xref: /linux/mm/memblock.c (revision b41048485ee395edbbb69fc83491d314268f7bdb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 #include <linux/mutex.h>
20 
21 #ifdef CONFIG_KEXEC_HANDOVER
22 #include <linux/libfdt.h>
23 #include <linux/kexec_handover.h>
24 #endif /* CONFIG_KEXEC_HANDOVER */
25 
26 #include <asm/sections.h>
27 #include <linux/io.h>
28 
29 #include "internal.h"
30 
31 #define INIT_MEMBLOCK_REGIONS			128
32 #define INIT_PHYSMEM_REGIONS			4
33 
34 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
35 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
36 #endif
37 
38 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
39 #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
40 #endif
41 
42 /**
43  * DOC: memblock overview
44  *
45  * Memblock is a method of managing memory regions during the early
46  * boot period when the usual kernel memory allocators are not up and
47  * running.
48  *
49  * Memblock views the system memory as collections of contiguous
50  * regions. There are several types of these collections:
51  *
52  * * ``memory`` - describes the physical memory available to the
53  *   kernel; this may differ from the actual physical memory installed
54  *   in the system, for instance when the memory is restricted with
55  *   ``mem=`` command line parameter
56  * * ``reserved`` - describes the regions that were allocated
57  * * ``physmem`` - describes the actual physical memory available during
58  *   boot regardless of the possible restrictions and memory hot(un)plug;
59  *   the ``physmem`` type is only available on some architectures.
60  *
61  * Each region is represented by struct memblock_region that
62  * defines the region extents, its attributes and NUMA node id on NUMA
63  * systems. Every memory type is described by the struct memblock_type
64  * which contains an array of memory regions along with
65  * the allocator metadata. The "memory" and "reserved" types are nicely
66  * wrapped with struct memblock. This structure is statically
67  * initialized at build time. The region arrays are initially sized to
68  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
69  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
70  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
71  * The memblock_allow_resize() enables automatic resizing of the region
72  * arrays during addition of new regions. This feature should be used
73  * with care so that memory allocated for the region array will not
74  * overlap with areas that should be reserved, for example initrd.
75  *
76  * The early architecture setup should tell memblock what the physical
77  * memory layout is by using memblock_add() or memblock_add_node()
78  * functions. The first function does not assign the region to a NUMA
79  * node and it is appropriate for UMA systems. Yet, it is possible to
80  * use it on NUMA systems as well and assign the region to a NUMA node
81  * later in the setup process using memblock_set_node(). The
82  * memblock_add_node() performs such an assignment directly.
83  *
84  * Once memblock is setup the memory can be allocated using one of the
85  * API variants:
86  *
87  * * memblock_phys_alloc*() - these functions return the **physical**
88  *   address of the allocated memory
89  * * memblock_alloc*() - these functions return the **virtual** address
90  *   of the allocated memory.
91  *
92  * Note, that both API variants use implicit assumptions about allowed
93  * memory ranges and the fallback methods. Consult the documentation
94  * of memblock_alloc_internal() and memblock_alloc_range_nid()
95  * functions for more elaborate description.
96  *
97  * As the system boot progresses, the architecture specific mem_init()
98  * function frees all the memory to the buddy page allocator.
99  *
100  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
101  * memblock data structures (except "physmem") will be discarded after the
102  * system initialization completes.
103  */
104 
105 #ifndef CONFIG_NUMA
106 struct pglist_data __refdata contig_page_data;
107 EXPORT_SYMBOL(contig_page_data);
108 #endif
109 
110 unsigned long max_low_pfn;
111 unsigned long min_low_pfn;
112 unsigned long max_pfn;
113 unsigned long long max_possible_pfn;
114 
115 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
116 /* When set to true, only allocate from MEMBLOCK_KHO_SCRATCH ranges */
117 static bool kho_scratch_only;
118 #else
119 #define kho_scratch_only false
120 #endif
121 
122 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
123 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
124 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
125 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
126 #endif
127 
128 struct memblock memblock __initdata_memblock = {
129 	.memory.regions		= memblock_memory_init_regions,
130 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
131 	.memory.name		= "memory",
132 
133 	.reserved.regions	= memblock_reserved_init_regions,
134 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
135 	.reserved.name		= "reserved",
136 
137 	.bottom_up		= false,
138 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
139 };
140 
141 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
142 struct memblock_type physmem = {
143 	.regions		= memblock_physmem_init_regions,
144 	.max			= INIT_PHYSMEM_REGIONS,
145 	.name			= "physmem",
146 };
147 #endif
148 
149 /*
150  * keep a pointer to &memblock.memory in the text section to use it in
151  * __next_mem_range() and its helpers.
152  *  For architectures that do not keep memblock data after init, this
153  * pointer will be reset to NULL at memblock_discard()
154  */
155 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
156 
157 #define for_each_memblock_type(i, memblock_type, rgn)			\
158 	for (i = 0, rgn = &memblock_type->regions[0];			\
159 	     i < memblock_type->cnt;					\
160 	     i++, rgn = &memblock_type->regions[i])
161 
162 #define memblock_dbg(fmt, ...)						\
163 	do {								\
164 		if (memblock_debug)					\
165 			pr_info(fmt, ##__VA_ARGS__);			\
166 	} while (0)
167 
168 static int memblock_debug __initdata_memblock;
169 static bool system_has_some_mirror __initdata_memblock;
170 static int memblock_can_resize __initdata_memblock;
171 static int memblock_memory_in_slab __initdata_memblock;
172 static int memblock_reserved_in_slab __initdata_memblock;
173 
174 bool __init_memblock memblock_has_mirror(void)
175 {
176 	return system_has_some_mirror;
177 }
178 
179 static enum memblock_flags __init_memblock choose_memblock_flags(void)
180 {
181 	/* skip non-scratch memory for kho early boot allocations */
182 	if (kho_scratch_only)
183 		return MEMBLOCK_KHO_SCRATCH;
184 
185 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
186 }
187 
188 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
189 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
190 {
191 	return *size = min(*size, PHYS_ADDR_MAX - base);
192 }
193 
194 /*
195  * Address comparison utilities
196  */
197 unsigned long __init_memblock
198 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
199 		       phys_addr_t size2)
200 {
201 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
202 }
203 
204 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
205 					phys_addr_t base, phys_addr_t size)
206 {
207 	unsigned long i;
208 
209 	memblock_cap_size(base, &size);
210 
211 	for (i = 0; i < type->cnt; i++)
212 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
213 					   type->regions[i].size))
214 			return true;
215 	return false;
216 }
217 
218 /**
219  * __memblock_find_range_bottom_up - find free area utility in bottom-up
220  * @start: start of candidate range
221  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
222  *       %MEMBLOCK_ALLOC_ACCESSIBLE
223  * @size: size of free area to find
224  * @align: alignment of free area to find
225  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
226  * @flags: pick from blocks based on memory attributes
227  *
228  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
229  *
230  * Return:
231  * Found address on success, 0 on failure.
232  */
233 static phys_addr_t __init_memblock
234 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
235 				phys_addr_t size, phys_addr_t align, int nid,
236 				enum memblock_flags flags)
237 {
238 	phys_addr_t this_start, this_end, cand;
239 	u64 i;
240 
241 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
242 		this_start = clamp(this_start, start, end);
243 		this_end = clamp(this_end, start, end);
244 
245 		cand = round_up(this_start, align);
246 		if (cand < this_end && this_end - cand >= size)
247 			return cand;
248 	}
249 
250 	return 0;
251 }
252 
253 /**
254  * __memblock_find_range_top_down - find free area utility, in top-down
255  * @start: start of candidate range
256  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
257  *       %MEMBLOCK_ALLOC_ACCESSIBLE
258  * @size: size of free area to find
259  * @align: alignment of free area to find
260  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
261  * @flags: pick from blocks based on memory attributes
262  *
263  * Utility called from memblock_find_in_range_node(), find free area top-down.
264  *
265  * Return:
266  * Found address on success, 0 on failure.
267  */
268 static phys_addr_t __init_memblock
269 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
270 			       phys_addr_t size, phys_addr_t align, int nid,
271 			       enum memblock_flags flags)
272 {
273 	phys_addr_t this_start, this_end, cand;
274 	u64 i;
275 
276 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
277 					NULL) {
278 		this_start = clamp(this_start, start, end);
279 		this_end = clamp(this_end, start, end);
280 
281 		if (this_end < size)
282 			continue;
283 
284 		cand = round_down(this_end - size, align);
285 		if (cand >= this_start)
286 			return cand;
287 	}
288 
289 	return 0;
290 }
291 
292 /**
293  * memblock_find_in_range_node - find free area in given range and node
294  * @size: size of free area to find
295  * @align: alignment of free area to find
296  * @start: start of candidate range
297  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
298  *       %MEMBLOCK_ALLOC_ACCESSIBLE
299  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
300  * @flags: pick from blocks based on memory attributes
301  *
302  * Find @size free area aligned to @align in the specified range and node.
303  *
304  * Return:
305  * Found address on success, 0 on failure.
306  */
307 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
308 					phys_addr_t align, phys_addr_t start,
309 					phys_addr_t end, int nid,
310 					enum memblock_flags flags)
311 {
312 	/* pump up @end */
313 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
314 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
315 		end = memblock.current_limit;
316 
317 	/* avoid allocating the first page */
318 	start = max_t(phys_addr_t, start, PAGE_SIZE);
319 	end = max(start, end);
320 
321 	if (memblock_bottom_up())
322 		return __memblock_find_range_bottom_up(start, end, size, align,
323 						       nid, flags);
324 	else
325 		return __memblock_find_range_top_down(start, end, size, align,
326 						      nid, flags);
327 }
328 
329 /**
330  * memblock_find_in_range - find free area in given range
331  * @start: start of candidate range
332  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
333  *       %MEMBLOCK_ALLOC_ACCESSIBLE
334  * @size: size of free area to find
335  * @align: alignment of free area to find
336  *
337  * Find @size free area aligned to @align in the specified range.
338  *
339  * Return:
340  * Found address on success, 0 on failure.
