xref: /linux/arch/arm64/kvm/sys_regs.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 #include <linux/irqchip/arm-gic-v3.h>
21 
22 #include <asm/arm_pmuv3.h>
23 #include <asm/cacheflush.h>
24 #include <asm/cputype.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/esr.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/kvm_nested.h>
32 #include <asm/perf_event.h>
33 #include <asm/sysreg.h>
34 
35 #include <trace/events/kvm.h>
36 
37 #include "sys_regs.h"
38 #include "vgic/vgic.h"
39 
40 #include "trace.h"
41 
42 /*
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47 
48 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
49 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
50 		      u64 val);
51 
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)52 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
53 			 const struct sys_reg_desc *r)
54 {
55 	kvm_inject_undefined(vcpu);
56 	return false;
57 }
58 
bad_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r,const char * msg)59 static bool bad_trap(struct kvm_vcpu *vcpu,
60 		     struct sys_reg_params *params,
61 		     const struct sys_reg_desc *r,
62 		     const char *msg)
63 {
64 	WARN_ONCE(1, "Unexpected %s\n", msg);
65 	print_sys_reg_instr(params);
66 	return undef_access(vcpu, params, r);
67 }
68 
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)69 static bool read_from_write_only(struct kvm_vcpu *vcpu,
70 				 struct sys_reg_params *params,
71 				 const struct sys_reg_desc *r)
72 {
73 	return bad_trap(vcpu, params, r,
74 			"sys_reg read to write-only register");
75 }
76 
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)77 static bool write_to_read_only(struct kvm_vcpu *vcpu,
78 			       struct sys_reg_params *params,
79 			       const struct sys_reg_desc *r)
80 {
81 	return bad_trap(vcpu, params, r,
82 			"sys_reg write to read-only register");
83 }
84 
85 enum sr_loc_attr {
86 	SR_LOC_MEMORY	= 0,	  /* Register definitely in memory */
87 	SR_LOC_LOADED	= BIT(0), /* Register on CPU, unless it cannot */
88 	SR_LOC_MAPPED	= BIT(1), /* Register in a different CPU register */
89 	SR_LOC_XLATED	= BIT(2), /* Register translated to fit another reg */
90 	SR_LOC_SPECIAL	= BIT(3), /* Demanding register, implies loaded */
91 };
92 
93 struct sr_loc {
94 	enum sr_loc_attr loc;
95 	enum vcpu_sysreg map_reg;
96 	u64		 (*xlate)(u64);
97 };
98 
locate_direct_register(const struct kvm_vcpu * vcpu,enum vcpu_sysreg reg)99 static enum sr_loc_attr locate_direct_register(const struct kvm_vcpu *vcpu,
100 					       enum vcpu_sysreg reg)
101 {
102 	switch (reg) {
103 	case SCTLR_EL1:
104 	case CPACR_EL1:
105 	case TTBR0_EL1:
106 	case TTBR1_EL1:
107 	case TCR_EL1:
108 	case TCR2_EL1:
109 	case PIR_EL1:
110 	case PIRE0_EL1:
111 	case POR_EL1:
112 	case ESR_EL1:
113 	case AFSR0_EL1:
114 	case AFSR1_EL1:
115 	case FAR_EL1:
116 	case MAIR_EL1:
117 	case VBAR_EL1:
118 	case CONTEXTIDR_EL1:
119 	case AMAIR_EL1:
120 	case CNTKCTL_EL1:
121 	case ELR_EL1:
122 	case SPSR_EL1:
123 	case ZCR_EL1:
124 	case SCTLR2_EL1:
125 		/*
126 		 * EL1 registers which have an ELx2 mapping are loaded if
127 		 * we're not in hypervisor context.
128 		 */
129 		return is_hyp_ctxt(vcpu) ? SR_LOC_MEMORY : SR_LOC_LOADED;
130 
131 	case TPIDR_EL0:
132 	case TPIDRRO_EL0:
133 	case TPIDR_EL1:
134 	case PAR_EL1:
135 	case DACR32_EL2:
136 	case IFSR32_EL2:
137 	case DBGVCR32_EL2:
138 		/* These registers are always loaded, no matter what */
139 		return SR_LOC_LOADED;
140 
141 	default:
142 		/* Non-mapped EL2 registers are by definition in memory. */
143 		return SR_LOC_MEMORY;
144 	}
145 }
146 
locate_mapped_el2_register(const struct kvm_vcpu * vcpu,enum vcpu_sysreg reg,enum vcpu_sysreg map_reg,u64 (* xlate)(u64),struct sr_loc * loc)147 static void locate_mapped_el2_register(const struct kvm_vcpu *vcpu,
148 				       enum vcpu_sysreg reg,
149 				       enum vcpu_sysreg map_reg,
150 				       u64 (*xlate)(u64),
151 				       struct sr_loc *loc)
152 {
153 	if (!is_hyp_ctxt(vcpu)) {
154 		loc->loc = SR_LOC_MEMORY;
155 		return;
156 	}
157 
158 	loc->loc = SR_LOC_LOADED | SR_LOC_MAPPED;
159 	loc->map_reg = map_reg;
160 
161 	WARN_ON(locate_direct_register(vcpu, map_reg) != SR_LOC_MEMORY);
162 
163 	if (xlate != NULL && !vcpu_el2_e2h_is_set(vcpu)) {
164 		loc->loc |= SR_LOC_XLATED;
165 		loc->xlate = xlate;
166 	}
167 }
168 
169 #define MAPPED_EL2_SYSREG(r, m, t)					\
170 	case r:	{							\
171 		locate_mapped_el2_register(vcpu, r, m, t, loc);		\
172 		break;							\
173 	}
174 
locate_register(const struct kvm_vcpu * vcpu,enum vcpu_sysreg reg,struct sr_loc * loc)175 static void locate_register(const struct kvm_vcpu *vcpu, enum vcpu_sysreg reg,
176 			    struct sr_loc *loc)
177 {
178 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) {
179 		loc->loc = SR_LOC_MEMORY;
180 		return;
181 	}
182 
183 	switch (reg) {
184 		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
185 				  translate_sctlr_el2_to_sctlr_el1	     );
186 		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
187 				  translate_cptr_el2_to_cpacr_el1	     );
188 		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
189 				  translate_ttbr0_el2_to_ttbr0_el1	     );
190 		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
191 		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
192 				  translate_tcr_el2_to_tcr_el1		     );
193 		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
194 		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
195 		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
196 		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
197 		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
198 		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
199 		MAPPED_EL2_SYSREG(TCR2_EL2,    TCR2_EL1,    NULL	     );
200 		MAPPED_EL2_SYSREG(PIR_EL2,     PIR_EL1,     NULL	     );
201 		MAPPED_EL2_SYSREG(PIRE0_EL2,   PIRE0_EL1,   NULL	     );
202 		MAPPED_EL2_SYSREG(POR_EL2,     POR_EL1,     NULL	     );
203 		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
204 		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
205 		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
206 		MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL	     );
207 		MAPPED_EL2_SYSREG(SCTLR2_EL2,  SCTLR2_EL1,  NULL	     );
208 	case CNTHCTL_EL2:
209 		/* CNTHCTL_EL2 is super special, until we support NV2.1 */
210 		loc->loc = ((is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) ?
211 			    SR_LOC_SPECIAL : SR_LOC_MEMORY);
212 		break;
213 	default:
214 		loc->loc = locate_direct_register(vcpu, reg);
215 	}
216 }
217 
read_sr_from_cpu(enum vcpu_sysreg reg)218 static u64 read_sr_from_cpu(enum vcpu_sysreg reg)
219 {
220 	u64 val = 0x8badf00d8badf00d;
221 
222 	switch (reg) {
223 	case SCTLR_EL1:		val = read_sysreg_s(SYS_SCTLR_EL12);	break;
224 	case CPACR_EL1:		val = read_sysreg_s(SYS_CPACR_EL12);	break;
225 	case TTBR0_EL1:		val = read_sysreg_s(SYS_TTBR0_EL12);	break;
226 	case TTBR1_EL1:		val = read_sysreg_s(SYS_TTBR1_EL12);	break;
227 	case TCR_EL1:		val = read_sysreg_s(SYS_TCR_EL12);	break;
228 	case TCR2_EL1:		val = read_sysreg_s(SYS_TCR2_EL12);	break;
229 	case PIR_EL1:		val = read_sysreg_s(SYS_PIR_EL12);	break;
230 	case PIRE0_EL1:		val = read_sysreg_s(SYS_PIRE0_EL12);	break;
231 	case POR_EL1:		val = read_sysreg_s(SYS_POR_EL12);	break;
232 	case ESR_EL1:		val = read_sysreg_s(SYS_ESR_EL12);	break;
233 	case AFSR0_EL1:		val = read_sysreg_s(SYS_AFSR0_EL12);	break;
234 	case AFSR1_EL1:		val = read_sysreg_s(SYS_AFSR1_EL12);	break;
235 	case FAR_EL1:		val = read_sysreg_s(SYS_FAR_EL12);	break;
236 	case MAIR_EL1:		val = read_sysreg_s(SYS_MAIR_EL12);	break;
237 	case VBAR_EL1:		val = read_sysreg_s(SYS_VBAR_EL12);	break;
238 	case CONTEXTIDR_EL1:	val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
239 	case AMAIR_EL1:		val = read_sysreg_s(SYS_AMAIR_EL12);	break;
240 	case CNTKCTL_EL1:	val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
241 	case ELR_EL1:		val = read_sysreg_s(SYS_ELR_EL12);	break;
242 	case SPSR_EL1:		val = read_sysreg_s(SYS_SPSR_EL12);	break;
243 	case ZCR_EL1:		val = read_sysreg_s(SYS_ZCR_EL12);	break;
244 	case SCTLR2_EL1:	val = read_sysreg_s(SYS_SCTLR2_EL12);	break;
245 	case TPIDR_EL0:		val = read_sysreg_s(SYS_TPIDR_EL0);	break;
246 	case TPIDRRO_EL0:	val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
247 	case TPIDR_EL1:		val = read_sysreg_s(SYS_TPIDR_EL1);	break;
248 	case PAR_EL1:		val = read_sysreg_par();		break;
249 	case DACR32_EL2:	val = read_sysreg_s(SYS_DACR32_EL2);	break;
250 	case IFSR32_EL2:	val = read_sysreg_s(SYS_IFSR32_EL2);	break;
251 	case DBGVCR32_EL2:	val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
252 	default:		WARN_ON_ONCE(1);
253 	}
254 
255 	return val;
256 }
257 
write_sr_to_cpu(enum vcpu_sysreg reg,u64 val)258 static void write_sr_to_cpu(enum vcpu_sysreg reg, u64 val)
259 {
260 	switch (reg) {
261 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
262 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
263 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
264 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
265 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
266 	case TCR2_EL1:		write_sysreg_s(val, SYS_TCR2_EL12);	break;
267 	case PIR_EL1:		write_sysreg_s(val, SYS_PIR_EL12);	break;
268 	case PIRE0_EL1:		write_sysreg_s(val, SYS_PIRE0_EL12);	break;
269 	case POR_EL1:		write_sysreg_s(val, SYS_POR_EL12);	break;
270 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
271 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
272 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
273 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
274 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
275 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
276 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
277 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
278 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
279 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
280 	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
281 	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
282 	case SCTLR2_EL1:	write_sysreg_s(val, SYS_SCTLR2_EL12);	break;
283 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
284 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
285 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
286 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
287 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
288 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
289 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
290 	default:		WARN_ON_ONCE(1);
291 	}
292 }
293 
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,enum vcpu_sysreg reg)294 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg reg)
295 {
296 	struct sr_loc loc = {};
297 
298 	locate_register(vcpu, reg, &loc);
299 
300 	WARN_ON_ONCE(!has_vhe() && loc.loc != SR_LOC_MEMORY);
301 
302 	if (loc.loc & SR_LOC_SPECIAL) {
303 		u64 val;
304 
305 		WARN_ON_ONCE(loc.loc & ~SR_LOC_SPECIAL);
306 
307 		/*
308 		 * CNTHCTL_EL2 requires some special treatment to account
309 		 * for the bits that can be set via CNTKCTL_EL1 when E2H==1.
310 		 */
311 		switch (reg) {
312 		case CNTHCTL_EL2:
313 			val = read_sysreg_el1(SYS_CNTKCTL);
314 			val &= CNTKCTL_VALID_BITS;
315 			val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS;
316 			return val;
317 		default:
318 			WARN_ON_ONCE(1);
319 		}
320 	}
321 
322 	if (loc.loc & SR_LOC_LOADED) {
323 		enum vcpu_sysreg map_reg = reg;
324 
325 		if (loc.loc & SR_LOC_MAPPED)
326 			map_reg = loc.map_reg;
327 
328 		if (!(loc.loc & SR_LOC_XLATED)) {
329 			u64 val = read_sr_from_cpu(map_reg);
330 
331 			if (reg >= __SANITISED_REG_START__)
332 				val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
333 
334 			return val;
335 		}
336 	}
337 
338 	return __vcpu_sys_reg(vcpu, reg);
339 }
340 
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,enum vcpu_sysreg reg)341 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, enum vcpu_sysreg reg)
342 {
343 	struct sr_loc loc = {};
344 
345 	locate_register(vcpu, reg, &loc);
346 
347 	WARN_ON_ONCE(!has_vhe() && loc.loc != SR_LOC_MEMORY);
348 
349 	if (loc.loc & SR_LOC_SPECIAL) {
350 
351 		WARN_ON_ONCE(loc.loc & ~SR_LOC_SPECIAL);
352 
353 		switch (reg) {
354 		case CNTHCTL_EL2:
355 			/*
356 			 * If E2H=1, some of the bits are backed by
357 			 * CNTKCTL_EL1, while the rest is kept in memory.
358 			 * Yes, this is fun stuff.
359 			 */
360 			write_sysreg_el1(val, SYS_CNTKCTL);
361 			break;
362 		default:
363 			WARN_ON_ONCE(1);
364 		}
365 	}
366 
367 	if (loc.loc & SR_LOC_LOADED) {
368 		enum vcpu_sysreg map_reg = reg;
369 		u64 xlated_val;
370 
371 		if (reg >= __SANITISED_REG_START__)
372 			val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
373 
374 		if (loc.loc & SR_LOC_MAPPED)
375 			map_reg = loc.map_reg;
376 
377 		if (loc.loc & SR_LOC_XLATED)
378 			xlated_val = loc.xlate(val);
379 		else
380 			xlated_val = val;
381 
382 		write_sr_to_cpu(map_reg, xlated_val);
383 
384 		/*
385 		 * Fall through to write the backing store anyway, which
386 		 * allows translated registers to be directly read without a
387 		 * reverse translation.
388 		 */
389 	}
390 
391 	__vcpu_assign_sys_reg(vcpu, reg, val);
392 }
393 
394 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
395 #define CSSELR_MAX 14
396 
397 /*
398  * Returns the minimum line size for the selected cache, expressed as
399  * Log2(bytes).
400  */
get_min_cache_line_size(bool icache)401 static u8 get_min_cache_line_size(bool icache)
402 {
403 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
404 	u8 field;
405 
406 	if (icache)
407 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
408 	else
409 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
410 
411 	/*
412 	 * Cache line size is represented as Log2(words) in CTR_EL0.
413 	 * Log2(bytes) can be derived with the following:
414 	 *
415 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
416 	 * 		   = Log2(bytes) - 2 + 2
417 	 * 		   = Log2(bytes)
418 	 */
419 	return field + 2;
420 }
421 
422 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(struct kvm_vcpu * vcpu,u32 csselr)423 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
424 {
425 	u8 line_size;
426 
427 	if (vcpu->arch.ccsidr)
428 		return vcpu->arch.ccsidr[csselr];
429 
430 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
431 
432 	/*
433 	 * Fabricate a CCSIDR value as the overriding value does not exist.
434 	 * The real CCSIDR value will not be used as it can vary by the
435 	 * physical CPU which the vcpu currently resides in.
436 	 *
437 	 * The line size is determined with get_min_cache_line_size(), which
438 	 * should be valid for all CPUs even if they have different cache
439 	 * configuration.
440 	 *
441 	 * The associativity bits are cleared, meaning the geometry of all data
442 	 * and unified caches (which are guaranteed to be PIPT and thus
443 	 * non-aliasing) are 1 set and 1 way.
444 	 * Guests should not be doing cache operations by set/way at all, and
445 	 * for this reason, we trap them and attempt to infer the intent, so
446 	 * that we can flush the entire guest's address space at the appropriate
447 	 * time. The exposed geometry minimizes the number of the traps.
448 	 * [If guests should attempt to infer aliasing properties from the
449 	 * geometry (which is not permitted by the architecture), they would
450 	 * only do so for virtually indexed caches.]
451 	 *
452 	 * We don't check if the cache level exists as it is allowed to return
453 	 * an UNKNOWN value if not.
454 	 */
455 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
456 }
457 
set_ccsidr(struct kvm_vcpu * vcpu,u32 csselr,u32 val)458 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
459 {
460 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
461 	u32 *ccsidr = vcpu->arch.ccsidr;
462 	u32 i;
463 
464 	if ((val & CCSIDR_EL1_RES0) ||
465 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
466 		return -EINVAL;
467 
468 	if (!ccsidr) {
469 		if (val == get_ccsidr(vcpu, csselr))
470 			return 0;
471 
472 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
473 		if (!ccsidr)
474 			return -ENOMEM;
475 
476 		for (i = 0; i < CSSELR_MAX; i++)
477 			ccsidr[i] = get_ccsidr(vcpu, i);
478 
479 		vcpu->arch.ccsidr = ccsidr;
480 	}
481 
482 	ccsidr[csselr] = val;
483 
484 	return 0;
485 }
486 
access_rw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)487 static bool access_rw(struct kvm_vcpu *vcpu,
488 		      struct sys_reg_params *p,
489 		      const struct sys_reg_desc *r)
490 {
491 	if (p->is_write)
492 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
493 	else
494 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
495 
496 	return true;
497 }
498 
499 /*
500  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
501  */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)502 static bool access_dcsw(struct kvm_vcpu *vcpu,
503 			struct sys_reg_params *p,
504 			const struct sys_reg_desc *r)
505 {
506 	if (!p->is_write)
507 		return read_from_write_only(vcpu, p, r);
508 
509 	/*
510 	 * Only track S/W ops if we don't have FWB. It still indicates
511 	 * that the guest is a bit broken (S/W operations should only
512 	 * be done by firmware, knowing that there is only a single
513 	 * CPU left in the system, and certainly not from non-secure
514 	 * software).
515 	 */
516 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
517 		kvm_set_way_flush(vcpu);
518 
519 	return true;
520 }
521 
access_dcgsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)522 static bool access_dcgsw(struct kvm_vcpu *vcpu,
523 			 struct sys_reg_params *p,
524 			 const struct sys_reg_desc *r)
525 {
526 	if (!kvm_has_mte(vcpu->kvm))
527 		return undef_access(vcpu, p, r);
528 
529 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
530 	return access_dcsw(vcpu, p, r);
531 }
532 
get_access_mask(const struct sys_reg_desc * r,u64 * mask,u64 * shift)533 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
534 {
535 	switch (r->aarch32_map) {
536 	case AA32_LO:
537 		*mask = GENMASK_ULL(31, 0);
538 		*shift = 0;
539 		break;
540 	case AA32_HI:
541 		*mask = GENMASK_ULL(63, 32);
542 		*shift = 32;
543 		break;
544 	default:
545 		*mask = GENMASK_ULL(63, 0);
546 		*shift = 0;
547 		break;
548 	}
549 }
550 
551 /*
552  * Generic accessor for VM registers. Only called as long as HCR_TVM
553  * is set. If the guest enables the MMU, we stop trapping the VM
554  * sys_regs and leave it in complete control of the caches.
555  */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)556 static bool access_vm_reg(struct kvm_vcpu *vcpu,
557 			  struct sys_reg_params *p,
558 			  const struct sys_reg_desc *r)
559 {
560 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
561 	u64 val, mask, shift;
562 
563 	BUG_ON(!p->is_write);
564 
565 	get_access_mask(r, &mask, &shift);
566 
567 	if (~mask) {
568 		val = vcpu_read_sys_reg(vcpu, r->reg);
569 		val &= ~mask;
570 	} else {
571 		val = 0;
572 	}
573 
574 	val |= (p->regval & (mask >> shift)) << shift;
575 	vcpu_write_sys_reg(vcpu, val, r->reg);
576 
577 	kvm_toggle_cache(vcpu, was_enabled);
578 	return true;
579 }
580 
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)581 static bool access_actlr(struct kvm_vcpu *vcpu,
582 			 struct sys_reg_params *p,
583 			 const struct sys_reg_desc *r)
584 {
585 	u64 mask, shift;
586 
587 	if (p->is_write)
588 		return ignore_write(vcpu, p);
589 
590 	get_access_mask(r, &mask, &shift);
591 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
592 
593 	return true;
594 }
595 
596 /*
597  * Trap handler for the GICv3 SGI generation system register.
598  * Forward the request to the VGIC emulation.
599  * The cp15_64 code makes sure this automatically works
600  * for both AArch64 and AArch32 accesses.
601  */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)602 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
603 			   struct sys_reg_params *p,
604 			   const struct sys_reg_desc *r)
605 {
606 	bool g1;
607 
608 	if (!kvm_has_gicv3(vcpu->kvm))
609 		return undef_access(vcpu, p, r);
610 
611 	if (!p->is_write)
612 		return read_from_write_only(vcpu, p, r);
613 
614 	/*
615 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
616 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
617 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
618 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
619 	 * group.
620 	 */
621 	if (p->Op0 == 0) {		/* AArch32 */
622 		switch (p->Op1) {
623 		default:		/* Keep GCC quiet */
624 		case 0:			/* ICC_SGI1R */
625 			g1 = true;
626 			break;
627 		case 1:			/* ICC_ASGI1R */
628 		case 2:			/* ICC_SGI0R */
629 			g1 = false;
630 			break;
631 		}
632 	} else {			/* AArch64 */
633 		switch (p->Op2) {
634 		default:		/* Keep GCC quiet */
635 		case 5:			/* ICC_SGI1R_EL1 */
636 			g1 = true;
637 			break;
638 		case 6:			/* ICC_ASGI1R_EL1 */
639 		case 7:			/* ICC_SGI0R_EL1 */
640 			g1 = false;
641 			break;
642 		}
643 	}
644 
645 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
646 
647 	return true;
648 }
649 
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)650 static bool access_gic_sre(struct kvm_vcpu *vcpu,
651 			   struct sys_reg_params *p,
652 			   const struct sys_reg_desc *r)
653 {
654 	if (!kvm_has_gicv3(vcpu->kvm))
655 		return undef_access(vcpu, p, r);
656 
657 	if (p->is_write)
658 		return ignore_write(vcpu, p);
659 
660 	if (p->Op1 == 4) {	/* ICC_SRE_EL2 */
661 		p->regval = KVM_ICC_SRE_EL2;
662 	} else {		/* ICC_SRE_EL1 */
663 		p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
664 	}
665 
666 	return true;
667 }
668 
access_gic_dir(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)669 static bool access_gic_dir(struct kvm_vcpu *vcpu,
670 			   struct sys_reg_params *p,
671 			   const struct sys_reg_desc *r)
672 {
673 	if (!kvm_has_gicv3(vcpu->kvm))
674 		return undef_access(vcpu, p, r);
675 
676 	if (!p->is_write)
677 		return undef_access(vcpu, p, r);
678 
679 	vgic_v3_deactivate(vcpu, p->regval);
680 
681 	return true;
682 }
683 
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)684 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
685 			struct sys_reg_params *p,
686 			const struct sys_reg_desc *r)
687 {
688 	if (p->is_write)
689 		return ignore_write(vcpu, p);
690 	else
691 		return read_zero(vcpu, p);
692 }
693 
694 /*
695  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
696  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
697  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
698  * treat it separately.
