_device *origin_bdev = cache->origin_dev->bdev;
3449 struct queue_limits *origin_limits = bdev_limits(origin_bdev);
3450 const char *reason = NULL;
3451
3452 if (!cache->features.discard_passdown)
3453 return;
3454
3455 if (!bdev_max_discard_sectors(origin_bdev))
3456 reason = "discard unsupported";
3457
3458 else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3459 reason = "max discard sectors smaller than a block";
3460
3461 if (reason) {
3462 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3463 origin_bdev, reason);
3464 cache->features.discard_passdown = false;
3465 }
3466 }
3467
set_discard_limits(struct cache * cache,struct queue_limits * limits)3468 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3469 {
3470 struct block_device *origin_bdev = cache->origin_dev->bdev;
3471 struct queue_limits *origin_limits = bdev_limits(origin_bdev);
3472
3473 if (!cache->features.discard_passdown) {
3474 /* No passdown is done so setting own virtual limits */
3475 limits->max_hw_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3476 cache->origin_sectors);
3477 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3478 return;
3479 }
3480
3481 /*
3482 * cache_iterate_devices() is stacking both origin and fast device limits
3483 * but discards aren't passed to fast device, so inherit origin's limits.
3484 */
3485 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3486 limits->discard_granularity = origin_limits->discard_granularity;
3487 limits->discard_alignment = origin_limits->discard_alignment;
3488 }
3489
cache_io_hints(struct dm_target * ti,struct queue_limits * limits)3490 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3491 {
3492 struct cache *cache = ti->private;
3493 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3494
3495 /*
3496 * If the system-determined stacked limits are compatible with the
3497 * cache's blocksize (io_opt is a factor) do not override them.
3498 */
3499 if (io_opt_sectors < cache->sectors_per_block ||
3500 do_div(io_opt_sectors, cache->sectors_per_block)) {
3501 limits->io_min = cache->sectors_per_block << SECTOR_SHIFT;
3502 limits->io_opt = cache->sectors_per_block << SECTOR_SHIFT;
3503 }
3504
3505 disable_passdown_if_not_supported(cache);
3506 set_discard_limits(cache, limits);
3507 }
3508
3509 /*----------------------------------------------------------------*/
3510
3511 static struct target_type cache_target = {
3512 .name = "cache",
3513 .version = {2, 3, 0},
3514 .module = THIS_MODULE,
3515 .ctr = cache_ctr,
3516 .dtr = cache_dtr,
3517 .map = cache_map,
3518 .end_io = cache_end_io,
3519 .postsuspend = cache_postsuspend,
3520 .preresume = cache_preresume,
3521 .resume = cache_resume,
3522 .status = cache_status,
3523 .message = cache_message,
3524 .iterate_devices = cache_iterate_devices,
3525 .io_hints = cache_io_hints,
3526 };
3527
dm_cache_init(void)3528 static int __init dm_cache_init(void)
3529 {
3530 int r;
3531
3532 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3533 if (!migration_cache) {
3534 r = -ENOMEM;
3535 goto err;
3536 }
3537
3538 btracker_work_cache = kmem_cache_create("dm_cache_bt_work",
3539 sizeof(struct bt_work), __alignof__(struct bt_work), 0, NULL);
3540 if (!btracker_work_cache) {
3541 r = -ENOMEM;
3542 goto err;
3543 }
3544
3545 r = dm_register_target(&cache_target);
3546 if (r) {
3547 goto err;
3548 }
3549
3550 return 0;
3551
3552 err:
3553 kmem_cache_destroy(migration_cache);
3554 kmem_cache_destroy(btracker_work_cache);
3555 return r;
3556 }
3557
dm_cache_exit(void)3558 static void __exit dm_cache_exit(void)
3559 {
3560 dm_unregister_target(&cache_target);
3561 kmem_cache_destroy(migration_cache);
3562 kmem_cache_destroy(btracker_work_cache);
3563 }
3564
3565 module_init(dm_cache_init);
3566 module_exit(dm_cache_exit);
3567
3568 MODULE_DESCRIPTION(DM_NAME " cache target");
3569 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3570 MODULE_LICENSE("GPL");
3571