341  */
342 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
343 					phys_addr_t end, phys_addr_t size,
344 					phys_addr_t align)
345 {
346 	phys_addr_t ret;
347 	enum memblock_flags flags = choose_memblock_flags();
348 
349 again:
350 	ret = memblock_find_in_range_node(size, align, start, end,
351 					    NUMA_NO_NODE, flags);
352 
353 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
354 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
355 			&size);
356 		flags &= ~MEMBLOCK_MIRROR;
357 		goto again;
358 	}
359 
360 	return ret;
361 }
362 
363 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
364 {
365 	type->total_size -= type->regions[r].size;
366 	memmove(&type->regions[r], &type->regions[r + 1],
367 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
368 	type->cnt--;
369 
370 	/* Special case for empty arrays */
371 	if (type->cnt == 0) {
372 		WARN_ON(type->total_size != 0);
373 		type->regions[0].base = 0;
374 		type->regions[0].size = 0;
375 		type->regions[0].flags = 0;
376 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
377 	}
378 }
379 
380 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
381 /**
382  * memblock_discard - discard memory and reserved arrays if they were allocated
383  */
384 void __init memblock_discard(void)
385 {
386 	phys_addr_t addr, size;
387 
388 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
389 		addr = __pa(memblock.reserved.regions);
390 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
391 				  memblock.reserved.max);
392 		if (memblock_reserved_in_slab)
393 			kfree(memblock.reserved.regions);
394 		else
395 			memblock_free_late(addr, size);
396 	}
397 
398 	if (memblock.memory.regions != memblock_memory_init_regions) {
399 		addr = __pa(memblock.memory.regions);
400 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
401 				  memblock.memory.max);
402 		if (memblock_memory_in_slab)
403 			kfree(memblock.memory.regions);
404 		else
405 			memblock_free_late(addr, size);
406 	}
407 
408 	memblock_memory = NULL;
409 }
410 #endif
411 
412 /**
413  * memblock_double_array - double the size of the memblock regions array
414  * @type: memblock type of the regions array being doubled
415  * @new_area_start: starting address of memory range to avoid overlap with
416  * @new_area_size: size of memory range to avoid overlap with
417  *
418  * Double the size of the @type regions array. If memblock is being used to
419  * allocate memory for a new reserved regions array and there is a previously
420  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
421  * waiting to be reserved, ensure the memory used by the new array does
422  * not overlap.
423  *
424  * Return:
425  * 0 on success, -1 on failure.
426  */
427 static int __init_memblock memblock_double_array(struct memblock_type *type,
428 						phys_addr_t new_area_start,
429 						phys_addr_t new_area_size)
430 {
431 	struct memblock_region *new_array, *old_array;
432 	phys_addr_t old_alloc_size, new_alloc_size;
433 	phys_addr_t old_size, new_size, addr, new_end;
434 	int use_slab = slab_is_available();
435 	int *in_slab;
436 
437 	/* We don't allow resizing until we know about the reserved regions
438 	 * of memory that aren't suitable for allocation
439 	 */
440 	if (!memblock_can_resize)
441 		panic("memblock: cannot resize %s array\n", type->name);
442 
443 	/* Calculate new doubled size */
444 	old_size = type->max * sizeof(struct memblock_region);
445 	new_size = old_size << 1;
446 	/*
447 	 * We need to allocated new one align to PAGE_SIZE,
448 	 *   so we can free them completely later.
449 	 */
450 	old_alloc_size = PAGE_ALIGN(old_size);
451 	new_alloc_size = PAGE_ALIGN(new_size);
452 
453 	/* Retrieve the slab flag */
454 	if (type == &memblock.memory)
455 		in_slab = &memblock_memory_in_slab;
456 	else
457 		in_slab = &memblock_reserved_in_slab;
458 
459 	/* Try to find some space for it */
460 	if (use_slab) {
461 		new_array = kmalloc(new_size, GFP_KERNEL);
462 		addr = new_array ? __pa(new_array) : 0;
463 	} else {
464 		/* only exclude range when trying to double reserved.regions */
465 		if (type != &memblock.reserved)
466 			new_area_start = new_area_size = 0;
467 
468 		addr = memblock_find_in_range(new_area_start + new_area_size,
469 						memblock.current_limit,
470 						new_alloc_size, PAGE_SIZE);
471 		if (!addr && new_area_size)
472 			addr = memblock_find_in_range(0,
473 				min(new_area_start, memblock.current_limit),
474 				new_alloc_size, PAGE_SIZE);
475 
476 		if (addr) {
477 			/* The memory may not have been accepted, yet. */
478 			accept_memory(addr, new_alloc_size);
479 
480 			new_array = __va(addr);
481 		} else {
482 			new_array = NULL;
483 		}
484 	}
485 	if (!addr) {
486 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
487 		       type->name, type->max, type->max * 2);
488 		return -1;
489 	}
490 
491 	new_end = addr + new_size - 1;
492 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
493 			type->name, type->max * 2, &addr, &new_end);
494 
495 	/*
496 	 * Found space, we now need to move the array over before we add the
497 	 * reserved region since it may be our reserved array itself that is
498 	 * full.
499 	 */
500 	memcpy(new_array, type->regions, old_size);
501 	memset(new_array + type->max, 0, old_size);
502 	old_array = type->regions;
503 	type->regions = new_array;
504 	type->max <<= 1;
505 
506 	/* Free old array. We needn't free it if the array is the static one */
507 	if (*in_slab)
508 		kfree(old_array);
509 	else if (old_array != memblock_memory_init_regions &&
510 		 old_array != memblock_reserved_init_regions)
511 		memblock_free(old_array, old_alloc_size);
512 
513 	/*
514 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
515 	 * needn't do it
516 	 */
517 	if (!use_slab)
518 		BUG_ON(memblock_reserve_kern(addr, new_alloc_size));
519 
520 	/* Update slab flag */
521 	*in_slab = use_slab;
522 
523 	return 0;
524 }
525 
526 /**
527  * memblock_merge_regions - merge neighboring compatible regions
528  * @type: memblock type to scan
529  * @start_rgn: start scanning from (@start_rgn - 1)
530  * @end_rgn: end scanning at (@end_rgn - 1)
531  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
532  */
533 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
534 						   unsigned long start_rgn,
535 						   unsigned long end_rgn)
536 {
537 	int i = 0;
538 	if (start_rgn)
539 		i = start_rgn - 1;
540 	end_rgn = min(end_rgn, type->cnt - 1);
541 	while (i < end_rgn) {
542 		struct memblock_region *this = &type->regions[i];
543 		struct memblock_region *next = &type->regions[i + 1];
544 
545 		if (this->base + this->size != next->base ||
546 		    memblock_get_region_node(this) !=
547 		    memblock_get_region_node(next) ||
548 		    this->flags != next->flags) {
549 			BUG_ON(this->base + this->size > next->base);
550 			i++;
551 			continue;
552 		}
553 
554 		this->size += next->size;
555 		/* move forward from next + 1, index of which is i + 2 */
556 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
557 		type->cnt--;
558 		end_rgn--;
559 	}
560 }
561 
562 /**
563  * memblock_insert_region - insert new memblock region
564  * @type:	memblock type to insert into
565  * @idx:	index for the insertion point
566  * @base:	base address of the new region
567  * @size:	size of the new region
568  * @nid:	node id of the new region
569  * @flags:	flags of the new region
570  *
571  * Insert new memblock region [@base, @base + @size) into @type at @idx.
572  * @type must already have extra room to accommodate the new region.
573  */
574 static void __init_memblock memblock_insert_region(struct memblock_type *type,
575 						   int idx, phys_addr_t base,
576 						   phys_addr_t size,
577 						   int nid,
578 						   enum memblock_flags flags)
579 {
580 	struct memblock_region *rgn = &type->regions[idx];
581 
582 	BUG_ON(type->cnt >= type->max);
583 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
584 	rgn->base = base;
585 	rgn->size = size;
586 	rgn->flags = flags;
587 	memblock_set_region_node(rgn, nid);
588 	type->cnt++;
589 	type->total_size += size;
590 }
591 
592 /**
593  * memblock_add_range - add new memblock region
594  * @type: memblock type to add new region into
595  * @base: base address of the new region
596  * @size: size of the new region
597  * @nid: nid of the new region
598  * @flags: flags of the new region
599  *
600  * Add new memblock region [@base, @base + @size) into @type.  The new region
601  * is allowed to overlap with existing ones - overlaps don't affect already
602  * existing regions.  @type is guaranteed to be minimal (all neighbouring
603  * compatible regions are merged) after the addition.
604  *
605  * Return:
606  * 0 on success, -errno on failure.
607  */
608 static int __init_memblock memblock_add_range(struct memblock_type *type,
609 				phys_addr_t base, phys_addr_t size,
610 				int nid, enum memblock_flags flags)
611 {
612 	bool insert = false;
613 	phys_addr_t obase = base;
614 	phys_addr_t end = base + memblock_cap_size(base, &size);
615 	int idx, nr_new, start_rgn = -1, end_rgn;
616 	struct memblock_region *rgn;
617 
618 	if (!size)
619 		return 0;
620 
621 	/* special case for empty array */
622 	if (type->regions[0].size == 0) {
623 		WARN_ON(type->cnt != 0 || type->total_size);
624 		type->regions[0].base = base;
625 		type->regions[0].size = size;
626 		type->regions[0].flags = flags;
627 		memblock_set_region_node(&type->regions[0], nid);
628 		type->total_size = size;
629 		type->cnt = 1;
630 		return 0;
631 	}
632 
633 	/*
634 	 * The worst case is when new range overlaps all existing regions,
635 	 * then we'll need type->cnt + 1 empty regions in @type. So if
636 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
637 	 * that there is enough empty regions in @type, and we can insert
638 	 * regions directly.
639 	 */
640 	if (type->cnt * 2 + 1 <= type->max)
641 		insert = true;
642 
643 repeat:
644 	/*
645 	 * The following is executed twice.  Once with %false @insert and
646 	 * then with %true.  The first counts the number of regions needed
647 	 * to accommodate the new area.  The second actually inserts them.
648 	 */
649 	base = obase;
650 	nr_new = 0;
651 
652 	for_each_memblock_type(idx, type, rgn) {
653 		phys_addr_t rbase = rgn->base;
654 		phys_addr_t rend = rbase + rgn->size;
655 
656 		if (rbase >= end)
657 			break;
658 		if (rend <= base)
659 			continue;
660 		/*
661 		 * @rgn overlaps.  If it separates the lower part of new
662 		 * area, insert that portion.
663 		 */
664 		if (rbase > base) {
665 #ifdef CONFIG_NUMA
666 			WARN_ON(nid != memblock_get_region_node(rgn));
667 #endif
668 			WARN_ON(flags != MEMBLOCK_NONE && flags != rgn->flags);
669 			nr_new++;
670 			if (insert) {
671 				if (start_rgn == -1)
672 					start_rgn = idx;
673 				end_rgn = idx + 1;
674 				memblock_insert_region(type, idx++, base,
675 						       rbase - base, nid,
676 						       flags);
677 			}
678 		}
679 		/* area below @rend is dealt with, forget about it */
680 		base = min(rend, end);
681 	}
682 
683 	/* insert the remaining portion */
684 	if (base < end) {
685 		nr_new++;
686 		if (insert) {
687 			if (start_rgn == -1)
688 				start_rgn = idx;
689 			end_rgn = idx + 1;
690 			memblock_insert_region(type, idx, base, end - base,
691 					       nid, flags);
692 		}
693 	}
694 
695 	if (!nr_new)
696 		return 0;
697 
698 	/*
699 	 * If this was the first round, resize array and repeat for actual
700 	 * insertions; otherwise, merge and return.