699  */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)700 static bool trap_loregion(struct kvm_vcpu *vcpu,
701 			  struct sys_reg_params *p,
702 			  const struct sys_reg_desc *r)
703 {
704 	u32 sr = reg_to_encoding(r);
705 
706 	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP))
707 		return undef_access(vcpu, p, r);
708 
709 	if (p->is_write && sr == SYS_LORID_EL1)
710 		return write_to_read_only(vcpu, p, r);
711 
712 	return trap_raz_wi(vcpu, p, r);
713 }
714 
trap_oslar_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)715 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
716 			   struct sys_reg_params *p,
717 			   const struct sys_reg_desc *r)
718 {
719 	if (!p->is_write)
720 		return read_from_write_only(vcpu, p, r);
721 
722 	kvm_debug_handle_oslar(vcpu, p->regval);
723 	return true;
724 }
725 
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)726 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
727 			   struct sys_reg_params *p,
728 			   const struct sys_reg_desc *r)
729 {
730 	if (p->is_write)
731 		return write_to_read_only(vcpu, p, r);
732 
733 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
734 	return true;
735 }
736 
set_oslsr_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)737 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
738 			 u64 val)
739 {
740 	/*
741 	 * The only modifiable bit is the OSLK bit. Refuse the write if
742 	 * userspace attempts to change any other bit in the register.
743 	 */
744 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
745 		return -EINVAL;
746 
747 	__vcpu_assign_sys_reg(vcpu, rd->reg, val);
748 	return 0;
749 }
750 
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)751 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
752 				   struct sys_reg_params *p,
753 				   const struct sys_reg_desc *r)
754 {
755 	if (p->is_write) {
756 		return ignore_write(vcpu, p);
757 	} else {
758 		p->regval = read_sysreg(dbgauthstatus_el1);
759 		return true;
760 	}
761 }
762 
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)763 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
764 			    struct sys_reg_params *p,
765 			    const struct sys_reg_desc *r)
766 {
767 	access_rw(vcpu, p, r);
768 
769 	kvm_debug_set_guest_ownership(vcpu);
770 	return true;
771 }
772 
773 /*
774  * reg_to_dbg/dbg_to_reg
775  *
776  * A 32 bit write to a debug register leave top bits alone
777  * A 32 bit read from a debug register only returns the bottom bits
778  */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)779 static void reg_to_dbg(struct kvm_vcpu *vcpu,
780 		       struct sys_reg_params *p,
781 		       const struct sys_reg_desc *rd,
782 		       u64 *dbg_reg)
783 {
784 	u64 mask, shift, val;
785 
786 	get_access_mask(rd, &mask, &shift);
787 
788 	val = *dbg_reg;
789 	val &= ~mask;
790 	val |= (p->regval & (mask >> shift)) << shift;
791 	*dbg_reg = val;
792 }
793 
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)794 static void dbg_to_reg(struct kvm_vcpu *vcpu,
795 		       struct sys_reg_params *p,
796 		       const struct sys_reg_desc *rd,
797 		       u64 *dbg_reg)
798 {
799 	u64 mask, shift;
800 
801 	get_access_mask(rd, &mask, &shift);
802 	p->regval = (*dbg_reg & mask) >> shift;
803 }
804 
demux_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)805 static u64 *demux_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
806 {
807 	struct kvm_guest_debug_arch *dbg = &vcpu->arch.vcpu_debug_state;
808 
809 	switch (rd->Op2) {
810 	case 0b100:
811 		return &dbg->dbg_bvr[rd->CRm];
812 	case 0b101:
813 		return &dbg->dbg_bcr[rd->CRm];
814 	case 0b110:
815 		return &dbg->dbg_wvr[rd->CRm];
816 	case 0b111:
817 		return &dbg->dbg_wcr[rd->CRm];
818 	default:
819 		KVM_BUG_ON(1, vcpu->kvm);
820 		return NULL;
821 	}
822 }
823 
trap_dbg_wb_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)824 static bool trap_dbg_wb_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
825 			    const struct sys_reg_desc *rd)
826 {
827 	u64 *reg = demux_wb_reg(vcpu, rd);
828 
829 	if (!reg)
830 		return false;
831 
832 	if (p->is_write)
833 		reg_to_dbg(vcpu, p, rd, reg);
834 	else
835 		dbg_to_reg(vcpu, p, rd, reg);
836 
837 	kvm_debug_set_guest_ownership(vcpu);
838 	return true;
839 }
840 
set_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)841 static int set_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
842 			  u64 val)
843 {
844 	u64 *reg = demux_wb_reg(vcpu, rd);
845 
846 	if (!reg)
847 		return -EINVAL;
848 
849 	*reg = val;
850 	return 0;
851 }
852 
get_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)853 static int get_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
854 			  u64 *val)
855 {
856 	u64 *reg = demux_wb_reg(vcpu, rd);
857 
858 	if (!reg)
859 		return -EINVAL;
860 
861 	*val = *reg;
862 	return 0;
863 }
864 
reset_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)865 static u64 reset_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
866 {
867 	u64 *reg = demux_wb_reg(vcpu, rd);
868 
869 	/*
870 	 * Bail early if we couldn't find storage for the register, the
871 	 * KVM_BUG_ON() in demux_wb_reg() will prevent this VM from ever
872 	 * being run.
873 	 */
874 	if (!reg)
875 		return 0;
876 
877 	*reg = rd->val;
878 	return rd->val;
879 }
880 
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)881 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
882 {
883 	u64 amair = read_sysreg(amair_el1);
884 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
885 	return amair;
886 }
887 
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)888 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
889 {
890 	u64 actlr = read_sysreg(actlr_el1);
891 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
892 	return actlr;
893 }
894 
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)895 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
896 {
897 	u64 mpidr;
898 
899 	/*
900 	 * Map the vcpu_id into the first three affinity level fields of
901 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
902 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
903 	 * of the GICv3 to be able to address each CPU directly when
904 	 * sending IPIs.
905 	 */
906 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
907 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
908 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
909 	mpidr |= (1ULL << 31);
910 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
911 
912 	return mpidr;
913 }
914 
hidden_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)915 static unsigned int hidden_visibility(const struct kvm_vcpu *vcpu,
916 				      const struct sys_reg_desc *r)
917 {
918 	return REG_HIDDEN;
919 }
920 
pmu_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)921 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
922 				   const struct sys_reg_desc *r)
923 {
924 	if (kvm_vcpu_has_pmu(vcpu))
925 		return 0;
926 
927 	return REG_HIDDEN;
928 }
929 
reset_pmu_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)930 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
931 {
932 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
933 	u8 n = vcpu->kvm->arch.nr_pmu_counters;
934 
935 	if (n)
936 		mask |= GENMASK(n - 1, 0);
937 
938 	reset_unknown(vcpu, r);
939 	__vcpu_rmw_sys_reg(vcpu, r->reg, &=, mask);
940 
941 	return __vcpu_sys_reg(vcpu, r->reg);
942 }
943 
reset_pmevcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)944 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
945 {
946 	reset_unknown(vcpu, r);
947 	__vcpu_rmw_sys_reg(vcpu, r->reg, &=, GENMASK(31, 0));
948 
949 	return __vcpu_sys_reg(vcpu, r->reg);
950 }
951 
reset_pmevtyper(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)952 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
953 {
954 	/* This thing will UNDEF, who cares about the reset value? */
955 	if (!kvm_vcpu_has_pmu(vcpu))
956 		return 0;
957 
958 	reset_unknown(vcpu, r);
959 	__vcpu_rmw_sys_reg(vcpu, r->reg, &=, kvm_pmu_evtyper_mask(vcpu->kvm));
960 
961 	return __vcpu_sys_reg(vcpu, r->reg);
962 }
963 
reset_pmselr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)964 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
965 {
966 	reset_unknown(vcpu, r);
967 	__vcpu_rmw_sys_reg(vcpu, r->reg, &=, PMSELR_EL0_SEL_MASK);
968 
969 	return __vcpu_sys_reg(vcpu, r->reg);
970 }
971 
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)972 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
973 {
974 	u64 pmcr = 0;
975 
976 	if (!kvm_supports_32bit_el0())
977 		pmcr |= ARMV8_PMU_PMCR_LC;
978 
979 	/*
980 	 * The value of PMCR.N field is included when the
981 	 * vCPU register is read via kvm_vcpu_read_pmcr().
982 	 */
983 	__vcpu_assign_sys_reg(vcpu, r->reg, pmcr);
984 
985 	return __vcpu_sys_reg(vcpu, r->reg);
986 }
987 
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)988 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
989 {
990 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
991 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
992 
993 	if (!enabled)
994 		kvm_inject_undefined(vcpu);
995 
996 	return !enabled;
997 }
998 
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)999 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
1000 {
1001 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
1002 }
1003 
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)1004 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
1005 {
1006 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
1007 }
1008 
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)1009 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
1010 {
1011 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
1012 }
1013 
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)1014 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
1015 {
1016 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
1017 }
1018 
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1019 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1020 			const struct sys_reg_desc *r)
1021 {
1022 	u64 val;
1023 
1024 	if (pmu_access_el0_disabled(vcpu))
1025 		return false;
1026 
1027 	if (p->is_write) {
1028 		/*
1029 		 * Only update writeable bits of PMCR (continuing into
1030 		 * kvm_pmu_handle_pmcr() as well)
1031 		 */
1032 		val = kvm_vcpu_read_pmcr(vcpu);
1033 		val &= ~ARMV8_PMU_PMCR_MASK;
1034 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
1035 		if (!kvm_supports_32bit_el0())
1036 			val |= ARMV8_PMU_PMCR_LC;
1037 		kvm_pmu_handle_pmcr(vcpu, val);
1038 	} else {
1039 		/* PMCR.P & PMCR.C are RAZ */
1040 		val = kvm_vcpu_read_pmcr(vcpu)
1041 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
1042 		p->regval = val;
1043 	}
1044 
1045 	return true;
1046 }
1047 
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1048 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1049 			  const struct sys_reg_desc *r)
1050 {
1051 	if (pmu_access_event_counter_el0_disabled(vcpu))
1052 		return false;
1053 
1054 	if (p->is_write)
1055 		__vcpu_assign_sys_reg(vcpu, PMSELR_EL0, p->regval);
1056 	else
1057 		/* return PMSELR.SEL field */
1058 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1059 			    & PMSELR_EL0_SEL_MASK;
1060 
1061 	return true;
1062 }
1063 
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1064 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1065 			  const struct sys_reg_desc *r)
1066 {
1067 	u64 pmceid, mask, shift;
1068 
1069 	BUG_ON(p->is_write);
1070 
1071 	if (pmu_access_el0_disabled(vcpu))
1072 		return false;
1073 
1074 	get_access_mask(r, &mask, &shift);
1075 
1076 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
1077 	pmceid &= mask;
1078 	pmceid >>= shift;
1079 
1080 	p->regval = pmceid;
1081 
1082 	return true;
1083 }
1084 
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)1085 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1086 {
1087 	u64 pmcr, val;
1088 
1089 	pmcr = kvm_vcpu_read_pmcr(vcpu);
1090 	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1091 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1092 		kvm_inject_undefined(vcpu);
1093 		return false;
1094 	}
1095 
1096 	return true;
1097 }
1098 
get_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1099 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1100 			  u64 *val)
1101 {
1102 	u64 idx;
1103 
1104 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1105 		/* PMCCNTR_EL0 */
1106 		idx = ARMV8_PMU_CYCLE_IDX;
1107 	else
1108 		/* PMEVCNTRn_EL0 */
1109 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1110 
1111 	*val = kvm_pmu_get_counter_value(vcpu, idx);
1112 	return 0;
1113 }
1114 
set_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1115 static int set_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1116 			  u64 val)
1117 {
1118 	u64 idx;
1119 
1120 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1121 		/* PMCCNTR_EL0 */
1122 		idx = ARMV8_PMU_CYCLE_IDX;
1123 	else
1124 		/* PMEVCNTRn_EL0 */
1125 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1126 
1127 	kvm_pmu_set_counter_value_user(vcpu, idx, val);
1128 	return 0;
1129 }
1130 
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1131 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1132 			      struct sys_reg_params *p,
1133 			      const struct sys_reg_desc *r)
1134 {
1135 	u64 idx = ~0UL;
1136 
1137 	if (r->CRn == 9 && r->CRm == 13) {
1138 		if (r->Op2 == 2) {
1139 			/* PMXEVCNTR_EL0 */
1140 			if (pmu_access_event_counter_el0_disabled(vcpu))
1141 				return false;
1142 
1143 			idx = SYS_FIELD_GET(PMSELR_EL0, SEL,
1144 					    __vcpu_sys_reg(vcpu, PMSELR_EL0));
1145 		} else if (r->Op2 == 0) {
1146 			/* PMCCNTR_EL0 */
1147 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1148 				return false;
1149 
1150 			idx = ARMV8_PMU_CYCLE_IDX;
1151 		}
1152 	} else if (r->CRn == 0 && r->CRm == 9) {
1153 		/* PMCCNTR */
1154 		if (pmu_access_event_counter_el0_disabled(vcpu))
1155 			return false;
1156 
1157 		idx = ARMV8_PMU_CYCLE_IDX;
1158 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1159 		/* PMEVCNTRn_EL0 */
1160 		if (pmu_access_event_counter_el0_disabled(vcpu))
1161 			return false;
1162 
1163 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1164 	}
1165 
1166 	/* Catch any decoding mistake */
1167 	WARN_ON(idx == ~0UL);
1168 
1169 	if (!pmu_counter_idx_valid(vcpu, idx))
1170 		return false;
1171 
1172 	if (p->is_write) {
1173 		if (pmu_access_el0_disabled(vcpu))
1174 			return false;
1175 
1176 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1177 	} else {
1178 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1179 	}
1180 
1181 	return true;
1182 }
1183 
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1184 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1185 			       const struct sys_reg_desc *r)
1186 {
1187 	u64 idx, reg;
1188 
1189 	if (pmu_access_el0_disabled(vcpu))
1190 		return false;
1191 
1192 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1193 		/* PMXEVTYPER_EL0 */
1194 		idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0));
1195 		reg = PMEVTYPER0_EL0 + idx;
1196 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1197 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1198 		if (idx == ARMV8_PMU_CYCLE_IDX)
1199 			reg = PMCCFILTR_EL0;
1200 		else
1201 			/* PMEVTYPERn_EL0 */
1202 			reg = PMEVTYPER0_EL0 + idx;
1203 	} else {
1204 		BUG();
1205 	}
1206 
1207 	if (!pmu_counter_idx_valid(vcpu, idx))
1208 		return false;
1209 
1210 	if (p->is_write) {
1211 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1212 		kvm_vcpu_pmu_restore_guest(vcpu);
1213 	} else {
1214 		p->regval = __vcpu_sys_reg(vcpu, reg);
1215 	}
1216 
1217 	return true;
1218 }
1219 
set_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1220 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1221 {
1222 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1223 
1224 	__vcpu_assign_sys_reg(vcpu, r->reg, val & mask);
1225 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1226 
1227 	return 0;
1228 }
1229 
get_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1230 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1231 {
1232 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1233 
1234 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1235 	return 0;
1236 }
1237 
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1238 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1239 			   const struct sys_reg_desc *r)
1240 {
1241 	u64 val, mask;
1242 
1243 	if (pmu_access_el0_disabled(vcpu))
1244 		return false;
1245 
1246 	mask = kvm_pmu_accessible_counter_mask(vcpu);
1247 	if (p->is_write) {
1248 		val = p->regval & mask;
1249 		if (r->Op2 & 0x1)
1250 			/* accessing PMCNTENSET_EL0 */
1251 			__vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, |=, val);
1252 		else
1253 			/* accessing PMCNTENCLR_EL0 */
1254 			__vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, &=, ~val);
1255 
1256 		kvm_pmu_reprogram_counter_mask(vcpu, val);
1257 	} else {
1258 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1259 	}
1260 
1261 	return true;
1262 }
1263 
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1264 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1265 			   const struct sys_reg_desc *r)
1266 {
1267 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1268 
1269 	if (check_pmu_access_disabled(vcpu, 0))
1270 		return false;
1271 
1272 	if (p->is_write) {
1273 		u64 val = p->regval & mask;
1274 
1275 		if (r->Op2 & 0x1)
1276 			/* accessing PMINTENSET_EL1 */
1277 			__vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, |=, val);
1278 		else
1279 			/* accessing PMINTENCLR_EL1 */
1280 			__vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, &=, ~val);
1281 	} else {
1282 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1283 	}
1284 
1285 	return true;
1286 }
1287 
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1288 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1289 			 const struct sys_reg_desc *r)
1290 {
1291 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1292 
1293 	if (pmu_access_el0_disabled(vcpu))
1294 		return false;
1295 
1296 	if (p->is_write) {
1297 		if (r->CRm & 0x2)
1298 			/* accessing PMOVSSET_EL0 */
1299 			__vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, (p->regval & mask));
1300 		else
1301 			/* accessing PMOVSCLR_EL0 */
1302 			__vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, &=, ~(p->regval & mask));
1303 	} else {
1304 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1305 	}
1306 
1307 	return true;
1308 }
1309 
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1310 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1311 			   const struct sys_reg_desc *r)
1312 {
1313 	u64 mask;
1314 
1315 	if (!p->is_write)
1316 		return read_from_write_only(vcpu, p, r);
1317 
1318 	if (pmu_write_swinc_el0_disabled(vcpu))
1319 		return false;
1320 
1321 	mask = kvm_pmu_accessible_counter_mask(vcpu);
1322 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1323 	return true;
1324 }
1325 
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1326 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1327 			     const struct sys_reg_desc *r)
1328 {
1329 	if (p->is_write) {
1330 		if (!vcpu_mode_priv(vcpu))
1331 			return undef_access(vcpu, p, r);
1332 
1333 		__vcpu_assign_sys_reg(vcpu, PMUSERENR_EL0,
1334 				      (p->regval & ARMV8_PMU_USERENR_MASK));
1335 	} else {
1336 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1337 			    & ARMV8_PMU_USERENR_MASK;
1338 	}
1339 
1340 	return true;
1341 }
1342 
get_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1343 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1344 		    u64 *val)
1345 {
1346 	*val = kvm_vcpu_read_pmcr(vcpu);
1347 	return 0;
1348 }
1349 
set_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1350 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1351 		    u64 val)
1352 {
1353 	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1354 	struct kvm *kvm = vcpu->kvm;
1355 
1356 	mutex_lock(&kvm->arch.config_lock);
1357 
1358 	/*
1359 	 * The vCPU can't have more counters than the PMU hardware
1360 	 * implements. Ignore this error to maintain compatibility
1361 	 * with the existing KVM behavior.
1362 	 */
1363 	if (!kvm_vm_has_ran_once(kvm) &&
1364 	    !vcpu_has_nv(vcpu)	      &&
1365 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1366 		kvm->arch.nr_pmu_counters = new_n;
1367 
1368 	mutex_unlock(&kvm->arch.config_lock);
1369 
1370 	/*
1371 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1372 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1373 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1374 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1375 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1376 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1377 	 * if necessary).
1378 	 */
1379 	val &= ARMV8_PMU_PMCR_MASK;
1380 
1381 	/* The LC bit is RES1 when AArch32 is not supported */
1382 	if (!kvm_supports_32bit_el0())
1383 		val |= ARMV8_PMU_PMCR_LC;
1384 
1385 	__vcpu_assign_sys_reg(vcpu, r->reg, val);
1386 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1387 
1388 	return 0;
1389 }
1390 
1391 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1392 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1393 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1394 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1395 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1396 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1397 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1398 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1399 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1400 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1401 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1402 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1403 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1404 	  get_dbg_wb_reg, set_dbg_wb_reg }
1405 
1406 #define PMU_SYS_REG(name)						\
1407 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1408 	.visibility = pmu_visibility
1409 
1410 /* Macro to expand the PMEVCNTRn_EL0 register */
1411 #define PMU_PMEVCNTR_EL0(n)						\
1412 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1413 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1414 	  .set_user = set_pmu_evcntr,					\
1415 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1416 
1417 /* Macro to expand the PMEVTYPERn_EL0 register */
1418 #define PMU_PMEVTYPER_EL0(n)						\
1419 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1420 	  .reset = reset_pmevtyper,					\
1421 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1422 
1423 /* Macro to expand the AMU counter and type registers*/
1424 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1425 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1426 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1427 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1428 
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1429 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1430 			const struct sys_reg_desc *rd)
1431 {
1432 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1433 }
1434 
1435 /*
1436  * If we land here on a PtrAuth access, that is because we didn't
1437  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1438  * way this happens is when the guest does not have PtrAuth support
1439  * enabled.
