1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
26
27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
29 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
30
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)31 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
32 unsigned short seg_type)
33 {
34 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
35 }
36
37 #define IS_CURSEG(sbi, seg) \
38 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
46
47 #define IS_CURSEC(sbi, secno) \
48 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
49 SEGS_PER_SEC(sbi)) || \
50 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
51 SEGS_PER_SEC(sbi)) || \
52 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
53 SEGS_PER_SEC(sbi)) || \
54 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
55 SEGS_PER_SEC(sbi)) || \
56 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
57 SEGS_PER_SEC(sbi)) || \
58 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
59 SEGS_PER_SEC(sbi)) || \
60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
61 SEGS_PER_SEC(sbi)) || \
62 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
63 SEGS_PER_SEC(sbi)))
64
65 #define MAIN_BLKADDR(sbi) \
66 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
67 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
68 #define SEG0_BLKADDR(sbi) \
69 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
70 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
71
72 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
73 #define MAIN_SECS(sbi) ((sbi)->total_sections)
74
75 #define TOTAL_SEGS(sbi) \
76 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
77 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
78 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
79
80 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
81 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
82 (sbi)->log_blocks_per_seg))
83
84 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
85 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
86
87 #define NEXT_FREE_BLKADDR(sbi, curseg) \
88 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
89
90 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
91 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
92 (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
93 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
95
96 #define GET_SEGNO(sbi, blk_addr) \
97 ((!__is_valid_data_blkaddr(blk_addr)) ? \
98 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
99 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
100 #define CAP_BLKS_PER_SEC(sbi) \
101 (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
102 #define CAP_SEGS_PER_SEC(sbi) \
103 (SEGS_PER_SEC(sbi) - \
104 BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
105 #define GET_SEC_FROM_SEG(sbi, segno) \
106 (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
107 #define GET_SEG_FROM_SEC(sbi, secno) \
108 ((secno) * SEGS_PER_SEC(sbi))
109 #define GET_ZONE_FROM_SEC(sbi, secno) \
110 (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
111 #define GET_ZONE_FROM_SEG(sbi, segno) \
112 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
113
114 #define GET_SUM_BLOCK(sbi, segno) \
115 ((sbi)->sm_info->ssa_blkaddr + (segno))
116
117 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
118 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
119
120 #define SIT_ENTRY_OFFSET(sit_i, segno) \
121 ((segno) % (sit_i)->sents_per_block)
122 #define SIT_BLOCK_OFFSET(segno) \
123 ((segno) / SIT_ENTRY_PER_BLOCK)
124 #define START_SEGNO(segno) \
125 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
126 #define SIT_BLK_CNT(sbi) \
127 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
128 #define f2fs_bitmap_size(nr) \
129 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
130
131 #define SECTOR_FROM_BLOCK(blk_addr) \
132 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
133 #define SECTOR_TO_BLOCK(sectors) \
134 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
135
136 /*
137 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
138 * LFS writes data sequentially with cleaning operations.
139 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
140 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
141 * fragmented segment which has similar aging degree.
142 */
143 enum {
144 LFS = 0,
145 SSR,
146 AT_SSR,
147 };
148
149 /*
150 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
151 * GC_CB is based on cost-benefit algorithm.
152 * GC_GREEDY is based on greedy algorithm.
153 * GC_AT is based on age-threshold algorithm.
154 */
155 enum {
156 GC_CB = 0,
157 GC_GREEDY,
158 GC_AT,
159 ALLOC_NEXT,
160 FLUSH_DEVICE,
161 MAX_GC_POLICY,
162 };
163
164 /*
165 * BG_GC means the background cleaning job.
166 * FG_GC means the on-demand cleaning job.