701 	 */
702 	if (!insert) {
703 		while (type->cnt + nr_new > type->max)
704 			if (memblock_double_array(type, obase, size) < 0)
705 				return -ENOMEM;
706 		insert = true;
707 		goto repeat;
708 	} else {
709 		memblock_merge_regions(type, start_rgn, end_rgn);
710 		return 0;
711 	}
712 }
713 
714 /**
715  * memblock_add_node - add new memblock region within a NUMA node
716  * @base: base address of the new region
717  * @size: size of the new region
718  * @nid: nid of the new region
719  * @flags: flags of the new region
720  *
721  * Add new memblock region [@base, @base + @size) to the "memory"
722  * type. See memblock_add_range() description for mode details
723  *
724  * Return:
725  * 0 on success, -errno on failure.
726  */
727 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
728 				      int nid, enum memblock_flags flags)
729 {
730 	phys_addr_t end = base + size - 1;
731 
732 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
733 		     &base, &end, nid, flags, (void *)_RET_IP_);
734 
735 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
736 }
737 
738 /**
739  * memblock_add - add new memblock region
740  * @base: base address of the new region
741  * @size: size of the new region
742  *
743  * Add new memblock region [@base, @base + @size) to the "memory"
744  * type. See memblock_add_range() description for mode details
745  *
746  * Return:
747  * 0 on success, -errno on failure.
748  */
749 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
750 {
751 	phys_addr_t end = base + size - 1;
752 
753 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
754 		     &base, &end, (void *)_RET_IP_);
755 
756 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
757 }
758 
759 /**
760  * memblock_validate_numa_coverage - check if amount of memory with
761  * no node ID assigned is less than a threshold
762  * @threshold_bytes: maximal memory size that can have unassigned node
763  * ID (in bytes).
764  *
765  * A buggy firmware may report memory that does not belong to any node.
766  * Check if amount of such memory is below @threshold_bytes.
767  *
768  * Return: true on success, false on failure.
769  */
770 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
771 {
772 	unsigned long nr_pages = 0;
773 	unsigned long start_pfn, end_pfn, mem_size_mb;
774 	int nid, i;
775 
776 	/* calculate lose page */
777 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
778 		if (!numa_valid_node(nid))
779 			nr_pages += end_pfn - start_pfn;
780 	}
781 
782 	if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
783 		mem_size_mb = memblock_phys_mem_size() / SZ_1M;
784 		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
785 		       (nr_pages << PAGE_SHIFT) / SZ_1M, mem_size_mb);
786 		return false;
787 	}
788 
789 	return true;
790 }
791 
792 
793 /**
794  * memblock_isolate_range - isolate given range into disjoint memblocks
795  * @type: memblock type to isolate range for
796  * @base: base of range to isolate
797  * @size: size of range to isolate
798  * @start_rgn: out parameter for the start of isolated region
799  * @end_rgn: out parameter for the end of isolated region
800  *
801  * Walk @type and ensure that regions don't cross the boundaries defined by
802  * [@base, @base + @size).  Crossing regions are split at the boundaries,
803  * which may create at most two more regions.  The index of the first
804  * region inside the range is returned in *@start_rgn and the index of the
805  * first region after the range is returned in *@end_rgn.
806  *
807  * Return:
808  * 0 on success, -errno on failure.
809  */
810 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
811 					phys_addr_t base, phys_addr_t size,
812 					int *start_rgn, int *end_rgn)
813 {
814 	phys_addr_t end = base + memblock_cap_size(base, &size);
815 	int idx;
816 	struct memblock_region *rgn;
817 
818 	*start_rgn = *end_rgn = 0;
819 
820 	if (!size)
821 		return 0;
822 
823 	/* we'll create at most two more regions */
824 	while (type->cnt + 2 > type->max)
825 		if (memblock_double_array(type, base, size) < 0)
826 			return -ENOMEM;
827 
828 	for_each_memblock_type(idx, type, rgn) {
829 		phys_addr_t rbase = rgn->base;
830 		phys_addr_t rend = rbase + rgn->size;
831 
832 		if (rbase >= end)
833 			break;
834 		if (rend <= base)
835 			continue;
836 
837 		if (rbase < base) {
838 			/*
839 			 * @rgn intersects from below.  Split and continue
840 			 * to process the next region - the new top half.
841 			 */
842 			rgn->base = base;
843 			rgn->size -= base - rbase;
844 			type->total_size -= base - rbase;
845 			memblock_insert_region(type, idx, rbase, base - rbase,
846 					       memblock_get_region_node(rgn),
847 					       rgn->flags);
848 		} else if (rend > end) {
849 			/*
850 			 * @rgn intersects from above.  Split and redo the
851 			 * current region - the new bottom half.
852 			 */
853 			rgn->base = end;
854 			rgn->size -= end - rbase;
855 			type->total_size -= end - rbase;
856 			memblock_insert_region(type, idx--, rbase, end - rbase,
857 					       memblock_get_region_node(rgn),
858 					       rgn->flags);
859 		} else {
860 			/* @rgn is fully contained, record it */
861 			if (!*end_rgn)
862 				*start_rgn = idx;
863 			*end_rgn = idx + 1;
864 		}
865 	}
866 
867 	return 0;
868 }
869 
870 static int __init_memblock memblock_remove_range(struct memblock_type *type,
871 					  phys_addr_t base, phys_addr_t size)
872 {
873 	int start_rgn, end_rgn;
874 	int i, ret;
875 
876 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
877 	if (ret)
878 		return ret;
879 
880 	for (i = end_rgn - 1; i >= start_rgn; i--)
881 		memblock_remove_region(type, i);
882 	return 0;
883 }
884 
885 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
886 {
887 	phys_addr_t end = base + size - 1;
888 
889 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
890 		     &base, &end, (void *)_RET_IP_);
891 
892 	return memblock_remove_range(&memblock.memory, base, size);
893 }
894 
895 /**
896  * memblock_free - free boot memory allocation
897  * @ptr: starting address of the  boot memory allocation
898  * @size: size of the boot memory block in bytes
899  *
900  * Free boot memory block previously allocated by memblock_alloc_xx() API.
901  * The freeing memory will not be released to the buddy allocator.
902  */
903 void __init_memblock memblock_free(void *ptr, size_t size)
904 {
905 	if (ptr)
906 		memblock_phys_free(__pa(ptr), size);
907 }
908 
909 /**
910  * memblock_phys_free - free boot memory block
911  * @base: phys starting address of the  boot memory block
912  * @size: size of the boot memory block in bytes
913  *
914  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
915  * The freeing memory will not be released to the buddy allocator.
916  */
917 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
918 {
919 	phys_addr_t end = base + size - 1;
920 
921 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922 		     &base, &end, (void *)_RET_IP_);
923 
924 	kmemleak_free_part_phys(base, size);
925 	return memblock_remove_range(&memblock.reserved, base, size);
926 }
927 
928 int __init_memblock __memblock_reserve(phys_addr_t base, phys_addr_t size,
929 				       int nid, enum memblock_flags flags)
930 {
931 	phys_addr_t end = base + size - 1;
932 
933 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
934 		     &base, &end, nid, flags, (void *)_RET_IP_);
935 
936 	return memblock_add_range(&memblock.reserved, base, size, nid, flags);
937 }
938 
939 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
940 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
941 {
942 	phys_addr_t end = base + size - 1;
943 
944 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
945 		     &base, &end, (void *)_RET_IP_);
946 
947 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
948 }
949 #endif
950 
951 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
952 __init void memblock_set_kho_scratch_only(void)
953 {
954 	kho_scratch_only = true;
955 }
956 
957 __init void memblock_clear_kho_scratch_only(void)
958 {
959 	kho_scratch_only = false;
960 }
961 
962 __init void memmap_init_kho_scratch_pages(void)
963 {
964 	phys_addr_t start, end;
965 	unsigned long pfn;
966 	int nid;
967 	u64 i;
968 
969 	if (!IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT))
970 		return;
971 
972 	/*
973 	 * Initialize struct pages for free scratch memory.
974 	 * The struct pages for reserved scratch memory will be set up in
975 	 * reserve_bootmem_region()
976 	 */
977 	__for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
978 			     MEMBLOCK_KHO_SCRATCH, &start, &end, &nid) {
979 		for (pfn = PFN_UP(start); pfn < PFN_DOWN(end); pfn++)
980 			init_deferred_page(pfn, nid);
981 	}
982 }
983 #endif
984 
985 /**
986  * memblock_setclr_flag - set or clear flag for a memory region
987  * @type: memblock type to set/clear flag for
988  * @base: base address of the region
989  * @size: size of the region
990  * @set: set or clear the flag
991  * @flag: the flag to update
992  *
993  * This function isolates region [@base, @base + @size), and sets/clears flag
994  *
995  * Return: 0 on success, -errno on failure.
996  */
997 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
998 				phys_addr_t base, phys_addr_t size, int set, int flag)
999 {
1000 	int i, ret, start_rgn, end_rgn;
1001 
1002 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1003 	if (ret)
1004 		return ret;
1005 
1006 	for (i = start_rgn; i < end_rgn; i++) {
1007 		struct memblock_region *r = &type->regions[i];
1008 
1009 		if (set)
1010 			r->flags |= flag;
1011 		else
1012 			r->flags &= ~flag;
1013 	}
1014 
1015 	memblock_merge_regions(type, start_rgn, end_rgn);
1016 	return 0;
1017 }
1018 
1019 /**
1020  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
1021  * @base: the base phys addr of the region
1022  * @size: the size of the region
1023  *
1024  * Return: 0 on success, -errno on failure.
1025  */
1026 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
1027 {
1028 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
1029 }
1030 
1031 /**
1032  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
1033  * @base: the base phys addr of the region
1034  * @size: the size of the region
1035  *
1036  * Return: 0 on success, -errno on failure.
1037  */
1038 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
1039 {
1040 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
1041 }
1042 
1043 /**
1044  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
1045  * @base: the base phys addr of the region
1046  * @size: the size of the region
1047  *
1048  * Return: 0 on success, -errno on failure.
1049  */
1050 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
1051 {
1052 	if (!mirrored_kernelcore)
1053 		return 0;
1054 
1055 	system_has_some_mirror = true;
1056 
1057 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1058 }
1059 
1060 /**
1061  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1062  * @base: the base phys addr of the region
1063  * @size: the size of the region
1064  *
1065  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1066  * direct mapping of the physical memory. These regions will still be
1067  * covered by the memory map. The struct page representing NOMAP memory
1068  * frames in the memory map will be PageReserved()
1069  *
1070  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1071  * memblock, the caller must inform kmemleak to ignore that memory
1072  *
1073  * Return: 0 on success, -errno on failure.
1074  */
1075 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1076 {
1077 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1078 }
1079 
1080 /**
1081  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1082  * @base: the base phys addr of the region
1083  * @size: the size of the region
1084  *
1085  * Return: 0 on success, -errno on failure.