1440  */
1441 #define __PTRAUTH_KEY(k)						\
1442 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1443 	.visibility = ptrauth_visibility}
1444 
1445 #define PTRAUTH_KEY(k)							\
1446 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1447 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1448 
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1449 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1450 			      struct sys_reg_params *p,
1451 			      const struct sys_reg_desc *r)
1452 {
1453 	enum kvm_arch_timers tmr;
1454 	enum kvm_arch_timer_regs treg;
1455 	u64 reg = reg_to_encoding(r);
1456 
1457 	switch (reg) {
1458 	case SYS_CNTP_TVAL_EL0:
1459 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1460 			tmr = TIMER_HPTIMER;
1461 		else
1462 			tmr = TIMER_PTIMER;
1463 		treg = TIMER_REG_TVAL;
1464 		break;
1465 
1466 	case SYS_CNTV_TVAL_EL0:
1467 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1468 			tmr = TIMER_HVTIMER;
1469 		else
1470 			tmr = TIMER_VTIMER;
1471 		treg = TIMER_REG_TVAL;
1472 		break;
1473 
1474 	case SYS_AARCH32_CNTP_TVAL:
1475 	case SYS_CNTP_TVAL_EL02:
1476 		tmr = TIMER_PTIMER;
1477 		treg = TIMER_REG_TVAL;
1478 		break;
1479 
1480 	case SYS_CNTV_TVAL_EL02:
1481 		tmr = TIMER_VTIMER;
1482 		treg = TIMER_REG_TVAL;
1483 		break;
1484 
1485 	case SYS_CNTHP_TVAL_EL2:
1486 		tmr = TIMER_HPTIMER;
1487 		treg = TIMER_REG_TVAL;
1488 		break;
1489 
1490 	case SYS_CNTHV_TVAL_EL2:
1491 		tmr = TIMER_HVTIMER;
1492 		treg = TIMER_REG_TVAL;
1493 		break;
1494 
1495 	case SYS_CNTP_CTL_EL0:
1496 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1497 			tmr = TIMER_HPTIMER;
1498 		else
1499 			tmr = TIMER_PTIMER;
1500 		treg = TIMER_REG_CTL;
1501 		break;
1502 
1503 	case SYS_CNTV_CTL_EL0:
1504 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1505 			tmr = TIMER_HVTIMER;
1506 		else
1507 			tmr = TIMER_VTIMER;
1508 		treg = TIMER_REG_CTL;
1509 		break;
1510 
1511 	case SYS_AARCH32_CNTP_CTL:
1512 	case SYS_CNTP_CTL_EL02:
1513 		tmr = TIMER_PTIMER;
1514 		treg = TIMER_REG_CTL;
1515 		break;
1516 
1517 	case SYS_CNTV_CTL_EL02:
1518 		tmr = TIMER_VTIMER;
1519 		treg = TIMER_REG_CTL;
1520 		break;
1521 
1522 	case SYS_CNTHP_CTL_EL2:
1523 		tmr = TIMER_HPTIMER;
1524 		treg = TIMER_REG_CTL;
1525 		break;
1526 
1527 	case SYS_CNTHV_CTL_EL2:
1528 		tmr = TIMER_HVTIMER;
1529 		treg = TIMER_REG_CTL;
1530 		break;
1531 
1532 	case SYS_CNTP_CVAL_EL0:
1533 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1534 			tmr = TIMER_HPTIMER;
1535 		else
1536 			tmr = TIMER_PTIMER;
1537 		treg = TIMER_REG_CVAL;
1538 		break;
1539 
1540 	case SYS_CNTV_CVAL_EL0:
1541 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1542 			tmr = TIMER_HVTIMER;
1543 		else
1544 			tmr = TIMER_VTIMER;
1545 		treg = TIMER_REG_CVAL;
1546 		break;
1547 
1548 	case SYS_AARCH32_CNTP_CVAL:
1549 	case SYS_CNTP_CVAL_EL02:
1550 		tmr = TIMER_PTIMER;
1551 		treg = TIMER_REG_CVAL;
1552 		break;
1553 
1554 	case SYS_CNTV_CVAL_EL02:
1555 		tmr = TIMER_VTIMER;
1556 		treg = TIMER_REG_CVAL;
1557 		break;
1558 
1559 	case SYS_CNTHP_CVAL_EL2:
1560 		tmr = TIMER_HPTIMER;
1561 		treg = TIMER_REG_CVAL;
1562 		break;
1563 
1564 	case SYS_CNTHV_CVAL_EL2:
1565 		tmr = TIMER_HVTIMER;
1566 		treg = TIMER_REG_CVAL;
1567 		break;
1568 
1569 	case SYS_CNTPCT_EL0:
1570 	case SYS_CNTPCTSS_EL0:
1571 		if (is_hyp_ctxt(vcpu))
1572 			tmr = TIMER_HPTIMER;
1573 		else
1574 			tmr = TIMER_PTIMER;
1575 		treg = TIMER_REG_CNT;
1576 		break;
1577 
1578 	case SYS_AARCH32_CNTPCT:
1579 	case SYS_AARCH32_CNTPCTSS:
1580 		tmr = TIMER_PTIMER;
1581 		treg = TIMER_REG_CNT;
1582 		break;
1583 
1584 	case SYS_CNTVCT_EL0:
1585 	case SYS_CNTVCTSS_EL0:
1586 		if (is_hyp_ctxt(vcpu))
1587 			tmr = TIMER_HVTIMER;
1588 		else
1589 			tmr = TIMER_VTIMER;
1590 		treg = TIMER_REG_CNT;
1591 		break;
1592 
1593 	case SYS_AARCH32_CNTVCT:
1594 	case SYS_AARCH32_CNTVCTSS:
1595 		tmr = TIMER_VTIMER;
1596 		treg = TIMER_REG_CNT;
1597 		break;
1598 
1599 	default:
1600 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1601 		return undef_access(vcpu, p, r);
1602 	}
1603 
1604 	if (p->is_write)
1605 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1606 	else
1607 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1608 
1609 	return true;
1610 }
1611 
arch_timer_set_user(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1612 static int arch_timer_set_user(struct kvm_vcpu *vcpu,
1613 			       const struct sys_reg_desc *rd,
1614 			       u64 val)
1615 {
1616 	switch (reg_to_encoding(rd)) {
1617 	case SYS_CNTV_CTL_EL0:
1618 	case SYS_CNTP_CTL_EL0:
1619 	case SYS_CNTHV_CTL_EL2:
1620 	case SYS_CNTHP_CTL_EL2:
1621 		val &= ~ARCH_TIMER_CTRL_IT_STAT;
1622 		break;
1623 	case SYS_CNTVCT_EL0:
1624 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags))
1625 			timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read() - val);
1626 		return 0;
1627 	case SYS_CNTPCT_EL0:
1628 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags))
1629 			timer_set_offset(vcpu_ptimer(vcpu), kvm_phys_timer_read() - val);
1630 		return 0;
1631 	}
1632 
1633 	__vcpu_assign_sys_reg(vcpu, rd->reg, val);
1634 	return 0;
1635 }
1636 
arch_timer_get_user(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)1637 static int arch_timer_get_user(struct kvm_vcpu *vcpu,
1638 			       const struct sys_reg_desc *rd,
1639 			       u64 *val)
1640 {
1641 	switch (reg_to_encoding(rd)) {
1642 	case SYS_CNTVCT_EL0:
1643 		*val = kvm_phys_timer_read() - timer_get_offset(vcpu_vtimer(vcpu));
1644 		break;
1645 	case SYS_CNTPCT_EL0:
1646 		*val = kvm_phys_timer_read() - timer_get_offset(vcpu_ptimer(vcpu));
1647 		break;
1648 	default:
1649 		*val = __vcpu_sys_reg(vcpu, rd->reg);
1650 	}
1651 
1652 	return 0;
1653 }
1654 
kvm_arm64_ftr_safe_value(u32 id,const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)1655 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1656 				    s64 new, s64 cur)
1657 {
1658 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1659 
1660 	/* Some features have different safe value type in KVM than host features */
1661 	switch (id) {
1662 	case SYS_ID_AA64DFR0_EL1:
1663 		switch (kvm_ftr.shift) {
1664 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1665 			kvm_ftr.type = FTR_LOWER_SAFE;
1666 			break;
1667 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1668 			kvm_ftr.type = FTR_LOWER_SAFE;
1669 			break;
1670 		}
1671 		break;
1672 	case SYS_ID_DFR0_EL1:
1673 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1674 			kvm_ftr.type = FTR_LOWER_SAFE;
1675 		break;
1676 	}
1677 
1678 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1679 }
1680 
1681 /*
1682  * arm64_check_features() - Check if a feature register value constitutes
1683  * a subset of features indicated by the idreg's KVM sanitised limit.
1684  *
1685  * This function will check if each feature field of @val is the "safe" value
1686  * against idreg's KVM sanitised limit return from reset() callback.
1687  * If a field value in @val is the same as the one in limit, it is always
1688  * considered the safe value regardless For register fields that are not in
1689  * writable, only the value in limit is considered the safe value.
1690  *
1691  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1692  */
arm64_check_features(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1693 static int arm64_check_features(struct kvm_vcpu *vcpu,
1694 				const struct sys_reg_desc *rd,
1695 				u64 val)
1696 {
1697 	const struct arm64_ftr_reg *ftr_reg;
1698 	const struct arm64_ftr_bits *ftrp = NULL;
1699 	u32 id = reg_to_encoding(rd);
1700 	u64 writable_mask = rd->val;
1701 	u64 limit = rd->reset(vcpu, rd);
1702 	u64 mask = 0;
1703 
1704 	/*
1705 	 * Hidden and unallocated ID registers may not have a corresponding
1706 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1707 	 * only safe value is 0.
1708 	 */
1709 	if (sysreg_visible_as_raz(vcpu, rd))
1710 		return val ? -E2BIG : 0;
1711 
1712 	ftr_reg = get_arm64_ftr_reg(id);
1713 	if (!ftr_reg)
1714 		return -EINVAL;
1715 
1716 	ftrp = ftr_reg->ftr_bits;
1717 
1718 	for (; ftrp && ftrp->width; ftrp++) {
1719 		s64 f_val, f_lim, safe_val;
1720 		u64 ftr_mask;
1721 
1722 		ftr_mask = arm64_ftr_mask(ftrp);
1723 		if ((ftr_mask & writable_mask) != ftr_mask)
1724 			continue;
1725 
1726 		f_val = arm64_ftr_value(ftrp, val);
1727 		f_lim = arm64_ftr_value(ftrp, limit);
1728 		mask |= ftr_mask;
1729 
1730 		if (f_val == f_lim)
1731 			safe_val = f_val;
1732 		else
1733 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1734 
1735 		if (safe_val != f_val)
1736 			return -E2BIG;
1737 	}
1738 
1739 	/* For fields that are not writable, values in limit are the safe values. */
1740 	if ((val & ~mask) != (limit & ~mask))
1741 		return -E2BIG;
1742 
1743 	return 0;
1744 }
1745 
pmuver_to_perfmon(u8 pmuver)1746 static u8 pmuver_to_perfmon(u8 pmuver)
1747 {
1748 	switch (pmuver) {
1749 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1750 		return ID_DFR0_EL1_PerfMon_PMUv3;
1751 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1752 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1753 	default:
1754 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1755 		return pmuver;
1756 	}
1757 }
1758 
1759 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1760 static u64 sanitise_id_aa64pfr1_el1(const struct kvm_vcpu *vcpu, u64 val);
1761 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1762 
1763 /* Read a sanitised cpufeature ID register by sys_reg_desc */
__kvm_read_sanitised_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1764 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1765 				       const struct sys_reg_desc *r)
1766 {
1767 	u32 id = reg_to_encoding(r);
1768 	u64 val;
1769 
1770 	if (sysreg_visible_as_raz(vcpu, r))
1771 		return 0;
1772 
1773 	val = read_sanitised_ftr_reg(id);
1774 
1775 	switch (id) {
1776 	case SYS_ID_AA64DFR0_EL1:
1777 		val = sanitise_id_aa64dfr0_el1(vcpu, val);
1778 		break;
1779 	case SYS_ID_AA64PFR0_EL1:
1780 		val = sanitise_id_aa64pfr0_el1(vcpu, val);
1781 		break;
1782 	case SYS_ID_AA64PFR1_EL1:
1783 		val = sanitise_id_aa64pfr1_el1(vcpu, val);
1784 		break;
1785 	case SYS_ID_AA64PFR2_EL1:
1786 		val &= ID_AA64PFR2_EL1_FPMR |
1787 			(kvm_has_mte(vcpu->kvm) ?
1788 			 ID_AA64PFR2_EL1_MTEFAR | ID_AA64PFR2_EL1_MTESTOREONLY :
1789 			 0);
1790 		break;
1791 	case SYS_ID_AA64ISAR1_EL1:
1792 		if (!vcpu_has_ptrauth(vcpu))
1793 			val &= ~(ID_AA64ISAR1_EL1_APA |
1794 				 ID_AA64ISAR1_EL1_API |
1795 				 ID_AA64ISAR1_EL1_GPA |
1796 				 ID_AA64ISAR1_EL1_GPI);
1797 		break;
1798 	case SYS_ID_AA64ISAR2_EL1:
1799 		if (!vcpu_has_ptrauth(vcpu))
1800 			val &= ~(ID_AA64ISAR2_EL1_APA3 |
1801 				 ID_AA64ISAR2_EL1_GPA3);
1802 		if (!cpus_have_final_cap(ARM64_HAS_WFXT) ||
1803 		    has_broken_cntvoff())
1804 			val &= ~ID_AA64ISAR2_EL1_WFxT;
1805 		break;
1806 	case SYS_ID_AA64ISAR3_EL1:
1807 		val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_LSFE |
1808 			ID_AA64ISAR3_EL1_FAMINMAX;
1809 		break;
1810 	case SYS_ID_AA64MMFR2_EL1:
1811 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1812 		val &= ~ID_AA64MMFR2_EL1_NV;
1813 		break;
1814 	case SYS_ID_AA64MMFR3_EL1:
1815 		val &= ID_AA64MMFR3_EL1_TCRX |
1816 		       ID_AA64MMFR3_EL1_SCTLRX |
1817 		       ID_AA64MMFR3_EL1_S1POE |
1818 		       ID_AA64MMFR3_EL1_S1PIE;
1819 		break;
1820 	case SYS_ID_MMFR4_EL1:
1821 		val &= ~ID_MMFR4_EL1_CCIDX;
1822 		break;
1823 	}
1824 
1825 	if (vcpu_has_nv(vcpu))
1826 		val = limit_nv_id_reg(vcpu->kvm, id, val);
1827 
1828 	return val;
1829 }
1830 
kvm_read_sanitised_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1831 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1832 				     const struct sys_reg_desc *r)
1833 {
1834 	return __kvm_read_sanitised_id_reg(vcpu, r);
1835 }
1836 
read_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1837 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1838 {
1839 	return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1840 }
1841 
is_feature_id_reg(u32 encoding)1842 static bool is_feature_id_reg(u32 encoding)
1843 {
1844 	return (sys_reg_Op0(encoding) == 3 &&
1845 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1846 		sys_reg_CRn(encoding) == 0 &&
1847 		sys_reg_CRm(encoding) <= 7);
1848 }
1849 
1850 /*
1851  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1852  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1853  * registers KVM maintains on a per-VM basis.
1854  *
1855  * Additionally, the implementation ID registers and CTR_EL0 are handled as
1856  * per-VM registers.
1857  */
is_vm_ftr_id_reg(u32 id)1858 static inline bool is_vm_ftr_id_reg(u32 id)
1859 {
1860 	switch (id) {
1861 	case SYS_CTR_EL0:
1862 	case SYS_MIDR_EL1:
1863 	case SYS_REVIDR_EL1:
1864 	case SYS_AIDR_EL1:
1865 		return true;
1866 	default:
1867 		return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1868 			sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1869 			sys_reg_CRm(id) < 8);
1870 
1871 	}
1872 }
1873 
is_vcpu_ftr_id_reg(u32 id)1874 static inline bool is_vcpu_ftr_id_reg(u32 id)
1875 {
1876 	return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1877 }
1878 
is_aa32_id_reg(u32 id)1879 static inline bool is_aa32_id_reg(u32 id)
1880 {
1881 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1882 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1883 		sys_reg_CRm(id) <= 3);
1884 }
1885 
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1886 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1887 				  const struct sys_reg_desc *r)
1888 {
1889 	u32 id = reg_to_encoding(r);
1890 
1891 	switch (id) {
1892 	case SYS_ID_AA64ZFR0_EL1:
1893 		if (!vcpu_has_sve(vcpu))
1894 			return REG_RAZ;
1895 		break;
1896 	}
1897 
1898 	return 0;
1899 }
1900 
aa32_id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1901 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1902 				       const struct sys_reg_desc *r)
1903 {
1904 	/*
1905 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1906 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1907 	 * systems.
1908 	 */
1909 	if (!kvm_supports_32bit_el0())
1910 		return REG_RAZ | REG_USER_WI;
1911 
1912 	return id_visibility(vcpu, r);
1913 }
1914 
raz_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1915 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1916 				   const struct sys_reg_desc *r)
1917 {
1918 	return REG_RAZ;
1919 }
1920 
1921 /* cpufeature ID register access trap handlers */
1922 
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1923 static bool access_id_reg(struct kvm_vcpu *vcpu,
1924 			  struct sys_reg_params *p,
1925 			  const struct sys_reg_desc *r)
1926 {
1927 	if (p->is_write)
1928 		return write_to_read_only(vcpu, p, r);
1929 
1930 	p->regval = read_id_reg(vcpu, r);
1931 
1932 	return true;
1933 }
1934 
1935 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1936 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1937 				   const struct sys_reg_desc *rd)
1938 {
1939 	if (vcpu_has_sve(vcpu))
1940 		return 0;
1941 
1942 	return REG_HIDDEN;
1943 }
1944 
sme_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1945 static unsigned int sme_visibility(const struct kvm_vcpu *vcpu,
1946 				   const struct sys_reg_desc *rd)
1947 {
1948 	if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP))
1949 		return 0;
1950 
1951 	return REG_HIDDEN;
1952 }
1953 
fp8_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1954 static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu,
1955 				   const struct sys_reg_desc *rd)
1956 {
1957 	if (kvm_has_fpmr(vcpu->kvm))
1958 		return 0;
1959 
1960 	return REG_HIDDEN;
1961 }
1962 
sanitise_id_aa64pfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1963 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1964 {
1965 	if (!vcpu_has_sve(vcpu))
1966 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1967 
1968 	/*
1969 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1970 	 * Although this is a per-CPU feature, we make it global because
1971 	 * asymmetric systems are just a nuisance.
1972 	 *
1973 	 * Userspace can override this as long as it doesn't promise
1974 	 * the impossible.
1975 	 */
1976 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1977 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1978 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1979 	}
1980 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1981 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1982 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1983 	}
1984 
1985 	if (vgic_is_v3(vcpu->kvm)) {
1986 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1987 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1988 	}
1989 
1990 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1991 
1992 	/*
1993 	 * MPAM is disabled by default as KVM also needs a set of PARTID to
1994 	 * program the MPAMVPMx_EL2 PARTID remapping registers with. But some
1995 	 * older kernels let the guest see the ID bit.
1996 	 */
1997 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1998 
1999 	return val;
2000 }
2001 
sanitise_id_aa64pfr1_el1(const struct kvm_vcpu * vcpu,u64 val)2002 static u64 sanitise_id_aa64pfr1_el1(const struct kvm_vcpu *vcpu, u64 val)
2003 {
2004 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2005 
2006 	if (!kvm_has_mte(vcpu->kvm)) {
2007 		val &= ~ID_AA64PFR1_EL1_MTE;
2008 		val &= ~ID_AA64PFR1_EL1_MTE_frac;
2009 	}
2010 
2011 	if (!(cpus_have_final_cap(ARM64_HAS_RASV1P1_EXTN) &&
2012 	      SYS_FIELD_GET(ID_AA64PFR0_EL1, RAS, pfr0) == ID_AA64PFR0_EL1_RAS_IMP))
2013 		val &= ~ID_AA64PFR1_EL1_RAS_frac;
2014 
2015 	val &= ~ID_AA64PFR1_EL1_SME;
2016 	val &= ~ID_AA64PFR1_EL1_RNDR_trap;
2017 	val &= ~ID_AA64PFR1_EL1_NMI;
2018 	val &= ~ID_AA64PFR1_EL1_GCS;
2019 	val &= ~ID_AA64PFR1_EL1_THE;
2020 	val &= ~ID_AA64PFR1_EL1_MTEX;
2021 	val &= ~ID_AA64PFR1_EL1_PFAR;
2022 	val &= ~ID_AA64PFR1_EL1_MPAM_frac;
2023 
2024 	return val;
2025 }
2026 
sanitise_id_aa64dfr0_el1(const struct kvm_vcpu * vcpu,u64 val)2027 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
2028 {
2029 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
2030 
2031 	/*
2032 	 * Only initialize the PMU version if the vCPU was configured with one.
2033 	 */
2034 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
2035 	if (kvm_vcpu_has_pmu(vcpu))
2036 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
2037 				      kvm_arm_pmu_get_pmuver_limit());
2038 
2039 	/* Hide SPE from guests */
2040 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
2041 
2042 	/* Hide BRBE from guests */
2043 	val &= ~ID_AA64DFR0_EL1_BRBE_MASK;
2044 
2045 	return val;
2046 }
2047 
2048 /*
2049  * Older versions of KVM erroneously claim support for FEAT_DoubleLock with
2050  * NV-enabled VMs on unsupporting hardware. Silently ignore the incorrect
2051  * value if it is consistent with the bug.
2052  */
ignore_feat_doublelock(struct kvm_vcpu * vcpu,u64 val)2053 static bool ignore_feat_doublelock(struct kvm_vcpu *vcpu, u64 val)
2054 {
2055 	u8 host, user;
2056 
2057 	if (!vcpu_has_nv(vcpu))
2058 		return false;
2059 
2060 	host = SYS_FIELD_GET(ID_AA64DFR0_EL1, DoubleLock,
2061 			     read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1));
2062 	user = SYS_FIELD_GET(ID_AA64DFR0_EL1, DoubleLock, val);
2063 
2064 	return host == ID_AA64DFR0_EL1_DoubleLock_NI &&
2065 	       user == ID_AA64DFR0_EL1_DoubleLock_IMP;
2066 }
2067 
set_id_aa64dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2068 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
2069 			       const struct sys_reg_desc *rd,
2070 			       u64 val)
2071 {
2072 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
2073 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
2074 
2075 	/*
2076 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
2077 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
2078 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
2079 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
2080 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
2081 	 *
2082 	 * At minimum, we're on the hook to allow values that were given to
2083 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
2084 	 * with a more sensible NI. The value of an ID register changing under
2085 	 * the nose of the guest is unfortunate, but is certainly no more
2086 	 * surprising than an ill-guided PMU driver poking at impdef system
2087 	 * registers that end in an UNDEF...
2088 	 */
2089 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
2090 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
2091 
2092 	/*
2093 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
2094 	 * nonzero minimum safe value.
2095 	 */
2096 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
2097 		return -EINVAL;
2098 
2099 	if (ignore_feat_doublelock(vcpu, val)) {
2100 		val &= ~ID_AA64DFR0_EL1_DoubleLock;
2101 		val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DoubleLock, NI);
2102 	}
2103 
2104 	return set_id_reg(vcpu, rd, val);
2105 }
2106 
read_sanitised_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2107 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
2108 				      const struct sys_reg_desc *rd)
2109 {
2110 	u8 perfmon;
2111 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
2112 
2113 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
2114 	if (kvm_vcpu_has_pmu(vcpu)) {
2115 		perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
2116 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
2117 	}
2118 
2119 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
2120 
2121 	return val;
2122 }
2123 
set_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2124 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
2125 			   const struct sys_reg_desc *rd,
2126 			   u64 val)
2127 {
2128 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
2129 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
2130 
2131 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
2132 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
2133 		perfmon = 0;
2134 	}
2135 
2136 	/*
2137 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
2138 	 * it doesn't promise more than what the HW gives us on the
2139 	 * AArch64 side (as everything is emulated with that), and
2140 	 * that this is a PMUv3.
2141 	 */
2142 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
2143 		return -EINVAL;
2144 
2145 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
2146 		return -EINVAL;
2147 
2148 	return set_id_reg(vcpu, rd, val);
2149 }
2150 
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2151 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
2152 			       const struct sys_reg_desc *rd, u64 user_val)
2153 {
2154 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2155 	u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK;
2156 
2157 	/*
2158 	 * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits
2159 	 * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to
2160 	 * guests, but didn't add trap handling. KVM doesn't support MPAM and
2161 	 * always returns an UNDEF for these registers. The guest must see 0
2162 	 * for this field.
2163 	 *
2164 	 * But KVM must also accept values from user-space that were provided
2165 	 * by KVM. On CPUs that support MPAM, permit user-space to write
2166 	 * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field.
2167 	 */
2168 	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
2169 		user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
2170 
2171 	/* Fail the guest's request to disable the AA64 ISA at EL{0,1,2} */
2172 	if (!FIELD_GET(ID_AA64PFR0_EL1_EL0, user_val) ||
2173 	    !FIELD_GET(ID_AA64PFR0_EL1_EL1, user_val) ||
2174 	    (vcpu_has_nv(vcpu) && !FIELD_GET(ID_AA64PFR0_EL1_EL2, user_val)))
2175 		return -EINVAL;
2176 
2177 	/*
2178 	 * If we are running on a GICv5 host and support FEAT_GCIE_LEGACY, then
2179 	 * we support GICv3. Fail attempts to do anything but set that to IMP.
2180 	 */
2181 	if (vgic_is_v3_compat(vcpu->kvm) &&
2182 	    FIELD_GET(ID_AA64PFR0_EL1_GIC_MASK, user_val) != ID_AA64PFR0_EL1_GIC_IMP)
2183 		return -EINVAL;
2184 
2185 	return set_id_reg(vcpu, rd, user_val);
2186 }
2187 
set_id_aa64pfr1_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2188 static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu,
2189 			       const struct sys_reg_desc *rd, u64 user_val)
2190 {
2191 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2192 	u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK;
2193 	u8 mte = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE, hw_val);
2194 	u8 user_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, user_val);
2195 	u8 hw_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, hw_val);
2196 
2197 	/* See set_id_aa64pfr0_el1 for comment about MPAM */
2198 	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
2199 		user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
2200 
2201 	/*
2202 	 * Previously MTE_frac was hidden from guest. However, if the
2203 	 * hardware supports MTE2 but not MTE_ASYM_FAULT then a value
2204 	 * of 0 for this field indicates that the hardware supports
2205 	 * MTE_ASYNC. Whereas, 0xf indicates MTE_ASYNC is not supported.
2206 	 *
2207 	 * As KVM must accept values from KVM provided by user-space,
2208 	 * when ID_AA64PFR1_EL1.MTE is 2 allow user-space to set
2209 	 * ID_AA64PFR1_EL1.MTE_frac to 0. However, ignore it to avoid
2210 	 * incorrectly claiming hardware support for MTE_ASYNC in the
2211 	 * guest.
2212 	 */
2213 
2214 	if (mte == ID_AA64PFR1_EL1_MTE_MTE2 &&
2215 	    hw_mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI &&
2216 	    user_mte_frac == ID_AA64PFR1_EL1_MTE_frac_ASYNC) {
2217 		user_val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
2218 		user_val |= hw_val & ID_AA64PFR1_EL1_MTE_frac_MASK;
2219 	}
2220 
2221 	return set_id_reg(vcpu, rd, user_val);
2222 }
2223 
2224 /*
2225  * Allow userspace to de-feature a stage-2 translation granule but prevent it
2226  * from claiming the impossible.