167 */
168 enum {
169 BG_GC = 0,
170 FG_GC,
171 };
172
173 /* for a function parameter to select a victim segment */
174 struct victim_sel_policy {
175 int alloc_mode; /* LFS or SSR */
176 int gc_mode; /* GC_CB or GC_GREEDY */
177 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
178 unsigned int max_search; /*
179 * maximum # of segments/sections
180 * to search
181 */
182 unsigned int offset; /* last scanned bitmap offset */
183 unsigned int ofs_unit; /* bitmap search unit */
184 unsigned int min_cost; /* minimum cost */
185 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
186 unsigned int min_segno; /* segment # having min. cost */
187 unsigned long long age; /* mtime of GCed section*/
188 unsigned long long age_threshold;/* age threshold */
189 bool one_time_gc; /* one time GC */
190 };
191
192 struct seg_entry {
193 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
194 unsigned int valid_blocks:10; /* # of valid blocks */
195 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
196 unsigned int padding:6; /* padding */
197 unsigned char *cur_valid_map; /* validity bitmap of blocks */
198 #ifdef CONFIG_F2FS_CHECK_FS
199 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
200 #endif
201 /*
202 * # of valid blocks and the validity bitmap stored in the last
203 * checkpoint pack. This information is used by the SSR mode.
204 */
205 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
206 unsigned char *discard_map;
207 unsigned long long mtime; /* modification time of the segment */
208 };
209
210 struct sec_entry {
211 unsigned int valid_blocks; /* # of valid blocks in a section */
212 };
213
214 #define MAX_SKIP_GC_COUNT 16
215
216 struct revoke_entry {
217 struct list_head list;
218 block_t old_addr; /* for revoking when fail to commit */
219 pgoff_t index;
220 };
221
222 struct sit_info {
223 block_t sit_base_addr; /* start block address of SIT area */
224 block_t sit_blocks; /* # of blocks used by SIT area */
225 block_t written_valid_blocks; /* # of valid blocks in main area */
226 char *bitmap; /* all bitmaps pointer */
227 char *sit_bitmap; /* SIT bitmap pointer */
228 #ifdef CONFIG_F2FS_CHECK_FS
229 char *sit_bitmap_mir; /* SIT bitmap mirror */
230
231 /* bitmap of segments to be ignored by GC in case of errors */
232 unsigned long *invalid_segmap;
233 #endif
234 unsigned int bitmap_size; /* SIT bitmap size */
235
236 unsigned long *tmp_map; /* bitmap for temporal use */
237 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
238 unsigned int dirty_sentries; /* # of dirty sentries */
239 unsigned int sents_per_block; /* # of SIT entries per block */
240 struct rw_semaphore sentry_lock; /* to protect SIT cache */
241 struct seg_entry *sentries; /* SIT segment-level cache */
242 struct sec_entry *sec_entries; /* SIT section-level cache */
243
244 /* for cost-benefit algorithm in cleaning procedure */
245 unsigned long long elapsed_time; /* elapsed time after mount */
246 unsigned long long mounted_time; /* mount time */
247 unsigned long long min_mtime; /* min. modification time */
248 unsigned long long max_mtime; /* max. modification time */
249 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
250 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
251
252 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
253 };
254
255 struct free_segmap_info {
256 unsigned int start_segno; /* start segment number logically */
257 unsigned int free_segments; /* # of free segments */
258 unsigned int free_sections; /* # of free sections */
259 spinlock_t segmap_lock; /* free segmap lock */
260 unsigned long *free_segmap; /* free segment bitmap */
261 unsigned long *free_secmap; /* free section bitmap */
262 };
263
264 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
265 enum dirty_type {
266 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
267 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
268 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
269 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
270 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
271 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
272 DIRTY, /* to count # of dirty segments */
273 PRE, /* to count # of entirely obsolete segments */
274 NR_DIRTY_TYPE
275 };
276
277 struct dirty_seglist_info {
278 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
279 unsigned long *dirty_secmap;
280 struct mutex seglist_lock; /* lock for segment bitmaps */
281 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
282 unsigned long *victim_secmap; /* background GC victims */
283 unsigned long *pinned_secmap; /* pinned victims from foreground GC */
284 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */
285 bool enable_pin_section; /* enable pinning section */
286 };
287
288 /* for active log information */
289 struct curseg_info {
290 struct mutex curseg_mutex; /* lock for consistency */
291 struct f2fs_summary_block *sum_blk; /* cached summary block */
292 struct rw_semaphore journal_rwsem; /* protect journal area */
293 struct f2fs_journal *journal; /* cached journal info */
294 unsigned char alloc_type; /* current allocation type */
295 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
296 unsigned int segno; /* current segment number */
297 unsigned short next_blkoff; /* next block offset to write */
298 unsigned int zone; /* current zone number */
299 unsigned int next_segno; /* preallocated segment */
300 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
301 bool inited; /* indicate inmem log is inited */
302 };
303
304 struct sit_entry_set {
305 struct list_head set_list; /* link with all sit sets */
306 unsigned int start_segno; /* start segno of sits in set */
307 unsigned int entry_cnt; /* the # of sit entries in set */
308 };
309
310 /*
311 * inline functions
312 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)313 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
314 {
315 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
316 }
317
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)318 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
319 unsigned int segno)
320 {
321 struct sit_info *sit_i = SIT_I(sbi);
322 return &sit_i->sentries[segno];
323 }
324
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)325 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
326 unsigned int segno)
327 {
328 struct sit_info *sit_i = SIT_I(sbi);
329 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
330 }
331
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)332 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
333 unsigned int segno, bool use_section)
334 {
335 /*
336 * In order to get # of valid blocks in a section instantly from many
337 * segments, f2fs manages two counting structures separately.