1086  */
1087 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1088 {
1089 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1090 }
1091 
1092 /**
1093  * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1094  * MEMBLOCK_RSRV_NOINIT
1095  *
1096  * @base: the base phys addr of the region
1097  * @size: the size of the region
1098  *
1099  * The struct pages for the reserved regions marked %MEMBLOCK_RSRV_NOINIT will
1100  * not be fully initialized to allow the caller optimize their initialization.
1101  *
1102  * When %CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, setting this flag
1103  * completely bypasses the initialization of struct pages for such region.
1104  *
1105  * When %CONFIG_DEFERRED_STRUCT_PAGE_INIT is disabled, struct pages in this
1106  * region will be initialized with default values but won't be marked as
1107  * reserved.
1108  *
1109  * Return: 0 on success, -errno on failure.
1110  */
1111 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1112 {
1113 	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1114 				    MEMBLOCK_RSRV_NOINIT);
1115 }
1116 
1117 /**
1118  * memblock_mark_kho_scratch - Mark a memory region as MEMBLOCK_KHO_SCRATCH.
1119  * @base: the base phys addr of the region
1120  * @size: the size of the region
1121  *
1122  * Only memory regions marked with %MEMBLOCK_KHO_SCRATCH will be considered
1123  * for allocations during early boot with kexec handover.
1124  *
1125  * Return: 0 on success, -errno on failure.
1126  */
1127 __init int memblock_mark_kho_scratch(phys_addr_t base, phys_addr_t size)
1128 {
1129 	return memblock_setclr_flag(&memblock.memory, base, size, 1,
1130 				    MEMBLOCK_KHO_SCRATCH);
1131 }
1132 
1133 /**
1134  * memblock_clear_kho_scratch - Clear MEMBLOCK_KHO_SCRATCH flag for a
1135  * specified region.
1136  * @base: the base phys addr of the region
1137  * @size: the size of the region
1138  *
1139  * Return: 0 on success, -errno on failure.
1140  */
1141 __init int memblock_clear_kho_scratch(phys_addr_t base, phys_addr_t size)
1142 {
1143 	return memblock_setclr_flag(&memblock.memory, base, size, 0,
1144 				    MEMBLOCK_KHO_SCRATCH);
1145 }
1146 
1147 static bool should_skip_region(struct memblock_type *type,
1148 			       struct memblock_region *m,
1149 			       int nid, int flags)
1150 {
1151 	int m_nid = memblock_get_region_node(m);
1152 
1153 	/* we never skip regions when iterating memblock.reserved or physmem */
1154 	if (type != memblock_memory)
1155 		return false;
1156 
1157 	/* only memory regions are associated with nodes, check it */
1158 	if (numa_valid_node(nid) && nid != m_nid)
1159 		return true;
1160 
1161 	/* skip hotpluggable memory regions if needed */
1162 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1163 	    !(flags & MEMBLOCK_HOTPLUG))
1164 		return true;
1165 
1166 	/* if we want mirror memory skip non-mirror memory regions */
1167 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1168 		return true;
1169 
1170 	/* skip nomap memory unless we were asked for it explicitly */
1171 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1172 		return true;
1173 
1174 	/* skip driver-managed memory unless we were asked for it explicitly */
1175 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1176 		return true;
1177 
1178 	/*
1179 	 * In early alloc during kexec handover, we can only consider
1180 	 * MEMBLOCK_KHO_SCRATCH regions for the allocations
1181 	 */
1182 	if ((flags & MEMBLOCK_KHO_SCRATCH) && !memblock_is_kho_scratch(m))
1183 		return true;
1184 
1185 	return false;
1186 }
1187 
1188 /**
1189  * __next_mem_range - next function for for_each_free_mem_range() etc.
1190  * @idx: pointer to u64 loop variable
1191  * @nid: node selector, %NUMA_NO_NODE for all nodes
1192  * @flags: pick from blocks based on memory attributes
1193  * @type_a: pointer to memblock_type from where the range is taken
1194  * @type_b: pointer to memblock_type which excludes memory from being taken
1195  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1196  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1197  * @out_nid: ptr to int for nid of the range, can be %NULL
1198  *
1199  * Find the first area from *@idx which matches @nid, fill the out
1200  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1201  * *@idx contains index into type_a and the upper 32bit indexes the
1202  * areas before each region in type_b.	For example, if type_b regions
1203  * look like the following,
1204  *
1205  *	0:[0-16), 1:[32-48), 2:[128-130)
1206  *
1207  * The upper 32bit indexes the following regions.
1208  *
1209  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1210  *
1211  * As both region arrays are sorted, the function advances the two indices
1212  * in lockstep and returns each intersection.
1213  */
1214 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1215 		      struct memblock_type *type_a,
1216 		      struct memblock_type *type_b, phys_addr_t *out_start,
1217 		      phys_addr_t *out_end, int *out_nid)
1218 {
1219 	int idx_a = *idx & 0xffffffff;
1220 	int idx_b = *idx >> 32;
1221 
1222 	for (; idx_a < type_a->cnt; idx_a++) {
1223 		struct memblock_region *m = &type_a->regions[idx_a];
1224 
1225 		phys_addr_t m_start = m->base;
1226 		phys_addr_t m_end = m->base + m->size;
1227 		int	    m_nid = memblock_get_region_node(m);
1228 
1229 		if (should_skip_region(type_a, m, nid, flags))
1230 			continue;
1231 
1232 		if (!type_b) {
1233 			if (out_start)
1234 				*out_start = m_start;
1235 			if (out_end)
1236 				*out_end = m_end;
1237 			if (out_nid)
1238 				*out_nid = m_nid;
1239 			idx_a++;
1240 			*idx = (u32)idx_a | (u64)idx_b << 32;
1241 			return;
1242 		}
1243 
1244 		/* scan areas before each reservation */
1245 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1246 			struct memblock_region *r;
1247 			phys_addr_t r_start;
1248 			phys_addr_t r_end;
1249 
1250 			r = &type_b->regions[idx_b];
1251 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1252 			r_end = idx_b < type_b->cnt ?
1253 				r->base : PHYS_ADDR_MAX;
1254 
1255 			/*
1256 			 * if idx_b advanced past idx_a,
1257 			 * break out to advance idx_a
1258 			 */
1259 			if (r_start >= m_end)
1260 				break;
1261 			/* if the two regions intersect, we're done */
1262 			if (m_start < r_end) {
1263 				if (out_start)
1264 					*out_start =
1265 						max(m_start, r_start);
1266 				if (out_end)
1267 					*out_end = min(m_end, r_end);
1268 				if (out_nid)
1269 					*out_nid = m_nid;
1270 				/*
1271 				 * The region which ends first is
1272 				 * advanced for the next iteration.
1273 				 */
1274 				if (m_end <= r_end)
1275 					idx_a++;
1276 				else
1277 					idx_b++;
1278 				*idx = (u32)idx_a | (u64)idx_b << 32;
1279 				return;
1280 			}
1281 		}
1282 	}
1283 
1284 	/* signal end of iteration */
1285 	*idx = ULLONG_MAX;
1286 }
1287 
1288 /**
1289  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1290  *
1291  * @idx: pointer to u64 loop variable
1292  * @nid: node selector, %NUMA_NO_NODE for all nodes
1293  * @flags: pick from blocks based on memory attributes
1294  * @type_a: pointer to memblock_type from where the range is taken
1295  * @type_b: pointer to memblock_type which excludes memory from being taken
1296  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1297  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1298  * @out_nid: ptr to int for nid of the range, can be %NULL
1299  *
1300  * Finds the next range from type_a which is not marked as unsuitable
1301  * in type_b.
1302  *
1303  * Reverse of __next_mem_range().
1304  */
1305 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1306 					  enum memblock_flags flags,
1307 					  struct memblock_type *type_a,
1308 					  struct memblock_type *type_b,
1309 					  phys_addr_t *out_start,
1310 					  phys_addr_t *out_end, int *out_nid)
1311 {
1312 	int idx_a = *idx & 0xffffffff;
1313 	int idx_b = *idx >> 32;
1314 
1315 	if (*idx == (u64)ULLONG_MAX) {
1316 		idx_a = type_a->cnt - 1;
1317 		if (type_b != NULL)
1318 			idx_b = type_b->cnt;
1319 		else
1320 			idx_b = 0;
1321 	}
1322 
1323 	for (; idx_a >= 0; idx_a--) {
1324 		struct memblock_region *m = &type_a->regions[idx_a];
1325 
1326 		phys_addr_t m_start = m->base;
1327 		phys_addr_t m_end = m->base + m->size;
1328 		int m_nid = memblock_get_region_node(m);
1329 
1330 		if (should_skip_region(type_a, m, nid, flags))
1331 			continue;
1332 
1333 		if (!type_b) {
1334 			if (out_start)
1335 				*out_start = m_start;
1336 			if (out_end)
1337 				*out_end = m_end;
1338 			if (out_nid)
1339 				*out_nid = m_nid;
1340 			idx_a--;
1341 			*idx = (u32)idx_a | (u64)idx_b << 32;
1342 			return;
1343 		}
1344 
1345 		/* scan areas before each reservation */
1346 		for (; idx_b >= 0; idx_b--) {
1347 			struct memblock_region *r;
1348 			phys_addr_t r_start;
1349 			phys_addr_t r_end;
1350 
1351 			r = &type_b->regions[idx_b];
1352 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1353 			r_end = idx_b < type_b->cnt ?
1354 				r->base : PHYS_ADDR_MAX;
1355 			/*
1356 			 * if idx_b advanced past idx_a,
1357 			 * break out to advance idx_a
1358 			 */
1359 
1360 			if (r_end <= m_start)
1361 				break;
1362 			/* if the two regions intersect, we're done */
1363 			if (m_end > r_start) {
1364 				if (out_start)
1365 					*out_start = max(m_start, r_start);
1366 				if (out_end)
1367 					*out_end = min(m_end, r_end);
1368 				if (out_nid)
1369 					*out_nid = m_nid;
1370 				if (m_start >= r_start)
1371 					idx_a--;
1372 				else
1373 					idx_b--;
1374 				*idx = (u32)idx_a | (u64)idx_b << 32;
1375 				return;
1376 			}
1377 		}
1378 	}
1379 	/* signal end of iteration */
1380 	*idx = ULLONG_MAX;
1381 }
1382 
1383 /*
1384  * Common iterator interface used to define for_each_mem_pfn_range().
1385  */
1386 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1387 				unsigned long *out_start_pfn,
1388 				unsigned long *out_end_pfn, int *out_nid)
1389 {
1390 	struct memblock_type *type = &memblock.memory;
1391 	struct memblock_region *r;
1392 	int r_nid;
1393 
1394 	while (++*idx < type->cnt) {
1395 		r = &type->regions[*idx];
1396 		r_nid = memblock_get_region_node(r);
1397 
1398 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1399 			continue;
1400 		if (!numa_valid_node(nid) || nid == r_nid)
1401 			break;
1402 	}
1403 	if (*idx >= type->cnt) {
1404 		*idx = -1;
1405 		return;
1406 	}
1407 
1408 	if (out_start_pfn)
1409 		*out_start_pfn = PFN_UP(r->base);
1410 	if (out_end_pfn)
1411 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1412 	if (out_nid)
1413 		*out_nid = r_nid;
1414 }
1415 
1416 /**
1417  * memblock_set_node - set node ID on memblock regions
1418  * @base: base of area to set node ID for
1419  * @size: size of area to set node ID for
1420  * @type: memblock type to set node ID for
1421  * @nid: node ID to set
1422  *
1423  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1424  * Regions which cross the area boundaries are split as necessary.