2227  */
2228 #define tgran2_val_allowed(tg, safe, user)			\
2229 ({								\
2230 	u8 __s = SYS_FIELD_GET(ID_AA64MMFR0_EL1, tg, safe);	\
2231 	u8 __u = SYS_FIELD_GET(ID_AA64MMFR0_EL1, tg, user);	\
2232 								\
2233 	__s == __u || __u == ID_AA64MMFR0_EL1_##tg##_NI;	\
2234 })
2235 
set_id_aa64mmfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2236 static int set_id_aa64mmfr0_el1(struct kvm_vcpu *vcpu,
2237 				const struct sys_reg_desc *rd, u64 user_val)
2238 {
2239 	u64 sanitized_val = kvm_read_sanitised_id_reg(vcpu, rd);
2240 
2241 	if (!vcpu_has_nv(vcpu))
2242 		return set_id_reg(vcpu, rd, user_val);
2243 
2244 	if (!tgran2_val_allowed(TGRAN4_2, sanitized_val, user_val) ||
2245 	    !tgran2_val_allowed(TGRAN16_2, sanitized_val, user_val) ||
2246 	    !tgran2_val_allowed(TGRAN64_2, sanitized_val, user_val))
2247 		return -EINVAL;
2248 
2249 	return set_id_reg(vcpu, rd, user_val);
2250 }
2251 
set_id_aa64mmfr2_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2252 static int set_id_aa64mmfr2_el1(struct kvm_vcpu *vcpu,
2253 				const struct sys_reg_desc *rd, u64 user_val)
2254 {
2255 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2256 	u64 nv_mask = ID_AA64MMFR2_EL1_NV_MASK;
2257 
2258 	/*
2259 	 * We made the mistake to expose the now deprecated NV field,
2260 	 * so allow userspace to write it, but silently ignore it.
2261 	 */
2262 	if ((hw_val & nv_mask) == (user_val & nv_mask))
2263 		user_val &= ~nv_mask;
2264 
2265 	return set_id_reg(vcpu, rd, user_val);
2266 }
2267 
set_ctr_el0(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2268 static int set_ctr_el0(struct kvm_vcpu *vcpu,
2269 		       const struct sys_reg_desc *rd, u64 user_val)
2270 {
2271 	u8 user_L1Ip = SYS_FIELD_GET(CTR_EL0, L1Ip, user_val);
2272 
2273 	/*
2274 	 * Both AIVIVT (0b01) and VPIPT (0b00) are documented as reserved.
2275 	 * Hence only allow to set VIPT(0b10) or PIPT(0b11) for L1Ip based
2276 	 * on what hardware reports.
2277 	 *
2278 	 * Using a VIPT software model on PIPT will lead to over invalidation,
2279 	 * but still correct. Hence, we can allow downgrading PIPT to VIPT,
2280 	 * but not the other way around. This is handled via arm64_ftr_safe_value()
2281 	 * as CTR_EL0 ftr_bits has L1Ip field with type FTR_EXACT and safe value
2282 	 * set as VIPT.
2283 	 */
2284 	switch (user_L1Ip) {
2285 	case CTR_EL0_L1Ip_RESERVED_VPIPT:
2286 	case CTR_EL0_L1Ip_RESERVED_AIVIVT:
2287 		return -EINVAL;
2288 	case CTR_EL0_L1Ip_VIPT:
2289 	case CTR_EL0_L1Ip_PIPT:
2290 		return set_id_reg(vcpu, rd, user_val);
2291 	default:
2292 		return -ENOENT;
2293 	}
2294 }
2295 
2296 /*
2297  * cpufeature ID register user accessors
2298  *
2299  * For now, these registers are immutable for userspace, so no values
2300  * are stored, and for set_id_reg() we don't allow the effective value
2301  * to be changed.
2302  */
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2303 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2304 		      u64 *val)
2305 {
2306 	/*
2307 	 * Avoid locking if the VM has already started, as the ID registers are
2308 	 * guaranteed to be invariant at that point.
2309 	 */
2310 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
2311 		*val = read_id_reg(vcpu, rd);
2312 		return 0;
2313 	}
2314 
2315 	mutex_lock(&vcpu->kvm->arch.config_lock);
2316 	*val = read_id_reg(vcpu, rd);
2317 	mutex_unlock(&vcpu->kvm->arch.config_lock);
2318 
2319 	return 0;
2320 }
2321 
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2322 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2323 		      u64 val)
2324 {
2325 	u32 id = reg_to_encoding(rd);
2326 	int ret;
2327 
2328 	mutex_lock(&vcpu->kvm->arch.config_lock);
2329 
2330 	/*
2331 	 * Once the VM has started the ID registers are immutable. Reject any
2332 	 * write that does not match the final register value.
2333 	 */
2334 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
2335 		if (val != read_id_reg(vcpu, rd))
2336 			ret = -EBUSY;
2337 		else
2338 			ret = 0;
2339 
2340 		mutex_unlock(&vcpu->kvm->arch.config_lock);
2341 		return ret;
2342 	}
2343 
2344 	ret = arm64_check_features(vcpu, rd, val);
2345 	if (!ret)
2346 		kvm_set_vm_id_reg(vcpu->kvm, id, val);
2347 
2348 	mutex_unlock(&vcpu->kvm->arch.config_lock);
2349 
2350 	/*
2351 	 * arm64_check_features() returns -E2BIG to indicate the register's
2352 	 * feature set is a superset of the maximally-allowed register value.
2353 	 * While it would be nice to precisely describe this to userspace, the
2354 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
2355 	 * writes return -EINVAL.
2356 	 */
2357 	if (ret == -E2BIG)
2358 		ret = -EINVAL;
2359 	return ret;
2360 }
2361 
kvm_set_vm_id_reg(struct kvm * kvm,u32 reg,u64 val)2362 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
2363 {
2364 	u64 *p = __vm_id_reg(&kvm->arch, reg);
2365 
2366 	lockdep_assert_held(&kvm->arch.config_lock);
2367 
2368 	if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
2369 		return;
2370 
2371 	*p = val;
2372 }
2373 
get_raz_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2374 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2375 		       u64 *val)
2376 {
2377 	*val = 0;
2378 	return 0;
2379 }
2380 
set_wi_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2381 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2382 		      u64 val)
2383 {
2384 	return 0;
2385 }
2386 
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2387 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2388 		       const struct sys_reg_desc *r)
2389 {
2390 	if (p->is_write)
2391 		return write_to_read_only(vcpu, p, r);
2392 
2393 	p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
2394 	return true;
2395 }
2396 
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2397 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2398 			 const struct sys_reg_desc *r)
2399 {
2400 	if (p->is_write)
2401 		return write_to_read_only(vcpu, p, r);
2402 
2403 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
2404 	return true;
2405 }
2406 
2407 /*
2408  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
2409  * by the physical CPU which the vcpu currently resides in.
2410  */
reset_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2411 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2412 {
2413 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2414 	u64 clidr;
2415 	u8 loc;
2416 
2417 	if ((ctr_el0 & CTR_EL0_IDC)) {
2418 		/*
2419 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
2420 		 * will not be set and a unified cache, which will be marked as
2421 		 * LoC, will be added.
2422 		 *
2423 		 * If not DIC, let the unified cache L2 so that an instruction
2424 		 * cache can be added as L1 later.
2425 		 */
2426 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
2427 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
2428 	} else {
2429 		/*
2430 		 * Data cache clean to the PoU is required so let L1 have a data
2431 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
2432 		 * it can be marked as LoC too.
2433 		 */
2434 		loc = 1;
2435 		clidr = 1 << CLIDR_LOUU_SHIFT;
2436 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
2437 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
2438 	}
2439 
2440 	/*
2441 	 * Instruction cache invalidation to the PoU is required so let L1 have
2442 	 * an instruction cache. If L1 already has a data cache, it will be
2443 	 * CACHE_TYPE_SEPARATE.
2444 	 */
2445 	if (!(ctr_el0 & CTR_EL0_DIC))
2446 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
2447 
2448 	clidr |= loc << CLIDR_LOC_SHIFT;
2449 
2450 	/*
2451 	 * Add tag cache unified to data cache. Allocation tags and data are
2452 	 * unified in a cache line so that it looks valid even if there is only
2453 	 * one cache line.
2454 	 */
2455 	if (kvm_has_mte(vcpu->kvm))
2456 		clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc);
2457 
2458 	__vcpu_assign_sys_reg(vcpu, r->reg, clidr);
2459 
2460 	return __vcpu_sys_reg(vcpu, r->reg);
2461 }
2462 
set_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2463 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2464 		      u64 val)
2465 {
2466 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2467 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
2468 
2469 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
2470 		return -EINVAL;
2471 
2472 	__vcpu_assign_sys_reg(vcpu, rd->reg, val);
2473 
2474 	return 0;
2475 }
2476 
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2477 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2478 			  const struct sys_reg_desc *r)
2479 {
2480 	int reg = r->reg;
2481 
2482 	if (p->is_write)
2483 		vcpu_write_sys_reg(vcpu, p->regval, reg);
2484 	else
2485 		p->regval = vcpu_read_sys_reg(vcpu, reg);
2486 	return true;
2487 }
2488 
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2489 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2490 			  const struct sys_reg_desc *r)
2491 {
2492 	u32 csselr;
2493 
2494 	if (p->is_write)
2495 		return write_to_read_only(vcpu, p, r);
2496 
2497 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2498 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2499 	if (csselr < CSSELR_MAX)
2500 		p->regval = get_ccsidr(vcpu, csselr);
2501 
2502 	return true;
2503 }
2504 
mte_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2505 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2506 				   const struct sys_reg_desc *rd)
2507 {
2508 	if (kvm_has_mte(vcpu->kvm))
2509 		return 0;
2510 
2511 	return REG_HIDDEN;
2512 }
2513 
2514 #define MTE_REG(name) {				\
2515 	SYS_DESC(SYS_##name),			\
2516 	.access = undef_access,			\
2517 	.reset = reset_unknown,			\
2518 	.reg = name,				\
2519 	.visibility = mte_visibility,		\
2520 }
2521 
el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2522 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2523 				   const struct sys_reg_desc *rd)
2524 {
2525 	if (vcpu_has_nv(vcpu))
2526 		return 0;
2527 
2528 	return REG_HIDDEN;
2529 }
2530 
bad_vncr_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2531 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2532 			  struct sys_reg_params *p,
2533 			  const struct sys_reg_desc *r)
2534 {
2535 	/*
2536 	 * We really shouldn't be here, and this is likely the result
2537 	 * of a misconfigured trap, as this register should target the
2538 	 * VNCR page, and nothing else.
2539 	 */
2540 	return bad_trap(vcpu, p, r,
2541 			"trap of VNCR-backed register");
2542 }
2543 
bad_redir_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2544 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2545 			   struct sys_reg_params *p,
2546 			   const struct sys_reg_desc *r)
2547 {
2548 	/*
2549 	 * We really shouldn't be here, and this is likely the result
2550 	 * of a misconfigured trap, as this register should target the
2551 	 * corresponding EL1, and nothing else.
2552 	 */
2553 	return bad_trap(vcpu, p, r,
2554 			"trap of EL2 register redirected to EL1");
2555 }
2556 
2557 #define SYS_REG_USER_FILTER(name, acc, rst, v, gu, su, filter) { \
2558 	SYS_DESC(SYS_##name),			\
2559 	.access = acc,				\
2560 	.reset = rst,				\
2561 	.reg = name,				\
2562 	.get_user = gu,				\
2563 	.set_user = su,				\
2564 	.visibility = filter,			\
2565 	.val = v,				\
2566 }
2567 
2568 #define EL2_REG_FILTERED(name, acc, rst, v, filter)	\
2569 	SYS_REG_USER_FILTER(name, acc, rst, v, NULL, NULL, filter)
2570 
2571 #define EL2_REG(name, acc, rst, v)			\
2572 	EL2_REG_FILTERED(name, acc, rst, v, el2_visibility)
2573 
2574 #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2575 #define EL2_REG_VNCR_FILT(name, vis)			\
2576 	EL2_REG_FILTERED(name, bad_vncr_trap, reset_val, 0, vis)
2577 #define EL2_REG_VNCR_GICv3(name)			\
2578 	EL2_REG_VNCR_FILT(name, hidden_visibility)
2579 #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2580 
2581 #define TIMER_REG(name, vis)					   \
2582 	SYS_REG_USER_FILTER(name, access_arch_timer, reset_val, 0, \
2583 			    arch_timer_get_user, arch_timer_set_user, vis)
2584 
2585 /*
2586  * Since reset() callback and field val are not used for idregs, they will be
2587  * used for specific purposes for idregs.
2588  * The reset() would return KVM sanitised register value. The value would be the
2589  * same as the host kernel sanitised value if there is no KVM sanitisation.
2590  * The val would be used as a mask indicating writable fields for the idreg.
2591  * Only bits with 1 are writable from userspace. This mask might not be
2592  * necessary in the future whenever all ID registers are enabled as writable
2593  * from userspace.
2594  */
2595 
2596 #define ID_DESC_DEFAULT_CALLBACKS		\
2597 	.access	= access_id_reg,		\
2598 	.get_user = get_id_reg,			\
2599 	.set_user = set_id_reg,			\
2600 	.visibility = id_visibility,		\
2601 	.reset = kvm_read_sanitised_id_reg
2602 
2603 #define ID_DESC(name)				\
2604 	SYS_DESC(SYS_##name),			\
2605 	ID_DESC_DEFAULT_CALLBACKS
2606 
2607 /* sys_reg_desc initialiser for known cpufeature ID registers */
2608 #define ID_SANITISED(name) {			\
2609 	ID_DESC(name),				\
2610 	.val = 0,				\
2611 }
2612 
2613 /* sys_reg_desc initialiser for writable ID registers */
2614 #define ID_WRITABLE(name, mask) {		\
2615 	ID_DESC(name),				\
2616 	.val = mask,				\
2617 }
2618 
2619 /*
2620  * 32bit ID regs are fully writable when the guest is 32bit
2621  * capable. Nothing in the KVM code should rely on 32bit features
2622  * anyway, only 64bit, so let the VMM do its worse.
2623  */
2624 #define AA32_ID_WRITABLE(name) {		\
2625 	ID_DESC(name),				\
2626 	.visibility = aa32_id_visibility,	\
2627 	.val = GENMASK(31, 0),			\
2628 }
2629 
2630 /* sys_reg_desc initialiser for cpufeature ID registers that need filtering */
2631 #define ID_FILTERED(sysreg, name, mask) {	\
2632 	ID_DESC(sysreg),				\
2633 	.set_user = set_##name,				\
2634 	.val = (mask),					\
2635 }
2636 
2637 /*
2638  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2639  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2640  * (1 <= crm < 8, 0 <= Op2 < 8).
2641  */
2642 #define ID_UNALLOCATED(crm, op2) {			\
2643 	.name = "S3_0_0_" #crm "_" #op2,		\
2644 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2645 	ID_DESC_DEFAULT_CALLBACKS,			\
2646 	.visibility = raz_visibility,			\
2647 	.val = 0,					\
2648 }
2649 
2650 /*
2651  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2652  * For now, these are exposed just like unallocated ID regs: they appear
2653  * RAZ for the guest.
2654  */
2655 #define ID_HIDDEN(name) {			\
2656 	ID_DESC(name),				\
2657 	.visibility = raz_visibility,		\
2658 	.val = 0,				\
2659 }
2660 
access_sp_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2661 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2662 			  struct sys_reg_params *p,
2663 			  const struct sys_reg_desc *r)
2664 {
2665 	if (p->is_write)
2666 		__vcpu_assign_sys_reg(vcpu, SP_EL1, p->regval);
2667 	else
2668 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2669 
2670 	return true;
2671 }
2672 
access_elr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2673 static bool access_elr(struct kvm_vcpu *vcpu,
2674 		       struct sys_reg_params *p,
2675 		       const struct sys_reg_desc *r)
2676 {
2677 	if (p->is_write)
2678 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2679 	else
2680 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2681 
2682 	return true;
2683 }
2684 
access_spsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2685 static bool access_spsr(struct kvm_vcpu *vcpu,
2686 			struct sys_reg_params *p,
2687 			const struct sys_reg_desc *r)
2688 {
2689 	if (p->is_write)
2690 		__vcpu_assign_sys_reg(vcpu, SPSR_EL1, p->regval);
2691 	else
2692 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2693 
2694 	return true;
2695 }
2696 
access_cntkctl_el12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2697 static bool access_cntkctl_el12(struct kvm_vcpu *vcpu,
2698 				struct sys_reg_params *p,
2699 				const struct sys_reg_desc *r)
2700 {
2701 	if (p->is_write)
2702 		__vcpu_assign_sys_reg(vcpu, CNTKCTL_EL1, p->regval);
2703 	else
2704 		p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1);
2705 
2706 	return true;
2707 }
2708 
reset_hcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2709 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2710 {
2711 	u64 val = r->val;
2712 
2713 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2714 		val |= HCR_E2H;
2715 
2716 	__vcpu_assign_sys_reg(vcpu, r->reg, val);
2717 
2718 	return __vcpu_sys_reg(vcpu, r->reg);
2719 }
2720 
__el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,unsigned int (* fn)(const struct kvm_vcpu *,const struct sys_reg_desc *))2721 static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu,
2722 				     const struct sys_reg_desc *rd,
2723 				     unsigned int (*fn)(const struct kvm_vcpu *,
2724 							const struct sys_reg_desc *))
2725 {
2726 	return el2_visibility(vcpu, rd) ?: fn(vcpu, rd);
2727 }
2728 
sve_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2729 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2730 				       const struct sys_reg_desc *rd)
2731 {
2732 	return __el2_visibility(vcpu, rd, sve_visibility);
2733 }
2734 
vncr_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2735 static unsigned int vncr_el2_visibility(const struct kvm_vcpu *vcpu,
2736 					const struct sys_reg_desc *rd)
2737 {
2738 	if (el2_visibility(vcpu, rd) == 0 &&
2739 	    kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
2740 		return 0;
2741 
2742 	return REG_HIDDEN;
2743 }
2744 
sctlr2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2745 static unsigned int sctlr2_visibility(const struct kvm_vcpu *vcpu,
2746 				      const struct sys_reg_desc *rd)
2747 {
2748 	if (kvm_has_sctlr2(vcpu->kvm))
2749 		return 0;
2750 
2751 	return REG_HIDDEN;
2752 }
2753 
sctlr2_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2754 static unsigned int sctlr2_el2_visibility(const struct kvm_vcpu *vcpu,
2755 					  const struct sys_reg_desc *rd)
2756 {
2757 	return __el2_visibility(vcpu, rd, sctlr2_visibility);
2758 }
2759 
access_zcr_el2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2760 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2761 			   struct sys_reg_params *p,
2762 			   const struct sys_reg_desc *r)
2763 {
2764 	unsigned int vq;
2765 
2766 	if (guest_hyp_sve_traps_enabled(vcpu)) {
2767 		kvm_inject_nested_sve_trap(vcpu);
2768 		return false;
2769 	}
2770 
2771 	if (!p->is_write) {
2772 		p->regval = __vcpu_sys_reg(vcpu, ZCR_EL2);
2773 		return true;
2774 	}
2775 
2776 	vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2777 	vq = min(vq, vcpu_sve_max_vq(vcpu));
2778 	__vcpu_assign_sys_reg(vcpu, ZCR_EL2, vq - 1);
2779 	return true;
2780 }
2781 
access_gic_vtr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2782 static bool access_gic_vtr(struct kvm_vcpu *vcpu,
2783 			   struct sys_reg_params *p,
2784 			   const struct sys_reg_desc *r)
2785 {
2786 	if (p->is_write)
2787 		return write_to_read_only(vcpu, p, r);
2788 
2789 	p->regval = kvm_get_guest_vtr_el2();
2790 
2791 	return true;
2792 }
2793 
access_gic_misr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2794 static bool access_gic_misr(struct kvm_vcpu *vcpu,
2795 			    struct sys_reg_params *p,
2796 			    const struct sys_reg_desc *r)
2797 {
2798 	if (p->is_write)
2799 		return write_to_read_only(vcpu, p, r);
2800 
2801 	p->regval = vgic_v3_get_misr(vcpu);
2802 
2803 	return true;
2804 }
2805 
access_gic_eisr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2806 static bool access_gic_eisr(struct kvm_vcpu *vcpu,
2807 			    struct sys_reg_params *p,
2808 			    const struct sys_reg_desc *r)
2809 {
2810 	if (p->is_write)
2811 		return write_to_read_only(vcpu, p, r);
2812 
2813 	p->regval = vgic_v3_get_eisr(vcpu);
2814 
2815 	return true;
2816 }
2817 
access_gic_elrsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2818 static bool access_gic_elrsr(struct kvm_vcpu *vcpu,
2819 			     struct sys_reg_params *p,
2820 			     const struct sys_reg_desc *r)
2821 {
2822 	if (p->is_write)
2823 		return write_to_read_only(vcpu, p, r);
2824 
2825 	p->regval = vgic_v3_get_elrsr(vcpu);
2826 
2827 	return true;
2828 }
2829 
s1poe_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2830 static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu,
2831 				     const struct sys_reg_desc *rd)
2832 {
2833 	if (kvm_has_s1poe(vcpu->kvm))
2834 		return 0;
2835 
2836 	return REG_HIDDEN;
2837 }
2838 
s1poe_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2839 static unsigned int s1poe_el2_visibility(const struct kvm_vcpu *vcpu,
2840 					 const struct sys_reg_desc *rd)
2841 {
2842 	return __el2_visibility(vcpu, rd, s1poe_visibility);
2843 }
2844 
tcr2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2845 static unsigned int tcr2_visibility(const struct kvm_vcpu *vcpu,
2846 				    const struct sys_reg_desc *rd)
2847 {
2848 	if (kvm_has_tcr2(vcpu->kvm))
2849 		return 0;
2850 
2851 	return REG_HIDDEN;
2852 }
2853 
tcr2_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2854 static unsigned int tcr2_el2_visibility(const struct kvm_vcpu *vcpu,
2855 				    const struct sys_reg_desc *rd)
2856 {
2857 	return __el2_visibility(vcpu, rd, tcr2_visibility);
2858 }
2859 
fgt2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2860 static unsigned int fgt2_visibility(const struct kvm_vcpu *vcpu,
2861 				    const struct sys_reg_desc *rd)
2862 {
2863 	if (el2_visibility(vcpu, rd) == 0 &&
2864 	    kvm_has_feat(vcpu->kvm, ID_AA64MMFR0_EL1, FGT, FGT2))
2865 		return 0;
2866 
2867 	return REG_HIDDEN;
2868 }
2869 
fgt_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2870 static unsigned int fgt_visibility(const struct kvm_vcpu *vcpu,
2871 				   const struct sys_reg_desc *rd)
2872 {
2873 	if (el2_visibility(vcpu, rd) == 0 &&
2874 	    kvm_has_feat(vcpu->kvm, ID_AA64MMFR0_EL1, FGT, IMP))
2875 		return 0;
2876 
2877 	return REG_HIDDEN;
2878 }
2879 
s1pie_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2880 static unsigned int s1pie_visibility(const struct kvm_vcpu *vcpu,
2881 				     const struct sys_reg_desc *rd)
2882 {
2883 	if (kvm_has_s1pie(vcpu->kvm))
2884 		return 0;
2885 
2886 	return REG_HIDDEN;
2887 }
2888 
s1pie_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2889 static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu,
2890 					 const struct sys_reg_desc *rd)
2891 {
2892 	return __el2_visibility(vcpu, rd, s1pie_visibility);
2893 }
2894 
cnthv_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2895 static unsigned int cnthv_visibility(const struct kvm_vcpu *vcpu,
2896 				     const struct sys_reg_desc *rd)
2897 {
2898 	if (vcpu_has_nv(vcpu) &&
2899 	    !vcpu_has_feature(vcpu, KVM_ARM_VCPU_HAS_EL2_E2H0))
2900 		return 0;
2901 
2902 	return REG_HIDDEN;
2903 }
2904 
access_mdcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2905 static bool access_mdcr(struct kvm_vcpu *vcpu,
2906 			struct sys_reg_params *p,
2907 			const struct sys_reg_desc *r)
2908 {
2909 	u64 hpmn, val, old = __vcpu_sys_reg(vcpu, MDCR_EL2);
2910 
2911 	if (!p->is_write) {
2912 		p->regval = old;
2913 		return true;
2914 	}
2915 
2916 	val = p->regval;
2917 	hpmn = FIELD_GET(MDCR_EL2_HPMN, val);
2918 
2919 	/*
2920 	 * If HPMN is out of bounds, limit it to what we actually
2921 	 * support. This matches the UNKNOWN definition of the field
2922 	 * in that case, and keeps the emulation simple. Sort of.
2923 	 */
2924 	if (hpmn > vcpu->kvm->arch.nr_pmu_counters) {
2925 		hpmn = vcpu->kvm->arch.nr_pmu_counters;
2926 		u64p_replace_bits(&val, hpmn, MDCR_EL2_HPMN);
2927 	}
2928 
2929 	__vcpu_assign_sys_reg(vcpu, MDCR_EL2, val);
2930 
2931 	/*
2932 	 * Request a reload of the PMU to enable/disable the counters
2933 	 * affected by HPME.