338 */
339 if (use_section && __is_large_section(sbi))
340 return get_sec_entry(sbi, segno)->valid_blocks;
341 else
342 return get_seg_entry(sbi, segno)->valid_blocks;
343 }
344
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)345 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
346 unsigned int segno, bool use_section)
347 {
348 if (use_section && __is_large_section(sbi)) {
349 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
350 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
351 unsigned int blocks = 0;
352 int i;
353
354 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
355 struct seg_entry *se = get_seg_entry(sbi, start_segno);
356
357 blocks += se->ckpt_valid_blocks;
358 }
359 return blocks;
360 }
361 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
362 }
363
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)364 static inline void seg_info_from_raw_sit(struct seg_entry *se,
365 struct f2fs_sit_entry *rs)
366 {
367 se->valid_blocks = GET_SIT_VBLOCKS(rs);
368 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
369 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
370 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
371 #ifdef CONFIG_F2FS_CHECK_FS
372 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
373 #endif
374 se->type = GET_SIT_TYPE(rs);
375 se->mtime = le64_to_cpu(rs->mtime);
376 }
377
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)378 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
379 struct f2fs_sit_entry *rs)
380 {
381 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
382 se->valid_blocks;
383 rs->vblocks = cpu_to_le16(raw_vblocks);
384 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
385 rs->mtime = cpu_to_le64(se->mtime);
386 }
387
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)388 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
389 struct page *page, unsigned int start)
390 {
391 struct f2fs_sit_block *raw_sit;
392 struct seg_entry *se;
393 struct f2fs_sit_entry *rs;
394 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
395 (unsigned long)MAIN_SEGS(sbi));
396 int i;
397
398 raw_sit = (struct f2fs_sit_block *)page_address(page);
399 memset(raw_sit, 0, PAGE_SIZE);
400 for (i = 0; i < end - start; i++) {
401 rs = &raw_sit->entries[i];
402 se = get_seg_entry(sbi, start + i);
403 __seg_info_to_raw_sit(se, rs);
404 }
405 }
406
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)407 static inline void seg_info_to_raw_sit(struct seg_entry *se,
408 struct f2fs_sit_entry *rs)
409 {
410 __seg_info_to_raw_sit(se, rs);
411
412 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
413 se->ckpt_valid_blocks = se->valid_blocks;
414 }
415
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)416 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
417 unsigned int max, unsigned int segno)
418 {
419 unsigned int ret;
420 spin_lock(&free_i->segmap_lock);
421 ret = find_next_bit(free_i->free_segmap, max, segno);
422 spin_unlock(&free_i->segmap_lock);
423 return ret;
424 }
425
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)426 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
427 {
428 struct free_segmap_info *free_i = FREE_I(sbi);
429 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
430 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
431 unsigned int next;
432 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi);
433
434 spin_lock(&free_i->segmap_lock);
435 clear_bit(segno, free_i->free_segmap);
436 free_i->free_segments++;
437
438 next = find_next_bit(free_i->free_segmap,
439 start_segno + SEGS_PER_SEC(sbi), start_segno);
440 if (next >= start_segno + usable_segs) {
441 clear_bit(secno, free_i->free_secmap);
442 free_i->free_sections++;
443 }
444 spin_unlock(&free_i->segmap_lock);
445 }
446
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)447 static inline void __set_inuse(struct f2fs_sb_info *sbi,
448 unsigned int segno)
449 {
450 struct free_segmap_info *free_i = FREE_I(sbi);
451 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
452
453 set_bit(segno, free_i->free_segmap);
454 free_i->free_segments--;
455 if (!test_and_set_bit(secno, free_i->free_secmap))
456 free_i->free_sections--;
457 }
458
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)459 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
460 unsigned int segno, bool inmem)
461 {
462 struct free_segmap_info *free_i = FREE_I(sbi);
463 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