1425  *
1426  * Return:
1427  * 0 on success, -errno on failure.
1428  */
1429 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1430 				      struct memblock_type *type, int nid)
1431 {
1432 #ifdef CONFIG_NUMA
1433 	int start_rgn, end_rgn;
1434 	int i, ret;
1435 
1436 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1437 	if (ret)
1438 		return ret;
1439 
1440 	for (i = start_rgn; i < end_rgn; i++)
1441 		memblock_set_region_node(&type->regions[i], nid);
1442 
1443 	memblock_merge_regions(type, start_rgn, end_rgn);
1444 #endif
1445 	return 0;
1446 }
1447 
1448 /**
1449  * memblock_alloc_range_nid - allocate boot memory block
1450  * @size: size of memory block to be allocated in bytes
1451  * @align: alignment of the region and block's size
1452  * @start: the lower bound of the memory region to allocate (phys address)
1453  * @end: the upper bound of the memory region to allocate (phys address)
1454  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1455  * @exact_nid: control the allocation fall back to other nodes
1456  *
1457  * The allocation is performed from memory region limited by
1458  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1459  *
1460  * If the specified node can not hold the requested memory and @exact_nid
1461  * is false, the allocation falls back to any node in the system.
1462  *
1463  * For systems with memory mirroring, the allocation is attempted first
1464  * from the regions with mirroring enabled and then retried from any
1465  * memory region.
1466  *
1467  * In addition, function using kmemleak_alloc_phys for allocated boot
1468  * memory block, it is never reported as leaks.
1469  *
1470  * Return:
1471  * Physical address of allocated memory block on success, %0 on failure.
1472  */
1473 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1474 					phys_addr_t align, phys_addr_t start,
1475 					phys_addr_t end, int nid,
1476 					bool exact_nid)
1477 {
1478 	enum memblock_flags flags = choose_memblock_flags();
1479 	phys_addr_t found;
1480 
1481 	/*
1482 	 * Detect any accidental use of these APIs after slab is ready, as at
1483 	 * this moment memblock may be deinitialized already and its
1484 	 * internal data may be destroyed (after execution of memblock_free_all)
1485 	 */
1486 	if (WARN_ON_ONCE(slab_is_available())) {
1487 		void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1488 
1489 		return vaddr ? virt_to_phys(vaddr) : 0;
1490 	}
1491 
1492 	if (!align) {
1493 		/* Can't use WARNs this early in boot on powerpc */
1494 		dump_stack();
1495 		align = SMP_CACHE_BYTES;
1496 	}
1497 
1498 again:
1499 	found = memblock_find_in_range_node(size, align, start, end, nid,
1500 					    flags);
1501 	if (found && !__memblock_reserve(found, size, nid, MEMBLOCK_RSRV_KERN))
1502 		goto done;
1503 
1504 	if (numa_valid_node(nid) && !exact_nid) {
1505 		found = memblock_find_in_range_node(size, align, start,
1506 						    end, NUMA_NO_NODE,
1507 						    flags);
1508 		if (found && !memblock_reserve_kern(found, size))
1509 			goto done;
1510 	}
1511 
1512 	if (flags & MEMBLOCK_MIRROR) {
1513 		flags &= ~MEMBLOCK_MIRROR;
1514 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1515 			&size);
1516 		goto again;
1517 	}
1518 
1519 	return 0;
1520 
1521 done:
1522 	/*
1523 	 * Skip kmemleak for those places like kasan_init() and
1524 	 * early_pgtable_alloc() due to high volume.
1525 	 */
1526 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1527 		/*
1528 		 * Memblock allocated blocks are never reported as
1529 		 * leaks. This is because many of these blocks are
1530 		 * only referred via the physical address which is
1531 		 * not looked up by kmemleak.
1532 		 */
1533 		kmemleak_alloc_phys(found, size, 0);
1534 
1535 	/*
1536 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1537 	 * require memory to be accepted before it can be used by the
1538 	 * guest.
1539 	 *
1540 	 * Accept the memory of the allocated buffer.
1541 	 */
1542 	accept_memory(found, size);
1543 
1544 	return found;
1545 }
1546 
1547 /**
1548  * memblock_phys_alloc_range - allocate a memory block inside specified range
1549  * @size: size of memory block to be allocated in bytes
1550  * @align: alignment of the region and block's size
1551  * @start: the lower bound of the memory region to allocate (physical address)
1552  * @end: the upper bound of the memory region to allocate (physical address)
1553  *
1554  * Allocate @size bytes in the between @start and @end.
1555  *
1556  * Return: physical address of the allocated memory block on success,
1557  * %0 on failure.
1558  */
1559 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1560 					     phys_addr_t align,
1561 					     phys_addr_t start,
1562 					     phys_addr_t end)
1563 {
1564 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1565 		     __func__, (u64)size, (u64)align, &start, &end,
1566 		     (void *)_RET_IP_);
1567 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1568 					false);
1569 }
1570 
1571 /**
1572  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1573  * @size: size of memory block to be allocated in bytes
1574  * @align: alignment of the region and block's size
1575  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1576  *
1577  * Allocates memory block from the specified NUMA node. If the node
1578  * has no available memory, attempts to allocated from any node in the
1579  * system.
1580  *
1581  * Return: physical address of the allocated memory block on success,
1582  * %0 on failure.
1583  */
1584 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1585 {
1586 	return memblock_alloc_range_nid(size, align, 0,
1587 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1588 }
1589 
1590 /**
1591  * memblock_alloc_internal - allocate boot memory block
1592  * @size: size of memory block to be allocated in bytes
1593  * @align: alignment of the region and block's size
1594  * @min_addr: the lower bound of the memory region to allocate (phys address)
1595  * @max_addr: the upper bound of the memory region to allocate (phys address)
1596  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1597  * @exact_nid: control the allocation fall back to other nodes
1598  *
1599  * Allocates memory block using memblock_alloc_range_nid() and
1600  * converts the returned physical address to virtual.
1601  *
1602  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1603  * will fall back to memory below @min_addr. Other constraints, such
1604  * as node and mirrored memory will be handled again in
1605  * memblock_alloc_range_nid().
1606  *
1607  * Return:
1608  * Virtual address of allocated memory block on success, NULL on failure.
1609  */
1610 static void * __init memblock_alloc_internal(
1611 				phys_addr_t size, phys_addr_t align,
1612 				phys_addr_t min_addr, phys_addr_t max_addr,
1613 				int nid, bool exact_nid)
1614 {
1615 	phys_addr_t alloc;
1616 
1617 
1618 	if (max_addr > memblock.current_limit)
1619 		max_addr = memblock.current_limit;
1620 
1621 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1622 					exact_nid);
1623 
1624 	/* retry allocation without lower limit */
1625 	if (!alloc && min_addr)
1626 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1627 						exact_nid);
1628 
1629 	if (!alloc)
1630 		return NULL;
1631 
1632 	return phys_to_virt(alloc);
1633 }
1634 
1635 /**
1636  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1637  * without zeroing memory
1638  * @size: size of memory block to be allocated in bytes
1639  * @align: alignment of the region and block's size
1640  * @min_addr: the lower bound of the memory region from where the allocation
1641  *	  is preferred (phys address)
1642  * @max_addr: the upper bound of the memory region from where the allocation
1643  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1644  *	      allocate only from memory limited by memblock.current_limit value
1645  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1646  *
1647  * Public function, provides additional debug information (including caller
1648  * info), if enabled. Does not zero allocated memory.
1649  *
1650  * Return:
1651  * Virtual address of allocated memory block on success, NULL on failure.
1652  */
1653 void * __init memblock_alloc_exact_nid_raw(
1654 			phys_addr_t size, phys_addr_t align,
1655 			phys_addr_t min_addr, phys_addr_t max_addr,
1656 			int nid)
1657 {
1658 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1659 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1660 		     &max_addr, (void *)_RET_IP_);
1661 
1662 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1663 				       true);
1664 }
1665 
1666 /**
1667  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1668  * memory and without panicking
1669  * @size: size of memory block to be allocated in bytes
1670  * @align: alignment of the region and block's size
1671  * @min_addr: the lower bound of the memory region from where the allocation
1672  *	  is preferred (phys address)
1673  * @max_addr: the upper bound of the memory region from where the allocation
1674  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1675  *	      allocate only from memory limited by memblock.current_limit value
1676  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1677  *
1678  * Public function, provides additional debug information (including caller
1679  * info), if enabled. Does not zero allocated memory, does not panic if request
1680  * cannot be satisfied.
1681  *
1682  * Return:
1683  * Virtual address of allocated memory block on success, NULL on failure.
1684  */
1685 void * __init memblock_alloc_try_nid_raw(
1686 			phys_addr_t size, phys_addr_t align,
1687 			phys_addr_t min_addr, phys_addr_t max_addr,
1688 			int nid)
1689 {
1690 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1691 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1692 		     &max_addr, (void *)_RET_IP_);
1693 
1694 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1695 				       false);
1696 }
1697 
1698 /**
1699  * memblock_alloc_try_nid - allocate boot memory block
1700  * @size: size of memory block to be allocated in bytes
1701  * @align: alignment of the region and block's size
1702  * @min_addr: the lower bound of the memory region from where the allocation
1703  *	  is preferred (phys address)
1704  * @max_addr: the upper bound of the memory region from where the allocation
1705  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1706  *	      allocate only from memory limited by memblock.current_limit value
1707  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1708  *
1709  * Public function, provides additional debug information (including caller
1710  * info), if enabled. This function zeroes the allocated memory.
1711  *
1712  * Return:
1713  * Virtual address of allocated memory block on success, NULL on failure.
1714  */
1715 void * __init memblock_alloc_try_nid(
1716 			phys_addr_t size, phys_addr_t align,
1717 			phys_addr_t min_addr, phys_addr_t max_addr,
1718 			int nid)
1719 {
1720 	void *ptr;
1721 
1722 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1723 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1724 		     &max_addr, (void *)_RET_IP_);
1725 	ptr = memblock_alloc_internal(size, align,
1726 					   min_addr, max_addr, nid, false);
1727 	if (ptr)
1728 		memset(ptr, 0, size);
1729 
1730 	return ptr;
1731 }
1732 
1733 /**
1734  * __memblock_alloc_or_panic - Try to allocate memory and panic on failure
1735  * @size: size of memory block to be allocated in bytes
1736  * @align: alignment of the region and block's size
1737  * @func: caller func name
1738  *
1739  * This function attempts to allocate memory using memblock_alloc,
1740  * and in case of failure, it calls panic with the formatted message.