2934 	 */
2935 	if ((old ^ val) & MDCR_EL2_HPME)
2936 		kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
2937 
2938 	return true;
2939 }
2940 
access_ras(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2941 static bool access_ras(struct kvm_vcpu *vcpu,
2942 		       struct sys_reg_params *p,
2943 		       const struct sys_reg_desc *r)
2944 {
2945 	struct kvm *kvm = vcpu->kvm;
2946 
2947 	switch(reg_to_encoding(r)) {
2948 	case SYS_ERXPFGCDN_EL1:
2949 	case SYS_ERXPFGCTL_EL1:
2950 	case SYS_ERXPFGF_EL1:
2951 	case SYS_ERXMISC2_EL1:
2952 	case SYS_ERXMISC3_EL1:
2953 		if (!(kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1) ||
2954 		      (kvm_has_feat_enum(kvm, ID_AA64PFR0_EL1, RAS, IMP) &&
2955 		       kvm_has_feat(kvm, ID_AA64PFR1_EL1, RAS_frac, RASv1p1)))) {
2956 			kvm_inject_undefined(vcpu);
2957 			return false;
2958 		}
2959 		break;
2960 	default:
2961 		if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP)) {
2962 			kvm_inject_undefined(vcpu);
2963 			return false;
2964 		}
2965 	}
2966 
2967 	return trap_raz_wi(vcpu, p, r);
2968 }
2969 
2970 /*
2971  * For historical (ahem ABI) reasons, KVM treated MIDR_EL1, REVIDR_EL1, and
2972  * AIDR_EL1 as "invariant" registers, meaning userspace cannot change them.
2973  * The values made visible to userspace were the register values of the boot
2974  * CPU.
2975  *
2976  * At the same time, reads from these registers at EL1 previously were not
2977  * trapped, allowing the guest to read the actual hardware value. On big-little
2978  * machines, this means the VM can see different values depending on where a
2979  * given vCPU got scheduled.
2980  *
2981  * These registers are now trapped as collateral damage from SME, and what
2982  * follows attempts to give a user / guest view consistent with the existing
2983  * ABI.
2984  */
access_imp_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2985 static bool access_imp_id_reg(struct kvm_vcpu *vcpu,
2986 			      struct sys_reg_params *p,
2987 			      const struct sys_reg_desc *r)
2988 {
2989 	if (p->is_write)
2990 		return write_to_read_only(vcpu, p, r);
2991 
2992 	/*
2993 	 * Return the VM-scoped implementation ID register values if userspace
2994 	 * has made them writable.
2995 	 */
2996 	if (test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &vcpu->kvm->arch.flags))
2997 		return access_id_reg(vcpu, p, r);
2998 
2999 	/*
3000 	 * Otherwise, fall back to the old behavior of returning the value of
3001 	 * the current CPU.
3002 	 */
3003 	switch (reg_to_encoding(r)) {
3004 	case SYS_REVIDR_EL1:
3005 		p->regval = read_sysreg(revidr_el1);
3006 		break;
3007 	case SYS_AIDR_EL1:
3008 		p->regval = read_sysreg(aidr_el1);
3009 		break;
3010 	default:
3011 		WARN_ON_ONCE(1);
3012 	}
3013 
3014 	return true;
3015 }
3016 
3017 static u64 __ro_after_init boot_cpu_midr_val;
3018 static u64 __ro_after_init boot_cpu_revidr_val;
3019 static u64 __ro_after_init boot_cpu_aidr_val;
3020 
init_imp_id_regs(void)3021 static void init_imp_id_regs(void)
3022 {
3023 	boot_cpu_midr_val = read_sysreg(midr_el1);
3024 	boot_cpu_revidr_val = read_sysreg(revidr_el1);
3025 	boot_cpu_aidr_val = read_sysreg(aidr_el1);
3026 }
3027 
reset_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)3028 static u64 reset_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
3029 {
3030 	switch (reg_to_encoding(r)) {
3031 	case SYS_MIDR_EL1:
3032 		return boot_cpu_midr_val;
3033 	case SYS_REVIDR_EL1:
3034 		return boot_cpu_revidr_val;
3035 	case SYS_AIDR_EL1:
3036 		return boot_cpu_aidr_val;
3037 	default:
3038 		KVM_BUG_ON(1, vcpu->kvm);
3039 		return 0;
3040 	}
3041 }
3042 
set_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)3043 static int set_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
3044 			  u64 val)
3045 {
3046 	struct kvm *kvm = vcpu->kvm;
3047 	u64 expected;
3048 
3049 	guard(mutex)(&kvm->arch.config_lock);
3050 
3051 	expected = read_id_reg(vcpu, r);
3052 	if (expected == val)
3053 		return 0;
3054 
3055 	if (!test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags))
3056 		return -EINVAL;
3057 
3058 	/*
3059 	 * Once the VM has started the ID registers are immutable. Reject the
3060 	 * write if userspace tries to change it.
3061 	 */
3062 	if (kvm_vm_has_ran_once(kvm))
3063 		return -EBUSY;
3064 
3065 	/*
3066 	 * Any value is allowed for the implementation ID registers so long as
3067 	 * it is within the writable mask.
3068 	 */
3069 	if ((val & r->val) != val)
3070 		return -EINVAL;
3071 
3072 	kvm_set_vm_id_reg(kvm, reg_to_encoding(r), val);
3073 	return 0;
3074 }
3075 
3076 #define IMPLEMENTATION_ID(reg, mask) {			\
3077 	SYS_DESC(SYS_##reg),				\
3078 	.access = access_imp_id_reg,			\
3079 	.get_user = get_id_reg,				\
3080 	.set_user = set_imp_id_reg,			\
3081 	.reset = reset_imp_id_reg,			\
3082 	.val = mask,					\
3083 	}
3084 
reset_mdcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)3085 static u64 reset_mdcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
3086 {
3087 	__vcpu_assign_sys_reg(vcpu, r->reg, vcpu->kvm->arch.nr_pmu_counters);
3088 	return vcpu->kvm->arch.nr_pmu_counters;
3089 }
3090 
3091 /*
3092  * Architected system registers.
3093  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
3094  *
3095  * Debug handling: We do trap most, if not all debug related system
3096  * registers. The implementation is good enough to ensure that a guest
3097  * can use these with minimal performance degradation. The drawback is
3098  * that we don't implement any of the external debug architecture.
3099  * This should be revisited if we ever encounter a more demanding
3100  * guest...
3101  */
3102 static const struct sys_reg_desc sys_reg_descs[] = {
3103 	DBG_BCR_BVR_WCR_WVR_EL1(0),
3104 	DBG_BCR_BVR_WCR_WVR_EL1(1),
3105 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
3106 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
3107 	DBG_BCR_BVR_WCR_WVR_EL1(2),
3108 	DBG_BCR_BVR_WCR_WVR_EL1(3),
3109 	DBG_BCR_BVR_WCR_WVR_EL1(4),
3110 	DBG_BCR_BVR_WCR_WVR_EL1(5),
3111 	DBG_BCR_BVR_WCR_WVR_EL1(6),
3112 	DBG_BCR_BVR_WCR_WVR_EL1(7),
3113 	DBG_BCR_BVR_WCR_WVR_EL1(8),
3114 	DBG_BCR_BVR_WCR_WVR_EL1(9),
3115 	DBG_BCR_BVR_WCR_WVR_EL1(10),
3116 	DBG_BCR_BVR_WCR_WVR_EL1(11),
3117 	DBG_BCR_BVR_WCR_WVR_EL1(12),
3118 	DBG_BCR_BVR_WCR_WVR_EL1(13),
3119 	DBG_BCR_BVR_WCR_WVR_EL1(14),
3120 	DBG_BCR_BVR_WCR_WVR_EL1(15),
3121 
3122 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
3123 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
3124 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
3125 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
3126 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
3127 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
3128 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
3129 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
3130 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
3131 
3132 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
3133 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
3134 	// DBGDTR[TR]X_EL0 share the same encoding
3135 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
3136 
3137 	{ SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 },
3138 
3139 	IMPLEMENTATION_ID(MIDR_EL1, GENMASK_ULL(31, 0)),
3140 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
3141 	IMPLEMENTATION_ID(REVIDR_EL1, GENMASK_ULL(63, 0)),
3142 
3143 	/*
3144 	 * ID regs: all ID_SANITISED() entries here must have corresponding
3145 	 * entries in arm64_ftr_regs[].
3146 	 */
3147 
3148 	/* AArch64 mappings of the AArch32 ID registers */
3149 	/* CRm=1 */
3150 	AA32_ID_WRITABLE(ID_PFR0_EL1),
3151 	AA32_ID_WRITABLE(ID_PFR1_EL1),
3152 	{ SYS_DESC(SYS_ID_DFR0_EL1),
3153 	  .access = access_id_reg,
3154 	  .get_user = get_id_reg,
3155 	  .set_user = set_id_dfr0_el1,
3156 	  .visibility = aa32_id_visibility,
3157 	  .reset = read_sanitised_id_dfr0_el1,
3158 	  .val = GENMASK(31, 0) },
3159 	ID_HIDDEN(ID_AFR0_EL1),
3160 	AA32_ID_WRITABLE(ID_MMFR0_EL1),
3161 	AA32_ID_WRITABLE(ID_MMFR1_EL1),
3162 	AA32_ID_WRITABLE(ID_MMFR2_EL1),
3163 	AA32_ID_WRITABLE(ID_MMFR3_EL1),
3164 
3165 	/* CRm=2 */
3166 	AA32_ID_WRITABLE(ID_ISAR0_EL1),
3167 	AA32_ID_WRITABLE(ID_ISAR1_EL1),
3168 	AA32_ID_WRITABLE(ID_ISAR2_EL1),
3169 	AA32_ID_WRITABLE(ID_ISAR3_EL1),
3170 	AA32_ID_WRITABLE(ID_ISAR4_EL1),
3171 	AA32_ID_WRITABLE(ID_ISAR5_EL1),
3172 	AA32_ID_WRITABLE(ID_MMFR4_EL1),
3173 	AA32_ID_WRITABLE(ID_ISAR6_EL1),
3174 
3175 	/* CRm=3 */
3176 	AA32_ID_WRITABLE(MVFR0_EL1),
3177 	AA32_ID_WRITABLE(MVFR1_EL1),
3178 	AA32_ID_WRITABLE(MVFR2_EL1),
3179 	ID_UNALLOCATED(3,3),
3180 	AA32_ID_WRITABLE(ID_PFR2_EL1),
3181 	ID_HIDDEN(ID_DFR1_EL1),
3182 	AA32_ID_WRITABLE(ID_MMFR5_EL1),
3183 	ID_UNALLOCATED(3,7),
3184 
3185 	/* AArch64 ID registers */
3186 	/* CRm=4 */
3187 	ID_FILTERED(ID_AA64PFR0_EL1, id_aa64pfr0_el1,
3188 		    ~(ID_AA64PFR0_EL1_AMU |
3189 		      ID_AA64PFR0_EL1_MPAM |
3190 		      ID_AA64PFR0_EL1_SVE |
3191 		      ID_AA64PFR0_EL1_AdvSIMD |
3192 		      ID_AA64PFR0_EL1_FP)),
3193 	ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1,
3194 				     ~(ID_AA64PFR1_EL1_PFAR |
3195 				       ID_AA64PFR1_EL1_MTEX |
3196 				       ID_AA64PFR1_EL1_THE |
3197 				       ID_AA64PFR1_EL1_GCS |
3198 				       ID_AA64PFR1_EL1_MTE_frac |
3199 				       ID_AA64PFR1_EL1_NMI |
3200 				       ID_AA64PFR1_EL1_RNDR_trap |
3201 				       ID_AA64PFR1_EL1_SME |
3202 				       ID_AA64PFR1_EL1_RES0 |
3203 				       ID_AA64PFR1_EL1_MPAM_frac |
3204 				       ID_AA64PFR1_EL1_MTE)),
3205 	ID_WRITABLE(ID_AA64PFR2_EL1,
3206 		    ID_AA64PFR2_EL1_FPMR |
3207 		    ID_AA64PFR2_EL1_MTEFAR |
3208 		    ID_AA64PFR2_EL1_MTESTOREONLY),
3209 	ID_UNALLOCATED(4,3),
3210 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
3211 	ID_HIDDEN(ID_AA64SMFR0_EL1),
3212 	ID_UNALLOCATED(4,6),
3213 	ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0),
3214 
3215 	/* CRm=5 */
3216 	/*
3217 	 * Prior to FEAT_Debugv8.9, the architecture defines context-aware
3218 	 * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs).
3219 	 * KVM does not trap + emulate the breakpoint registers, and as such
3220 	 * cannot support a layout that misaligns with the underlying hardware.
3221 	 * While it may be possible to describe a subset that aligns with
3222 	 * hardware, just prevent changes to BRPs and CTX_CMPs altogether for
3223 	 * simplicity.
3224 	 *
3225 	 * See DDI0487K.a, section D2.8.3 Breakpoint types and linking
3226 	 * of breakpoints for more details.
3227 	 */
3228 	ID_FILTERED(ID_AA64DFR0_EL1, id_aa64dfr0_el1,
3229 		    ID_AA64DFR0_EL1_DoubleLock_MASK |
3230 		    ID_AA64DFR0_EL1_WRPs_MASK |
3231 		    ID_AA64DFR0_EL1_PMUVer_MASK |
3232 		    ID_AA64DFR0_EL1_DebugVer_MASK),
3233 	ID_SANITISED(ID_AA64DFR1_EL1),
3234 	ID_UNALLOCATED(5,2),
3235 	ID_UNALLOCATED(5,3),
3236 	ID_HIDDEN(ID_AA64AFR0_EL1),
3237 	ID_HIDDEN(ID_AA64AFR1_EL1),
3238 	ID_UNALLOCATED(5,6),
3239 	ID_UNALLOCATED(5,7),
3240 
3241 	/* CRm=6 */
3242 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
3243 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
3244 					ID_AA64ISAR1_EL1_GPA |
3245 					ID_AA64ISAR1_EL1_API |
3246 					ID_AA64ISAR1_EL1_APA)),
3247 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
3248 					ID_AA64ISAR2_EL1_APA3 |
3249 					ID_AA64ISAR2_EL1_GPA3)),
3250 	ID_WRITABLE(ID_AA64ISAR3_EL1, (ID_AA64ISAR3_EL1_FPRCVT |
3251 				       ID_AA64ISAR3_EL1_LSFE |
3252 				       ID_AA64ISAR3_EL1_FAMINMAX)),
3253 	ID_UNALLOCATED(6,4),
3254 	ID_UNALLOCATED(6,5),
3255 	ID_UNALLOCATED(6,6),
3256 	ID_UNALLOCATED(6,7),
3257 
3258 	/* CRm=7 */
3259 	ID_FILTERED(ID_AA64MMFR0_EL1, id_aa64mmfr0_el1,
3260 				      ~(ID_AA64MMFR0_EL1_RES0 |
3261 					ID_AA64MMFR0_EL1_ASIDBITS)),
3262 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
3263 					ID_AA64MMFR1_EL1_XNX |
3264 					ID_AA64MMFR1_EL1_VH |
3265 					ID_AA64MMFR1_EL1_VMIDBits)),
3266 	ID_FILTERED(ID_AA64MMFR2_EL1,
3267 		    id_aa64mmfr2_el1, ~(ID_AA64MMFR2_EL1_RES0 |
3268 					ID_AA64MMFR2_EL1_EVT |
3269 					ID_AA64MMFR2_EL1_FWB |
3270 					ID_AA64MMFR2_EL1_IDS |
3271 					ID_AA64MMFR2_EL1_NV |
3272 					ID_AA64MMFR2_EL1_CCIDX)),
3273 	ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX	|
3274 				       ID_AA64MMFR3_EL1_SCTLRX	|
3275 				       ID_AA64MMFR3_EL1_S1PIE   |
3276 				       ID_AA64MMFR3_EL1_S1POE)),
3277 	ID_WRITABLE(ID_AA64MMFR4_EL1, ID_AA64MMFR4_EL1_NV_frac),
3278 	ID_UNALLOCATED(7,5),
3279 	ID_UNALLOCATED(7,6),
3280 	ID_UNALLOCATED(7,7),
3281 
3282 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
3283 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
3284 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
3285 	{ SYS_DESC(SYS_SCTLR2_EL1), access_vm_reg, reset_val, SCTLR2_EL1, 0,
3286 	  .visibility = sctlr2_visibility },
3287 
3288 	MTE_REG(RGSR_EL1),
3289 	MTE_REG(GCR_EL1),
3290 
3291 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
3292 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
3293 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
3294 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
3295 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
3296 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
3297 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
3298 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0,
3299 	  .visibility = tcr2_visibility },
3300 
3301 	PTRAUTH_KEY(APIA),
3302 	PTRAUTH_KEY(APIB),
3303 	PTRAUTH_KEY(APDA),
3304 	PTRAUTH_KEY(APDB),
3305 	PTRAUTH_KEY(APGA),
3306 
3307 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
3308 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
3309 
3310 	{ SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
3311 
3312 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
3313 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
3314 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
3315 
3316 	{ SYS_DESC(SYS_ERRIDR_EL1), access_ras },
3317 	{ SYS_DESC(SYS_ERRSELR_EL1), access_ras },
3318 	{ SYS_DESC(SYS_ERXFR_EL1), access_ras },
3319 	{ SYS_DESC(SYS_ERXCTLR_EL1), access_ras },
3320 	{ SYS_DESC(SYS_ERXSTATUS_EL1), access_ras },
3321 	{ SYS_DESC(SYS_ERXADDR_EL1), access_ras },
3322 	{ SYS_DESC(SYS_ERXPFGF_EL1), access_ras },
3323 	{ SYS_DESC(SYS_ERXPFGCTL_EL1), access_ras },
3324 	{ SYS_DESC(SYS_ERXPFGCDN_EL1), access_ras },
3325 	{ SYS_DESC(SYS_ERXMISC0_EL1), access_ras },
3326 	{ SYS_DESC(SYS_ERXMISC1_EL1), access_ras },
3327 	{ SYS_DESC(SYS_ERXMISC2_EL1), access_ras },
3328 	{ SYS_DESC(SYS_ERXMISC3_EL1), access_ras },
3329 
3330 	MTE_REG(TFSR_EL1),
3331 	MTE_REG(TFSRE0_EL1),
3332 
3333 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
3334 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
3335 
3336 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
3337 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
3338 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
3339 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
3340 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
3341 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
3342 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
3343 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
3344 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
3345 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
3346 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
3347 	{ SYS_DESC(SYS_PMSDSFR_EL1), undef_access },
3348 	/* PMBIDR_EL1 is not trapped */
3349 
3350 	{ PMU_SYS_REG(PMINTENSET_EL1),
3351 	  .access = access_pminten, .reg = PMINTENSET_EL1,
3352 	  .get_user = get_pmreg, .set_user = set_pmreg },
3353 	{ PMU_SYS_REG(PMINTENCLR_EL1),
3354 	  .access = access_pminten, .reg = PMINTENSET_EL1,
3355 	  .get_user = get_pmreg, .set_user = set_pmreg },
3356 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
3357 
3358 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
3359 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1,
3360 	  .visibility = s1pie_visibility },
3361 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1,
3362 	  .visibility = s1pie_visibility },
3363 	{ SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1,
3364 	  .visibility = s1poe_visibility },
3365 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
3366 
3367 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
3368 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
3369 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
3370 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
3371 	{ SYS_DESC(SYS_MPAMIDR_EL1), undef_access },
3372 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
3373 
3374 	{ SYS_DESC(SYS_MPAM1_EL1), undef_access },
3375 	{ SYS_DESC(SYS_MPAM0_EL1), undef_access },
3376 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
3377 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
3378 
3379 	{ SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
3380 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
3381 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
3382 	{ SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
3383 	{ SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
3384 	{ SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
3385 	{ SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
3386 	{ SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
3387 	{ SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
3388 	{ SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
3389 	{ SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
3390 	{ SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
3391 	{ SYS_DESC(SYS_ICC_DIR_EL1), access_gic_dir },
3392 	{ SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
3393 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
3394 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
3395 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
3396 	{ SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
3397 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
3398 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
3399 	{ SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
3400 	{ SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
3401 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
3402 	{ SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
3403 	{ SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
3404 
3405 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
3406 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
3407 
3408 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
3409 
3410 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
3411 
3412 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
3413 
3414 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
3415 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
3416 	  .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
3417 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
3418 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
3419 	IMPLEMENTATION_ID(AIDR_EL1, GENMASK_ULL(63, 0)),
3420 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
3421 	ID_FILTERED(CTR_EL0, ctr_el0,
3422 		    CTR_EL0_DIC_MASK |
3423 		    CTR_EL0_IDC_MASK |
3424 		    CTR_EL0_DminLine_MASK |
3425 		    CTR_EL0_L1Ip_MASK |
3426 		    CTR_EL0_IminLine_MASK),
3427 	{ SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility  },
3428 	{ SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility },
3429 
3430 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
3431 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
3432 	{ PMU_SYS_REG(PMCNTENSET_EL0),
3433 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3434 	  .get_user = get_pmreg, .set_user = set_pmreg },
3435 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
3436 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3437 	  .get_user = get_pmreg, .set_user = set_pmreg },
3438 	{ PMU_SYS_REG(PMOVSCLR_EL0),
3439 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
3440 	  .get_user = get_pmreg, .set_user = set_pmreg },
3441 	/*
3442 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
3443 	 * previously (and pointlessly) advertised in the past...