464 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
465 unsigned int next;
466 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi);
467
468 spin_lock(&free_i->segmap_lock);
469 if (test_and_clear_bit(segno, free_i->free_segmap)) {
470 free_i->free_segments++;
471
472 if (!inmem && IS_CURSEC(sbi, secno))
473 goto skip_free;
474 next = find_next_bit(free_i->free_segmap,
475 start_segno + SEGS_PER_SEC(sbi), start_segno);
476 if (next >= start_segno + usable_segs) {
477 if (test_and_clear_bit(secno, free_i->free_secmap))
478 free_i->free_sections++;
479 }
480 }
481 skip_free:
482 spin_unlock(&free_i->segmap_lock);
483 }
484
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)485 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
486 unsigned int segno)
487 {
488 struct free_segmap_info *free_i = FREE_I(sbi);
489 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
490
491 spin_lock(&free_i->segmap_lock);
492 if (!test_and_set_bit(segno, free_i->free_segmap)) {
493 free_i->free_segments--;
494 if (!test_and_set_bit(secno, free_i->free_secmap))
495 free_i->free_sections--;
496 }
497 spin_unlock(&free_i->segmap_lock);
498 }
499
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)500 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
501 void *dst_addr)
502 {
503 struct sit_info *sit_i = SIT_I(sbi);
504
505 #ifdef CONFIG_F2FS_CHECK_FS
506 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
507 sit_i->bitmap_size))
508 f2fs_bug_on(sbi, 1);
509 #endif
510 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
511 }
512
written_block_count(struct f2fs_sb_info * sbi)513 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
514 {
515 return SIT_I(sbi)->written_valid_blocks;
516 }
517
free_segments(struct f2fs_sb_info * sbi)518 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
519 {
520 return FREE_I(sbi)->free_segments;
521 }
522
reserved_segments(struct f2fs_sb_info * sbi)523 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
524 {
525 return SM_I(sbi)->reserved_segments;
526 }
527
free_sections(struct f2fs_sb_info * sbi)528 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
529 {
530 return FREE_I(sbi)->free_sections;
531 }
532
prefree_segments(struct f2fs_sb_info * sbi)533 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
534 {
535 return DIRTY_I(sbi)->nr_dirty[PRE];
536 }
537
dirty_segments(struct f2fs_sb_info * sbi)538 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
539 {
540 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
541 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
542 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
543 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
544 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
545 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
546 }
547
overprovision_segments(struct f2fs_sb_info * sbi)548 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
549 {
550 return SM_I(sbi)->ovp_segments;
551 }
552
reserved_sections(struct f2fs_sb_info * sbi)553 static inline int reserved_sections(struct f2fs_sb_info *sbi)
554 {
555 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
556 }
557
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int data_blocks,unsigned int dent_blocks)558 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
559 unsigned int node_blocks, unsigned int data_blocks,
560 unsigned int dent_blocks)
561 {
562 unsigned int segno, left_blocks, blocks;
563 int i;
564
565 /* check current data/node sections in the worst case. */
566 for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) {
567 segno = CURSEG_I(sbi, i)->segno;
568
569 if (unlikely(segno == NULL_SEGNO))
570 return false;
571
572 left_blocks = CAP_BLKS_PER_SEC(sbi) -
573 get_ckpt_valid_blocks(sbi, segno, true);
574
575 blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks;
576 if (blocks > left_blocks)
577 return false;
578 }
579
580 /* check current data section for dentry blocks. */
581 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
582
583 if (unlikely(segno == NULL_SEGNO))
584 return false;
585
586 left_blocks = CAP_BLKS_PER_SEC(sbi) -
587 get_ckpt_valid_blocks(sbi, segno, true);
588 if (dent_blocks > left_blocks)
589 return false;
590 return true;
591 }
592
593 /*
594 * calculate needed sections for dirty node/dentry and call
595 * has_curseg_enough_space, please note that, it needs to account
596 * dirty data as well in lfs mode when checkpoint is disabled.