1741  * This function should not be used directly, please use the macro memblock_alloc_or_panic.
1742  */
1743 void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align,
1744 				       const char *func)
1745 {
1746 	void *addr = memblock_alloc(size, align);
1747 
1748 	if (unlikely(!addr))
1749 		panic("%s: Failed to allocate %pap bytes\n", func, &size);
1750 	return addr;
1751 }
1752 
1753 /**
1754  * memblock_free_late - free pages directly to buddy allocator
1755  * @base: phys starting address of the  boot memory block
1756  * @size: size of the boot memory block in bytes
1757  *
1758  * This is only useful when the memblock allocator has already been torn
1759  * down, but we are still initializing the system.  Pages are released directly
1760  * to the buddy allocator.
1761  */
1762 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1763 {
1764 	phys_addr_t cursor, end;
1765 
1766 	end = base + size - 1;
1767 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1768 		     __func__, &base, &end, (void *)_RET_IP_);
1769 	kmemleak_free_part_phys(base, size);
1770 	cursor = PFN_UP(base);
1771 	end = PFN_DOWN(base + size);
1772 
1773 	for (; cursor < end; cursor++) {
1774 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1775 		totalram_pages_inc();
1776 	}
1777 }
1778 
1779 /*
1780  * Remaining API functions
1781  */
1782 
1783 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1784 {
1785 	return memblock.memory.total_size;
1786 }
1787 
1788 phys_addr_t __init_memblock memblock_reserved_size(void)
1789 {
1790 	return memblock.reserved.total_size;
1791 }
1792 
1793 phys_addr_t __init_memblock memblock_reserved_kern_size(phys_addr_t limit, int nid)
1794 {
1795 	struct memblock_region *r;
1796 	phys_addr_t total = 0;
1797 
1798 	for_each_reserved_mem_region(r) {
1799 		phys_addr_t size = r->size;
1800 
1801 		if (r->base > limit)
1802 			break;
1803 
1804 		if (r->base + r->size > limit)
1805 			size = limit - r->base;
1806 
1807 		if (nid == memblock_get_region_node(r) || !numa_valid_node(nid))
1808 			if (r->flags & MEMBLOCK_RSRV_KERN)
1809 				total += size;
1810 	}
1811 
1812 	return total;
1813 }
1814 
1815 /**
1816  * memblock_estimated_nr_free_pages - return estimated number of free pages
1817  * from memblock point of view
1818  *
1819  * During bootup, subsystems might need a rough estimate of the number of free
1820  * pages in the whole system, before precise numbers are available from the
1821  * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1822  * obtained from the buddy might be very imprecise during bootup.
1823  *
1824  * Return:
1825  * An estimated number of free pages from memblock point of view.
1826  */
1827 unsigned long __init memblock_estimated_nr_free_pages(void)
1828 {
1829 	return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1830 }
1831 
1832 /* lowest address */
1833 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1834 {
1835 	return memblock.memory.regions[0].base;
1836 }
1837 
1838 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1839 {
1840 	int idx = memblock.memory.cnt - 1;
1841 
1842 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1843 }
1844 
1845 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1846 {
1847 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1848 	struct memblock_region *r;
1849 
1850 	/*
1851 	 * translate the memory @limit size into the max address within one of
1852 	 * the memory memblock regions, if the @limit exceeds the total size
1853 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1854 	 */
1855 	for_each_mem_region(r) {
1856 		if (limit <= r->size) {
1857 			max_addr = r->base + limit;
1858 			break;
1859 		}
1860 		limit -= r->size;
1861 	}
1862 
1863 	return max_addr;
1864 }
1865 
1866 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1867 {
1868 	phys_addr_t max_addr;
1869 
1870 	if (!limit)
1871 		return;
1872 
1873 	max_addr = __find_max_addr(limit);
1874 
1875 	/* @limit exceeds the total size of the memory, do nothing */
1876 	if (max_addr == PHYS_ADDR_MAX)
1877 		return;
1878 
1879 	/* truncate both memory and reserved regions */
1880 	memblock_remove_range(&memblock.memory, max_addr,
1881 			      PHYS_ADDR_MAX);
1882 	memblock_remove_range(&memblock.reserved, max_addr,
1883 			      PHYS_ADDR_MAX);
1884 }
1885 
1886 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1887 {
1888 	int start_rgn, end_rgn;
1889 	int i, ret;
1890 
1891 	if (!size)
1892 		return;
1893 
1894 	if (!memblock_memory->total_size) {
1895 		pr_warn("%s: No memory registered yet\n", __func__);
1896 		return;
1897 	}
1898 
1899 	ret = memblock_isolate_range(&memblock.memory, base, size,
1900 						&start_rgn, &end_rgn);
1901 	if (ret)
1902 		return;
1903 
1904 	/* remove all the MAP regions */
1905 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1906 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1907 			memblock_remove_region(&memblock.memory, i);
1908 
1909 	for (i = start_rgn - 1; i >= 0; i--)
1910 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1911 			memblock_remove_region(&memblock.memory, i);
1912 
1913 	/* truncate the reserved regions */
1914 	memblock_remove_range(&memblock.reserved, 0, base);
1915 	memblock_remove_range(&memblock.reserved,
1916 			base + size, PHYS_ADDR_MAX);
1917 }
1918 
1919 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1920 {
1921 	phys_addr_t max_addr;
1922 
1923 	if (!limit)
1924 		return;
1925 
1926 	max_addr = __find_max_addr(limit);
1927 
1928 	/* @limit exceeds the total size of the memory, do nothing */
1929 	if (max_addr == PHYS_ADDR_MAX)
1930 		return;
1931 
1932 	memblock_cap_memory_range(0, max_addr);
1933 }
1934 
1935 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1936 {
1937 	unsigned int left = 0, right = type->cnt;
1938 
1939 	do {
1940 		unsigned int mid = (right + left) / 2;
1941 
1942 		if (addr < type->regions[mid].base)
1943 			right = mid;
1944 		else if (addr >= (type->regions[mid].base +
1945 				  type->regions[mid].size))
1946 			left = mid + 1;
1947 		else
1948 			return mid;
1949 	} while (left < right);
1950 	return -1;
1951 }
1952 
1953 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1954 {
1955 	return memblock_search(&memblock.reserved, addr) != -1;
1956 }
1957 
1958 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1959 {
1960 	return memblock_search(&memblock.memory, addr) != -1;
1961 }
1962 
1963 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1964 {
1965 	int i = memblock_search(&memblock.memory, addr);
1966 
1967 	if (i == -1)
1968 		return false;
1969 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1970 }
1971 
1972 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1973 			 unsigned long *start_pfn, unsigned long *end_pfn)
1974 {
1975 	struct memblock_type *type = &memblock.memory;
1976 	int mid = memblock_search(type, PFN_PHYS(pfn));
1977 
1978 	if (mid == -1)
1979 		return NUMA_NO_NODE;
1980 
1981 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1982 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1983 
1984 	return memblock_get_region_node(&type->regions[mid]);
1985 }
1986 
1987 /**
1988  * memblock_is_region_memory - check if a region is a subset of memory
1989  * @base: base of region to check
1990  * @size: size of region to check
1991  *
1992  * Check if the region [@base, @base + @size) is a subset of a memory block.
1993  *
1994  * Return:
1995  * 0 if false, non-zero if true
1996  */
1997 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1998 {
1999 	int idx = memblock_search(&memblock.memory, base);
2000 	phys_addr_t end = base + memblock_cap_size(base, &size);
2001 
2002 	if (idx == -1)
2003 		return false;
2004 	return (memblock.memory.regions[idx].base +
2005 		 memblock.memory.regions[idx].size) >= end;
2006 }
2007 
2008 /**
2009  * memblock_is_region_reserved - check if a region intersects reserved memory
2010  * @base: base of region to check
2011  * @size: size of region to check
2012  *
2013  * Check if the region [@base, @base + @size) intersects a reserved
2014  * memory block.
2015  *
2016  * Return:
2017  * True if they intersect, false if not.
2018  */
2019 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
2020 {
2021 	return memblock_overlaps_region(&memblock.reserved, base, size);
2022 }
2023 
2024 void __init_memblock memblock_trim_memory(phys_addr_t align)
2025 {
2026 	phys_addr_t start, end, orig_start, orig_end;
2027 	struct memblock_region *r;
2028 
2029 	for_each_mem_region(r) {
2030 		orig_start = r->base;
2031 		orig_end = r->base + r->size;
2032 		start = round_up(orig_start, align);
2033 		end = round_down(orig_end, align);
2034 
2035 		if (start == orig_start && end == orig_end)
2036 			continue;
2037 
2038 		if (start < end) {
2039 			r->base = start;
2040 			r->size = end - start;
2041 		} else {
2042 			memblock_remove_region(&memblock.memory,
2043 					       r - memblock.memory.regions);
2044 			r--;
2045 		}
2046 	}
2047 }
2048 
2049 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
2050 {
2051 	memblock.current_limit = limit;
2052 }
2053 
2054 phys_addr_t __init_memblock memblock_get_current_limit(void)
2055 {
2056 	return memblock.current_limit;
2057 }
2058 
2059 static void __init_memblock memblock_dump(struct memblock_type *type)
2060 {
2061 	phys_addr_t base, end, size;
2062 	enum memblock_flags flags;
2063 	int idx;
2064 	struct memblock_region *rgn;
2065 
2066 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
2067 
2068 	for_each_memblock_type(idx, type, rgn) {
2069 		char nid_buf[32] = "";
2070 
2071 		base = rgn->base;
2072 		size = rgn->size;
2073 		end = base + size - 1;
2074 		flags = rgn->flags;
2075 #ifdef CONFIG_NUMA
2076 		if (numa_valid_node(memblock_get_region_node(rgn)))
2077 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
2078 				 memblock_get_region_node(rgn));
2079 #endif
2080 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2081 			type->name, idx, &base, &end, &size, nid_buf, flags);
2082 	}
2083 }
2084 
2085 static void __init_memblock __memblock_dump_all(void)
2086 {
2087 	pr_info("MEMBLOCK configuration:\n");
2088 	pr_info(" memory size = %pa reserved size = %pa\n",
2089 		&memblock.memory.total_size,
2090 		&memblock.reserved.total_size);
2091 
2092 	memblock_dump(&memblock.memory);
2093 	memblock_dump(&memblock.reserved);
2094 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2095 	memblock_dump(&physmem);
2096 #endif
2097 }
2098 
2099 void __init_memblock memblock_dump_all(void)
2100 {
2101 	if (memblock_debug)
2102 		__memblock_dump_all();
2103 }
2104 
2105 void __init memblock_allow_resize(void)
2106 {
2107 	memblock_can_resize = 1;
2108 }
2109 
2110 static int __init early_memblock(char *p)
2111 {
2112 	if (p && strstr(p, "debug"))
2113 		memblock_debug = 1;
2114 	return 0;
2115 }
2116 early_param("memblock", early_memblock);
2117 
2118 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2119 {
2120 	struct page *start_pg, *end_pg;
2121 	phys_addr_t pg, pgend;
2122 
2123 	/*
2124 	 * Convert start_pfn/end_pfn to a struct page pointer.