3444 	 */
3445 	{ PMU_SYS_REG(PMSWINC_EL0),
3446 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
3447 	  .access = access_pmswinc, .reset = NULL },
3448 	{ PMU_SYS_REG(PMSELR_EL0),
3449 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
3450 	{ PMU_SYS_REG(PMCEID0_EL0),
3451 	  .access = access_pmceid, .reset = NULL },
3452 	{ PMU_SYS_REG(PMCEID1_EL0),
3453 	  .access = access_pmceid, .reset = NULL },
3454 	{ PMU_SYS_REG(PMCCNTR_EL0),
3455 	  .access = access_pmu_evcntr, .reset = reset_unknown,
3456 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr,
3457 	  .set_user = set_pmu_evcntr },
3458 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
3459 	  .access = access_pmu_evtyper, .reset = NULL },
3460 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
3461 	  .access = access_pmu_evcntr, .reset = NULL },
3462 	/*
3463 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
3464 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
3465 	 */
3466 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
3467 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
3468 	{ PMU_SYS_REG(PMOVSSET_EL0),
3469 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
3470 	  .get_user = get_pmreg, .set_user = set_pmreg },
3471 
3472 	{ SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0,
3473 	  .visibility = s1poe_visibility },
3474 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
3475 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
3476 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
3477 
3478 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
3479 
3480 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
3481 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
3482 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
3483 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
3484 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
3485 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
3486 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
3487 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
3488 	AMU_AMEVCNTR0_EL0(0),
3489 	AMU_AMEVCNTR0_EL0(1),
3490 	AMU_AMEVCNTR0_EL0(2),
3491 	AMU_AMEVCNTR0_EL0(3),
3492 	AMU_AMEVCNTR0_EL0(4),
3493 	AMU_AMEVCNTR0_EL0(5),
3494 	AMU_AMEVCNTR0_EL0(6),
3495 	AMU_AMEVCNTR0_EL0(7),
3496 	AMU_AMEVCNTR0_EL0(8),
3497 	AMU_AMEVCNTR0_EL0(9),
3498 	AMU_AMEVCNTR0_EL0(10),
3499 	AMU_AMEVCNTR0_EL0(11),
3500 	AMU_AMEVCNTR0_EL0(12),
3501 	AMU_AMEVCNTR0_EL0(13),
3502 	AMU_AMEVCNTR0_EL0(14),
3503 	AMU_AMEVCNTR0_EL0(15),
3504 	AMU_AMEVTYPER0_EL0(0),
3505 	AMU_AMEVTYPER0_EL0(1),
3506 	AMU_AMEVTYPER0_EL0(2),
3507 	AMU_AMEVTYPER0_EL0(3),
3508 	AMU_AMEVTYPER0_EL0(4),
3509 	AMU_AMEVTYPER0_EL0(5),
3510 	AMU_AMEVTYPER0_EL0(6),
3511 	AMU_AMEVTYPER0_EL0(7),
3512 	AMU_AMEVTYPER0_EL0(8),
3513 	AMU_AMEVTYPER0_EL0(9),
3514 	AMU_AMEVTYPER0_EL0(10),
3515 	AMU_AMEVTYPER0_EL0(11),
3516 	AMU_AMEVTYPER0_EL0(12),
3517 	AMU_AMEVTYPER0_EL0(13),
3518 	AMU_AMEVTYPER0_EL0(14),
3519 	AMU_AMEVTYPER0_EL0(15),
3520 	AMU_AMEVCNTR1_EL0(0),
3521 	AMU_AMEVCNTR1_EL0(1),
3522 	AMU_AMEVCNTR1_EL0(2),
3523 	AMU_AMEVCNTR1_EL0(3),
3524 	AMU_AMEVCNTR1_EL0(4),
3525 	AMU_AMEVCNTR1_EL0(5),
3526 	AMU_AMEVCNTR1_EL0(6),
3527 	AMU_AMEVCNTR1_EL0(7),
3528 	AMU_AMEVCNTR1_EL0(8),
3529 	AMU_AMEVCNTR1_EL0(9),
3530 	AMU_AMEVCNTR1_EL0(10),
3531 	AMU_AMEVCNTR1_EL0(11),
3532 	AMU_AMEVCNTR1_EL0(12),
3533 	AMU_AMEVCNTR1_EL0(13),
3534 	AMU_AMEVCNTR1_EL0(14),
3535 	AMU_AMEVCNTR1_EL0(15),
3536 	AMU_AMEVTYPER1_EL0(0),
3537 	AMU_AMEVTYPER1_EL0(1),
3538 	AMU_AMEVTYPER1_EL0(2),
3539 	AMU_AMEVTYPER1_EL0(3),
3540 	AMU_AMEVTYPER1_EL0(4),
3541 	AMU_AMEVTYPER1_EL0(5),
3542 	AMU_AMEVTYPER1_EL0(6),
3543 	AMU_AMEVTYPER1_EL0(7),
3544 	AMU_AMEVTYPER1_EL0(8),
3545 	AMU_AMEVTYPER1_EL0(9),
3546 	AMU_AMEVTYPER1_EL0(10),
3547 	AMU_AMEVTYPER1_EL0(11),
3548 	AMU_AMEVTYPER1_EL0(12),
3549 	AMU_AMEVTYPER1_EL0(13),
3550 	AMU_AMEVTYPER1_EL0(14),
3551 	AMU_AMEVTYPER1_EL0(15),
3552 
3553 	{ SYS_DESC(SYS_CNTPCT_EL0), .access = access_arch_timer,
3554 	  .get_user = arch_timer_get_user, .set_user = arch_timer_set_user },
3555 	{ SYS_DESC(SYS_CNTVCT_EL0), .access = access_arch_timer,
3556 	  .get_user = arch_timer_get_user, .set_user = arch_timer_set_user },
3557 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
3558 	{ SYS_DESC(SYS_CNTVCTSS_EL0), access_arch_timer },
3559 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
3560 	TIMER_REG(CNTP_CTL_EL0, NULL),
3561 	TIMER_REG(CNTP_CVAL_EL0, NULL),
3562 
3563 	{ SYS_DESC(SYS_CNTV_TVAL_EL0), access_arch_timer },
3564 	TIMER_REG(CNTV_CTL_EL0, NULL),
3565 	TIMER_REG(CNTV_CVAL_EL0, NULL),
3566 
3567 	/* PMEVCNTRn_EL0 */
3568 	PMU_PMEVCNTR_EL0(0),
3569 	PMU_PMEVCNTR_EL0(1),
3570 	PMU_PMEVCNTR_EL0(2),
3571 	PMU_PMEVCNTR_EL0(3),
3572 	PMU_PMEVCNTR_EL0(4),
3573 	PMU_PMEVCNTR_EL0(5),
3574 	PMU_PMEVCNTR_EL0(6),
3575 	PMU_PMEVCNTR_EL0(7),
3576 	PMU_PMEVCNTR_EL0(8),
3577 	PMU_PMEVCNTR_EL0(9),
3578 	PMU_PMEVCNTR_EL0(10),
3579 	PMU_PMEVCNTR_EL0(11),
3580 	PMU_PMEVCNTR_EL0(12),
3581 	PMU_PMEVCNTR_EL0(13),
3582 	PMU_PMEVCNTR_EL0(14),
3583 	PMU_PMEVCNTR_EL0(15),
3584 	PMU_PMEVCNTR_EL0(16),
3585 	PMU_PMEVCNTR_EL0(17),
3586 	PMU_PMEVCNTR_EL0(18),
3587 	PMU_PMEVCNTR_EL0(19),
3588 	PMU_PMEVCNTR_EL0(20),
3589 	PMU_PMEVCNTR_EL0(21),
3590 	PMU_PMEVCNTR_EL0(22),
3591 	PMU_PMEVCNTR_EL0(23),
3592 	PMU_PMEVCNTR_EL0(24),
3593 	PMU_PMEVCNTR_EL0(25),
3594 	PMU_PMEVCNTR_EL0(26),
3595 	PMU_PMEVCNTR_EL0(27),
3596 	PMU_PMEVCNTR_EL0(28),
3597 	PMU_PMEVCNTR_EL0(29),
3598 	PMU_PMEVCNTR_EL0(30),
3599 	/* PMEVTYPERn_EL0 */
3600 	PMU_PMEVTYPER_EL0(0),
3601 	PMU_PMEVTYPER_EL0(1),
3602 	PMU_PMEVTYPER_EL0(2),
3603 	PMU_PMEVTYPER_EL0(3),
3604 	PMU_PMEVTYPER_EL0(4),
3605 	PMU_PMEVTYPER_EL0(5),
3606 	PMU_PMEVTYPER_EL0(6),
3607 	PMU_PMEVTYPER_EL0(7),
3608 	PMU_PMEVTYPER_EL0(8),
3609 	PMU_PMEVTYPER_EL0(9),
3610 	PMU_PMEVTYPER_EL0(10),
3611 	PMU_PMEVTYPER_EL0(11),
3612 	PMU_PMEVTYPER_EL0(12),
3613 	PMU_PMEVTYPER_EL0(13),
3614 	PMU_PMEVTYPER_EL0(14),
3615 	PMU_PMEVTYPER_EL0(15),
3616 	PMU_PMEVTYPER_EL0(16),
3617 	PMU_PMEVTYPER_EL0(17),
3618 	PMU_PMEVTYPER_EL0(18),
3619 	PMU_PMEVTYPER_EL0(19),
3620 	PMU_PMEVTYPER_EL0(20),
3621 	PMU_PMEVTYPER_EL0(21),
3622 	PMU_PMEVTYPER_EL0(22),
3623 	PMU_PMEVTYPER_EL0(23),
3624 	PMU_PMEVTYPER_EL0(24),
3625 	PMU_PMEVTYPER_EL0(25),
3626 	PMU_PMEVTYPER_EL0(26),
3627 	PMU_PMEVTYPER_EL0(27),
3628 	PMU_PMEVTYPER_EL0(28),
3629 	PMU_PMEVTYPER_EL0(29),
3630 	PMU_PMEVTYPER_EL0(30),
3631 	/*
3632 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
3633 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
3634 	 */
3635 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
3636 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
3637 
3638 	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
3639 	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
3640 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
3641 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
3642 	EL2_REG_FILTERED(SCTLR2_EL2, access_vm_reg, reset_val, 0,
3643 			 sctlr2_el2_visibility),
3644 	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
3645 	EL2_REG(MDCR_EL2, access_mdcr, reset_mdcr, 0),
3646 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
3647 	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
3648 	EL2_REG_VNCR_FILT(HFGRTR_EL2, fgt_visibility),
3649 	EL2_REG_VNCR_FILT(HFGWTR_EL2, fgt_visibility),
3650 	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
3651 	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
3652 
3653 	EL2_REG_FILTERED(ZCR_EL2, access_zcr_el2, reset_val, 0,
3654 			 sve_el2_visibility),
3655 
3656 	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
3657 
3658 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
3659 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
3660 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
3661 	EL2_REG_FILTERED(TCR2_EL2, access_rw, reset_val, TCR2_EL2_RES1,
3662 			 tcr2_el2_visibility),
3663 	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
3664 	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
3665 	EL2_REG_FILTERED(VNCR_EL2, bad_vncr_trap, reset_val, 0,
3666 			 vncr_el2_visibility),
3667 
3668 	{ SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 },
3669 	EL2_REG_VNCR_FILT(HDFGRTR2_EL2, fgt2_visibility),
3670 	EL2_REG_VNCR_FILT(HDFGWTR2_EL2, fgt2_visibility),
3671 	EL2_REG_VNCR_FILT(HFGRTR2_EL2, fgt2_visibility),
3672 	EL2_REG_VNCR_FILT(HFGWTR2_EL2, fgt2_visibility),
3673 	EL2_REG_VNCR_FILT(HDFGRTR_EL2, fgt_visibility),
3674 	EL2_REG_VNCR_FILT(HDFGWTR_EL2, fgt_visibility),
3675 	EL2_REG_VNCR_FILT(HAFGRTR_EL2, fgt_visibility),
3676 	EL2_REG_VNCR_FILT(HFGITR2_EL2, fgt2_visibility),
3677 	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
3678 	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
3679 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
3680 
3681 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
3682 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi },
3683 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi },
3684 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi },
3685 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi },
3686 
3687 	{ SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 },
3688 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
3689 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
3690 	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
3691 	EL2_REG_VNCR(VSESR_EL2, reset_unknown, 0),
3692 	{ SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 },
3693 
3694 	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
3695 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
3696 
3697 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
3698 	EL2_REG_FILTERED(PIRE0_EL2, access_rw, reset_val, 0,
3699 			 s1pie_el2_visibility),
3700 	EL2_REG_FILTERED(PIR_EL2, access_rw, reset_val, 0,
3701 			 s1pie_el2_visibility),
3702 	EL2_REG_FILTERED(POR_EL2, access_rw, reset_val, 0,
3703 			 s1poe_el2_visibility),
3704 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
3705 	{ SYS_DESC(SYS_MPAMHCR_EL2), undef_access },
3706 	{ SYS_DESC(SYS_MPAMVPMV_EL2), undef_access },
3707 	{ SYS_DESC(SYS_MPAM2_EL2), undef_access },
3708 	{ SYS_DESC(SYS_MPAMVPM0_EL2), undef_access },
3709 	{ SYS_DESC(SYS_MPAMVPM1_EL2), undef_access },
3710 	{ SYS_DESC(SYS_MPAMVPM2_EL2), undef_access },
3711 	{ SYS_DESC(SYS_MPAMVPM3_EL2), undef_access },
3712 	{ SYS_DESC(SYS_MPAMVPM4_EL2), undef_access },
3713 	{ SYS_DESC(SYS_MPAMVPM5_EL2), undef_access },
3714 	{ SYS_DESC(SYS_MPAMVPM6_EL2), undef_access },
3715 	{ SYS_DESC(SYS_MPAMVPM7_EL2), undef_access },
3716 
3717 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
3718 	{ SYS_DESC(SYS_RVBAR_EL2), undef_access },
3719 	{ SYS_DESC(SYS_RMR_EL2), undef_access },
3720 	EL2_REG_VNCR(VDISR_EL2, reset_unknown, 0),
3721 
3722 	EL2_REG_VNCR_GICv3(ICH_AP0R0_EL2),
3723 	EL2_REG_VNCR_GICv3(ICH_AP0R1_EL2),
3724 	EL2_REG_VNCR_GICv3(ICH_AP0R2_EL2),
3725 	EL2_REG_VNCR_GICv3(ICH_AP0R3_EL2),
3726 	EL2_REG_VNCR_GICv3(ICH_AP1R0_EL2),
3727 	EL2_REG_VNCR_GICv3(ICH_AP1R1_EL2),
3728 	EL2_REG_VNCR_GICv3(ICH_AP1R2_EL2),
3729 	EL2_REG_VNCR_GICv3(ICH_AP1R3_EL2),
3730 
3731 	{ SYS_DESC(SYS_ICC_SRE_EL2), access_gic_sre },
3732 
3733 	EL2_REG_VNCR_GICv3(ICH_HCR_EL2),
3734 	{ SYS_DESC(SYS_ICH_VTR_EL2), access_gic_vtr },
3735 	{ SYS_DESC(SYS_ICH_MISR_EL2), access_gic_misr },
3736 	{ SYS_DESC(SYS_ICH_EISR_EL2), access_gic_eisr },
3737 	{ SYS_DESC(SYS_ICH_ELRSR_EL2), access_gic_elrsr },
3738 	EL2_REG_VNCR_GICv3(ICH_VMCR_EL2),
3739 
3740 	EL2_REG_VNCR_GICv3(ICH_LR0_EL2),
3741 	EL2_REG_VNCR_GICv3(ICH_LR1_EL2),
3742 	EL2_REG_VNCR_GICv3(ICH_LR2_EL2),
3743 	EL2_REG_VNCR_GICv3(ICH_LR3_EL2),
3744 	EL2_REG_VNCR_GICv3(ICH_LR4_EL2),
3745 	EL2_REG_VNCR_GICv3(ICH_LR5_EL2),
3746 	EL2_REG_VNCR_GICv3(ICH_LR6_EL2),
3747 	EL2_REG_VNCR_GICv3(ICH_LR7_EL2),
3748 	EL2_REG_VNCR_GICv3(ICH_LR8_EL2),
3749 	EL2_REG_VNCR_GICv3(ICH_LR9_EL2),
3750 	EL2_REG_VNCR_GICv3(ICH_LR10_EL2),
3751 	EL2_REG_VNCR_GICv3(ICH_LR11_EL2),
3752 	EL2_REG_VNCR_GICv3(ICH_LR12_EL2),
3753 	EL2_REG_VNCR_GICv3(ICH_LR13_EL2),
3754 	EL2_REG_VNCR_GICv3(ICH_LR14_EL2),
3755 	EL2_REG_VNCR_GICv3(ICH_LR15_EL2),
3756 
3757 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
3758 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
3759 
3760 	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
3761 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
3762 	{ SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer },
3763 	TIMER_REG(CNTHP_CTL_EL2, el2_visibility),
3764 	TIMER_REG(CNTHP_CVAL_EL2, el2_visibility),
3765 
3766 	{ SYS_DESC(SYS_CNTHV_TVAL_EL2), access_arch_timer, .visibility = cnthv_visibility },
3767 	TIMER_REG(CNTHV_CTL_EL2, cnthv_visibility),
3768 	TIMER_REG(CNTHV_CVAL_EL2, cnthv_visibility),
3769 
3770 	{ SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 },
3771 
3772 	{ SYS_DESC(SYS_CNTP_TVAL_EL02), access_arch_timer },
3773 	{ SYS_DESC(SYS_CNTP_CTL_EL02), access_arch_timer },
3774 	{ SYS_DESC(SYS_CNTP_CVAL_EL02), access_arch_timer },
3775 
3776 	{ SYS_DESC(SYS_CNTV_TVAL_EL02), access_arch_timer },
3777 	{ SYS_DESC(SYS_CNTV_CTL_EL02), access_arch_timer },
3778 	{ SYS_DESC(SYS_CNTV_CVAL_EL02), access_arch_timer },
3779 
3780 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
3781 };
3782 
handle_at_s1e01(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3783 static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3784 			    const struct sys_reg_desc *r)
3785 {
3786 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3787 
3788 	if (__kvm_at_s1e01(vcpu, op, p->regval))
3789 		return false;
3790 
3791 	return true;
3792 }
3793 
handle_at_s1e2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3794 static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3795 			   const struct sys_reg_desc *r)
3796 {
3797 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3798 
3799 	/* There is no FGT associated with AT S1E2A :-( */
3800 	if (op == OP_AT_S1E2A &&
3801 	    !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) {
3802 		kvm_inject_undefined(vcpu);
3803 		return false;
3804 	}
3805 
3806 	if (__kvm_at_s1e2(vcpu, op, p->regval))
3807 		return false;
3808 
3809 	return true;
3810 }
3811 
handle_at_s12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3812 static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3813 			  const struct sys_reg_desc *r)
3814 {
3815 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3816 
3817 	if (__kvm_at_s12(vcpu, op, p->regval))
3818 		return false;
3819 
3820 	return true;
3821 }
3822 
kvm_supported_tlbi_s12_op(struct kvm_vcpu * vpcu,u32 instr)3823 static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
3824 {
3825 	struct kvm *kvm = vpcu->kvm;
3826 	u8 CRm = sys_reg_CRm(instr);
3827 
3828 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3829 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3830 		return false;
3831 
3832 	if (CRm == TLBI_CRm_nROS &&
3833 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3834 		return false;
3835 
3836 	return true;
3837 }
3838 
handle_alle1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3839 static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3840 			   const struct sys_reg_desc *r)
3841 {
3842 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3843 
3844 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3845 		return undef_access(vcpu, p, r);
3846 
3847 	write_lock(&vcpu->kvm->mmu_lock);
3848 
3849 	/*
3850 	 * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
3851 	 * corresponding VMIDs.
3852 	 */
3853 	kvm_nested_s2_unmap(vcpu->kvm, true);
3854 
3855 	write_unlock(&vcpu->kvm->mmu_lock);
3856 
3857 	return true;
3858 }
3859 
kvm_supported_tlbi_ipas2_op(struct kvm_vcpu * vpcu,u32 instr)3860 static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
3861 {
3862 	struct kvm *kvm = vpcu->kvm;
3863 	u8 CRm = sys_reg_CRm(instr);
3864 	u8 Op2 = sys_reg_Op2(instr);
3865 
3866 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3867 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3868 		return false;
3869 
3870 	if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
3871 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3872 		return false;
3873 
3874 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
3875 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3876 		return false;
3877 
3878 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
3879 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3880 		return false;
3881 
3882 	return true;
3883 }
3884 
3885 /* Only defined here as this is an internal "abstraction" */
3886 union tlbi_info {
3887 	struct {
3888 		u64	start;
3889 		u64	size;
3890 	} range;
3891 
3892 	struct {
3893 		u64	addr;
3894 	} ipa;
3895 
3896 	struct {
3897 		u64	addr;
3898 		u32	encoding;
3899 	} va;
3900 };
3901 
s2_mmu_unmap_range(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3902 static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
3903 			       const union tlbi_info *info)
3904 {
3905 	/*
3906 	 * The unmap operation is allowed to drop the MMU lock and block, which
3907 	 * means that @mmu could be used for a different context than the one
3908 	 * currently being invalidated.
3909 	 *
3910 	 * This behavior is still safe, as:
3911 	 *
3912 	 *  1) The vCPU(s) that recycled the MMU are responsible for invalidating
3913 	 *     the entire MMU before reusing it, which still honors the intent
3914 	 *     of a TLBI.
3915 	 *
3916 	 *  2) Until the guest TLBI instruction is 'retired' (i.e. increment PC
3917 	 *     and ERET to the guest), other vCPUs are allowed to use stale
3918 	 *     translations.
3919 	 *
3920 	 *  3) Accidentally unmapping an unrelated MMU context is nonfatal, and
3921 	 *     at worst may cause more aborts for shadow stage-2 fills.
3922 	 *
3923 	 * Dropping the MMU lock also implies that shadow stage-2 fills could
3924 	 * happen behind the back of the TLBI. This is still safe, though, as
3925 	 * the L1 needs to put its stage-2 in a consistent state before doing
3926 	 * the TLBI.
3927 	 */
3928 	kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true);
3929 }
3930 
handle_vmalls12e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3931 static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3932 				const struct sys_reg_desc *r)
3933 {
3934 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3935 	u64 limit, vttbr;
3936 
3937 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3938 		return undef_access(vcpu, p, r);
3939 
3940 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3941 	limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
3942 
3943 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3944 				   &(union tlbi_info) {
3945 					   .range = {
3946 						   .start = 0,
3947 						   .size = limit,
3948 					   },
3949 				   },
3950 				   s2_mmu_unmap_range);
3951 
3952 	return true;
3953 }
3954 
handle_ripas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3955 static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3956 			      const struct sys_reg_desc *r)
3957 {
3958 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3959 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3960 	u64 base, range;
3961 
3962 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3963 		return undef_access(vcpu, p, r);
3964 
3965 	/*
3966 	 * Because the shadow S2 structure doesn't necessarily reflect that
3967 	 * of the guest's S2 (different base granule size, for example), we
3968 	 * decide to ignore TTL and only use the described range.
3969 	 */
3970 	base = decode_range_tlbi(p->regval, &range, NULL);
3971 
3972 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3973 				   &(union tlbi_info) {
3974 					   .range = {
3975 						   .start = base,
3976 						   .size = range,
3977 					   },
3978 				   },
3979 				   s2_mmu_unmap_range);
3980 
3981 	return true;
3982 }
3983 
s2_mmu_unmap_ipa(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3984 static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
3985 			     const union tlbi_info *info)
3986 {
3987 	unsigned long max_size;
3988 	u64 base_addr;
3989 
3990 	/*
3991 	 * We drop a number of things from the supplied value:
3992 	 *
3993 	 * - NS bit: we're non-secure only.
3994 	 *
3995 	 * - IPA[51:48]: We don't support 52bit IPA just yet...
3996 	 *
3997 	 * And of course, adjust the IPA to be on an actual address.
3998 	 */
3999 	base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
4000 	max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
4001 	base_addr &= ~(max_size - 1);
4002 
4003 	/*
4004 	 * See comment in s2_mmu_unmap_range() for why this is allowed to
4005 	 * reschedule.
4006 	 */
4007 	kvm_stage2_unmap_range(mmu, base_addr, max_size, true);
4008 }
4009 
handle_ipas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)4010 static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
4011 			     const struct sys_reg_desc *r)
4012 {
4013 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
4014 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
4015 
4016 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
4017 		return undef_access(vcpu, p, r);
4018 
4019 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
4020 				   &(union tlbi_info) {
4021 					   .ipa = {
4022 						   .addr = p->regval,
4023 					   },
4024 				   },
4025 				   s2_mmu_unmap_ipa);
4026 
4027 	return true;
4028 }
4029 
s2_mmu_tlbi_s1e1(struct kvm_s2_mmu * mmu,const union tlbi_info * info)4030 static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
4031 			     const union tlbi_info *info)
4032 {
4033 	WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
4034 }
4035 
handle_tlbi_el2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)4036 static bool handle_tlbi_el2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
4037 			    const struct sys_reg_desc *r)
4038 {
4039 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
4040 
4041 	if (!kvm_supported_tlbi_s1e2_op(vcpu, sys_encoding))
4042 		return undef_access(vcpu, p, r);
4043 
4044 	kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval);
4045 	return true;
4046 }
4047 
handle_tlbi_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)4048 static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
4049 			    const struct sys_reg_desc *r)
4050 {
4051 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
4052 
4053 	/*
4054 	 * If we're here, this is because we've trapped on a EL1 TLBI
4055 	 * instruction that affects the EL1 translation regime while
4056 	 * we're running in a context that doesn't allow us to let the
4057 	 * HW do its thing (aka vEL2):
4058 	 *
4059 	 * - HCR_EL2.E2H == 0 : a non-VHE guest
4060 	 * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
4061 	 *
4062 	 * Another possibility is that we are invalidating the EL2 context
4063 	 * using EL1 instructions, but that we landed here because we need
4064 	 * additional invalidation for structures that are not held in the
4065 	 * CPU TLBs (such as the VNCR pseudo-TLB and its EL2 mapping). In
4066 	 * that case, we are guaranteed that HCR_EL2.{E2H,TGE} == { 1, 1 }
4067 	 * as we don't allow an NV-capable L1 in a nVHE configuration.
4068 	 *
4069 	 * We don't expect these helpers to ever be called when running
4070 	 * in a vEL1 context.