597 */
__get_secs_required(struct f2fs_sb_info * sbi,unsigned int * lower_p,unsigned int * upper_p,bool * curseg_p)598 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
599 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
600 {
601 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
602 get_pages(sbi, F2FS_DIRTY_DENTS) +
603 get_pages(sbi, F2FS_DIRTY_IMETA);
604 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
605 unsigned int total_data_blocks = 0;
606 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
607 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
608 unsigned int data_secs = 0;
609 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
610 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
611 unsigned int data_blocks = 0;
612
613 if (f2fs_lfs_mode(sbi) &&
614 unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
615 total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA);
616 data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi);
617 data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi);
618 }
619
620 if (lower_p)
621 *lower_p = node_secs + dent_secs + data_secs;
622 if (upper_p)
623 *upper_p = node_secs + dent_secs +
624 (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) +
625 (data_blocks ? 1 : 0);
626 if (curseg_p)
627 *curseg_p = has_curseg_enough_space(sbi,
628 node_blocks, data_blocks, dent_blocks);
629 }
630
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)631 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
632 int freed, int needed)
633 {
634 unsigned int free_secs, lower_secs, upper_secs;
635 bool curseg_space;
636
637 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
638 return false;
639
640 __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
641
642 free_secs = free_sections(sbi) + freed;
643 lower_secs += needed + reserved_sections(sbi);
644 upper_secs += needed + reserved_sections(sbi);
645
646 if (free_secs > upper_secs)
647 return false;
648 if (free_secs <= lower_secs)
649 return true;
650 return !curseg_space;
651 }
652
has_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)653 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
654 int freed, int needed)
655 {
656 return !has_not_enough_free_secs(sbi, freed, needed);
657 }
658
has_enough_free_blks(struct f2fs_sb_info * sbi)659 static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi)
660 {
661 unsigned int total_free_blocks = 0;
662 unsigned int avail_user_block_count;
663
664 spin_lock(&sbi->stat_lock);
665
666 avail_user_block_count = get_available_block_count(sbi, NULL, true);
667 total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi);
668
669 spin_unlock(&sbi->stat_lock);
670
671 return total_free_blocks > 0;
672 }
673
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)674 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
675 {
676 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
677 return true;
678 if (likely(has_enough_free_secs(sbi, 0, 0)))
679 return true;
680 if (!f2fs_lfs_mode(sbi) &&
681 likely(has_enough_free_blks(sbi)))
682 return true;
683 return false;
684 }
685
excess_prefree_segs(struct f2fs_sb_info * sbi)686 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
687 {
688 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
689 }
690
utilization(struct f2fs_sb_info * sbi)691 static inline int utilization(struct f2fs_sb_info *sbi)
692 {
693 return div_u64((u64)valid_user_blocks(sbi) * 100,
694 sbi->user_block_count);
695 }
696
697 /*
698 * Sometimes f2fs may be better to drop out-of-place update policy.
699 * And, users can control the policy through sysfs entries.
700 * There are five policies with triggering conditions as follows.
701 * F2FS_IPU_FORCE - all the time,
702 * F2FS_IPU_SSR - if SSR mode is activated,
703 * F2FS_IPU_UTIL - if FS utilization is over threashold,
704 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
705 * threashold,
706 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
707 * storages. IPU will be triggered only if the # of dirty
708 * pages over min_fsync_blocks. (=default option)
709 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
710 * F2FS_IPU_NOCACHE - disable IPU bio cache.