2125 	 */
2126 	start_pg = pfn_to_page(start_pfn - 1) + 1;
2127 	end_pg = pfn_to_page(end_pfn - 1) + 1;
2128 
2129 	/*
2130 	 * Convert to physical addresses, and round start upwards and end
2131 	 * downwards.
2132 	 */
2133 	pg = PAGE_ALIGN(__pa(start_pg));
2134 	pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2135 
2136 	/*
2137 	 * If there are free pages between these, free the section of the
2138 	 * memmap array.
2139 	 */
2140 	if (pg < pgend)
2141 		memblock_phys_free(pg, pgend - pg);
2142 }
2143 
2144 /*
2145  * The mem_map array can get very big.  Free the unused area of the memory map.
2146  */
2147 static void __init free_unused_memmap(void)
2148 {
2149 	unsigned long start, end, prev_end = 0;
2150 	int i;
2151 
2152 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2153 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2154 		return;
2155 
2156 	/*
2157 	 * This relies on each bank being in address order.
2158 	 * The banks are sorted previously in bootmem_init().
2159 	 */
2160 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2161 #ifdef CONFIG_SPARSEMEM
2162 		/*
2163 		 * Take care not to free memmap entries that don't exist
2164 		 * due to SPARSEMEM sections which aren't present.
2165 		 */
2166 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2167 #endif
2168 		/*
2169 		 * Align down here since many operations in VM subsystem
2170 		 * presume that there are no holes in the memory map inside
2171 		 * a pageblock
2172 		 */
2173 		start = pageblock_start_pfn(start);
2174 
2175 		/*
2176 		 * If we had a previous bank, and there is a space
2177 		 * between the current bank and the previous, free it.
2178 		 */
2179 		if (prev_end && prev_end < start)
2180 			free_memmap(prev_end, start);
2181 
2182 		/*
2183 		 * Align up here since many operations in VM subsystem
2184 		 * presume that there are no holes in the memory map inside
2185 		 * a pageblock
2186 		 */
2187 		prev_end = pageblock_align(end);
2188 	}
2189 
2190 #ifdef CONFIG_SPARSEMEM
2191 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2192 		prev_end = pageblock_align(end);
2193 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2194 	}
2195 #endif
2196 }
2197 
2198 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2199 {
2200 	int order;
2201 
2202 	while (start < end) {
2203 		/*
2204 		 * Free the pages in the largest chunks alignment allows.
2205 		 *
2206 		 * __ffs() behaviour is undefined for 0. start == 0 is
2207 		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2208 		 * the case.
2209 		 */
2210 		if (start)
2211 			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2212 		else
2213 			order = MAX_PAGE_ORDER;
2214 
2215 		while (start + (1UL << order) > end)
2216 			order--;
2217 
2218 		memblock_free_pages(pfn_to_page(start), start, order);
2219 
2220 		start += (1UL << order);
2221 	}
2222 }
2223 
2224 static unsigned long __init __free_memory_core(phys_addr_t start,
2225 				 phys_addr_t end)
2226 {
2227 	unsigned long start_pfn = PFN_UP(start);
2228 	unsigned long end_pfn = PFN_DOWN(end);
2229 
2230 	if (!IS_ENABLED(CONFIG_HIGHMEM) && end_pfn > max_low_pfn)
2231 		end_pfn = max_low_pfn;
2232 
2233 	if (start_pfn >= end_pfn)
2234 		return 0;
2235 
2236 	__free_pages_memory(start_pfn, end_pfn);
2237 
2238 	return end_pfn - start_pfn;
2239 }
2240 
2241 static void __init memmap_init_reserved_pages(void)
2242 {
2243 	struct memblock_region *region;
2244 	phys_addr_t start, end;
2245 	int nid;
2246 	unsigned long max_reserved;
2247 
2248 	/*
2249 	 * set nid on all reserved pages and also treat struct
2250 	 * pages for the NOMAP regions as PageReserved
2251 	 */
2252 repeat:
2253 	max_reserved = memblock.reserved.max;
2254 	for_each_mem_region(region) {
2255 		nid = memblock_get_region_node(region);
2256 		start = region->base;
2257 		end = start + region->size;
2258 
2259 		if (memblock_is_nomap(region))
2260 			reserve_bootmem_region(start, end, nid);
2261 
2262 		memblock_set_node(start, region->size, &memblock.reserved, nid);
2263 	}
2264 	/*
2265 	 * 'max' is changed means memblock.reserved has been doubled its
2266 	 * array, which may result a new reserved region before current
2267 	 * 'start'. Now we should repeat the procedure to set its node id.
2268 	 */
2269 	if (max_reserved != memblock.reserved.max)
2270 		goto repeat;
2271 
2272 	/*
2273 	 * initialize struct pages for reserved regions that don't have
2274 	 * the MEMBLOCK_RSRV_NOINIT flag set
2275 	 */
2276 	for_each_reserved_mem_region(region) {
2277 		if (!memblock_is_reserved_noinit(region)) {
2278 			nid = memblock_get_region_node(region);
2279 			start = region->base;
2280 			end = start + region->size;
2281 
2282 			if (!numa_valid_node(nid))
2283 				nid = early_pfn_to_nid(PFN_DOWN(start));
2284 
2285 			reserve_bootmem_region(start, end, nid);
2286 		}
2287 	}
2288 }
2289 
2290 static unsigned long __init free_low_memory_core_early(void)
2291 {
2292 	unsigned long count = 0;
2293 	phys_addr_t start, end;
2294 	u64 i;
2295 
2296 	memblock_clear_hotplug(0, -1);
2297 
2298 	memmap_init_reserved_pages();
2299 
2300 	/*
2301 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2302 	 *  because in some case like Node0 doesn't have RAM installed
2303 	 *  low ram will be on Node1
2304 	 */
2305 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2306 				NULL)
2307 		count += __free_memory_core(start, end);
2308 
2309 	return count;
2310 }
2311 
2312 static int reset_managed_pages_done __initdata;
2313 
2314 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2315 {
2316 	struct zone *z;
2317 
2318 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2319 		atomic_long_set(&z->managed_pages, 0);
2320 }
2321 
2322 void __init reset_all_zones_managed_pages(void)
2323 {
2324 	struct pglist_data *pgdat;
2325 
2326 	if (reset_managed_pages_done)
2327 		return;
2328 
2329 	for_each_online_pgdat(pgdat)
2330 		reset_node_managed_pages(pgdat);
2331 
2332 	reset_managed_pages_done = 1;
2333 }
2334 
2335 /**
2336  * memblock_free_all - release free pages to the buddy allocator
2337  */
2338 void __init memblock_free_all(void)
2339 {
2340 	unsigned long pages;
2341 
2342 	free_unused_memmap();
2343 	reset_all_zones_managed_pages();
2344 
2345 	memblock_clear_kho_scratch_only();
2346 	pages = free_low_memory_core_early();
2347 	totalram_pages_add(pages);
2348 }
2349 
2350 /* Keep a table to reserve named memory */
2351 #define RESERVE_MEM_MAX_ENTRIES		8
2352 #define RESERVE_MEM_NAME_SIZE		16
2353 struct reserve_mem_table {
2354 	char			name[RESERVE_MEM_NAME_SIZE];
2355 	phys_addr_t		start;
2356 	phys_addr_t		size;
2357 };
2358 static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2359 static int reserved_mem_count;
2360 static DEFINE_MUTEX(reserve_mem_lock);
2361 
2362 /* Add wildcard region with a lookup name */
2363 static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2364 				   const char *name)
2365 {
2366 	struct reserve_mem_table *map;
2367 
2368 	map = &reserved_mem_table[reserved_mem_count++];
2369 	map->start = start;
2370 	map->size = size;
2371 	strscpy(map->name, name);
2372 }
2373 
2374 static struct reserve_mem_table *reserve_mem_find_by_name_nolock(const char *name)
2375 {
2376 	struct reserve_mem_table *map;
2377 	int i;
2378 
2379 	for (i = 0; i < reserved_mem_count; i++) {
2380 		map = &reserved_mem_table[i];
2381 		if (!map->size)
2382 			continue;
2383 		if (strcmp(name, map->name) == 0)
2384 			return map;
2385 	}
2386 	return NULL;
2387 }
2388 
2389 /**
2390  * reserve_mem_find_by_name - Find reserved memory region with a given name
2391  * @name: The name that is attached to a reserved memory region
2392  * @start: If found, holds the start address
2393  * @size: If found, holds the size of the address.
2394  *
2395  * @start and @size are only updated if @name is found.
2396  *
2397  * Returns: 1 if found or 0 if not found.
2398  */
2399 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2400 {
2401 	struct reserve_mem_table *map;
2402 
2403 	guard(mutex)(&reserve_mem_lock);
2404 	map = reserve_mem_find_by_name_nolock(name);
2405 	if (!map)
2406 		return 0;
2407 
2408 	*start = map->start;
2409 	*size = map->size;
2410 	return 1;
2411 }
2412 EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2413 
2414 /**
2415  * reserve_mem_release_by_name - Release reserved memory region with a given name
2416  * @name: The name that is attatched to a reserved memory region
2417  *
2418  * Forcibly release the pages in the reserved memory region so that those memory
2419  * can be used as free memory. After released the reserved region size becomes 0.
2420  *
2421  * Returns: 1 if released or 0 if not found.