4071 	 */
4072 
4073 	WARN_ON(!vcpu_is_el2(vcpu));
4074 
4075 	if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding))
4076 		return undef_access(vcpu, p, r);
4077 
4078 	if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) {
4079 		kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval);
4080 		return true;
4081 	}
4082 
4083 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm,
4084 				   get_vmid(__vcpu_sys_reg(vcpu, VTTBR_EL2)),
4085 				   &(union tlbi_info) {
4086 					   .va = {
4087 						   .addr = p->regval,
4088 						   .encoding = sys_encoding,
4089 					   },
4090 				   },
4091 				   s2_mmu_tlbi_s1e1);
4092 
4093 	return true;
4094 }
4095 
4096 #define SYS_INSN(insn, access_fn)					\
4097 	{								\
4098 		SYS_DESC(OP_##insn),					\
4099 		.access = (access_fn),					\
4100 	}
4101 
4102 static struct sys_reg_desc sys_insn_descs[] = {
4103 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
4104 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
4105 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
4106 
4107 	SYS_INSN(AT_S1E1R, handle_at_s1e01),
4108 	SYS_INSN(AT_S1E1W, handle_at_s1e01),
4109 	SYS_INSN(AT_S1E0R, handle_at_s1e01),
4110 	SYS_INSN(AT_S1E0W, handle_at_s1e01),
4111 	SYS_INSN(AT_S1E1RP, handle_at_s1e01),
4112 	SYS_INSN(AT_S1E1WP, handle_at_s1e01),
4113 
4114 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
4115 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
4116 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
4117 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
4118 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
4119 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
4120 
4121 	SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
4122 	SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
4123 	SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
4124 	SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
4125 	SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
4126 	SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
4127 
4128 	SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
4129 	SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
4130 	SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
4131 	SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
4132 
4133 	SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
4134 	SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
4135 	SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
4136 	SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
4137 	SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
4138 	SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
4139 
4140 	SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
4141 	SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
4142 	SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
4143 	SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
4144 
4145 	SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
4146 	SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
4147 	SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
4148 	SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
4149 
4150 	SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
4151 	SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
4152 	SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
4153 	SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
4154 	SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
4155 	SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
4156 
4157 	SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
4158 	SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
4159 	SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
4160 	SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
4161 	SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
4162 	SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
4163 
4164 	SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
4165 	SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
4166 	SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
4167 	SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
4168 
4169 	SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
4170 	SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
4171 	SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
4172 	SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
4173 	SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
4174 	SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
4175 
4176 	SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
4177 	SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
4178 	SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
4179 	SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
4180 
4181 	SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
4182 	SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
4183 	SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
4184 	SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
4185 
4186 	SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
4187 	SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
4188 	SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
4189 	SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
4190 	SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
4191 	SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
4192 
4193 	SYS_INSN(AT_S1E2R, handle_at_s1e2),
4194 	SYS_INSN(AT_S1E2W, handle_at_s1e2),
4195 	SYS_INSN(AT_S12E1R, handle_at_s12),
4196 	SYS_INSN(AT_S12E1W, handle_at_s12),
4197 	SYS_INSN(AT_S12E0R, handle_at_s12),
4198 	SYS_INSN(AT_S12E0W, handle_at_s12),
4199 	SYS_INSN(AT_S1E2A, handle_at_s1e2),
4200 
4201 	SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
4202 	SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
4203 	SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
4204 	SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
4205 
4206 	SYS_INSN(TLBI_ALLE2OS, handle_tlbi_el2),
4207 	SYS_INSN(TLBI_VAE2OS, handle_tlbi_el2),
4208 	SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
4209 	SYS_INSN(TLBI_VALE2OS, handle_tlbi_el2),
4210 	SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
4211 
4212 	SYS_INSN(TLBI_RVAE2IS, handle_tlbi_el2),
4213 	SYS_INSN(TLBI_RVALE2IS, handle_tlbi_el2),
4214 	SYS_INSN(TLBI_ALLE2IS, handle_tlbi_el2),
4215 	SYS_INSN(TLBI_VAE2IS, handle_tlbi_el2),
4216 
4217 	SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
4218 
4219 	SYS_INSN(TLBI_VALE2IS, handle_tlbi_el2),
4220 
4221 	SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
4222 	SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
4223 	SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
4224 	SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
4225 	SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
4226 	SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
4227 	SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
4228 	SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
4229 	SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
4230 	SYS_INSN(TLBI_RVAE2OS, handle_tlbi_el2),
4231 	SYS_INSN(TLBI_RVALE2OS, handle_tlbi_el2),
4232 	SYS_INSN(TLBI_RVAE2, handle_tlbi_el2),
4233 	SYS_INSN(TLBI_RVALE2, handle_tlbi_el2),
4234 	SYS_INSN(TLBI_ALLE2, handle_tlbi_el2),
4235 	SYS_INSN(TLBI_VAE2, handle_tlbi_el2),
4236 
4237 	SYS_INSN(TLBI_ALLE1, handle_alle1is),
4238 
4239 	SYS_INSN(TLBI_VALE2, handle_tlbi_el2),
4240 
4241 	SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
4242 
4243 	SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
4244 	SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
4245 	SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
4246 	SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
4247 
4248 	SYS_INSN(TLBI_ALLE2OSNXS, handle_tlbi_el2),
4249 	SYS_INSN(TLBI_VAE2OSNXS, handle_tlbi_el2),
4250 	SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
4251 	SYS_INSN(TLBI_VALE2OSNXS, handle_tlbi_el2),
4252 	SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
4253 
4254 	SYS_INSN(TLBI_RVAE2ISNXS, handle_tlbi_el2),
4255 	SYS_INSN(TLBI_RVALE2ISNXS, handle_tlbi_el2),
4256 	SYS_INSN(TLBI_ALLE2ISNXS, handle_tlbi_el2),
4257 	SYS_INSN(TLBI_VAE2ISNXS, handle_tlbi_el2),
4258 
4259 	SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
4260 	SYS_INSN(TLBI_VALE2ISNXS, handle_tlbi_el2),
4261 	SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
4262 	SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
4263 	SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
4264 	SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
4265 	SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
4266 	SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
4267 	SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
4268 	SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
4269 	SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
4270 	SYS_INSN(TLBI_RVAE2OSNXS, handle_tlbi_el2),
4271 	SYS_INSN(TLBI_RVALE2OSNXS, handle_tlbi_el2),
4272 	SYS_INSN(TLBI_RVAE2NXS, handle_tlbi_el2),
4273 	SYS_INSN(TLBI_RVALE2NXS, handle_tlbi_el2),
4274 	SYS_INSN(TLBI_ALLE2NXS, handle_tlbi_el2),
4275 	SYS_INSN(TLBI_VAE2NXS, handle_tlbi_el2),
4276 	SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
4277 	SYS_INSN(TLBI_VALE2NXS, handle_tlbi_el2),
4278 	SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
4279 };
4280 
trap_dbgdidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)4281 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
4282 			struct sys_reg_params *p,
4283 			const struct sys_reg_desc *r)
4284 {
4285 	if (p->is_write) {
4286 		return ignore_write(vcpu, p);
4287 	} else {
4288 		u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
4289 		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
4290 
4291 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
4292 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
4293 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
4294 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
4295 			     (1 << 15) | (el3 << 14) | (el3 << 12));
4296 		return true;
4297 	}
4298 }
4299 
4300 /*
4301  * AArch32 debug register mappings
4302  *
4303  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
4304  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
4305  *
4306  * None of the other registers share their location, so treat them as
4307  * if they were 64bit.
4308  */
4309 #define DBG_BCR_BVR_WCR_WVR(n)							\
4310 	/* DBGBVRn */								\
4311 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4),			\
4312 	  trap_dbg_wb_reg, NULL, n },						\
4313 	/* DBGBCRn */								\
4314 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_dbg_wb_reg, NULL, n },	\
4315 	/* DBGWVRn */								\
4316 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_dbg_wb_reg, NULL, n },	\
4317 	/* DBGWCRn */								\
4318 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_dbg_wb_reg, NULL, n }
4319 
4320 #define DBGBXVR(n)								\
4321 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1),			\
4322 	  trap_dbg_wb_reg, NULL, n }
4323 
4324 /*
4325  * Trapped cp14 registers. We generally ignore most of the external
4326  * debug, on the principle that they don't really make sense to a
4327  * guest. Revisit this one day, would this principle change.
4328  */
4329 static const struct sys_reg_desc cp14_regs[] = {
4330 	/* DBGDIDR */
4331 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
4332 	/* DBGDTRRXext */
4333 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
4334 
4335 	DBG_BCR_BVR_WCR_WVR(0),
4336 	/* DBGDSCRint */
4337 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
4338 	DBG_BCR_BVR_WCR_WVR(1),
4339 	/* DBGDCCINT */
4340 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
4341 	/* DBGDSCRext */
4342 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
4343 	DBG_BCR_BVR_WCR_WVR(2),
4344 	/* DBGDTR[RT]Xint */
4345 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
4346 	/* DBGDTR[RT]Xext */
4347 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
4348 	DBG_BCR_BVR_WCR_WVR(3),
4349 	DBG_BCR_BVR_WCR_WVR(4),
4350 	DBG_BCR_BVR_WCR_WVR(5),
4351 	/* DBGWFAR */
4352 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
4353 	/* DBGOSECCR */
4354 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
4355 	DBG_BCR_BVR_WCR_WVR(6),
4356 	/* DBGVCR */
4357 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
4358 	DBG_BCR_BVR_WCR_WVR(7),
4359 	DBG_BCR_BVR_WCR_WVR(8),
4360 	DBG_BCR_BVR_WCR_WVR(9),
4361 	DBG_BCR_BVR_WCR_WVR(10),
4362 	DBG_BCR_BVR_WCR_WVR(11),
4363 	DBG_BCR_BVR_WCR_WVR(12),
4364 	DBG_BCR_BVR_WCR_WVR(13),
4365 	DBG_BCR_BVR_WCR_WVR(14),
4366 	DBG_BCR_BVR_WCR_WVR(15),
4367 
4368 	/* DBGDRAR (32bit) */
4369 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
4370 
4371 	DBGBXVR(0),
4372 	/* DBGOSLAR */
4373 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
4374 	DBGBXVR(1),
4375 	/* DBGOSLSR */
4376 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
4377 	DBGBXVR(2),
4378 	DBGBXVR(3),
4379 	/* DBGOSDLR */
4380 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
4381 	DBGBXVR(4),
4382 	/* DBGPRCR */
4383 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
4384 	DBGBXVR(5),
4385 	DBGBXVR(6),
4386 	DBGBXVR(7),
4387 	DBGBXVR(8),
4388 	DBGBXVR(9),
4389 	DBGBXVR(10),
4390 	DBGBXVR(11),
4391 	DBGBXVR(12),
4392 	DBGBXVR(13),
4393 	DBGBXVR(14),
4394 	DBGBXVR(15),
4395 
4396 	/* DBGDSAR (32bit) */
4397 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
4398 
4399 	/* DBGDEVID2 */
4400 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
4401 	/* DBGDEVID1 */
4402 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
4403 	/* DBGDEVID */
4404 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
4405 	/* DBGCLAIMSET */
4406 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
4407 	/* DBGCLAIMCLR */
4408 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
4409 	/* DBGAUTHSTATUS */
4410 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
4411 };
4412 
4413 /* Trapped cp14 64bit registers */
4414 static const struct sys_reg_desc cp14_64_regs[] = {
4415 	/* DBGDRAR (64bit) */
4416 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
4417 
4418 	/* DBGDSAR (64bit) */
4419 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
4420 };
4421 
4422 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
4423 	AA32(_map),							\
4424 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
4425 	.visibility = pmu_visibility
4426 
4427 /* Macro to expand the PMEVCNTRn register */
4428 #define PMU_PMEVCNTR(n)							\
4429 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
4430 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
4431 	  .access = access_pmu_evcntr }
4432 
4433 /* Macro to expand the PMEVTYPERn register */
4434 #define PMU_PMEVTYPER(n)						\
4435 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
4436 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
4437 	  .access = access_pmu_evtyper }
4438 /*
4439  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
4440  * depending on the way they are accessed (as a 32bit or a 64bit
4441  * register).
4442  */
4443 static const struct sys_reg_desc cp15_regs[] = {
4444 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
4445 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
4446 	/* ACTLR */
4447 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
4448 	/* ACTLR2 */
4449 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
4450 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4451 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
4452 	/* TTBCR */
4453 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
4454 	/* TTBCR2 */
4455 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
4456 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
4457 	{ CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
4458 	/* DFSR */
4459 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
4460 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
4461 	/* ADFSR */
4462 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
4463 	/* AIFSR */
4464 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
4465 	/* DFAR */
4466 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
4467 	/* IFAR */
4468 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
4469 
4470 	/*
4471 	 * DC{C,I,CI}SW operations:
4472 	 */
4473 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
4474 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
4475 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4476 
4477 	/* PMU */
4478 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
4479 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
4480 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
4481 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
4482 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
4483 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
4484 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
4485 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
4486 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
4487 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
4488 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
4489 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
4490 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
4491 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
4492 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
4493 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
4494 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
4495 	/* PMMIR */
4496 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
4497 
4498 	/* PRRR/MAIR0 */
4499 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
4500 	/* NMRR/MAIR1 */
4501 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
4502 	/* AMAIR0 */
4503 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
4504 	/* AMAIR1 */
4505 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
4506 
4507 	{ CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
4508 	{ CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
4509 	{ CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
4510 	{ CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
4511 	{ CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
4512 	{ CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
4513 	{ CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
4514 	{ CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
4515 	{ CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
4516 	{ CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
4517 	{ CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
4518 	{ CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
4519 	{ CP15_SYS_DESC(SYS_ICC_DIR_EL1), access_gic_dir },
4520 	{ CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
4521 	{ CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
4522 	{ CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
4523 	{ CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
4524 	{ CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
4525 	{ CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
4526 	{ CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
4527 	{ CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
4528 	{ CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
4529 
4530 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
4531 
4532 	/* Arch Tmers */
4533 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
4534 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
4535 
4536 	/* PMEVCNTRn */
4537 	PMU_PMEVCNTR(0),
4538 	PMU_PMEVCNTR(1),
4539 	PMU_PMEVCNTR(2),
4540 	PMU_PMEVCNTR(3),
4541 	PMU_PMEVCNTR(4),
4542 	PMU_PMEVCNTR(5),
4543 	PMU_PMEVCNTR(6),
4544 	PMU_PMEVCNTR(7),
4545 	PMU_PMEVCNTR(8),
4546 	PMU_PMEVCNTR(9),
4547 	PMU_PMEVCNTR(10),
4548 	PMU_PMEVCNTR(11),
4549 	PMU_PMEVCNTR(12),
4550 	PMU_PMEVCNTR(13),
4551 	PMU_PMEVCNTR(14),
4552 	PMU_PMEVCNTR(15),
4553 	PMU_PMEVCNTR(16),
4554 	PMU_PMEVCNTR(17),
4555 	PMU_PMEVCNTR(18),
4556 	PMU_PMEVCNTR(19),
4557 	PMU_PMEVCNTR(20),
4558 	PMU_PMEVCNTR(21),
4559 	PMU_PMEVCNTR(22),
4560 	PMU_PMEVCNTR(23),
4561 	PMU_PMEVCNTR(24),
4562 	PMU_PMEVCNTR(25),
4563 	PMU_PMEVCNTR(26),
4564 	PMU_PMEVCNTR(27),
4565 	PMU_PMEVCNTR(28),
4566 	PMU_PMEVCNTR(29),
4567 	PMU_PMEVCNTR(30),
4568 	/* PMEVTYPERn */
4569 	PMU_PMEVTYPER(0),
4570 	PMU_PMEVTYPER(1),
4571 	PMU_PMEVTYPER(2),
4572 	PMU_PMEVTYPER(3),
4573 	PMU_PMEVTYPER(4),
4574 	PMU_PMEVTYPER(5),
4575 	PMU_PMEVTYPER(6),
4576 	PMU_PMEVTYPER(7),
4577 	PMU_PMEVTYPER(8),
4578 	PMU_PMEVTYPER(9),
4579 	PMU_PMEVTYPER(10),
4580 	PMU_PMEVTYPER(11),
4581 	PMU_PMEVTYPER(12),
4582 	PMU_PMEVTYPER(13),
4583 	PMU_PMEVTYPER(14),
4584 	PMU_PMEVTYPER(15),
4585 	PMU_PMEVTYPER(16),
4586 	PMU_PMEVTYPER(17),
4587 	PMU_PMEVTYPER(18),
4588 	PMU_PMEVTYPER(19),
4589 	PMU_PMEVTYPER(20),
4590 	PMU_PMEVTYPER(21),
4591 	PMU_PMEVTYPER(22),
4592 	PMU_PMEVTYPER(23),
4593 	PMU_PMEVTYPER(24),
4594 	PMU_PMEVTYPER(25),
4595 	PMU_PMEVTYPER(26),
4596 	PMU_PMEVTYPER(27),
4597 	PMU_PMEVTYPER(28),
4598 	PMU_PMEVTYPER(29),
4599 	PMU_PMEVTYPER(30),
4600 	/* PMCCFILTR */
4601 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
4602 
4603 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
4604 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
4605 
4606 	/* CCSIDR2 */
4607 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
4608 
4609 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
4610 };
4611 
4612 static const struct sys_reg_desc cp15_64_regs[] = {
4613 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4614 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
4615 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
4616 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
4617 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
4618 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
4619 	{ SYS_DESC(SYS_AARCH32_CNTVCT),	      access_arch_timer },
4620 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
4621 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
4622 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
4623 	{ SYS_DESC(SYS_AARCH32_CNTVCTSS),     access_arch_timer },
4624 };
4625 
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool reset_check)4626 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
4627 			       bool reset_check)
4628 {
4629 	unsigned int i;
4630 
4631 	for (i = 0; i < n; i++) {
4632 		if (reset_check && table[i].reg && !table[i].reset) {
4633 			kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
4634 				&table[i], i, table[i].name);
4635 			return false;
4636 		}
4637 
4638 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
4639 			kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
4640 				&table[i], i, table[i - 1].name, table[i].name);
4641 			return false;
4642 		}
4643 	}
4644 
4645 	return true;
4646 }
4647 
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)4648 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
4649 {
4650 	kvm_inject_undefined(vcpu);
4651 	return 1;
4652 }
4653 
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)4654 static void perform_access(struct kvm_vcpu *vcpu,
4655 			   struct sys_reg_params *params,
4656 			   const struct sys_reg_desc *r)
4657 {
4658 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
4659 
4660 	/* Check for regs disabled by runtime config */
4661 	if (sysreg_hidden(vcpu, r)) {
4662 		kvm_inject_undefined(vcpu);
4663 		return;
4664 	}
4665 
4666 	/*
4667 	 * Not having an accessor means that we have configured a trap
4668 	 * that we don't know how to handle. This certainly qualifies
4669 	 * as a gross bug that should be fixed right away.
4670 	 */
4671 	BUG_ON(!r->access);
4672 
4673 	/* Skip instruction if instructed so */
4674 	if (likely(r->access(vcpu, params, r)))
4675 		kvm_incr_pc(vcpu);
4676 }
4677 
4678 /*
4679  * emulate_cp --  tries to match a sys_reg access in a handling table, and
4680  *                call the corresponding trap handler.
4681  *
4682  * @params: pointer to the descriptor of the access
4683  * @table: array of trap descriptors
4684  * @num: size of the trap descriptor array
4685  *
4686  * Return true if the access has been handled, false if not.
4687  */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)4688 static bool emulate_cp(struct kvm_vcpu *vcpu,
4689 		       struct sys_reg_params *params,
4690 		       const struct sys_reg_desc *table,
4691 		       size_t num)
4692 {
4693 	const struct sys_reg_desc *r;
4694 
4695 	if (!table)
4696 		return false;	/* Not handled */
4697 
4698 	r = find_reg(params, table, num);
4699 
4700 	if (r) {
4701 		perform_access(vcpu, params, r);
4702 		return true;
4703 	}
4704 
4705 	/* Not handled */
4706 	return false;
4707 }
4708 
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4709 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
4710 				struct sys_reg_params *params)
4711 {
4712 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
4713 	int cp = -1;
4714 
4715 	switch (esr_ec) {
4716 	case ESR_ELx_EC_CP15_32:
4717 	case ESR_ELx_EC_CP15_64:
4718 		cp = 15;
4719 		break;
4720 	case ESR_ELx_EC_CP14_MR:
4721 	case ESR_ELx_EC_CP14_64:
4722 		cp = 14;
4723 		break;
4724 	default:
4725 		WARN_ON(1);
4726 	}
4727 
4728 	print_sys_reg_msg(params,
4729 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
4730 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4731 	kvm_inject_undefined(vcpu);
4732 }
4733 
4734 /**
4735  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
4736  * @vcpu: The VCPU pointer
4737  * @global: &struct sys_reg_desc
4738  * @nr_global: size of the @global array
4739  */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)4740 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
4741 			    const struct sys_reg_desc *global,
4742 			    size_t nr_global)
4743 {
4744 	struct sys_reg_params params;
4745 	u64 esr = kvm_vcpu_get_esr(vcpu);
4746 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4747 	int Rt2 = (esr >> 10) & 0x1f;
4748 
4749 	params.CRm = (esr >> 1) & 0xf;
4750 	params.is_write = ((esr & 1) == 0);
4751 
4752 	params.Op0 = 0;
4753 	params.Op1 = (esr >> 16) & 0xf;
4754 	params.Op2 = 0;
4755 	params.CRn = 0;
4756 
4757 	/*
4758 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
4759 	 * backends between AArch32 and AArch64, we get away with it.
4760 	 */
4761 	if (params.is_write) {
4762 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
4763 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
4764 	}
4765 
4766 	/*
4767 	 * If the table contains a handler, handle the
4768 	 * potential register operation in the case of a read and return
4769 	 * with success.
4770 	 */
4771 	if (emulate_cp(vcpu, &params, global, nr_global)) {
4772 		/* Split up the value between registers for the read side */
4773 		if (!params.is_write) {
4774 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
4775 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
4776 		}
4777 
4778 		return 1;
4779 	}
4780 
4781 	unhandled_cp_access(vcpu, &params);
4782 	return 1;
4783 }
4784 
4785 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
4786 
4787 /*
4788  * The CP10 ID registers are architecturally mapped to AArch64 feature
4789  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
4790  * from AArch32.
4791  */
kvm_esr_cp10_id_to_sys64(u64 esr,struct sys_reg_params * params)4792 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
4793 {
4794 	u8 reg_id = (esr >> 10) & 0xf;
4795 	bool valid;
4796 
4797 	params->is_write = ((esr & 1) == 0);
4798 	params->Op0 = 3;
4799 	params->Op1 = 0;
4800 	params->CRn = 0;
4801 	params->CRm = 3;
4802 
4803 	/* CP10 ID registers are read-only */
4804 	valid = !params->is_write;
4805 
4806 	switch (reg_id) {
4807 	/* MVFR0 */
4808 	case 0b0111:
4809 		params->Op2 = 0;
4810 		break;
4811 	/* MVFR1 */
4812 	case 0b0110:
4813 		params->Op2 = 1;
4814 		break;
4815 	/* MVFR2 */
4816 	case 0b0101:
4817 		params->Op2 = 2;
4818 		break;
4819 	default:
4820 		valid = false;
4821 	}
4822 
4823 	if (valid)
4824 		return true;
4825 
4826 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
4827 		      str_write_read(params->is_write), reg_id);
4828 	return false;
4829 }
4830 
4831 /**
4832  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
4833  *			  VFP Register' from AArch32.
4834  * @vcpu: The vCPU pointer
4835  *
4836  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
4837  * Work out the correct AArch64 system register encoding and reroute to the
4838  * AArch64 system register emulation.
4839  */
kvm_handle_cp10_id(struct kvm_vcpu * vcpu)4840 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
4841 {
4842 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4843 	u64 esr = kvm_vcpu_get_esr(vcpu);
4844 	struct sys_reg_params params;
4845 
4846 	/* UNDEF on any unhandled register access */
4847 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
4848 		kvm_inject_undefined(vcpu);
4849 		return 1;
4850 	}
4851 
4852 	if (emulate_sys_reg(vcpu, &params))
4853 		vcpu_set_reg(vcpu, Rt, params.regval);
4854 
4855 	return 1;
4856 }
4857 
4858 /**
4859  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
4860  *			       CRn=0, which corresponds to the AArch32 feature
4861  *			       registers.
4862  * @vcpu: the vCPU pointer
4863  * @params: the system register access parameters.
4864  *
4865  * Our cp15 system register tables do not enumerate the AArch32 feature
4866  * registers. Conveniently, our AArch64 table does, and the AArch32 system
4867  * register encoding can be trivially remapped into the AArch64 for the feature
4868  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
4869  *
4870  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
4871  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
4872  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
4873  * treat undefined registers in this range as RAZ.