711 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
712 * FI_OPU_WRITE flag.
713 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
714 */
715 #define DEF_MIN_IPU_UTIL 70
716 #define DEF_MIN_FSYNC_BLOCKS 8
717 #define DEF_MIN_HOT_BLOCKS 16
718
719 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
720
721 #define F2FS_IPU_DISABLE 0
722
723 /* Modification on enum should be synchronized with ipu_mode_names array */
724 enum {
725 F2FS_IPU_FORCE,
726 F2FS_IPU_SSR,
727 F2FS_IPU_UTIL,
728 F2FS_IPU_SSR_UTIL,
729 F2FS_IPU_FSYNC,
730 F2FS_IPU_ASYNC,
731 F2FS_IPU_NOCACHE,
732 F2FS_IPU_HONOR_OPU_WRITE,
733 F2FS_IPU_MAX,
734 };
735
IS_F2FS_IPU_DISABLE(struct f2fs_sb_info * sbi)736 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
737 {
738 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
739 }
740
741 #define F2FS_IPU_POLICY(name) \
742 static inline bool IS_##name(struct f2fs_sb_info *sbi) \
743 { \
744 return SM_I(sbi)->ipu_policy & BIT(name); \
745 }
746
747 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
748 F2FS_IPU_POLICY(F2FS_IPU_SSR);
749 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
750 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
751 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
752 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
753 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
754 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
755
curseg_segno(struct f2fs_sb_info * sbi,int type)756 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
757 int type)
758 {
759 struct curseg_info *curseg = CURSEG_I(sbi, type);
760 return curseg->segno;
761 }
762
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)763 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
764 int type)
765 {
766 struct curseg_info *curseg = CURSEG_I(sbi, type);
767 return curseg->alloc_type;
768 }
769
valid_main_segno(struct f2fs_sb_info * sbi,unsigned int segno)770 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
771 unsigned int segno)
772 {
773 return segno <= (MAIN_SEGS(sbi) - 1);
774 }
775
verify_fio_blkaddr(struct f2fs_io_info * fio)776 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
777 {
778 struct f2fs_sb_info *sbi = fio->sbi;
779
780 if (__is_valid_data_blkaddr(fio->old_blkaddr))
781 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
782 META_GENERIC : DATA_GENERIC);
783 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
784 META_GENERIC : DATA_GENERIC_ENHANCE);
785 }
786
787 /*
788 * Summary block is always treated as an invalid block
789 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)790 static inline int check_block_count(struct f2fs_sb_info *sbi,
791 int segno, struct f2fs_sit_entry *raw_sit)
792 {
793 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
794 int valid_blocks = 0;
795 int cur_pos = 0, next_pos;
796 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
797
798 /* check bitmap with valid block count */
799 do {
800 if (is_valid) {
801 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
802 usable_blks_per_seg,
803 cur_pos);
804 valid_blocks += next_pos - cur_pos;
805 } else
806 next_pos = find_next_bit_le(&raw_sit->valid_map,
807 usable_blks_per_seg,
808 cur_pos);
809 cur_pos = next_pos;
810 is_valid = !is_valid;
811 } while (cur_pos < usable_blks_per_seg);
812
813 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
814 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
815 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
816 set_sbi_flag(sbi, SBI_NEED_FSCK);
817 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
818 return -EFSCORRUPTED;
819 }
820
821 if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
822 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
823 BLKS_PER_SEG(sbi),
824 usable_blks_per_seg) != BLKS_PER_SEG(sbi));
825
826 /* check segment usage, and check boundary of a given segment number */
827 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
828 || !valid_main_segno(sbi, segno))) {
829 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
830 GET_SIT_VBLOCKS(raw_sit), segno);
831 set_sbi_flag(sbi, SBI_NEED_FSCK);
832 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
833 return -EFSCORRUPTED;
834 }
835 return 0;
836 }
837
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)838 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
839 unsigned int start)
840 {
841 struct sit_info *sit_i = SIT_I(sbi);
842 unsigned int offset = SIT_BLOCK_OFFSET(start);
843 block_t blk_addr = sit_i->sit_base_addr + offset;
844
845 f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