2422  */
2423 int reserve_mem_release_by_name(const char *name)
2424 {
2425 	char buf[RESERVE_MEM_NAME_SIZE + 12];
2426 	struct reserve_mem_table *map;
2427 	void *start, *end;
2428 
2429 	guard(mutex)(&reserve_mem_lock);
2430 	map = reserve_mem_find_by_name_nolock(name);
2431 	if (!map)
2432 		return 0;
2433 
2434 	start = phys_to_virt(map->start);
2435 	end = start + map->size - 1;
2436 	snprintf(buf, sizeof(buf), "reserve_mem:%s", name);
2437 	free_reserved_area(start, end, 0, buf);
2438 	map->size = 0;
2439 
2440 	return 1;
2441 }
2442 
2443 #ifdef CONFIG_KEXEC_HANDOVER
2444 #define MEMBLOCK_KHO_FDT "memblock"
2445 #define MEMBLOCK_KHO_NODE_COMPATIBLE "memblock-v1"
2446 #define RESERVE_MEM_KHO_NODE_COMPATIBLE "reserve-mem-v1"
2447 static struct page *kho_fdt;
2448 
2449 static int reserve_mem_kho_finalize(struct kho_serialization *ser)
2450 {
2451 	int err = 0, i;
2452 
2453 	for (i = 0; i < reserved_mem_count; i++) {
2454 		struct reserve_mem_table *map = &reserved_mem_table[i];
2455 
2456 		err |= kho_preserve_phys(map->start, map->size);
2457 	}
2458 
2459 	err |= kho_preserve_folio(page_folio(kho_fdt));
2460 	err |= kho_add_subtree(ser, MEMBLOCK_KHO_FDT, page_to_virt(kho_fdt));
2461 
2462 	return notifier_from_errno(err);
2463 }
2464 
2465 static int reserve_mem_kho_notifier(struct notifier_block *self,
2466 				    unsigned long cmd, void *v)
2467 {
2468 	switch (cmd) {
2469 	case KEXEC_KHO_FINALIZE:
2470 		return reserve_mem_kho_finalize((struct kho_serialization *)v);
2471 	case KEXEC_KHO_ABORT:
2472 		return NOTIFY_DONE;
2473 	default:
2474 		return NOTIFY_BAD;
2475 	}
2476 }
2477 
2478 static struct notifier_block reserve_mem_kho_nb = {
2479 	.notifier_call = reserve_mem_kho_notifier,
2480 };
2481 
2482 static int __init prepare_kho_fdt(void)
2483 {
2484 	int err = 0, i;
2485 	void *fdt;
2486 
2487 	kho_fdt = alloc_page(GFP_KERNEL);
2488 	if (!kho_fdt)
2489 		return -ENOMEM;
2490 
2491 	fdt = page_to_virt(kho_fdt);
2492 
2493 	err |= fdt_create(fdt, PAGE_SIZE);
2494 	err |= fdt_finish_reservemap(fdt);
2495 
2496 	err |= fdt_begin_node(fdt, "");
2497 	err |= fdt_property_string(fdt, "compatible", MEMBLOCK_KHO_NODE_COMPATIBLE);
2498 	for (i = 0; i < reserved_mem_count; i++) {
2499 		struct reserve_mem_table *map = &reserved_mem_table[i];
2500 
2501 		err |= fdt_begin_node(fdt, map->name);
2502 		err |= fdt_property_string(fdt, "compatible", RESERVE_MEM_KHO_NODE_COMPATIBLE);
2503 		err |= fdt_property(fdt, "start", &map->start, sizeof(map->start));
2504 		err |= fdt_property(fdt, "size", &map->size, sizeof(map->size));
2505 		err |= fdt_end_node(fdt);
2506 	}
2507 	err |= fdt_end_node(fdt);
2508 
2509 	err |= fdt_finish(fdt);
2510 
2511 	if (err) {
2512 		pr_err("failed to prepare memblock FDT for KHO: %d\n", err);
2513 		put_page(kho_fdt);
2514 		kho_fdt = NULL;
2515 	}
2516 
2517 	return err;
2518 }
2519 
2520 static int __init reserve_mem_init(void)
2521 {
2522 	int err;
2523 
2524 	if (!kho_is_enabled() || !reserved_mem_count)
2525 		return 0;
2526 
2527 	err = prepare_kho_fdt();
2528 	if (err)
2529 		return err;
2530 
2531 	err = register_kho_notifier(&reserve_mem_kho_nb);
2532 	if (err) {
2533 		put_page(kho_fdt);
2534 		kho_fdt = NULL;
2535 	}
2536 
2537 	return err;
2538 }
2539 late_initcall(reserve_mem_init);
2540 
2541 static void *__init reserve_mem_kho_retrieve_fdt(void)
2542 {
2543 	phys_addr_t fdt_phys;
2544 	static void *fdt;
2545 	int err;
2546 
2547 	if (fdt)
2548 		return fdt;
2549 
2550 	err = kho_retrieve_subtree(MEMBLOCK_KHO_FDT, &fdt_phys);
2551 	if (err) {
2552 		if (err != -ENOENT)
2553 			pr_warn("failed to retrieve FDT '%s' from KHO: %d\n",
2554 				MEMBLOCK_KHO_FDT, err);
2555 		return NULL;
2556 	}
2557 
2558 	fdt = phys_to_virt(fdt_phys);
2559 
2560 	err = fdt_node_check_compatible(fdt, 0, MEMBLOCK_KHO_NODE_COMPATIBLE);
2561 	if (err) {
2562 		pr_warn("FDT '%s' is incompatible with '%s': %d\n",
2563 			MEMBLOCK_KHO_FDT, MEMBLOCK_KHO_NODE_COMPATIBLE, err);
2564 		fdt = NULL;
2565 	}
2566 
2567 	return fdt;
2568 }
2569 
2570 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
2571 					  phys_addr_t align)
2572 {
2573 	int err, len_start, len_size, offset;
2574 	const phys_addr_t *p_start, *p_size;
2575 	const void *fdt;
2576 
2577 	fdt = reserve_mem_kho_retrieve_fdt();
2578 	if (!fdt)
2579 		return false;
2580 
2581 	offset = fdt_subnode_offset(fdt, 0, name);
2582 	if (offset < 0) {
2583 		pr_warn("FDT '%s' has no child '%s': %d\n",
2584 			MEMBLOCK_KHO_FDT, name, offset);
2585 		return false;
2586 	}
2587 	err = fdt_node_check_compatible(fdt, offset, RESERVE_MEM_KHO_NODE_COMPATIBLE);
2588 	if (err) {
2589 		pr_warn("Node '%s' is incompatible with '%s': %d\n",
2590 			name, RESERVE_MEM_KHO_NODE_COMPATIBLE, err);
2591 		return false;
2592 	}
2593 
2594 	p_start = fdt_getprop(fdt, offset, "start", &len_start);
2595 	p_size = fdt_getprop(fdt, offset, "size", &len_size);
2596 	if (!p_start || len_start != sizeof(*p_start) || !p_size ||
2597 	    len_size != sizeof(*p_size)) {
2598 		return false;
2599 	}
2600 
2601 	if (*p_start & (align - 1)) {
2602 		pr_warn("KHO reserve-mem '%s' has wrong alignment (0x%lx, 0x%lx)\n",
2603 			name, (long)align, (long)*p_start);
2604 		return false;
2605 	}
2606 
2607 	if (*p_size != size) {
2608 		pr_warn("KHO reserve-mem '%s' has wrong size (0x%lx != 0x%lx)\n",
2609 			name, (long)*p_size, (long)size);
2610 		return false;
2611 	}
2612 
2613 	reserved_mem_add(*p_start, size, name);
2614 	pr_info("Revived memory reservation '%s' from KHO\n", name);
2615 
2616 	return true;
2617 }
2618 #else
2619 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
2620 					  phys_addr_t align)
2621 {
2622 	return false;
2623 }
2624 #endif /* CONFIG_KEXEC_HANDOVER */
2625 
2626 /*
2627  * Parse reserve_mem=nn:align:name
2628  */
2629 static int __init reserve_mem(char *p)
2630 {
2631 	phys_addr_t start, size, align, tmp;
2632 	char *name;
2633 	char *oldp;
2634 	int len;
2635 
2636 	if (!p)
2637 		return -EINVAL;
2638 
2639 	/* Check if there's room for more reserved memory */
2640 	if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2641 		return -EBUSY;
2642 
2643 	oldp = p;
2644 	size = memparse(p, &p);
2645 	if (!size || p == oldp)
2646 		return -EINVAL;
2647 
2648 	if (*p != ':')
2649 		return -EINVAL;
2650 
2651 	align = memparse(p+1, &p);
2652 	if (*p != ':')
2653 		return -EINVAL;
2654 
2655 	/*
2656 	 * memblock_phys_alloc() doesn't like a zero size align,
2657 	 * but it is OK for this command to have it.
2658 	 */
2659 	if (align < SMP_CACHE_BYTES)
2660 		align = SMP_CACHE_BYTES;
2661 
2662 	name = p + 1;
2663 	len = strlen(name);
2664 
2665 	/* name needs to have length but not too big */
2666 	if (!len || len >= RESERVE_MEM_NAME_SIZE)
2667 		return -EINVAL;
2668 
2669 	/* Make sure that name has text */
2670 	for (p = name; *p; p++) {
2671 		if (!isspace(*p))
2672 			break;
2673 	}
2674 	if (!*p)
2675 		return -EINVAL;
2676 
2677 	/* Make sure the name is not already used */
2678 	if (reserve_mem_find_by_name(name, &start, &tmp))
2679 		return -EBUSY;
2680 
2681 	/* Pick previous allocations up from KHO if available */
2682 	if (reserve_mem_kho_revive(name, size, align))
2683 		return 1;
2684 
2685 	/* TODO: Allocation must be outside of scratch region */
2686 	start = memblock_phys_alloc(size, align);
2687 	if (!start)
2688 		return -ENOMEM;
2689 
2690 	reserved_mem_add(start, size, name);
2691 
2692 	return 1;
2693 }
2694 __setup("reserve_mem=", reserve_mem);
2695 
2696 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2697 static const char * const flagname[] = {
2698 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2699 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2700 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2701 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2702 	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2703 	[ilog2(MEMBLOCK_RSRV_KERN)] = "RSV_KERN",
2704 	[ilog2(MEMBLOCK_KHO_SCRATCH)] = "KHO_SCRATCH",
2705 };
2706 
2707 static int memblock_debug_show(struct seq_file *m, void *private)
2708 {
2709 	struct memblock_type *type = m->private;
2710 	struct memblock_region *reg;
2711 	int i, j, nid;
2712 	unsigned int count = ARRAY_SIZE(flagname);
2713 	phys_addr_t end;
2714 
2715 	for (i = 0; i < type->cnt; i++) {
2716 		reg = &type->regions[i];
2717 		end = reg->base + reg->size - 1;
2718 		nid = memblock_get_region_node(reg);
2719 
2720 		seq_printf(m, "%4d: ", i);
2721 		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2722 		if (numa_valid_node(nid))
2723 			seq_printf(m, "%4d ", nid);
2724 		else
2725 			seq_printf(m, "%4c ", 'x');
2726 		if (reg->flags) {
2727 			for (j = 0; j < count; j++) {
2728 				if (reg->flags & (1U << j)) {
2729 					seq_printf(m, "%s\n", flagname[j]);
2730 					break;
2731 				}
2732 			}
2733 			if (j == count)
2734 				seq_printf(m, "%s\n", "UNKNOWN");
2735 		} else {
2736 			seq_printf(m, "%s\n", "NONE");
2737 		}
2738 	}
2739 	return 0;
2740 }
2741 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2742 
2743 static int __init memblock_init_debugfs(void)
2744 {
2745 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2746 
2747 	debugfs_create_file("memory", 0444, root,
2748 			    &memblock.memory, &memblock_debug_fops);
2749 	debugfs_create_file("reserved", 0444, root,
2750 			    &memblock.reserved, &memblock_debug_fops);
2751 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2752 	debugfs_create_file("physmem", 0444, root, &physmem,
2753 			    &memblock_debug_fops);
2754 #endif
2755 
2756 	return 0;
2757 }
2758 __initcall(memblock_init_debugfs);
2759 
2760 #endif /* CONFIG_DEBUG_FS */
2761