4874  */
kvm_emulate_cp15_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4875 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
4876 				   struct sys_reg_params *params)
4877 {
4878 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4879 
4880 	/* Treat impossible writes to RO registers as UNDEFINED */
4881 	if (params->is_write) {
4882 		unhandled_cp_access(vcpu, params);
4883 		return 1;
4884 	}
4885 
4886 	params->Op0 = 3;
4887 
4888 	/*
4889 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
4890 	 * Avoid conflicting with future expansion of AArch64 feature registers
4891 	 * and simply treat them as RAZ here.
4892 	 */
4893 	if (params->CRm > 3)
4894 		params->regval = 0;
4895 	else if (!emulate_sys_reg(vcpu, params))
4896 		return 1;
4897 
4898 	vcpu_set_reg(vcpu, Rt, params->regval);
4899 	return 1;
4900 }
4901 
4902 /**
4903  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
4904  * @vcpu: The VCPU pointer
4905  * @params: &struct sys_reg_params
4906  * @global: &struct sys_reg_desc
4907  * @nr_global: size of the @global array
4908  */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * global,size_t nr_global)4909 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
4910 			    struct sys_reg_params *params,
4911 			    const struct sys_reg_desc *global,
4912 			    size_t nr_global)
4913 {
4914 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
4915 
4916 	params->regval = vcpu_get_reg(vcpu, Rt);
4917 
4918 	if (emulate_cp(vcpu, params, global, nr_global)) {
4919 		if (!params->is_write)
4920 			vcpu_set_reg(vcpu, Rt, params->regval);
4921 		return 1;
4922 	}
4923 
4924 	unhandled_cp_access(vcpu, params);
4925 	return 1;
4926 }
4927 
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)4928 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
4929 {
4930 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
4931 }
4932 
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)4933 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
4934 {
4935 	struct sys_reg_params params;
4936 
4937 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4938 
4939 	/*
4940 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
4941 	 * system register table. Registers in the ID range where CRm=0 are
4942 	 * excluded from this scheme as they do not trivially map into AArch64
4943 	 * system register encodings, except for AIDR/REVIDR.
4944 	 */
4945 	if (params.Op1 == 0 && params.CRn == 0 &&
4946 	    (params.CRm || params.Op2 == 6 /* REVIDR */))
4947 		return kvm_emulate_cp15_id_reg(vcpu, &params);
4948 	if (params.Op1 == 1 && params.CRn == 0 &&
4949 	    params.CRm == 0 && params.Op2 == 7 /* AIDR */)
4950 		return kvm_emulate_cp15_id_reg(vcpu, &params);
4951 
4952 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
4953 }
4954 
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)4955 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
4956 {
4957 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
4958 }
4959 
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)4960 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
4961 {
4962 	struct sys_reg_params params;
4963 
4964 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4965 
4966 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
4967 }
4968 
4969 /**
4970  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
4971  * @vcpu: The VCPU pointer
4972  * @params: Decoded system register parameters
4973  *
4974  * Return: true if the system register access was successful, false otherwise.
4975  */
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4976 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
4977 			    struct sys_reg_params *params)
4978 {
4979 	const struct sys_reg_desc *r;
4980 
4981 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4982 	if (likely(r)) {
4983 		perform_access(vcpu, params, r);
4984 		return true;
4985 	}
4986 
4987 	print_sys_reg_msg(params,
4988 			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
4989 			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4990 	kvm_inject_undefined(vcpu);
4991 
4992 	return false;
4993 }
4994 
idregs_debug_find(struct kvm * kvm,u8 pos)4995 static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
4996 {
4997 	unsigned long i, idreg_idx = 0;
4998 
4999 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5000 		const struct sys_reg_desc *r = &sys_reg_descs[i];
5001 
5002 		if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
5003 			continue;
5004 
5005 		if (idreg_idx == pos)
5006 			return r;
5007 
5008 		idreg_idx++;
5009 	}
5010 
5011 	return NULL;
5012 }
5013 
idregs_debug_start(struct seq_file * s,loff_t * pos)5014 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
5015 {
5016 	struct kvm *kvm = s->private;
5017 	u8 *iter;
5018 
5019 	mutex_lock(&kvm->arch.config_lock);
5020 
5021 	iter = &kvm->arch.idreg_debugfs_iter;
5022 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
5023 	    *iter == (u8)~0) {
5024 		*iter = *pos;
5025 		if (!idregs_debug_find(kvm, *iter))
5026 			iter = NULL;
5027 	} else {
5028 		iter = ERR_PTR(-EBUSY);
5029 	}
5030 
5031 	mutex_unlock(&kvm->arch.config_lock);
5032 
5033 	return iter;
5034 }
5035 
idregs_debug_next(struct seq_file * s,void * v,loff_t * pos)5036 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
5037 {
5038 	struct kvm *kvm = s->private;
5039 
5040 	(*pos)++;
5041 
5042 	if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
5043 		kvm->arch.idreg_debugfs_iter++;
5044 
5045 		return &kvm->arch.idreg_debugfs_iter;
5046 	}
5047 
5048 	return NULL;
5049 }
5050 
idregs_debug_stop(struct seq_file * s,void * v)5051 static void idregs_debug_stop(struct seq_file *s, void *v)
5052 {
5053 	struct kvm *kvm = s->private;
5054 
5055 	if (IS_ERR(v))
5056 		return;
5057 
5058 	mutex_lock(&kvm->arch.config_lock);
5059 
5060 	kvm->arch.idreg_debugfs_iter = ~0;
5061 
5062 	mutex_unlock(&kvm->arch.config_lock);
5063 }
5064 
idregs_debug_show(struct seq_file * s,void * v)5065 static int idregs_debug_show(struct seq_file *s, void *v)
5066 {
5067 	const struct sys_reg_desc *desc;
5068 	struct kvm *kvm = s->private;
5069 
5070 	desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
5071 
5072 	if (!desc->name)
5073 		return 0;
5074 
5075 	seq_printf(s, "%20s:\t%016llx\n",
5076 		   desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
5077 
5078 	return 0;
5079 }
5080 
5081 static const struct seq_operations idregs_debug_sops = {
5082 	.start	= idregs_debug_start,
5083 	.next	= idregs_debug_next,
5084 	.stop	= idregs_debug_stop,
5085 	.show	= idregs_debug_show,
5086 };
5087 
5088 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
5089 
kvm_sys_regs_create_debugfs(struct kvm * kvm)5090 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
5091 {
5092 	kvm->arch.idreg_debugfs_iter = ~0;
5093 
5094 	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
5095 			    &idregs_debug_fops);
5096 }
5097 
reset_vm_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)5098 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
5099 {
5100 	u32 id = reg_to_encoding(reg);
5101 	struct kvm *kvm = vcpu->kvm;
5102 
5103 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
5104 		return;
5105 
5106 	kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
5107 }
5108 
reset_vcpu_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)5109 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
5110 				  const struct sys_reg_desc *reg)
5111 {
5112 	if (kvm_vcpu_initialized(vcpu))
5113 		return;
5114 
5115 	reg->reset(vcpu, reg);
5116 }
5117 
5118 /**
5119  * kvm_reset_sys_regs - sets system registers to reset value
5120  * @vcpu: The VCPU pointer
5121  *
5122  * This function finds the right table above and sets the registers on the
5123  * virtual CPU struct to their architecturally defined reset values.
5124  */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)5125 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
5126 {
5127 	struct kvm *kvm = vcpu->kvm;
5128 	unsigned long i;
5129 
5130 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5131 		const struct sys_reg_desc *r = &sys_reg_descs[i];
5132 
5133 		if (!r->reset)
5134 			continue;
5135 
5136 		if (is_vm_ftr_id_reg(reg_to_encoding(r)))
5137 			reset_vm_ftr_id_reg(vcpu, r);
5138 		else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
5139 			reset_vcpu_ftr_id_reg(vcpu, r);
5140 		else
5141 			r->reset(vcpu, r);
5142 
5143 		if (r->reg >= __SANITISED_REG_START__ && r->reg < NR_SYS_REGS)
5144 			__vcpu_rmw_sys_reg(vcpu, r->reg, |=, 0);
5145 	}
5146 
5147 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
5148 
5149 	if (kvm_vcpu_has_pmu(vcpu))
5150 		kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
5151 }
5152 
5153 /**
5154  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
5155  *			 trap on a guest execution
5156  * @vcpu: The VCPU pointer
5157  */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)5158 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
5159 {
5160 	const struct sys_reg_desc *desc = NULL;
5161 	struct sys_reg_params params;
5162 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
5163 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
5164 	int sr_idx;
5165 
5166 	trace_kvm_handle_sys_reg(esr);
5167 
5168 	if (triage_sysreg_trap(vcpu, &sr_idx))
5169 		return 1;
5170 
5171 	params = esr_sys64_to_params(esr);
5172 	params.regval = vcpu_get_reg(vcpu, Rt);
5173 
5174 	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
5175 	if (params.Op0 == 2 || params.Op0 == 3)
5176 		desc = &sys_reg_descs[sr_idx];
5177 	else
5178 		desc = &sys_insn_descs[sr_idx];
5179 
5180 	perform_access(vcpu, &params, desc);
5181 
5182 	/* Read from system register? */
5183 	if (!params.is_write &&
5184 	    (params.Op0 == 2 || params.Op0 == 3))
5185 		vcpu_set_reg(vcpu, Rt, params.regval);
5186 
5187 	return 1;
5188 }
5189 
5190 /******************************************************************************
5191  * Userspace API
5192  *****************************************************************************/
5193 
index_to_params(u64 id,struct sys_reg_params * params)5194 static bool index_to_params(u64 id, struct sys_reg_params *params)
5195 {
5196 	switch (id & KVM_REG_SIZE_MASK) {
5197 	case KVM_REG_SIZE_U64:
5198 		/* Any unused index bits means it's not valid. */
5199 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
5200 			      | KVM_REG_ARM_COPROC_MASK
5201 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
5202 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
5203 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
5204 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
5205 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
5206 			return false;
5207 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
5208 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
5209 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
5210 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
5211 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
5212 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
5213 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
5214 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
5215 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
5216 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
5217 		return true;
5218 	default:
5219 		return false;
5220 	}
5221 }
5222 
get_reg_by_id(u64 id,const struct sys_reg_desc table[],unsigned int num)5223 const struct sys_reg_desc *get_reg_by_id(u64 id,
5224 					 const struct sys_reg_desc table[],
5225 					 unsigned int num)
5226 {
5227 	struct sys_reg_params params;
5228 
5229 	if (!index_to_params(id, &params))
5230 		return NULL;
5231 
5232 	return find_reg(&params, table, num);
5233 }
5234 
5235 /* Decode an index value, and find the sys_reg_desc entry. */
5236 static const struct sys_reg_desc *
id_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id,const struct sys_reg_desc table[],unsigned int num)5237 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
5238 		   const struct sys_reg_desc table[], unsigned int num)
5239 
5240 {
5241 	const struct sys_reg_desc *r;
5242 
5243 	/* We only do sys_reg for now. */
5244 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
5245 		return NULL;
5246 
5247 	r = get_reg_by_id(id, table, num);
5248 
5249 	/* Not saved in the sys_reg array and not otherwise accessible? */
5250 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
5251 		r = NULL;
5252 
5253 	return r;
5254 }
5255 
demux_c15_get(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)5256 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
5257 {
5258 	u32 val;
5259 	u32 __user *uval = uaddr;
5260 
5261 	/* Fail if we have unknown bits set. */
5262 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
5263 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
5264 		return -ENOENT;
5265 
5266 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
5267 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
5268 		if (KVM_REG_SIZE(id) != 4)
5269 			return -ENOENT;
5270 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
5271 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
5272 		if (val >= CSSELR_MAX)
5273 			return -ENOENT;
5274 
5275 		return put_user(get_ccsidr(vcpu, val), uval);
5276 	default:
5277 		return -ENOENT;
5278 	}
5279 }
5280 
demux_c15_set(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)5281 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
5282 {
5283 	u32 val, newval;
5284 	u32 __user *uval = uaddr;
5285 
5286 	/* Fail if we have unknown bits set. */
5287 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
5288 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
5289 		return -ENOENT;
5290 
5291 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
5292 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
5293 		if (KVM_REG_SIZE(id) != 4)
5294 			return -ENOENT;
5295 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
5296 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
5297 		if (val >= CSSELR_MAX)
5298 			return -ENOENT;
5299 
5300 		if (get_user(newval, uval))
5301 			return -EFAULT;
5302 
5303 		return set_ccsidr(vcpu, val, newval);
5304 	default:
5305 		return -ENOENT;
5306 	}
5307 }
5308 
kvm_one_reg_to_id(const struct kvm_one_reg * reg)5309 static u64 kvm_one_reg_to_id(const struct kvm_one_reg *reg)
5310 {
5311 	switch(reg->id) {
5312 	case KVM_REG_ARM_TIMER_CVAL:
5313 		return TO_ARM64_SYS_REG(CNTV_CVAL_EL0);
5314 	case KVM_REG_ARM_TIMER_CNT:
5315 		return TO_ARM64_SYS_REG(CNTVCT_EL0);
5316 	default:
5317 		return reg->id;
5318 	}
5319 }
5320 
kvm_sys_reg_get_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)5321 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
5322 			 const struct sys_reg_desc table[], unsigned int num)
5323 {
5324 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
5325 	const struct sys_reg_desc *r;
5326 	u64 id = kvm_one_reg_to_id(reg);
5327 	u64 val;
5328 	int ret;
5329 
5330 	r = id_to_sys_reg_desc(vcpu, id, table, num);
5331 	if (!r || sysreg_hidden(vcpu, r))
5332 		return -ENOENT;
5333 
5334 	if (r->get_user) {
5335 		ret = (r->get_user)(vcpu, r, &val);
5336 	} else {
5337 		val = __vcpu_sys_reg(vcpu, r->reg);
5338 		ret = 0;
5339 	}
5340 
5341 	if (!ret)
5342 		ret = put_user(val, uaddr);
5343 
5344 	return ret;
5345 }
5346 
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)5347 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
5348 {
5349 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
5350 
5351 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
5352 		return demux_c15_get(vcpu, reg->id, uaddr);
5353 
5354 	return kvm_sys_reg_get_user(vcpu, reg,
5355 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
5356 }
5357 
kvm_sys_reg_set_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)5358 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
5359 			 const struct sys_reg_desc table[], unsigned int num)
5360 {
5361 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
5362 	const struct sys_reg_desc *r;
5363 	u64 id = kvm_one_reg_to_id(reg);
5364 	u64 val;
5365 	int ret;
5366 
5367 	if (get_user(val, uaddr))
5368 		return -EFAULT;
5369 
5370 	r = id_to_sys_reg_desc(vcpu, id, table, num);
5371 	if (!r || sysreg_hidden(vcpu, r))
5372 		return -ENOENT;
5373 
5374 	if (sysreg_user_write_ignore(vcpu, r))
5375 		return 0;
5376 
5377 	if (r->set_user) {
5378 		ret = (r->set_user)(vcpu, r, val);
5379 	} else {
5380 		__vcpu_assign_sys_reg(vcpu, r->reg, val);
5381 		ret = 0;
5382 	}
5383 
5384 	return ret;
5385 }
5386 
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)5387 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
5388 {
5389 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
5390 
5391 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
5392 		return demux_c15_set(vcpu, reg->id, uaddr);
5393 
5394 	return kvm_sys_reg_set_user(vcpu, reg,
5395 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
5396 }
5397 
num_demux_regs(void)5398 static unsigned int num_demux_regs(void)
5399 {
5400 	return CSSELR_MAX;
5401 }
5402 
write_demux_regids(u64 __user * uindices)5403 static int write_demux_regids(u64 __user *uindices)
5404 {
5405 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
5406 	unsigned int i;
5407 
5408 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
5409 	for (i = 0; i < CSSELR_MAX; i++) {
5410 		if (put_user(val | i, uindices))
5411 			return -EFAULT;
5412 		uindices++;
5413 	}
5414 	return 0;
5415 }
5416 
sys_reg_to_index(const struct sys_reg_desc * reg)5417 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
5418 {
5419 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
5420 		KVM_REG_ARM64_SYSREG |
5421 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
5422 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
5423 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
5424 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
5425 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
5426 }
5427 
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)5428 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
5429 {
5430 	u64 idx;
5431 
5432 	if (!*uind)
5433 		return true;
5434 
5435 	switch (reg_to_encoding(reg)) {
5436 	case SYS_CNTV_CVAL_EL0:
5437 		idx = KVM_REG_ARM_TIMER_CVAL;
5438 		break;
5439 	case SYS_CNTVCT_EL0:
5440 		idx = KVM_REG_ARM_TIMER_CNT;
5441 		break;
5442 	default:
5443 		idx = sys_reg_to_index(reg);
5444 	}
5445 
5446 	if (put_user(idx, *uind))
5447 		return false;
5448 
5449 	(*uind)++;
5450 	return true;
5451 }
5452 
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)5453 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
5454 			    const struct sys_reg_desc *rd,
5455 			    u64 __user **uind,
5456 			    unsigned int *total)
5457 {
5458 	/*
5459 	 * Ignore registers we trap but don't save,
5460 	 * and for which no custom user accessor is provided.
5461 	 */
5462 	if (!(rd->reg || rd->get_user))
5463 		return 0;
5464 
5465 	if (sysreg_hidden(vcpu, rd))
5466 		return 0;
5467 
5468 	if (!copy_reg_to_user(rd, uind))
5469 		return -EFAULT;
5470 
5471 	(*total)++;
5472 	return 0;
5473 }
5474 
5475 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)5476 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
5477 {
5478 	const struct sys_reg_desc *i2, *end2;
5479 	unsigned int total = 0;
5480 	int err;
5481 
5482 	i2 = sys_reg_descs;
5483 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
5484 
5485 	while (i2 != end2) {
5486 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
5487 		if (err)
5488 			return err;
5489 	}
5490 	return total;
5491 }
5492 
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)5493 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
5494 {
5495 	return num_demux_regs()
5496 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
5497 }
5498 
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)5499 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
5500 {
5501 	int err;
5502 
5503 	err = walk_sys_regs(vcpu, uindices);
5504 	if (err < 0)
5505 		return err;
5506 	uindices += err;
5507 
5508 	return write_demux_regids(uindices);
5509 }
5510 
5511 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
5512 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
5513 		sys_reg_Op1(r),					\
5514 		sys_reg_CRn(r),					\
5515 		sys_reg_CRm(r),					\
5516 		sys_reg_Op2(r))
5517 
kvm_vm_ioctl_get_reg_writable_masks(struct kvm * kvm,struct reg_mask_range * range)5518 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
5519 {
5520 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
5521 	u64 __user *masks = (u64 __user *)range->addr;
5522 
5523 	/* Only feature id range is supported, reserved[13] must be zero. */
5524 	if (range->range ||
5525 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
5526 		return -EINVAL;
5527 
5528 	/* Wipe the whole thing first */
5529 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
5530 		return -EFAULT;
5531 
5532 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5533 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
5534 		u32 encoding = reg_to_encoding(reg);
5535 		u64 val;
5536 
5537 		if (!is_feature_id_reg(encoding) || !reg->set_user)
5538 			continue;
5539 
5540 		if (!reg->val ||
5541 		    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
5542 			continue;
5543 		}
5544 		val = reg->val;
5545 
5546 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
5547 			return -EFAULT;
5548 	}
5549 
5550 	return 0;
5551 }
5552 
vcpu_set_hcr(struct kvm_vcpu * vcpu)5553 static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
5554 {
5555 	struct kvm *kvm = vcpu->kvm;
5556 
5557 	if (has_vhe() || has_hvhe())
5558 		vcpu->arch.hcr_el2 |= HCR_E2H;
5559 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
5560 		/* route synchronous external abort exceptions to EL2 */
5561 		vcpu->arch.hcr_el2 |= HCR_TEA;
5562 		/* trap error record accesses */
5563 		vcpu->arch.hcr_el2 |= HCR_TERR;
5564 	}
5565 
5566 	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
5567 		vcpu->arch.hcr_el2 |= HCR_FWB;
5568 
5569 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
5570 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
5571 	    kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
5572 		vcpu->arch.hcr_el2 |= HCR_TID4;
5573 	else
5574 		vcpu->arch.hcr_el2 |= HCR_TID2;
5575 
5576 	if (vcpu_el1_is_32bit(vcpu))
5577 		vcpu->arch.hcr_el2 &= ~HCR_RW;
5578 
5579 	if (kvm_has_mte(vcpu->kvm))
5580 		vcpu->arch.hcr_el2 |= HCR_ATA;
5581 
5582 	/*
5583 	 * In the absence of FGT, we cannot independently trap TLBI
5584 	 * Range instructions. This isn't great, but trapping all
5585 	 * TLBIs would be far worse. Live with it...
5586 	 */
5587 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5588 		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
5589 }
5590 
kvm_calculate_traps(struct kvm_vcpu * vcpu)5591 void kvm_calculate_traps(struct kvm_vcpu *vcpu)
5592 {
5593 	struct kvm *kvm = vcpu->kvm;
5594 
5595 	mutex_lock(&kvm->arch.config_lock);
5596 	vcpu_set_hcr(vcpu);
5597 	vcpu_set_ich_hcr(vcpu);
5598 	vcpu_set_hcrx(vcpu);
5599 
5600 	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
5601 		goto out;
5602 
5603 	compute_fgu(kvm, HFGRTR_GROUP);
5604 	compute_fgu(kvm, HFGITR_GROUP);
5605 	compute_fgu(kvm, HDFGRTR_GROUP);
5606 	compute_fgu(kvm, HAFGRTR_GROUP);
5607 	compute_fgu(kvm, HFGRTR2_GROUP);
5608 	compute_fgu(kvm, HFGITR2_GROUP);
5609 	compute_fgu(kvm, HDFGRTR2_GROUP);
5610 
5611 	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
5612 out:
5613 	mutex_unlock(&kvm->arch.config_lock);
5614 }
5615 
5616 /*
5617  * Perform last adjustments to the ID registers that are implied by the
5618  * configuration outside of the ID regs themselves, as well as any
5619  * initialisation that directly depend on these ID registers (such as
5620  * RES0/RES1 behaviours). This is not the place to configure traps though.
5621  *
5622  * Because this can be called once per CPU, changes must be idempotent.
5623  */
kvm_finalize_sys_regs(struct kvm_vcpu * vcpu)5624 int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu)
5625 {
5626 	struct kvm *kvm = vcpu->kvm;
5627 
5628 	guard(mutex)(&kvm->arch.config_lock);
5629 
5630 	/*
5631 	 * This hacks into the ID registers, so only perform it when the
5632 	 * first vcpu runs, or the kvm_set_vm_id_reg() helper will scream.
5633 	 */
5634 	if (!irqchip_in_kernel(kvm) && !kvm_vm_has_ran_once(kvm)) {
5635 		u64 val;
5636 
5637 		val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1) & ~ID_AA64PFR0_EL1_GIC;
5638 		kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, val);
5639 		val = kvm_read_vm_id_reg(kvm, SYS_ID_PFR1_EL1) & ~ID_PFR1_EL1_GIC;
5640 		kvm_set_vm_id_reg(kvm, SYS_ID_PFR1_EL1, val);
5641 	}
5642 
5643 	if (vcpu_has_nv(vcpu)) {
5644 		int ret = kvm_init_nv_sysregs(vcpu);
5645 		if (ret)
5646 			return ret;
5647 	}
5648 
5649 	return 0;
5650 }
5651 
kvm_sys_reg_table_init(void)5652 int __init kvm_sys_reg_table_init(void)
5653 {
5654 	const struct sys_reg_desc *gicv3_regs;
5655 	bool valid = true;
5656 	unsigned int i, sz;
5657 	int ret = 0;
5658 
5659 	/* Make sure tables are unique and in order. */
5660 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), true);
5661 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), false);
5662 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), false);
5663 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), false);
5664 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), false);
5665 	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
5666 
5667 	gicv3_regs = vgic_v3_get_sysreg_table(&sz);
5668 	valid &= check_sysreg_table(gicv3_regs, sz, false);
5669 
5670 	if (!valid)
5671 		return -EINVAL;
5672 
5673 	init_imp_id_regs();
5674 
5675 	ret = populate_nv_trap_config();
5676 
5677 	check_feature_map();
5678 
5679 	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
5680 		ret = populate_sysreg_config(sys_reg_descs + i, i);
5681 
5682 	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
5683 		ret = populate_sysreg_config(sys_insn_descs + i, i);
5684 
5685 	return ret;
5686 }
5687