846
847 #ifdef CONFIG_F2FS_CHECK_FS
848 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
849 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
850 f2fs_bug_on(sbi, 1);
851 #endif
852
853 /* calculate sit block address */
854 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
855 blk_addr += sit_i->sit_blocks;
856
857 return blk_addr;
858 }
859
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)860 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
861 pgoff_t block_addr)
862 {
863 struct sit_info *sit_i = SIT_I(sbi);
864 block_addr -= sit_i->sit_base_addr;
865 if (block_addr < sit_i->sit_blocks)
866 block_addr += sit_i->sit_blocks;
867 else
868 block_addr -= sit_i->sit_blocks;
869
870 return block_addr + sit_i->sit_base_addr;
871 }
872
set_to_next_sit(struct sit_info * sit_i,unsigned int start)873 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
874 {
875 unsigned int block_off = SIT_BLOCK_OFFSET(start);
876
877 f2fs_change_bit(block_off, sit_i->sit_bitmap);
878 #ifdef CONFIG_F2FS_CHECK_FS
879 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
880 #endif
881 }
882
get_mtime(struct f2fs_sb_info * sbi,bool base_time)883 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
884 bool base_time)
885 {
886 struct sit_info *sit_i = SIT_I(sbi);
887 time64_t diff, now = ktime_get_boottime_seconds();
888
889 if (now >= sit_i->mounted_time)
890 return sit_i->elapsed_time + now - sit_i->mounted_time;
891
892 /* system time is set to the past */
893 if (!base_time) {
894 diff = sit_i->mounted_time - now;
895 if (sit_i->elapsed_time >= diff)
896 return sit_i->elapsed_time - diff;
897 return 0;
898 }
899 return sit_i->elapsed_time;
900 }
901
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)902 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
903 unsigned int ofs_in_node, unsigned char version)
904 {
905 sum->nid = cpu_to_le32(nid);
906 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
907 sum->version = version;
908 }
909
start_sum_block(struct f2fs_sb_info * sbi)910 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
911 {
912 return __start_cp_addr(sbi) +
913 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
914 }
915
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)916 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
917 {
918 return __start_cp_addr(sbi) +
919 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
920 - (base + 1) + type;
921 }
922
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)923 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
924 {
925 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
926 return true;
927 return false;
928 }
929
930 /*
931 * It is very important to gather dirty pages and write at once, so that we can
932 * submit a big bio without interfering other data writes.
933 * By default, 512 pages for directory data,
934 * 512 pages (2MB) * 8 for nodes, and
935 * 256 pages * 8 for meta are set.
936 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)937 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
938 {
939 if (sbi->sb->s_bdi->wb.dirty_exceeded)
940 return 0;
941
942 if (type == DATA)
943 return BLKS_PER_SEG(sbi);
944 else if (type == NODE)
945 return SEGS_TO_BLKS(sbi, 8);
946 else if (type == META)
947 return 8 * BIO_MAX_VECS;
948 else
949 return 0;
950 }
951
952 /*
953 * When writing pages, it'd better align nr_to_write for segment size.
954 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)955 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
956 struct writeback_control *wbc)
957 {
958 long nr_to_write, desired;
959
960 if (wbc->sync_mode != WB_SYNC_NONE)
961 return 0;
962
963 nr_to_write = wbc->nr_to_write;
964 desired = BIO_MAX_VECS;
965 if (type == NODE)
966 desired <<= 1;
967
968 wbc->nr_to_write = desired;
969 return desired - nr_to_write;
970 }
971
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)972 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
973 {
974 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
975 bool wakeup = false;
976 int i;
977
978 if (force)
979 goto wake_up;
980
981 mutex_lock(&dcc->cmd_lock);
982 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
983 if (i + 1 < dcc->discard_granularity)
984 break;
985 if (!list_empty(&dcc->pend_list[i])) {
986 wakeup = true;
987 break;
988 }
989 }
990 mutex_unlock(&dcc->cmd_lock);
991 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
992 return;
993 wake_up:
994 dcc->discard_wake = true;
995 wake_up_interruptible_all(&dcc->discard_wait_queue);
996 }
997